]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/graph_parallel/include/boost/graph/parallel/distribution.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / graph_parallel / include / boost / graph / parallel / distribution.hpp
CommitLineData
7c673cae
FG
1// Copyright 2004 The Trustees of Indiana University.
2
3// Use, modification and distribution is subject to the Boost Software
4// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
5// http://www.boost.org/LICENSE_1_0.txt)
6
7// Authors: Douglas Gregor
8// Peter Gottschling
9// Andrew Lumsdaine
10#ifndef BOOST_PARALLEL_DISTRIBUTION_HPP
11#define BOOST_PARALLEL_DISTRIBUTION_HPP
12
13#ifndef BOOST_GRAPH_USE_MPI
14#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
15#endif
16
17#include <cstddef>
18#include <vector>
19#include <algorithm>
20#include <numeric>
21#include <boost/assert.hpp>
22#include <boost/iterator/counting_iterator.hpp>
23#include <boost/random/uniform_int.hpp>
24#include <boost/shared_ptr.hpp>
25#include <typeinfo>
26
27namespace boost { namespace parallel {
28
29template<typename ProcessGroup, typename SizeType = std::size_t>
30class variant_distribution
31{
32public:
33 typedef typename ProcessGroup::process_id_type process_id_type;
34 typedef typename ProcessGroup::process_size_type process_size_type;
35 typedef SizeType size_type;
36
37private:
38 struct basic_distribution
39 {
40 virtual ~basic_distribution() {}
41 virtual size_type block_size(process_id_type, size_type) const = 0;
42 virtual process_id_type in_process(size_type) const = 0;
43 virtual size_type local(size_type) const = 0;
44 virtual size_type global(size_type) const = 0;
45 virtual size_type global(process_id_type, size_type) const = 0;
46 virtual void* address() = 0;
47 virtual const void* address() const = 0;
48 virtual const std::type_info& type() const = 0;
49 };
50
51 template<typename Distribution>
52 struct poly_distribution : public basic_distribution
53 {
54 explicit poly_distribution(const Distribution& distribution)
55 : distribution_(distribution) { }
56
57 virtual size_type block_size(process_id_type id, size_type n) const
58 { return distribution_.block_size(id, n); }
59
60 virtual process_id_type in_process(size_type i) const
61 { return distribution_(i); }
62
63 virtual size_type local(size_type i) const
64 { return distribution_.local(i); }
65
66 virtual size_type global(size_type n) const
67 { return distribution_.global(n); }
68
69 virtual size_type global(process_id_type id, size_type n) const
70 { return distribution_.global(id, n); }
71
72 virtual void* address() { return &distribution_; }
73 virtual const void* address() const { return &distribution_; }
74 virtual const std::type_info& type() const { return typeid(Distribution); }
75
76 private:
77 Distribution distribution_;
78 };
79
80public:
81 variant_distribution() { }
82
83 template<typename Distribution>
84 variant_distribution(const Distribution& distribution)
85 : distribution_(new poly_distribution<Distribution>(distribution)) { }
86
87 size_type block_size(process_id_type id, size_type n) const
88 { return distribution_->block_size(id, n); }
89
90 process_id_type operator()(size_type i) const
91 { return distribution_->in_process(i); }
92
93 size_type local(size_type i) const
94 { return distribution_->local(i); }
95
96 size_type global(size_type n) const
97 { return distribution_->global(n); }
98
99 size_type global(process_id_type id, size_type n) const
100 { return distribution_->global(id, n); }
101
102 operator bool() const { return distribution_; }
103
104 void clear() { distribution_.reset(); }
105
106 template<typename T>
107 T* as()
108 {
109 if (distribution_->type() == typeid(T))
110 return static_cast<T*>(distribution_->address());
111 else
112 return 0;
113 }
114
115 template<typename T>
116 const T* as() const
117 {
118 if (distribution_->type() == typeid(T))
119 return static_cast<T*>(distribution_->address());
120 else
121 return 0;
122 }
123
124private:
125 shared_ptr<basic_distribution> distribution_;
126};
127
128struct block
129{
130 template<typename LinearProcessGroup>
131 explicit block(const LinearProcessGroup& pg, std::size_t n)
132 : id(process_id(pg)), p(num_processes(pg)), n(n) { }
133
134 // If there are n elements in the distributed data structure, returns the number of elements stored locally.
135 template<typename SizeType>
136 SizeType block_size(SizeType n) const
137 { return (n / p) + ((std::size_t)(n % p) > id? 1 : 0); }
138
139 // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
140 template<typename SizeType, typename ProcessID>
141 SizeType block_size(ProcessID id, SizeType n) const
142 { return (n / p) + ((ProcessID)(n % p) > id? 1 : 0); }
143
144 // Returns the processor on which element with global index i is stored
145 template<typename SizeType>
146 SizeType operator()(SizeType i) const
147 {
148 SizeType cutoff_processor = n % p;
149 SizeType cutoff = cutoff_processor * (n / p + 1);
150
151 if (i < cutoff) return i / (n / p + 1);
152 else return cutoff_processor + (i - cutoff) / (n / p);
153 }
154
155 // Find the starting index for processor with the given id
156 template<typename ID>
157 std::size_t start(ID id) const
158 {
159 std::size_t estimate = id * (n / p + 1);
160 ID cutoff_processor = n % p;
161 if (id < cutoff_processor) return estimate;
162 else return estimate - (id - cutoff_processor);
163 }
164
165 // Find the local index for the ith global element
166 template<typename SizeType>
167 SizeType local(SizeType i) const
168 {
169 SizeType owner = (*this)(i);
170 return i - start(owner);
171 }
172
173 // Returns the global index of local element i
174 template<typename SizeType>
175 SizeType global(SizeType i) const
176 { return global(id, i); }
177
178 // Returns the global index of the ith local element on processor id
179 template<typename ProcessID, typename SizeType>
180 SizeType global(ProcessID id, SizeType i) const
181 { return i + start(id); }
182
183 private:
184 std::size_t id; //< The ID number of this processor
185 std::size_t p; //< The number of processors
186 std::size_t n; //< The size of the problem space
187};
188
189// Block distribution with arbitrary block sizes
190struct uneven_block
191{
192 typedef std::vector<std::size_t> size_vector;
193
194 template<typename LinearProcessGroup>
195 explicit uneven_block(const LinearProcessGroup& pg, const std::vector<std::size_t>& local_sizes)
196 : id(process_id(pg)), p(num_processes(pg)), local_sizes(local_sizes)
197 {
198 BOOST_ASSERT(local_sizes.size() == p);
199 local_starts.resize(p + 1);
200 local_starts[0] = 0;
201 std::partial_sum(local_sizes.begin(), local_sizes.end(), &local_starts[1]);
202 n = local_starts[p];
203 }
204
205 // To do maybe: enter local size in each process and gather in constructor (much handier)
206 // template<typename LinearProcessGroup>
207 // explicit uneven_block(const LinearProcessGroup& pg, std::size_t my_local_size)
208
209 // If there are n elements in the distributed data structure, returns the number of elements stored locally.
210 template<typename SizeType>
211 SizeType block_size(SizeType) const
212 { return local_sizes[id]; }
213
214 // If there are n elements in the distributed data structure, returns the number of elements stored on processor ID
215 template<typename SizeType, typename ProcessID>
216 SizeType block_size(ProcessID id, SizeType) const
217 { return local_sizes[id]; }
218
219 // Returns the processor on which element with global index i is stored
220 template<typename SizeType>
221 SizeType operator()(SizeType i) const
222 {
223 BOOST_ASSERT (i >= (SizeType) 0 && i < (SizeType) n); // check for valid range
224 size_vector::const_iterator lb = std::lower_bound(local_starts.begin(), local_starts.end(), (std::size_t) i);
225 return ((SizeType)(*lb) == i ? lb : --lb) - local_starts.begin();
226 }
227
228 // Find the starting index for processor with the given id
229 template<typename ID>
230 std::size_t start(ID id) const
231 {
232 return local_starts[id];
233 }
234
235 // Find the local index for the ith global element
236 template<typename SizeType>
237 SizeType local(SizeType i) const
238 {
239 SizeType owner = (*this)(i);
240 return i - start(owner);
241 }
242
243 // Returns the global index of local element i
244 template<typename SizeType>
245 SizeType global(SizeType i) const
246 { return global(id, i); }
247
248 // Returns the global index of the ith local element on processor id
249 template<typename ProcessID, typename SizeType>
250 SizeType global(ProcessID id, SizeType i) const
251 { return i + start(id); }
252
253 private:
254 std::size_t id; //< The ID number of this processor
255 std::size_t p; //< The number of processors
256 std::size_t n; //< The size of the problem space
257 std::vector<std::size_t> local_sizes; //< The sizes of all blocks
258 std::vector<std::size_t> local_starts; //< Lowest global index of each block
259};
260
261
262struct oned_block_cyclic
263{
264 template<typename LinearProcessGroup>
265 explicit oned_block_cyclic(const LinearProcessGroup& pg, std::size_t size)
266 : id(process_id(pg)), p(num_processes(pg)), size(size) { }
267
268 template<typename SizeType>
269 SizeType block_size(SizeType n) const
270 {
271 return block_size(id, n);
272 }
273
274 template<typename SizeType, typename ProcessID>
275 SizeType block_size(ProcessID id, SizeType n) const
276 {
277 SizeType all_blocks = n / size;
278 SizeType extra_elements = n % size;
279 SizeType everyone_gets = all_blocks / p;
280 SizeType extra_blocks = all_blocks % p;
281 SizeType my_blocks = everyone_gets + (p < extra_blocks? 1 : 0);
282 SizeType my_elements = my_blocks * size
283 + (p == extra_blocks? extra_elements : 0);
284 return my_elements;
285 }
286
287 template<typename SizeType>
288 SizeType operator()(SizeType i) const
289 {
290 return (i / size) % p;
291 }
292
293 template<typename SizeType>
294 SizeType local(SizeType i) const
295 {
296 return ((i / size) / p) * size + i % size;
297 }
298
299 template<typename SizeType>
300 SizeType global(SizeType i) const
301 { return global(id, i); }
302
303 template<typename ProcessID, typename SizeType>
304 SizeType global(ProcessID id, SizeType i) const
305 {
306 return ((i / size) * p + id) * size + i % size;
307 }
308
309 private:
310 std::size_t id; //< The ID number of this processor
311 std::size_t p; //< The number of processors
312 std::size_t size; //< Block size
313};
314
315struct twod_block_cyclic
316{
317 template<typename LinearProcessGroup>
318 explicit twod_block_cyclic(const LinearProcessGroup& pg,
319 std::size_t block_rows, std::size_t block_columns,
320 std::size_t data_columns_per_row)
321 : id(process_id(pg)), p(num_processes(pg)),
322 block_rows(block_rows), block_columns(block_columns),
323 data_columns_per_row(data_columns_per_row)
324 { }
325
326 template<typename SizeType>
327 SizeType block_size(SizeType n) const
328 {
329 return block_size(id, n);
330 }
331
332 template<typename SizeType, typename ProcessID>
333 SizeType block_size(ProcessID id, SizeType n) const
334 {
335 // TBD: This is really lame :)
336 int result = -1;
337 while (n > 0) {
338 --n;
339 if ((*this)(n) == id && (int)local(n) > result) result = local(n);
340 }
341 ++result;
342
343 // std::cerr << "Block size of id " << id << " is " << result << std::endl;
344 return result;
345 }
346
347 template<typename SizeType>
348 SizeType operator()(SizeType i) const
349 {
350 SizeType result = get_block_num(i) % p;
351 // std::cerr << "Item " << i << " goes on processor " << result << std::endl;
352 return result;
353 }
354
355 template<typename SizeType>
356 SizeType local(SizeType i) const
357 {
358 // Compute the start of the block
359 std::size_t block_num = get_block_num(i);
360 // std::cerr << "Item " << i << " is in block #" << block_num << std::endl;
361
362 std::size_t local_block_num = block_num / p;
363 std::size_t block_start = local_block_num * block_rows * block_columns;
364
365 // Compute the offset into the block
366 std::size_t data_row = i / data_columns_per_row;
367 std::size_t data_col = i % data_columns_per_row;
368 std::size_t block_offset = (data_row % block_rows) * block_columns
369 + (data_col % block_columns);
370
371 // std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
372 return block_start + block_offset;
373 }
374
375 template<typename SizeType>
376 SizeType global(SizeType i) const
377 {
378 // Compute the (global) block in which this element resides
379 SizeType local_block_num = i / (block_rows * block_columns);
380 SizeType block_offset = i % (block_rows * block_columns);
381 SizeType block_num = local_block_num * p + id;
382
383 // Compute the position of the start of the block (globally)
384 SizeType block_start = block_num * block_rows * block_columns;
385
386 std::cerr << "Block " << block_num << " starts at index " << block_start
387 << std::endl;
388
389 // Compute the row and column of this block
390 SizeType block_row = block_num / (data_columns_per_row / block_columns);
391 SizeType block_col = block_num % (data_columns_per_row / block_columns);
392
393 SizeType row_in_block = block_offset / block_columns;
394 SizeType col_in_block = block_offset % block_columns;
395
396 std::cerr << "Local index " << i << " is in block at row " << block_row
397 << ", column " << block_col << ", in-block row " << row_in_block
398 << ", in-block col " << col_in_block << std::endl;
399
400 SizeType result = block_row * block_rows + block_col * block_columns
401 + row_in_block * block_rows + col_in_block;
402
403
404 std::cerr << "global(" << i << "@" << id << ") = " << result
405 << " =? " << local(result) << std::endl;
406 BOOST_ASSERT(i == local(result));
407 return result;
408 }
409
410 private:
411 template<typename SizeType>
412 std::size_t get_block_num(SizeType i) const
413 {
414 std::size_t data_row = i / data_columns_per_row;
415 std::size_t data_col = i % data_columns_per_row;
416 std::size_t block_row = data_row / block_rows;
417 std::size_t block_col = data_col / block_columns;
418 std::size_t blocks_in_row = data_columns_per_row / block_columns;
419 std::size_t block_num = block_col * blocks_in_row + block_row;
420 return block_num;
421 }
422
423 std::size_t id; //< The ID number of this processor
424 std::size_t p; //< The number of processors
425 std::size_t block_rows; //< The # of rows in each block
426 std::size_t block_columns; //< The # of columns in each block
427 std::size_t data_columns_per_row; //< The # of columns per row of data
428};
429
430class twod_random
431{
432 template<typename RandomNumberGen>
433 struct random_int
434 {
435 explicit random_int(RandomNumberGen& gen) : gen(gen) { }
436
437 template<typename T>
438 T operator()(T n) const
439 {
440 uniform_int<T> distrib(0, n-1);
441 return distrib(gen);
442 }
443
444 private:
445 RandomNumberGen& gen;
446 };
447
448 public:
449 template<typename LinearProcessGroup, typename RandomNumberGen>
450 explicit twod_random(const LinearProcessGroup& pg,
451 std::size_t block_rows, std::size_t block_columns,
452 std::size_t data_columns_per_row,
453 std::size_t n,
454 RandomNumberGen& gen)
455 : id(process_id(pg)), p(num_processes(pg)),
456 block_rows(block_rows), block_columns(block_columns),
457 data_columns_per_row(data_columns_per_row),
458 global_to_local(n / (block_rows * block_columns))
459 {
460 std::copy(make_counting_iterator(std::size_t(0)),
461 make_counting_iterator(global_to_local.size()),
462 global_to_local.begin());
463
464 random_int<RandomNumberGen> rand(gen);
465 std::random_shuffle(global_to_local.begin(), global_to_local.end(), rand);
466 }
467
468 template<typename SizeType>
469 SizeType block_size(SizeType n) const
470 {
471 return block_size(id, n);
472 }
473
474 template<typename SizeType, typename ProcessID>
475 SizeType block_size(ProcessID id, SizeType n) const
476 {
477 // TBD: This is really lame :)
478 int result = -1;
479 while (n > 0) {
480 --n;
481 if ((*this)(n) == id && (int)local(n) > result) result = local(n);
482 }
483 ++result;
484
485 // std::cerr << "Block size of id " << id << " is " << result << std::endl;
486 return result;
487 }
488
489 template<typename SizeType>
490 SizeType operator()(SizeType i) const
491 {
492 SizeType result = get_block_num(i) % p;
493 // std::cerr << "Item " << i << " goes on processor " << result << std::endl;
494 return result;
495 }
496
497 template<typename SizeType>
498 SizeType local(SizeType i) const
499 {
500 // Compute the start of the block
501 std::size_t block_num = get_block_num(i);
502 // std::cerr << "Item " << i << " is in block #" << block_num << std::endl;
503
504 std::size_t local_block_num = block_num / p;
505 std::size_t block_start = local_block_num * block_rows * block_columns;
506
507 // Compute the offset into the block
508 std::size_t data_row = i / data_columns_per_row;
509 std::size_t data_col = i % data_columns_per_row;
510 std::size_t block_offset = (data_row % block_rows) * block_columns
511 + (data_col % block_columns);
512
513 // std::cerr << "Item " << i << " maps to local index " << block_start+block_offset << std::endl;
514 return block_start + block_offset;
515 }
516
517 private:
518 template<typename SizeType>
519 std::size_t get_block_num(SizeType i) const
520 {
521 std::size_t data_row = i / data_columns_per_row;
522 std::size_t data_col = i % data_columns_per_row;
523 std::size_t block_row = data_row / block_rows;
524 std::size_t block_col = data_col / block_columns;
525 std::size_t blocks_in_row = data_columns_per_row / block_columns;
526 std::size_t block_num = block_col * blocks_in_row + block_row;
527 return global_to_local[block_num];
528 }
529
530 std::size_t id; //< The ID number of this processor
531 std::size_t p; //< The number of processors
532 std::size_t block_rows; //< The # of rows in each block
533 std::size_t block_columns; //< The # of columns in each block
534 std::size_t data_columns_per_row; //< The # of columns per row of data
535 std::vector<std::size_t> global_to_local;
536};
537
538class random_distribution
539{
540 template<typename RandomNumberGen>
541 struct random_int
542 {
543 explicit random_int(RandomNumberGen& gen) : gen(gen) { }
544
545 template<typename T>
546 T operator()(T n) const
547 {
548 uniform_int<T> distrib(0, n-1);
549 return distrib(gen);
550 }
551
552 private:
553 RandomNumberGen& gen;
554 };
555
556 public:
557 template<typename LinearProcessGroup, typename RandomNumberGen>
558 random_distribution(const LinearProcessGroup& pg, RandomNumberGen& gen,
559 std::size_t n)
560 : base(pg, n), local_to_global(n), global_to_local(n)
561 {
562 std::copy(make_counting_iterator(std::size_t(0)),
563 make_counting_iterator(n),
564 local_to_global.begin());
565
566 random_int<RandomNumberGen> rand(gen);
567 std::random_shuffle(local_to_global.begin(), local_to_global.end(), rand);
568
569
570 for (std::vector<std::size_t>::size_type i = 0; i < n; ++i)
571 global_to_local[local_to_global[i]] = i;
572 }
573
574 template<typename SizeType>
575 SizeType block_size(SizeType n) const
576 { return base.block_size(n); }
577
578 template<typename SizeType, typename ProcessID>
579 SizeType block_size(ProcessID id, SizeType n) const
580 { return base.block_size(id, n); }
581
582 template<typename SizeType>
583 SizeType operator()(SizeType i) const
584 {
585 return base(global_to_local[i]);
586 }
587
588 template<typename SizeType>
589 SizeType local(SizeType i) const
590 {
591 return base.local(global_to_local[i]);
592 }
593
594 template<typename ProcessID, typename SizeType>
595 SizeType global(ProcessID p, SizeType i) const
596 {
597 return local_to_global[base.global(p, i)];
598 }
599
600 template<typename SizeType>
601 SizeType global(SizeType i) const
602 {
603 return local_to_global[base.global(i)];
604 }
605
606 private:
607 block base;
608 std::vector<std::size_t> local_to_global;
609 std::vector<std::size_t> global_to_local;
610};
611
612} } // end namespace boost::parallel
613
614#endif // BOOST_PARALLEL_DISTRIBUTION_HPP
615