]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/lambda/include/boost/lambda/closures.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / lambda / include / boost / lambda / closures.hpp
CommitLineData
7c673cae
FG
1/*=============================================================================
2 Adaptable closures
3
4 Phoenix V0.9
5 Copyright (c) 2001-2002 Joel de Guzman
6
7 Distributed under the Boost Software License, Version 1.0. (See
8 accompanying file LICENSE_1_0.txt or copy at
9 http://www.boost.org/LICENSE_1_0.txt)
10
11 URL: http://spirit.sourceforge.net/
12
13==============================================================================*/
14#ifndef PHOENIX_CLOSURES_HPP
15#define PHOENIX_CLOSURES_HPP
16
17///////////////////////////////////////////////////////////////////////////////
18#include "boost/lambda/core.hpp"
19///////////////////////////////////////////////////////////////////////////////
20namespace boost {
21namespace lambda {
22
23///////////////////////////////////////////////////////////////////////////////
24//
25// Adaptable closures
26//
27// The framework will not be complete without some form of closures
28// support. Closures encapsulate a stack frame where local
29// variables are created upon entering a function and destructed
30// upon exiting. Closures provide an environment for local
31// variables to reside. Closures can hold heterogeneous types.
32//
33// Phoenix closures are true hardware stack based closures. At the
34// very least, closures enable true reentrancy in lambda functions.
35// A closure provides access to a function stack frame where local
36// variables reside. Modeled after Pascal nested stack frames,
37// closures can be nested just like nested functions where code in
38// inner closures may access local variables from in-scope outer
39// closures (accessing inner scopes from outer scopes is an error
40// and will cause a run-time assertion failure).
41//
42// There are three (3) interacting classes:
43//
44// 1) closure:
45//
46// At the point of declaration, a closure does not yet create a
47// stack frame nor instantiate any variables. A closure declaration
48// declares the types and names[note] of the local variables. The
49// closure class is meant to be subclassed. It is the
50// responsibility of a closure subclass to supply the names for
51// each of the local variable in the closure. Example:
52//
53// struct my_closure : closure<int, string, double> {
54//
55// member1 num; // names the 1st (int) local variable
56// member2 message; // names the 2nd (string) local variable
57// member3 real; // names the 3rd (double) local variable
58// };
59//
60// my_closure clos;
61//
62// Now that we have a closure 'clos', its local variables can be
63// accessed lazily using the dot notation. Each qualified local
64// variable can be used just like any primitive actor (see
65// primitives.hpp). Examples:
66//
67// clos.num = 30
68// clos.message = arg1
69// clos.real = clos.num * 1e6
70//
71// The examples above are lazily evaluated. As usual, these
72// expressions return composite actors that will be evaluated
73// through a second function call invocation (see operators.hpp).
74// Each of the members (clos.xxx) is an actor. As such, applying
75// the operator() will reveal its identity:
76//
77// clos.num() // will return the current value of clos.num
78//
79// *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
80// introduced and initilally implemented the closure member names
81// that uses the dot notation.
82//
83// 2) closure_member
84//
85// The named local variables of closure 'clos' above are actually
86// closure members. The closure_member class is an actor and
87// conforms to its conceptual interface. member1..memberN are
88// predefined typedefs that correspond to each of the listed types
89// in the closure template parameters.
90//
91// 3) closure_frame
92//
93// When a closure member is finally evaluated, it should refer to
94// an actual instance of the variable in the hardware stack.
95// Without doing so, the process is not complete and the evaluated
96// member will result to an assertion failure. Remember that the
97// closure is just a declaration. The local variables that a
98// closure refers to must still be instantiated.
99//
100// The closure_frame class does the actual instantiation of the
101// local variables and links these variables with the closure and
102// all its members. There can be multiple instances of
103// closure_frames typically situated in the stack inside a
104// function. Each closure_frame instance initiates a stack frame
105// with a new set of closure local variables. Example:
106//
107// void foo()
108// {
109// closure_frame<my_closure> frame(clos);
110// /* do something */
111// }
112//
113// where 'clos' is an instance of our closure 'my_closure' above.
114// Take note that the usage above precludes locally declared
115// classes. If my_closure is a locally declared type, we can still
116// use its self_type as a paramater to closure_frame:
117//
118// closure_frame<my_closure::self_type> frame(clos);
119//
120// Upon instantiation, the closure_frame links the local variables
121// to the closure. The previous link to another closure_frame
122// instance created before is saved. Upon destruction, the
123// closure_frame unlinks itself from the closure and relinks the
124// preceding closure_frame prior to this instance.
125//
126// The local variables in the closure 'clos' above is default
127// constructed in the stack inside function 'foo'. Once 'foo' is
128// exited, all of these local variables are destructed. In some
129// cases, default construction is not desirable and we need to
130// initialize the local closure variables with some values. This
131// can be done by passing in the initializers in a compatible
132// tuple. A compatible tuple is one with the same number of
133// elements as the destination and where each element from the
134// destination can be constructed from each corresponding element
135// in the source. Example:
136//
137// tuple<int, char const*, int> init(123, "Hello", 1000);
138// closure_frame<my_closure> frame(clos, init);
139//
140// Here now, our closure_frame's variables are initialized with
141// int: 123, char const*: "Hello" and int: 1000.
142//
143///////////////////////////////////////////////////////////////////////////////
144
145
146
147///////////////////////////////////////////////////////////////////////////////
148//
149// closure_frame class
150//
151///////////////////////////////////////////////////////////////////////////////
152template <typename ClosureT>
153class closure_frame : public ClosureT::tuple_t {
154
155public:
156
157 closure_frame(ClosureT& clos)
158 : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
159 { clos.frame = this; }
160
161 template <typename TupleT>
162 closure_frame(ClosureT& clos, TupleT const& init)
163 : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
164 { clos.frame = this; }
165
166 ~closure_frame()
167 { frame = save; }
168
169private:
170
171 closure_frame(closure_frame const&); // no copy
172 closure_frame& operator=(closure_frame const&); // no assign
173
174 closure_frame* save;
175 closure_frame*& frame;
176};
177
178///////////////////////////////////////////////////////////////////////////////
179//
180// closure_member class
181//
182///////////////////////////////////////////////////////////////////////////////
183template <int N, typename ClosureT>
184class closure_member {
185
186public:
187
188 typedef typename ClosureT::tuple_t tuple_t;
189
190 closure_member()
191 : frame(ClosureT::closure_frame_ref()) {}
192
193 template <typename TupleT>
194 struct sig {
195
196 typedef typename detail::tuple_element_as_reference<
197 N, typename ClosureT::tuple_t
198 >::type type;
199 };
200
201 template <class Ret, class A, class B, class C>
202 // typename detail::tuple_element_as_reference
203 // <N, typename ClosureT::tuple_t>::type
204 Ret
205 call(A&, B&, C&) const
206 {
207 assert(frame);
208 return boost::tuples::get<N>(*frame);
209 }
210
211
212private:
213
214 typename ClosureT::closure_frame_t*& frame;
215};
216
217///////////////////////////////////////////////////////////////////////////////
218//
219// closure class
220//
221///////////////////////////////////////////////////////////////////////////////
222template <
223 typename T0 = null_type,
224 typename T1 = null_type,
225 typename T2 = null_type,
226 typename T3 = null_type,
227 typename T4 = null_type
228>
229class closure {
230
231public:
232
233 typedef tuple<T0, T1, T2, T3, T4> tuple_t;
234 typedef closure<T0, T1, T2, T3, T4> self_t;
235 typedef closure_frame<self_t> closure_frame_t;
236
237 closure()
238 : frame(0) { closure_frame_ref(&frame); }
239 closure_frame_t& context() { assert(frame); return frame; }
240 closure_frame_t const& context() const { assert(frame); return frame; }
241
242 typedef lambda_functor<closure_member<0, self_t> > member1;
243 typedef lambda_functor<closure_member<1, self_t> > member2;
244 typedef lambda_functor<closure_member<2, self_t> > member3;
245 typedef lambda_functor<closure_member<3, self_t> > member4;
246 typedef lambda_functor<closure_member<4, self_t> > member5;
247
248private:
249
250 closure(closure const&); // no copy
251 closure& operator=(closure const&); // no assign
252
253 template <int N, typename ClosureT>
254 friend class closure_member;
255
256 template <typename ClosureT>
257 friend class closure_frame;
258
259 static closure_frame_t*&
260 closure_frame_ref(closure_frame_t** frame_ = 0)
261 {
262 static closure_frame_t** frame = 0;
263 if (frame_ != 0)
264 frame = frame_;
265 return *frame;
266 }
267
268 closure_frame_t* frame;
269};
270
271}}
272 // namespace
273
274#endif