]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/math/doc/html/math_toolkit/constants_faq.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / math / doc / html / math_toolkit / constants_faq.html
CommitLineData
7c673cae
FG
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4<title>FAQs</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.77.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
8<link rel="up" href="../constants.html" title="Chapter&#160;4.&#160;Mathematical Constants">
9<link rel="prev" href="new_const.html" title="Defining New Constants">
10<link rel="next" href="../dist.html" title="Chapter&#160;5.&#160;Statistical Distributions and Functions">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="new_const.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../constants.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../dist.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.constants_faq"></a><a class="link" href="constants_faq.html" title="FAQs">FAQs</a>
28</h2></div></div></div>
29<h5>
30<a name="math_toolkit.constants_faq.h0"></a>
31 <span class="phrase"><a name="math_toolkit.constants_faq.why_are_these_constants_chosen"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.why_are_these_constants_chosen">Why are
32 <span class="emphasis"><em>these</em></span> Constants Chosen?</a>
33 </h5>
34<p>
35 It is, of course, impossible to please everyone with a list like this.
36 </p>
37<p>
38 Some of the criteria we have used are:
39 </p>
40<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
41<li class="listitem">
42 Used in Boost.Math.
43 </li>
44<li class="listitem">
45 Commonly used.
46 </li>
47<li class="listitem">
48 Expensive to compute.
49 </li>
50<li class="listitem">
51 Requested by users.
52 </li>
53<li class="listitem">
54 <a href="http://en.wikipedia.org/wiki/Mathematical_constant" target="_top">Used in
55 science and mathematics.</a>
56 </li>
57<li class="listitem">
58 No integer values (because so cheap to construct).<br> (You can easily
59 define your own if found convenient, for example: <code class="computeroutput"><span class="identifier">FPT</span>
60 <span class="identifier">one</span> <span class="special">=</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">FPT</span><span class="special">&gt;(</span><span class="number">42</span><span class="special">);</span></code>).
61 </li>
62</ul></div>
63<h5>
64<a name="math_toolkit.constants_faq.h1"></a>
65 <span class="phrase"><a name="math_toolkit.constants_faq.how_are_constants_named"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.how_are_constants_named">How
66 are constants named?</a>
67 </h5>
68<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
69<li class="listitem">
70 Not macros, so no upper case.
71 </li>
72<li class="listitem">
73 All lower case (following C++ standard names).
74 </li>
75<li class="listitem">
76 No CamelCase.
77 </li>
78<li class="listitem">
79 Underscore as _ delimiter between words.
80 </li>
81<li class="listitem">
82 Numbers spelt as words rather than decimal digits (except following pow).
83 </li>
84<li class="listitem">
85 Abbreviation conventions:
86 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; ">
87<li class="listitem">
88 root for square root.
89 </li>
90<li class="listitem">
91 cbrt for cube root.
92 </li>
93<li class="listitem">
94 pow for pow function using decimal digits like pow23 for n<sup>2/3</sup>.
95 </li>
96<li class="listitem">
97 div for divided by or operator /.
98 </li>
99<li class="listitem">
100 minus for operator -, plus for operator +.
101 </li>
102<li class="listitem">
103 sqr for squared.
104 </li>
105<li class="listitem">
106 cubed for cubed n<sup>3</sup>.
107 </li>
108<li class="listitem">
109 words for greek, like &#960;, &#950; and &#915;.
110 </li>
111<li class="listitem">
112 words like half, third, three_quarters, sixth for fractions. (Digit(s)
113 can get muddled).
114 </li>
115<li class="listitem">
116 log10 for log<sub>10</sub>
117 </li>
118<li class="listitem">
119 ln for log<sub>e</sub>
120 </li>
121</ul></div>
122 </li>
123</ul></div>
124<h5>
125<a name="math_toolkit.constants_faq.h2"></a>
126 <span class="phrase"><a name="math_toolkit.constants_faq.how_are_the_constants_derived"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.how_are_the_constants_derived">How are
127 the constants derived?</a>
128 </h5>
129<p>
130 The constants have all been calculated using high-precision software working
131 with up to 300-bit precision giving about 100 decimal digits. (The precision
132 can be arbitrarily chosen and is limited only by compute time).
133 </p>
134<h5>
135<a name="math_toolkit.constants_faq.h3"></a>
136 <span class="phrase"><a name="math_toolkit.constants_faq.how_accurate_are_the_constants"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.how_accurate_are_the_constants">How Accurate
137 are the constants?</a>
138 </h5>
139<p>
140 The minimum accuracy chosen (100 decimal digits) exceeds the accuracy of reasonably-foreseeable
141 floating-point hardware (256-bit) and should meet most high-precision computations.
142 </p>
143<h5>
144<a name="math_toolkit.constants_faq.h4"></a>
145 <span class="phrase"><a name="math_toolkit.constants_faq.how_are_the_constants_tested"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.how_are_the_constants_tested">How are the
146 constants tested?</a>
147 </h5>
148<div class="orderedlist"><ol class="orderedlist" type="1">
149<li class="listitem">
150 Comparison using Boost.Test BOOST_CHECK_CLOSE_FRACTION using long double
151 literals, with at least 35 decimal digits, enough to be accurate for all
152 long double implementations. The tolerance is usually twice <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">epsilon</span></code>.
153 </li>
154<li class="listitem">
155 Comparison with calculation at long double precision. This often requires
156 a slightly higher tolerance than two epsilon because of computational noise
157 from round-off etc, especially when trig and other functions are called.
158 </li>
159<li class="listitem">
160 Comparison with independent published values, for example, using <a href="http://oeis.org/" target="_top">The On-Line Encyclopedia of Integer Sequences (OEIS)</a>
161 again using at least 35 decimal digits strings.
162 </li>
163<li class="listitem">
164 Comparison with independely calculated values using arbitrary precision
165 tools like <a href="http://www.wolfram.com/mathematica/" target="_top">Mathematica</a>,
166 again using at least 35 decimal digits literal strings.
167 </li>
168</ol></div>
169<div class="warning"><table border="0" summary="Warning">
170<tr>
171<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
172<th align="left">Warning</th>
173</tr>
174<tr><td align="left" valign="top"><p>
175 We have not yet been able to <span class="bold"><strong>check</strong></span> that
176 <span class="bold"><strong>all</strong></span> constants are accurate at the full arbitrary
177 precision, at present 100 decimal digits. But certain key values like <code class="computeroutput"><span class="identifier">e</span></code> and <code class="computeroutput"><span class="identifier">pi</span></code>
178 appear to be accurate and internal consistencies suggest that others are
179 this accurate too.
180 </p></td></tr>
181</table></div>
182<h5>
183<a name="math_toolkit.constants_faq.h5"></a>
184 <span class="phrase"><a name="math_toolkit.constants_faq.why_is_portability_important"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.why_is_portability_important">Why is Portability
185 important?</a>
186 </h5>
187<p>
188 Code written using math constants is easily portable even when using different
189 floating-point types with differing precision.
190 </p>
191<p>
192 It is a mistake to expect that results of computations will be <span class="bold"><strong>identical</strong></span>,
193 but you can achieve the <span class="bold"><strong>best accuracy possible for the
194 floating-point type in use</strong></span>.
195 </p>
196<p>
197 This has no extra cost to the user, but reduces irritating, and often confusing
198 and very hard-to-trace effects, caused by the intrinsically limited precision
199 of floating-point calculations.
200 </p>
201<p>
202 A harmless symptom of this limit is a spurious least-significant digit; at
203 worst, slightly inaccurate constants sometimes cause iterating algorithms to
204 diverge wildly because internal comparisons just fail.
205 </p>
206<h5>
207<a name="math_toolkit.constants_faq.h6"></a>
208 <span class="phrase"><a name="math_toolkit.constants_faq.what_is_the_internal_format_of_t"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.what_is_the_internal_format_of_t">What
209 is the Internal Format of the constants, and why?</a>
210 </h5>
211<p>
212 See <a class="link" href="tutorial.html" title="Tutorial">tutorial</a> above for normal
213 use, but this FAQ explains the internal details used for the constants.
214 </p>
215<p>
216 Constants are stored as 100 decimal digit values. However, some compilers do
217 not accept decimal digits strings as long as this. So the constant is split
218 into two parts, with the first containing at least 128-bit long double precision
219 (35 decimal digits), and for consistency should be in scientific format with
220 a signed exponent.
221 </p>
222<p>
223 The second part is the value of the constant expressed as a string literal,
224 accurate to at least 100 decimal digits (in practice that means at least 102
225 digits). Again for consistency use scientific format with a signed exponent.
226 </p>
227<p>
228 For types with precision greater than a long double, then if T is constructible
229 <code class="computeroutput"><span class="identifier">T</span> </code>is constructible from a
230 <code class="computeroutput"><span class="keyword">const</span> <span class="keyword">char</span><span class="special">*</span></code> then it's directly constructed from the string,
231 otherwise we fall back on lexical_cast to convert to type <code class="computeroutput"><span class="identifier">T</span></code>.
232 (Using a string is necessary because you can't use a numeric constant since
233 even a <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
234 might not have enough digits).
235 </p>
236<p>
237 So, for example, a constant like pi is internally defined as
238 </p>
239<pre class="programlisting"><span class="identifier">BOOST_DEFINE_MATH_CONSTANT</span><span class="special">(</span><span class="identifier">pi</span><span class="special">,</span> <span class="number">3.141592653589793238462643383279502884e+00</span><span class="special">,</span> <span class="string">"3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651e+00"</span><span class="special">);</span>
240</pre>
241<p>
242 In this case the significand is 109 decimal digits, ensuring 100 decimal digits
243 are exact, and exponent is zero.
244 </p>
245<p>
246 See <a class="link" href="new_const.html" title="Defining New Constants">defining new constants</a> to
247 calculate new constants.
248 </p>
249<p>
250 A macro definition like this can be pasted into user code where convenient,
251 or into <code class="computeroutput"><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">constants</span><span class="special">.</span><span class="identifier">hpp</span></code> if it
252 is to be added to the Boost.Math library.
253 </p>
254<h5>
255<a name="math_toolkit.constants_faq.h7"></a>
256 <span class="phrase"><a name="math_toolkit.constants_faq.what_floating_point_types_could_"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.what_floating_point_types_could_">What
257 Floating-point Types could I use?</a>
258 </h5>
259<p>
260 Apart from the built-in floating-point types <code class="computeroutput"><span class="keyword">float</span></code>,
261 <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
262 <span class="keyword">double</span></code>, there are several arbitrary
263 precision floating-point classes available, but most are not licensed for commercial
264 use.
265 </p>
266<h6>
267<a name="math_toolkit.constants_faq.h8"></a>
268 <span class="phrase"><a name="math_toolkit.constants_faq.boost_multiprecision_by_christop"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.boost_multiprecision_by_christop">Boost.Multiprecision
269 by Christopher Kormanyos</a>
270 </h6>
271<p>
272 This work is based on an earlier work called e-float: Algorithm 910: A Portable
273 C++ Multiple-Precision System for Special-Function Calculations, in ACM TOMS,
274 {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. <a href="http://doi.acm.org/10.1145/1916461.1916469" target="_top">http://doi.acm.org/10.1145/1916461.1916469</a>
275 <a href="https://svn.boost.org/svn/boost/sandbox/e_float/" target="_top">e_float</a>
276 but is now re-factored and available under the Boost license in the Boost-sandbox
277 at <a href="https://svn.boost.org/svn/boost/sandbox/multiprecision/" target="_top">multiprecision</a>
278 where it is being refined and prepared for review.
279 </p>
280<h6>
281<a name="math_toolkit.constants_faq.h9"></a>
282 <span class="phrase"><a name="math_toolkit.constants_faq.boost_cpp_float_by_john_maddock_"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.boost_cpp_float_by_john_maddock_">Boost.cpp_float
283 by John Maddock using Expression Templates</a>
284 </h6>
285<p>
286 <a href="https://svn.boost.org/svn/boost/sandbox/big_number/" target="_top">Big Number</a>
287 which is a reworking of <a href="https://svn.boost.org/svn/boost/sandbox/e_float/" target="_top">e_float</a>
288 by Christopher Kormanyos to use expression templates for faster execution.
289 </p>
290<h6>
291<a name="math_toolkit.constants_faq.h10"></a>
292 <span class="phrase"><a name="math_toolkit.constants_faq.ntl_class_quad_float"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.ntl_class_quad_float">NTL
293 class quad_float</a>
294 </h6>
295<p>
296 <a href="http://shoup.net/ntl/" target="_top">NTL</a> by Victor Shoup has fixed and
297 arbitrary high precision fixed and floating-point types. However none of these
298 are licenced for commercial use.
299 </p>
300<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">NTL</span><span class="special">/</span><span class="identifier">quad_float</span><span class="special">.</span><span class="identifier">h</span><span class="special">&gt;</span> <span class="comment">// quad precision 106-bit, about 32 decimal digits.</span>
301<span class="keyword">using</span> <span class="identifier">NTL</span><span class="special">::</span><span class="identifier">to_quad_float</span><span class="special">;</span> <span class="comment">// Less precise than arbitrary precision NTL::RR.</span>
302</pre>
303<p>
304 NTL class <code class="computeroutput"><span class="identifier">quad_float</span></code>, which
305 gives a form of quadruple precision, 106-bit significand (but without an extended
306 exponent range.) With an IEC559/IEEE 754 compatible processor, for example
307 Intel X86 family, with 64-bit double, and 53-bit significand, using the significands
308 of <span class="bold"><strong>two</strong></span> 64-bit doubles, if <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">digits10</span></code> is 16, then we get about twice the
309 precision, so <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">quad_float</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">()</span></code>
310 should be 32. (the default <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">RR</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">()</span></code>
311 should be about 40). (which seems to agree with experiments). We output constants
312 (including some noisy bits, an approximation to <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">RR</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">()</span></code>)
313 by adding 2 or 3 extra decimal digits, so using <code class="computeroutput"><span class="identifier">quad_float</span><span class="special">::</span><span class="identifier">SetOutputPrecision</span><span class="special">(</span><span class="number">32</span> <span class="special">+</span>
314 <span class="number">3</span><span class="special">);</span></code>
315 </p>
316<p>
317 Apple Mac/Darwin uses a similar <span class="emphasis"><em>doubledouble</em></span> 106-bit for
318 its built-in <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
319 type.
320 </p>
321<div class="note"><table border="0" summary="Note">
322<tr>
323<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
324<th align="left">Note</th>
325</tr>
326<tr><td align="left" valign="top"><p>
327 The precision of all <code class="computeroutput"><span class="identifier">doubledouble</span></code>
328 floating-point types is rather odd and values given are only approximate.
329 </p></td></tr>
330</table></div>
331<p>
332 <span class="bold"><strong>New projects should use <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.</strong></span>
333 </p>
334<h6>
335<a name="math_toolkit.constants_faq.h11"></a>
336 <span class="phrase"><a name="math_toolkit.constants_faq.ntl_class_rr"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.ntl_class_rr">NTL
337 class RR</a>
338 </h6>
339<p>
340 Arbitrary precision floating point with NTL class RR, default is 150 bit (about
341 50 decimal digits) used here with 300 bit to output 100 decimal digits, enough
342 for many practical non-'number-theoretic' C++ applications.
343 </p>
344<p>
345 <a href="http://www.shoup.net/ntl/" target="_top">NTL A Library for doing Number Theory</a>
346 is <span class="bold"><strong>not licenced for commercial use</strong></span>.
347 </p>
348<p>
349 This class is used in Boost.Math and is an option when using big_number projects
350 to calculate new math constants.
351 </p>
352<p>
353 <span class="bold"><strong>New projects should use <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.</strong></span>
354 </p>
355<h6>
356<a name="math_toolkit.constants_faq.h12"></a>
357 <span class="phrase"><a name="math_toolkit.constants_faq.gmp_and_mpfr"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.gmp_and_mpfr">GMP
358 and MPFR</a>
359 </h6>
360<p>
361 <a href="http://gmplib.org" target="_top">GMP</a> and <a href="http://www.mpfr.org/" target="_top">MPFR</a>
362 have also been used to compute constants, but are licensed under the <a href="http://www.gnu.org/copyleft/lesser.html" target="_top">Lesser GPL license</a> and
363 are <span class="bold"><strong>not licensed for commercial use</strong></span>.
364 </p>
365<h5>
366<a name="math_toolkit.constants_faq.h13"></a>
367 <span class="phrase"><a name="math_toolkit.constants_faq.what_happened_to_a_previous_coll"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.what_happened_to_a_previous_coll">What
368 happened to a previous collection of constants proposed for Boost?</a>
369 </h5>
370<p>
371 A review concluded that the way in which the constants were presented did not
372 meet many peoples needs. None of the methods proposed met many users' essential
373 requirement to allow writing simply <code class="computeroutput"><span class="identifier">pi</span></code>
374 rather than <code class="computeroutput"><span class="identifier">pi</span><span class="special">()</span></code>.
375 Many science and engineering equations look difficult to read when because
376 function call brackets can be confused with the many other brackets often needed.
377 All the methods then proposed of avoiding the brackets failed to meet all needs,
378 often on grounds of complexity and lack of applicability to various realistic
379 scenarios.
380 </p>
381<p>
382 So the simple namespace method, proposed on its own, but rejected at the first
383 review, has been added to allow users to have convenient access to float, double
384 and long double values, but combined with template struct and functions to
385 allow simultaneous use with other non-built-in floating-point types.
386 </p>
387<h5>
388<a name="math_toolkit.constants_faq.h14"></a>
389 <span class="phrase"><a name="math_toolkit.constants_faq.why_do_the_constants_internally_"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.why_do_the_constants_internally_">Why do
390 the constants (internally) have a struct rather than a simple function?</a>
391 </h5>
392<p>
393 A function mechanism was provided by in previous versions of Boost.Math.
394 </p>
395<p>
396 The new mechanism is to permit partial specialization. See Custom Specializing
397 a constant above. It should also allow use with other packages like <a href="http://www.ttmath.org/" target="_top">ttmath Bignum C++ library.</a>
398 </p>
399<h5>
400<a name="math_toolkit.constants_faq.h15"></a>
401 <span class="phrase"><a name="math_toolkit.constants_faq.where_can_i_find_other_high_prec"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.where_can_i_find_other_high_prec">Where
402 can I find other high precision constants?</a>
403 </h5>
404<div class="orderedlist"><ol class="orderedlist" type="1">
405<li class="listitem">
406 Constants with very high precision and good accuracy (&gt;40 decimal digits)
407 from Simon Plouffe's web based collection <a href="http://pi.lacim.uqam.ca/eng/" target="_top">http://pi.lacim.uqam.ca/eng/</a>.
408 </li>
409<li class="listitem">
410 <a href="https://oeis.org/" target="_top">The On-Line Encyclopedia of Integer Sequences
411 (OEIS)</a>
412 </li>
413<li class="listitem">
414 Checks using printed text optically scanned values and converted from:
415 D. E. Knuth, Art of Computer Programming, Appendix A, Table 1, Vol 1, ISBN
416 0 201 89683 4 (1997)
417 </li>
418<li class="listitem">
419 M. Abrahamovitz &amp; I. E. Stegun, National Bureau of Standards, Handbook
420 of Mathematical Functions, a reference source for formulae now superceded
421 by
422 </li>
423<li class="listitem">
424 Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark,
425 NIST Handbook of Mathemetical Functions, Cambridge University Press, ISBN
426 978-0-521-14063-8, 2010.
427 </li>
428<li class="listitem">
429 John F Hart, Computer Approximations, Kreiger (1978) ISBN 0 88275 642 7.
430 </li>
431<li class="listitem">
432 Some values from Cephes Mathematical Library, Stephen L. Moshier and CALC100
433 100 decimal digit Complex Variable Calculator Program, a DOS utility.
434 </li>
435<li class="listitem">
436 Xavier Gourdon, Pascal Sebah, 50 decimal digits constants at <a href="http://numbers.computation.free.fr/Constants/constants.html" target="_top">Number,
437 constants and computation</a>.
438 </li>
439</ol></div>
440<h5>
441<a name="math_toolkit.constants_faq.h16"></a>
442 <span class="phrase"><a name="math_toolkit.constants_faq.where_are_physical_constants"></a></span><a class="link" href="constants_faq.html#math_toolkit.constants_faq.where_are_physical_constants">Where are
443 Physical Constants?</a>
444 </h5>
445<p>
446 Not here in this Boost.Math collection, because physical constants:
447 </p>
448<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
449<li class="listitem">
450 Are measurements, not truely constants.
451 </li>
452<li class="listitem">
453 Are not truly constant and keeping changing as mensuration technology improves.
454 </li>
455<li class="listitem">
456 Have a instrinsic uncertainty.
457 </li>
458<li class="listitem">
459 Mathematical constants are stored and represented at varying precision,
460 but should never be inaccurate.
461 </li>
462</ul></div>
463<p>
464 Some physical constants may be available in Boost.Units.
465 </p>
466</div>
467<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
468<td align="left"></td>
469<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014 Nikhar Agrawal,
470 Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
471 Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam Sewani,
472 Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
473 Distributed under the Boost Software License, Version 1.0. (See accompanying
474 file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
475 </p>
476</div></td>
477</tr></table>
478<hr>
479<div class="spirit-nav">
480<a accesskey="p" href="new_const.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../constants.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../dist.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
481</div>
482</body>
483</html>