]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/math/example/lambert_w_diode_graph.cpp
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / boost / libs / math / example / lambert_w_diode_graph.cpp
CommitLineData
92f5a8d4
TL
1// Copyright Paul A. Bristow 2016
2// Copyright John Z. Maddock 2016
3
4// Distributed under the Boost Software License, Version 1.0.
5// (See accompanying file LICENSE_1_0.txt or
6// copy at http ://www.boost.org/LICENSE_1_0.txt).
7
8/*! \brief Graph showing use of Lambert W function to compute current
9through a diode-connected transistor with preset series resistance.
10
11\details T. C. Banwell and A. Jayakumar,
12Exact analytical solution of current flow through diode with series resistance,
13Electron Letters, 36(4):291-2 (2000).
14DOI: doi.org/10.1049/el:20000301
15
16The current through a diode connected NPN bipolar junction transistor (BJT)
17type 2N2222 (See https://en.wikipedia.org/wiki/2N2222 and
18https://www.fairchildsemi.com/datasheets/PN/PN2222.pdf Datasheet)
19was measured, for a voltage between 0.3 to 1 volt, see Fig 2 for a log plot, showing a knee visible at about 0.6 V.
20
21The transistor parameter I sat was estimated to be 25 fA and the ideality factor = 1.0.
22The intrinsic emitter resistance re was estimated from the rsat = 0 data to be 0.3 ohm.
23
24The solid curves in Figure 2 are calculated using equation 5 with rsat included with re.
25
26http://www3.imperial.ac.uk/pls/portallive/docs/1/7292572.PDF
27
28*/
29
30#include <boost/math/special_functions/lambert_w.hpp>
31using boost::math::lambert_w0;
32#include <boost/math/special_functions.hpp>
33using boost::math::isfinite;
34#include <boost/svg_plot/svg_2d_plot.hpp>
35using namespace boost::svg;
36
37#include <iostream>
38// using std::cout;
39// using std::endl;
40#include <exception>
41#include <stdexcept>
42#include <string>
43#include <array>
44#include <vector>
45#include <utility>
46using std::pair;
47#include <map>
48using std::map;
49#include <set>
50using std::multiset;
51#include <limits>
52using std::numeric_limits;
53#include <cmath> //
54
55/*!
56Compute thermal voltage as a function of temperature,
57about 25 mV at room temperature.
58https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage
59
60\param temperature Temperature (degrees Celsius).
61*/
62const double v_thermal(double temperature)
63{
64 BOOST_CONSTEXPR const double boltzmann_k = 1.38e-23; // joules/kelvin.
65 BOOST_CONSTEXPR double charge_q = 1.6021766208e-19; // Charge of an electron (columb).
66 double temp = +273; // Degrees C to K.
67 return boltzmann_k * temp / charge_q;
68} // v_thermal
69
70 /*!
71 Banwell & Jayakumar, equation 2, page 291.
72 */
73double i(double isat, double vd, double vt, double nu)
74{
75 double i = isat * (exp(vd / (nu * vt)) - 1);
76 return i;
77} //
78
79 /*!
80 Banwell & Jayakumar, Equation 4, page 291.
81 i current flow = isat
82 v voltage source.
83 isat reverse saturation current in equation 4.
84 (might implement equation 4 instead of simpler equation 5?).
85 vd voltage drop = v - i* rs (equation 1).
86 vt thermal voltage, 0.0257025 = 25 mV.
87 nu junction ideality factor (default = unity), also known as the emission coefficient.
88 re intrinsic emitter resistance, estimated to be 0.3 ohm from low current.
89 rsat reverse saturation current
90
91 \param v Voltage V to compute current I(V).
92 \param vt Thermal voltage, for example 0.0257025 = 25 mV, computed from boltzmann_k * temp / charge_q;
93 \param rsat Resistance in series with the diode.
f67539c2 94 \param re Intrinsic emitter resistance (estimated to be 0.3 ohm from the Rs = 0 data)
92f5a8d4
TL
95 \param isat Reverse saturation current (See equation 2).
96 \param nu Ideality factor (default = unity).
97
98 \returns I amp as function of V volt.
99 */
100
101//[lambert_w_diode_graph_2
102double iv(double v, double vt, double rsat, double re, double isat, double nu = 1.)
103{
104 // V thermal 0.0257025 = 25 mV
105 // was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.
106
107 rsat = rsat + re;
108 double i = nu * vt / rsat;
109 // std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223
110
111 double x = isat * rsat / (nu * vt);
112// std::cout << "isat * rsat / (nu * vt) = " << x << std::endl;
113
114 double eterm = (v + isat * rsat) / (nu * vt);
115 // std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl;
116
117 double e = exp(eterm);
118// std::cout << "exp(eterm) = " << e << std::endl;
119
120 double w0 = lambert_w0(x * e);
121// std::cout << "w0 = " << w0 << std::endl;
122 return i * w0 - isat;
123} // double iv
124
125//] [\lambert_w_diode_graph_2]
126
127
128std::array<double, 5> rss = { 0., 2.18, 10., 51., 249 }; // series resistance (ohm).
129std::array<double, 7> vds = { 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; // Diode voltage.
130std::array<double, 7> lni = { -19.65, -15.75, -11.86, -7.97, -4.08, -0.0195, 3.6 }; // ln(current).
131
132int main()
133{
134 try
135 {
136 std::cout << "Lambert W diode current example." << std::endl;
137
138//[lambert_w_diode_graph_1
139 double nu = 1.0; // Assumed ideal.
140 double vt = v_thermal(25); // v thermal, Shockley equation, expect about 25 mV at room temperature.
141 double boltzmann_k = 1.38e-23; // joules/kelvin
142 double temp = 273 + 25;
143 double charge_q = 1.6e-19; // column
144 vt = boltzmann_k * temp / charge_q;
145 std::cout << "V thermal " << vt << std::endl; // V thermal 0.0257025 = 25 mV
146 double rsat = 0.;
147 double isat = 25.e-15; // 25 fA;
148 std::cout << "Isat = " << isat << std::endl;
149 double re = 0.3; // Estimated from slope of straight section of graph (equation 6).
150 double v = 0.9;
151 double icalc = iv(v, vt, 249., re, isat);
152 std::cout << "voltage = " << v << ", current = " << icalc << ", " << log(icalc) << std::endl; // voltage = 0.9, current = 0.00108485, -6.82631
153//] [/lambert_w_diode_graph_1]
154
155 // Plot a few measured data points.
156 std::map<const double, double> zero_data; // Extrapolated from slope of measurements with no external resistor.
157 zero_data[0.3] = -19.65;
158 zero_data[0.4] = -15.75;
159 zero_data[0.5] = -11.86;
160 zero_data[0.6] = -7.97;
161 zero_data[0.7] = -4.08;
162 zero_data[0.8] = -0.0195;
163 zero_data[0.9] = 3.9;
164
165 std::map<const double, double> measured_zero_data; // No external series resistor.
166 measured_zero_data[0.3] = -19.65;
167 measured_zero_data[0.4] = -15.75;
168 measured_zero_data[0.5] = -11.86;
169 measured_zero_data[0.6] = -7.97;
170 measured_zero_data[0.7] = -4.2;
171 measured_zero_data[0.72] = -3.5;
172 measured_zero_data[0.74] = -2.8;
173 measured_zero_data[0.76] = -2.3;
174 measured_zero_data[0.78] = -2.0;
175 // Measured from Fig 2 as raw data not available.
176
177 double step = 0.1;
178 for (int i = 0; i < vds.size(); i++)
179 {
180 zero_data[vds[i]] = lni[i];
181 std::cout << lni[i] << " " << vds[i] << std::endl;
182 }
183 step = 0.01;
184
185 std::map<const double, double> data_2;
186 for (double v = 0.3; v < 1.; v += step)
187 {
188 double current = iv(v, vt, 2., re, isat);
189 data_2[v] = log(current);
190 // std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
191 }
192 std::map<const double, double> data_10;
193 for (double v = 0.3; v < 1.; v += step)
194 {
195 double current = iv(v, vt, 10., re, isat);
196 data_10[v] = log(current);
197 // std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
198 }
199 std::map<const double, double> data_51;
200 for (double v = 0.3; v < 1.; v += step)
201 {
202 double current = iv(v, vt, 51., re, isat);
203 data_51[v] = log(current);
204 // std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
205 }
206 std::map<const double, double> data_249;
207 for (double v = 0.3; v < 1.; v += step)
208 {
209 double current = iv(v, vt, 249., re, isat);
210 data_249[v] = log(current);
211 // std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
212 }
213
214 svg_2d_plot data_plot;
215
216 data_plot.title("Diode current versus voltage")
217 .x_size(400)
218 .y_size(300)
219 .legend_on(true)
220 .legend_lines(true)
221 .x_label("voltage (V)")
222 .y_label("log(current) (A)")
223 //.x_label_on(true)
224 //.y_label_on(true)
225 //.xy_values_on(false)
226 .x_range(0.25, 1.)
227 .y_range(-20., +4.)
228 .x_major_interval(0.1)
229 .y_major_interval(4)
230 .x_major_grid_on(true)
231 .y_major_grid_on(true)
232 //.x_values_on(true)
233 //.y_values_on(true)
234 .y_values_rotation(horizontal)
235 //.plot_window_on(true)
236 .x_values_precision(3)
237 .y_values_precision(3)
238 .coord_precision(4) // Needed to avoid stepping on curves.
239 .copyright_holder("Paul A. Bristow")
240 .copyright_date("2016")
241 //.background_border_color(black);
242 ;
243
244 // &#x2080; = subscript zero.
245 data_plot.plot(zero_data, "I&#x2080;(V)").fill_color(lightgray).shape(none).size(3).line_on(true).line_width(0.5);
246 data_plot.plot(measured_zero_data, "Rs=0 &#x3A9;").fill_color(lightgray).shape(square).size(3).line_on(true).line_width(0.5);
247 data_plot.plot(data_2, "Rs=2 &#x3A9;").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
248 data_plot.plot(data_10, "Rs=10 &#x3A9;").line_color(purple).shape(none).line_on(true).bezier_on(false).line_width(1);
249 data_plot.plot(data_51, "Rs=51 &#x3A9;").line_color(green).shape(none).line_on(true).line_width(1);
250 data_plot.plot(data_249, "Rs=249 &#x3A9;").line_color(red).shape(none).line_on(true).line_width(1);
251 data_plot.write("./diode_iv_plot");
252
253 // bezier_on(true);
254 }
255 catch (std::exception& ex)
256 {
257 std::cout << ex.what() << std::endl;
258 }
259
260
261} // int main()
262
263 /*
264
265 //[lambert_w_output_1
266 Output:
267 Lambert W diode current example.
268 V thermal 0.0257025
269 Isat = 2.5e-14
270 voltage = 0.9, current = 0.00108485, -6.82631
271 -19.65 0.3
272 -15.75 0.4
273 -11.86 0.5
274 -7.97 0.6
275 -4.08 0.7
276 -0.0195 0.8
277 3.6 0.9
278
279 //] [/lambert_w_output_1]
280 */