]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/math/include/boost/math/special_functions/owens_t.hpp
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / math / include / boost / math / special_functions / owens_t.hpp
CommitLineData
7c673cae
FG
1// Copyright Benjamin Sobotta 2012
2
3// Use, modification and distribution are subject to the
4// Boost Software License, Version 1.0. (See accompanying file
5// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7#ifndef BOOST_OWENS_T_HPP
8#define BOOST_OWENS_T_HPP
9
10// Reference:
11// Mike Patefield, David Tandy
12// FAST AND ACCURATE CALCULATION OF OWEN'S T-FUNCTION
13// Journal of Statistical Software, 5 (5), 1-25
14
15#ifdef _MSC_VER
16# pragma once
17#endif
18
19#include <boost/math/special_functions/math_fwd.hpp>
20#include <boost/config/no_tr1/cmath.hpp>
21#include <boost/math/special_functions/erf.hpp>
22#include <boost/math/special_functions/expm1.hpp>
23#include <boost/throw_exception.hpp>
24#include <boost/assert.hpp>
25#include <boost/math/constants/constants.hpp>
26#include <boost/math/tools/big_constant.hpp>
27
28#include <stdexcept>
29
30#ifdef BOOST_MSVC
31#pragma warning(push)
32#pragma warning(disable:4127)
33#endif
34
35namespace boost
36{
37 namespace math
38 {
39 namespace detail
40 {
41 // owens_t_znorm1(x) = P(-oo<Z<=x)-0.5 with Z being normally distributed.
42 template<typename RealType>
43 inline RealType owens_t_znorm1(const RealType x)
44 {
45 using namespace boost::math::constants;
46 return erf(x*one_div_root_two<RealType>())*half<RealType>();
47 } // RealType owens_t_znorm1(const RealType x)
48
49 // owens_t_znorm2(x) = P(x<=Z<oo) with Z being normally distributed.
50 template<typename RealType>
51 inline RealType owens_t_znorm2(const RealType x)
52 {
53 using namespace boost::math::constants;
54 return erfc(x*one_div_root_two<RealType>())*half<RealType>();
55 } // RealType owens_t_znorm2(const RealType x)
56
57 // Auxiliary function, it computes an array key that is used to determine
58 // the specific computation method for Owen's T and the order thereof
59 // used in owens_t_dispatch.
60 template<typename RealType>
61 inline unsigned short owens_t_compute_code(const RealType h, const RealType a)
62 {
63 static const RealType hrange[] =
64 { 0.02f, 0.06f, 0.09f, 0.125f, 0.26f, 0.4f, 0.6f, 1.6f, 1.7f, 2.33f, 2.4f, 3.36f, 3.4f, 4.8f };
65
66 static const RealType arange[] = { 0.025f, 0.09f, 0.15f, 0.36f, 0.5f, 0.9f, 0.99999f };
67 /*
68 original select array from paper:
69 1, 1, 2,13,13,13,13,13,13,13,13,16,16,16, 9
70 1, 2, 2, 3, 3, 5, 5,14,14,15,15,16,16,16, 9
71 2, 2, 3, 3, 3, 5, 5,15,15,15,15,16,16,16,10
72 2, 2, 3, 5, 5, 5, 5, 7, 7,16,16,16,16,16,10
73 2, 3, 3, 5, 5, 6, 6, 8, 8,17,17,17,12,12,11
74 2, 3, 5, 5, 5, 6, 6, 8, 8,17,17,17,12,12,12
75 2, 3, 4, 4, 6, 6, 8, 8,17,17,17,17,17,12,12
76 2, 3, 4, 4, 6, 6,18,18,18,18,17,17,17,12,12
77 */
78 // subtract one because the array is written in FORTRAN in mind - in C arrays start @ zero
79 static const unsigned short select[] =
80 {
81 0, 0 , 1 , 12 ,12 , 12 , 12 , 12 , 12 , 12 , 12 , 15 , 15 , 15 , 8,
82 0 , 1 , 1 , 2 , 2 , 4 , 4 , 13 , 13 , 14 , 14 , 15 , 15 , 15 , 8,
83 1 , 1 , 2 , 2 , 2 , 4 , 4 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 9,
84 1 , 1 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 15 , 15 , 15 , 15 , 15 , 9,
85 1 , 2 , 2 , 4 , 4 , 5 , 5 , 7 , 7 , 16 ,16 , 16 , 11 , 11 , 10,
86 1 , 2 , 4 , 4 , 4 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 11 , 11 , 11,
87 1 , 2 , 3 , 3 , 5 , 5 , 7 , 7 , 16 , 16 , 16 , 16 , 16 , 11 , 11,
88 1 , 2 , 3 , 3 , 5 , 5 , 17 , 17 , 17 , 17 , 16 , 16 , 16 , 11 , 11
89 };
90
91 unsigned short ihint = 14, iaint = 7;
92 for(unsigned short i = 0; i != 14; i++)
93 {
94 if( h <= hrange[i] )
95 {
96 ihint = i;
97 break;
98 }
99 } // for(unsigned short i = 0; i != 14; i++)
100
101 for(unsigned short i = 0; i != 7; i++)
102 {
103 if( a <= arange[i] )
104 {
105 iaint = i;
106 break;
107 }
108 } // for(unsigned short i = 0; i != 7; i++)
109
110 // interprete select array as 8x15 matrix
111 return select[iaint*15 + ihint];
112
113 } // unsigned short owens_t_compute_code(const RealType h, const RealType a)
114
115 template<typename RealType>
116 inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const mpl::int_<53>&)
117 {
118 static const unsigned short ord[] = {2, 3, 4, 5, 7, 10, 12, 18, 10, 20, 30, 0, 4, 7, 8, 20, 0, 0}; // 18 entries
119
120 BOOST_ASSERT(icode<18);
121
122 return ord[icode];
123 } // unsigned short owens_t_get_order(const unsigned short icode, RealType, mpl::int<53> const&)
124
125 template<typename RealType>
126 inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const mpl::int_<64>&)
127 {
128 // method ================>>> {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}
129 static const unsigned short ord[] = {3, 4, 5, 6, 8, 11, 13, 19, 10, 20, 30, 0, 7, 10, 11, 23, 0, 0}; // 18 entries
130
131 BOOST_ASSERT(icode<18);
132
133 return ord[icode];
134 } // unsigned short owens_t_get_order(const unsigned short icode, RealType, mpl::int<64> const&)
135
136 template<typename RealType, typename Policy>
137 inline unsigned short owens_t_get_order(const unsigned short icode, RealType r, const Policy&)
138 {
139 typedef typename policies::precision<RealType, Policy>::type precision_type;
140 typedef typename mpl::if_<
141 mpl::or_<
142 mpl::less_equal<precision_type, mpl::int_<0> >,
143 mpl::greater<precision_type, mpl::int_<53> >
144 >,
145 mpl::int_<64>,
146 mpl::int_<53>
147 >::type tag_type;
148
149 return owens_t_get_order_imp(icode, r, tag_type());
150 }
151
152 // compute the value of Owen's T function with method T1 from the reference paper
153 template<typename RealType, typename Policy>
154 inline RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m, const Policy& pol)
155 {
156 BOOST_MATH_STD_USING
157 using namespace boost::math::constants;
158
159 const RealType hs = -h*h*half<RealType>();
160 const RealType dhs = exp( hs );
161 const RealType as = a*a;
162
163 unsigned short j=1;
164 RealType jj = 1;
165 RealType aj = a * one_div_two_pi<RealType>();
166 RealType dj = boost::math::expm1( hs, pol);
167 RealType gj = hs*dhs;
168
169 RealType val = atan( a ) * one_div_two_pi<RealType>();
170
171 while( true )
172 {
173 val += dj*aj/jj;
174
175 if( m <= j )
176 break;
177
178 j++;
179 jj += static_cast<RealType>(2);
180 aj *= as;
181 dj = gj - dj;
182 gj *= hs / static_cast<RealType>(j);
183 } // while( true )
184
185 return val;
186 } // RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m)
187
188 // compute the value of Owen's T function with method T2 from the reference paper
189 template<typename RealType, class Policy>
190 inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const mpl::false_&)
191 {
192 BOOST_MATH_STD_USING
193 using namespace boost::math::constants;
194
195 const unsigned short maxii = m+m+1;
196 const RealType hs = h*h;
197 const RealType as = -a*a;
198 const RealType y = static_cast<RealType>(1) / hs;
199
200 unsigned short ii = 1;
201 RealType val = 0;
202 RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
203 RealType z = owens_t_znorm1(ah)/h;
204
205 while( true )
206 {
207 val += z;
208 if( maxii <= ii )
209 {
210 val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
211 break;
212 } // if( maxii <= ii )
213 z = y * ( vi - static_cast<RealType>(ii) * z );
214 vi *= as;
215 ii += 2;
216 } // while( true )
217
218 return val;
219 } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
220
221 // compute the value of Owen's T function with method T3 from the reference paper
222 template<typename RealType>
223 inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const mpl::int_<53>&)
224 {
225 BOOST_MATH_STD_USING
226 using namespace boost::math::constants;
227
228 const unsigned short m = 20;
229
230 static const RealType c2[] =
231 {
232 static_cast<RealType>(0.99999999999999987510),
233 static_cast<RealType>(-0.99999999999988796462), static_cast<RealType>(0.99999999998290743652),
234 static_cast<RealType>(-0.99999999896282500134), static_cast<RealType>(0.99999996660459362918),
235 static_cast<RealType>(-0.99999933986272476760), static_cast<RealType>(0.99999125611136965852),
236 static_cast<RealType>(-0.99991777624463387686), static_cast<RealType>(0.99942835555870132569),
237 static_cast<RealType>(-0.99697311720723000295), static_cast<RealType>(0.98751448037275303682),
238 static_cast<RealType>(-0.95915857980572882813), static_cast<RealType>(0.89246305511006708555),
239 static_cast<RealType>(-0.76893425990463999675), static_cast<RealType>(0.58893528468484693250),
240 static_cast<RealType>(-0.38380345160440256652), static_cast<RealType>(0.20317601701045299653),
241 static_cast<RealType>(-0.82813631607004984866E-01), static_cast<RealType>(0.24167984735759576523E-01),
242 static_cast<RealType>(-0.44676566663971825242E-02), static_cast<RealType>(0.39141169402373836468E-03)
243 };
244
245 const RealType as = a*a;
246 const RealType hs = h*h;
247 const RealType y = static_cast<RealType>(1)/hs;
248
249 RealType ii = 1;
250 unsigned short i = 0;
251 RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
252 RealType zi = owens_t_znorm1(ah)/h;
253 RealType val = 0;
254
255 while( true )
256 {
257 BOOST_ASSERT(i < 21);
258 val += zi*c2[i];
259 if( m <= i ) // if( m < i+1 )
260 {
261 val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
262 break;
263 } // if( m < i )
264 zi = y * (ii*zi - vi);
265 vi *= as;
266 ii += 2;
267 i++;
268 } // while( true )
269
270 return val;
271 } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
272
273 // compute the value of Owen's T function with method T3 from the reference paper
274 template<class RealType>
275 inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const mpl::int_<64>&)
276 {
277 BOOST_MATH_STD_USING
278 using namespace boost::math::constants;
279
280 const unsigned short m = 30;
281
282 static const RealType c2[] =
283 {
284 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999999999729978162447266851932041876728736094298092917625009873),
285 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99999999999999999999467056379678391810626533251885323416799874878563998732905968),
286 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999824849349313270659391127814689133077036298754586814091034842536),
287 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999999997703859616213643405880166422891953033591551179153879839440241685),
288 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999998394883415238173334565554173013941245103172035286759201504179038147),
289 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999993063616095509371081203145247992197457263066869044528823599399470977),
290 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999999797336340409464429599229870590160411238245275855903767652432017766116267),
291 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999999999574958412069046680119051639753412378037565521359444170241346845522403274),
292 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999933226234193375324943920160947158239076786103108097456617750134812033362048),
293 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999188923242461073033481053037468263536806742737922476636768006622772762168467),
294 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999992195143483674402853783549420883055129680082932629160081128947764415749728967),
295 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999993935137206712830997921913316971472227199741857386575097250553105958772041501),
296 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99996135597690552745362392866517133091672395614263398912807169603795088421057688716),
297 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99979556366513946026406788969630293820987757758641211293079784585126692672425362469),
298 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.999092789629617100153486251423850590051366661947344315423226082520411961968929483),
299 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.996593837411918202119308620432614600338157335862888580671450938858935084316004769854),
300 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.98910017138386127038463510314625339359073956513420458166238478926511821146316469589567),
301 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.970078558040693314521331982203762771512160168582494513347846407314584943870399016019),
302 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.92911438683263187495758525500033707204091967947532160289872782771388170647150321633673),
303 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.8542058695956156057286980736842905011429254735181323743367879525470479126968822863),
304 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.73796526033030091233118357742803709382964420335559408722681794195743240930748630755),
305 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.58523469882837394570128599003785154144164680587615878645171632791404210655891158),
306 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.415997776145676306165661663581868460503874205343014196580122174949645271353372263),
307 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.2588210875241943574388730510317252236407805082485246378222935376279663808416534365),
308 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.1375535825163892648504646951500265585055789019410617565727090346559210218472356689),
309 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.0607952766325955730493900985022020434830339794955745989150270485056436844239206648),
310 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0216337683299871528059836483840390514275488679530797294557060229266785853764115),
311 BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.00593405693455186729876995814181203900550014220428843483927218267309209471516256),
312 BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0011743414818332946510474576182739210553333860106811865963485870668929503649964142),
313 BOOST_MATH_BIG_CONSTANT(RealType, 260, -1.489155613350368934073453260689881330166342484405529981510694514036264969925132e-4),
314 BOOST_MATH_BIG_CONSTANT(RealType, 260, 9.072354320794357587710929507988814669454281514268844884841547607134260303118208e-6)
315 };
316
317 const RealType as = a*a;
318 const RealType hs = h*h;
319 const RealType y = 1 / hs;
320
321 RealType ii = 1;
322 unsigned short i = 0;
323 RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
324 RealType zi = owens_t_znorm1(ah)/h;
325 RealType val = 0;
326
327 while( true )
328 {
329 BOOST_ASSERT(i < 31);
330 val += zi*c2[i];
331 if( m <= i ) // if( m < i+1 )
332 {
333 val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
334 break;
335 } // if( m < i )
336 zi = y * (ii*zi - vi);
337 vi *= as;
338 ii += 2;
339 i++;
340 } // while( true )
341
342 return val;
343 } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
344
345 template<class RealType, class Policy>
346 inline RealType owens_t_T3(const RealType h, const RealType a, const RealType ah, const Policy&)
347 {
348 typedef typename policies::precision<RealType, Policy>::type precision_type;
349 typedef typename mpl::if_<
350 mpl::or_<
351 mpl::less_equal<precision_type, mpl::int_<0> >,
352 mpl::greater<precision_type, mpl::int_<53> >
353 >,
354 mpl::int_<64>,
355 mpl::int_<53>
356 >::type tag_type;
357
358 return owens_t_T3_imp(h, a, ah, tag_type());
359 }
360
361 // compute the value of Owen's T function with method T4 from the reference paper
362 template<typename RealType>
363 inline RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
364 {
365 BOOST_MATH_STD_USING
366 using namespace boost::math::constants;
367
368 const unsigned short maxii = m+m+1;
369 const RealType hs = h*h;
370 const RealType as = -a*a;
371
372 unsigned short ii = 1;
373 RealType ai = a * exp( -hs*(static_cast<RealType>(1)-as)*half<RealType>() ) * one_div_two_pi<RealType>();
374 RealType yi = 1;
375 RealType val = 0;
376
377 while( true )
378 {
379 val += ai*yi;
380 if( maxii <= ii )
381 break;
382 ii += 2;
383 yi = (static_cast<RealType>(1)-hs*yi) / static_cast<RealType>(ii);
384 ai *= as;
385 } // while( true )
386
387 return val;
388 } // RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
389
390 // compute the value of Owen's T function with method T5 from the reference paper
391 template<typename RealType>
392 inline RealType owens_t_T5_imp(const RealType h, const RealType a, const mpl::int_<53>&)
393 {
394 BOOST_MATH_STD_USING
395 /*
396 NOTICE:
397 - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
398 polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
399 quadrature, because T5(h,a,m) contains only x^2 terms.
400 - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
401 of 1/(2*pi) according to T5(h,a,m).
402 */
403
404 const unsigned short m = 13;
405 static const RealType pts[] = {
406 static_cast<RealType>(0.35082039676451715489E-02),
407 static_cast<RealType>(0.31279042338030753740E-01), static_cast<RealType>(0.85266826283219451090E-01),
408 static_cast<RealType>(0.16245071730812277011), static_cast<RealType>(0.25851196049125434828),
409 static_cast<RealType>(0.36807553840697533536), static_cast<RealType>(0.48501092905604697475),
410 static_cast<RealType>(0.60277514152618576821), static_cast<RealType>(0.71477884217753226516),
411 static_cast<RealType>(0.81475510988760098605), static_cast<RealType>(0.89711029755948965867),
412 static_cast<RealType>(0.95723808085944261843), static_cast<RealType>(0.99178832974629703586) };
413 static const RealType wts[] = {
414 static_cast<RealType>(0.18831438115323502887E-01),
415 static_cast<RealType>(0.18567086243977649478E-01), static_cast<RealType>(0.18042093461223385584E-01),
416 static_cast<RealType>(0.17263829606398753364E-01), static_cast<RealType>(0.16243219975989856730E-01),
417 static_cast<RealType>(0.14994592034116704829E-01), static_cast<RealType>(0.13535474469662088392E-01),
418 static_cast<RealType>(0.11886351605820165233E-01), static_cast<RealType>(0.10070377242777431897E-01),
419 static_cast<RealType>(0.81130545742299586629E-02), static_cast<RealType>(0.60419009528470238773E-02),
420 static_cast<RealType>(0.38862217010742057883E-02), static_cast<RealType>(0.16793031084546090448E-02) };
421
422 const RealType as = a*a;
423 const RealType hs = -h*h*boost::math::constants::half<RealType>();
424
425 RealType val = 0;
426 for(unsigned short i = 0; i < m; ++i)
427 {
428 BOOST_ASSERT(i < 13);
429 const RealType r = static_cast<RealType>(1) + as*pts[i];
430 val += wts[i] * exp( hs*r ) / r;
431 } // for(unsigned short i = 0; i < m; ++i)
432
433 return val*a;
434 } // RealType owens_t_T5(const RealType h, const RealType a)
435
436 // compute the value of Owen's T function with method T5 from the reference paper
437 template<typename RealType>
438 inline RealType owens_t_T5_imp(const RealType h, const RealType a, const mpl::int_<64>&)
439 {
440 BOOST_MATH_STD_USING
441 /*
442 NOTICE:
443 - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
444 polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
445 quadrature, because T5(h,a,m) contains only x^2 terms.
446 - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
447 of 1/(2*pi) according to T5(h,a,m).
448 */
449
450 const unsigned short m = 19;
451 static const RealType pts[] = {
452 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0016634282895983227941),
453 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.014904509242697054183),
454 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.04103478879005817919),
455 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.079359853513391511008),
456 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.1288612130237615133),
457 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.18822336642448518856),
458 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.25586876186122962384),
459 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.32999972011807857222),
460 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.40864620815774761438),
461 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.48971819306044782365),
462 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.57106118513245543894),
463 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.6505134942981533829),
464 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.72596367859928091618),
465 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.79540665919549865924),
466 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.85699701386308739244),
467 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.90909804422384697594),
468 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.95032536436570154409),
469 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.97958418733152273717),
470 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.99610366384229088321)
471 };
472 static const RealType wts[] = {
473 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012975111395684900835),
474 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012888764187499150078),
475 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012716644398857307844),
476 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012459897461364705691),
477 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012120231988292330388),
478 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011699908404856841158),
479 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011201723906897224448),
480 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.010628993848522759853),
481 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0099855296835573320047),
482 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0092756136096132857933),
483 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0085039700881139589055),
484 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0076757344408814561254),
485 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0067964187616556459109),
486 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.005871875456524750363),
487 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0049082589542498110071),
488 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0039119870792519721409),
489 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0028897090921170700834),
490 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0018483371329504443947),
491 BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.00079623320100438873578)
492 };
493
494 const RealType as = a*a;
495 const RealType hs = -h*h*boost::math::constants::half<RealType>();
496
497 RealType val = 0;
498 for(unsigned short i = 0; i < m; ++i)
499 {
500 BOOST_ASSERT(i < 19);
501 const RealType r = 1 + as*pts[i];
502 val += wts[i] * exp( hs*r ) / r;
503 } // for(unsigned short i = 0; i < m; ++i)
504
505 return val*a;
506 } // RealType owens_t_T5(const RealType h, const RealType a)
507
508 template<class RealType, class Policy>
509 inline RealType owens_t_T5(const RealType h, const RealType a, const Policy&)
510 {
511 typedef typename policies::precision<RealType, Policy>::type precision_type;
512 typedef typename mpl::if_<
513 mpl::or_<
514 mpl::less_equal<precision_type, mpl::int_<0> >,
515 mpl::greater<precision_type, mpl::int_<53> >
516 >,
517 mpl::int_<64>,
518 mpl::int_<53>
519 >::type tag_type;
520
521 return owens_t_T5_imp(h, a, tag_type());
522 }
523
524
525 // compute the value of Owen's T function with method T6 from the reference paper
526 template<typename RealType>
527 inline RealType owens_t_T6(const RealType h, const RealType a)
528 {
529 BOOST_MATH_STD_USING
530 using namespace boost::math::constants;
531
532 const RealType normh = owens_t_znorm2( h );
533 const RealType y = static_cast<RealType>(1) - a;
534 const RealType r = atan2(y, static_cast<RealType>(1 + a) );
535
536 RealType val = normh * ( static_cast<RealType>(1) - normh ) * half<RealType>();
537
538 if( r != 0 )
539 val -= r * exp( -y*h*h*half<RealType>()/r ) * one_div_two_pi<RealType>();
540
541 return val;
542 } // RealType owens_t_T6(const RealType h, const RealType a, const unsigned short m)
543
544 template <class T, class Policy>
545 std::pair<T, T> owens_t_T1_accelerated(T h, T a, const Policy& pol)
546 {
547 //
548 // This is the same series as T1, but:
549 // * The Taylor series for atan has been combined with that for T1,
550 // reducing but not eliminating cancellation error.
551 // * The resulting alternating series is then accelerated using method 1
552 // from H. Cohen, F. Rodriguez Villegas, D. Zagier,
553 // "Convergence acceleration of alternating series", Bonn, (1991).
554 //
555 BOOST_MATH_STD_USING
556 static const char* function = "boost::math::owens_t<%1%>(%1%, %1%)";
557 T half_h_h = h * h / 2;
558 T a_pow = a;
559 T aa = a * a;
560 T exp_term = exp(-h * h / 2);
561 T one_minus_dj_sum = exp_term;
562 T sum = a_pow * exp_term;
563 T dj_pow = exp_term;
564 T term = sum;
565 T abs_err;
566 int j = 1;
567
568 //
569 // Normally with this form of series acceleration we can calculate
570 // up front how many terms will be required - based on the assumption
571 // that each term decreases in size by a factor of 3. However,
572 // that assumption does not apply here, as the underlying T1 series can
573 // go quite strongly divergent in the early terms, before strongly
574 // converging later. Various "guestimates" have been tried to take account
575 // of this, but they don't always work.... so instead set "n" to the
576 // largest value that won't cause overflow later, and abort iteration
577 // when the last accelerated term was small enough...
578 //
579 int n;
580#ifndef BOOST_NO_EXCEPTIONS
581 try
582 {
583#endif
584 n = itrunc(T(tools::log_max_value<T>() / 6));
585#ifndef BOOST_NO_EXCEPTIONS
586 }
587 catch(...)
588 {
589 n = (std::numeric_limits<int>::max)();
590 }
591#endif
592 n = (std::min)(n, 1500);
593 T d = pow(3 + sqrt(T(8)), n);
594 d = (d + 1 / d) / 2;
595 T b = -1;
596 T c = -d;
597 c = b - c;
598 sum *= c;
599 b = -n * n * b * 2;
600 abs_err = ldexp(fabs(sum), -tools::digits<T>());
601
602 while(j < n)
603 {
604 a_pow *= aa;
605 dj_pow *= half_h_h / j;
606 one_minus_dj_sum += dj_pow;
607 term = one_minus_dj_sum * a_pow / (2 * j + 1);
608 c = b - c;
609 sum += c * term;
610 abs_err += ldexp((std::max)(T(fabs(sum)), T(fabs(c*term))), -tools::digits<T>());
611 b = (j + n) * (j - n) * b / ((j + T(0.5)) * (j + 1));
612 ++j;
613 //
614 // Include an escape route to prevent calculating too many terms:
615 //
616 if((j > 10) && (fabs(sum * tools::epsilon<T>()) > fabs(c * term)))
617 break;
618 }
619 abs_err += fabs(c * term);
620 if(sum < 0) // sum must always be positive, if it's negative something really bad has happend:
621 policies::raise_evaluation_error(function, 0, T(0), pol);
622 return std::pair<T, T>((sum / d) / boost::math::constants::two_pi<T>(), abs_err / sum);
623 }
624
625 template<typename RealType, class Policy>
626 inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const mpl::true_&)
627 {
628 BOOST_MATH_STD_USING
629 using namespace boost::math::constants;
630
631 const unsigned short maxii = m+m+1;
632 const RealType hs = h*h;
633 const RealType as = -a*a;
634 const RealType y = static_cast<RealType>(1) / hs;
635
636 unsigned short ii = 1;
637 RealType val = 0;
638 RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
639 RealType z = owens_t_znorm1(ah)/h;
640 RealType last_z = fabs(z);
641 RealType lim = policies::get_epsilon<RealType, Policy>();
642
643 while( true )
644 {
645 val += z;
646 //
647 // This series stops converging after a while, so put a limit
648 // on how far we go before returning our best guess:
649 //
650 if((fabs(lim * val) > fabs(z)) || ((ii > maxii) && (fabs(z) > last_z)) || (z == 0))
651 {
652 val *= exp( -hs*half<RealType>() ) / root_two_pi<RealType>();
653 break;
654 } // if( maxii <= ii )
655 last_z = fabs(z);
656 z = y * ( vi - static_cast<RealType>(ii) * z );
657 vi *= as;
658 ii += 2;
659 } // while( true )
660
661 return val;
662 } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
663
664 template<typename RealType, class Policy>
665 inline std::pair<RealType, RealType> owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&)
666 {
667 //
668 // This is the same series as T2, but with acceleration applied.
669 // Note that we have to be *very* careful to check that nothing bad
670 // has happened during evaluation - this series will go divergent
671 // and/or fail to alternate at a drop of a hat! :-(
672 //
673 BOOST_MATH_STD_USING
674 using namespace boost::math::constants;
675
676 const RealType hs = h*h;
677 const RealType as = -a*a;
678 const RealType y = static_cast<RealType>(1) / hs;
679
680 unsigned short ii = 1;
681 RealType val = 0;
682 RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
683 RealType z = boost::math::detail::owens_t_znorm1(ah)/h;
684 RealType last_z = fabs(z);
685
686 //
687 // Normally with this form of series acceleration we can calculate
688 // up front how many terms will be required - based on the assumption
689 // that each term decreases in size by a factor of 3. However,
690 // that assumption does not apply here, as the underlying T1 series can
691 // go quite strongly divergent in the early terms, before strongly
692 // converging later. Various "guestimates" have been tried to take account
693 // of this, but they don't always work.... so instead set "n" to the
694 // largest value that won't cause overflow later, and abort iteration
695 // when the last accelerated term was small enough...
696 //
697 int n;
698#ifndef BOOST_NO_EXCEPTIONS
699 try
700 {
701#endif
702 n = itrunc(RealType(tools::log_max_value<RealType>() / 6));
703#ifndef BOOST_NO_EXCEPTIONS
704 }
705 catch(...)
706 {
707 n = (std::numeric_limits<int>::max)();
708 }
709#endif
710 n = (std::min)(n, 1500);
711 RealType d = pow(3 + sqrt(RealType(8)), n);
712 d = (d + 1 / d) / 2;
713 RealType b = -1;
714 RealType c = -d;
715 int s = 1;
716
717 for(int k = 0; k < n; ++k)
718 {
719 //
720 // Check for both convergence and whether the series has gone bad:
721 //
722 if(
723 (fabs(z) > last_z) // Series has gone divergent, abort
724 || (fabs(val) * tools::epsilon<RealType>() > fabs(c * s * z)) // Convergence!
725 || (z * s < 0) // Series has stopped alternating - all bets are off - abort.
726 )
727 {
728 break;
729 }
730 c = b - c;
731 val += c * s * z;
732 b = (k + n) * (k - n) * b / ((k + RealType(0.5)) * (k + 1));
733 last_z = fabs(z);
734 s = -s;
735 z = y * ( vi - static_cast<RealType>(ii) * z );
736 vi *= as;
737 ii += 2;
738 } // while( true )
739 RealType err = fabs(c * z) / val;
740 return std::pair<RealType, RealType>(val * exp( -hs*half<RealType>() ) / (d * root_two_pi<RealType>()), err);
741 } // RealType owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&)
742
743 template<typename RealType, typename Policy>
744 inline RealType T4_mp(const RealType h, const RealType a, const Policy& pol)
745 {
746 BOOST_MATH_STD_USING
747
748 const RealType hs = h*h;
749 const RealType as = -a*a;
750
751 unsigned short ii = 1;
752 RealType ai = constants::one_div_two_pi<RealType>() * a * exp( -0.5*hs*(1.0-as) );
753 RealType yi = 1.0;
754 RealType val = 0.0;
755
756 RealType lim = boost::math::policies::get_epsilon<RealType, Policy>();
757
758 while( true )
759 {
760 RealType term = ai*yi;
761 val += term;
762 if((yi != 0) && (fabs(val * lim) > fabs(term)))
763 break;
764 ii += 2;
765 yi = (1.0-hs*yi) / static_cast<RealType>(ii);
766 ai *= as;
767 if(ii > (std::min)(1500, (int)policies::get_max_series_iterations<Policy>()))
768 policies::raise_evaluation_error("boost::math::owens_t<%1%>", 0, val, pol);
769 } // while( true )
770
771 return val;
772 } // arg_type owens_t_T4(const arg_type h, const arg_type a, const unsigned short m)
773
774
775 // This routine dispatches the call to one of six subroutines, depending on the values
776 // of h and a.
777 // preconditions: h >= 0, 0<=a<=1, ah=a*h
778 //
779 // Note there are different versions for different precisions....
780 template<typename RealType, typename Policy>
781 inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, mpl::int_<64> const&)
782 {
783 // Simple main case for 64-bit precision or less, this is as per the Patefield-Tandy paper:
784 BOOST_MATH_STD_USING
785 //
786 // Handle some special cases first, these are from
787 // page 1077 of Owen's original paper:
788 //
789 if(h == 0)
790 {
791 return atan(a) * constants::one_div_two_pi<RealType>();
792 }
793 if(a == 0)
794 {
795 return 0;
796 }
797 if(a == 1)
798 {
799 return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2;
800 }
801 if(a >= tools::max_value<RealType>())
802 {
803 return owens_t_znorm2(RealType(fabs(h)));
804 }
805 RealType val = 0; // avoid compiler warnings, 0 will be overwritten in any case
806 const unsigned short icode = owens_t_compute_code(h, a);
807 const unsigned short m = owens_t_get_order(icode, val /* just a dummy for the type */, pol);
808 static const unsigned short meth[] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}; // 18 entries
809
810 // determine the appropriate method, T1 ... T6
811 switch( meth[icode] )
812 {
813 case 1: // T1
814 val = owens_t_T1(h,a,m,pol);
815 break;
816 case 2: // T2
817 typedef typename policies::precision<RealType, Policy>::type precision_type;
818 typedef mpl::bool_<(precision_type::value == 0) || (precision_type::value > 64)> tag_type;
819 val = owens_t_T2(h, a, m, ah, pol, tag_type());
820 break;
821 case 3: // T3
822 val = owens_t_T3(h,a,ah, pol);
823 break;
824 case 4: // T4
825 val = owens_t_T4(h,a,m);
826 break;
827 case 5: // T5
828 val = owens_t_T5(h,a, pol);
829 break;
830 case 6: // T6
831 val = owens_t_T6(h,a);
832 break;
833 default:
834 BOOST_THROW_EXCEPTION(std::logic_error("selection routine in Owen's T function failed"));
835 }
836 return val;
837 }
838
839 template<typename RealType, typename Policy>
840 inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const mpl::int_<65>&)
841 {
842 // Arbitrary precision version:
843 BOOST_MATH_STD_USING
844 //
845 // Handle some special cases first, these are from
846 // page 1077 of Owen's original paper:
847 //
848 if(h == 0)
849 {
850 return atan(a) * constants::one_div_two_pi<RealType>();
851 }
852 if(a == 0)
853 {
854 return 0;
855 }
856 if(a == 1)
857 {
858 return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2;
859 }
860 if(a >= tools::max_value<RealType>())
861 {
862 return owens_t_znorm2(RealType(fabs(h)));
863 }
864 // Attempt arbitrary precision code, this will throw if it goes wrong:
865 typedef typename boost::math::policies::normalise<Policy, boost::math::policies::evaluation_error<> >::type forwarding_policy;
866 std::pair<RealType, RealType> p1(0, tools::max_value<RealType>()), p2(0, tools::max_value<RealType>());
867 RealType target_precision = policies::get_epsilon<RealType, Policy>() * 1000;
868 bool have_t1(false), have_t2(false);
869 if(ah < 3)
870 {
871#ifndef BOOST_NO_EXCEPTIONS
872 try
873 {
874#endif
875 have_t1 = true;
876 p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
877 if(p1.second < target_precision)
878 return p1.first;
879#ifndef BOOST_NO_EXCEPTIONS
880 }
881 catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK
882#endif
883 }
884 if(ah > 1)
885 {
886#ifndef BOOST_NO_EXCEPTIONS
887 try
888 {
889#endif
890 have_t2 = true;
891 p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
892 if(p2.second < target_precision)
893 return p2.first;
894#ifndef BOOST_NO_EXCEPTIONS
895 }
896 catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK
897#endif
898 }
899 //
900 // If we haven't tried T1 yet, do it now - sometimes it succeeds and the number of iterations
901 // is fairly low compared to T4.
902 //
903 if(!have_t1)
904 {
905#ifndef BOOST_NO_EXCEPTIONS
906 try
907 {
908#endif
909 have_t1 = true;
910 p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
911 if(p1.second < target_precision)
912 return p1.first;
913#ifndef BOOST_NO_EXCEPTIONS
914 }
915 catch(const boost::math::evaluation_error&){} // T1 may fail and throw, that's OK
916#endif
917 }
918 //
919 // If we haven't tried T2 yet, do it now - sometimes it succeeds and the number of iterations
920 // is fairly low compared to T4.
921 //
922 if(!have_t2)
923 {
924#ifndef BOOST_NO_EXCEPTIONS
925 try
926 {
927#endif
928 have_t2 = true;
929 p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
930 if(p2.second < target_precision)
931 return p2.first;
932#ifndef BOOST_NO_EXCEPTIONS
933 }
934 catch(const boost::math::evaluation_error&){} // T2 may fail and throw, that's OK
935#endif
936 }
937 //
938 // OK, nothing left to do but try the most expensive option which is T4,
939 // this is often slow to converge, but when it does converge it tends to
940 // be accurate:
941#ifndef BOOST_NO_EXCEPTIONS
942 try
943 {
944#endif
945 return T4_mp(h, a, pol);
946#ifndef BOOST_NO_EXCEPTIONS
947 }
948 catch(const boost::math::evaluation_error&){} // T4 may fail and throw, that's OK
949#endif
950 //
951 // Now look back at the results from T1 and T2 and see if either gave better
952 // results than we could get from the 64-bit precision versions.
953 //
954 if((std::min)(p1.second, p2.second) < 1e-20)
955 {
956 return p1.second < p2.second ? p1.first : p2.first;
957 }
958 //
959 // We give up - no arbitrary precision versions succeeded!
960 //
961 return owens_t_dispatch(h, a, ah, pol, mpl::int_<64>());
962 } // RealType owens_t_dispatch(RealType h, RealType a, RealType ah)
963 template<typename RealType, typename Policy>
964 inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const mpl::int_<0>&)
965 {
966 // We don't know what the precision is until runtime:
967 if(tools::digits<RealType>() <= 64)
968 return owens_t_dispatch(h, a, ah, pol, mpl::int_<64>());
969 return owens_t_dispatch(h, a, ah, pol, mpl::int_<65>());
970 }
971 template<typename RealType, typename Policy>
972 inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol)
973 {
974 // Figure out the precision and forward to the correct version:
975 typedef typename policies::precision<RealType, Policy>::type precision_type;
976 typedef typename mpl::if_c<
977 precision_type::value == 0,
978 mpl::int_<0>,
979 typename mpl::if_c<
980 precision_type::value <= 64,
981 mpl::int_<64>,
982 mpl::int_<65>
983 >::type
984 >::type tag_type;
985 return owens_t_dispatch(h, a, ah, pol, tag_type());
986 }
987 // compute Owen's T function, T(h,a), for arbitrary values of h and a
988 template<typename RealType, class Policy>
989 inline RealType owens_t(RealType h, RealType a, const Policy& pol)
990 {
991 BOOST_MATH_STD_USING
992 // exploit that T(-h,a) == T(h,a)
993 h = fabs(h);
994
995 // Use equation (2) in the paper to remap the arguments
996 // such that h>=0 and 0<=a<=1 for the call of the actual
997 // computation routine.
998
999 const RealType fabs_a = fabs(a);
1000 const RealType fabs_ah = fabs_a*h;
1001
1002 RealType val = 0.0; // avoid compiler warnings, 0.0 will be overwritten in any case
1003
1004 if(fabs_a <= 1)
1005 {
1006 val = owens_t_dispatch(h, fabs_a, fabs_ah, pol);
1007 } // if(fabs_a <= 1.0)
1008 else
1009 {
1010 if( h <= 0.67 )
1011 {
1012 const RealType normh = owens_t_znorm1(h);
1013 const RealType normah = owens_t_znorm1(fabs_ah);
1014 val = static_cast<RealType>(1)/static_cast<RealType>(4) - normh*normah -
1015 owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
1016 } // if( h <= 0.67 )
1017 else
1018 {
1019 const RealType normh = detail::owens_t_znorm2(h);
1020 const RealType normah = detail::owens_t_znorm2(fabs_ah);
1021 val = constants::half<RealType>()*(normh+normah) - normh*normah -
1022 owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
1023 } // else [if( h <= 0.67 )]
1024 } // else [if(fabs_a <= 1)]
1025
1026 // exploit that T(h,-a) == -T(h,a)
1027 if(a < 0)
1028 {
1029 return -val;
1030 } // if(a < 0)
1031
1032 return val;
1033 } // RealType owens_t(RealType h, RealType a)
1034
1035 template <class T, class Policy, class tag>
1036 struct owens_t_initializer
1037 {
1038 struct init
1039 {
1040 init()
1041 {
1042 do_init(tag());
1043 }
1044 template <int N>
1045 static void do_init(const mpl::int_<N>&){}
1046 static void do_init(const mpl::int_<64>&)
1047 {
1048 boost::math::owens_t(static_cast<T>(7), static_cast<T>(0.96875), Policy());
1049 boost::math::owens_t(static_cast<T>(2), static_cast<T>(0.5), Policy());
1050 }
1051 void force_instantiate()const{}
1052 };
1053 static const init initializer;
1054 static void force_instantiate()
1055 {
1056 initializer.force_instantiate();
1057 }
1058 };
1059
1060 template <class T, class Policy, class tag>
1061 const typename owens_t_initializer<T, Policy, tag>::init owens_t_initializer<T, Policy, tag>::initializer;
1062
1063 } // namespace detail
1064
1065 template <class T1, class T2, class Policy>
1066 inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a, const Policy& pol)
1067 {
1068 typedef typename tools::promote_args<T1, T2>::type result_type;
1069 typedef typename policies::evaluation<result_type, Policy>::type value_type;
1070 typedef typename policies::precision<value_type, Policy>::type precision_type;
1071 typedef typename mpl::if_c<
1072 precision_type::value == 0,
1073 mpl::int_<0>,
1074 typename mpl::if_c<
1075 precision_type::value <= 64,
1076 mpl::int_<64>,
1077 mpl::int_<65>
1078 >::type
1079 >::type tag_type;
1080
1081 detail::owens_t_initializer<result_type, Policy, tag_type>::force_instantiate();
1082
1083 return policies::checked_narrowing_cast<result_type, Policy>(detail::owens_t(static_cast<value_type>(h), static_cast<value_type>(a), pol), "boost::math::owens_t<%1%>(%1%,%1%)");
1084 }
1085
1086 template <class T1, class T2>
1087 inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a)
1088 {
1089 return owens_t(h, a, policies::policy<>());
1090 }
1091
1092
1093 } // namespace math
1094} // namespace boost
1095
1096#ifdef BOOST_MSVC
1097#pragma warning(pop)
1098#endif
1099
1100#endif
1101// EOF