]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/numeric/ublas/doc/overview.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / numeric / ublas / doc / overview.html
CommitLineData
7c673cae
FG
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml">
4<head>
5<meta name="generator" content="HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" />
6<meta http-equiv="Content-Type" content="text/html; charset=us-ascii" />
7<link rel="stylesheet" href="../../../../boost.css" type="text/css"/>
8<link rel="stylesheet" href="ublas.css" type="text/css" />
9<script type="text/javascript" src="js/jquery-1.3.2.min.js" async="async" ></script>
10<script type="text/javascript" src="js/jquery.toc-gw.js" async="async" ></script>
11<title>uBLAS Overview</title>
12</head>
13<body>
14<h1><img src="../../../../boost.png" align="middle" alt="logo"/>uBLAS Overview</h1>
15<div class="toc" id="toc"></div>
16<h2><a name="rationale">Rationale</h2>
17<p><cite>It would be nice if every kind of numeric software could
18be written in C++ without loss of efficiency, but unless something
19can be found that achieves this without compromising the C++ type
20system it may be preferable to rely on Fortran, assembler or
21architecture-specific extensions (Bjarne Stroustrup).</cite></p>
22<p>This C++ library is directed towards scientific computing on the
23level of basic linear algebra constructions with matrices and
24vectors and their corresponding abstract operations. The primary
25design goals were:</p>
26<ul type="disc">
27<li>mathematical notation</li>
28<li>efficiency</li>
29<li>functionality</li>
30<li>compatibility</li>
31</ul>
32<p>Another intention was to evaluate, if the abstraction penalty
33resulting from the use of such matrix and vector classes is
34acceptable.</p>
35<h2>Resources</h2>
36<p>The development of this library was guided by a couple of
37similar efforts:</p>
38<ul type="disc">
39<li><a href="http://www.netlib.org/blas/index.html">BLAS</a> by
40Jack Dongarra et al.</li>
41<li><a href="http://www.oonumerics.org/blitz/">Blitz++</a> by Todd
42Veldhuizen</li>
43<li><a href="http://acts.nersc.gov/pooma/">POOMA</a> by Scott
44Haney et al.</li>
45<li><a href="http://www.lsc.nd.edu/research/mtl/">MTL</a> by Jeremy
46Siek et al.</li>
47</ul>
48<p>BLAS seems to be the most widely used library for basic linear
49algebra constructions, so it could be called a de-facto standard.
50Its interface is procedural, the individual functions are somewhat
51abstracted from simple linear algebra operations. Due to the fact
52that is has been implemented using Fortran and its optimizations,
53it also seems to be one of the fastest libraries available. As we
54decided to design and implement our library in an object-oriented
55way, the technical approaches are distinct. However anyone should
56be able to express BLAS abstractions in terms of our library
57operators and to compare the efficiency of the implementations.</p>
58<p>Blitz++ is an impressive library implemented in C++. Its main
59design seems to be oriented towards multidimensional arrays and
60their associated operators including tensors. The author of Blitz++
61states, that the library achieves performance on par or better than
62corresponding Fortran code due to his implementation technique
63using expression templates and template metaprograms. However we
64see some reasons, to develop an own design and implementation
65approach. We do not know whether anybody tries to implement
66traditional linear algebra and other numerical algorithms using
67Blitz++. We also presume that even today Blitz++ needs the most
68advanced C++ compiler technology due to its implementation idioms.
69On the other hand, Blitz++ convinced us, that the use of expression
70templates is mandatory to reduce the abstraction penalty to an
71acceptable limit.</p>
72<p>POOMA's design goals seem to parallel Blitz++'s in many parts .
73It extends Blitz++'s concepts with classes from the domains of
74partial differential equations and theoretical physics. The
75implementation supports even parallel architectures.</p>
76<p>MTL is another approach supporting basic linear algebra
77operations in C++. Its design mainly seems to be influenced by BLAS
78and the C++ Standard Template Library. We share the insight that a
79linear algebra library has to provide functionality comparable to
80BLAS. On the other hand we think, that the concepts of the C++
81standard library have not yet been proven to support numerical
82computations as needed. As another difference MTL currently does
83not seem to use expression templates. This may result in one of two
84consequences: a possible loss of expressiveness or a possible loss
85of performance.</p>
86<h2>Concepts</h2>
87<h3>Mathematical Notation</h3>
88<p>The usage of mathematical notation may ease the development of
89scientific algorithms. So a C++ library implementing basic linear
90algebra concepts carefully should overload selected C++ operators
91on matrix and vector classes.</p>
92<p>We decided to use operator overloading for the following
93primitives:</p>
94<table border="1" summary="operators">
95<tbody>
96<tr>
97<th align="left">Description</th>
98<th align="left">Operator</th>
99</tr>
100<tr>
101<td>Indexing of vectors and matrices</td>
102<td><code>vector::operator(size_t i);<br />
103matrix::operator(size_t i, size_t j);</code></td>
104</tr>
105<tr>
106<td>Assignment of vectors and matrices</td>
107<td><code>vector::operator = (const vector_expression &amp;);<br />
108vector::operator += (const vector_expression &amp;);<br />
109vector::operator -= (const vector_expression &amp;);<br />
110vector::operator *= (const scalar_expression &amp;);<br />
111matrix::operator = (const matrix_expression &amp;);<br />
112matrix::operator += (const matrix_expression &amp;);<br />
113matrix::operator -= (const matrix_expression &amp;);<br />
114matrix::operator *= (const scalar_expression &amp;);</code></td>
115</tr>
116<tr>
117<td>Unary operations on vectors and matrices</td>
118<td><code>vector_expression operator - (const vector_expression
119&amp;);<br />
120matrix_expression operator - (const matrix_expression
121&amp;);</code></td>
122</tr>
123<tr>
124<td>Binary operations on vectors and matrices</td>
125<td><code>vector_expression operator + (const vector_expression
126&amp;, const vector_expression &amp;);<br />
127vector_expression operator - (const vector_expression &amp;, const
128vector_expression &amp;);<br />
129matrix_expression operator + (const matrix_expression &amp;, const
130matrix_expression &amp;);<br />
131matrix_expression operator - (const matrix_expression &amp;, const
132matrix_expression &amp;);</code></td>
133</tr>
134<tr>
135<td>Multiplication of vectors and matrices with a scalar</td>
136<td><code>vector_expression operator * (const scalar_expression
137&amp;, const vector_expression &amp;);<br />
138vector_expression operator * (const vector_expression &amp;, const
139scalar_expression &amp;);<br />
140matrix_expression operator * (const scalar_expression &amp;, const
141matrix_expression &amp;);<br />
142matrix_expression operator * (const matrix_expression &amp;, const
143scalar_expression &amp;);</code></td>
144</tr>
145</tbody>
146</table>
147<p>We decided to use no operator overloading for the following
148other primitives:</p>
149<table border="1" summary="functions">
150<tbody>
151<tr>
152<th align="left">Description</th>
153<th align="left">Function</th>
154</tr>
155<tr>
156<td>Left multiplication of vectors with a matrix</td>
157<td><code>vector_expression
158prod&lt;</code><code><em>vector_type</em></code> <code>&gt; (const
159matrix_expression &amp;, const vector_expression &amp;);<br />
160vector_expression prod (const matrix_expression &amp;, const
161vector_expression &amp;);</code></td>
162</tr>
163<tr>
164<td>Right multiplication of vectors with a matrix</td>
165<td><code>vector_expression
166prod&lt;</code><code><em>vector_type</em></code> <code>&gt; (const
167vector_expression &amp;, const matrix_expression &amp;);<br />
168vector_expression prod (const vector_expression &amp;, const
169matrix_expression &amp;);<br /></code></td>
170</tr>
171<tr>
172<td>Multiplication of matrices</td>
173<td><code>matrix_expression
174prod&lt;</code><code><em>matrix_type</em></code> <code>&gt; (const
175matrix_expression &amp;, const matrix_expression &amp;);<br />
176matrix_expression prod (const matrix_expression &amp;, const
177matrix_expression &amp;);</code></td>
178</tr>
179<tr>
180<td>Inner product of vectors</td>
181<td><code>scalar_expression inner_prod (const vector_expression
182&amp;, const vector_expression &amp;);</code></td>
183</tr>
184<tr>
185<td>Outer product of vectors</td>
186<td><code>matrix_expression outer_prod (const vector_expression
187&amp;, const vector_expression &amp;);</code></td>
188</tr>
189<tr>
190<td>Transpose of a matrix</td>
191<td><code>matrix_expression trans (const matrix_expression
192&amp;);</code></td>
193</tr>
194</tbody>
195</table>
196<h3>Efficiency</h3>
197<p>To achieve the goal of efficiency for numerical computing, one
198has to overcome two difficulties in formulating abstractions with
199C++, namely temporaries and virtual function calls. Expression
200templates solve these problems, but tend to slow down compilation
201times.</p>
202<h4>Eliminating Temporaries</h4>
203<p>Abstract formulas on vectors and matrices normally compose a
204couple of unary and binary operations. The conventional way of
205evaluating such a formula is first to evaluate every leaf operation
206of a composition into a temporary and next to evaluate the
207composite resulting in another temporary. This method is expensive
208in terms of time especially for small and space especially for
209large vectors and matrices. The approach to solve this problem is
210to use lazy evaluation as known from modern functional programming
211languages. The principle of this approach is to evaluate a complex
212expression element wise and to assign it directly to the
213target.</p>
214<p>Two interesting and dangerous facts result:</p>
215<h4>Aliases</h4>
216<p>One may get serious side effects using element wise
217evaluation on vectors or matrices. Consider the matrix vector
218product <em>x = A x</em>. Evaluation of
219<em>A</em><sub><em>1</em></sub><em>x</em> and assignment to
220<em>x</em><sub><em>1</em></sub> changes the right hand side, so
221that the evaluation of <em>A</em><sub><em>2</em></sub><em>x</em>
222returns a wrong result. In this case there are <strong>aliases</strong> of the elements
223<em>x</em><sub><em>n</em></sub> on both the left and right hand side of the assignment.</p>
224<p>Our solution for this problem is to
225evaluate the right hand side of an assignment into a temporary and
226then to assign this temporary to the left hand side. To allow
227further optimizations, we provide a corresponding member function
228for every assignment operator and also a
229<a href="operations_overview.html#noalias"> <code>noalias</code> syntax.</a>
230By using this syntax a programmer can confirm, that the left and right hand sides of an
231assignment are independent, so that element wise evaluation and
232direct assignment to the target is safe.</p>
233<h4>Complexity</h4>
234<p>The computational complexity may be unexpectedly large under certain
235cirumstances. Consider the chained matrix vector product <em>A (B
236x)</em>. Conventional evaluation of <em>A (B x)</em> is quadratic.
237Deferred evaluation of <em>B x</em><sub><em>i</em></sub> is linear.
238As every element <em>B x</em><sub><em>i</em></sub> is needed
239linearly depending of the size, a completely deferred evaluation of
240the chained matrix vector product <em>A (B x)</em> is cubic. In
241such cases one needs to reintroduce temporaries in the
242expression.</p>
243<h4>Eliminating Virtual Function Calls</h4>
244<p>Lazy expression evaluation normally leads to the definition of a
245class hierarchy of terms. This results in the usage of dynamic
246polymorphism to access single elements of vectors and matrices,
247which is also known to be expensive in terms of time. A solution
248was found a couple of years ago independently by David Vandervoorde
249and Todd Veldhuizen and is commonly called expression templates.
250Expression templates contain lazy evaluation and replace dynamic
251polymorphism with static, i.e. compile time polymorphism.
252Expression templates heavily depend on the famous Barton-Nackman
253trick, also coined 'curiously defined recursive templates' by Jim
254Coplien.</p>
255<p>Expression templates form the base of our implementation.</p>
256<h4>Compilation times</h4>
257<p>It is also a well known fact, that expression templates
258challenge currently available compilers. We were able to
259significantly reduce the amount of needed expression templates
260using the Barton-Nackman trick consequently.</p>
261<p>We also decided to support a dual conventional implementation
262(i.e. not using expression templates) with extensive bounds and
263type checking of vector and matrix operations to support the
264development cycle. Switching from debug mode to release mode is
265controlled by the <code>NDEBUG</code> preprocessor symbol of
266<code>&lt;cassert&gt;</code>.</p>
267
268<h2><a name="functionality">Functionality</h2>
269
270<p>Every C++ library supporting linear algebra will be measured
271against the long-standing Fortran package BLAS. We now describe how
272BLAS calls may be mapped onto our classes.</p>
273
274<p>The page <a href="operations_overview.html">Overview of Matrix and Vector Operations</a>
275gives a short summary of the most used operations on vectors and
276matrices.</p>
277
278<h4>Blas Level 1</h4>
279<table border="1" summary="level 1 blas">
280<tbody>
281<tr>
282<th align="left">BLAS Call</th>
283<th align="left">Mapped Library Expression</th>
284<th align="left">Mathematical Description</th>
285<th align="left">Comment</th>
286</tr>
287<tr>
288<td><code>sasum</code> OR <code>dasum</code></td>
289<td><code>norm_1 (x)</code></td>
290<td><em>sum |x<sub>i</sub>|</em></td>
291<td>Computes the <em>l<sub>1</sub></em> (sum) norm of a real vector.</td>
292</tr>
293<tr>
294<td><code>scasum</code> OR <code>dzasum</code></td>
295<td><em><code>real (sum (v)) + imag (sum (v))</code></em></td>
296<td><em>sum re(x<sub>i</sub>) + sum im(x<sub>i</sub>)</em></td>
297<td>Computes the sum of elements of a complex vector.</td>
298</tr>
299<tr>
300<td><code>_nrm2</code></td>
301<td><code>norm_2 (x)</code></td>
302<td><em>sqrt (sum
303|x</em><sub><em>i</em></sub>|<sup><em>2</em></sup> <em>)</em></td>
304<td>Computes the <em>l<sub>2</sub></em> (euclidean) norm of a vector.</td>
305</tr>
306<tr>
307<td><code>i_amax</code></td>
308<td><code>norm_inf (x)<br />
309index_norm_inf (x)</code></td>
310<td><em>max |x</em><sub><em>i</em></sub><em>|</em></td>
311<td>Computes the <em>l<sub>inf</sub></em> (maximum) norm of a vector.<br />
312BLAS computes the index of the first element having this
313value.</td>
314</tr>
315<tr>
316<td><code>_dot<br />
317_dotu<br />
318_dotc</code></td>
319<td><code>inner_prod (x, y)</code>or<code><br />
320inner_prod (conj (x), y)</code></td>
321<td><em>x</em><sup><em>T</em></sup> <em>y</em> or<br />
322<em>x</em><sup><em>H</em></sup> <em>y</em></td>
323<td>Computes the inner product of two vectors.<br />
324BLAS implements certain loop unrollment.</td>
325</tr>
326<tr>
327<td><code>dsdot<br />
328sdsdot</code></td>
329<td><code>a + prec_inner_prod (x, y)</code></td>
330<td><em>a + x</em><sup><em>T</em></sup> <em>y</em></td>
331<td>Computes the inner product in double precision.</td>
332</tr>
333<tr>
334<td><code>_copy</code></td>
335<td><code>x = y<br />
336y.assign (x)</code></td>
337<td><em>x &lt;- y</em></td>
338<td>Copies one vector to another.<br />
339BLAS implements certain loop unrollment.</td>
340</tr>
341<tr>
342<td><code>_swap</code></td>
343<td><code>swap (x, y)</code></td>
344<td><em>x &lt;-&gt; y</em></td>
345<td>Swaps two vectors.<br />
346BLAS implements certain loop unrollment.</td>
347</tr>
348<tr>
349<td><code>_scal<br />
350csscal<br />
351zdscal</code></td>
352<td><code>x *= a</code></td>
353<td><em>x &lt;- a x</em></td>
354<td>Scales a vector.<br />
355BLAS implements certain loop unrollment.</td>
356</tr>
357<tr>
358<td><code>_axpy</code></td>
359<td><code>y += a * x</code></td>
360<td><em>y &lt;- a x + y</em></td>
361<td>Adds a scaled vector.<br />
362BLAS implements certain loop unrollment.</td>
363</tr>
364<tr>
365<td><code>_rot<br />
366_rotm<br />
367csrot<br />
368zdrot</code></td>
369<td><code>t.assign (a * x + b * y),<br />
370y.assign (- b * x + a * y),<br />
371x.assign (t)</code></td>
372<td><em>(x, y) &lt;- (a x + b y, -b x + a y)</em></td>
373<td>Applies a plane rotation.</td>
374</tr>
375<tr>
376<td><code>_rotg<br />
377_rotmg</code></td>
378<td>&nbsp;</td>
379<td><em>(a, b) &lt;-<br />
380&nbsp; (? a / sqrt (a</em><sup><em>2</em></sup> +
381<em>b</em><sup><em>2</em></sup><em>),<br />
382&nbsp; &nbsp; ? b / sqrt (a</em><sup><em>2</em></sup> +
383<em>b</em><sup><em>2</em></sup><em>))</em> or<em><br />
384(1, 0) &lt;- (0, 0)</em></td>
385<td>Constructs a plane rotation.</td>
386</tr>
387</tbody>
388</table>
389<h4>Blas Level 2</h4>
390<table border="1" summary="level 2 blas">
391<tbody>
392<tr>
393<th align="left">BLAS Call</th>
394<th align="left">Mapped Library Expression</th>
395<th align="left">Mathematical Description</th>
396<th align="left">Comment</th>
397</tr>
398<tr>
399<td><code>_t_mv</code></td>
400<td><code>x = prod (A, x)</code> or<code><br />
401x = prod (trans (A), x)</code> or<code><br />
402x = prod (herm (A), x)</code></td>
403<td><em>x &lt;- A x</em> or<em><br />
404x &lt;- A</em><sup><em>T</em></sup> <em>x</em> or<em><br />
405x &lt;- A</em><sup><em>H</em></sup> <em>x</em></td>
406<td>Computes the product of a matrix with a vector.</td>
407</tr>
408<tr>
409<td><code>_t_sv</code></td>
410<td><code>y = solve (A, x, tag)</code> or<br />
411<code>inplace_solve (A, x, tag)</code> or<br />
412<code>y = solve (trans (A), x, tag)</code> or<br />
413<code>inplace_solve (trans (A), x, tag)</code> or<br />
414<code>y = solve (herm (A), x, tag)</code>or<br />
415<code>inplace_solve (herm (A), x, tag)</code></td>
416<!-- TODO: replace nested sub/sup -->
417<td><em>y &lt;- A</em><sup><em>-1</em></sup> <em>x</em>
418or<em><br />
419x &lt;- A</em><sup><em>-1</em></sup> <em>x</em> or<em><br />
420y &lt;-
421A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
422<em>x</em> or<em><br />
423x &lt;-
424A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
425<em>x</em> or<em><br />
426y &lt;-
427A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
428<em>x</em> or<em><br />
429x &lt;-
430A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
431<em>x</em></td>
432<td>Solves a system of linear equations with triangular form, i.e.
433<em>A</em> is triangular.</td>
434</tr>
435<tr>
436<td><code>_g_mv<br />
437_s_mv<br />
438_h_mv</code></td>
439<td><code>y = a * prod (A, x) + b * y</code> or<code><br />
440y = a * prod (trans (A), x) + b * y</code> or<code><br />
441y = a * prod (herm (A), x) + b * y</code></td>
442<td><em>y &lt;- a A x + b y</em> or<em><br />
443y &lt;- a A</em><sup><em>T</em></sup> <em>x + b y<br />
444y &lt;- a A</em><sup><em>H</em></sup> <em>x + b y</em></td>
445<td>Adds the scaled product of a matrix with a vector.</td>
446</tr>
447<tr>
448<td><code>_g_r<br />
449_g_ru<br />
450_g_rc</code></td>
451<td><code>A += a * outer_prod (x, y)</code> or<code><br />
452A += a * outer_prod (x, conj (y))</code></td>
453<td><em>A &lt;- a x y</em><sup><em>T</em></sup> <em>+ A</em>
454or<em><br />
455A &lt;- a x y</em><sup><em>H</em></sup> <em>+ A</em></td>
456<td>Performs a rank <em>1</em> update.</td>
457</tr>
458<tr>
459<td><code>_s_r<br />
460_h_r</code></td>
461<td><code>A += a * outer_prod (x, x)</code> or<code><br />
462A += a * outer_prod (x, conj (x))</code></td>
463<td><em>A &lt;- a x x</em><sup><em>T</em></sup> <em>+ A</em>
464or<em><br />
465A &lt;- a x x</em><sup><em>H</em></sup> <em>+ A</em></td>
466<td>Performs a symmetric or hermitian rank <em>1</em> update.</td>
467</tr>
468<tr>
469<td><code>_s_r2<br />
470_h_r2</code></td>
471<td><code>A += a * outer_prod (x, y) +<br />
472&nbsp;a * outer_prod (y, x))</code> or<code><br />
473A += a * outer_prod (x, conj (y)) +<br />
474&nbsp;conj (a) * outer_prod (y, conj (x)))</code></td>
475<td><em>A &lt;- a x y</em><sup><em>T</em></sup> <em>+ a y
476x</em><sup><em>T</em></sup> <em>+ A</em> or<em><br />
477A &lt;- a x y</em><sup><em>H</em></sup> <em>+
478a</em><sup><em>-</em></sup> <em>y x</em><sup><em>H</em></sup> <em>+
479A</em></td>
480<td>Performs a symmetric or hermitian rank <em>2</em> update.</td>
481</tr>
482</tbody>
483</table>
484<h4>Blas Level 3</h4>
485<table border="1" summary="level 3 blas">
486<tbody>
487<tr>
488<th align="left">BLAS Call</th>
489<th align="left">Mapped Library Expression</th>
490<th align="left">Mathematical Description</th>
491<th align="left">Comment</th>
492</tr>
493<tr>
494<td><code>_t_mm</code></td>
495<td><code>B = a * prod (A, B)</code> or<br />
496<code>B = a * prod (trans (A), B)</code> or<br />
497<code>B = a * prod (A, trans (B))</code> or<br />
498<code>B = a * prod (trans (A), trans (B))</code> or<br />
499<code>B = a * prod (herm (A), B)</code> or<br />
500<code>B = a * prod (A, herm (B))</code> or<br />
501<code>B = a * prod (herm (A), trans (B))</code> or<br />
502<code>B = a * prod (trans (A), herm (B))</code> or<br />
503<code>B = a * prod (herm (A), herm (B))</code></td>
504<td><em>B &lt;- a op (A) op (B)</em> with<br />
505&nbsp; <em>op (X) = X</em> or<br />
506&nbsp; <em>op (X) = X</em><sup><em>T</em></sup> or<br />
507&nbsp; <em>op (X) = X</em><sup><em>H</em></sup></td>
508<td>Computes the scaled product of two matrices.</td>
509</tr>
510<tr>
511<td><code>_t_sm</code></td>
512<td><code>C = solve (A, B, tag)</code> or<br />
513<code>inplace_solve (A, B, tag)</code> or<br />
514<code>C = solve (trans (A), B, tag)</code> or<code><br />
515inplace_solve (trans (A), B, tag)</code> or<code><br />
516C = solve (herm (A), B, tag)</code> or<code><br />
517inplace_solve (herm (A), B, tag)</code></td>
518<td><em>C &lt;- A</em><sup><em>-1</em></sup> <em>B</em>
519or<em><br />
520B &lt;- A</em><sup><em>-1</em></sup> <em>B</em> or<em><br />
521C &lt;-
522A</em><sup><em>T</em></sup><sup><sup><em>-1</em></sup></sup>
523<em>B</em> or<em><br />
524B &lt;- A</em><sup><em>-1</em></sup> <em>B</em> or<em><br />
525C &lt;-
526A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
527<em>B</em> or<em><br />
528B &lt;-
529A</em><sup><em>H</em></sup><sup><sup><em>-1</em></sup></sup>
530<em>B</em></td>
531<td>Solves a system of linear equations with triangular form, i.e.
532<em>A</em> is triangular.</td>
533</tr>
534<tr>
535<td><code>_g_mm<br />
536_s_mm<br />
537_h_mm</code></td>
538<td><code>C = a * prod (A, B) + b * C</code> or<br />
539<code>C = a * prod (trans (A), B) + b * C</code> or<br />
540<code>C = a * prod (A, trans (B)) + b * C</code> or<br />
541<code>C = a * prod (trans (A), trans (B)) + b * C</code> or<br />
542<code>C = a * prod (herm (A), B) + b * C</code> or<br />
543<code>C = a * prod (A, herm (B)) + b * C</code> or<br />
544<code>C = a * prod (herm (A), trans (B)) + b * C</code> or<br />
545<code>C = a * prod (trans (A), herm (B)) + b * C</code> or<br />
546<code>C = a * prod (herm (A), herm (B)) + b * C</code></td>
547<td><em>C &lt;- a op (A) op (B) + b C</em> with<br />
548&nbsp; <em>op (X) = X</em> or<br />
549&nbsp; <em>op (X) = X</em><sup><em>T</em></sup> or<br />
550&nbsp; <em>op (X) = X</em><sup><em>H</em></sup></td>
551<td>Adds the scaled product of two matrices.</td>
552</tr>
553<tr>
554<td><code>_s_rk<br />
555_h_rk</code></td>
556<td><code>B = a * prod (A, trans (A)) + b * B</code> or<br />
557<code>B = a * prod (trans (A), A) + b * B</code> or<br />
558<code>B = a * prod (A, herm (A)) + b * B</code> or<br />
559<code>B = a * prod (herm (A), A) + b * B</code></td>
560<td><em>B &lt;- a A A</em><sup><em>T</em></sup> <em>+ b B</em>
561or<em><br />
562B &lt;- a A</em><sup><em>T</em></sup> <em>A + b B</em> or<br />
563<em>B &lt;- a A A</em><sup><em>H</em></sup> <em>+ b B</em>
564or<em><br />
565B &lt;- a A</em><sup><em>H</em></sup> <em>A + b B</em></td>
566<td>Performs a symmetric or hermitian rank <em>k</em> update.</td>
567</tr>
568<tr>
569<td><code>_s_r2k<br />
570_h_r2k</code></td>
571<td><code>C = a * prod (A, trans (B)) +<br />
572&nbsp;a * prod (B, trans (A)) + b * C</code> or<br />
573<code>C = a * prod (trans (A), B) +<br />
574&nbsp;a * prod (trans (B), A) + b * C</code> or<br />
575<code>C = a * prod (A, herm (B)) +<br />
576&nbsp;conj (a) * prod (B, herm (A)) + b * C</code> or<br />
577<code>C = a * prod (herm (A), B) +<br />
578&nbsp;conj (a) * prod (herm (B), A) + b * C</code></td>
579<td><em>C &lt;- a A B</em><sup><em>T</em></sup> <em>+ a B
580A</em><sup><em>T</em></sup> <em>+ b C</em> or<em><br />
581C &lt;- a A</em><sup><em>T</em></sup> <em>B + a
582B</em><sup><em>T</em></sup> <em>A + b C</em> or<em><br />
583C &lt;- a A B</em><sup><em>H</em></sup> <em>+
584a</em><sup><em>-</em></sup> <em>B A</em><sup><em>H</em></sup> <em>+
585b C</em> or<em><br />
586C &lt;- a A</em><sup><em>H</em></sup> <em>B +
587a</em><sup><em>-</em></sup> <em>B</em><sup><em>H</em></sup> <em>A +
588b C</em></td>
589<td>Performs a symmetric or hermitian rank <em>2 k</em>
590update.</td>
591</tr>
592</tbody>
593</table>
594
595<h2>Storage Layout</h2>
596
597<p>uBLAS supports many different storage layouts. The full details can be
598found at the <a href="types_overview.html">Overview of Types</a>. Most types like
599<code>vector&lt;double&gt;</code> and <code>matrix&lt;double&gt;</code> are
600by default compatible to C arrays, but can also be configured to contain
601FORTAN compatible data.
602</p>
603
604<h2>Compatibility</h2>
605<p>For compatibility reasons we provide array like indexing for vectors and matrices. For some types (hermitian, sparse etc) this can be expensive for matrices due to the needed temporary proxy objects.</p>
606<p>uBLAS uses STL compatible allocators for the allocation of the storage required for it's containers.</p>
607<h2>Benchmark Results</h2>
608<p>The following tables contain results of one of our benchmarks.
609This benchmark compares a native C implementation ('C array') and
610some library based implementations. The safe variants based on the
611library assume aliasing, the fast variants do not use temporaries
612and are functionally equivalent to the native C implementation.
613Besides the generic vector and matrix classes the benchmark
614utilizes special classes <code>c_vector</code> and
615<code>c_matrix</code>, which are intended to avoid every overhead
616through genericity.</p>
617<p>The benchmark program <strong>bench1</strong> was compiled with GCC 4.0 and run on an Athlon 64 3000+. Times are scales for reasonable precision by running <strong>bench1 100</strong>.</p>
618<p>First we comment the results for double vectors and matrices of dimension 3 and 3 x 3, respectively.</p>
619<table border="1" summary="1st benchmark">
620<tbody>
621<tr>
622<th align="left">Comment</th>
623</tr>
624<tr>
625<td rowspan="3">inner_prod</td>
626<td>C array</td>
627<td align="right">0.61</td>
628<td align="right">782</td>
629<td rowspan="3">Some abstraction penalty</td>
630</tr>
631<tr>
632<td>c_vector</td>
633<td align="right">0.86</td>
634<td align="right">554</td>
635</tr>
636<tr>
637<td>vector&lt;unbounded_array&gt;</td>
638<td align="right">1.02</td>
639<td align="right">467</td>
640</tr>
641<tr>
642<td rowspan="5">vector + vector</td>
643<td>C array</td>
644<td align="right">0.51</td>
645<td align="right">1122</td>
646<td rowspan="5">Abstraction penalty: factor 2</td>
647</tr>
648<tr>
649<td>c_vector fast</td>
650<td align="right">1.17</td>
651<td align="right">489</td>
652</tr>
653<tr>
654<td>vector&lt;unbounded_array&gt; fast</td>
655<td align="right">1.32</td>
656<td align="right">433</td>
657</tr>
658<tr>
659<td>c_vector safe</td>
660<td align="right">2.02</td>
661<td align="right">283</td>
662</tr>
663<tr>
664<td>vector&lt;unbounded_array&gt; safe</td>
665<td align="right">6.95</td>
666<td align="right">82</td>
667</tr>
668<tr>
669<td rowspan="5">outer_prod</td>
670<td>C array</td>
671<td align="right">0.59</td>
672<td align="right">872</td>
673<td rowspan="5">Some abstraction penalty</td>
674</tr>
675<tr>
676<td>c_matrix, c_vector fast</td>
677<td align="right">0.88</td>
678<td align="right">585</td>
679</tr>
680<tr>
681<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; fast</td>
682<td align="right">0.90</td>
683<td align="right">572</td>
684</tr>
685<tr>
686<td>c_matrix, c_vector safe</td>
687<td align="right">1.66</td>
688<td align="right">310</td>
689</tr>
690<tr>
691<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; safe</td>
692<td align="right">2.95</td>
693<td align="right">175</td>
694</tr>
695<tr>
696<td rowspan="5">prod (matrix, vector)</td>
697<td>C array</td>
698<td align="right">0.64</td>
699<td align="right">671</td>
700<td rowspan="5">No significant abstraction penalty</td>
701</tr>
702<tr>
703<td>c_matrix, c_vector fast</td>
704<td align="right">0.70</td>
705<td align="right">613</td>
706</tr>
707<tr>
708<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; fast</td>
709<td align="right">0.79</td>
710<td align="right">543</td>
711</tr>
712<tr>
713<td>c_matrix, c_vector safe</td>
714<td align="right">0.95</td>
715<td align="right">452</td>
716</tr>
717<tr>
718<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; safe</td>
719<td align="right">2.61</td>
720<td align="right">164</td>
721</tr>
722<tr>
723<td rowspan="5">matrix + matrix</td>
724<td>C array</td>
725<td align="right">0.75</td>
726<td align="right">686</td>
727<td rowspan="5">No significant abstraction penalty</td>
728</tr>
729<tr>
730<td>c_matrix fast</td>
731<td align="right">0.99</td>
732<td align="right">520</td>
733</tr>
734<tr>
735<td>matrix&lt;unbounded_array&gt; fast</td>
736<td align="right">1.29</td>
737<td align="right">399</td>
738</tr>
739<tr>
740<td>c_matrix safe</td>
741<td align="right">1.7</td>
742<td align="right">303</td>
743</tr>
744<tr>
745<td>matrix&lt;unbounded_array&gt; safe</td>
746<td align="right">3.14</td>
747<td align="right">164</td>
748</tr>
749<tr>
750<td rowspan="5">prod (matrix, matrix)</td>
751<td>C array</td>
752<td align="right">0.94</td>
753<td align="right">457</td>
754<td rowspan="5">No significant abstraction penalty</td>
755</tr>
756<tr>
757<td>c_matrix fast</td>
758<td align="right">1.17</td>
759<td align="right">367</td>
760</tr>
761<tr>
762<td>matrix&lt;unbounded_array&gt; fast</td>
763<td align="right">1.34</td>
764<td align="right">320</td>
765</tr>
766<tr>
767<td>c_matrix safe</td>
768<td align="right">1.56</td>
769<td align="right">275</td>
770</tr>
771<tr>
772<td>matrix&lt;unbounded_array&gt; safe</td>
773<td align="right">2.06</td>
774<td align="right">208</td>
775</tr>
776</tbody>
777</table>
778<p>We notice a two fold performance loss for small vectors and matrices: first the general abstraction penalty for using classes, and then a small loss when using the generic vector and matrix classes. The difference w.r.t. alias assumptions is also significant.</p>
779<p>Next we comment the results for double vectors and matrices of
780dimension 100 and 100 x 100, respectively.</p>
781<table border="1" summary="2nd benchmark">
782<tbody>
783<tr>
784<th align="left">Operation</th>
785<th align="left">Implementation</th>
786<th align="left">Elapsed [s]</th>
787<th align="left">MFLOP/s</th>
788<th align="left">Comment</th>
789</tr>
790<tr>
791<td rowspan="3">inner_prod</td>
792<td>C array</td>
793<td align="right">0.64</td>
794<td align="right">889</td>
795<td rowspan="3">No significant abstraction penalty</td>
796</tr>
797<tr>
798<td>c_vector</td>
799<td align="right">0.66</td>
800<td align="right">862</td>
801</tr>
802<tr>
803<td>vector&lt;unbounded_array&gt;</td>
804<td align="right">0.66</td>
805<td align="right">862</td>
806</tr>
807<tr>
808<td rowspan="5">vector + vector</td>
809<td>C array</td>
810<td align="right">0.64</td>
811<td align="right">894</td>
812<td rowspan="5">No significant abstraction penalty</td>
813</tr>
814<tr>
815<td>c_vector fast</td>
816<td align="right">0.66</td>
817<td align="right">867</td>
818</tr>
819<tr>
820<td>vector&lt;unbounded_array&gt; fast</td>
821<td align="right">0.66</td>
822<td align="right">867</td>
823</tr>
824<tr>
825<td>c_vector safe</td>
826<td align="right">1.14</td>
827<td align="right">501</td>
828</tr>
829<tr>
830<td>vector&lt;unbounded_array&gt; safe</td>
831<td align="right">1.23</td>
832<td align="right">465</td>
833</tr>
834<tr>
835<td rowspan="5">outer_prod</td>
836<td>C array</td>
837<td align="right">0.50</td>
838<td align="right">1144</td>
839<td rowspan="5">No significant abstraction penalty</td>
840</tr>
841<tr>
842<td>c_matrix, c_vector fast</td>
843<td align="right">0.71</td>
844<td align="right">806</td>
845</tr>
846<tr>
847<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; fast</td>
848<td align="right">0.57</td>
849<td align="right">1004</td>
850</tr>
851<tr>
852<td>c_matrix, c_vector safe</td>
853<td align="right">1.91</td>
854<td align="right">300</td>
855</tr>
856<tr>
857<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt; safe</td>
858<td align="right">0.89</td>
859<td align="right">643</td>
860</tr>
861<tr>
862<td rowspan="5">prod (matrix, vector)</td>
863<td>C array</td>
864<td align="right">0.65</td>
865<td align="right">876</td>
866<td rowspan="5">No significant abstraction penalty</td>
867</tr>
868<tr>
869<td>c_matrix, c_vector fast</td>
870<td align="right">0.65</td>
871<td align="right">876</td>
872</tr>
873<tr>
874<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt;
875fast</td>
876<td align="right">0.66</td>
877<td align="right">863</td>
878</tr>
879<tr>
880<td>c_matrix, c_vector safe</td>
881<td align="right">0.66</td>
882<td align="right">863</td>
883</tr>
884<tr>
885<td>matrix&lt;unbounded_array&gt;, vector&lt;unbounded_array&gt;
886safe</td>
887<td align="right">0.66</td>
888<td align="right">863</td>
889</tr>
890<tr>
891<td rowspan="5">matrix + matrix</td>
892<td>C array</td>
893<td align="right">0.96</td>
894<td align="right">596</td>
895<td rowspan="5">No significant abstraction penalty</td>
896</tr>
897<tr>
898<td>c_matrix fast</td>
899<td align="right">1.21</td>
900<td align="right">473</td>
901</tr>
902<tr>
903<td>matrix&lt;unbounded_array&gt; fast</td>
904<td align="right">1.00</td>
905<td align="right">572</td>
906</tr>
907<tr>
908<td>c_matrix safe</td>
909<td align="right">2.44</td>
910<td align="right">235</td>
911</tr>
912<tr>
913<td>matrix&lt;unbounded_array&gt; safe</td>
914<td align="right">1.30</td>
915<td align="right">440</td>
916</tr>
917<tr>
918<td rowspan="5">prod (matrix, matrix)</td>
919<td>C array</td>
920<td align="right">0.70</td>
921<td align="right">813</td>
922<td rowspan="5">No significant abstraction penalty</td>
923</tr>
924<tr>
925<td>c_matrix fast</td>
926<td align="right">0.73</td>
927<td align="right">780</td>
928</tr>
929<tr>
930<td>matrix&lt;unbounded_array&gt; fast</td>
931<td align="right">0.76</td>
932<td align="right">749</td>
933</tr>
934<tr>
935<td>c_matrix safe</td>
936<td align="right">0.75</td>
937<td align="right">759</td>
938</tr>
939<tr>
940<td>matrix&lt;unbounded_array&gt; safe</td>
941<td align="right">0.76</td>
942<td align="right">749</td>
943</tr>
944</tbody>
945</table>
946<p>For larger vectors and matrices the general abstraction penalty
947for using classes seems to decrease, the small loss when using
948generic vector and matrix classes seems to remain. The difference
949w.r.t. alias assumptions remains visible, too.</p>
950<hr />
951<p>Copyright (&copy;) 2000-2002 Joerg Walter, Mathias Koch<br />
952 Use, modification and distribution are subject to the
953 Boost Software License, Version 1.0.
954 (See accompanying file LICENSE_1_0.txt
955 or copy at <a href="http://www.boost.org/LICENSE_1_0.txt">
956 http://www.boost.org/LICENSE_1_0.txt
957 </a>).
958</p>
959<script type="text/javascript">
960(function($) {
961 $('#toc').toc();
962})(jQuery);
963</script>
964</body>
965</html>