]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/optional/doc/html/boost_optional/tutorial.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / optional / doc / html / boost_optional / tutorial.html
CommitLineData
7c673cae
FG
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4<title>Tutorial</title>
5<link rel="stylesheet" href="../../../../../doc/src/boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
7<link rel="home" href="../index.html" title="Chapter&#160;1.&#160;Boost.Optional">
8<link rel="up" href="../index.html" title="Chapter&#160;1.&#160;Boost.Optional">
9<link rel="prev" href="quick_start.html" title="Quick Start">
10<link rel="next" href="synopsis.html" title="Synopsis">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="quick_start.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="boost_optional.tutorial"></a><a class="link" href="tutorial.html" title="Tutorial">Tutorial</a>
28</h2></div></div></div>
29<div class="toc"><dl class="toc">
30<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.motivation">Motivation</a></span></dt>
31<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview">Design Overview</a></span></dt>
32</dl></div>
33<div class="section">
34<div class="titlepage"><div><div><h3 class="title">
35<a name="boost_optional.tutorial.motivation"></a><a class="link" href="tutorial.html#boost_optional.tutorial.motivation" title="Motivation">Motivation</a>
36</h3></div></div></div>
37<p>
38 Consider these functions which should return a value but which might not
39 have a value to return:
40 </p>
41<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
42<li class="listitem">
43 (A) <code class="computeroutput"><span class="keyword">double</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">n</span> <span class="special">);</span></code>
44 </li>
45<li class="listitem">
46 (B) <code class="computeroutput"><span class="keyword">char</span> <span class="identifier">get_async_input</span><span class="special">();</span></code>
47 </li>
48<li class="listitem">
49 (C) <code class="computeroutput"><span class="identifier">point</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span></code>
50 </li>
51</ul></div>
52<p>
53 There are different approaches to the issue of not having a value to return.
54 </p>
55<p>
56 A typical approach is to consider the existence of a valid return value as
57 a postcondition, so that if the function cannot compute the value to return,
58 it has either undefined behavior (and can use assert in a debug build) or
59 uses a runtime check and throws an exception if the postcondition is violated.
60 This is a reasonable choice for example, for function (A), because the lack
61 of a proper return value is directly related to an invalid parameter (out
62 of domain argument), so it is appropriate to require the callee to supply
63 only parameters in a valid domain for execution to continue normally.
64 </p>
65<p>
66 However, function (B), because of its asynchronous nature, does not fail
67 just because it can't find a value to return; so it is incorrect to consider
68 such a situation an error and assert or throw an exception. This function
69 must return, and somehow, must tell the callee that it is not returning a
70 meaningful value.
71 </p>
72<p>
73 A similar situation occurs with function (C): it is conceptually an error
74 to ask a <span class="emphasis"><em>null-area</em></span> polygon to return a point inside
75 itself, but in many applications, it is just impractical for performance
76 reasons to treat this as an error (because detecting that the polygon has
77 no area might be too expensive to be required to be tested previously), and
78 either an arbitrary point (typically at infinity) is returned, or some efficient
79 way to tell the callee that there is no such point is used.
80 </p>
81<p>
82 There are various mechanisms to let functions communicate that the returned
83 value is not valid. One such mechanism, which is quite common since it has
84 zero or negligible overhead, is to use a special value which is reserved
85 to communicate this. Classical examples of such special values are <code class="computeroutput"><span class="identifier">EOF</span></code>, <code class="computeroutput"><span class="identifier">string</span><span class="special">::</span><span class="identifier">npos</span></code>,
86 points at infinity, etc...
87 </p>
88<p>
89 When those values exist, i.e. the return type can hold all meaningful values
90 <span class="emphasis"><em>plus</em></span> the <span class="emphasis"><em>signal</em></span> value, this mechanism
91 is quite appropriate and well known. Unfortunately, there are cases when
92 such values do not exist. In these cases, the usual alternative is either
93 to use a wider type, such as <code class="computeroutput"><span class="keyword">int</span></code>
94 in place of <code class="computeroutput"><span class="keyword">char</span></code>; or a compound
95 type, such as <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>.
96 </p>
97<p>
98 Returning a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span></code>, thus attaching a boolean flag to the
99 result which indicates if the result is meaningful, has the advantage that
100 can be turned into a consistent idiom since the first element of the pair
101 can be whatever the function would conceptually return. For example, the
102 last two functions could have the following interface:
103 </p>
104<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="keyword">char</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">get_async_input</span><span class="special">();</span>
105<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">polygon</span><span class="special">::</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
106</pre>
107<p>
108 These functions use a consistent interface for dealing with possibly nonexistent
109 results:
110 </p>
111<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">point</span><span class="special">,</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">poly</span><span class="special">.</span><span class="identifier">get_any_point_effectively_inside</span><span class="special">();</span>
112<span class="keyword">if</span> <span class="special">(</span> <span class="identifier">p</span><span class="special">.</span><span class="identifier">second</span> <span class="special">)</span>
113 <span class="identifier">flood_fill</span><span class="special">(</span><span class="identifier">p</span><span class="special">.</span><span class="identifier">first</span><span class="special">);</span>
114</pre>
115<p>
116 However, not only is this quite a burden syntactically, it is also error
117 prone since the user can easily use the function result (first element of
118 the pair) without ever checking if it has a valid value.
119 </p>
120<p>
121 Clearly, we need a better idiom.
122 </p>
123</div>
124<div class="section">
125<div class="titlepage"><div><div><h3 class="title">
126<a name="boost_optional.tutorial.design_overview"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview" title="Design Overview">Design Overview</a>
127</h3></div></div></div>
128<div class="toc"><dl class="toc">
129<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_models">The
130 models</a></span></dt>
131<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_semantics">The
132 semantics</a></span></dt>
133<dt><span class="section"><a href="tutorial.html#boost_optional.tutorial.design_overview.the_interface">The
134 Interface</a></span></dt>
135</dl></div>
136<div class="section">
137<div class="titlepage"><div><div><h4 class="title">
138<a name="boost_optional.tutorial.design_overview.the_models"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_models" title="The models">The
139 models</a>
140</h4></div></div></div>
141<p>
142 In C++, we can <span class="emphasis"><em>declare</em></span> an object (a variable) of type
143 <code class="computeroutput"><span class="identifier">T</span></code>, and we can give this
144 variable an <span class="emphasis"><em>initial value</em></span> (through an <span class="emphasis"><em>initializer</em></span>.
145 (cf. 8.5)). When a declaration includes a non-empty initializer (an initial
146 value is given), it is said that the object has been initialized. If the
147 declaration uses an empty initializer (no initial value is given), and
148 neither default nor value initialization applies, it is said that the object
149 is <span class="bold"><strong>uninitialized</strong></span>. Its actual value exist
150 but has an <span class="emphasis"><em>indeterminate initial value</em></span> (cf. 8.5/11).
151 <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
152 intends to formalize the notion of initialization (or lack of it) allowing
153 a program to test whether an object has been initialized and stating that
154 access to the value of an uninitialized object is undefined behavior. That
155 is, when a variable is declared as <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> and no initial value is given, the
156 variable is <span class="emphasis"><em>formally</em></span> uninitialized. A formally uninitialized
157 optional object has conceptually no value at all and this situation can
158 be tested at runtime. It is formally <span class="emphasis"><em>undefined behavior</em></span>
159 to try to access the value of an uninitialized optional. An uninitialized
160 optional can be assigned a value, in which case its initialization state
161 changes to initialized. Furthermore, given the formal treatment of initialization
162 states in optional objects, it is even possible to reset an optional to
163 <span class="emphasis"><em>uninitialized</em></span>.
164 </p>
165<p>
166 In C++ there is no formal notion of uninitialized objects, which means
167 that objects always have an initial value even if indeterminate. As discussed
168 on the previous section, this has a drawback because you need additional
169 information to tell if an object has been effectively initialized. One
170 of the typical ways in which this has been historically dealt with is via
171 a special value: <code class="computeroutput"><span class="identifier">EOF</span></code>,
172 <code class="computeroutput"><span class="identifier">npos</span></code>, -1, etc... This is
173 equivalent to adding the special value to the set of possible values of
174 a given type. This super set of <code class="computeroutput"><span class="identifier">T</span></code>
175 plus some <span class="emphasis"><em>nil_t</em></span>&#8212;where <code class="computeroutput"><span class="identifier">nil_t</span></code>
176 is some stateless POD&#8212;can be modeled in modern languages as a <span class="bold"><strong>discriminated union</strong></span> of T and nil_t. Discriminated
177 unions are often called <span class="emphasis"><em>variants</em></span>. A variant has a
178 <span class="emphasis"><em>current type</em></span>, which in our case is either <code class="computeroutput"><span class="identifier">T</span></code> or <code class="computeroutput"><span class="identifier">nil_t</span></code>.
179 Using the <a href="../../../../variant/index.html" target="_top">Boost.Variant</a>
180 library, this model can be implemented in terms of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code>. There is precedent for a discriminated
181 union as a model for an optional value: the <a href="http://www.haskell.org/" target="_top">Haskell</a>
182 <span class="bold"><strong>Maybe</strong></span> built-in type constructor. Thus,
183 a discriminated union <code class="computeroutput"><span class="identifier">T</span><span class="special">+</span><span class="identifier">nil_t</span></code>
184 serves as a conceptual foundation.
185 </p>
186<p>
187 A <code class="computeroutput"><span class="identifier">variant</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span><span class="identifier">nil_t</span><span class="special">&gt;</span></code> follows naturally from the traditional
188 idiom of extending the range of possible values adding an additional sentinel
189 value with the special meaning of <span class="emphasis"><em>Nothing</em></span>. However,
190 this additional <span class="emphasis"><em>Nothing</em></span> value is largely irrelevant
191 for our purpose since our goal is to formalize the notion of uninitialized
192 objects and, while a special extended value can be used to convey that
193 meaning, it is not strictly necessary in order to do so.
194 </p>
195<p>
196 The observation made in the last paragraph about the irrelevant nature
197 of the additional <code class="computeroutput"><span class="identifier">nil_t</span></code>
198 with respect to <span class="underline">purpose</span> of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
199 suggests an alternative model: a <span class="emphasis"><em>container</em></span> that either
200 has a value of <code class="computeroutput"><span class="identifier">T</span></code> or nothing.
201 </p>
202<p>
203 As of this writing I don't know of any precedent for a variable-size fixed-capacity
204 (of 1) stack-based container model for optional values, yet I believe this
205 is the consequence of the lack of practical implementations of such a container
206 rather than an inherent shortcoming of the container model.
207 </p>
208<p>
209 In any event, both the discriminated-union or the single-element container
210 models serve as a conceptual ground for a class representing optional&#8212;i.e.
211 possibly uninitialized&#8212;objects. For instance, these models show the
212 <span class="emphasis"><em>exact</em></span> semantics required for a wrapper of optional
213 values:
214 </p>
215<p>
216 Discriminated-union:
217 </p>
218<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
219<li class="listitem">
220 <span class="bold"><strong>deep-copy</strong></span> semantics: copies of the
221 variant implies copies of the value.
222 </li>
223<li class="listitem">
224 <span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
225 between variants matches both current types and values
226 </li>
227<li class="listitem">
228 If the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>,
229 it is modeling an <span class="emphasis"><em>initialized</em></span> optional.
230 </li>
231<li class="listitem">
232 If the variant's current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
233 it is modeling an <span class="emphasis"><em>uninitialized</em></span> optional.
234 </li>
235<li class="listitem">
236 Testing if the variant's current type is <code class="computeroutput"><span class="identifier">T</span></code>
237 models testing if the optional is initialized
238 </li>
239<li class="listitem">
240 Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code>
241 from a variant when its current type is not <code class="computeroutput"><span class="identifier">T</span></code>,
242 models the undefined behavior of trying to access the value of an uninitialized
243 optional
244 </li>
245</ul></div>
246<p>
247 Single-element container:
248 </p>
249<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
250<li class="listitem">
251 <span class="bold"><strong>deep-copy</strong></span> semantics: copies of the
252 container implies copies of the value.
253 </li>
254<li class="listitem">
255 <span class="bold"><strong>deep-relational</strong></span> semantics: comparisons
256 between containers compare container size and if match, contained value
257 </li>
258<li class="listitem">
259 If the container is not empty (contains an object of type <code class="computeroutput"><span class="identifier">T</span></code>), it is modeling an <span class="emphasis"><em>initialized</em></span>
260 optional.
261 </li>
262<li class="listitem">
263 If the container is empty, it is modeling an <span class="emphasis"><em>uninitialized</em></span>
264 optional.
265 </li>
266<li class="listitem">
267 Testing if the container is empty models testing if the optional is
268 initialized
269 </li>
270<li class="listitem">
271 Trying to extract a <code class="computeroutput"><span class="identifier">T</span></code>
272 from an empty container models the undefined behavior of trying to
273 access the value of an uninitialized optional
274 </li>
275</ul></div>
276</div>
277<div class="section">
278<div class="titlepage"><div><div><h4 class="title">
279<a name="boost_optional.tutorial.design_overview.the_semantics"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_semantics" title="The semantics">The
280 semantics</a>
281</h4></div></div></div>
282<p>
283 Objects of type <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> are intended to be used in places where
284 objects of type <code class="computeroutput"><span class="identifier">T</span></code> would
285 but which might be uninitialized. Hence, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>'s purpose is to formalize the additional
286 possibly uninitialized state. From the perspective of this role, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
287 can have the same operational semantics of <code class="computeroutput"><span class="identifier">T</span></code>
288 plus the additional semantics corresponding to this special state. As such,
289 <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
290 could be thought of as a <span class="emphasis"><em>supertype</em></span> of <code class="computeroutput"><span class="identifier">T</span></code>. Of course, we can't do that in C++,
291 so we need to compose the desired semantics using a different mechanism.
292 Doing it the other way around, that is, making <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> a <span class="emphasis"><em>subtype</em></span> of
293 <code class="computeroutput"><span class="identifier">T</span></code> is not only conceptually
294 wrong but also impractical: it is not allowed to derive from a non-class
295 type, such as a built-in type.
296 </p>
297<p>
298 We can draw from the purpose of <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> the required basic semantics:
299 </p>
300<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
301<li class="listitem">
302 <span class="bold"><strong>Default Construction:</strong></span> To introduce
303 a formally uninitialized wrapped object.
304 </li>
305<li class="listitem">
306 <span class="bold"><strong>Direct Value Construction via copy:</strong></span>
307 To introduce a formally initialized wrapped object whose value is obtained
308 as a copy of some object.
309 </li>
310<li class="listitem">
311 <span class="bold"><strong>Deep Copy Construction:</strong></span> To obtain
312 a new yet equivalent wrapped object.
313 </li>
314<li class="listitem">
315 <span class="bold"><strong>Direct Value Assignment (upon initialized):</strong></span>
316 To assign a value to the wrapped object.
317 </li>
318<li class="listitem">
319 <span class="bold"><strong>Direct Value Assignment (upon uninitialized):</strong></span>
320 To initialize the wrapped object with a value obtained as a copy of
321 some object.
322 </li>
323<li class="listitem">
324 <span class="bold"><strong>Assignment (upon initialized):</strong></span> To
325 assign to the wrapped object the value of another wrapped object.
326 </li>
327<li class="listitem">
328 <span class="bold"><strong>Assignment (upon uninitialized):</strong></span> To
329 initialize the wrapped object with value of another wrapped object.
330 </li>
331<li class="listitem">
332 <span class="bold"><strong>Deep Relational Operations (when supported by
333 the type T):</strong></span> To compare wrapped object values taking into
334 account the presence of uninitialized states.
335 </li>
336<li class="listitem">
337 <span class="bold"><strong>Value access:</strong></span> To unwrap the wrapped
338 object.
339 </li>
340<li class="listitem">
341 <span class="bold"><strong>Initialization state query:</strong></span> To determine
342 if the object is formally initialized or not.
343 </li>
344<li class="listitem">
345 <span class="bold"><strong>Swap:</strong></span> To exchange wrapped objects.
346 (with whatever exception safety guarantees are provided by <code class="computeroutput"><span class="identifier">T</span></code>'s swap).
347 </li>
348<li class="listitem">
349 <span class="bold"><strong>De-initialization:</strong></span> To release the
350 wrapped object (if any) and leave the wrapper in the uninitialized
351 state.
352 </li>
353</ul></div>
354<p>
355 Additional operations are useful, such as converting constructors and converting
356 assignments, in-place construction and assignment, and safe value access
357 via a pointer to the wrapped object or null.
358 </p>
359</div>
360<div class="section">
361<div class="titlepage"><div><div><h4 class="title">
362<a name="boost_optional.tutorial.design_overview.the_interface"></a><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface" title="The Interface">The
363 Interface</a>
364</h4></div></div></div>
365<p>
366 Since the purpose of optional is to allow us to use objects with a formal
367 uninitialized additional state, the interface could try to follow the interface
368 of the underlying <code class="computeroutput"><span class="identifier">T</span></code> type
369 as much as possible. In order to choose the proper degree of adoption of
370 the native <code class="computeroutput"><span class="identifier">T</span></code> interface,
371 the following must be noted: Even if all the operations supported by an
372 instance of type <code class="computeroutput"><span class="identifier">T</span></code> are
373 defined for the entire range of values for such a type, an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
374 extends such a set of values with a new value for which most (otherwise
375 valid) operations are not defined in terms of <code class="computeroutput"><span class="identifier">T</span></code>.
376 </p>
377<p>
378 Furthermore, since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> itself is merely a <code class="computeroutput"><span class="identifier">T</span></code>
379 wrapper (modeling a <code class="computeroutput"><span class="identifier">T</span></code> supertype),
380 any attempt to define such operations upon uninitialized optionals will
381 be totally artificial w.r.t. <code class="computeroutput"><span class="identifier">T</span></code>.
382 </p>
383<p>
384 This library chooses an interface which follows from <code class="computeroutput"><span class="identifier">T</span></code>'s
385 interface only for those operations which are well defined (w.r.t the type
386 <code class="computeroutput"><span class="identifier">T</span></code>) even if any of the operands
387 are uninitialized. These operations include: construction, copy-construction,
388 assignment, swap and relational operations.
389 </p>
390<p>
391 For the value access operations, which are undefined (w.r.t the type <code class="computeroutput"><span class="identifier">T</span></code>) when the operand is uninitialized,
392 a different interface is chosen (which will be explained next).
393 </p>
394<p>
395 Also, the presence of the possibly uninitialized state requires additional
396 operations not provided by <code class="computeroutput"><span class="identifier">T</span></code>
397 itself which are supported by a special interface.
398 </p>
399<h6>
400<a name="boost_optional.tutorial.design_overview.the_interface.h0"></a>
401 <span class="phrase"><a name="boost_optional.tutorial.design_overview.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_"></a></span><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface.lexically_hinted_value_access_in_the_presence_of_possibly_untitialized_optional_objects__the_operators___and___gt_">Lexically-hinted
402 Value Access in the presence of possibly untitialized optional objects:
403 The operators * and -&gt;</a>
404 </h6>
405<p>
406 A relevant feature of a pointer is that it can have a <span class="bold"><strong>null
407 pointer value</strong></span>. This is a <span class="emphasis"><em>special</em></span> value
408 which is used to indicate that the pointer is not referring to any object
409 at all. In other words, null pointer values convey the notion of nonexistent
410 objects.
411 </p>
412<p>
413 This meaning of the null pointer value allowed pointers to became a <span class="emphasis"><em>de
414 facto</em></span> standard for handling optional objects because all you
415 have to do to refer to a value which you don't really have is to use a
416 null pointer value of the appropriate type. Pointers have been used for
417 decades&#8212;from the days of C APIs to modern C++ libraries&#8212;to <span class="emphasis"><em>refer</em></span>
418 to optional (that is, possibly nonexistent) objects; particularly as optional
419 arguments to a function, but also quite often as optional data members.
420 </p>
421<p>
422 The possible presence of a null pointer value makes the operations that
423 access the pointee's value possibly undefined, therefore, expressions which
424 use dereference and access operators, such as: <code class="computeroutput"><span class="special">(</span>
425 <span class="special">*</span><span class="identifier">p</span>
426 <span class="special">=</span> <span class="number">2</span> <span class="special">)</span></code> and <code class="computeroutput"><span class="special">(</span>
427 <span class="identifier">p</span><span class="special">-&gt;</span><span class="identifier">foo</span><span class="special">()</span> <span class="special">)</span></code>, implicitly convey the notion of optionality,
428 and this information is tied to the <span class="emphasis"><em>syntax</em></span> of the
429 expressions. That is, the presence of operators <code class="computeroutput"><span class="special">*</span></code>
430 and <code class="computeroutput"><span class="special">-&gt;</span></code> tell by themselves
431 &#8212;without any additional context&#8212; that the expression will be undefined
432 unless the implied pointee actually exist.
433 </p>
434<p>
435 Such a <span class="emphasis"><em>de facto</em></span> idiom for referring to optional objects
436 can be formalized in the form of a concept: the <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a>
437 concept. This concept captures the syntactic usage of operators <code class="computeroutput"><span class="special">*</span></code>, <code class="computeroutput"><span class="special">-&gt;</span></code>
438 and contextual conversion to <code class="computeroutput"><span class="keyword">bool</span></code>
439 to convey the notion of optionality.
440 </p>
441<p>
442 However, pointers are good to <span class="underline">refer</span>
443 to optional objects, but not particularly good to handle the optional objects
444 in all other respects, such as initializing or moving/copying them. The
445 problem resides in the shallow-copy of pointer semantics: if you need to
446 effectively move or copy the object, pointers alone are not enough. The
447 problem is that copies of pointers do not imply copies of pointees. For
448 example, as was discussed in the motivation, pointers alone cannot be used
449 to return optional objects from a function because the object must move
450 outside from the function and into the caller's context.
451 </p>
452<p>
453 A solution to the shallow-copy problem that is often used is to resort
454 to dynamic allocation and use a smart pointer to automatically handle the
455 details of this. For example, if a function is to optionally return an
456 object <code class="computeroutput"><span class="identifier">X</span></code>, it can use <code class="computeroutput"><span class="identifier">shared_ptr</span><span class="special">&lt;</span><span class="identifier">X</span><span class="special">&gt;</span></code>
457 as the return value. However, this requires dynamic allocation of <code class="computeroutput"><span class="identifier">X</span></code>. If <code class="computeroutput"><span class="identifier">X</span></code>
458 is a built-in or small POD, this technique is very poor in terms of required
459 resources. Optional objects are essentially values so it is very convenient
460 to be able to use automatic storage and deep-copy semantics to manipulate
461 optional values just as we do with ordinary values. Pointers do not have
462 this semantics, so are inappropriate for the initialization and transport
463 of optional values, yet are quite convenient for handling the access to
464 the possible undefined value because of the idiomatic aid present in the
465 <a href="../../../../utility/OptionalPointee.html" target="_top">OptionalPointee</a>
466 concept incarnated by pointers.
467 </p>
468<h6>
469<a name="boost_optional.tutorial.design_overview.the_interface.h1"></a>
470 <span class="phrase"><a name="boost_optional.tutorial.design_overview.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee"></a></span><a class="link" href="tutorial.html#boost_optional.tutorial.design_overview.the_interface.optional_lt_t_gt__as_a_model_of_optionalpointee">Optional&lt;T&gt;
471 as a model of OptionalPointee</a>
472 </h6>
473<p>
474 For value access operations <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> uses operators <code class="computeroutput"><span class="special">*</span></code>
475 and <code class="computeroutput"><span class="special">-&gt;</span></code> to lexically warn
476 about the possibly uninitialized state appealing to the familiar pointer
477 semantics w.r.t. to null pointers.
478 </p>
479<div class="warning"><table border="0" summary="Warning">
480<tr>
481<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
482<th align="left">Warning</th>
483</tr>
484<tr><td align="left" valign="top"><p>
485 However, it is particularly important to note that <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> objects are not pointers. <span class="underline"><code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> is not, and does not model, a
486 pointer</span>.
487 </p></td></tr>
488</table></div>
489<p>
490 For instance, <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;&gt;</span></code> does not have shallow-copy so does
491 not alias: two different optionals never refer to the <span class="emphasis"><em>same</em></span>
492 value unless <code class="computeroutput"><span class="identifier">T</span></code> itself is
493 a reference (but may have <span class="emphasis"><em>equivalent</em></span> values). The
494 difference between an <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code> and a pointer must be kept in mind,
495 particularly because the semantics of relational operators are different:
496 since <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
497 is a value-wrapper, relational operators are deep: they compare optional
498 values; but relational operators for pointers are shallow: they do not
499 compare pointee values. As a result, you might be able to replace <code class="computeroutput"><span class="identifier">optional</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
500 by <code class="computeroutput"><span class="identifier">T</span><span class="special">*</span></code>
501 on some situations but not always. Specifically, on generic code written
502 for both, you cannot use relational operators directly, and must use the
503 template functions <a href="../../../../utility/OptionalPointee.html#equal" target="_top"><code class="computeroutput"><span class="identifier">equal_pointees</span><span class="special">()</span></code></a>
504 and <a href="../../../../utility/OptionalPointee.html#less" target="_top"><code class="computeroutput"><span class="identifier">less_pointees</span><span class="special">()</span></code></a>
505 instead.
506 </p>
507</div>
508</div>
509</div>
510<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
511<td align="left"></td>
512<td align="right"><div class="copyright-footer">Copyright &#169; 2003-2007 Fernando Luis Cacciola Carballal<br>Copyright &#169; 2014 Andrzej Krzemie&#324;ski<p>
513 Distributed under the Boost Software License, Version 1.0. (See accompanying
514 file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
515 </p>
516</div></td>
517</tr></table>
518<hr>
519<div class="spirit-nav">
520<a accesskey="p" href="quick_start.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../index.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="synopsis.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
521</div>
522</body>
523</html>