]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/range/doc/concepts.qbk
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / range / doc / concepts.qbk
CommitLineData
7c673cae
FG
1[/
2 Copyright 2010 Neil Groves
3 Distributed under the Boost Software License, Version 1.0.
4 (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5/]
6[section:concepts Range Concepts]
7
8[section Overview]
9
10A Range is a [*/concept/] similar to the STL [@http://www.sgi.com/Technology/STL/Container.html Container] concept. A Range provides iterators for accessing a half-open range `[first,one_past_last)` of elements and provides information about the number of elements in the Range. However, a Range has fewer requirements than a Container.
11
12The motivation for the Range concept is that there are many useful Container-like types that do not meet the full requirements of Container, and many algorithms that can be written with this reduced set of requirements. In particular, a Range does not necessarily
13
14* own the elements that can be accessed through it,
15* have copy semantics,
16
17Because of the second requirement, a Range object must be passed by (const or non-const) reference in generic code.
18
19The operations that can be performed on a Range is dependent on the [@boost:/libs/iterator/doc/new-iter-concepts.html#iterator-traversal-concepts-lib-iterator-traversal traversal category] of the underlying iterator type. Therefore the range concepts are named to reflect which traversal category its iterators support. See also terminology and style guidelines. for more information about naming of ranges.
20
21The concepts described below specifies associated types as [@boost:/libs/mpl/doc/refmanual/metafunction.html metafunctions] and all functions as free-standing functions to allow for a layer of indirection.
22
23[endsect]
24
25
26[section Single Pass Range]
27
28[heading Notation]
29
30[table
31 []
32 [[`X`] [A type that is a model of __single_pass_range__.]]
33 [[`a`] [Object of type X.]]
34]
35
36[heading Description]
37
38A range `X` where `boost::range_iterator<X>::type` is a model of __single_pass_iterator__.
39
40[heading Associated types]
41
42[table
43 []
44 [[Iterator type ] [`boost::range_iterator<X>::type` ] [The type of iterator used to iterate through a Range's elements. The iterator's value type is expected to be the Range's value type. A conversion from the iterator type to the `const` iterator type must exist.]]
45 [[Const iterator type] [`boost::range_iterator<const X>::type`] [A type of iterator that may be used to examine, but not to modify, a Range's elements.]]
46]
47
48[heading Valid expressions]
49
50The following expressions must be valid.
51
52[table
53 [[Name ] [Expression ] [Return type ]]
54 [[Beginning of range] [`boost::begin(a)`] [`boost::range_iterator<X>::type` if `a` is mutable, `boost::range_iterator<const X>::type` otherwise]]
55 [[End of range ] [`boost::end(a)` ] [`boost::range_iterator<X>::type` if `a` is mutable, `boost::range_iterator<const X>::type` otherwise]]
56]
57
58[heading Expression semantics]
59
60[table
61 [[Expression ] [Semantics ] [Postcondition]]
62 [[`boost::begin(a)`] [Returns an iterator pointing to the first element in the Range. ] [`boost::begin(a)` is either dereferenceable or past-the-end. It is past-the-end if and only if `boost::distance(a) == 0`.]]
63 [[`boost::end(a)` ] [Returns an iterator pointing one past the last element in the Range. ] [`boost::end(a)` is past-the-end.]]
64]
65
66[heading Complexity guarantees]
67
68`boost::end(a)` is at most amortized linear time, `boost::begin(a)` is amortized constant time. For most practical purposes, one can expect both to be amortized constant time.
69
70[heading Invariants]
71
72[table
73 []
74 [[Valid range ] [For any Range `a`, `[boost::begin(a),boost::end(a))` is a valid range, that is, `boost::end(a)` is reachable from `boost::begin(a)` in a finite number of increments.]]
75
76 [[Completeness] [An algorithm that iterates through the range `[boost::begin(a),boost::end(a))` will pass through every element of `a`.]]
77]
78
79[heading See also]
80
81__extending_for_udts__
82
83__implementation_of_metafunctions__
84
85__implementation_of_functions__
86
87__container__
88
89[endsect]
90
91
92[section Forward Range]
93
94[heading Notation]
95
96[table
97 []
98 [[`X`] [A type that is a model of __forward_range__.]]
99 [[`a`] [Object of type X.]]
100]
101
102[heading Description]
103
104A range `X` where `boost::range_iterator<X>::type` is a model of __forward_traversal_iterator__.
105
106[heading Refinement of]
107
108__single_pass_range__
109
110[heading Associated types]
111
112[table
113 []
114 [[Distance type] [`boost::range_difference<X>::type`] [A signed integral type used to represent the distance between two of the Range's iterators. This type must be the same as the iterator's distance type.]]
115 [[Size type ] [`boost::range_size<X>::type` ] [An unsigned integral type that can represent any nonnegative value of the Range's distance type.]]
116]
117
118[heading See also]
119
120__implementation_of_metafunctions__
121
122__implementation_of_functions__
123
124[endsect]
125
126
127[section Bidirectional Range]
128
129[heading Notation]
130
131[table
132 []
133 [[`X`] [A type that is a model of __bidirectional_range__.]]
134 [[`a`] [Object of type X.]]
135]
136
137[heading Description]
138
139This concept provides access to iterators that traverse in both directions (forward and reverse). The `boost::range_iterator<X>::type` iterator must meet all of the requirements of __bidirectional_traversal_iterator__.
140
141[heading Refinement of]
142
143__forward_range__
144
145[heading Associated types]
146
147[table
148 []
149 [[Reverse Iterator type ] [`boost::range_reverse_iterator<X>::type` ] [The type of iterator used to iterate through a Range's elements in reverse order. The iterator's value type is expected to be the Range's value type. A conversion from the reverse iterator type to the const reverse iterator type must exist.]]
150
151 [[Const reverse iterator type] [`boost::range_reverse_iterator<const X>::type`] [A type of reverse iterator that may be used to examine, but not to modify, a Range's elements.]]
152]
153
154[heading Valid expressions]
155
156[table
157 [[Name ] [Expression ] [Return type] [Semantics]]
158 [[Beginning of range] [`boost::rbegin(a)`] [`boost::range_reverse_iterator<X>::type` if `a` is mutable `boost::range_reverse_iterator<const X>::type` otherwise.] [Equivalent to `boost::range_reverse_iterator<X>::type(boost::end(a))`.]]
159
160 [[End of range ] [`boost::rend(a)` ] [`boost::range_reverse_iterator<X>::type` if `a` is mutable, `boost::range_reverse_iterator<const X>::type` otherwise.] [Equivalent to `boost::range_reverse_iterator<X>::type(boost::begin(a))`.]]
161]
162
163[heading Complexity guarantees]
164
165`boost::rbegin(a)` has the same complexity as `boost::end(a)` and `boost::rend(a)` has the same complexity as `boost::begin(a)` from __forward_range__.
166
167[heading Invariants]
168
169[table
170 []
171 [[Valid reverse range] [For any Bidirectional Range a, `[boost::rbegin(a),boost::rend(a))` is a valid range, that is, `boost::rend(a)` is reachable from `boost::rbegin(a)` in a finite number of increments.]]
172
173 [[Completeness ] [An algorithm that iterates through the range `[boost::rbegin(a),boost::rend(a))` will pass through every element of `a`.]]
174]
175
176[heading See also]
177
178__implementation_of_metafunctions__
179
180__implementation_of_functions__
181
182[endsect]
183
184
185[section Random Access Range]
186
187[heading Description]
188
189A range `X` where `boost::range_iterator<X>::type` is a model of __random_access_traversal_iterator__.
190
191[heading Refinement of]
192
193__bidirectional_range__
194
195[heading Valid expressions]
196
197[table
198 [[Name ] [Expression ] [Return type ]]
199 [[Size of range] [`boost::size(a)`] [`boost::range_size<X>::type`]]
200]
201
202[heading Expression semantics]
203
204[table
205 [[Expression ] [Semantics] [Postcondition]]
206 [[`boost::size(a)`] [Returns the size of the Range, that is, its number of elements. Note `boost::size(a) == 0u` is equivalent to `boost::empty(a)`.] [`boost::size(a) >= 0`]]
207]
208
209[heading Complexity guarantees]
210
211`boost::size(a)` completes in amortized constant time.
212
213[heading Invariants]
214
215[table
216 []
217 [[Range size] [`boost::size(a)` is equal to the `boost::end(a)` - `boost::begin(a)`.]]
218]
219
220[endsect]
221
222
223[section Concept Checking]
224
225Each of the range concepts has a corresponding concept checking class in the file [@boost:/boost/range/concepts.hpp `<boost/range/concepts.hpp>`]. These classes may be used in conjunction with the __concept_check__ to ensure that the type of a template parameter is compatible with a range concept. If not, a meaningful compile time error is generated. Checks are provided for the range concepts related to iterator traversal categories. For example, the following line checks that the type `T` models the __forward_range__ concept.
226
227``
228BOOST_CONCEPT_ASSERT(( ForwardRangeConcept<T> ));
229``
230
231An additional concept check is required for the value access property of the range based on the range's iterator type. For example to check for a ForwardReadableRange, the following code is required.
232
233``
234BOOST_CONCEPT_ASSERT(( ForwardRangeConcept<T> ));
235BOOST_CONCEPT_ASSERT(( ReadableIteratorConcept<typename range_iterator<T>::type> ));
236``
237
238The following range concept checking classes are provided.
239
240* Class SinglePassRangeConcept checks for __single_pass_range__
241* Class ForwardRangeConcept checks for __forward_range__
242* Class BidirectionalRangeConcept checks for __bidirectional_range__
243* Class RandomAccessRangeConcept checks for __random_access_range__
244
245[heading See also]
246
247[link range.style_guide Range Terminology and style guidelines]
248
249__iterator_concepts__
250
251__concept_check__
252
253[endsect]
254[endsect]
255