]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/range/doc/reference/algorithm/transform.qbk
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / range / doc / reference / algorithm / transform.qbk
CommitLineData
7c673cae
FG
1[/
2 Copyright 2010 Neil Groves
3 Distributed under the Boost Software License, Version 1.0.
4 (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5/]
6[section:transform transform]
7
8[heading Prototype]
9
10``
11template<
12 class SinglePassRange1,
13 class OutputIterator,
14 class UnaryOperation
15>
16OutputIterator transform(const SinglePassRange1& rng,
17 OutputIterator out,
18 UnaryOperation fun);
19
20template<
21 class SinglePassRange1,
22 class SinglePassRange2,
23 class OutputIterator,
24 class BinaryOperation
25>
26OutputIterator transform(const SinglePassRange1& rng1,
27 const SinglePassRange2& rng2,
28 OutputIterator out,
29 BinaryOperation fun);
30``
31
32[heading Description]
33
34[*UnaryOperation version:]
35
36`transform` assigns the value `y` to each element `[out, out + distance(rng)), y = fun(x)` where `x` is the corresponding value to `y` in `rng1`. The return value is `out + distance(rng)`.
37
38[*BinaryOperation version:]
39
40`transform` assigns the value `z` to each element `[out, out + min(distance(rng1), distance(rng2))), z = fun(x,y)` where `x` is the corresponding value in `rng1` and `y` is the corresponding value in `rng2`. This version of `transform` stops upon reaching either the end of `rng1`, or the end of `rng2`. Hence there isn't a requirement for `distance(rng1) == distance(rng2)` since there is a safe guaranteed behaviour, unlike with the iterator counterpart in the standard library.
41
42The return value is `out + min(distance(rng1), distance(rng2))`.
43
44[heading Definition]
45
46Defined in the header file `boost/range/algorithm/transform.hpp`
47
48[heading Requirements]
49
50[*For the unary versions of transform:]
51
52* `SinglePassRange1` is a model of the __single_pass_range__ Concept.
53* `OutputIterator` is a model of the `OutputIteratorConcept`.
54* `UnaryOperation` is a model of the `UnaryFunctionConcept`.
55* `SinglePassRange1`'s value type must be convertible to `UnaryFunction`'s argument type.
56* `UnaryFunction`'s result type must be convertible to a type in `OutputIterator`'s set of value types.
57
58[*For the binary versions of transform:]
59
60* `SinglePassRange1` is a model of the __single_pass_range__ Concept.
61* `SinglePassRange2` is a model of the __single_pass_range__ Concept.
62* `OutputIterator` is a model of the `OutputIteratorConcept`.
63* `BinaryOperation` is a model of the `BinaryFunctionConcept`.
64* `SinglePassRange1`'s value type must be convertible to `BinaryFunction`'s first argument type.
65* `SinglePassRange2`'s value type must be convertible to `BinaryFunction`'s second argument type.
66* `BinaryOperation`'s result type must be convertible to a type in `OutputIterator`'s set of value types.
67
68[heading Precondition:]
69
70[*For the unary version of transform:]
71
72* `out` is not an iterator within the range `[begin(rng1) + 1, end(rng1))`.
73* `[out, out + distance(rng1))` is a valid range.
74
75[*For the binary version of transform:]
76
77* `out` is not an iterator within the range `[begin(rng1) + 1, end(rng1))`.
78* `out` is not an iterator within the range `[begin(rng2) + 1, end(rng2))`.
79* `[out, out + min(distance(rng1), distance(rng2)))` is a valid range.
80
81
82[heading Complexity]
83
84Linear. The operation is applied exactly `distance(rng1)` for the unary version and `min(distance(rng1), distance(rng2))` for the binary version.
85
86[endsect]
87
88