]> git.proxmox.com Git - ceph.git/blame - ceph/src/dpdk/drivers/net/e1000/base/e1000_vf.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / drivers / net / e1000 / base / e1000_vf.c
CommitLineData
7c673cae
FG
1/*******************************************************************************
2
3Copyright (c) 2001-2015, Intel Corporation
4All rights reserved.
5
6Redistribution and use in source and binary forms, with or without
7modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30POSSIBILITY OF SUCH DAMAGE.
31
32***************************************************************************/
33
34
35#include "e1000_api.h"
36
37
38STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
39STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
40STATIC void e1000_release_vf(struct e1000_hw *hw);
41STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
42STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
43STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
44STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
45STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
46STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
47 u16 *duplex);
48STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
49STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
50STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
51STATIC int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
52STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
53
54/**
55 * e1000_init_phy_params_vf - Inits PHY params
56 * @hw: pointer to the HW structure
57 *
58 * Doesn't do much - there's no PHY available to the VF.
59 **/
60STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
61{
62 DEBUGFUNC("e1000_init_phy_params_vf");
63 hw->phy.type = e1000_phy_vf;
64 hw->phy.ops.acquire = e1000_acquire_vf;
65 hw->phy.ops.release = e1000_release_vf;
66
67 return E1000_SUCCESS;
68}
69
70/**
71 * e1000_init_nvm_params_vf - Inits NVM params
72 * @hw: pointer to the HW structure
73 *
74 * Doesn't do much - there's no NVM available to the VF.
75 **/
76STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
77{
78 DEBUGFUNC("e1000_init_nvm_params_vf");
79 hw->nvm.type = e1000_nvm_none;
80 hw->nvm.ops.acquire = e1000_acquire_vf;
81 hw->nvm.ops.release = e1000_release_vf;
82
83 return E1000_SUCCESS;
84}
85
86/**
87 * e1000_init_mac_params_vf - Inits MAC params
88 * @hw: pointer to the HW structure
89 **/
90STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
91{
92 struct e1000_mac_info *mac = &hw->mac;
93
94 DEBUGFUNC("e1000_init_mac_params_vf");
95
96 /* Set media type */
97 /*
98 * Virtual functions don't care what they're media type is as they
99 * have no direct access to the PHY, or the media. That is handled
100 * by the physical function driver.
101 */
102 hw->phy.media_type = e1000_media_type_unknown;
103
104 /* No ASF features for the VF driver */
105 mac->asf_firmware_present = false;
106 /* ARC subsystem not supported */
107 mac->arc_subsystem_valid = false;
108 /* Disable adaptive IFS mode so the generic funcs don't do anything */
109 mac->adaptive_ifs = false;
110 /* VF's have no MTA Registers - PF feature only */
111 mac->mta_reg_count = 128;
112 /* VF's have no access to RAR entries */
113 mac->rar_entry_count = 1;
114
115 /* Function pointers */
116 /* link setup */
117 mac->ops.setup_link = e1000_setup_link_vf;
118 /* bus type/speed/width */
119 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
120 /* reset */
121 mac->ops.reset_hw = e1000_reset_hw_vf;
122 /* hw initialization */
123 mac->ops.init_hw = e1000_init_hw_vf;
124 /* check for link */
125 mac->ops.check_for_link = e1000_check_for_link_vf;
126 /* link info */
127 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
128 /* multicast address update */
129 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
130 /* set mac address */
131 mac->ops.rar_set = e1000_rar_set_vf;
132 /* read mac address */
133 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
134
135
136 return E1000_SUCCESS;
137}
138
139/**
140 * e1000_init_function_pointers_vf - Inits function pointers
141 * @hw: pointer to the HW structure
142 **/
143void e1000_init_function_pointers_vf(struct e1000_hw *hw)
144{
145 DEBUGFUNC("e1000_init_function_pointers_vf");
146
147 hw->mac.ops.init_params = e1000_init_mac_params_vf;
148 hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
149 hw->phy.ops.init_params = e1000_init_phy_params_vf;
150 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
151}
152
153/**
154 * e1000_acquire_vf - Acquire rights to access PHY or NVM.
155 * @hw: pointer to the HW structure
156 *
157 * There is no PHY or NVM so we want all attempts to acquire these to fail.
158 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
159 * even want any SW to attempt to use them.
160 **/
161STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
162{
163 UNREFERENCED_1PARAMETER(hw);
164 return -E1000_ERR_PHY;
165}
166
167/**
168 * e1000_release_vf - Release PHY or NVM
169 * @hw: pointer to the HW structure
170 *
171 * There is no PHY or NVM so we want all attempts to acquire these to fail.
172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 * even want any SW to attempt to use them.
174 **/
175STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
176{
177 UNREFERENCED_1PARAMETER(hw);
178 return;
179}
180
181/**
182 * e1000_setup_link_vf - Sets up link.
183 * @hw: pointer to the HW structure
184 *
185 * Virtual functions cannot change link.
186 **/
187STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
188{
189 DEBUGFUNC("e1000_setup_link_vf");
190 UNREFERENCED_1PARAMETER(hw);
191
192 return E1000_SUCCESS;
193}
194
195/**
196 * e1000_get_bus_info_pcie_vf - Gets the bus info.
197 * @hw: pointer to the HW structure
198 *
199 * Virtual functions are not really on their own bus.
200 **/
201STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
202{
203 struct e1000_bus_info *bus = &hw->bus;
204
205 DEBUGFUNC("e1000_get_bus_info_pcie_vf");
206
207 /* Do not set type PCI-E because we don't want disable master to run */
208 bus->type = e1000_bus_type_reserved;
209 bus->speed = e1000_bus_speed_2500;
210
211 return 0;
212}
213
214/**
215 * e1000_get_link_up_info_vf - Gets link info.
216 * @hw: pointer to the HW structure
217 * @speed: pointer to 16 bit value to store link speed.
218 * @duplex: pointer to 16 bit value to store duplex.
219 *
220 * Since we cannot read the PHY and get accurate link info, we must rely upon
221 * the status register's data which is often stale and inaccurate.
222 **/
223STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
224 u16 *duplex)
225{
226 s32 status;
227
228 DEBUGFUNC("e1000_get_link_up_info_vf");
229
230 status = E1000_READ_REG(hw, E1000_STATUS);
231 if (status & E1000_STATUS_SPEED_1000) {
232 *speed = SPEED_1000;
233 DEBUGOUT("1000 Mbs, ");
234 } else if (status & E1000_STATUS_SPEED_100) {
235 *speed = SPEED_100;
236 DEBUGOUT("100 Mbs, ");
237 } else {
238 *speed = SPEED_10;
239 DEBUGOUT("10 Mbs, ");
240 }
241
242 if (status & E1000_STATUS_FD) {
243 *duplex = FULL_DUPLEX;
244 DEBUGOUT("Full Duplex\n");
245 } else {
246 *duplex = HALF_DUPLEX;
247 DEBUGOUT("Half Duplex\n");
248 }
249
250 return E1000_SUCCESS;
251}
252
253/**
254 * e1000_reset_hw_vf - Resets the HW
255 * @hw: pointer to the HW structure
256 *
257 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
258 * This is all the reset we can perform on a VF.
259 **/
260STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
261{
262 struct e1000_mbx_info *mbx = &hw->mbx;
263 u32 timeout = E1000_VF_INIT_TIMEOUT;
264 s32 ret_val = -E1000_ERR_MAC_INIT;
265 u32 ctrl, msgbuf[3];
266 u8 *addr = (u8 *)(&msgbuf[1]);
267
268 DEBUGFUNC("e1000_reset_hw_vf");
269
270 DEBUGOUT("Issuing a function level reset to MAC\n");
271 ctrl = E1000_READ_REG(hw, E1000_CTRL);
272 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
273
274 /* we cannot reset while the RSTI / RSTD bits are asserted */
275 while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
276 timeout--;
277 usec_delay(5);
278 }
279
280 if (timeout) {
281 /* mailbox timeout can now become active */
282 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
283
284 msgbuf[0] = E1000_VF_RESET;
285 mbx->ops.write_posted(hw, msgbuf, 1, 0);
286
287 msec_delay(10);
288
289 /* set our "perm_addr" based on info provided by PF */
290 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
291 if (!ret_val) {
292 if (msgbuf[0] == (E1000_VF_RESET |
293 E1000_VT_MSGTYPE_ACK))
294 memcpy(hw->mac.perm_addr, addr, 6);
295 else
296 ret_val = -E1000_ERR_MAC_INIT;
297 }
298 }
299
300 return ret_val;
301}
302
303/**
304 * e1000_init_hw_vf - Inits the HW
305 * @hw: pointer to the HW structure
306 *
307 * Not much to do here except clear the PF Reset indication if there is one.
308 **/
309STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
310{
311 DEBUGFUNC("e1000_init_hw_vf");
312
313 /* attempt to set and restore our mac address */
314 e1000_rar_set_vf(hw, hw->mac.addr, 0);
315
316 return E1000_SUCCESS;
317}
318
319/**
320 * e1000_rar_set_vf - set device MAC address
321 * @hw: pointer to the HW structure
322 * @addr: pointer to the receive address
323 * @index receive address array register
324 **/
325STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
326 u32 E1000_UNUSEDARG index)
327{
328 struct e1000_mbx_info *mbx = &hw->mbx;
329 u32 msgbuf[3];
330 u8 *msg_addr = (u8 *)(&msgbuf[1]);
331 s32 ret_val;
332
333 UNREFERENCED_1PARAMETER(index);
334 memset(msgbuf, 0, 12);
335 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
336 memcpy(msg_addr, addr, 6);
337 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
338
339 if (!ret_val)
340 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
341
342 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
343
344 /* if nacked the address was rejected, use "perm_addr" */
345 if (!ret_val &&
346 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
347 e1000_read_mac_addr_vf(hw);
348
349 return E1000_SUCCESS;
350}
351
352/**
353 * e1000_hash_mc_addr_vf - Generate a multicast hash value
354 * @hw: pointer to the HW structure
355 * @mc_addr: pointer to a multicast address
356 *
357 * Generates a multicast address hash value which is used to determine
358 * the multicast filter table array address and new table value.
359 **/
360STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
361{
362 u32 hash_value, hash_mask;
363 u8 bit_shift = 0;
364
365 DEBUGFUNC("e1000_hash_mc_addr_generic");
366
367 /* Register count multiplied by bits per register */
368 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
369
370 /*
371 * The bit_shift is the number of left-shifts
372 * where 0xFF would still fall within the hash mask.
373 */
374 while (hash_mask >> bit_shift != 0xFF)
375 bit_shift++;
376
377 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
378 (((u16) mc_addr[5]) << bit_shift)));
379
380 return hash_value;
381}
382
383STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
384 u32 *msg, u16 size)
385{
386 struct e1000_mbx_info *mbx = &hw->mbx;
387 u32 retmsg[E1000_VFMAILBOX_SIZE];
388 s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
389
390 if (!retval)
391 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
392}
393
394/**
395 * e1000_update_mc_addr_list_vf - Update Multicast addresses
396 * @hw: pointer to the HW structure
397 * @mc_addr_list: array of multicast addresses to program
398 * @mc_addr_count: number of multicast addresses to program
399 *
400 * Updates the Multicast Table Array.
401 * The caller must have a packed mc_addr_list of multicast addresses.
402 **/
403void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
404 u8 *mc_addr_list, u32 mc_addr_count)
405{
406 u32 msgbuf[E1000_VFMAILBOX_SIZE];
407 u16 *hash_list = (u16 *)&msgbuf[1];
408 u32 hash_value;
409 u32 i;
410
411 DEBUGFUNC("e1000_update_mc_addr_list_vf");
412
413 /* Each entry in the list uses 1 16 bit word. We have 30
414 * 16 bit words available in our HW msg buffer (minus 1 for the
415 * msg type). That's 30 hash values if we pack 'em right. If
416 * there are more than 30 MC addresses to add then punt the
417 * extras for now and then add code to handle more than 30 later.
418 * It would be unusual for a server to request that many multi-cast
419 * addresses except for in large enterprise network environments.
420 */
421
422 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
423
424 if (mc_addr_count > 30) {
425 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
426 mc_addr_count = 30;
427 }
428
429 msgbuf[0] = E1000_VF_SET_MULTICAST;
430 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
431
432 for (i = 0; i < mc_addr_count; i++) {
433 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
434 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
435 hash_list[i] = hash_value & 0x0FFF;
436 mc_addr_list += ETH_ADDR_LEN;
437 }
438
439 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
440}
441
442/**
443 * e1000_vfta_set_vf - Set/Unset vlan filter table address
444 * @hw: pointer to the HW structure
445 * @vid: determines the vfta register and bit to set/unset
446 * @set: if true then set bit, else clear bit
447 **/
448void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
449{
450 u32 msgbuf[2];
451
452 msgbuf[0] = E1000_VF_SET_VLAN;
453 msgbuf[1] = vid;
454 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
455 if (set)
456 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
457
458 e1000_write_msg_read_ack(hw, msgbuf, 2);
459}
460
461/** e1000_rlpml_set_vf - Set the maximum receive packet length
462 * @hw: pointer to the HW structure
463 * @max_size: value to assign to max frame size
464 **/
465void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
466{
467 u32 msgbuf[2];
468
469 msgbuf[0] = E1000_VF_SET_LPE;
470 msgbuf[1] = max_size;
471
472 e1000_write_msg_read_ack(hw, msgbuf, 2);
473}
474
475/**
476 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
477 * @hw: pointer to the HW structure
478 * @uni: boolean indicating unicast promisc status
479 * @multi: boolean indicating multicast promisc status
480 **/
481s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
482{
483 struct e1000_mbx_info *mbx = &hw->mbx;
484 u32 msgbuf = E1000_VF_SET_PROMISC;
485 s32 ret_val;
486
487 switch (type) {
488 case e1000_promisc_multicast:
489 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
490 break;
491 case e1000_promisc_enabled:
492 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
493 case e1000_promisc_unicast:
494 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
495 case e1000_promisc_disabled:
496 break;
497 default:
498 return -E1000_ERR_MAC_INIT;
499 }
500
501 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
502
503 if (!ret_val)
504 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
505
506 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
507 ret_val = -E1000_ERR_MAC_INIT;
508
509 return ret_val;
510}
511
512/**
513 * e1000_read_mac_addr_vf - Read device MAC address
514 * @hw: pointer to the HW structure
515 **/
516STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
517{
518 int i;
519
520 for (i = 0; i < ETH_ADDR_LEN; i++)
521 hw->mac.addr[i] = hw->mac.perm_addr[i];
522
523 return E1000_SUCCESS;
524}
525
526/**
527 * e1000_check_for_link_vf - Check for link for a virtual interface
528 * @hw: pointer to the HW structure
529 *
530 * Checks to see if the underlying PF is still talking to the VF and
531 * if it is then it reports the link state to the hardware, otherwise
532 * it reports link down and returns an error.
533 **/
534STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
535{
536 struct e1000_mbx_info *mbx = &hw->mbx;
537 struct e1000_mac_info *mac = &hw->mac;
538 s32 ret_val = E1000_SUCCESS;
539 u32 in_msg = 0;
540
541 DEBUGFUNC("e1000_check_for_link_vf");
542
543 /*
544 * We only want to run this if there has been a rst asserted.
545 * in this case that could mean a link change, device reset,
546 * or a virtual function reset
547 */
548
549 /* If we were hit with a reset or timeout drop the link */
550 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
551 mac->get_link_status = true;
552
553 if (!mac->get_link_status)
554 goto out;
555
556 /* if link status is down no point in checking to see if pf is up */
557 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
558 goto out;
559
560 /* if the read failed it could just be a mailbox collision, best wait
561 * until we are called again and don't report an error */
562 if (mbx->ops.read(hw, &in_msg, 1, 0))
563 goto out;
564
565 /* if incoming message isn't clear to send we are waiting on response */
566 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
567 /* message is not CTS and is NACK we have lost CTS status */
568 if (in_msg & E1000_VT_MSGTYPE_NACK)
569 ret_val = -E1000_ERR_MAC_INIT;
570 goto out;
571 }
572
573 /* at this point we know the PF is talking to us, check and see if
574 * we are still accepting timeout or if we had a timeout failure.
575 * if we failed then we will need to reinit */
576 if (!mbx->timeout) {
577 ret_val = -E1000_ERR_MAC_INIT;
578 goto out;
579 }
580
581 /* if we passed all the tests above then the link is up and we no
582 * longer need to check for link */
583 mac->get_link_status = false;
584
585out:
586 return ret_val;
587}
588