]> git.proxmox.com Git - ceph.git/blame - ceph/src/isa-l/crc/crc32_gzip_refl_by8_02.asm
buildsys: switch source download to quincy
[ceph.git] / ceph / src / isa-l / crc / crc32_gzip_refl_by8_02.asm
CommitLineData
f91f0fd5
TL
1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
3;
4; Redistribution and use in source and binary forms, with or without
5; modification, are permitted provided that the following conditions
6; are met:
7; * Redistributions of source code must retain the above copyright
8; notice, this list of conditions and the following disclaimer.
9; * Redistributions in binary form must reproduce the above copyright
10; notice, this list of conditions and the following disclaimer in
11; the documentation and/or other materials provided with the
12; distribution.
13; * Neither the name of Intel Corporation nor the names of its
14; contributors may be used to endorse or promote products derived
15; from this software without specific prior written permission.
16;
17; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
29
30;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
31; Function API:
32; UINT32 crc32_gzip_refl_by8_02(
33; UINT32 init_crc, //initial CRC value, 32 bits
34; const unsigned char *buf, //buffer pointer to calculate CRC on
35; UINT64 len //buffer length in bytes (64-bit data)
36; );
37;
38; Authors:
39; Erdinc Ozturk
40; Vinodh Gopal
41; James Guilford
42;
43; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
44; URL: http://download.intel.com/design/intarch/papers/323102.pdf
45;
46;
47; sample yasm command line:
48; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
49;
50; As explained here:
51; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
52; CRC-32 checksum is described in RFC 1952
53; Implementing RFC 1952 CRC:
54; http://www.ietf.org/rfc/rfc1952.txt
55
56%include "reg_sizes.asm"
57
58%define fetch_dist 1024
59
60[bits 64]
61default rel
62
63section .text
64
65
66%ifidn __OUTPUT_FORMAT__, win64
67 %xdefine arg1 rcx
68 %xdefine arg2 rdx
69 %xdefine arg3 r8
70
71 %xdefine arg1_low32 ecx
72%else
73 %xdefine arg1 rdi
74 %xdefine arg2 rsi
75 %xdefine arg3 rdx
76
77 %xdefine arg1_low32 edi
78%endif
79
80%define TMP 16*0
81%ifidn __OUTPUT_FORMAT__, win64
82 %define XMM_SAVE 16*2
83 %define VARIABLE_OFFSET 16*10+8
84%else
85 %define VARIABLE_OFFSET 16*2+8
86%endif
87
88align 16
89global crc32_gzip_refl_by8_02:ISAL_SYM_TYPE_FUNCTION
90crc32_gzip_refl_by8_02:
91 not arg1_low32
92 sub rsp, VARIABLE_OFFSET
93
94%ifidn __OUTPUT_FORMAT__, win64
95 ; push the xmm registers into the stack to maintain
96 vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
97 vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
98 vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
99 vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
100 vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
101 vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
102 vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
103 vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
104%endif
105
106 ; check if smaller than 256B
107 cmp arg3, 256
108 jl .less_than_256
109
110 ; load the initial crc value
111 vmovd xmm10, arg1_low32 ; initial crc
112
113 ; receive the initial 64B data, xor the initial crc value
114 vmovdqu xmm0, [arg2+16*0]
115 vmovdqu xmm1, [arg2+16*1]
116 vmovdqu xmm2, [arg2+16*2]
117 vmovdqu xmm3, [arg2+16*3]
118 vmovdqu xmm4, [arg2+16*4]
119 vmovdqu xmm5, [arg2+16*5]
120 vmovdqu xmm6, [arg2+16*6]
121 vmovdqu xmm7, [arg2+16*7]
122
123 ; XOR the initial_crc value
124 vpxor xmm0, xmm10
125 vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
126 ;imm value of pclmulqdq instruction will determine which constant to use
127 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
128 ; we subtract 256 instead of 128 to save one instruction from the loop
129 sub arg3, 256
130
131 ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
132 ; loop will fold 128B at a time until we have 128+y Bytes of buffer
133
134 ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
135.fold_128_B_loop:
136 add arg2, 128
137 prefetchnta [arg2+fetch_dist+0]
138 vmovdqu xmm9, [arg2+16*0]
139 vmovdqu xmm12, [arg2+16*1]
140 vpclmulqdq xmm8, xmm0, xmm10, 0x10
141 vpclmulqdq xmm0, xmm0, xmm10 , 0x1
142 vpclmulqdq xmm13, xmm1, xmm10, 0x10
143 vpclmulqdq xmm1, xmm1, xmm10 , 0x1
144 vpxor xmm0, xmm9
145 vxorps xmm0, xmm8
146 vpxor xmm1, xmm12
147 vxorps xmm1, xmm13
148
149 prefetchnta [arg2+fetch_dist+32]
150 vmovdqu xmm9, [arg2+16*2]
151 vmovdqu xmm12, [arg2+16*3]
152 vpclmulqdq xmm8, xmm2, xmm10, 0x10
153 vpclmulqdq xmm2, xmm2, xmm10 , 0x1
154 vpclmulqdq xmm13, xmm3, xmm10, 0x10
155 vpclmulqdq xmm3, xmm3, xmm10 , 0x1
156 vpxor xmm2, xmm9
157 vxorps xmm2, xmm8
158 vpxor xmm3, xmm12
159 vxorps xmm3, xmm13
160
161 prefetchnta [arg2+fetch_dist+64]
162 vmovdqu xmm9, [arg2+16*4]
163 vmovdqu xmm12, [arg2+16*5]
164 vpclmulqdq xmm8, xmm4, xmm10, 0x10
165 vpclmulqdq xmm4, xmm4, xmm10 , 0x1
166 vpclmulqdq xmm13, xmm5, xmm10, 0x10
167 vpclmulqdq xmm5, xmm5, xmm10 , 0x1
168 vpxor xmm4, xmm9
169 vxorps xmm4, xmm8
170 vpxor xmm5, xmm12
171 vxorps xmm5, xmm13
172
173 prefetchnta [arg2+fetch_dist+96]
174 vmovdqu xmm9, [arg2+16*6]
175 vmovdqu xmm12, [arg2+16*7]
176 vpclmulqdq xmm8, xmm6, xmm10, 0x10
177 vpclmulqdq xmm6, xmm6, xmm10 , 0x1
178 vpclmulqdq xmm13, xmm7, xmm10, 0x10
179 vpclmulqdq xmm7, xmm7, xmm10 , 0x1
180 vpxor xmm6, xmm9
181 vxorps xmm6, xmm8
182 vpxor xmm7, xmm12
183 vxorps xmm7, xmm13
184
185 sub arg3, 128
186 jge .fold_128_B_loop
187 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
188
189 add arg2, 128
190 ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
191 ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
192
193 ; fold the 8 xmm registers to 1 xmm register with different constants
194 vmovdqa xmm10, [rk9]
195 vpclmulqdq xmm8, xmm0, xmm10, 0x1
196 vpclmulqdq xmm0, xmm0, xmm10, 0x10
197 vpxor xmm7, xmm8
198 vxorps xmm7, xmm0
199
200 vmovdqa xmm10, [rk11]
201 vpclmulqdq xmm8, xmm1, xmm10, 0x1
202 vpclmulqdq xmm1, xmm1, xmm10, 0x10
203 vpxor xmm7, xmm8
204 vxorps xmm7, xmm1
205
206 vmovdqa xmm10, [rk13]
207 vpclmulqdq xmm8, xmm2, xmm10, 0x1
208 vpclmulqdq xmm2, xmm2, xmm10, 0x10
209 vpxor xmm7, xmm8
210 vpxor xmm7, xmm2
211
212 vmovdqa xmm10, [rk15]
213 vpclmulqdq xmm8, xmm3, xmm10, 0x1
214 vpclmulqdq xmm3, xmm3, xmm10, 0x10
215 vpxor xmm7, xmm8
216 vxorps xmm7, xmm3
217
218 vmovdqa xmm10, [rk17]
219 vpclmulqdq xmm8, xmm4, xmm10, 0x1
220 vpclmulqdq xmm4, xmm4, xmm10, 0x10
221 vpxor xmm7, xmm8
222 vpxor xmm7, xmm4
223
224 vmovdqa xmm10, [rk19]
225 vpclmulqdq xmm8, xmm5, xmm10, 0x1
226 vpclmulqdq xmm5, xmm5, xmm10, 0x10
227 vpxor xmm7, xmm8
228 vxorps xmm7, xmm5
229
230 vmovdqa xmm10, [rk1]
231 vpclmulqdq xmm8, xmm6, xmm10, 0x1
232 vpclmulqdq xmm6, xmm6, xmm10, 0x10
233 vpxor xmm7, xmm8
234 vpxor xmm7, xmm6
235
236
237 ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
238 ; instead of a cmp instruction, we use the negative flag with the jl instruction
239 add arg3, 128-16
240 jl .final_reduction_for_128
241
242 ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
243 ; we can fold 16 bytes at a time if y>=16
244 ; continue folding 16B at a time
245
246.16B_reduction_loop:
247 vpclmulqdq xmm8, xmm7, xmm10, 0x1
248 vpclmulqdq xmm7, xmm7, xmm10, 0x10
249 vpxor xmm7, xmm8
250 vmovdqu xmm0, [arg2]
251 vpxor xmm7, xmm0
252 add arg2, 16
253 sub arg3, 16
254 ; instead of a cmp instruction, we utilize the flags with the jge instruction
255 ; equivalent of: cmp arg3, 16-16
256 ; check if there is any more 16B in the buffer to be able to fold
257 jge .16B_reduction_loop
258
259 ;now we have 16+z bytes left to reduce, where 0<= z < 16.
260 ;first, we reduce the data in the xmm7 register
261
262
263.final_reduction_for_128:
264 add arg3, 16
265 je .128_done
266
267 ; here we are getting data that is less than 16 bytes.
268 ; since we know that there was data before the pointer, we can offset
269 ; the input pointer before the actual point, to receive exactly 16 bytes.
270 ; after that the registers need to be adjusted.
271.get_last_two_xmms:
272
273 vmovdqa xmm2, xmm7
274 vmovdqu xmm1, [arg2 - 16 + arg3]
275
276 ; get rid of the extra data that was loaded before
277 ; load the shift constant
278 lea rax, [pshufb_shf_table]
279 add rax, arg3
280 vmovdqu xmm0, [rax]
281
282 vpshufb xmm7, xmm0
283 vpxor xmm0, [mask3]
284 vpshufb xmm2, xmm0
285
286 vpblendvb xmm2, xmm2, xmm1, xmm0
287 ;;;;;;;;;;
288 vpclmulqdq xmm8, xmm7, xmm10, 0x1
289 vpclmulqdq xmm7, xmm7, xmm10, 0x10
290 vpxor xmm7, xmm8
291 vpxor xmm7, xmm2
292
293.128_done:
294 ; compute crc of a 128-bit value
295 vmovdqa xmm10, [rk5]
296 vmovdqa xmm0, xmm7
297
298 ;64b fold
299 vpclmulqdq xmm7, xmm10, 0
300 vpsrldq xmm0, 8
301 vpxor xmm7, xmm0
302
303 ;32b fold
304 vmovdqa xmm0, xmm7
305 vpslldq xmm7, 4
306 vpclmulqdq xmm7, xmm10, 0x10
307 vpxor xmm7, xmm0
308
309
310 ;barrett reduction
311.barrett:
312 vpand xmm7, [mask2]
313 vmovdqa xmm1, xmm7
314 vmovdqa xmm2, xmm7
315 vmovdqa xmm10, [rk7]
316
317 vpclmulqdq xmm7, xmm10, 0
318 vpxor xmm7, xmm2
319 vpand xmm7, [mask]
320 vmovdqa xmm2, xmm7
321 vpclmulqdq xmm7, xmm10, 0x10
322 vpxor xmm7, xmm2
323 vpxor xmm7, xmm1
324 vpextrd eax, xmm7, 2
325
326.cleanup:
327 not eax
328
329
330%ifidn __OUTPUT_FORMAT__, win64
331 vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
332 vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
333 vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
334 vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
335 vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
336 vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
337 vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
338 vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
339%endif
340 add rsp, VARIABLE_OFFSET
341 ret
342
343
344;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
345;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
346;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
347;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
348
349align 16
350.less_than_256:
351
352 ; check if there is enough buffer to be able to fold 16B at a time
353 cmp arg3, 32
354 jl .less_than_32
355
356 ; if there is, load the constants
357 vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
358
359 vmovd xmm0, arg1_low32 ; get the initial crc value
360 vmovdqu xmm7, [arg2] ; load the plaintext
361 vpxor xmm7, xmm0
362
363 ; update the buffer pointer
364 add arg2, 16
365
366 ; update the counter. subtract 32 instead of 16 to save one instruction from the loop
367 sub arg3, 32
368
369 jmp .16B_reduction_loop
370
371
372align 16
373.less_than_32:
374 ; mov initial crc to the return value. this is necessary for zero-length buffers.
375 mov eax, arg1_low32
376 test arg3, arg3
377 je .cleanup
378
379 vmovd xmm0, arg1_low32 ; get the initial crc value
380
381 cmp arg3, 16
382 je .exact_16_left
383 jl .less_than_16_left
384
385 vmovdqu xmm7, [arg2] ; load the plaintext
386 vpxor xmm7, xmm0 ; xor the initial crc value
387 add arg2, 16
388 sub arg3, 16
389 vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
390 jmp .get_last_two_xmms
391
392align 16
393.less_than_16_left:
394 ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
395
396 vpxor xmm1, xmm1
397 mov r11, rsp
398 vmovdqa [r11], xmm1
399
400 cmp arg3, 4
401 jl .only_less_than_4
402
403 ; backup the counter value
404 mov r9, arg3
405 cmp arg3, 8
406 jl .less_than_8_left
407
408 ; load 8 Bytes
409 mov rax, [arg2]
410 mov [r11], rax
411 add r11, 8
412 sub arg3, 8
413 add arg2, 8
414.less_than_8_left:
415
416 cmp arg3, 4
417 jl .less_than_4_left
418
419 ; load 4 Bytes
420 mov eax, [arg2]
421 mov [r11], eax
422 add r11, 4
423 sub arg3, 4
424 add arg2, 4
425.less_than_4_left:
426
427 cmp arg3, 2
428 jl .less_than_2_left
429
430 ; load 2 Bytes
431 mov ax, [arg2]
432 mov [r11], ax
433 add r11, 2
434 sub arg3, 2
435 add arg2, 2
436.less_than_2_left:
437 cmp arg3, 1
438 jl .zero_left
439
440 ; load 1 Byte
441 mov al, [arg2]
442 mov [r11], al
443
444.zero_left:
445 vmovdqa xmm7, [rsp]
446 vpxor xmm7, xmm0 ; xor the initial crc value
447
448 lea rax,[pshufb_shf_table]
449 vmovdqu xmm0, [rax + r9]
450 vpshufb xmm7,xmm0
451 jmp .128_done
452
453align 16
454.exact_16_left:
455 vmovdqu xmm7, [arg2]
456 vpxor xmm7, xmm0 ; xor the initial crc value
457 jmp .128_done
458
459.only_less_than_4:
460 cmp arg3, 3
461 jl .only_less_than_3
462
463 ; load 3 Bytes
464 mov al, [arg2]
465 mov [r11], al
466
467 mov al, [arg2+1]
468 mov [r11+1], al
469
470 mov al, [arg2+2]
471 mov [r11+2], al
472
473 vmovdqa xmm7, [rsp]
474 vpxor xmm7, xmm0 ; xor the initial crc value
475
476 vpslldq xmm7, 5
477 jmp .barrett
478
479.only_less_than_3:
480 cmp arg3, 2
481 jl .only_less_than_2
482
483 ; load 2 Bytes
484 mov al, [arg2]
485 mov [r11], al
486
487 mov al, [arg2+1]
488 mov [r11+1], al
489
490 vmovdqa xmm7, [rsp]
491 vpxor xmm7, xmm0 ; xor the initial crc value
492
493 vpslldq xmm7, 6
494 jmp .barrett
495
496.only_less_than_2:
497 ; load 1 Byte
498 mov al, [arg2]
499 mov [r11], al
500
501 vmovdqa xmm7, [rsp]
502 vpxor xmm7, xmm0 ; xor the initial crc value
503
504 vpslldq xmm7, 7
505 jmp .barrett
506
507section .data
508
509; precomputed constants
510align 16
511rk1: dq 0x00000000ccaa009e
512rk2: dq 0x00000001751997d0
513rk3: dq 0x000000014a7fe880
514rk4: dq 0x00000001e88ef372
515rk5: dq 0x00000000ccaa009e
516rk6: dq 0x0000000163cd6124
517rk7: dq 0x00000001f7011640
518rk8: dq 0x00000001db710640
519rk9: dq 0x00000001d7cfc6ac
520rk10: dq 0x00000001ea89367e
521rk11: dq 0x000000018cb44e58
522rk12: dq 0x00000000df068dc2
523rk13: dq 0x00000000ae0b5394
524rk14: dq 0x00000001c7569e54
525rk15: dq 0x00000001c6e41596
526rk16: dq 0x0000000154442bd4
527rk17: dq 0x0000000174359406
528rk18: dq 0x000000003db1ecdc
529rk19: dq 0x000000015a546366
530rk20: dq 0x00000000f1da05aa
531
532mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
533mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
534mask3: dq 0x8080808080808080, 0x8080808080808080
535
536pshufb_shf_table:
537; use these values for shift constants for the pshufb instruction
538; different alignments result in values as shown:
539; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
540; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
541; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
542; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
543; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
544; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
545; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
546; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
547; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
548; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
549; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
550; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
551; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
552; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
553; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
554dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
555dq 0x0706050403020100, 0x000e0d0c0b0a0908