]> git.proxmox.com Git - ceph.git/blame - ceph/src/seastar/dpdk/doc/guides/sample_app_ug/l3_forward.rst
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / doc / guides / sample_app_ug / l3_forward.rst
CommitLineData
9f95a23c
TL
1.. SPDX-License-Identifier: BSD-3-Clause
2 Copyright(c) 2010-2014 Intel Corporation.
7c673cae
FG
3
4L3 Forwarding Sample Application
5================================
6
7The L3 Forwarding application is a simple example of packet processing using the DPDK.
8The application performs L3 forwarding.
9
10Overview
11--------
12
13The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding.
14The initialization and run-time paths are very similar to those of the :doc:`l2_forward_real_virtual`.
15The main difference from the L2 Forwarding sample application is that the forwarding decision
16is made based on information read from the input packet.
17
18The lookup method is either hash-based or LPM-based and is selected at run time. When the selected lookup method is hash-based,
19a hash object is used to emulate the flow classification stage.
20The hash object is used in correlation with a flow table to map each input packet to its flow at runtime.
21
22The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet:
23Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
24The ID of the output interface for the input packet is read from the identified flow table entry.
25The set of flows used by the application is statically configured and loaded into the hash at initialization time.
26When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets.
27The LPM object is used as the routing table to identify the next hop for each input packet at runtime.
28
29The LPM lookup key is represented by the Destination IP Address field read from the input packet.
30The ID of the output interface for the input packet is the next hop returned by the LPM lookup.
31The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time.
32
33In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.
34
35Compiling the Application
36-------------------------
37
9f95a23c 38To compile the sample application see :doc:`compiling`.
7c673cae 39
9f95a23c 40The application is located in the ``l3fwd`` sub-directory.
7c673cae
FG
41
42Running the Application
43-----------------------
44
45The application has a number of command line options::
46
47 ./l3fwd [EAL options] -- -p PORTMASK
48 [-P]
49 [-E]
50 [-L]
51 --config(port,queue,lcore)[,(port,queue,lcore)]
52 [--eth-dest=X,MM:MM:MM:MM:MM:MM]
53 [--enable-jumbo [--max-pkt-len PKTLEN]]
54 [--no-numa]
55 [--hash-entry-num]
56 [--ipv6]
57 [--parse-ptype]
9f95a23c 58 [--per-port-pool]
7c673cae
FG
59
60Where,
61
62* ``-p PORTMASK:`` Hexadecimal bitmask of ports to configure
63
64* ``-P:`` Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
65 Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
66
67* ``-E:`` Optional, enable exact match.
68
69* ``-L:`` Optional, enable longest prefix match.
70
71* ``--config (port,queue,lcore)[,(port,queue,lcore)]:`` Determines which queues from which ports are mapped to which cores.
72
73* ``--eth-dest=X,MM:MM:MM:MM:MM:MM:`` Optional, ethernet destination for port X.
74
75* ``--enable-jumbo:`` Optional, enables jumbo frames.
76
77* ``--max-pkt-len:`` Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-9600).
78
79* ``--no-numa:`` Optional, disables numa awareness.
80
81* ``--hash-entry-num:`` Optional, specifies the hash entry number in hexadecimal to be setup.
82
83* ``--ipv6:`` Optional, set if running ipv6 packets.
84
85* ``--parse-ptype:`` Optional, set to use software to analyze packet type. Without this option, hardware will check the packet type.
86
9f95a23c
TL
87* ``--per-port-pool:`` Optional, set to use independent buffer pools per port. Without this option, single buffer pool is used for all ports.
88
11fdf7f2
TL
89For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
90while cores 8-15 and 24-31 appear on socket 1.
7c673cae 91
11fdf7f2
TL
92To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
93(which are in the same socket too), use the following command:
7c673cae
FG
94
95.. code-block:: console
96
11fdf7f2 97 ./build/l3fwd -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"
7c673cae
FG
98
99In this command:
100
11fdf7f2 101* The -l option enables cores 1, 2
7c673cae
FG
102
103* The -p option enables ports 0 and 1
104
11fdf7f2 105* The --config option enables one queue on each port and maps each (port,queue) pair to a specific core.
7c673cae
FG
106 The following table shows the mapping in this example:
107
108+----------+-----------+-----------+-------------------------------------+
109| **Port** | **Queue** | **lcore** | **Description** |
110| | | | |
111+----------+-----------+-----------+-------------------------------------+
11fdf7f2 112| 0 | 0 | 1 | Map queue 0 from port 0 to lcore 1. |
7c673cae
FG
113| | | | |
114+----------+-----------+-----------+-------------------------------------+
11fdf7f2 115| 1 | 0 | 2 | Map queue 0 from port 1 to lcore 2. |
7c673cae
FG
116| | | | |
117+----------+-----------+-----------+-------------------------------------+
118
119Refer to the *DPDK Getting Started Guide* for general information on running applications and
120the Environment Abstraction Layer (EAL) options.
121
122.. _l3_fwd_explanation:
123
124Explanation
125-----------
126
127The following sections provide some explanation of the sample application code. As mentioned in the overview section,
128the initialization and run-time paths are very similar to those of the :doc:`l2_forward_real_virtual`.
129The following sections describe aspects that are specific to the L3 Forwarding sample application.
130
131Hash Initialization
132~~~~~~~~~~~~~~~~~~~
133
134The hash object is created and loaded with the pre-configured entries read from a global array,
135and then generate the expected 5-tuple as key to keep consistence with those of real flow
136for the convenience to execute hash performance test on 4M/8M/16M flows.
137
138.. note::
139
140 The Hash initialization will setup both ipv4 and ipv6 hash table,
141 and populate the either table depending on the value of variable ipv6.
142 To support the hash performance test with up to 8M single direction flows/16M bi-direction flows,
143 populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry number(default 4M).
144
145.. note::
146
147 Value of global variable ipv6 can be specified with --ipv6 in the command line.
148 Value of global variable hash_entry_number,
149 which is used to specify the total hash entry number for all used ports in hash performance test,
150 can be specified with --hash-entry-num VALUE in command line, being its default value 4.
151
152.. code-block:: c
153
154 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
155
156 static void
157 setup_hash(int socketid)
158 {
159 // ...
160
161 if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
162 if (ipv6 == 0) {
163 /* populate the ipv4 hash */
164 populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
165 } else {
166 /* populate the ipv6 hash */
167 populate_ipv6_many_flow_into_table( ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
168 }
169 } else
170 if (ipv6 == 0) {
171 /* populate the ipv4 hash */
172 populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
173 } else {
174 /* populate the ipv6 hash */
175 populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
176 }
177 }
178 }
179 #endif
180
181LPM Initialization
182~~~~~~~~~~~~~~~~~~
183
184The LPM object is created and loaded with the pre-configured entries read from a global array.
185
186.. code-block:: c
187
188 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
189
190 static void
191 setup_lpm(int socketid)
192 {
193 unsigned i;
194 int ret;
195 char s[64];
196
197 /* create the LPM table */
198
199 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
200
201 ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);
202
203 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
204 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
205 " on socket %d\n", socketid);
206
207 /* populate the LPM table */
208
209 for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
210 /* skip unused ports */
211
212 if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
213 continue;
214
215 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
216 ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
217
218 if (ret < 0) {
219 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
220 "l3fwd LPM table on socket %d\n", i, socketid);
221 }
222
223 printf("LPM: Adding route 0x%08x / %d (%d)\n",
224 (unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
225 }
226 }
227 #endif
228
229Packet Forwarding for Hash-based Lookups
230~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
231
232For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
233or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets.
234The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding
235for any number of burst packets received,
236and the packet forwarding decision (that is, the identification of the output interface for the packet)
237for hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function.
238The get_ipv4_dst_port() function is shown below:
239
240.. code-block:: c
241
242 static inline uint8_t
9f95a23c 243 get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
7c673cae
FG
244 {
245 int ret = 0;
246 union ipv4_5tuple_host key;
247
248 ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
249
250 m128i data = _mm_loadu_si128(( m128i*)(ipv4_hdr));
251
252 /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
253
254 key.xmm = _mm_and_si128(data, mask0);
255
256 /* Find destination port */
257
258 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
259
260 return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
261 }
262
263The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.
264
265The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and ipv6 packets,
266they leverage the multiple buffer optimization to boost the performance of forwarding packets with the exact match on hash table.
267The key code snippet of simple_ipv4_fwd_4pkts() is shown below:
268
269.. code-block:: c
270
271 static inline void
9f95a23c 272 simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint16_t portid, struct lcore_conf *qconf)
7c673cae
FG
273 {
274 // ...
275
276 data[0] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
277 data[1] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
278 data[2] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
279 data[3] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
280
281 key[0].xmm = _mm_and_si128(data[0], mask0);
282 key[1].xmm = _mm_and_si128(data[1], mask0);
283 key[2].xmm = _mm_and_si128(data[2], mask0);
284 key[3].xmm = _mm_and_si128(data[3], mask0);
285
286 const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
287
288 rte_hash_lookup_bulk(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
289
290 dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
291 dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
292 dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
293 dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];
294
295 // ...
296 }
297
298The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.
299
300Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this mode.
301
302Packet Forwarding for LPM-based Lookups
303~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
304
305For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function,
306but the packet forwarding decision (that is, the identification of the output interface for the packet)
307for LPM-based lookups is done by the get_ipv4_dst_port() function below:
308
309.. code-block:: c
310
9f95a23c
TL
311 static inline uint16_t
312 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
7c673cae
FG
313 {
314 uint8_t next_hop;
315
9f95a23c 316 return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
7c673cae 317 }