]> git.proxmox.com Git - ceph.git/blame - ceph/src/seastar/dpdk/lib/librte_acl/acl_run_avx2.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_acl / acl_run_avx2.h
CommitLineData
9f95a23c
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
7c673cae
FG
3 */
4
5#include "acl_run_sse.h"
6
7static const rte_ymm_t ymm_match_mask = {
8 .u32 = {
9 RTE_ACL_NODE_MATCH,
10 RTE_ACL_NODE_MATCH,
11 RTE_ACL_NODE_MATCH,
12 RTE_ACL_NODE_MATCH,
13 RTE_ACL_NODE_MATCH,
14 RTE_ACL_NODE_MATCH,
15 RTE_ACL_NODE_MATCH,
16 RTE_ACL_NODE_MATCH,
17 },
18};
19
20static const rte_ymm_t ymm_index_mask = {
21 .u32 = {
22 RTE_ACL_NODE_INDEX,
23 RTE_ACL_NODE_INDEX,
24 RTE_ACL_NODE_INDEX,
25 RTE_ACL_NODE_INDEX,
26 RTE_ACL_NODE_INDEX,
27 RTE_ACL_NODE_INDEX,
28 RTE_ACL_NODE_INDEX,
29 RTE_ACL_NODE_INDEX,
30 },
31};
32
33static const rte_ymm_t ymm_shuffle_input = {
34 .u32 = {
35 0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
36 0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
37 },
38};
39
40static const rte_ymm_t ymm_ones_16 = {
41 .u16 = {
42 1, 1, 1, 1, 1, 1, 1, 1,
43 1, 1, 1, 1, 1, 1, 1, 1,
44 },
45};
46
47static const rte_ymm_t ymm_range_base = {
48 .u32 = {
49 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
50 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
51 },
52};
53
54/*
55 * Process 8 transitions in parallel.
56 * tr_lo contains low 32 bits for 8 transition.
57 * tr_hi contains high 32 bits for 8 transition.
58 * next_input contains up to 4 input bytes for 8 flows.
59 */
9f95a23c 60static __rte_always_inline ymm_t
7c673cae
FG
61transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
62{
63 const int32_t *tr;
64 ymm_t addr;
65
66 tr = (const int32_t *)(uintptr_t)trans;
67
68 /* Calculate the address (array index) for all 8 transitions. */
69 ACL_TR_CALC_ADDR(mm256, 256, addr, ymm_index_mask.y, next_input,
70 ymm_shuffle_input.y, ymm_ones_16.y, ymm_range_base.y,
71 *tr_lo, *tr_hi);
72
73 /* load lower 32 bits of 8 transactions at once. */
74 *tr_lo = _mm256_i32gather_epi32(tr, addr, sizeof(trans[0]));
75
76 next_input = _mm256_srli_epi32(next_input, CHAR_BIT);
77
78 /* load high 32 bits of 8 transactions at once. */
79 *tr_hi = _mm256_i32gather_epi32(tr + 1, addr, sizeof(trans[0]));
80
81 return next_input;
82}
83
84/*
85 * Process matches for 8 flows.
86 * tr_lo contains low 32 bits for 8 transition.
87 * tr_hi contains high 32 bits for 8 transition.
88 */
89static inline void
90acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
91 struct parms *parms, struct acl_flow_data *flows, uint32_t slot,
92 ymm_t matches, ymm_t *tr_lo, ymm_t *tr_hi)
93{
94 ymm_t t0, t1;
95 ymm_t lo, hi;
96 xmm_t l0, l1;
97 uint32_t i;
98 uint64_t tr[MAX_SEARCHES_SSE8];
99
100 l1 = _mm256_extracti128_si256(*tr_lo, 1);
101 l0 = _mm256_castsi256_si128(*tr_lo);
102
103 for (i = 0; i != RTE_DIM(tr) / 2; i++) {
104
105 /*
106 * Extract low 32bits of each transition.
107 * That's enough to process the match.
108 */
109 tr[i] = (uint32_t)_mm_cvtsi128_si32(l0);
110 tr[i + 4] = (uint32_t)_mm_cvtsi128_si32(l1);
111
112 l0 = _mm_srli_si128(l0, sizeof(uint32_t));
113 l1 = _mm_srli_si128(l1, sizeof(uint32_t));
114
115 tr[i] = acl_match_check(tr[i], slot + i,
116 ctx, parms, flows, resolve_priority_sse);
117 tr[i + 4] = acl_match_check(tr[i + 4], slot + i + 4,
118 ctx, parms, flows, resolve_priority_sse);
119 }
120
121 /* Collect new transitions into 2 YMM registers. */
122 t0 = _mm256_set_epi64x(tr[5], tr[4], tr[1], tr[0]);
123 t1 = _mm256_set_epi64x(tr[7], tr[6], tr[3], tr[2]);
124
125 /* For each transition: put low 32 into tr_lo and high 32 into tr_hi */
126 ACL_TR_HILO(mm256, __m256, t0, t1, lo, hi);
127
128 /* Keep transitions wth NOMATCH intact. */
129 *tr_lo = _mm256_blendv_epi8(*tr_lo, lo, matches);
130 *tr_hi = _mm256_blendv_epi8(*tr_hi, hi, matches);
131}
132
133static inline void
134acl_match_check_avx2x8(const struct rte_acl_ctx *ctx, struct parms *parms,
135 struct acl_flow_data *flows, uint32_t slot,
136 ymm_t *tr_lo, ymm_t *tr_hi, ymm_t match_mask)
137{
138 uint32_t msk;
139 ymm_t matches, temp;
140
141 /* test for match node */
142 temp = _mm256_and_si256(match_mask, *tr_lo);
143 matches = _mm256_cmpeq_epi32(temp, match_mask);
144 msk = _mm256_movemask_epi8(matches);
145
146 while (msk != 0) {
147
148 acl_process_matches_avx2x8(ctx, parms, flows, slot,
149 matches, tr_lo, tr_hi);
150 temp = _mm256_and_si256(match_mask, *tr_lo);
151 matches = _mm256_cmpeq_epi32(temp, match_mask);
152 msk = _mm256_movemask_epi8(matches);
153 }
154}
155
156/*
157 * Execute trie traversal for up to 16 flows in parallel.
158 */
159static inline int
160search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
161 uint32_t *results, uint32_t total_packets, uint32_t categories)
162{
163 uint32_t n;
164 struct acl_flow_data flows;
165 uint64_t index_array[MAX_SEARCHES_AVX16];
166 struct completion cmplt[MAX_SEARCHES_AVX16];
167 struct parms parms[MAX_SEARCHES_AVX16];
168 ymm_t input[2], tr_lo[2], tr_hi[2];
169 ymm_t t0, t1;
170
171 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
172 total_packets, categories, ctx->trans_table);
173
174 for (n = 0; n < RTE_DIM(cmplt); n++) {
175 cmplt[n].count = 0;
176 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
177 }
178
179 t0 = _mm256_set_epi64x(index_array[5], index_array[4],
180 index_array[1], index_array[0]);
181 t1 = _mm256_set_epi64x(index_array[7], index_array[6],
182 index_array[3], index_array[2]);
183
184 ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[0], tr_hi[0]);
185
186 t0 = _mm256_set_epi64x(index_array[13], index_array[12],
187 index_array[9], index_array[8]);
188 t1 = _mm256_set_epi64x(index_array[15], index_array[14],
189 index_array[11], index_array[10]);
190
191 ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[1], tr_hi[1]);
192
193 /* Check for any matches. */
194 acl_match_check_avx2x8(ctx, parms, &flows, 0, &tr_lo[0], &tr_hi[0],
195 ymm_match_mask.y);
196 acl_match_check_avx2x8(ctx, parms, &flows, 8, &tr_lo[1], &tr_hi[1],
197 ymm_match_mask.y);
198
199 while (flows.started > 0) {
200
201 uint32_t in[MAX_SEARCHES_SSE8];
202
203 /* Gather 4 bytes of input data for first 8 flows. */
204 in[0] = GET_NEXT_4BYTES(parms, 0);
205 in[4] = GET_NEXT_4BYTES(parms, 4);
206 in[1] = GET_NEXT_4BYTES(parms, 1);
207 in[5] = GET_NEXT_4BYTES(parms, 5);
208 in[2] = GET_NEXT_4BYTES(parms, 2);
209 in[6] = GET_NEXT_4BYTES(parms, 6);
210 in[3] = GET_NEXT_4BYTES(parms, 3);
211 in[7] = GET_NEXT_4BYTES(parms, 7);
212 input[0] = _mm256_set_epi32(in[7], in[6], in[5], in[4],
213 in[3], in[2], in[1], in[0]);
214
215 /* Gather 4 bytes of input data for last 8 flows. */
216 in[0] = GET_NEXT_4BYTES(parms, 8);
217 in[4] = GET_NEXT_4BYTES(parms, 12);
218 in[1] = GET_NEXT_4BYTES(parms, 9);
219 in[5] = GET_NEXT_4BYTES(parms, 13);
220 in[2] = GET_NEXT_4BYTES(parms, 10);
221 in[6] = GET_NEXT_4BYTES(parms, 14);
222 in[3] = GET_NEXT_4BYTES(parms, 11);
223 in[7] = GET_NEXT_4BYTES(parms, 15);
224 input[1] = _mm256_set_epi32(in[7], in[6], in[5], in[4],
225 in[3], in[2], in[1], in[0]);
226
227 input[0] = transition8(input[0], flows.trans,
228 &tr_lo[0], &tr_hi[0]);
229 input[1] = transition8(input[1], flows.trans,
230 &tr_lo[1], &tr_hi[1]);
231
232 input[0] = transition8(input[0], flows.trans,
233 &tr_lo[0], &tr_hi[0]);
234 input[1] = transition8(input[1], flows.trans,
235 &tr_lo[1], &tr_hi[1]);
236
237 input[0] = transition8(input[0], flows.trans,
238 &tr_lo[0], &tr_hi[0]);
239 input[1] = transition8(input[1], flows.trans,
240 &tr_lo[1], &tr_hi[1]);
241
242 input[0] = transition8(input[0], flows.trans,
243 &tr_lo[0], &tr_hi[0]);
244 input[1] = transition8(input[1], flows.trans,
245 &tr_lo[1], &tr_hi[1]);
246
247 /* Check for any matches. */
248 acl_match_check_avx2x8(ctx, parms, &flows, 0,
249 &tr_lo[0], &tr_hi[0], ymm_match_mask.y);
250 acl_match_check_avx2x8(ctx, parms, &flows, 8,
251 &tr_lo[1], &tr_hi[1], ymm_match_mask.y);
252 }
253
254 return 0;
255}