]> git.proxmox.com Git - ceph.git/blame - ceph/src/seastar/dpdk/lib/librte_sched/rte_approx.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / lib / librte_sched / rte_approx.c
CommitLineData
9f95a23c
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
7c673cae
FG
3 */
4
5#include <stdlib.h>
6
7#include "rte_approx.h"
8
9/*
10 * Based on paper "Approximating Rational Numbers by Fractions" by Michal
11 * Forisek forisek@dcs.fmph.uniba.sk
12 *
13 * Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
14 * is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
15 * q is minimal.
16 *
17 * http://people.ksp.sk/~misof/publications/2007approx.pdf
18 */
19
20/* fraction comparison: compare (a/b) and (c/d) */
21static inline uint32_t
22less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
23{
24 return a*d < b*c;
25}
26
27static inline uint32_t
28less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
29{
30 return a*d <= b*c;
31}
32
33/* check whether a/b is a valid approximation */
34static inline uint32_t
35matches(uint32_t a, uint32_t b,
36 uint32_t alpha_num, uint32_t d_num, uint32_t denum)
37{
38 if (less_or_equal(a, b, alpha_num - d_num, denum))
39 return 0;
40
41 if (less(a ,b, alpha_num + d_num, denum))
42 return 1;
43
44 return 0;
45}
46
47static inline void
48find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
49 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
50{
51 uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
52 uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
53 uint32_t k = (k_num / k_denum) + 1;
54
55 *p = p_b + k * p_a;
56 *q = q_b + k * q_a;
57}
58
59static inline void
60find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
61 uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
62{
63 uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
64 uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
65 uint32_t k = (k_num / k_denum) + 1;
66
67 *p = p_b + k * p_a;
68 *q = q_b + k * q_a;
69}
70
71static int
72find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
73{
74 uint32_t p_a, q_a, p_b, q_b;
75
76 /* check assumptions on the inputs */
77 if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
78 return -1;
79 }
80
81 /* set initial bounds for the search */
82 p_a = 0;
83 q_a = 1;
84 p_b = 1;
85 q_b = 1;
86
87 while (1) {
88 uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
89 uint32_t x_num, x_denum, x;
90 int aa, bb;
91
92 /* compute the number of steps to the left */
93 x_num = denum * p_b - alpha_num * q_b;
94 x_denum = - denum * p_a + alpha_num * q_a;
95 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
96
97 /* check whether we have a valid approximation */
98 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
99 bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
100 if (aa || bb) {
101 find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
102 return 0;
103 }
104
105 /* update the interval */
106 new_p_a = p_b + (x - 1) * p_a ;
107 new_q_a = q_b + (x - 1) * q_a;
108 new_p_b = p_b + x * p_a ;
109 new_q_b = q_b + x * q_a;
110
111 p_a = new_p_a ;
112 q_a = new_q_a;
113 p_b = new_p_b ;
114 q_b = new_q_b;
115
116 /* compute the number of steps to the right */
117 x_num = alpha_num * q_b - denum * p_b;
118 x_denum = - alpha_num * q_a + denum * p_a;
119 x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
120
121 /* check whether we have a valid approximation */
122 aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
123 bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
124 if (aa || bb) {
125 find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
126 return 0;
127 }
128
129 /* update the interval */
130 new_p_a = p_b + (x - 1) * p_a;
131 new_q_a = q_b + (x - 1) * q_a;
132 new_p_b = p_b + x * p_a;
133 new_q_b = q_b + x * q_a;
134
135 p_a = new_p_a;
136 q_a = new_q_a;
137 p_b = new_p_b;
138 q_b = new_q_b;
139 }
140}
141
142int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
143{
144 uint32_t alpha_num, d_num, denum;
145
146 /* Check input arguments */
147 if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
148 return -1;
149 }
150
151 if ((p == NULL) || (q == NULL)) {
152 return -2;
153 }
154
155 /* Compute alpha_num, d_num and denum */
156 denum = 1;
157 while (d < 1) {
158 alpha *= 10;
159 d *= 10;
160 denum *= 10;
161 }
162 alpha_num = (uint32_t) alpha;
163 d_num = (uint32_t) d;
164
165 /* Perform approximation */
166 return find_best_rational_approximation(alpha_num, d_num, denum, p, q);
167}