]> git.proxmox.com Git - ceph.git/blame - ceph/src/seastar/dpdk/test/test/test_timer.c
update download target update for octopus release
[ceph.git] / ceph / src / seastar / dpdk / test / test / test_timer.c
CommitLineData
7c673cae
FG
1/*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include "test.h"
35
36/*
37 * Timer
38 * =====
39 *
40 * #. Stress test 1.
41 *
42 * The objective of the timer stress tests is to check that there are no
43 * race conditions in list and status management. This test launches,
44 * resets and stops the timer very often on many cores at the same
45 * time.
46 *
47 * - Only one timer is used for this test.
48 * - On each core, the rte_timer_manage() function is called from the main
49 * loop every 3 microseconds.
50 * - In the main loop, the timer may be reset (randomly, with a
51 * probability of 0.5 %) 100 microseconds later on a random core, or
52 * stopped (with a probability of 0.5 % also).
53 * - In callback, the timer is can be reset (randomly, with a
54 * probability of 0.5 %) 100 microseconds later on the same core or
55 * on another core (same probability), or stopped (same
56 * probability).
57 *
58 * # Stress test 2.
59 *
60 * The objective of this test is similar to the first in that it attempts
61 * to find if there are any race conditions in the timer library. However,
62 * it is less complex in terms of operations performed and duration, as it
63 * is designed to have a predictable outcome that can be tested.
64 *
65 * - A set of timers is initialized for use by the test
66 * - All cores then simultaneously are set to schedule all the timers at
67 * the same time, so conflicts should occur.
68 * - Then there is a delay while we wait for the timers to expire
69 * - Then the master lcore calls timer_manage() and we check that all
70 * timers have had their callbacks called exactly once - no more no less.
71 * - Then we repeat the process, except after setting up the timers, we have
72 * all cores randomly reschedule them.
73 * - Again we check that the expected number of callbacks has occurred when
74 * we call timer-manage.
75 *
76 * #. Basic test.
77 *
78 * This test performs basic functional checks of the timers. The test
79 * uses four different timers that are loaded and stopped under
80 * specific conditions in specific contexts.
81 *
82 * - Four timers are used for this test.
83 * - On each core, the rte_timer_manage() function is called from main loop
84 * every 3 microseconds.
85 *
86 * The autotest python script checks that the behavior is correct:
87 *
88 * - timer0
89 *
90 * - At initialization, timer0 is loaded by the master core, on master core
91 * in "single" mode (time = 1 second).
92 * - In the first 19 callbacks, timer0 is reloaded on the same core,
93 * then, it is explicitly stopped at the 20th call.
94 * - At t=25s, timer0 is reloaded once by timer2.
95 *
96 * - timer1
97 *
98 * - At initialization, timer1 is loaded by the master core, on the
99 * master core in "single" mode (time = 2 seconds).
100 * - In the first 9 callbacks, timer1 is reloaded on another
101 * core. After the 10th callback, timer1 is not reloaded anymore.
102 *
103 * - timer2
104 *
105 * - At initialization, timer2 is loaded by the master core, on the
106 * master core in "periodical" mode (time = 1 second).
107 * - In the callback, when t=25s, it stops timer3 and reloads timer0
108 * on the current core.
109 *
110 * - timer3
111 *
112 * - At initialization, timer3 is loaded by the master core, on
113 * another core in "periodical" mode (time = 1 second).
114 * - It is stopped at t=25s by timer2.
115 */
116
117#include <stdio.h>
118#include <stdarg.h>
119#include <string.h>
120#include <stdlib.h>
121#include <stdint.h>
122#include <inttypes.h>
123#include <sys/queue.h>
124#include <math.h>
125
126#include <rte_common.h>
127#include <rte_log.h>
128#include <rte_memory.h>
129#include <rte_memzone.h>
130#include <rte_launch.h>
131#include <rte_cycles.h>
132#include <rte_eal.h>
133#include <rte_per_lcore.h>
134#include <rte_lcore.h>
135#include <rte_atomic.h>
136#include <rte_timer.h>
137#include <rte_random.h>
138#include <rte_malloc.h>
139
140#define TEST_DURATION_S 1 /* in seconds */
141#define NB_TIMER 4
142
143#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
144
145static volatile uint64_t end_time;
146static volatile int test_failed;
147
148struct mytimerinfo {
149 struct rte_timer tim;
150 unsigned id;
151 unsigned count;
152};
153
154static struct mytimerinfo mytiminfo[NB_TIMER];
155
156static void timer_basic_cb(struct rte_timer *tim, void *arg);
157
158static void
159mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
160 enum rte_timer_type type, unsigned tim_lcore,
161 rte_timer_cb_t fct)
162{
163 rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
164 fct, timinfo);
165}
166
167/* timer callback for stress tests */
168static void
169timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
170 __attribute__((unused)) void *arg)
171{
172 long r;
173 unsigned lcore_id = rte_lcore_id();
174 uint64_t hz = rte_get_timer_hz();
175
176 if (rte_timer_pending(tim))
177 return;
178
179 r = rte_rand();
180 if ((r & 0xff) == 0) {
181 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
182 timer_stress_cb);
183 }
184 else if ((r & 0xff) == 1) {
185 mytimer_reset(&mytiminfo[0], hz, SINGLE,
186 rte_get_next_lcore(lcore_id, 0, 1),
187 timer_stress_cb);
188 }
189 else if ((r & 0xff) == 2) {
190 rte_timer_stop(&mytiminfo[0].tim);
191 }
192}
193
194static int
195timer_stress_main_loop(__attribute__((unused)) void *arg)
196{
197 uint64_t hz = rte_get_timer_hz();
198 unsigned lcore_id = rte_lcore_id();
199 uint64_t cur_time;
200 int64_t diff = 0;
201 long r;
202
203 while (diff >= 0) {
204
205 /* call the timer handler on each core */
206 rte_timer_manage();
207
208 /* simulate the processing of a packet
209 * (1 us = 2000 cycles at 2 Ghz) */
210 rte_delay_us(1);
211
212 /* randomly stop or reset timer */
213 r = rte_rand();
214 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
215 if ((r & 0xff) == 0) {
216 /* 100 us */
217 mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
218 timer_stress_cb);
219 }
220 else if ((r & 0xff) == 1) {
221 rte_timer_stop_sync(&mytiminfo[0].tim);
222 }
223 cur_time = rte_get_timer_cycles();
224 diff = end_time - cur_time;
225 }
226
227 lcore_id = rte_lcore_id();
228 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
229
230 return 0;
231}
232
233/* Need to synchronize slave lcores through multiple steps. */
234enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
235static rte_atomic16_t slave_state[RTE_MAX_LCORE];
236
237static void
238master_init_slaves(void)
239{
240 unsigned i;
241
242 RTE_LCORE_FOREACH_SLAVE(i) {
243 rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
244 }
245}
246
247static void
248master_start_slaves(void)
249{
250 unsigned i;
251
252 RTE_LCORE_FOREACH_SLAVE(i) {
253 rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
254 }
255 RTE_LCORE_FOREACH_SLAVE(i) {
256 while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
257 rte_pause();
258 }
259}
260
261static void
262master_wait_for_slaves(void)
263{
264 unsigned i;
265
266 RTE_LCORE_FOREACH_SLAVE(i) {
267 while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
268 rte_pause();
269 }
270}
271
272static void
273slave_wait_to_start(void)
274{
275 unsigned lcore_id = rte_lcore_id();
276
277 while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
278 rte_pause();
279 rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
280}
281
282static void
283slave_finish(void)
284{
285 unsigned lcore_id = rte_lcore_id();
286
287 rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
288}
289
290
291static volatile int cb_count = 0;
292
293/* callback for second stress test. will only be called
294 * on master lcore */
295static void
296timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
297{
298 cb_count++;
299}
300
301#define NB_STRESS2_TIMERS 8192
302
303static int
304timer_stress2_main_loop(__attribute__((unused)) void *arg)
305{
306 static struct rte_timer *timers;
307 int i, ret;
308 uint64_t delay = rte_get_timer_hz() / 20;
309 unsigned lcore_id = rte_lcore_id();
310 unsigned master = rte_get_master_lcore();
311 int32_t my_collisions = 0;
312 static rte_atomic32_t collisions;
313
314 if (lcore_id == master) {
315 cb_count = 0;
316 test_failed = 0;
317 rte_atomic32_set(&collisions, 0);
318 master_init_slaves();
319 timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
320 if (timers == NULL) {
321 printf("Test Failed\n");
322 printf("- Cannot allocate memory for timers\n" );
323 test_failed = 1;
324 master_start_slaves();
325 goto cleanup;
326 }
327 for (i = 0; i < NB_STRESS2_TIMERS; i++)
328 rte_timer_init(&timers[i]);
329 master_start_slaves();
330 } else {
331 slave_wait_to_start();
332 if (test_failed)
333 goto cleanup;
334 }
335
336 /* have all cores schedule all timers on master lcore */
337 for (i = 0; i < NB_STRESS2_TIMERS; i++) {
338 ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
339 timer_stress2_cb, NULL);
340 /* there will be collisions when multiple cores simultaneously
341 * configure the same timers */
342 if (ret != 0)
343 my_collisions++;
344 }
345 if (my_collisions != 0)
346 rte_atomic32_add(&collisions, my_collisions);
347
348 /* wait long enough for timers to expire */
349 rte_delay_ms(100);
350
351 /* all cores rendezvous */
352 if (lcore_id == master) {
353 master_wait_for_slaves();
354 } else {
355 slave_finish();
356 }
357
358 /* now check that we get the right number of callbacks */
359 if (lcore_id == master) {
360 my_collisions = rte_atomic32_read(&collisions);
361 if (my_collisions != 0)
362 printf("- %d timer reset collisions (OK)\n", my_collisions);
363 rte_timer_manage();
364 if (cb_count != NB_STRESS2_TIMERS) {
365 printf("Test Failed\n");
366 printf("- Stress test 2, part 1 failed\n");
367 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
368 cb_count);
369 test_failed = 1;
370 master_start_slaves();
371 goto cleanup;
372 }
373 cb_count = 0;
374
375 /* proceed */
376 master_start_slaves();
377 } else {
378 /* proceed */
379 slave_wait_to_start();
380 if (test_failed)
381 goto cleanup;
382 }
383
384 /* now test again, just stop and restart timers at random after init*/
385 for (i = 0; i < NB_STRESS2_TIMERS; i++)
386 rte_timer_reset(&timers[i], delay, SINGLE, master,
387 timer_stress2_cb, NULL);
388
389 /* pick random timer to reset, stopping them first half the time */
390 for (i = 0; i < 100000; i++) {
391 int r = rand() % NB_STRESS2_TIMERS;
392 if (i % 2)
393 rte_timer_stop(&timers[r]);
394 rte_timer_reset(&timers[r], delay, SINGLE, master,
395 timer_stress2_cb, NULL);
396 }
397
398 /* wait long enough for timers to expire */
399 rte_delay_ms(100);
400
401 /* now check that we get the right number of callbacks */
402 if (lcore_id == master) {
403 master_wait_for_slaves();
404
405 rte_timer_manage();
406 if (cb_count != NB_STRESS2_TIMERS) {
407 printf("Test Failed\n");
408 printf("- Stress test 2, part 2 failed\n");
409 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
410 cb_count);
411 test_failed = 1;
412 } else {
413 printf("Test OK\n");
414 }
415 }
416
417cleanup:
418 if (lcore_id == master) {
419 master_wait_for_slaves();
420 if (timers != NULL) {
421 rte_free(timers);
422 timers = NULL;
423 }
424 } else {
425 slave_finish();
426 }
427
428 return 0;
429}
430
431/* timer callback for basic tests */
432static void
433timer_basic_cb(struct rte_timer *tim, void *arg)
434{
435 struct mytimerinfo *timinfo = arg;
436 uint64_t hz = rte_get_timer_hz();
437 unsigned lcore_id = rte_lcore_id();
438 uint64_t cur_time = rte_get_timer_cycles();
439
440 if (rte_timer_pending(tim))
441 return;
442
443 timinfo->count ++;
444
445 RTE_LOG(INFO, TESTTIMER,
446 "%"PRIu64": callback id=%u count=%u on core %u\n",
447 cur_time, timinfo->id, timinfo->count, lcore_id);
448
449 /* reload timer 0 on same core */
450 if (timinfo->id == 0 && timinfo->count < 20) {
451 mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
452 return;
453 }
454
455 /* reload timer 1 on next core */
456 if (timinfo->id == 1 && timinfo->count < 10) {
457 mytimer_reset(timinfo, hz*2, SINGLE,
458 rte_get_next_lcore(lcore_id, 0, 1),
459 timer_basic_cb);
460 return;
461 }
462
463 /* Explicitelly stop timer 0. Once stop() called, we can even
464 * erase the content of the structure: it is not referenced
465 * anymore by any code (in case of dynamic structure, it can
466 * be freed) */
467 if (timinfo->id == 0 && timinfo->count == 20) {
468
469 /* stop_sync() is not needed, because we know that the
470 * status of timer is only modified by this core */
471 rte_timer_stop(tim);
472 memset(tim, 0xAA, sizeof(struct rte_timer));
473 return;
474 }
475
476 /* stop timer3, and restart a new timer0 (it was removed 5
477 * seconds ago) for a single shot */
478 if (timinfo->id == 2 && timinfo->count == 25) {
479 rte_timer_stop_sync(&mytiminfo[3].tim);
480
481 /* need to reinit because structure was erased with 0xAA */
482 rte_timer_init(&mytiminfo[0].tim);
483 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
484 timer_basic_cb);
485 }
486}
487
488static int
489timer_basic_main_loop(__attribute__((unused)) void *arg)
490{
491 uint64_t hz = rte_get_timer_hz();
492 unsigned lcore_id = rte_lcore_id();
493 uint64_t cur_time;
494 int64_t diff = 0;
495
496 /* launch all timers on core 0 */
497 if (lcore_id == rte_get_master_lcore()) {
498 mytimer_reset(&mytiminfo[0], hz/4, SINGLE, lcore_id,
499 timer_basic_cb);
500 mytimer_reset(&mytiminfo[1], hz/2, SINGLE, lcore_id,
501 timer_basic_cb);
502 mytimer_reset(&mytiminfo[2], hz/4, PERIODICAL, lcore_id,
503 timer_basic_cb);
504 mytimer_reset(&mytiminfo[3], hz/4, PERIODICAL,
505 rte_get_next_lcore(lcore_id, 0, 1),
506 timer_basic_cb);
507 }
508
509 while (diff >= 0) {
510
511 /* call the timer handler on each core */
512 rte_timer_manage();
513
514 /* simulate the processing of a packet
515 * (3 us = 6000 cycles at 2 Ghz) */
516 rte_delay_us(3);
517
518 cur_time = rte_get_timer_cycles();
519 diff = end_time - cur_time;
520 }
521 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
522
523 return 0;
524}
525
526static int
527timer_sanity_check(void)
528{
529#ifdef RTE_LIBEAL_USE_HPET
530 if (eal_timer_source != EAL_TIMER_HPET) {
531 printf("Not using HPET, can't sanity check timer sources\n");
532 return 0;
533 }
534
535 const uint64_t t_hz = rte_get_tsc_hz();
536 const uint64_t h_hz = rte_get_hpet_hz();
537 printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
538
539 const uint64_t tsc_start = rte_get_tsc_cycles();
540 const uint64_t hpet_start = rte_get_hpet_cycles();
541 rte_delay_ms(100); /* delay 1/10 second */
542 const uint64_t tsc_end = rte_get_tsc_cycles();
543 const uint64_t hpet_end = rte_get_hpet_cycles();
544 printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
545 tsc_end-tsc_start, hpet_end-hpet_start);
546
547 const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
548 const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
549 /* get the percentage that the times differ by */
550 const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
551 printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
552
553 printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
554 time_diff);
555 if (time_diff > 0.1) {
556 printf("Error times differ by >0.1%%");
557 return -1;
558 }
559#endif
560 return 0;
561}
562
563static int
564test_timer(void)
565{
566 unsigned i;
567 uint64_t cur_time;
568 uint64_t hz;
569
570 /* sanity check our timer sources and timer config values */
571 if (timer_sanity_check() < 0) {
572 printf("Timer sanity checks failed\n");
573 return TEST_FAILED;
574 }
575
576 if (rte_lcore_count() < 2) {
577 printf("not enough lcores for this test\n");
578 return TEST_FAILED;
579 }
580
581 /* init timer */
582 for (i=0; i<NB_TIMER; i++) {
583 memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
584 mytiminfo[i].id = i;
585 rte_timer_init(&mytiminfo[i].tim);
586 }
587
588 /* calculate the "end of test" time */
589 cur_time = rte_get_timer_cycles();
590 hz = rte_get_timer_hz();
591 end_time = cur_time + (hz * TEST_DURATION_S);
592
593 /* start other cores */
594 printf("Start timer stress tests\n");
595 rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
596 rte_eal_mp_wait_lcore();
597
598 /* stop timer 0 used for stress test */
599 rte_timer_stop_sync(&mytiminfo[0].tim);
600
601 /* run a second, slightly different set of stress tests */
602 printf("\nStart timer stress tests 2\n");
603 test_failed = 0;
604 rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
605 rte_eal_mp_wait_lcore();
606 if (test_failed)
607 return TEST_FAILED;
608
609 /* calculate the "end of test" time */
610 cur_time = rte_get_timer_cycles();
611 hz = rte_get_timer_hz();
612 end_time = cur_time + (hz * TEST_DURATION_S);
613
614 /* start other cores */
615 printf("\nStart timer basic tests\n");
616 rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
617 rte_eal_mp_wait_lcore();
618
619 /* stop all timers */
620 for (i=0; i<NB_TIMER; i++) {
621 rte_timer_stop_sync(&mytiminfo[i].tim);
622 }
623
624 rte_timer_dump_stats(stdout);
625
626 return TEST_SUCCESS;
627}
628
629REGISTER_TEST_COMMAND(timer_autotest, test_timer);