]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/doc/guides/sample_app_ug/timer.rst
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / dpdk / doc / guides / sample_app_ug / timer.rst
CommitLineData
11fdf7f2
TL
1.. SPDX-License-Identifier: BSD-3-Clause
2 Copyright(c) 2010-2014 Intel Corporation.
7c673cae
FG
3
4Timer Sample Application
5========================
6
7The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK application.
8This application prints some messages from different lcores regularly, demonstrating the use of timers.
9
10Compiling the Application
11-------------------------
12
11fdf7f2 13To compile the sample application see :doc:`compiling`.
7c673cae 14
11fdf7f2 15The application is located in the ``timer`` sub-directory.
7c673cae
FG
16
17Running the Application
18-----------------------
19
9f95a23c 20To run the example in linux environment:
7c673cae
FG
21
22.. code-block:: console
23
11fdf7f2 24 $ ./build/timer -l 0-3 -n 4
7c673cae
FG
25
26Refer to the *DPDK Getting Started Guide* for general information on running applications and
27the Environment Abstraction Layer (EAL) options.
28
29Explanation
30-----------
31
32The following sections provide some explanation of the code.
33
34Initialization and Main Loop
35~~~~~~~~~~~~~~~~~~~~~~~~~~~~
36
37In addition to EAL initialization, the timer subsystem must be initialized, by calling the rte_timer_subsystem_init() function.
38
39.. code-block:: c
40
41 /* init EAL */
42
43 ret = rte_eal_init(argc, argv);
44 if (ret < 0)
45 rte_panic("Cannot init EAL\n");
46
47 /* init RTE timer library */
48
49 rte_timer_subsystem_init();
50
51After timer creation (see the next paragraph),
52the main loop is executed on each slave lcore using the well-known rte_eal_remote_launch() and also on the master.
53
54.. code-block:: c
55
56 /* call lcore_mainloop() on every slave lcore */
57
58 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
59 rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);
60 }
61
62 /* call it on master lcore too */
63
64 (void) lcore_mainloop(NULL);
65
66The main loop is very simple in this example:
67
68.. code-block:: c
69
70 while (1) {
71 /*
72 * Call the timer handler on each core: as we don't
73 * need a very precise timer, so only call
74 * rte_timer_manage() every ~10ms (at 2 GHz). In a real
75 * application, this will enhance performances as
76 * reading the HPET timer is not efficient.
77 */
78
79 cur_tsc = rte_rdtsc();
80
81 diff_tsc = cur_tsc - prev_tsc;
82
83 if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
84 rte_timer_manage();
85 prev_tsc = cur_tsc;
86 }
87 }
88
89As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if the
90rte_timer_manage() function must be called or not.
91In this example, the resolution of the timer is 10 milliseconds.
92
93Managing Timers
94~~~~~~~~~~~~~~~
95
96In the main() function, the two timers are initialized.
97This call to rte_timer_init() is necessary before doing any other operation on the timer structure.
98
99.. code-block:: c
100
101 /* init timer structures */
102
103 rte_timer_init(&timer0);
104 rte_timer_init(&timer1);
105
106Then, the two timers are configured:
107
108* The first timer (timer0) is loaded on the master lcore and expires every second.
109 Since the PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem.
110 The callback function is timer0_cb().
111
112* The second timer (timer1) is loaded on the next available lcore every 333 ms.
113 The SINGLE flag means that the timer expires only once and must be reloaded manually if required.
114 The callback function is timer1_cb().
115
116.. code-block:: c
117
118 /* load timer0, every second, on master lcore, reloaded automatically */
119
120 hz = rte_get_hpet_hz();
121
122 lcore_id = rte_lcore_id();
123
124 rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);
125
126 /* load timer1, every second/3, on next lcore, reloaded manually */
127
128 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
129
130 rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
131
132The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after 20 seconds).
133In this case, the timer is stopped using the rte_timer_stop() function.
134
135.. code-block:: c
136
137 /* timer0 callback */
138
139 static void
f67539c2 140 timer0_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
7c673cae
FG
141 {
142 static unsigned counter = 0;
143
144 unsigned lcore_id = rte_lcore_id();
145
146 printf("%s() on lcore %u\n", FUNCTION , lcore_id);
147
148 /* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */
149
150 if ((counter ++) == 20)
151 rte_timer_stop(tim);
152 }
153
154The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore, using the
155rte_timer_reset() function:
156
157.. code-block:: c
158
159 /* timer1 callback */
160
161 static void
f67539c2 162 timer1_cb(__rte_unused struct rte_timer *tim, __rte_unused void *arg)
7c673cae
FG
163 {
164 unsigned lcore_id = rte_lcore_id();
165 uint64_t hz;
166
167 printf("%s() on lcore %u\\n", FUNCTION , lcore_id);
168
169 /* reload it on another lcore */
170
171 hz = rte_get_hpet_hz();
172
173 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
174
175 rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
176 }