]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/drivers/net/bnx2x/ecore_init_ops.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / bnx2x / ecore_init_ops.h
CommitLineData
11fdf7f2
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2007-2013 Broadcom Corporation.
7c673cae
FG
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
11fdf7f2 9 * Copyright (c) 2015-2018 Cavium Inc.
7c673cae 10 * All rights reserved.
11fdf7f2 11 * www.cavium.com
7c673cae
FG
12 */
13
14#ifndef ECORE_INIT_OPS_H
15#define ECORE_INIT_OPS_H
16
17static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t *zbuf, int len);
18static void ecore_write_dmae_phys_len(struct bnx2x_softc *sc,
19 ecore_dma_addr_t phys_addr, uint32_t addr,
20 uint32_t len);
21
22static void ecore_init_str_wr(struct bnx2x_softc *sc, uint32_t addr,
23 const uint32_t *data, uint32_t len)
24{
25 uint32_t i;
26
27 for (i = 0; i < len; i++)
28 REG_WR(sc, addr + i*4, data[i]);
29}
30
31static void ecore_write_big_buf(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
32{
33 if (DMAE_READY(sc))
34 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
35
36 else ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
37}
38
39static void ecore_init_fill(struct bnx2x_softc *sc, uint32_t addr, int fill,
40 uint32_t len)
41{
42 uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
43 uint32_t buf_len32 = buf_len/4;
44 uint32_t i;
45
46 ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
47
48 for (i = 0; i < len; i += buf_len32) {
49 uint32_t cur_len = min(buf_len32, len - i);
50
51 ecore_write_big_buf(sc, addr + i*4, cur_len);
52 }
53}
54
55static void ecore_write_big_buf_wb(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
56{
57 if (DMAE_READY(sc))
58 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
59
60 else ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
61}
62
63static void ecore_init_wr_64(struct bnx2x_softc *sc, uint32_t addr,
64 const uint32_t *data, uint32_t len64)
65{
66 uint32_t buf_len32 = FW_BUF_SIZE/4;
67 uint32_t len = len64*2;
68 uint64_t data64 = 0;
69 uint32_t i;
70
71 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
72 data64 = HILO_U64((*(data + 1)), (*data));
73
74 len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
75 for (i = 0; i < len64; i++) {
76 uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
77
78 *pdata = data64;
79 }
80
81 for (i = 0; i < len; i += buf_len32) {
82 uint32_t cur_len = min(buf_len32, len - i);
83
84 ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
85 }
86}
87
88/*********************************************************
89 There are different blobs for each PRAM section.
90 In addition, each blob write operation is divided into a few operations
91 in order to decrease the amount of phys. contiguous buffer needed.
92 Thus, when we select a blob the address may be with some offset
93 from the beginning of PRAM section.
94 The same holds for the INT_TABLE sections.
95**********************************************************/
96#define IF_IS_INT_TABLE_ADDR(base, addr) \
97 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
98
99#define IF_IS_PRAM_ADDR(base, addr) \
100 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
101
102static const uint8_t *ecore_sel_blob(struct bnx2x_softc *sc, uint32_t addr,
103 const uint8_t *data)
104{
105 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
106 data = INIT_TSEM_INT_TABLE_DATA(sc);
107 else
108 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
109 data = INIT_CSEM_INT_TABLE_DATA(sc);
110 else
111 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
112 data = INIT_USEM_INT_TABLE_DATA(sc);
113 else
114 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
115 data = INIT_XSEM_INT_TABLE_DATA(sc);
116 else
117 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
118 data = INIT_TSEM_PRAM_DATA(sc);
119 else
120 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
121 data = INIT_CSEM_PRAM_DATA(sc);
122 else
123 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
124 data = INIT_USEM_PRAM_DATA(sc);
125 else
126 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
127 data = INIT_XSEM_PRAM_DATA(sc);
128
129 return data;
130}
131
132static void ecore_init_wr_wb(struct bnx2x_softc *sc, uint32_t addr,
133 const uint32_t *data, uint32_t len)
134{
135 if (DMAE_READY(sc))
136 VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
137
138 else ecore_init_str_wr(sc, addr, data, len);
139}
140
141static void ecore_wr_64(struct bnx2x_softc *sc, uint32_t reg, uint32_t val_lo,
142 uint32_t val_hi)
143{
144 uint32_t wb_write[2];
145
146 wb_write[0] = val_lo;
147 wb_write[1] = val_hi;
148 REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
149}
150
151static void ecore_init_wr_zp(struct bnx2x_softc *sc, uint32_t addr, uint32_t len,
152 uint32_t blob_off)
153{
154 const uint8_t *data = NULL;
155 int rc;
156 uint32_t i;
157
158 data = ecore_sel_blob(sc, addr, data) + blob_off*4;
159
160 rc = ecore_gunzip(sc, data, len);
161 if (rc)
162 return;
163
164 /* gunzip_outlen is in dwords */
165 len = GUNZIP_OUTLEN(sc);
166 for (i = 0; i < len; i++)
167 ((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
168 ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
169
170 ecore_write_big_buf_wb(sc, addr, len);
171}
172
173static void ecore_init_block(struct bnx2x_softc *sc, uint32_t block, uint32_t stage)
174{
175 uint16_t op_start =
176 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
177 STAGE_START)];
178 uint16_t op_end =
179 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
180 STAGE_END)];
181 const union init_op *op;
182 uint32_t op_idx, op_type, addr, len;
183 const uint32_t *data, *data_base;
184
185 /* If empty block */
186 if (op_start == op_end)
187 return;
188
189 data_base = INIT_DATA(sc);
190
191 for (op_idx = op_start; op_idx < op_end; op_idx++) {
192
193 op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
194 /* Get generic data */
195 op_type = op->raw.op;
196 addr = op->raw.offset;
197 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
198 * OP_WR64 (we assume that op_arr_write and op_write have the
199 * same structure).
200 */
201 len = op->arr_wr.data_len;
202 data = data_base + op->arr_wr.data_off;
203
204 switch (op_type) {
205 case OP_RD:
206 REG_RD(sc, addr);
207 break;
208 case OP_WR:
209 REG_WR(sc, addr, op->write.val);
210 break;
211 case OP_SW:
212 ecore_init_str_wr(sc, addr, data, len);
213 break;
214 case OP_WB:
215 ecore_init_wr_wb(sc, addr, data, len);
216 break;
217 case OP_ZR:
218 case OP_WB_ZR:
219 ecore_init_fill(sc, addr, 0, op->zero.len);
220 break;
221 case OP_ZP:
222 ecore_init_wr_zp(sc, addr, len, op->arr_wr.data_off);
223 break;
224 case OP_WR_64:
225 ecore_init_wr_64(sc, addr, data, len);
226 break;
227 case OP_IF_MODE_AND:
228 /* if any of the flags doesn't match, skip the
229 * conditional block.
230 */
231 if ((INIT_MODE_FLAGS(sc) &
232 op->if_mode.mode_bit_map) !=
233 op->if_mode.mode_bit_map)
234 op_idx += op->if_mode.cmd_offset;
235 break;
236 case OP_IF_MODE_OR:
237 /* if all the flags don't match, skip the conditional
238 * block.
239 */
240 if ((INIT_MODE_FLAGS(sc) &
241 op->if_mode.mode_bit_map) == 0)
242 op_idx += op->if_mode.cmd_offset;
243 break;
244 /* the following opcodes are unused at the moment. */
245 case OP_IF_PHASE:
246 case OP_RT:
247 case OP_DELAY:
248 case OP_VERIFY:
249 default:
250 /* Should never get here! */
251
252 break;
253 }
254 }
255}
256
257
258/****************************************************************************
259* PXP Arbiter
260****************************************************************************/
261/*
262 * This code configures the PCI read/write arbiter
263 * which implements a weighted round robin
264 * between the virtual queues in the chip.
265 *
266 * The values were derived for each PCI max payload and max request size.
267 * since max payload and max request size are only known at run time,
268 * this is done as a separate init stage.
269 */
270
271#define NUM_WR_Q 13
272#define NUM_RD_Q 29
273#define MAX_RD_ORD 3
274#define MAX_WR_ORD 2
275
276/* configuration for one arbiter queue */
277struct arb_line {
278 int l;
279 int add;
280 int ubound;
281};
282
283/* derived configuration for each read queue for each max request size */
284static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
285/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
286 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
287 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
288 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
289 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
290 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
291 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
292 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
293 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
294/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
295 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
296 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
297 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
298 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
299 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
300 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
301 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
302 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
303 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
304/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
305 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
306 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
307 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
308 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
309 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
310 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
311 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
312 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
313 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
314};
315
316/* derived configuration for each write queue for each max request size */
317static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
318/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
319 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
320 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
321 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
322 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
323 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
324 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
325 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
326 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
327/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
328 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
329 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
330 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
331};
332
333/* register addresses for read queues */
334static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
335/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
336 PXP2_REG_RQ_BW_RD_UBOUND0},
337 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
338 PXP2_REG_PSWRQ_BW_UB1},
339 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
340 PXP2_REG_PSWRQ_BW_UB2},
341 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
342 PXP2_REG_PSWRQ_BW_UB3},
343 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
344 PXP2_REG_RQ_BW_RD_UBOUND4},
345 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
346 PXP2_REG_RQ_BW_RD_UBOUND5},
347 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
348 PXP2_REG_PSWRQ_BW_UB6},
349 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
350 PXP2_REG_PSWRQ_BW_UB7},
351 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
352 PXP2_REG_PSWRQ_BW_UB8},
353/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
354 PXP2_REG_PSWRQ_BW_UB9},
355 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
356 PXP2_REG_PSWRQ_BW_UB10},
357 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
358 PXP2_REG_PSWRQ_BW_UB11},
359 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
360 PXP2_REG_RQ_BW_RD_UBOUND12},
361 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
362 PXP2_REG_RQ_BW_RD_UBOUND13},
363 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
364 PXP2_REG_RQ_BW_RD_UBOUND14},
365 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
366 PXP2_REG_RQ_BW_RD_UBOUND15},
367 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
368 PXP2_REG_RQ_BW_RD_UBOUND16},
369 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
370 PXP2_REG_RQ_BW_RD_UBOUND17},
371 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
372 PXP2_REG_RQ_BW_RD_UBOUND18},
373/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
374 PXP2_REG_RQ_BW_RD_UBOUND19},
375 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
376 PXP2_REG_RQ_BW_RD_UBOUND20},
377 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
378 PXP2_REG_RQ_BW_RD_UBOUND22},
379 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
380 PXP2_REG_RQ_BW_RD_UBOUND23},
381 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
382 PXP2_REG_RQ_BW_RD_UBOUND24},
383 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
384 PXP2_REG_RQ_BW_RD_UBOUND25},
385 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
386 PXP2_REG_RQ_BW_RD_UBOUND26},
387 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
388 PXP2_REG_RQ_BW_RD_UBOUND27},
389 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
390 PXP2_REG_PSWRQ_BW_UB28}
391};
392
393/* register addresses for write queues */
394static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
395/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
396 PXP2_REG_PSWRQ_BW_UB1},
397 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
398 PXP2_REG_PSWRQ_BW_UB2},
399 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
400 PXP2_REG_PSWRQ_BW_UB3},
401 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
402 PXP2_REG_PSWRQ_BW_UB6},
403 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
404 PXP2_REG_PSWRQ_BW_UB7},
405 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
406 PXP2_REG_PSWRQ_BW_UB8},
407 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
408 PXP2_REG_PSWRQ_BW_UB9},
409 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
410 PXP2_REG_PSWRQ_BW_UB10},
411 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
412 PXP2_REG_PSWRQ_BW_UB11},
413/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
414 PXP2_REG_PSWRQ_BW_UB28},
415 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
416 PXP2_REG_RQ_BW_WR_UBOUND29},
417 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
418 PXP2_REG_RQ_BW_WR_UBOUND30}
419};
420
421static void ecore_init_pxp_arb(struct bnx2x_softc *sc, int r_order,
422 int w_order)
423{
424 uint32_t val, i;
425
426 if (r_order > MAX_RD_ORD) {
9f95a23c 427 ECORE_MSG(sc, "read order of %d order adjusted to %d",
7c673cae
FG
428 r_order, MAX_RD_ORD);
429 r_order = MAX_RD_ORD;
430 }
431 if (w_order > MAX_WR_ORD) {
9f95a23c 432 ECORE_MSG(sc, "write order of %d order adjusted to %d",
7c673cae
FG
433 w_order, MAX_WR_ORD);
434 w_order = MAX_WR_ORD;
435 }
436 if (CHIP_REV_IS_FPGA(sc)) {
9f95a23c 437 ECORE_MSG(sc, "write order adjusted to 1 for FPGA");
7c673cae
FG
438 w_order = 0;
439 }
9f95a23c 440 ECORE_MSG(sc, "read order %d write order %d", r_order, w_order);
7c673cae
FG
441
442 for (i = 0; i < NUM_RD_Q-1; i++) {
443 REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
444 REG_WR(sc, read_arb_addr[i].add,
445 read_arb_data[i][r_order].add);
446 REG_WR(sc, read_arb_addr[i].ubound,
447 read_arb_data[i][r_order].ubound);
448 }
449
450 for (i = 0; i < NUM_WR_Q-1; i++) {
451 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
452 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
453
454 REG_WR(sc, write_arb_addr[i].l,
455 write_arb_data[i][w_order].l);
456
457 REG_WR(sc, write_arb_addr[i].add,
458 write_arb_data[i][w_order].add);
459
460 REG_WR(sc, write_arb_addr[i].ubound,
461 write_arb_data[i][w_order].ubound);
462 } else {
463
464 val = REG_RD(sc, write_arb_addr[i].l);
465 REG_WR(sc, write_arb_addr[i].l,
466 val | (write_arb_data[i][w_order].l << 10));
467
468 val = REG_RD(sc, write_arb_addr[i].add);
469 REG_WR(sc, write_arb_addr[i].add,
470 val | (write_arb_data[i][w_order].add << 10));
471
472 val = REG_RD(sc, write_arb_addr[i].ubound);
473 REG_WR(sc, write_arb_addr[i].ubound,
474 val | (write_arb_data[i][w_order].ubound << 7));
475 }
476 }
477
478 val = write_arb_data[NUM_WR_Q-1][w_order].add;
479 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
480 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
481 REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
482
483 val = read_arb_data[NUM_RD_Q-1][r_order].add;
484 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
485 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
486 REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
487
488 REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
489 REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
490 REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
491 REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
492
493 if (CHIP_IS_E1H(sc) && (r_order == MAX_RD_ORD))
494 REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
495
496 if (CHIP_IS_E3(sc))
497 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
498 else if (CHIP_IS_E2(sc))
499 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
500 else
501 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
502
503 /* MPS w_order optimal TH presently TH
504 * 128 0 0 2
505 * 256 1 1 3
506 * >=512 2 2 3
507 */
508 /* DMAE is special */
509 if (!CHIP_IS_E1H(sc)) {
510 /* E2 can use optimal TH */
511 val = w_order;
512 REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
513 } else {
514 val = ((w_order == 0) ? 2 : 3);
515 REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
516 }
517
518 REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
519 REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
520 REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
521 REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
522 REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
523 REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
524 REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
525 REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
526 REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
527 REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
528
529 /* Validate number of tags suppoted by device */
530#define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
531 val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
532 val &= 0xFF;
533 if (val <= 0x20)
534 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
535}
536
537/****************************************************************************
538* ILT management
539****************************************************************************/
540/*
541 * This codes hides the low level HW interaction for ILT management and
542 * configuration. The API consists of a shadow ILT table which is set by the
543 * driver and a set of routines to use it to configure the HW.
544 *
545 */
546
547/* ILT HW init operations */
548
549/* ILT memory management operations */
550#define ILT_MEMOP_ALLOC 0
551#define ILT_MEMOP_FREE 1
552
553/* the phys address is shifted right 12 bits and has an added
554 * 1=valid bit added to the 53rd bit
555 * then since this is a wide register(TM)
556 * we split it into two 32 bit writes
557 */
558#define ILT_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
559#define ILT_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
560#define ILT_RANGE(f, l) (((l) << 10) | f)
561
562static int ecore_ilt_line_mem_op(struct bnx2x_softc *sc,
563 struct ilt_line *line, uint32_t size, uint8_t memop, int cli_num, int i)
564{
565#define ECORE_ILT_NAMESIZE 10
566 char str[ECORE_ILT_NAMESIZE];
567
568 if (memop == ILT_MEMOP_FREE) {
569 ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
570 return 0;
571 }
572 snprintf(str, ECORE_ILT_NAMESIZE, "ILT_%d_%d", cli_num, i);
573 ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size, str);
574 if (!line->page)
575 return -1;
576 line->size = size;
577 return 0;
578}
579
580
581static int ecore_ilt_client_mem_op(struct bnx2x_softc *sc, int cli_num,
582 uint8_t memop)
583{
584 int i, rc = 0;
585 struct ecore_ilt *ilt = SC_ILT(sc);
586 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
587
588 if (!ilt || !ilt->lines)
589 return -1;
590
591 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
592 return 0;
593
594 for (i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
595 rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
596 ilt_cli->page_size, memop, cli_num, i);
597 }
598 return rc;
599}
600
601static inline int ecore_ilt_mem_op_cnic(struct bnx2x_softc *sc, uint8_t memop)
602{
603 int rc = 0;
604
605 if (CONFIGURE_NIC_MODE(sc))
606 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
607 if (!rc)
608 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
609
610 return rc;
611}
612
613static int ecore_ilt_mem_op(struct bnx2x_softc *sc, uint8_t memop)
614{
615 int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
616 if (!rc)
617 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
618 if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
619 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
620
621 return rc;
622}
623
624static void ecore_ilt_line_wr(struct bnx2x_softc *sc, int abs_idx,
625 ecore_dma_addr_t page_mapping)
626{
627 uint32_t reg;
628
629 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
630
631 ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
632}
633
634static void ecore_ilt_line_init_op(struct bnx2x_softc *sc,
635 struct ecore_ilt *ilt, int idx, uint8_t initop)
636{
637 ecore_dma_addr_t null_mapping;
638 int abs_idx = ilt->start_line + idx;
639
640 switch (initop) {
641 case INITOP_INIT:
642 /* set in the init-value array */
643 case INITOP_SET:
644 ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
645 break;
646 case INITOP_CLEAR:
647 null_mapping = 0;
648 ecore_ilt_line_wr(sc, abs_idx, null_mapping);
649 break;
650 }
651}
652
653static void ecore_ilt_boundry_init_op(struct bnx2x_softc *sc,
654 struct ilt_client_info *ilt_cli,
655 uint32_t ilt_start)
656{
657 uint32_t start_reg = 0;
658 uint32_t end_reg = 0;
659
660 /* The boundary is either SET or INIT,
661 CLEAR => SET and for now SET ~~ INIT */
662
663 /* find the appropriate regs */
664 switch (ilt_cli->client_num) {
665 case ILT_CLIENT_CDU:
666 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
667 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
668 break;
669 case ILT_CLIENT_QM:
670 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
671 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
672 break;
673 case ILT_CLIENT_SRC:
674 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
675 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
676 break;
677 case ILT_CLIENT_TM:
678 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
679 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
680 break;
681 }
682 REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
683 REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
684}
685
686static void ecore_ilt_client_init_op_ilt(struct bnx2x_softc *sc,
687 struct ecore_ilt *ilt,
688 struct ilt_client_info *ilt_cli,
689 uint8_t initop)
690{
691 int i;
692
693 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
694 return;
695
696 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
697 ecore_ilt_line_init_op(sc, ilt, i, initop);
698
699 /* init/clear the ILT boundries */
700 ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line);
701}
702
703static void ecore_ilt_client_init_op(struct bnx2x_softc *sc,
704 struct ilt_client_info *ilt_cli, uint8_t initop)
705{
706 struct ecore_ilt *ilt = SC_ILT(sc);
707
708 ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
709}
710
711static void ecore_ilt_client_id_init_op(struct bnx2x_softc *sc,
712 int cli_num, uint8_t initop)
713{
714 struct ecore_ilt *ilt = SC_ILT(sc);
715 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
716
717 ecore_ilt_client_init_op(sc, ilt_cli, initop);
718}
719
720static inline void ecore_ilt_init_op_cnic(struct bnx2x_softc *sc, uint8_t initop)
721{
722 if (CONFIGURE_NIC_MODE(sc))
723 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
724 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
725}
726
727static void ecore_ilt_init_op(struct bnx2x_softc *sc, uint8_t initop)
728{
729 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
730 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
731 if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
732 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
733}
734
735static void ecore_ilt_init_client_psz(struct bnx2x_softc *sc, int cli_num,
736 uint32_t psz_reg, uint8_t initop)
737{
738 struct ecore_ilt *ilt = SC_ILT(sc);
739 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
740
741 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
742 return;
743
744 switch (initop) {
745 case INITOP_INIT:
746 /* set in the init-value array */
747 case INITOP_SET:
748 REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
749 break;
750 case INITOP_CLEAR:
751 break;
752 }
753}
754
755/*
756 * called during init common stage, ilt clients should be initialized
757 * prioir to calling this function
758 */
759static void ecore_ilt_init_page_size(struct bnx2x_softc *sc, uint8_t initop)
760{
761 ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
762 PXP2_REG_RQ_CDU_P_SIZE, initop);
763 ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
764 PXP2_REG_RQ_QM_P_SIZE, initop);
765 ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
766 PXP2_REG_RQ_SRC_P_SIZE, initop);
767 ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
768 PXP2_REG_RQ_TM_P_SIZE, initop);
769}
770
771/****************************************************************************
772* QM initializations
773****************************************************************************/
774#define QM_QUEUES_PER_FUNC 16
775#define QM_INIT_MIN_CID_COUNT 31
776#define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
777
778/* called during init port stage */
779static void ecore_qm_init_cid_count(struct bnx2x_softc *sc, int qm_cid_count,
780 uint8_t initop)
781{
782 int port = SC_PORT(sc);
783
784 if (QM_INIT(qm_cid_count)) {
785 switch (initop) {
786 case INITOP_INIT:
787 /* set in the init-value array */
788 case INITOP_SET:
789 REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
790 qm_cid_count/16 - 1);
791 break;
792 case INITOP_CLEAR:
793 break;
794 }
795 }
796}
797
798static void ecore_qm_set_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
799 uint32_t base_reg, uint32_t reg)
800{
801 int i;
802 uint32_t wb_data[2] = {0, 0};
803 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
804 REG_WR(sc, base_reg + i*4,
805 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
806 ecore_init_wr_wb(sc, reg + i*8,
807 wb_data, 2);
808 }
809}
810
811/* called during init common stage */
812static void ecore_qm_init_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
813 uint8_t initop)
814{
815 if (!QM_INIT(qm_cid_count))
816 return;
817
818 switch (initop) {
819 case INITOP_INIT:
820 /* set in the init-value array */
821 case INITOP_SET:
822 ecore_qm_set_ptr_table(sc, qm_cid_count,
823 QM_REG_BASEADDR, QM_REG_PTRTBL);
824 if (CHIP_IS_E1H(sc))
825 ecore_qm_set_ptr_table(sc, qm_cid_count,
826 QM_REG_BASEADDR_EXT_A,
827 QM_REG_PTRTBL_EXT_A);
828 break;
829 case INITOP_CLEAR:
830 break;
831 }
832}
833
834/****************************************************************************
835* SRC initializations
836****************************************************************************/
837#ifdef ECORE_L5
838/* called during init func stage */
839static void ecore_src_init_t2(struct bnx2x_softc *sc, struct src_ent *t2,
840 ecore_dma_addr_t t2_mapping, int src_cid_count)
841{
842 int i;
843 int port = SC_PORT(sc);
844
845 /* Initialize T2 */
846 for (i = 0; i < src_cid_count-1; i++)
847 t2[i].next = (uint64_t)(t2_mapping +
848 (i+1)*sizeof(struct src_ent));
849
850 /* tell the searcher where the T2 table is */
851 REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
852
853 ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
854 U64_LO(t2_mapping), U64_HI(t2_mapping));
855
856 ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
857 U64_LO((uint64_t)t2_mapping +
858 (src_cid_count-1) * sizeof(struct src_ent)),
859 U64_HI((uint64_t)t2_mapping +
860 (src_cid_count-1) * sizeof(struct src_ent)));
861}
862#endif
863#endif /* ECORE_INIT_OPS_H */