]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/drivers/net/fm10k/fm10k_rxtx_vec.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / fm10k / fm10k_rxtx_vec.c
CommitLineData
11fdf7f2
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2013-2015 Intel Corporation
7c673cae
FG
3 */
4
5#include <inttypes.h>
6
11fdf7f2 7#include <rte_ethdev_driver.h>
7c673cae
FG
8#include <rte_common.h>
9#include "fm10k.h"
10#include "base/fm10k_type.h"
11
12#include <tmmintrin.h>
13
14#ifndef __INTEL_COMPILER
15#pragma GCC diagnostic ignored "-Wcast-qual"
16#endif
17
18static void
19fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20
21/* Handling the offload flags (olflags) field takes computation
22 * time when receiving packets. Therefore we provide a flag to disable
23 * the processing of the olflags field when they are not needed. This
24 * gives improved performance, at the cost of losing the offload info
25 * in the received packet
26 */
27#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28
29/* Vlan present flag shift */
30#define VP_SHIFT (2)
31/* L3 type shift */
32#define L3TYPE_SHIFT (4)
33/* L4 type shift */
34#define L4TYPE_SHIFT (7)
35/* HBO flag shift */
36#define HBOFLAG_SHIFT (10)
37/* RXE flag shift */
38#define RXEFLAG_SHIFT (13)
39/* IPE/L4E flag shift */
40#define L3L4EFLAG_SHIFT (14)
41/* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42#define CKSUM_SHIFT (1)
43
44static inline void
45fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46{
47 __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48 union {
49 uint16_t e[4];
50 uint64_t dword;
51 } vol;
52
53 const __m128i pkttype_msk = _mm_set_epi16(
54 0x0000, 0x0000, 0x0000, 0x0000,
9f95a23c
TL
55 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
56 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
57 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
58 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
7c673cae
FG
59
60 /* mask everything except rss type */
61 const __m128i rsstype_msk = _mm_set_epi16(
62 0x0000, 0x0000, 0x0000, 0x0000,
63 0x000F, 0x000F, 0x000F, 0x000F);
64
65 /* mask for HBO and RXE flag flags */
66 const __m128i rxe_msk = _mm_set_epi16(
67 0x0000, 0x0000, 0x0000, 0x0000,
68 0x0001, 0x0001, 0x0001, 0x0001);
69
70 /* mask the lower byte of ol_flags */
71 const __m128i ol_flags_msk = _mm_set_epi16(
72 0x0000, 0x0000, 0x0000, 0x0000,
73 0x00FF, 0x00FF, 0x00FF, 0x00FF);
74
75 const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
76 0, 0, 0, 0,
77 0, 0, 0, 0,
78 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
80 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
81 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
82
83 const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
84 0, 0, 0, 0,
85 0, 0, 0, 0,
86 0, 0, 0, 0);
87
88 /* map rss type to rss hash flag */
89 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
90 0, 0, 0, PKT_RX_RSS_HASH,
91 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
92 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
93
94 /* Calculate RSS_hash and Vlan fields */
95 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
96 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
97 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
98 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
99
100 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
101 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
102 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
103
104 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
105 eflag0 = vtag1;
106 cksumflag = vtag1;
107 vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
108 vtag1 = _mm_and_si128(vtag1, pkttype_msk);
109
110 vtag1 = _mm_or_si128(ptype0, vtag1);
111
112 /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
113 eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
114 eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
115 eflag0 = _mm_or_si128(eflag0, eflag1);
116 eflag0 = _mm_and_si128(eflag0, rxe_msk);
117 eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
118
119 vtag1 = _mm_or_si128(eflag0, vtag1);
120
121 /* Process L4/L3 checksum error flags */
122 cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
123 cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
124
125 /* clean the higher byte and shift back the flag bits */
126 cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
127 cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
128 vtag1 = _mm_or_si128(cksumflag, vtag1);
129
130 vol.dword = _mm_cvtsi128_si64(vtag1);
131
132 rx_pkts[0]->ol_flags = vol.e[0];
133 rx_pkts[1]->ol_flags = vol.e[1];
134 rx_pkts[2]->ol_flags = vol.e[2];
135 rx_pkts[3]->ol_flags = vol.e[3];
136}
137
138/* @note: When this function is changed, make corresponding change to
139 * fm10k_dev_supported_ptypes_get().
140 */
141static inline void
142fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
143{
144 __m128i l3l4type0, l3l4type1, l3type, l4type;
145 union {
146 uint16_t e[4];
147 uint64_t dword;
148 } vol;
149
150 /* L3 pkt type mask Bit4 to Bit6 */
151 const __m128i l3type_msk = _mm_set_epi16(
152 0x0000, 0x0000, 0x0000, 0x0000,
153 0x0070, 0x0070, 0x0070, 0x0070);
154
155 /* L4 pkt type mask Bit7 to Bit9 */
156 const __m128i l4type_msk = _mm_set_epi16(
157 0x0000, 0x0000, 0x0000, 0x0000,
158 0x0380, 0x0380, 0x0380, 0x0380);
159
160 /* convert RRC l3 type to mbuf format */
161 const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
162 0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
163 RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
164 RTE_PTYPE_L3_IPV4, 0);
165
166 /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
167 * to fill into8 bits length.
168 */
169 const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
170 RTE_PTYPE_TUNNEL_GENEVE >> 8,
171 RTE_PTYPE_TUNNEL_NVGRE >> 8,
172 RTE_PTYPE_TUNNEL_VXLAN >> 8,
173 RTE_PTYPE_TUNNEL_GRE >> 8,
174 RTE_PTYPE_L4_UDP >> 8,
175 RTE_PTYPE_L4_TCP >> 8,
176 0);
177
178 l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
179 l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
180 l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
181
182 l3type = _mm_and_si128(l3l4type0, l3type_msk);
183 l4type = _mm_and_si128(l3l4type0, l4type_msk);
184
185 l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
186 l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
187
188 l3type = _mm_shuffle_epi8(l3type_flags, l3type);
189 /* l4type_flags shift-left for 8 bits, need shift-right back */
190 l4type = _mm_shuffle_epi8(l4type_flags, l4type);
191
192 l4type = _mm_slli_epi16(l4type, 8);
193 l3l4type0 = _mm_or_si128(l3type, l4type);
194 vol.dword = _mm_cvtsi128_si64(l3l4type0);
195
196 rx_pkts[0]->packet_type = vol.e[0];
197 rx_pkts[1]->packet_type = vol.e[1];
198 rx_pkts[2]->packet_type = vol.e[2];
199 rx_pkts[3]->packet_type = vol.e[3];
200}
201#else
202#define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
203#define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
204#endif
205
206int __attribute__((cold))
207fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
208{
209#ifndef RTE_LIBRTE_IEEE1588
210 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
211 struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
212
213#ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
214 /* whithout rx ol_flags, no VP flag report */
11fdf7f2 215 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
7c673cae
FG
216 return -1;
217#endif
218
219 /* no fdir support */
220 if (fconf->mode != RTE_FDIR_MODE_NONE)
221 return -1;
222
223 /* no header split support */
11fdf7f2 224 if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
7c673cae
FG
225 return -1;
226
227 return 0;
228#else
229 RTE_SET_USED(dev);
230 return -1;
231#endif
232}
233
234int __attribute__((cold))
235fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
236{
237 uintptr_t p;
238 struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
239
240 mb_def.nb_segs = 1;
241 /* data_off will be ajusted after new mbuf allocated for 512-byte
242 * alignment.
243 */
244 mb_def.data_off = RTE_PKTMBUF_HEADROOM;
245 mb_def.port = rxq->port_id;
246 rte_mbuf_refcnt_set(&mb_def, 1);
247
248 /* prevent compiler reordering: rearm_data covers previous fields */
249 rte_compiler_barrier();
250 p = (uintptr_t)&mb_def.rearm_data;
251 rxq->mbuf_initializer = *(uint64_t *)p;
252 return 0;
253}
254
255static inline void
256fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
257{
258 int i;
259 uint16_t rx_id;
260 volatile union fm10k_rx_desc *rxdp;
261 struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
262 struct rte_mbuf *mb0, *mb1;
263 __m128i head_off = _mm_set_epi64x(
264 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
265 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
266 __m128i dma_addr0, dma_addr1;
267 /* Rx buffer need to be aligned with 512 byte */
268 const __m128i hba_msk = _mm_set_epi64x(0,
269 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
270
271 rxdp = rxq->hw_ring + rxq->rxrearm_start;
272
273 /* Pull 'n' more MBUFs into the software ring */
274 if (rte_mempool_get_bulk(rxq->mp,
275 (void *)mb_alloc,
276 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
277 dma_addr0 = _mm_setzero_si128();
278 /* Clean up all the HW/SW ring content */
279 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
280 mb_alloc[i] = &rxq->fake_mbuf;
281 _mm_store_si128((__m128i *)&rxdp[i].q,
282 dma_addr0);
283 }
284
285 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
286 RTE_FM10K_RXQ_REARM_THRESH;
287 return;
288 }
289
290 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
291 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
292 __m128i vaddr0, vaddr1;
293 uintptr_t p0, p1;
294
295 mb0 = mb_alloc[0];
296 mb1 = mb_alloc[1];
297
298 /* Flush mbuf with pkt template.
299 * Data to be rearmed is 6 bytes long.
7c673cae
FG
300 */
301 p0 = (uintptr_t)&mb0->rearm_data;
302 *(uint64_t *)p0 = rxq->mbuf_initializer;
303 p1 = (uintptr_t)&mb1->rearm_data;
304 *(uint64_t *)p1 = rxq->mbuf_initializer;
305
11fdf7f2
TL
306 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
307 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
308 offsetof(struct rte_mbuf, buf_addr) + 8);
7c673cae
FG
309 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
310 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
311
312 /* convert pa to dma_addr hdr/data */
313 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
314 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
315
316 /* add headroom to pa values */
317 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
318 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
319
320 /* Do 512 byte alignment to satisfy HW requirement, in the
321 * meanwhile, set Header Buffer Address to zero.
322 */
323 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
324 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
325
326 /* flush desc with pa dma_addr */
327 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
328 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
329
330 /* enforce 512B alignment on default Rx virtual addresses */
331 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
332 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
333 - (char *)mb0->buf_addr);
334 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
335 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
336 - (char *)mb1->buf_addr);
337 }
338
339 rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
340 if (rxq->rxrearm_start >= rxq->nb_desc)
341 rxq->rxrearm_start = 0;
342
343 rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
344
345 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
346 (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
347
348 /* Update the tail pointer on the NIC */
349 FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
350}
351
352void __attribute__((cold))
353fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
354{
355 const unsigned mask = rxq->nb_desc - 1;
356 unsigned i;
357
358 if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
359 return;
360
361 /* free all mbufs that are valid in the ring */
362 for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
363 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
364 rxq->rxrearm_nb = rxq->nb_desc;
365
366 /* set all entries to NULL */
367 memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
368}
369
370static inline uint16_t
371fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
372 uint16_t nb_pkts, uint8_t *split_packet)
373{
374 volatile union fm10k_rx_desc *rxdp;
375 struct rte_mbuf **mbufp;
376 uint16_t nb_pkts_recd;
377 int pos;
378 struct fm10k_rx_queue *rxq = rx_queue;
379 uint64_t var;
380 __m128i shuf_msk;
381 __m128i dd_check, eop_check;
382 uint16_t next_dd;
383
384 next_dd = rxq->next_dd;
385
386 /* Just the act of getting into the function from the application is
387 * going to cost about 7 cycles
388 */
389 rxdp = rxq->hw_ring + next_dd;
390
391 rte_prefetch0(rxdp);
392
393 /* See if we need to rearm the RX queue - gives the prefetch a bit
394 * of time to act
395 */
396 if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
397 fm10k_rxq_rearm(rxq);
398
399 /* Before we start moving massive data around, check to see if
400 * there is actually a packet available
401 */
402 if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
403 return 0;
404
405 /* Vecotr RX will process 4 packets at a time, strip the unaligned
406 * tails in case it's not multiple of 4.
407 */
408 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
409
410 /* 4 packets DD mask */
411 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
412
413 /* 4 packets EOP mask */
414 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
415
416 /* mask to shuffle from desc. to mbuf */
417 shuf_msk = _mm_set_epi8(
418 7, 6, 5, 4, /* octet 4~7, 32bits rss */
419 15, 14, /* octet 14~15, low 16 bits vlan_macip */
420 13, 12, /* octet 12~13, 16 bits data_len */
421 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
422 13, 12, /* octet 12~13, low 16 bits pkt_len */
423 0xFF, 0xFF, /* skip high 16 bits pkt_type */
424 0xFF, 0xFF /* Skip pkt_type field in shuffle operation */
425 );
11fdf7f2
TL
426 /*
427 * Compile-time verify the shuffle mask
428 * NOTE: some field positions already verified above, but duplicated
429 * here for completeness in case of future modifications.
430 */
431 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
432 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
433 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
434 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
435 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
436 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
437 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
438 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
7c673cae
FG
439
440 /* Cache is empty -> need to scan the buffer rings, but first move
441 * the next 'n' mbufs into the cache
442 */
443 mbufp = &rxq->sw_ring[next_dd];
444
445 /* A. load 4 packet in one loop
446 * [A*. mask out 4 unused dirty field in desc]
447 * B. copy 4 mbuf point from swring to rx_pkts
448 * C. calc the number of DD bits among the 4 packets
449 * [C*. extract the end-of-packet bit, if requested]
450 * D. fill info. from desc to mbuf
451 */
452 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
453 pos += RTE_FM10K_DESCS_PER_LOOP,
454 rxdp += RTE_FM10K_DESCS_PER_LOOP) {
455 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
456 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
457 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
11fdf7f2
TL
458 __m128i mbp1;
459 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
460#if defined(RTE_ARCH_X86_64)
461 __m128i mbp2;
462#endif
7c673cae 463
11fdf7f2 464 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
7c673cae
FG
465 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
466
467 /* Read desc statuses backwards to avoid race condition */
468 /* A.1 load 4 pkts desc */
469 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
470 rte_compiler_barrier();
471
11fdf7f2 472 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
7c673cae
FG
473 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
474
11fdf7f2
TL
475#if defined(RTE_ARCH_X86_64)
476 /* B.1 load 2 64 bit mbuf poitns */
7c673cae 477 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
11fdf7f2 478#endif
7c673cae
FG
479
480 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
481 rte_compiler_barrier();
482 /* B.1 load 2 mbuf point */
483 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
484 rte_compiler_barrier();
485 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
486
11fdf7f2 487#if defined(RTE_ARCH_X86_64)
7c673cae
FG
488 /* B.2 copy 2 mbuf point into rx_pkts */
489 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
11fdf7f2 490#endif
7c673cae
FG
491
492 /* avoid compiler reorder optimization */
493 rte_compiler_barrier();
494
495 if (split_packet) {
496 rte_mbuf_prefetch_part2(rx_pkts[pos]);
497 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
498 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
499 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
500 }
501
502 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
503 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
504 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
505
506 /* C.1 4=>2 filter staterr info only */
507 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
508 /* C.1 4=>2 filter staterr info only */
509 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
510
511 /* set ol_flags with vlan packet type */
512 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
513
514 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
515 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
516 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
517
518 /* C.2 get 4 pkts staterr value */
519 zero = _mm_xor_si128(dd_check, dd_check);
520 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
521
522 /* D.3 copy final 3,4 data to rx_pkts */
523 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
524 pkt_mb4);
525 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
526 pkt_mb3);
527
528 /* C* extract and record EOP bit */
529 if (split_packet) {
530 __m128i eop_shuf_mask = _mm_set_epi8(
531 0xFF, 0xFF, 0xFF, 0xFF,
532 0xFF, 0xFF, 0xFF, 0xFF,
533 0xFF, 0xFF, 0xFF, 0xFF,
534 0x04, 0x0C, 0x00, 0x08
535 );
536
537 /* and with mask to extract bits, flipping 1-0 */
538 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
539 /* the staterr values are not in order, as the count
540 * count of dd bits doesn't care. However, for end of
541 * packet tracking, we do care, so shuffle. This also
542 * compresses the 32-bit values to 8-bit
543 */
544 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
545 /* store the resulting 32-bit value */
546 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
547 split_packet += RTE_FM10K_DESCS_PER_LOOP;
548
549 /* zero-out next pointers */
550 rx_pkts[pos]->next = NULL;
551 rx_pkts[pos + 1]->next = NULL;
552 rx_pkts[pos + 2]->next = NULL;
553 rx_pkts[pos + 3]->next = NULL;
554 }
555
556 /* C.3 calc available number of desc */
557 staterr = _mm_and_si128(staterr, dd_check);
558 staterr = _mm_packs_epi32(staterr, zero);
559
560 /* D.3 copy final 1,2 data to rx_pkts */
561 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
562 pkt_mb2);
563 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
564 pkt_mb1);
565
566 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
567
568 /* C.4 calc avaialbe number of desc */
569 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
570 nb_pkts_recd += var;
571 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
572 break;
573 }
574
575 /* Update our internal tail pointer */
576 rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
577 rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
578 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
579
580 return nb_pkts_recd;
581}
582
583/* vPMD receive routine
584 *
585 * Notice:
586 * - don't support ol_flags for rss and csum err
587 */
588uint16_t
589fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
590 uint16_t nb_pkts)
591{
592 return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
593}
594
595static inline uint16_t
596fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
597 struct rte_mbuf **rx_bufs,
598 uint16_t nb_bufs, uint8_t *split_flags)
599{
600 struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
601 struct rte_mbuf *start = rxq->pkt_first_seg;
602 struct rte_mbuf *end = rxq->pkt_last_seg;
603 unsigned pkt_idx, buf_idx;
604
605 for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
606 if (end != NULL) {
607 /* processing a split packet */
608 end->next = rx_bufs[buf_idx];
609 start->nb_segs++;
610 start->pkt_len += rx_bufs[buf_idx]->data_len;
611 end = end->next;
612
613 if (!split_flags[buf_idx]) {
614 /* it's the last packet of the set */
615#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
616 start->hash = end->hash;
617 start->ol_flags = end->ol_flags;
618 start->packet_type = end->packet_type;
619#endif
620 pkts[pkt_idx++] = start;
621 start = end = NULL;
622 }
623 } else {
624 /* not processing a split packet */
625 if (!split_flags[buf_idx]) {
626 /* not a split packet, save and skip */
627 pkts[pkt_idx++] = rx_bufs[buf_idx];
628 continue;
629 }
630 end = start = rx_bufs[buf_idx];
631 }
632 }
633
634 /* save the partial packet for next time */
635 rxq->pkt_first_seg = start;
636 rxq->pkt_last_seg = end;
637 memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
638 return pkt_idx;
639}
640
641/*
642 * vPMD receive routine that reassembles scattered packets
643 *
644 * Notice:
645 * - don't support ol_flags for rss and csum err
646 * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
647 * numbers of DD bit
648 */
649uint16_t
650fm10k_recv_scattered_pkts_vec(void *rx_queue,
651 struct rte_mbuf **rx_pkts,
652 uint16_t nb_pkts)
653{
654 struct fm10k_rx_queue *rxq = rx_queue;
655 uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
656 unsigned i = 0;
657
658 /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
659 nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
660 /* get some new buffers */
661 uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
662 split_flags);
663 if (nb_bufs == 0)
664 return 0;
665
666 /* happy day case, full burst + no packets to be joined */
667 const uint64_t *split_fl64 = (uint64_t *)split_flags;
668
669 if (rxq->pkt_first_seg == NULL &&
670 split_fl64[0] == 0 && split_fl64[1] == 0 &&
671 split_fl64[2] == 0 && split_fl64[3] == 0)
672 return nb_bufs;
673
674 /* reassemble any packets that need reassembly*/
675 if (rxq->pkt_first_seg == NULL) {
676 /* find the first split flag, and only reassemble then*/
677 while (i < nb_bufs && !split_flags[i])
678 i++;
679 if (i == nb_bufs)
680 return nb_bufs;
681 }
682 return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
683 &split_flags[i]);
684}
685
686static const struct fm10k_txq_ops vec_txq_ops = {
687 .reset = fm10k_reset_tx_queue,
688};
689
690void __attribute__((cold))
691fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
692{
693 txq->ops = &vec_txq_ops;
694}
695
696int __attribute__((cold))
697fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
698{
699 /* Vector TX can't offload any features yet */
11fdf7f2 700 if (txq->offloads != 0)
7c673cae
FG
701 return -1;
702
703 if (txq->tx_ftag_en)
704 return -1;
705
706 return 0;
707}
708
709static inline void
710vtx1(volatile struct fm10k_tx_desc *txdp,
711 struct rte_mbuf *pkt, uint64_t flags)
712{
713 __m128i descriptor = _mm_set_epi64x(flags << 56 |
714 pkt->vlan_tci << 16 | pkt->data_len,
715 MBUF_DMA_ADDR(pkt));
716 _mm_store_si128((__m128i *)txdp, descriptor);
717}
718
719static inline void
720vtx(volatile struct fm10k_tx_desc *txdp,
721 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
722{
723 int i;
724
725 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
726 vtx1(txdp, *pkt, flags);
727}
728
11fdf7f2 729static __rte_always_inline int
7c673cae
FG
730fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
731{
732 struct rte_mbuf **txep;
733 uint8_t flags;
734 uint32_t n;
735 uint32_t i;
736 int nb_free = 0;
737 struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
738
739 /* check DD bit on threshold descriptor */
740 flags = txq->hw_ring[txq->next_dd].flags;
741 if (!(flags & FM10K_TXD_FLAG_DONE))
742 return 0;
743
744 n = txq->rs_thresh;
745
746 /* First buffer to free from S/W ring is at index
747 * next_dd - (rs_thresh-1)
748 */
749 txep = &txq->sw_ring[txq->next_dd - (n - 1)];
11fdf7f2 750 m = rte_pktmbuf_prefree_seg(txep[0]);
7c673cae
FG
751 if (likely(m != NULL)) {
752 free[0] = m;
753 nb_free = 1;
754 for (i = 1; i < n; i++) {
11fdf7f2 755 m = rte_pktmbuf_prefree_seg(txep[i]);
7c673cae
FG
756 if (likely(m != NULL)) {
757 if (likely(m->pool == free[0]->pool))
758 free[nb_free++] = m;
759 else {
760 rte_mempool_put_bulk(free[0]->pool,
761 (void *)free, nb_free);
762 free[0] = m;
763 nb_free = 1;
764 }
765 }
766 }
767 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
768 } else {
769 for (i = 1; i < n; i++) {
11fdf7f2 770 m = rte_pktmbuf_prefree_seg(txep[i]);
7c673cae
FG
771 if (m != NULL)
772 rte_mempool_put(m->pool, m);
773 }
774 }
775
776 /* buffers were freed, update counters */
777 txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
778 txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
779 if (txq->next_dd >= txq->nb_desc)
780 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
781
782 return txq->rs_thresh;
783}
784
11fdf7f2 785static __rte_always_inline void
7c673cae
FG
786tx_backlog_entry(struct rte_mbuf **txep,
787 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
788{
789 int i;
790
791 for (i = 0; i < (int)nb_pkts; ++i)
792 txep[i] = tx_pkts[i];
793}
794
795uint16_t
11fdf7f2
TL
796fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
797 uint16_t nb_pkts)
7c673cae
FG
798{
799 struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
800 volatile struct fm10k_tx_desc *txdp;
801 struct rte_mbuf **txep;
802 uint16_t n, nb_commit, tx_id;
803 uint64_t flags = FM10K_TXD_FLAG_LAST;
804 uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
805 int i;
806
807 /* cross rx_thresh boundary is not allowed */
808 nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
809
810 if (txq->nb_free < txq->free_thresh)
811 fm10k_tx_free_bufs(txq);
812
813 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
814 if (unlikely(nb_pkts == 0))
815 return 0;
816
817 tx_id = txq->next_free;
818 txdp = &txq->hw_ring[tx_id];
819 txep = &txq->sw_ring[tx_id];
820
821 txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
822
823 n = (uint16_t)(txq->nb_desc - tx_id);
824 if (nb_commit >= n) {
825 tx_backlog_entry(txep, tx_pkts, n);
826
827 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
828 vtx1(txdp, *tx_pkts, flags);
829
830 vtx1(txdp, *tx_pkts++, rs);
831
832 nb_commit = (uint16_t)(nb_commit - n);
833
834 tx_id = 0;
835 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
836
837 /* avoid reach the end of ring */
838 txdp = &(txq->hw_ring[tx_id]);
839 txep = &txq->sw_ring[tx_id];
840 }
841
842 tx_backlog_entry(txep, tx_pkts, nb_commit);
843
844 vtx(txdp, tx_pkts, nb_commit, flags);
845
846 tx_id = (uint16_t)(tx_id + nb_commit);
847 if (tx_id > txq->next_rs) {
848 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
849 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
850 }
851
852 txq->next_free = tx_id;
853
854 FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
855
856 return nb_pkts;
857}
858
859static void __attribute__((cold))
860fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
861{
862 static const struct fm10k_tx_desc zeroed_desc = {0};
863 struct rte_mbuf **txe = txq->sw_ring;
864 uint16_t i;
865
866 /* Zero out HW ring memory */
867 for (i = 0; i < txq->nb_desc; i++)
868 txq->hw_ring[i] = zeroed_desc;
869
870 /* Initialize SW ring entries */
871 for (i = 0; i < txq->nb_desc; i++)
872 txe[i] = NULL;
873
874 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
875 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
876
877 txq->next_free = 0;
878 txq->nb_used = 0;
879 /* Always allow 1 descriptor to be un-allocated to avoid
880 * a H/W race condition
881 */
882 txq->nb_free = (uint16_t)(txq->nb_desc - 1);
883 FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
884}