]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / drivers / net / mlx5 / mlx5_rxtx_vec_sse.h
CommitLineData
11fdf7f2
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2017 6WIND S.A.
3 * Copyright 2017 Mellanox Technologies, Ltd
4 */
5
6#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
7#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
8
9#include <assert.h>
10#include <stdint.h>
11#include <string.h>
12#include <stdlib.h>
13#include <smmintrin.h>
14
15#include <rte_mbuf.h>
16#include <rte_mempool.h>
17#include <rte_prefetch.h>
18
19#include "mlx5.h"
20#include "mlx5_utils.h"
21#include "mlx5_rxtx.h"
22#include "mlx5_rxtx_vec.h"
23#include "mlx5_autoconf.h"
24#include "mlx5_defs.h"
25#include "mlx5_prm.h"
26
27#ifndef __INTEL_COMPILER
28#pragma GCC diagnostic ignored "-Wcast-qual"
29#endif
30
31/**
32 * Fill in buffer descriptors in a multi-packet send descriptor.
33 *
34 * @param txq
35 * Pointer to TX queue structure.
36 * @param dseg
37 * Pointer to buffer descriptor to be written.
38 * @param pkts
39 * Pointer to array of packets to be sent.
40 * @param n
41 * Number of packets to be filled.
42 */
43static inline void
44txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
45 struct rte_mbuf **pkts, unsigned int n)
46{
47 unsigned int pos;
48 uintptr_t addr;
49 const __m128i shuf_mask_dseg =
50 _mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */
51 12, 13, 14, 15,
52 7, 6, 5, 4, /* lkey */
53 0, 1, 2, 3 /* length, bswap32 */);
54#ifdef MLX5_PMD_SOFT_COUNTERS
55 uint32_t tx_byte = 0;
56#endif
57
58 for (pos = 0; pos < n; ++pos, ++dseg) {
59 __m128i desc;
60 struct rte_mbuf *pkt = pkts[pos];
61
62 addr = rte_pktmbuf_mtod(pkt, uintptr_t);
63 desc = _mm_set_epi32(addr >> 32,
64 addr,
65 mlx5_tx_mb2mr(txq, pkt),
66 DATA_LEN(pkt));
67 desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
68 _mm_store_si128(dseg, desc);
69#ifdef MLX5_PMD_SOFT_COUNTERS
70 tx_byte += DATA_LEN(pkt);
71#endif
72 }
73#ifdef MLX5_PMD_SOFT_COUNTERS
74 txq->stats.obytes += tx_byte;
75#endif
76}
77
78/**
79 * Send multi-segmented packets until it encounters a single segment packet in
80 * the pkts list.
81 *
82 * @param txq
83 * Pointer to TX queue structure.
84 * @param pkts
85 * Pointer to array of packets to be sent.
86 * @param pkts_n
87 * Number of packets to be sent.
88 *
89 * @return
90 * Number of packets successfully transmitted (<= pkts_n).
91 */
92static uint16_t
93txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
94 uint16_t pkts_n)
95{
96 uint16_t elts_head = txq->elts_head;
97 const uint16_t elts_n = 1 << txq->elts_n;
98 const uint16_t elts_m = elts_n - 1;
99 const uint16_t wq_n = 1 << txq->wqe_n;
100 const uint16_t wq_mask = wq_n - 1;
101 const unsigned int nb_dword_per_wqebb =
102 MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
103 const unsigned int nb_dword_in_hdr =
104 sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
105 unsigned int n;
106 volatile struct mlx5_wqe *wqe = NULL;
9f95a23c
TL
107 bool metadata_ol =
108 txq->offloads & DEV_TX_OFFLOAD_MATCH_METADATA ? true : false;
11fdf7f2
TL
109
110 assert(elts_n > pkts_n);
111 mlx5_tx_complete(txq);
112 if (unlikely(!pkts_n))
113 return 0;
114 for (n = 0; n < pkts_n; ++n) {
115 struct rte_mbuf *buf = pkts[n];
116 unsigned int segs_n = buf->nb_segs;
117 unsigned int ds = nb_dword_in_hdr;
118 unsigned int len = PKT_LEN(buf);
119 uint16_t wqe_ci = txq->wqe_ci;
120 const __m128i shuf_mask_ctrl =
121 _mm_set_epi8(15, 14, 13, 12,
122 8, 9, 10, 11, /* bswap32 */
123 4, 5, 6, 7, /* bswap32 */
124 0, 1, 2, 3 /* bswap32 */);
125 uint8_t cs_flags;
126 uint16_t max_elts;
127 uint16_t max_wqe;
128 __m128i *t_wqe, *dseg;
129 __m128i ctrl;
9f95a23c
TL
130 rte_be32_t metadata =
131 metadata_ol && (buf->ol_flags & PKT_TX_METADATA) ?
132 buf->tx_metadata : 0;
11fdf7f2
TL
133
134 assert(segs_n);
135 max_elts = elts_n - (elts_head - txq->elts_tail);
136 max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
137 /*
138 * A MPW session consumes 2 WQEs at most to
139 * include MLX5_MPW_DSEG_MAX pointers.
140 */
141 if (segs_n == 1 ||
142 max_elts < segs_n || max_wqe < 2)
143 break;
144 if (segs_n > MLX5_MPW_DSEG_MAX) {
145 txq->stats.oerrors++;
146 break;
147 }
148 wqe = &((volatile struct mlx5_wqe64 *)
149 txq->wqes)[wqe_ci & wq_mask].hdr;
150 cs_flags = txq_ol_cksum_to_cs(buf);
151 /* Title WQEBB pointer. */
152 t_wqe = (__m128i *)wqe;
153 dseg = (__m128i *)(wqe + 1);
154 do {
155 if (!(ds++ % nb_dword_per_wqebb)) {
156 dseg = (__m128i *)
157 &((volatile struct mlx5_wqe64 *)
158 txq->wqes)[++wqe_ci & wq_mask];
159 }
160 txq_wr_dseg_v(txq, dseg++, &buf, 1);
161 (*txq->elts)[elts_head++ & elts_m] = buf;
162 buf = buf->next;
163 } while (--segs_n);
164 ++wqe_ci;
165 /* Fill CTRL in the header. */
166 ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
167 MLX5_OPC_MOD_MPW << 24 |
168 txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
169 ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
170 _mm_store_si128(t_wqe, ctrl);
171 /* Fill ESEG in the header. */
172 _mm_store_si128(t_wqe + 1,
9f95a23c
TL
173 _mm_set_epi32(0, metadata,
174 (rte_cpu_to_be_16(len) << 16) |
175 cs_flags, 0));
11fdf7f2
TL
176 txq->wqe_ci = wqe_ci;
177 }
178 if (!n)
179 return 0;
180 txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
181 txq->elts_head = elts_head;
182 if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
183 /* A CQE slot must always be available. */
184 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
185 wqe->ctrl[2] = rte_cpu_to_be_32(8);
186 wqe->ctrl[3] = txq->elts_head;
187 txq->elts_comp = 0;
188 }
189#ifdef MLX5_PMD_SOFT_COUNTERS
190 txq->stats.opackets += n;
191#endif
192 mlx5_tx_dbrec(txq, wqe);
193 return n;
194}
195
196/**
197 * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
198 * it returns to make it processed by txq_scatter_v(). All the packets in
199 * the pkts list should be single segment packets having same offload flags.
200 * This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
201 *
202 * @param txq
203 * Pointer to TX queue structure.
204 * @param pkts
205 * Pointer to array of packets to be sent.
206 * @param pkts_n
207 * Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
208 * @param cs_flags
209 * Checksum offload flags to be written in the descriptor.
9f95a23c
TL
210 * @param metadata
211 * Metadata value to be written in the descriptor.
11fdf7f2
TL
212 *
213 * @return
214 * Number of packets successfully transmitted (<= pkts_n).
215 */
216static inline uint16_t
217txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
9f95a23c 218 uint8_t cs_flags, rte_be32_t metadata)
11fdf7f2
TL
219{
220 struct rte_mbuf **elts;
221 uint16_t elts_head = txq->elts_head;
222 const uint16_t elts_n = 1 << txq->elts_n;
223 const uint16_t elts_m = elts_n - 1;
224 const unsigned int nb_dword_per_wqebb =
225 MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
226 const unsigned int nb_dword_in_hdr =
227 sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
228 unsigned int n = 0;
229 unsigned int pos;
230 uint16_t max_elts;
231 uint16_t max_wqe;
232 uint32_t comp_req = 0;
233 const uint16_t wq_n = 1 << txq->wqe_n;
234 const uint16_t wq_mask = wq_n - 1;
235 uint16_t wq_idx = txq->wqe_ci & wq_mask;
236 volatile struct mlx5_wqe64 *wq =
237 &((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
238 volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
239 const __m128i shuf_mask_ctrl =
240 _mm_set_epi8(15, 14, 13, 12,
241 8, 9, 10, 11, /* bswap32 */
242 4, 5, 6, 7, /* bswap32 */
243 0, 1, 2, 3 /* bswap32 */);
244 __m128i *t_wqe, *dseg;
245 __m128i ctrl;
246
247 /* Make sure all packets can fit into a single WQE. */
248 assert(elts_n > pkts_n);
249 mlx5_tx_complete(txq);
250 max_elts = (elts_n - (elts_head - txq->elts_tail));
251 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
252 pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
253 assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
254 if (unlikely(!pkts_n))
255 return 0;
256 elts = &(*txq->elts)[elts_head & elts_m];
257 /* Loop for available tailroom first. */
258 n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
259 for (pos = 0; pos < (n & -2); pos += 2)
260 _mm_storeu_si128((__m128i *)&elts[pos],
261 _mm_loadu_si128((__m128i *)&pkts[pos]));
262 if (n & 1)
263 elts[pos] = pkts[pos];
264 /* Check if it crosses the end of the queue. */
265 if (unlikely(n < pkts_n)) {
266 elts = &(*txq->elts)[0];
267 for (pos = 0; pos < pkts_n - n; ++pos)
268 elts[pos] = pkts[n + pos];
269 }
270 txq->elts_head += pkts_n;
271 /* Save title WQEBB pointer. */
272 t_wqe = (__m128i *)wqe;
273 dseg = (__m128i *)(wqe + 1);
274 /* Calculate the number of entries to the end. */
275 n = RTE_MIN(
276 (wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
277 pkts_n);
278 /* Fill DSEGs. */
279 txq_wr_dseg_v(txq, dseg, pkts, n);
280 /* Check if it crosses the end of the queue. */
281 if (n < pkts_n) {
282 dseg = (__m128i *)txq->wqes;
283 txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
284 }
285 if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
286 txq->elts_comp += pkts_n;
287 } else {
288 /* A CQE slot must always be available. */
289 assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
290 /* Request a completion. */
291 txq->elts_comp = 0;
292 comp_req = 8;
293 }
294 /* Fill CTRL in the header. */
295 ctrl = _mm_set_epi32(txq->elts_head, comp_req,
296 txq->qp_num_8s | (pkts_n + 2),
297 MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
298 txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
299 ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
300 _mm_store_si128(t_wqe, ctrl);
301 /* Fill ESEG in the header. */
9f95a23c 302 _mm_store_si128(t_wqe + 1, _mm_set_epi32(0, metadata, cs_flags, 0));
11fdf7f2
TL
303#ifdef MLX5_PMD_SOFT_COUNTERS
304 txq->stats.opackets += pkts_n;
305#endif
306 txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
307 nb_dword_per_wqebb;
308 /* Ring QP doorbell. */
309 mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
310 return pkts_n;
311}
312
313/**
314 * Store free buffers to RX SW ring.
315 *
316 * @param rxq
317 * Pointer to RX queue structure.
318 * @param pkts
319 * Pointer to array of packets to be stored.
320 * @param pkts_n
321 * Number of packets to be stored.
322 */
323static inline void
324rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
325{
326 const uint16_t q_mask = (1 << rxq->elts_n) - 1;
327 struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
328 unsigned int pos;
329 uint16_t p = n & -2;
330
331 for (pos = 0; pos < p; pos += 2) {
332 __m128i mbp;
333
334 mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
335 _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
336 }
337 if (n & 1)
338 pkts[pos] = elts[pos];
339}
340
341/**
342 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
343 * extracted from the title completion descriptor.
344 *
345 * @param rxq
346 * Pointer to RX queue structure.
347 * @param cq
348 * Pointer to completion array having a compressed completion at first.
349 * @param elts
350 * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
351 * the title completion descriptor to be copied to the rest of mbufs.
352 */
353static inline void
354rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
355 struct rte_mbuf **elts)
356{
357 volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
358 struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
359 unsigned int pos;
360 unsigned int i;
361 unsigned int inv = 0;
362 /* Mask to shuffle from extracted mini CQE to mbuf. */
363 const __m128i shuf_mask1 =
364 _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
365 -1, -1, /* skip vlan_tci */
366 6, 7, /* data_len, bswap16 */
367 -1, -1, 6, 7, /* pkt_len, bswap16 */
368 -1, -1, -1, -1 /* skip packet_type */);
369 const __m128i shuf_mask2 =
370 _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
371 -1, -1, /* skip vlan_tci */
372 14, 15, /* data_len, bswap16 */
373 -1, -1, 14, 15, /* pkt_len, bswap16 */
374 -1, -1, -1, -1 /* skip packet_type */);
375 /* Restore the compressed count. Must be 16 bits. */
376 const uint16_t mcqe_n = t_pkt->data_len +
377 (rxq->crc_present * ETHER_CRC_LEN);
378 const __m128i rearm =
379 _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
380 const __m128i rxdf =
381 _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
382 const __m128i crc_adj =
383 _mm_set_epi16(0, 0, 0,
384 rxq->crc_present * ETHER_CRC_LEN,
385 0,
386 rxq->crc_present * ETHER_CRC_LEN,
387 0, 0);
388 const uint32_t flow_tag = t_pkt->hash.fdir.hi;
389#ifdef MLX5_PMD_SOFT_COUNTERS
390 const __m128i zero = _mm_setzero_si128();
391 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
392 uint32_t rcvd_byte = 0;
393 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
394 const __m128i len_shuf_mask =
395 _mm_set_epi8(-1, -1, -1, -1,
396 -1, -1, -1, -1,
397 14, 15, 6, 7,
398 10, 11, 2, 3);
399#endif
400
401 /*
402 * A. load mCQEs into a 128bit register.
403 * B. store rearm data to mbuf.
404 * C. combine data from mCQEs with rx_descriptor_fields1.
405 * D. store rx_descriptor_fields1.
406 * E. store flow tag (rte_flow mark).
407 */
408 for (pos = 0; pos < mcqe_n; ) {
409 __m128i mcqe1, mcqe2;
410 __m128i rxdf1, rxdf2;
411#ifdef MLX5_PMD_SOFT_COUNTERS
412 __m128i byte_cnt, invalid_mask;
413#endif
414
415 if (!(pos & 0x7) && pos + 8 < mcqe_n)
416 rte_prefetch0((void *)(cq + pos + 8));
417 /* A.1 load mCQEs into a 128bit register. */
418 mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
419 mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
420 /* B.1 store rearm data to mbuf. */
421 _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
422 _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
423 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
424 rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
425 rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
426 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
427 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
428 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
429 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
430 /* D.1 store rx_descriptor_fields1. */
431 _mm_storeu_si128((__m128i *)
432 &elts[pos]->rx_descriptor_fields1,
433 rxdf1);
434 _mm_storeu_si128((__m128i *)
435 &elts[pos + 1]->rx_descriptor_fields1,
436 rxdf2);
437 /* B.1 store rearm data to mbuf. */
438 _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
439 _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
440 /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
441 rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
442 rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
443 rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
444 rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
445 rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
446 rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
447 /* D.1 store rx_descriptor_fields1. */
448 _mm_storeu_si128((__m128i *)
449 &elts[pos + 2]->rx_descriptor_fields1,
450 rxdf1);
451 _mm_storeu_si128((__m128i *)
452 &elts[pos + 3]->rx_descriptor_fields1,
453 rxdf2);
454#ifdef MLX5_PMD_SOFT_COUNTERS
455 invalid_mask = _mm_set_epi64x(0,
456 (mcqe_n - pos) *
457 sizeof(uint16_t) * 8);
458 invalid_mask = _mm_sll_epi64(ones, invalid_mask);
459 mcqe1 = _mm_srli_si128(mcqe1, 4);
460 byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
461 byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
462 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
463 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
464 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
465#endif
466 if (rxq->mark) {
467 /* E.1 store flow tag (rte_flow mark). */
468 elts[pos]->hash.fdir.hi = flow_tag;
469 elts[pos + 1]->hash.fdir.hi = flow_tag;
470 elts[pos + 2]->hash.fdir.hi = flow_tag;
471 elts[pos + 3]->hash.fdir.hi = flow_tag;
472 }
473 pos += MLX5_VPMD_DESCS_PER_LOOP;
474 /* Move to next CQE and invalidate consumed CQEs. */
475 if (!(pos & 0x7) && pos < mcqe_n) {
476 mcq = (void *)(cq + pos);
477 for (i = 0; i < 8; ++i)
478 cq[inv++].op_own = MLX5_CQE_INVALIDATE;
479 }
480 }
481 /* Invalidate the rest of CQEs. */
482 for (; inv < mcqe_n; ++inv)
483 cq[inv].op_own = MLX5_CQE_INVALIDATE;
484#ifdef MLX5_PMD_SOFT_COUNTERS
485 rxq->stats.ipackets += mcqe_n;
486 rxq->stats.ibytes += rcvd_byte;
487#endif
488 rxq->cq_ci += mcqe_n;
489}
490
491/**
492 * Calculate packet type and offload flag for mbuf and store it.
493 *
494 * @param rxq
495 * Pointer to RX queue structure.
496 * @param cqes[4]
497 * Array of four 16bytes completions extracted from the original completion
498 * descriptor.
499 * @param op_err
500 * Opcode vector having responder error status. Each field is 4B.
501 * @param pkts
502 * Pointer to array of packets to be filled.
503 */
504static inline void
505rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
506 __m128i op_err, struct rte_mbuf **pkts)
507{
508 __m128i pinfo0, pinfo1;
509 __m128i pinfo, ptype;
510 __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
511 rxq->hw_timestamp * PKT_RX_TIMESTAMP);
512 __m128i cv_flags;
513 const __m128i zero = _mm_setzero_si128();
514 const __m128i ptype_mask =
515 _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
516 const __m128i ptype_ol_mask =
517 _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
518 const __m128i pinfo_mask =
519 _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
520 const __m128i cv_flag_sel =
521 _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
522 (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
523 PKT_RX_L4_CKSUM_GOOD) >> 1),
524 0,
525 (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
526 0,
527 (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
528 (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
529 0);
530 const __m128i cv_mask =
531 _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
532 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
533 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
534 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
535 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
536 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
537 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
538 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
539 const __m128i mbuf_init =
540 _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
541 __m128i rearm0, rearm1, rearm2, rearm3;
542 uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
543
544 /* Extract pkt_info field. */
545 pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
546 pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
547 pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
548 /* Extract hdr_type_etc field. */
549 pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
550 pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
551 ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
552 if (rxq->mark) {
553 const __m128i pinfo_ft_mask =
554 _mm_set_epi32(0xffffff00, 0xffffff00,
555 0xffffff00, 0xffffff00);
556 const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
557 __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
558 __m128i flow_tag, invalid_mask;
559
560 flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
561 /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
562 invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
563 ol_flags = _mm_or_si128(ol_flags,
564 _mm_andnot_si128(invalid_mask,
565 fdir_flags));
566 /* Mask out invalid entries. */
567 fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
568 /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
569 ol_flags = _mm_or_si128(ol_flags,
570 _mm_andnot_si128(
571 _mm_cmpeq_epi32(flow_tag,
572 pinfo_ft_mask),
573 fdir_id_flags));
574 }
575 /*
576 * Merge the two fields to generate the following:
577 * bit[1] = l3_ok
578 * bit[2] = l4_ok
579 * bit[8] = cv
580 * bit[11:10] = l3_hdr_type
581 * bit[14:12] = l4_hdr_type
582 * bit[15] = ip_frag
583 * bit[16] = tunneled
584 * bit[17] = outer_l3_type
585 */
586 ptype = _mm_and_si128(ptype, ptype_mask);
587 pinfo = _mm_and_si128(pinfo, pinfo_mask);
588 pinfo = _mm_slli_epi32(pinfo, 16);
589 /* Make pinfo has merged fields for ol_flags calculation. */
590 pinfo = _mm_or_si128(ptype, pinfo);
591 ptype = _mm_srli_epi32(pinfo, 10);
592 ptype = _mm_packs_epi32(ptype, zero);
593 /* Errored packets will have RTE_PTYPE_ALL_MASK. */
594 op_err = _mm_srli_epi16(op_err, 8);
595 ptype = _mm_or_si128(ptype, op_err);
596 pt_idx0 = _mm_extract_epi8(ptype, 0);
597 pt_idx1 = _mm_extract_epi8(ptype, 2);
598 pt_idx2 = _mm_extract_epi8(ptype, 4);
599 pt_idx3 = _mm_extract_epi8(ptype, 6);
600 pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
601 !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
602 pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
603 !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
604 pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
605 !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
606 pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
607 !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
608 /* Fill flags for checksum and VLAN. */
609 pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
610 pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
611 /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
612 cv_flags = _mm_slli_epi32(pinfo, 9);
613 cv_flags = _mm_or_si128(pinfo, cv_flags);
614 /* Move back flags to start from byte[0]. */
615 cv_flags = _mm_srli_epi32(cv_flags, 8);
616 /* Mask out garbage bits. */
617 cv_flags = _mm_and_si128(cv_flags, cv_mask);
618 /* Merge to ol_flags. */
619 ol_flags = _mm_or_si128(ol_flags, cv_flags);
620 /* Merge mbuf_init and ol_flags. */
621 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
622 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
623 rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
624 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
625 /* Write 8B rearm_data and 8B ol_flags. */
626 _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
627 _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
628 _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
629 _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
630}
631
632/**
633 * Receive burst of packets. An errored completion also consumes a mbuf, but the
634 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
635 * before returning to application.
636 *
637 * @param rxq
638 * Pointer to RX queue structure.
639 * @param[out] pkts
640 * Array to store received packets.
641 * @param pkts_n
642 * Maximum number of packets in array.
643 * @param[out] err
644 * Pointer to a flag. Set non-zero value if pkts array has at least one error
645 * packet to handle.
646 *
647 * @return
648 * Number of packets received including errors (<= pkts_n).
649 */
650static inline uint16_t
651rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
652 uint64_t *err)
653{
654 const uint16_t q_n = 1 << rxq->cqe_n;
655 const uint16_t q_mask = q_n - 1;
656 volatile struct mlx5_cqe *cq;
657 struct rte_mbuf **elts;
658 unsigned int pos;
659 uint64_t n;
660 uint16_t repl_n;
661 uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
662 uint16_t nocmp_n = 0;
663 uint16_t rcvd_pkt = 0;
664 unsigned int cq_idx = rxq->cq_ci & q_mask;
665 unsigned int elts_idx;
666 unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
667 const __m128i owner_check =
668 _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
669 const __m128i opcode_check =
670 _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
671 const __m128i format_check =
672 _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
673 const __m128i resp_err_check =
674 _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
675#ifdef MLX5_PMD_SOFT_COUNTERS
676 uint32_t rcvd_byte = 0;
677 /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
678 const __m128i len_shuf_mask =
679 _mm_set_epi8(-1, -1, -1, -1,
680 -1, -1, -1, -1,
681 12, 13, 8, 9,
682 4, 5, 0, 1);
683#endif
684 /* Mask to shuffle from extracted CQE to mbuf. */
685 const __m128i shuf_mask =
686 _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
687 12, 13, 14, 15, /* rss, bswap32 */
688 10, 11, /* vlan_tci, bswap16 */
689 4, 5, /* data_len, bswap16 */
690 -1, -1, /* zero out 2nd half of pkt_len */
691 4, 5 /* pkt_len, bswap16 */);
692 /* Mask to blend from the last Qword to the first DQword. */
693 const __m128i blend_mask =
694 _mm_set_epi8(-1, -1, -1, -1,
695 -1, -1, -1, -1,
696 0, 0, 0, 0,
697 0, 0, 0, -1);
698 const __m128i zero = _mm_setzero_si128();
699 const __m128i ones = _mm_cmpeq_epi32(zero, zero);
700 const __m128i crc_adj =
701 _mm_set_epi16(0, 0, 0, 0, 0,
702 rxq->crc_present * ETHER_CRC_LEN,
703 0,
704 rxq->crc_present * ETHER_CRC_LEN);
705 const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
706
707 assert(rxq->sges_n == 0);
708 assert(rxq->cqe_n == rxq->elts_n);
709 cq = &(*rxq->cqes)[cq_idx];
710 rte_prefetch0(cq);
711 rte_prefetch0(cq + 1);
712 rte_prefetch0(cq + 2);
713 rte_prefetch0(cq + 3);
714 pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
715 /*
716 * Order of indexes:
717 * rq_ci >= cq_ci >= rq_pi
718 * Definition of indexes:
719 * rq_ci - cq_ci := # of buffers owned by HW (posted).
720 * cq_ci - rq_pi := # of buffers not returned to app (decompressed).
721 * N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
722 */
723 repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
9f95a23c 724 if (repl_n >= rxq->rq_repl_thresh)
11fdf7f2
TL
725 mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
726 /* See if there're unreturned mbufs from compressed CQE. */
727 rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
728 if (rcvd_pkt > 0) {
729 rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
730 rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
731 rxq->rq_pi += rcvd_pkt;
732 pkts += rcvd_pkt;
733 }
734 elts_idx = rxq->rq_pi & q_mask;
735 elts = &(*rxq->elts)[elts_idx];
736 /* Not to overflow pkts array. */
737 pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
738 /* Not to cross queue end. */
739 pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
740 if (!pkts_n)
741 return rcvd_pkt;
742 /* At this point, there shouldn't be any remained packets. */
743 assert(rxq->rq_pi == rxq->cq_ci);
744 /*
745 * A. load first Qword (8bytes) in one loop.
746 * B. copy 4 mbuf pointers from elts ring to returing pkts.
747 * C. load remained CQE data and extract necessary fields.
748 * Final 16bytes cqes[] extracted from original 64bytes CQE has the
749 * following structure:
750 * struct {
751 * uint8_t pkt_info;
752 * uint8_t flow_tag[3];
753 * uint16_t byte_cnt;
754 * uint8_t rsvd4;
755 * uint8_t op_own;
756 * uint16_t hdr_type_etc;
757 * uint16_t vlan_info;
758 * uint32_t rx_has_res;
759 * } c;
760 * D. fill in mbuf.
761 * E. get valid CQEs.
762 * F. find compressed CQE.
763 */
764 for (pos = 0;
765 pos < pkts_n;
766 pos += MLX5_VPMD_DESCS_PER_LOOP) {
767 __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
768 __m128i cqe_tmp1, cqe_tmp2;
769 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
770 __m128i op_own, op_own_tmp1, op_own_tmp2;
771 __m128i opcode, owner_mask, invalid_mask;
772 __m128i comp_mask;
773 __m128i mask;
774#ifdef MLX5_PMD_SOFT_COUNTERS
775 __m128i byte_cnt;
776#endif
777 __m128i mbp1, mbp2;
778 __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
779 unsigned int p1, p2, p3;
780
781 /* Prefetch next 4 CQEs. */
782 if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
783 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
784 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
785 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
786 rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
787 }
788 /* A.0 do not cross the end of CQ. */
789 mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
790 mask = _mm_sll_epi64(ones, mask);
791 p = _mm_andnot_si128(mask, p);
792 /* A.1 load cqes. */
793 p3 = _mm_extract_epi16(p, 3);
794 cqes[3] = _mm_loadl_epi64((__m128i *)
795 &cq[pos + p3].sop_drop_qpn);
796 rte_compiler_barrier();
797 p2 = _mm_extract_epi16(p, 2);
798 cqes[2] = _mm_loadl_epi64((__m128i *)
799 &cq[pos + p2].sop_drop_qpn);
800 rte_compiler_barrier();
801 /* B.1 load mbuf pointers. */
802 mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
803 mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
804 /* A.1 load a block having op_own. */
805 p1 = _mm_extract_epi16(p, 1);
806 cqes[1] = _mm_loadl_epi64((__m128i *)
807 &cq[pos + p1].sop_drop_qpn);
808 rte_compiler_barrier();
809 cqes[0] = _mm_loadl_epi64((__m128i *)
810 &cq[pos].sop_drop_qpn);
811 /* B.2 copy mbuf pointers. */
812 _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
813 _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
814 rte_cio_rmb();
815 /* C.1 load remained CQE data and extract necessary fields. */
816 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
817 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
818 cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
819 cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
820 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
821 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
822 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
823 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
824 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
825 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
826 cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
827 cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
828 /* C.2 generate final structure for mbuf with swapping bytes. */
829 pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
830 pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
831 /* C.3 adjust CRC length. */
832 pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
833 pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
834 /* C.4 adjust flow mark. */
835 pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
836 pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
837 /* D.1 fill in mbuf - rx_descriptor_fields1. */
838 _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
839 _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
840 /* E.1 extract op_own field. */
841 op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
842 /* C.1 load remained CQE data and extract necessary fields. */
843 cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
844 cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
845 cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
846 cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
847 cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
848 cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
849 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
850 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
851 cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
852 cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
853 cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
854 cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
855 /* C.2 generate final structure for mbuf with swapping bytes. */
856 pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
857 pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
858 /* C.3 adjust CRC length. */
859 pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
860 pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
861 /* C.4 adjust flow mark. */
862 pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
863 pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
864 /* E.1 extract op_own byte. */
865 op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
866 op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
867 /* D.1 fill in mbuf - rx_descriptor_fields1. */
868 _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
869 _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
870 /* E.2 flip owner bit to mark CQEs from last round. */
871 owner_mask = _mm_and_si128(op_own, owner_check);
872 if (ownership)
873 owner_mask = _mm_xor_si128(owner_mask, owner_check);
874 owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
875 owner_mask = _mm_packs_epi32(owner_mask, zero);
876 /* E.3 get mask for invalidated CQEs. */
877 opcode = _mm_and_si128(op_own, opcode_check);
878 invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
879 invalid_mask = _mm_packs_epi32(invalid_mask, zero);
880 /* E.4 mask out beyond boundary. */
881 invalid_mask = _mm_or_si128(invalid_mask, mask);
882 /* E.5 merge invalid_mask with invalid owner. */
883 invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
884 /* F.1 find compressed CQE format. */
885 comp_mask = _mm_and_si128(op_own, format_check);
886 comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
887 comp_mask = _mm_packs_epi32(comp_mask, zero);
888 /* F.2 mask out invalid entries. */
889 comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
890 comp_idx = _mm_cvtsi128_si64(comp_mask);
891 /* F.3 get the first compressed CQE. */
892 comp_idx = comp_idx ?
893 __builtin_ctzll(comp_idx) /
894 (sizeof(uint16_t) * 8) :
895 MLX5_VPMD_DESCS_PER_LOOP;
896 /* E.6 mask out entries after the compressed CQE. */
897 mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
898 mask = _mm_sll_epi64(ones, mask);
899 invalid_mask = _mm_or_si128(invalid_mask, mask);
900 /* E.7 count non-compressed valid CQEs. */
901 n = _mm_cvtsi128_si64(invalid_mask);
902 n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
903 MLX5_VPMD_DESCS_PER_LOOP;
904 nocmp_n += n;
905 /* D.2 get the final invalid mask. */
906 mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
907 mask = _mm_sll_epi64(ones, mask);
908 invalid_mask = _mm_or_si128(invalid_mask, mask);
909 /* D.3 check error in opcode. */
910 opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
911 opcode = _mm_packs_epi32(opcode, zero);
912 opcode = _mm_andnot_si128(invalid_mask, opcode);
913 /* D.4 mark if any error is set */
914 *err |= _mm_cvtsi128_si64(opcode);
915 /* D.5 fill in mbuf - rearm_data and packet_type. */
916 rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
917 if (rxq->hw_timestamp) {
918 pkts[pos]->timestamp =
919 rte_be_to_cpu_64(cq[pos].timestamp);
920 pkts[pos + 1]->timestamp =
921 rte_be_to_cpu_64(cq[pos + p1].timestamp);
922 pkts[pos + 2]->timestamp =
923 rte_be_to_cpu_64(cq[pos + p2].timestamp);
924 pkts[pos + 3]->timestamp =
925 rte_be_to_cpu_64(cq[pos + p3].timestamp);
926 }
927#ifdef MLX5_PMD_SOFT_COUNTERS
928 /* Add up received bytes count. */
929 byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
930 byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
931 byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
932 rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
933#endif
934 /*
935 * Break the loop unless more valid CQE is expected, or if
936 * there's a compressed CQE.
937 */
938 if (n != MLX5_VPMD_DESCS_PER_LOOP)
939 break;
940 }
941 /* If no new CQE seen, return without updating cq_db. */
942 if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
943 return rcvd_pkt;
944 /* Update the consumer indexes for non-compressed CQEs. */
945 assert(nocmp_n <= pkts_n);
946 rxq->cq_ci += nocmp_n;
947 rxq->rq_pi += nocmp_n;
948 rcvd_pkt += nocmp_n;
949#ifdef MLX5_PMD_SOFT_COUNTERS
950 rxq->stats.ipackets += nocmp_n;
951 rxq->stats.ibytes += rcvd_byte;
952#endif
953 /* Decompress the last CQE if compressed. */
954 if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
955 assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
956 rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
957 /* Return more packets if needed. */
958 if (nocmp_n < pkts_n) {
959 uint16_t n = rxq->cq_ci - rxq->rq_pi;
960
961 n = RTE_MIN(n, pkts_n - nocmp_n);
962 rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
963 rxq->rq_pi += n;
964 rcvd_pkt += n;
965 }
966 }
967 rte_compiler_barrier();
968 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
969 return rcvd_pkt;
970}
971
972#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */