]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/kernel/linux/kni/ethtool/igb/e1000_nvm.c
bump version to 15.2.11-pve1
[ceph.git] / ceph / src / spdk / dpdk / kernel / linux / kni / ethtool / igb / e1000_nvm.c
CommitLineData
11fdf7f2 1// SPDX-License-Identifier: GPL-2.0
7c673cae
FG
2/*******************************************************************************
3
4 Intel(R) Gigabit Ethernet Linux driver
5 Copyright(c) 2007-2013 Intel Corporation.
6
7c673cae
FG
7 Contact Information:
8 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10
11*******************************************************************************/
12
13#include "e1000_api.h"
14
15static void e1000_reload_nvm_generic(struct e1000_hw *hw);
16
17/**
18 * e1000_init_nvm_ops_generic - Initialize NVM function pointers
19 * @hw: pointer to the HW structure
20 *
21 * Setups up the function pointers to no-op functions
22 **/
23void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
24{
25 struct e1000_nvm_info *nvm = &hw->nvm;
26 DEBUGFUNC("e1000_init_nvm_ops_generic");
27
28 /* Initialize function pointers */
29 nvm->ops.init_params = e1000_null_ops_generic;
30 nvm->ops.acquire = e1000_null_ops_generic;
31 nvm->ops.read = e1000_null_read_nvm;
32 nvm->ops.release = e1000_null_nvm_generic;
33 nvm->ops.reload = e1000_reload_nvm_generic;
34 nvm->ops.update = e1000_null_ops_generic;
35 nvm->ops.valid_led_default = e1000_null_led_default;
36 nvm->ops.validate = e1000_null_ops_generic;
37 nvm->ops.write = e1000_null_write_nvm;
38}
39
40/**
41 * e1000_null_nvm_read - No-op function, return 0
42 * @hw: pointer to the HW structure
43 **/
44s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
45 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
46 u16 E1000_UNUSEDARG *c)
47{
48 DEBUGFUNC("e1000_null_read_nvm");
49 return E1000_SUCCESS;
50}
51
52/**
53 * e1000_null_nvm_generic - No-op function, return void
54 * @hw: pointer to the HW structure
55 **/
56void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
57{
58 DEBUGFUNC("e1000_null_nvm_generic");
59 return;
60}
61
62/**
63 * e1000_null_led_default - No-op function, return 0
64 * @hw: pointer to the HW structure
65 **/
66s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
67 u16 E1000_UNUSEDARG *data)
68{
69 DEBUGFUNC("e1000_null_led_default");
70 return E1000_SUCCESS;
71}
72
73/**
74 * e1000_null_write_nvm - No-op function, return 0
75 * @hw: pointer to the HW structure
76 **/
77s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
78 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
79 u16 E1000_UNUSEDARG *c)
80{
81 DEBUGFUNC("e1000_null_write_nvm");
82 return E1000_SUCCESS;
83}
84
85/**
86 * e1000_raise_eec_clk - Raise EEPROM clock
87 * @hw: pointer to the HW structure
88 * @eecd: pointer to the EEPROM
89 *
90 * Enable/Raise the EEPROM clock bit.
91 **/
92static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
93{
94 *eecd = *eecd | E1000_EECD_SK;
95 E1000_WRITE_REG(hw, E1000_EECD, *eecd);
96 E1000_WRITE_FLUSH(hw);
97 usec_delay(hw->nvm.delay_usec);
98}
99
100/**
101 * e1000_lower_eec_clk - Lower EEPROM clock
102 * @hw: pointer to the HW structure
103 * @eecd: pointer to the EEPROM
104 *
105 * Clear/Lower the EEPROM clock bit.
106 **/
107static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
108{
109 *eecd = *eecd & ~E1000_EECD_SK;
110 E1000_WRITE_REG(hw, E1000_EECD, *eecd);
111 E1000_WRITE_FLUSH(hw);
112 usec_delay(hw->nvm.delay_usec);
113}
114
115/**
116 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
117 * @hw: pointer to the HW structure
118 * @data: data to send to the EEPROM
119 * @count: number of bits to shift out
120 *
121 * We need to shift 'count' bits out to the EEPROM. So, the value in the
122 * "data" parameter will be shifted out to the EEPROM one bit at a time.
123 * In order to do this, "data" must be broken down into bits.
124 **/
125static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
126{
127 struct e1000_nvm_info *nvm = &hw->nvm;
128 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
129 u32 mask;
130
131 DEBUGFUNC("e1000_shift_out_eec_bits");
132
133 mask = 0x01 << (count - 1);
134 if (nvm->type == e1000_nvm_eeprom_spi)
135 eecd |= E1000_EECD_DO;
136
137 do {
138 eecd &= ~E1000_EECD_DI;
139
140 if (data & mask)
141 eecd |= E1000_EECD_DI;
142
143 E1000_WRITE_REG(hw, E1000_EECD, eecd);
144 E1000_WRITE_FLUSH(hw);
145
146 usec_delay(nvm->delay_usec);
147
148 e1000_raise_eec_clk(hw, &eecd);
149 e1000_lower_eec_clk(hw, &eecd);
150
151 mask >>= 1;
152 } while (mask);
153
154 eecd &= ~E1000_EECD_DI;
155 E1000_WRITE_REG(hw, E1000_EECD, eecd);
156}
157
158/**
159 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
160 * @hw: pointer to the HW structure
161 * @count: number of bits to shift in
162 *
163 * In order to read a register from the EEPROM, we need to shift 'count' bits
164 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
165 * the EEPROM (setting the SK bit), and then reading the value of the data out
166 * "DO" bit. During this "shifting in" process the data in "DI" bit should
167 * always be clear.
168 **/
169static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
170{
171 u32 eecd;
172 u32 i;
173 u16 data;
174
175 DEBUGFUNC("e1000_shift_in_eec_bits");
176
177 eecd = E1000_READ_REG(hw, E1000_EECD);
178
179 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
180 data = 0;
181
182 for (i = 0; i < count; i++) {
183 data <<= 1;
184 e1000_raise_eec_clk(hw, &eecd);
185
186 eecd = E1000_READ_REG(hw, E1000_EECD);
187
188 eecd &= ~E1000_EECD_DI;
189 if (eecd & E1000_EECD_DO)
190 data |= 1;
191
192 e1000_lower_eec_clk(hw, &eecd);
193 }
194
195 return data;
196}
197
198/**
199 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
200 * @hw: pointer to the HW structure
201 * @ee_reg: EEPROM flag for polling
202 *
203 * Polls the EEPROM status bit for either read or write completion based
204 * upon the value of 'ee_reg'.
205 **/
206s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
207{
208 u32 attempts = 100000;
209 u32 i, reg = 0;
210
211 DEBUGFUNC("e1000_poll_eerd_eewr_done");
212
213 for (i = 0; i < attempts; i++) {
214 if (ee_reg == E1000_NVM_POLL_READ)
215 reg = E1000_READ_REG(hw, E1000_EERD);
216 else
217 reg = E1000_READ_REG(hw, E1000_EEWR);
218
219 if (reg & E1000_NVM_RW_REG_DONE)
220 return E1000_SUCCESS;
221
222 usec_delay(5);
223 }
224
225 return -E1000_ERR_NVM;
226}
227
228/**
229 * e1000_acquire_nvm_generic - Generic request for access to EEPROM
230 * @hw: pointer to the HW structure
231 *
232 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
233 * Return successful if access grant bit set, else clear the request for
234 * EEPROM access and return -E1000_ERR_NVM (-1).
235 **/
236s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
237{
238 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
239 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
240
241 DEBUGFUNC("e1000_acquire_nvm_generic");
242
243 E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
244 eecd = E1000_READ_REG(hw, E1000_EECD);
245
246 while (timeout) {
247 if (eecd & E1000_EECD_GNT)
248 break;
249 usec_delay(5);
250 eecd = E1000_READ_REG(hw, E1000_EECD);
251 timeout--;
252 }
253
254 if (!timeout) {
255 eecd &= ~E1000_EECD_REQ;
256 E1000_WRITE_REG(hw, E1000_EECD, eecd);
257 DEBUGOUT("Could not acquire NVM grant\n");
258 return -E1000_ERR_NVM;
259 }
260
261 return E1000_SUCCESS;
262}
263
264/**
265 * e1000_standby_nvm - Return EEPROM to standby state
266 * @hw: pointer to the HW structure
267 *
268 * Return the EEPROM to a standby state.
269 **/
270static void e1000_standby_nvm(struct e1000_hw *hw)
271{
272 struct e1000_nvm_info *nvm = &hw->nvm;
273 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
274
275 DEBUGFUNC("e1000_standby_nvm");
276
277 if (nvm->type == e1000_nvm_eeprom_spi) {
278 /* Toggle CS to flush commands */
279 eecd |= E1000_EECD_CS;
280 E1000_WRITE_REG(hw, E1000_EECD, eecd);
281 E1000_WRITE_FLUSH(hw);
282 usec_delay(nvm->delay_usec);
283 eecd &= ~E1000_EECD_CS;
284 E1000_WRITE_REG(hw, E1000_EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 usec_delay(nvm->delay_usec);
287 }
288}
289
290/**
291 * e1000_stop_nvm - Terminate EEPROM command
292 * @hw: pointer to the HW structure
293 *
294 * Terminates the current command by inverting the EEPROM's chip select pin.
295 **/
296static void e1000_stop_nvm(struct e1000_hw *hw)
297{
298 u32 eecd;
299
300 DEBUGFUNC("e1000_stop_nvm");
301
302 eecd = E1000_READ_REG(hw, E1000_EECD);
303 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
304 /* Pull CS high */
305 eecd |= E1000_EECD_CS;
306 e1000_lower_eec_clk(hw, &eecd);
307 }
308}
309
310/**
311 * e1000_release_nvm_generic - Release exclusive access to EEPROM
312 * @hw: pointer to the HW structure
313 *
314 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
315 **/
316void e1000_release_nvm_generic(struct e1000_hw *hw)
317{
318 u32 eecd;
319
320 DEBUGFUNC("e1000_release_nvm_generic");
321
322 e1000_stop_nvm(hw);
323
324 eecd = E1000_READ_REG(hw, E1000_EECD);
325 eecd &= ~E1000_EECD_REQ;
326 E1000_WRITE_REG(hw, E1000_EECD, eecd);
327}
328
329/**
330 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
331 * @hw: pointer to the HW structure
332 *
333 * Setups the EEPROM for reading and writing.
334 **/
335static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
336{
337 struct e1000_nvm_info *nvm = &hw->nvm;
338 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
339 u8 spi_stat_reg;
340
341 DEBUGFUNC("e1000_ready_nvm_eeprom");
342
343 if (nvm->type == e1000_nvm_eeprom_spi) {
344 u16 timeout = NVM_MAX_RETRY_SPI;
345
346 /* Clear SK and CS */
347 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
348 E1000_WRITE_REG(hw, E1000_EECD, eecd);
349 E1000_WRITE_FLUSH(hw);
350 usec_delay(1);
351
352 /* Read "Status Register" repeatedly until the LSB is cleared.
353 * The EEPROM will signal that the command has been completed
354 * by clearing bit 0 of the internal status register. If it's
355 * not cleared within 'timeout', then error out.
356 */
357 while (timeout) {
358 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
359 hw->nvm.opcode_bits);
360 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
361 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
362 break;
363
364 usec_delay(5);
365 e1000_standby_nvm(hw);
366 timeout--;
367 }
368
369 if (!timeout) {
370 DEBUGOUT("SPI NVM Status error\n");
371 return -E1000_ERR_NVM;
372 }
373 }
374
375 return E1000_SUCCESS;
376}
377
378/**
379 * e1000_read_nvm_spi - Read EEPROM's using SPI
380 * @hw: pointer to the HW structure
381 * @offset: offset of word in the EEPROM to read
382 * @words: number of words to read
383 * @data: word read from the EEPROM
384 *
385 * Reads a 16 bit word from the EEPROM.
386 **/
387s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
388{
389 struct e1000_nvm_info *nvm = &hw->nvm;
390 u32 i = 0;
391 s32 ret_val;
392 u16 word_in;
393 u8 read_opcode = NVM_READ_OPCODE_SPI;
394
395 DEBUGFUNC("e1000_read_nvm_spi");
396
397 /* A check for invalid values: offset too large, too many words,
398 * and not enough words.
399 */
400 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
401 (words == 0)) {
402 DEBUGOUT("nvm parameter(s) out of bounds\n");
403 return -E1000_ERR_NVM;
404 }
405
406 ret_val = nvm->ops.acquire(hw);
407 if (ret_val)
408 return ret_val;
409
410 ret_val = e1000_ready_nvm_eeprom(hw);
411 if (ret_val)
412 goto release;
413
414 e1000_standby_nvm(hw);
415
416 if ((nvm->address_bits == 8) && (offset >= 128))
417 read_opcode |= NVM_A8_OPCODE_SPI;
418
419 /* Send the READ command (opcode + addr) */
420 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
421 e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
422
423 /* Read the data. SPI NVMs increment the address with each byte
424 * read and will roll over if reading beyond the end. This allows
425 * us to read the whole NVM from any offset
426 */
427 for (i = 0; i < words; i++) {
428 word_in = e1000_shift_in_eec_bits(hw, 16);
429 data[i] = (word_in >> 8) | (word_in << 8);
430 }
431
432release:
433 nvm->ops.release(hw);
434
435 return ret_val;
436}
437
438/**
439 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
440 * @hw: pointer to the HW structure
441 * @offset: offset of word in the EEPROM to read
442 * @words: number of words to read
443 * @data: word read from the EEPROM
444 *
445 * Reads a 16 bit word from the EEPROM using the EERD register.
446 **/
447s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
448{
449 struct e1000_nvm_info *nvm = &hw->nvm;
450 u32 i, eerd = 0;
451 s32 ret_val = E1000_SUCCESS;
452
453 DEBUGFUNC("e1000_read_nvm_eerd");
454
455 /* A check for invalid values: offset too large, too many words,
456 * too many words for the offset, and not enough words.
457 */
458 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
459 (words == 0)) {
460 DEBUGOUT("nvm parameter(s) out of bounds\n");
461 return -E1000_ERR_NVM;
462 }
463
464 for (i = 0; i < words; i++) {
465 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
466 E1000_NVM_RW_REG_START;
467
468 E1000_WRITE_REG(hw, E1000_EERD, eerd);
469 ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
470 if (ret_val)
471 break;
472
473 data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
474 E1000_NVM_RW_REG_DATA);
475 }
476
477 return ret_val;
478}
479
480/**
481 * e1000_write_nvm_spi - Write to EEPROM using SPI
482 * @hw: pointer to the HW structure
483 * @offset: offset within the EEPROM to be written to
484 * @words: number of words to write
485 * @data: 16 bit word(s) to be written to the EEPROM
486 *
487 * Writes data to EEPROM at offset using SPI interface.
488 *
489 * If e1000_update_nvm_checksum is not called after this function , the
490 * EEPROM will most likely contain an invalid checksum.
491 **/
492s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
493{
494 struct e1000_nvm_info *nvm = &hw->nvm;
495 s32 ret_val = -E1000_ERR_NVM;
496 u16 widx = 0;
497
498 DEBUGFUNC("e1000_write_nvm_spi");
499
500 /* A check for invalid values: offset too large, too many words,
501 * and not enough words.
502 */
503 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
504 (words == 0)) {
505 DEBUGOUT("nvm parameter(s) out of bounds\n");
506 return -E1000_ERR_NVM;
507 }
508
509 while (widx < words) {
510 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
511
512 ret_val = nvm->ops.acquire(hw);
513 if (ret_val)
514 return ret_val;
515
516 ret_val = e1000_ready_nvm_eeprom(hw);
517 if (ret_val) {
518 nvm->ops.release(hw);
519 return ret_val;
520 }
521
522 e1000_standby_nvm(hw);
523
524 /* Send the WRITE ENABLE command (8 bit opcode) */
525 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
526 nvm->opcode_bits);
527
528 e1000_standby_nvm(hw);
529
530 /* Some SPI eeproms use the 8th address bit embedded in the
531 * opcode
532 */
533 if ((nvm->address_bits == 8) && (offset >= 128))
534 write_opcode |= NVM_A8_OPCODE_SPI;
535
536 /* Send the Write command (8-bit opcode + addr) */
537 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
538 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
539 nvm->address_bits);
540
541 /* Loop to allow for up to whole page write of eeprom */
542 while (widx < words) {
543 u16 word_out = data[widx];
544 word_out = (word_out >> 8) | (word_out << 8);
545 e1000_shift_out_eec_bits(hw, word_out, 16);
546 widx++;
547
548 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
549 e1000_standby_nvm(hw);
550 break;
551 }
552 }
553 msec_delay(10);
554 nvm->ops.release(hw);
555 }
556
557 return ret_val;
558}
559
560/**
561 * e1000_read_pba_string_generic - Read device part number
562 * @hw: pointer to the HW structure
563 * @pba_num: pointer to device part number
564 * @pba_num_size: size of part number buffer
565 *
566 * Reads the product board assembly (PBA) number from the EEPROM and stores
567 * the value in pba_num.
568 **/
569s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
570 u32 pba_num_size)
571{
572 s32 ret_val;
573 u16 nvm_data;
574 u16 pba_ptr;
575 u16 offset;
576 u16 length;
577
578 DEBUGFUNC("e1000_read_pba_string_generic");
579
580 if (pba_num == NULL) {
581 DEBUGOUT("PBA string buffer was null\n");
582 return -E1000_ERR_INVALID_ARGUMENT;
583 }
584
585 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
586 if (ret_val) {
587 DEBUGOUT("NVM Read Error\n");
588 return ret_val;
589 }
590
591 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
592 if (ret_val) {
593 DEBUGOUT("NVM Read Error\n");
594 return ret_val;
595 }
596
597 /* if nvm_data is not ptr guard the PBA must be in legacy format which
598 * means pba_ptr is actually our second data word for the PBA number
599 * and we can decode it into an ascii string
600 */
601 if (nvm_data != NVM_PBA_PTR_GUARD) {
602 DEBUGOUT("NVM PBA number is not stored as string\n");
603
604 /* make sure callers buffer is big enough to store the PBA */
605 if (pba_num_size < E1000_PBANUM_LENGTH) {
606 DEBUGOUT("PBA string buffer too small\n");
607 return E1000_ERR_NO_SPACE;
608 }
609
610 /* extract hex string from data and pba_ptr */
611 pba_num[0] = (nvm_data >> 12) & 0xF;
612 pba_num[1] = (nvm_data >> 8) & 0xF;
613 pba_num[2] = (nvm_data >> 4) & 0xF;
614 pba_num[3] = nvm_data & 0xF;
615 pba_num[4] = (pba_ptr >> 12) & 0xF;
616 pba_num[5] = (pba_ptr >> 8) & 0xF;
617 pba_num[6] = '-';
618 pba_num[7] = 0;
619 pba_num[8] = (pba_ptr >> 4) & 0xF;
620 pba_num[9] = pba_ptr & 0xF;
621
622 /* put a null character on the end of our string */
623 pba_num[10] = '\0';
624
625 /* switch all the data but the '-' to hex char */
626 for (offset = 0; offset < 10; offset++) {
627 if (pba_num[offset] < 0xA)
628 pba_num[offset] += '0';
629 else if (pba_num[offset] < 0x10)
630 pba_num[offset] += 'A' - 0xA;
631 }
632
633 return E1000_SUCCESS;
634 }
635
636 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
637 if (ret_val) {
638 DEBUGOUT("NVM Read Error\n");
639 return ret_val;
640 }
641
642 if (length == 0xFFFF || length == 0) {
643 DEBUGOUT("NVM PBA number section invalid length\n");
644 return -E1000_ERR_NVM_PBA_SECTION;
645 }
646 /* check if pba_num buffer is big enough */
647 if (pba_num_size < (((u32)length * 2) - 1)) {
648 DEBUGOUT("PBA string buffer too small\n");
649 return -E1000_ERR_NO_SPACE;
650 }
651
652 /* trim pba length from start of string */
653 pba_ptr++;
654 length--;
655
656 for (offset = 0; offset < length; offset++) {
657 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
658 if (ret_val) {
659 DEBUGOUT("NVM Read Error\n");
660 return ret_val;
661 }
662 pba_num[offset * 2] = (u8)(nvm_data >> 8);
663 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
664 }
665 pba_num[offset * 2] = '\0';
666
667 return E1000_SUCCESS;
668}
669
670/**
671 * e1000_read_pba_length_generic - Read device part number length
672 * @hw: pointer to the HW structure
673 * @pba_num_size: size of part number buffer
674 *
675 * Reads the product board assembly (PBA) number length from the EEPROM and
676 * stores the value in pba_num_size.
677 **/
678s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
679{
680 s32 ret_val;
681 u16 nvm_data;
682 u16 pba_ptr;
683 u16 length;
684
685 DEBUGFUNC("e1000_read_pba_length_generic");
686
687 if (pba_num_size == NULL) {
688 DEBUGOUT("PBA buffer size was null\n");
689 return -E1000_ERR_INVALID_ARGUMENT;
690 }
691
692 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
693 if (ret_val) {
694 DEBUGOUT("NVM Read Error\n");
695 return ret_val;
696 }
697
698 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
699 if (ret_val) {
700 DEBUGOUT("NVM Read Error\n");
701 return ret_val;
702 }
703
704 /* if data is not ptr guard the PBA must be in legacy format */
705 if (nvm_data != NVM_PBA_PTR_GUARD) {
706 *pba_num_size = E1000_PBANUM_LENGTH;
707 return E1000_SUCCESS;
708 }
709
710 ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
711 if (ret_val) {
712 DEBUGOUT("NVM Read Error\n");
713 return ret_val;
714 }
715
716 if (length == 0xFFFF || length == 0) {
717 DEBUGOUT("NVM PBA number section invalid length\n");
718 return -E1000_ERR_NVM_PBA_SECTION;
719 }
720
721 /* Convert from length in u16 values to u8 chars, add 1 for NULL,
722 * and subtract 2 because length field is included in length.
723 */
724 *pba_num_size = ((u32)length * 2) - 1;
725
726 return E1000_SUCCESS;
727}
728
729
730
731
732
733/**
734 * e1000_read_mac_addr_generic - Read device MAC address
735 * @hw: pointer to the HW structure
736 *
737 * Reads the device MAC address from the EEPROM and stores the value.
738 * Since devices with two ports use the same EEPROM, we increment the
739 * last bit in the MAC address for the second port.
740 **/
741s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
742{
743 u32 rar_high;
744 u32 rar_low;
745 u16 i;
746
747 rar_high = E1000_READ_REG(hw, E1000_RAH(0));
748 rar_low = E1000_READ_REG(hw, E1000_RAL(0));
749
750 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
751 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
752
753 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
754 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
755
756 for (i = 0; i < ETH_ADDR_LEN; i++)
757 hw->mac.addr[i] = hw->mac.perm_addr[i];
758
759 return E1000_SUCCESS;
760}
761
762/**
763 * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
764 * @hw: pointer to the HW structure
765 *
766 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
767 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
768 **/
769s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
770{
771 s32 ret_val;
772 u16 checksum = 0;
773 u16 i, nvm_data;
774
775 DEBUGFUNC("e1000_validate_nvm_checksum_generic");
776
777 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
778 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
779 if (ret_val) {
780 DEBUGOUT("NVM Read Error\n");
781 return ret_val;
782 }
783 checksum += nvm_data;
784 }
785
786 if (checksum != (u16) NVM_SUM) {
787 DEBUGOUT("NVM Checksum Invalid\n");
788 return -E1000_ERR_NVM;
789 }
790
791 return E1000_SUCCESS;
792}
793
794/**
795 * e1000_update_nvm_checksum_generic - Update EEPROM checksum
796 * @hw: pointer to the HW structure
797 *
798 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
799 * up to the checksum. Then calculates the EEPROM checksum and writes the
800 * value to the EEPROM.
801 **/
802s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
803{
804 s32 ret_val;
805 u16 checksum = 0;
806 u16 i, nvm_data;
807
808 DEBUGFUNC("e1000_update_nvm_checksum");
809
810 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
811 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
812 if (ret_val) {
813 DEBUGOUT("NVM Read Error while updating checksum.\n");
814 return ret_val;
815 }
816 checksum += nvm_data;
817 }
818 checksum = (u16) NVM_SUM - checksum;
819 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
820 if (ret_val)
821 DEBUGOUT("NVM Write Error while updating checksum.\n");
822
823 return ret_val;
824}
825
826/**
827 * e1000_reload_nvm_generic - Reloads EEPROM
828 * @hw: pointer to the HW structure
829 *
830 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
831 * extended control register.
832 **/
833static void e1000_reload_nvm_generic(struct e1000_hw *hw)
834{
835 u32 ctrl_ext;
836
837 DEBUGFUNC("e1000_reload_nvm_generic");
838
839 usec_delay(10);
840 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
841 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
842 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
843 E1000_WRITE_FLUSH(hw);
844}
845
846/**
847 * e1000_get_fw_version - Get firmware version information
848 * @hw: pointer to the HW structure
849 * @fw_vers: pointer to output version structure
850 *
851 * unsupported/not present features return 0 in version structure
852 **/
853void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
854{
855 u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
856 u8 q, hval, rem, result;
857 u16 comb_verh, comb_verl, comb_offset;
858
859 memset(fw_vers, 0, sizeof(struct e1000_fw_version));
860
861 /* basic eeprom version numbers, bits used vary by part and by tool
862 * used to create the nvm images */
863 /* Check which data format we have */
864 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
865 switch (hw->mac.type) {
866 case e1000_i211:
867 e1000_read_invm_version(hw, fw_vers);
868 return;
869 case e1000_82575:
870 case e1000_82576:
871 case e1000_82580:
872 /* Use this format, unless EETRACK ID exists,
873 * then use alternate format
874 */
875 if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
876 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
877 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
878 >> NVM_MAJOR_SHIFT;
879 fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
880 >> NVM_MINOR_SHIFT;
881 fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
882 goto etrack_id;
883 }
884 break;
885 case e1000_i210:
886 if (!(e1000_get_flash_presence_i210(hw))) {
887 e1000_read_invm_version(hw, fw_vers);
888 return;
889 }
890 /* fall through */
891 case e1000_i350:
892 case e1000_i354:
893 /* find combo image version */
894 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
895 if ((comb_offset != 0x0) &&
896 (comb_offset != NVM_VER_INVALID)) {
897
898 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
899 + 1), 1, &comb_verh);
900 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
901 1, &comb_verl);
902
903 /* get Option Rom version if it exists and is valid */
904 if ((comb_verh && comb_verl) &&
905 ((comb_verh != NVM_VER_INVALID) &&
906 (comb_verl != NVM_VER_INVALID))) {
907
908 fw_vers->or_valid = true;
909 fw_vers->or_major =
910 comb_verl >> NVM_COMB_VER_SHFT;
911 fw_vers->or_build =
912 (comb_verl << NVM_COMB_VER_SHFT)
913 | (comb_verh >> NVM_COMB_VER_SHFT);
914 fw_vers->or_patch =
915 comb_verh & NVM_COMB_VER_MASK;
916 }
917 }
918 break;
919 default:
920 return;
921 }
922 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
923 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
924 >> NVM_MAJOR_SHIFT;
925
926 /* check for old style version format in newer images*/
927 if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
928 eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
929 } else {
930 eeprom_verl = (fw_version & NVM_MINOR_MASK)
931 >> NVM_MINOR_SHIFT;
932 }
933 /* Convert minor value to hex before assigning to output struct
934 * Val to be converted will not be higher than 99, per tool output
935 */
936 q = eeprom_verl / NVM_HEX_CONV;
937 hval = q * NVM_HEX_TENS;
938 rem = eeprom_verl % NVM_HEX_CONV;
939 result = hval + rem;
940 fw_vers->eep_minor = result;
941
942etrack_id:
943 if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
944 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
945 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
946 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
947 | eeprom_verl;
948 }
949 return;
950}