]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/kernel/linux/kni/ethtool/igb/igb_main.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / spdk / dpdk / kernel / linux / kni / ethtool / igb / igb_main.c
CommitLineData
11fdf7f2 1// SPDX-License-Identifier: GPL-2.0
7c673cae
FG
2/*******************************************************************************
3
4 Intel(R) Gigabit Ethernet Linux driver
5 Copyright(c) 2007-2013 Intel Corporation.
6
7c673cae
FG
7 Contact Information:
8 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10
11*******************************************************************************/
12
13#include <linux/module.h>
14#include <linux/types.h>
15#include <linux/init.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/netdevice.h>
19#include <linux/tcp.h>
20#ifdef NETIF_F_TSO
21#include <net/checksum.h>
22#ifdef NETIF_F_TSO6
23#include <linux/ipv6.h>
24#include <net/ip6_checksum.h>
25#endif
26#endif
27#ifdef SIOCGMIIPHY
28#include <linux/mii.h>
29#endif
30#ifdef SIOCETHTOOL
31#include <linux/ethtool.h>
32#endif
33#include <linux/if_vlan.h>
34#ifdef CONFIG_PM_RUNTIME
35#include <linux/pm_runtime.h>
36#endif /* CONFIG_PM_RUNTIME */
37
38#include <linux/if_bridge.h>
39#include "igb.h"
40#include "igb_vmdq.h"
41
42#include <linux/uio_driver.h>
43
44#if defined(DEBUG) || defined (DEBUG_DUMP) || defined (DEBUG_ICR) || defined(DEBUG_ITR)
45#define DRV_DEBUG "_debug"
46#else
47#define DRV_DEBUG
48#endif
49#define DRV_HW_PERF
50#define VERSION_SUFFIX
51
52#define MAJ 5
53#define MIN 0
54#define BUILD 6
55#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." __stringify(BUILD) VERSION_SUFFIX DRV_DEBUG DRV_HW_PERF
56
57char igb_driver_name[] = "igb";
58char igb_driver_version[] = DRV_VERSION;
59static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61static const char igb_copyright[] =
62 "Copyright (c) 2007-2013 Intel Corporation.";
63
64const struct pci_device_id igb_pci_tbl[] = {
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER) },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER) },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER) },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII) },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL) },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII) },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES) },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP) },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576) },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER) },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES) },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD) },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER) },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER) },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES) },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER) },
100 /* required last entry */
101 {0, }
102};
103
104//MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105static void igb_set_sriov_capability(struct igb_adapter *adapter) __attribute__((__unused__));
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
111static void igb_setup_mrqc(struct igb_adapter *);
112void igb_update_stats(struct igb_adapter *);
113static int igb_probe(struct pci_dev *, const struct pci_device_id *);
114static void __devexit igb_remove(struct pci_dev *pdev);
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure(struct igb_adapter *);
119static void igb_configure_tx(struct igb_adapter *);
120static void igb_configure_rx(struct igb_adapter *);
121static void igb_clean_all_tx_rings(struct igb_adapter *);
122static void igb_clean_all_rx_rings(struct igb_adapter *);
123static void igb_clean_tx_ring(struct igb_ring *);
124static void igb_set_rx_mode(struct net_device *);
11fdf7f2
TL
125#ifdef HAVE_TIMER_SETUP
126static void igb_update_phy_info(struct timer_list *);
127static void igb_watchdog(struct timer_list *);
128#else
7c673cae
FG
129static void igb_update_phy_info(unsigned long);
130static void igb_watchdog(unsigned long);
11fdf7f2 131#endif
7c673cae
FG
132static void igb_watchdog_task(struct work_struct *);
133static void igb_dma_err_task(struct work_struct *);
11fdf7f2
TL
134#ifdef HAVE_TIMER_SETUP
135static void igb_dma_err_timer(struct timer_list *);
136#else
7c673cae 137static void igb_dma_err_timer(unsigned long data);
11fdf7f2 138#endif
7c673cae
FG
139static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140static struct net_device_stats *igb_get_stats(struct net_device *);
141static int igb_change_mtu(struct net_device *, int);
142void igb_full_sync_mac_table(struct igb_adapter *adapter);
143static int igb_set_mac(struct net_device *, void *);
144static void igb_set_uta(struct igb_adapter *adapter);
145static irqreturn_t igb_intr(int irq, void *);
146static irqreturn_t igb_intr_msi(int irq, void *);
147static irqreturn_t igb_msix_other(int irq, void *);
148static irqreturn_t igb_msix_ring(int irq, void *);
149#ifdef IGB_DCA
150static void igb_update_dca(struct igb_q_vector *);
151static void igb_setup_dca(struct igb_adapter *);
152#endif /* IGB_DCA */
153static int igb_poll(struct napi_struct *, int);
154static bool igb_clean_tx_irq(struct igb_q_vector *);
155static bool igb_clean_rx_irq(struct igb_q_vector *, int);
156static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157static void igb_tx_timeout(struct net_device *);
158static void igb_reset_task(struct work_struct *);
159#ifdef HAVE_VLAN_RX_REGISTER
160static void igb_vlan_mode(struct net_device *, struct vlan_group *);
161#endif
162#ifdef HAVE_VLAN_PROTOCOL
163static int igb_vlan_rx_add_vid(struct net_device *,
164 __be16 proto, u16);
165static int igb_vlan_rx_kill_vid(struct net_device *,
166 __be16 proto, u16);
167#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
168#ifdef NETIF_F_HW_VLAN_CTAG_RX
169static int igb_vlan_rx_add_vid(struct net_device *,
170 __always_unused __be16 proto, u16);
171static int igb_vlan_rx_kill_vid(struct net_device *,
172 __always_unused __be16 proto, u16);
173#else
174static int igb_vlan_rx_add_vid(struct net_device *, u16);
175static int igb_vlan_rx_kill_vid(struct net_device *, u16);
176#endif
177#else
178static void igb_vlan_rx_add_vid(struct net_device *, u16);
179static void igb_vlan_rx_kill_vid(struct net_device *, u16);
180#endif
181static void igb_restore_vlan(struct igb_adapter *);
182void igb_rar_set(struct igb_adapter *adapter, u32 index);
183static void igb_ping_all_vfs(struct igb_adapter *);
184static void igb_msg_task(struct igb_adapter *);
185static void igb_vmm_control(struct igb_adapter *);
186static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
187static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
188static void igb_process_mdd_event(struct igb_adapter *);
189#ifdef IFLA_VF_MAX
190static int igb_ndo_set_vf_mac( struct net_device *netdev, int vf, u8 *mac);
191static int igb_ndo_set_vf_vlan(struct net_device *netdev,
192#ifdef HAVE_VF_VLAN_PROTO
193 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
194#else
195 int vf, u16 vlan, u8 qos);
196#endif
197#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
198static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
199 bool setting);
200#endif
201#ifdef HAVE_VF_MIN_MAX_TXRATE
202static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
203#else /* HAVE_VF_MIN_MAX_TXRATE */
204static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
205#endif /* HAVE_VF_MIN_MAX_TXRATE */
206static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
207 struct ifla_vf_info *ivi);
208static void igb_check_vf_rate_limit(struct igb_adapter *);
209#endif
210static int igb_vf_configure(struct igb_adapter *adapter, int vf);
211#ifdef CONFIG_PM
212#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
213static int igb_suspend(struct device *dev);
214static int igb_resume(struct device *dev);
215#ifdef CONFIG_PM_RUNTIME
216static int igb_runtime_suspend(struct device *dev);
217static int igb_runtime_resume(struct device *dev);
218static int igb_runtime_idle(struct device *dev);
219#endif /* CONFIG_PM_RUNTIME */
220static const struct dev_pm_ops igb_pm_ops = {
221#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34)
222 .suspend = igb_suspend,
223 .resume = igb_resume,
224 .freeze = igb_suspend,
225 .thaw = igb_resume,
226 .poweroff = igb_suspend,
227 .restore = igb_resume,
228#ifdef CONFIG_PM_RUNTIME
229 .runtime_suspend = igb_runtime_suspend,
230 .runtime_resume = igb_runtime_resume,
231 .runtime_idle = igb_runtime_idle,
232#endif
233#else /* Linux >= 2.6.34 */
234 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
235#ifdef CONFIG_PM_RUNTIME
236 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
237 igb_runtime_idle)
238#endif /* CONFIG_PM_RUNTIME */
239#endif /* Linux version */
240};
241#else
242static int igb_suspend(struct pci_dev *pdev, pm_message_t state);
243static int igb_resume(struct pci_dev *pdev);
244#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
245#endif /* CONFIG_PM */
246#ifndef USE_REBOOT_NOTIFIER
247static void igb_shutdown(struct pci_dev *);
248#else
249static int igb_notify_reboot(struct notifier_block *, unsigned long, void *);
250static struct notifier_block igb_notifier_reboot = {
251 .notifier_call = igb_notify_reboot,
252 .next = NULL,
253 .priority = 0
254};
255#endif
256#ifdef IGB_DCA
257static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
258static struct notifier_block dca_notifier = {
259 .notifier_call = igb_notify_dca,
260 .next = NULL,
261 .priority = 0
262};
263#endif
264#ifdef CONFIG_NET_POLL_CONTROLLER
265/* for netdump / net console */
266static void igb_netpoll(struct net_device *);
267#endif
268
269#ifdef HAVE_PCI_ERS
270static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
271 pci_channel_state_t);
272static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
273static void igb_io_resume(struct pci_dev *);
274
275static struct pci_error_handlers igb_err_handler = {
276 .error_detected = igb_io_error_detected,
277 .slot_reset = igb_io_slot_reset,
278 .resume = igb_io_resume,
279};
280#endif
281
282static void igb_init_fw(struct igb_adapter *adapter);
283static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
284
285static struct pci_driver igb_driver = {
286 .name = igb_driver_name,
287 .id_table = igb_pci_tbl,
288 .probe = igb_probe,
289 .remove = __devexit_p(igb_remove),
290#ifdef CONFIG_PM
291#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
292 .driver.pm = &igb_pm_ops,
293#else
294 .suspend = igb_suspend,
295 .resume = igb_resume,
296#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
297#endif /* CONFIG_PM */
298#ifndef USE_REBOOT_NOTIFIER
299 .shutdown = igb_shutdown,
300#endif
301#ifdef HAVE_PCI_ERS
302 .err_handler = &igb_err_handler
303#endif
304};
305
306//MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
307//MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
308//MODULE_LICENSE("GPL");
309//MODULE_VERSION(DRV_VERSION);
310
311static void igb_vfta_set(struct igb_adapter *adapter, u32 vid, bool add)
312{
313 struct e1000_hw *hw = &adapter->hw;
314 struct e1000_host_mng_dhcp_cookie *mng_cookie = &hw->mng_cookie;
315 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
316 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
317 u32 vfta;
318
319 /*
320 * if this is the management vlan the only option is to add it in so
321 * that the management pass through will continue to work
322 */
323 if ((mng_cookie->status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
324 (vid == mng_cookie->vlan_id))
325 add = TRUE;
326
327 vfta = adapter->shadow_vfta[index];
328
329 if (add)
330 vfta |= mask;
331 else
332 vfta &= ~mask;
333
334 e1000_write_vfta(hw, index, vfta);
335 adapter->shadow_vfta[index] = vfta;
336}
337
338static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
339//module_param(debug, int, 0);
340//MODULE_PARM_DESC(debug, "Debug level (0=none, ..., 16=all)");
341
342/**
343 * igb_init_module - Driver Registration Routine
344 *
345 * igb_init_module is the first routine called when the driver is
346 * loaded. All it does is register with the PCI subsystem.
347 **/
348static int __init igb_init_module(void)
349{
350 int ret;
351
352 printk(KERN_INFO "%s - version %s\n",
353 igb_driver_string, igb_driver_version);
354
355 printk(KERN_INFO "%s\n", igb_copyright);
356#ifdef IGB_HWMON
357/* only use IGB_PROCFS if IGB_HWMON is not defined */
358#else
359#ifdef IGB_PROCFS
360 if (igb_procfs_topdir_init())
361 printk(KERN_INFO "Procfs failed to initialize topdir\n");
362#endif /* IGB_PROCFS */
363#endif /* IGB_HWMON */
364
365#ifdef IGB_DCA
366 dca_register_notify(&dca_notifier);
367#endif
368 ret = pci_register_driver(&igb_driver);
369#ifdef USE_REBOOT_NOTIFIER
370 if (ret >= 0) {
371 register_reboot_notifier(&igb_notifier_reboot);
372 }
373#endif
374 return ret;
375}
376
377#undef module_init
378#define module_init(x) static int x(void) __attribute__((__unused__));
379module_init(igb_init_module);
380
381/**
382 * igb_exit_module - Driver Exit Cleanup Routine
383 *
384 * igb_exit_module is called just before the driver is removed
385 * from memory.
386 **/
387static void __exit igb_exit_module(void)
388{
389#ifdef IGB_DCA
390 dca_unregister_notify(&dca_notifier);
391#endif
392#ifdef USE_REBOOT_NOTIFIER
393 unregister_reboot_notifier(&igb_notifier_reboot);
394#endif
395 pci_unregister_driver(&igb_driver);
396
397#ifdef IGB_HWMON
398/* only compile IGB_PROCFS if IGB_HWMON is not defined */
399#else
400#ifdef IGB_PROCFS
401 igb_procfs_topdir_exit();
402#endif /* IGB_PROCFS */
403#endif /* IGB_HWMON */
404}
405
406#undef module_exit
407#define module_exit(x) static void x(void) __attribute__((__unused__));
408module_exit(igb_exit_module);
409
410#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
411/**
412 * igb_cache_ring_register - Descriptor ring to register mapping
413 * @adapter: board private structure to initialize
414 *
415 * Once we know the feature-set enabled for the device, we'll cache
416 * the register offset the descriptor ring is assigned to.
417 **/
418static void igb_cache_ring_register(struct igb_adapter *adapter)
419{
420 int i = 0, j = 0;
421 u32 rbase_offset = adapter->vfs_allocated_count;
422
423 switch (adapter->hw.mac.type) {
424 case e1000_82576:
425 /* The queues are allocated for virtualization such that VF 0
426 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
427 * In order to avoid collision we start at the first free queue
428 * and continue consuming queues in the same sequence
429 */
430 if ((adapter->rss_queues > 1) && adapter->vmdq_pools) {
431 for (; i < adapter->rss_queues; i++)
432 adapter->rx_ring[i]->reg_idx = rbase_offset +
433 Q_IDX_82576(i);
434 }
435 case e1000_82575:
436 case e1000_82580:
437 case e1000_i350:
438 case e1000_i354:
439 case e1000_i210:
440 case e1000_i211:
441 default:
442 for (; i < adapter->num_rx_queues; i++)
443 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
444 for (; j < adapter->num_tx_queues; j++)
445 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
446 break;
447 }
448}
449
450static void igb_configure_lli(struct igb_adapter *adapter)
451{
452 struct e1000_hw *hw = &adapter->hw;
453 u16 port;
454
455 /* LLI should only be enabled for MSI-X or MSI interrupts */
456 if (!adapter->msix_entries && !(adapter->flags & IGB_FLAG_HAS_MSI))
457 return;
458
459 if (adapter->lli_port) {
460 /* use filter 0 for port */
461 port = htons((u16)adapter->lli_port);
462 E1000_WRITE_REG(hw, E1000_IMIR(0),
463 (port | E1000_IMIR_PORT_IM_EN));
464 E1000_WRITE_REG(hw, E1000_IMIREXT(0),
465 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
466 }
467
468 if (adapter->flags & IGB_FLAG_LLI_PUSH) {
469 /* use filter 1 for push flag */
470 E1000_WRITE_REG(hw, E1000_IMIR(1),
471 (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
472 E1000_WRITE_REG(hw, E1000_IMIREXT(1),
473 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_PSH));
474 }
475
476 if (adapter->lli_size) {
477 /* use filter 2 for size */
478 E1000_WRITE_REG(hw, E1000_IMIR(2),
479 (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN));
480 E1000_WRITE_REG(hw, E1000_IMIREXT(2),
481 (adapter->lli_size | E1000_IMIREXT_CTRL_BP));
482 }
483
484}
485
486/**
487 * igb_write_ivar - configure ivar for given MSI-X vector
488 * @hw: pointer to the HW structure
489 * @msix_vector: vector number we are allocating to a given ring
490 * @index: row index of IVAR register to write within IVAR table
491 * @offset: column offset of in IVAR, should be multiple of 8
492 *
493 * This function is intended to handle the writing of the IVAR register
494 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
495 * each containing an cause allocation for an Rx and Tx ring, and a
496 * variable number of rows depending on the number of queues supported.
497 **/
498static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
499 int index, int offset)
500{
501 u32 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
502
503 /* clear any bits that are currently set */
504 ivar &= ~((u32)0xFF << offset);
505
506 /* write vector and valid bit */
507 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
508
509 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
510}
511
512#define IGB_N0_QUEUE -1
513static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
514{
515 struct igb_adapter *adapter = q_vector->adapter;
516 struct e1000_hw *hw = &adapter->hw;
517 int rx_queue = IGB_N0_QUEUE;
518 int tx_queue = IGB_N0_QUEUE;
519 u32 msixbm = 0;
520
521 if (q_vector->rx.ring)
522 rx_queue = q_vector->rx.ring->reg_idx;
523 if (q_vector->tx.ring)
524 tx_queue = q_vector->tx.ring->reg_idx;
525
526 switch (hw->mac.type) {
527 case e1000_82575:
528 /* The 82575 assigns vectors using a bitmask, which matches the
529 bitmask for the EICR/EIMS/EIMC registers. To assign one
530 or more queues to a vector, we write the appropriate bits
531 into the MSIXBM register for that vector. */
532 if (rx_queue > IGB_N0_QUEUE)
533 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
534 if (tx_queue > IGB_N0_QUEUE)
535 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
536 if (!adapter->msix_entries && msix_vector == 0)
537 msixbm |= E1000_EIMS_OTHER;
538 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), msix_vector, msixbm);
539 q_vector->eims_value = msixbm;
540 break;
541 case e1000_82576:
542 /*
543 * 82576 uses a table that essentially consists of 2 columns
544 * with 8 rows. The ordering is column-major so we use the
545 * lower 3 bits as the row index, and the 4th bit as the
546 * column offset.
547 */
548 if (rx_queue > IGB_N0_QUEUE)
549 igb_write_ivar(hw, msix_vector,
550 rx_queue & 0x7,
551 (rx_queue & 0x8) << 1);
552 if (tx_queue > IGB_N0_QUEUE)
553 igb_write_ivar(hw, msix_vector,
554 tx_queue & 0x7,
555 ((tx_queue & 0x8) << 1) + 8);
556 q_vector->eims_value = 1 << msix_vector;
557 break;
558 case e1000_82580:
559 case e1000_i350:
560 case e1000_i354:
561 case e1000_i210:
562 case e1000_i211:
563 /*
564 * On 82580 and newer adapters the scheme is similar to 82576
565 * however instead of ordering column-major we have things
566 * ordered row-major. So we traverse the table by using
567 * bit 0 as the column offset, and the remaining bits as the
568 * row index.
569 */
570 if (rx_queue > IGB_N0_QUEUE)
571 igb_write_ivar(hw, msix_vector,
572 rx_queue >> 1,
573 (rx_queue & 0x1) << 4);
574 if (tx_queue > IGB_N0_QUEUE)
575 igb_write_ivar(hw, msix_vector,
576 tx_queue >> 1,
577 ((tx_queue & 0x1) << 4) + 8);
578 q_vector->eims_value = 1 << msix_vector;
579 break;
580 default:
581 BUG();
582 break;
583 }
584
585 /* add q_vector eims value to global eims_enable_mask */
586 adapter->eims_enable_mask |= q_vector->eims_value;
587
588 /* configure q_vector to set itr on first interrupt */
589 q_vector->set_itr = 1;
590}
591
592/**
593 * igb_configure_msix - Configure MSI-X hardware
594 *
595 * igb_configure_msix sets up the hardware to properly
596 * generate MSI-X interrupts.
597 **/
598static void igb_configure_msix(struct igb_adapter *adapter)
599{
600 u32 tmp;
601 int i, vector = 0;
602 struct e1000_hw *hw = &adapter->hw;
603
604 adapter->eims_enable_mask = 0;
605
606 /* set vector for other causes, i.e. link changes */
607 switch (hw->mac.type) {
608 case e1000_82575:
609 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
610 /* enable MSI-X PBA support*/
611 tmp |= E1000_CTRL_EXT_PBA_CLR;
612
613 /* Auto-Mask interrupts upon ICR read. */
614 tmp |= E1000_CTRL_EXT_EIAME;
615 tmp |= E1000_CTRL_EXT_IRCA;
616
617 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
618
619 /* enable msix_other interrupt */
620 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), vector++,
621 E1000_EIMS_OTHER);
622 adapter->eims_other = E1000_EIMS_OTHER;
623
624 break;
625
626 case e1000_82576:
627 case e1000_82580:
628 case e1000_i350:
629 case e1000_i354:
630 case e1000_i210:
631 case e1000_i211:
632 /* Turn on MSI-X capability first, or our settings
633 * won't stick. And it will take days to debug. */
634 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
635 E1000_GPIE_PBA | E1000_GPIE_EIAME |
636 E1000_GPIE_NSICR);
637
638 /* enable msix_other interrupt */
639 adapter->eims_other = 1 << vector;
640 tmp = (vector++ | E1000_IVAR_VALID) << 8;
641
642 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmp);
643 break;
644 default:
645 /* do nothing, since nothing else supports MSI-X */
646 break;
647 } /* switch (hw->mac.type) */
648
649 adapter->eims_enable_mask |= adapter->eims_other;
650
651 for (i = 0; i < adapter->num_q_vectors; i++)
652 igb_assign_vector(adapter->q_vector[i], vector++);
653
654 E1000_WRITE_FLUSH(hw);
655}
656
657/**
658 * igb_request_msix - Initialize MSI-X interrupts
659 *
660 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
661 * kernel.
662 **/
663static int igb_request_msix(struct igb_adapter *adapter)
664{
665 struct net_device *netdev = adapter->netdev;
666 struct e1000_hw *hw = &adapter->hw;
667 int i, err = 0, vector = 0, free_vector = 0;
668
669 err = request_irq(adapter->msix_entries[vector].vector,
670 &igb_msix_other, 0, netdev->name, adapter);
671 if (err)
672 goto err_out;
673
674 for (i = 0; i < adapter->num_q_vectors; i++) {
675 struct igb_q_vector *q_vector = adapter->q_vector[i];
676
677 vector++;
678
679 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
680
681 if (q_vector->rx.ring && q_vector->tx.ring)
682 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
683 q_vector->rx.ring->queue_index);
684 else if (q_vector->tx.ring)
685 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
686 q_vector->tx.ring->queue_index);
687 else if (q_vector->rx.ring)
688 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
689 q_vector->rx.ring->queue_index);
690 else
691 sprintf(q_vector->name, "%s-unused", netdev->name);
692
693 err = request_irq(adapter->msix_entries[vector].vector,
694 igb_msix_ring, 0, q_vector->name,
695 q_vector);
696 if (err)
697 goto err_free;
698 }
699
700 igb_configure_msix(adapter);
701 return 0;
702
703err_free:
704 /* free already assigned IRQs */
705 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
706
707 vector--;
708 for (i = 0; i < vector; i++) {
709 free_irq(adapter->msix_entries[free_vector++].vector,
710 adapter->q_vector[i]);
711 }
712err_out:
713 return err;
714}
715
716static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
717{
718 if (adapter->msix_entries) {
719 pci_disable_msix(adapter->pdev);
720 kfree(adapter->msix_entries);
721 adapter->msix_entries = NULL;
722 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
723 pci_disable_msi(adapter->pdev);
724 }
725}
726
727/**
728 * igb_free_q_vector - Free memory allocated for specific interrupt vector
729 * @adapter: board private structure to initialize
730 * @v_idx: Index of vector to be freed
731 *
732 * This function frees the memory allocated to the q_vector. In addition if
733 * NAPI is enabled it will delete any references to the NAPI struct prior
734 * to freeing the q_vector.
735 **/
736static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
737{
738 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
739
740 if (q_vector->tx.ring)
741 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
742
743 if (q_vector->rx.ring)
744 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
745
746 adapter->q_vector[v_idx] = NULL;
747 netif_napi_del(&q_vector->napi);
748#ifndef IGB_NO_LRO
749 __skb_queue_purge(&q_vector->lrolist.active);
750#endif
751 kfree(q_vector);
752}
753
754/**
755 * igb_free_q_vectors - Free memory allocated for interrupt vectors
756 * @adapter: board private structure to initialize
757 *
758 * This function frees the memory allocated to the q_vectors. In addition if
759 * NAPI is enabled it will delete any references to the NAPI struct prior
760 * to freeing the q_vector.
761 **/
762static void igb_free_q_vectors(struct igb_adapter *adapter)
763{
764 int v_idx = adapter->num_q_vectors;
765
766 adapter->num_tx_queues = 0;
767 adapter->num_rx_queues = 0;
768 adapter->num_q_vectors = 0;
769
770 while (v_idx--)
771 igb_free_q_vector(adapter, v_idx);
772}
773
774/**
775 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
776 *
777 * This function resets the device so that it has 0 rx queues, tx queues, and
778 * MSI-X interrupts allocated.
779 */
780static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
781{
782 igb_free_q_vectors(adapter);
783 igb_reset_interrupt_capability(adapter);
784}
785
786/**
787 * igb_process_mdd_event
788 * @adapter - board private structure
789 *
790 * Identify a malicious VF, disable the VF TX/RX queues and log a message.
791 */
792static void igb_process_mdd_event(struct igb_adapter *adapter)
793{
794 struct e1000_hw *hw = &adapter->hw;
795 u32 lvmmc, vfte, vfre, mdfb;
796 u8 vf_queue;
797
798 lvmmc = E1000_READ_REG(hw, E1000_LVMMC);
799 vf_queue = lvmmc >> 29;
800
801 /* VF index cannot be bigger or equal to VFs allocated */
802 if (vf_queue >= adapter->vfs_allocated_count)
803 return;
804
805 netdev_info(adapter->netdev,
806 "VF %d misbehaved. VF queues are disabled. "
807 "VM misbehavior code is 0x%x\n", vf_queue, lvmmc);
808
809 /* Disable VFTE and VFRE related bits */
810 vfte = E1000_READ_REG(hw, E1000_VFTE);
811 vfte &= ~(1 << vf_queue);
812 E1000_WRITE_REG(hw, E1000_VFTE, vfte);
813
814 vfre = E1000_READ_REG(hw, E1000_VFRE);
815 vfre &= ~(1 << vf_queue);
816 E1000_WRITE_REG(hw, E1000_VFRE, vfre);
817
818 /* Disable MDFB related bit. Clear on write */
819 mdfb = E1000_READ_REG(hw, E1000_MDFB);
820 mdfb |= (1 << vf_queue);
821 E1000_WRITE_REG(hw, E1000_MDFB, mdfb);
822
823 /* Reset the specific VF */
824 E1000_WRITE_REG(hw, E1000_VTCTRL(vf_queue), E1000_VTCTRL_RST);
825}
826
827/**
828 * igb_disable_mdd
829 * @adapter - board private structure
830 *
831 * Disable MDD behavior in the HW
832 **/
833static void igb_disable_mdd(struct igb_adapter *adapter)
834{
835 struct e1000_hw *hw = &adapter->hw;
836 u32 reg;
837
838 if ((hw->mac.type != e1000_i350) ||
839 (hw->mac.type != e1000_i354))
840 return;
841
842 reg = E1000_READ_REG(hw, E1000_DTXCTL);
843 reg &= (~E1000_DTXCTL_MDP_EN);
844 E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
845}
846
847/**
848 * igb_enable_mdd
849 * @adapter - board private structure
850 *
851 * Enable the HW to detect malicious driver and sends an interrupt to
852 * the driver.
853 **/
854static void igb_enable_mdd(struct igb_adapter *adapter)
855{
856 struct e1000_hw *hw = &adapter->hw;
857 u32 reg;
858
859 /* Only available on i350 device */
860 if (hw->mac.type != e1000_i350)
861 return;
862
863 reg = E1000_READ_REG(hw, E1000_DTXCTL);
864 reg |= E1000_DTXCTL_MDP_EN;
865 E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
866}
867
868/**
869 * igb_reset_sriov_capability - disable SR-IOV if enabled
870 *
871 * Attempt to disable single root IO virtualization capabilites present in the
872 * kernel.
873 **/
874static void igb_reset_sriov_capability(struct igb_adapter *adapter)
875{
876 struct pci_dev *pdev = adapter->pdev;
877 struct e1000_hw *hw = &adapter->hw;
878
879 /* reclaim resources allocated to VFs */
880 if (adapter->vf_data) {
881 if (!pci_vfs_assigned(pdev)) {
882 /*
883 * disable iov and allow time for transactions to
884 * clear
885 */
886 pci_disable_sriov(pdev);
887 msleep(500);
888
889 dev_info(pci_dev_to_dev(pdev), "IOV Disabled\n");
890 } else {
891 dev_info(pci_dev_to_dev(pdev), "IOV Not Disabled\n "
892 "VF(s) are assigned to guests!\n");
893 }
894 /* Disable Malicious Driver Detection */
895 igb_disable_mdd(adapter);
896
897 /* free vf data storage */
898 kfree(adapter->vf_data);
899 adapter->vf_data = NULL;
900
901 /* switch rings back to PF ownership */
902 E1000_WRITE_REG(hw, E1000_IOVCTL,
903 E1000_IOVCTL_REUSE_VFQ);
904 E1000_WRITE_FLUSH(hw);
905 msleep(100);
906 }
907
908 adapter->vfs_allocated_count = 0;
909}
910
911/**
912 * igb_set_sriov_capability - setup SR-IOV if supported
913 *
914 * Attempt to enable single root IO virtualization capabilites present in the
915 * kernel.
916 **/
917static void igb_set_sriov_capability(struct igb_adapter *adapter)
918{
919 struct pci_dev *pdev = adapter->pdev;
920 int old_vfs = 0;
921 int i;
922
923 old_vfs = pci_num_vf(pdev);
924 if (old_vfs) {
925 dev_info(pci_dev_to_dev(pdev),
926 "%d pre-allocated VFs found - override "
927 "max_vfs setting of %d\n", old_vfs,
928 adapter->vfs_allocated_count);
929 adapter->vfs_allocated_count = old_vfs;
930 }
931 /* no VFs requested, do nothing */
932 if (!adapter->vfs_allocated_count)
933 return;
934
935 /* allocate vf data storage */
936 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
937 sizeof(struct vf_data_storage),
938 GFP_KERNEL);
939
940 if (adapter->vf_data) {
941 if (!old_vfs) {
942 if (pci_enable_sriov(pdev,
943 adapter->vfs_allocated_count))
944 goto err_out;
945 }
946 for (i = 0; i < adapter->vfs_allocated_count; i++)
947 igb_vf_configure(adapter, i);
948
949 switch (adapter->hw.mac.type) {
950 case e1000_82576:
951 case e1000_i350:
952 /* Enable VM to VM loopback by default */
953 adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
954 break;
955 default:
956 /* Currently no other hardware supports loopback */
957 break;
958 }
959
960 /* DMA Coalescing is not supported in IOV mode. */
961 if (adapter->hw.mac.type >= e1000_i350)
962 adapter->dmac = IGB_DMAC_DISABLE;
963 if (adapter->hw.mac.type < e1000_i350)
964 adapter->flags |= IGB_FLAG_DETECT_BAD_DMA;
965 return;
966
967 }
968
969err_out:
970 kfree(adapter->vf_data);
971 adapter->vf_data = NULL;
972 adapter->vfs_allocated_count = 0;
973 dev_warn(pci_dev_to_dev(pdev),
974 "Failed to initialize SR-IOV virtualization\n");
975}
976
977/**
978 * igb_set_interrupt_capability - set MSI or MSI-X if supported
979 *
980 * Attempt to configure interrupts using the best available
981 * capabilities of the hardware and kernel.
982 **/
983static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
984{
985 struct pci_dev *pdev = adapter->pdev;
986 int err;
987 int numvecs, i;
988
989 if (!msix)
990 adapter->int_mode = IGB_INT_MODE_MSI;
991
992 /* Number of supported queues. */
993 adapter->num_rx_queues = adapter->rss_queues;
994
995 if (adapter->vmdq_pools > 1)
996 adapter->num_rx_queues += adapter->vmdq_pools - 1;
997
998#ifdef HAVE_TX_MQ
999 if (adapter->vmdq_pools)
1000 adapter->num_tx_queues = adapter->vmdq_pools;
1001 else
1002 adapter->num_tx_queues = adapter->num_rx_queues;
1003#else
1004 adapter->num_tx_queues = max_t(u32, 1, adapter->vmdq_pools);
1005#endif
1006
1007 switch (adapter->int_mode) {
1008 case IGB_INT_MODE_MSIX:
1009 /* start with one vector for every rx queue */
1010 numvecs = adapter->num_rx_queues;
1011
1012 /* if tx handler is separate add 1 for every tx queue */
1013 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1014 numvecs += adapter->num_tx_queues;
1015
1016 /* store the number of vectors reserved for queues */
1017 adapter->num_q_vectors = numvecs;
1018
1019 /* add 1 vector for link status interrupts */
1020 numvecs++;
1021 adapter->msix_entries = kcalloc(numvecs,
1022 sizeof(struct msix_entry),
1023 GFP_KERNEL);
1024 if (adapter->msix_entries) {
1025 for (i = 0; i < numvecs; i++)
1026 adapter->msix_entries[i].entry = i;
1027
11fdf7f2 1028#ifdef HAVE_PCI_ENABLE_MSIX
7c673cae
FG
1029 err = pci_enable_msix(pdev,
1030 adapter->msix_entries, numvecs);
11fdf7f2
TL
1031#else
1032 err = pci_enable_msix_range(pdev,
1033 adapter->msix_entries,
1034 numvecs,
1035 numvecs);
1036#endif
7c673cae
FG
1037 if (err == 0)
1038 break;
1039 }
1040 /* MSI-X failed, so fall through and try MSI */
1041 dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI-X interrupts. "
1042 "Falling back to MSI interrupts.\n");
1043 igb_reset_interrupt_capability(adapter);
1044 case IGB_INT_MODE_MSI:
1045 if (!pci_enable_msi(pdev))
1046 adapter->flags |= IGB_FLAG_HAS_MSI;
1047 else
1048 dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI "
1049 "interrupts. Falling back to legacy "
1050 "interrupts.\n");
1051 /* Fall through */
1052 case IGB_INT_MODE_LEGACY:
1053 /* disable advanced features and set number of queues to 1 */
1054 igb_reset_sriov_capability(adapter);
1055 adapter->vmdq_pools = 0;
1056 adapter->rss_queues = 1;
1057 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1058 adapter->num_rx_queues = 1;
1059 adapter->num_tx_queues = 1;
1060 adapter->num_q_vectors = 1;
1061 /* Don't do anything; this is system default */
1062 break;
1063 }
1064}
1065
1066static void igb_add_ring(struct igb_ring *ring,
1067 struct igb_ring_container *head)
1068{
1069 head->ring = ring;
1070 head->count++;
1071}
1072
1073/**
1074 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1075 * @adapter: board private structure to initialize
1076 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1077 * @v_idx: index of vector in adapter struct
1078 * @txr_count: total number of Tx rings to allocate
1079 * @txr_idx: index of first Tx ring to allocate
1080 * @rxr_count: total number of Rx rings to allocate
1081 * @rxr_idx: index of first Rx ring to allocate
1082 *
1083 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1084 **/
1085static int igb_alloc_q_vector(struct igb_adapter *adapter,
1086 unsigned int v_count, unsigned int v_idx,
1087 unsigned int txr_count, unsigned int txr_idx,
1088 unsigned int rxr_count, unsigned int rxr_idx)
1089{
1090 struct igb_q_vector *q_vector;
1091 struct igb_ring *ring;
1092 int ring_count, size;
1093
1094 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1095 if (txr_count > 1 || rxr_count > 1)
1096 return -ENOMEM;
1097
1098 ring_count = txr_count + rxr_count;
1099 size = sizeof(struct igb_q_vector) +
1100 (sizeof(struct igb_ring) * ring_count);
1101
1102 /* allocate q_vector and rings */
1103 q_vector = kzalloc(size, GFP_KERNEL);
1104 if (!q_vector)
1105 return -ENOMEM;
1106
1107#ifndef IGB_NO_LRO
1108 /* initialize LRO */
1109 __skb_queue_head_init(&q_vector->lrolist.active);
1110
1111#endif
1112 /* initialize NAPI */
1113 netif_napi_add(adapter->netdev, &q_vector->napi,
1114 igb_poll, 64);
1115
1116 /* tie q_vector and adapter together */
1117 adapter->q_vector[v_idx] = q_vector;
1118 q_vector->adapter = adapter;
1119
1120 /* initialize work limits */
1121 q_vector->tx.work_limit = adapter->tx_work_limit;
1122
1123 /* initialize ITR configuration */
1124 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1125 q_vector->itr_val = IGB_START_ITR;
1126
1127 /* initialize pointer to rings */
1128 ring = q_vector->ring;
1129
11fdf7f2 1130 /* initialize ITR */
7c673cae
FG
1131 if (rxr_count) {
1132 /* rx or rx/tx vector */
1133 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1134 q_vector->itr_val = adapter->rx_itr_setting;
1135 } else {
1136 /* tx only vector */
1137 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1138 q_vector->itr_val = adapter->tx_itr_setting;
1139 }
1140
1141 if (txr_count) {
1142 /* assign generic ring traits */
1143 ring->dev = &adapter->pdev->dev;
1144 ring->netdev = adapter->netdev;
1145
1146 /* configure backlink on ring */
1147 ring->q_vector = q_vector;
1148
1149 /* update q_vector Tx values */
1150 igb_add_ring(ring, &q_vector->tx);
1151
1152 /* For 82575, context index must be unique per ring. */
1153 if (adapter->hw.mac.type == e1000_82575)
1154 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1155
1156 /* apply Tx specific ring traits */
1157 ring->count = adapter->tx_ring_count;
1158 ring->queue_index = txr_idx;
1159
1160 /* assign ring to adapter */
1161 adapter->tx_ring[txr_idx] = ring;
1162
1163 /* push pointer to next ring */
1164 ring++;
1165 }
1166
1167 if (rxr_count) {
1168 /* assign generic ring traits */
1169 ring->dev = &adapter->pdev->dev;
1170 ring->netdev = adapter->netdev;
1171
1172 /* configure backlink on ring */
1173 ring->q_vector = q_vector;
1174
1175 /* update q_vector Rx values */
1176 igb_add_ring(ring, &q_vector->rx);
1177
1178#ifndef HAVE_NDO_SET_FEATURES
1179 /* enable rx checksum */
1180 set_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags);
1181
1182#endif
1183 /* set flag indicating ring supports SCTP checksum offload */
1184 if (adapter->hw.mac.type >= e1000_82576)
1185 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1186
1187 if ((adapter->hw.mac.type == e1000_i350) ||
1188 (adapter->hw.mac.type == e1000_i354))
1189 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1190
1191 /* apply Rx specific ring traits */
1192 ring->count = adapter->rx_ring_count;
1193 ring->queue_index = rxr_idx;
1194
1195 /* assign ring to adapter */
1196 adapter->rx_ring[rxr_idx] = ring;
1197 }
1198
1199 return 0;
1200}
1201
1202/**
1203 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1204 * @adapter: board private structure to initialize
1205 *
1206 * We allocate one q_vector per queue interrupt. If allocation fails we
1207 * return -ENOMEM.
1208 **/
1209static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1210{
1211 int q_vectors = adapter->num_q_vectors;
1212 int rxr_remaining = adapter->num_rx_queues;
1213 int txr_remaining = adapter->num_tx_queues;
1214 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1215 int err;
1216
1217 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1218 for (; rxr_remaining; v_idx++) {
1219 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1220 0, 0, 1, rxr_idx);
1221
1222 if (err)
1223 goto err_out;
1224
1225 /* update counts and index */
1226 rxr_remaining--;
1227 rxr_idx++;
1228 }
1229 }
1230
1231 for (; v_idx < q_vectors; v_idx++) {
1232 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1233 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1234 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1235 tqpv, txr_idx, rqpv, rxr_idx);
1236
1237 if (err)
1238 goto err_out;
1239
1240 /* update counts and index */
1241 rxr_remaining -= rqpv;
1242 txr_remaining -= tqpv;
1243 rxr_idx++;
1244 txr_idx++;
1245 }
1246
1247 return 0;
1248
1249err_out:
1250 adapter->num_tx_queues = 0;
1251 adapter->num_rx_queues = 0;
1252 adapter->num_q_vectors = 0;
1253
1254 while (v_idx--)
1255 igb_free_q_vector(adapter, v_idx);
1256
1257 return -ENOMEM;
1258}
1259
1260/**
1261 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1262 *
1263 * This function initializes the interrupts and allocates all of the queues.
1264 **/
1265static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1266{
1267 struct pci_dev *pdev = adapter->pdev;
1268 int err;
1269
1270 igb_set_interrupt_capability(adapter, msix);
1271
1272 err = igb_alloc_q_vectors(adapter);
1273 if (err) {
1274 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for vectors\n");
1275 goto err_alloc_q_vectors;
1276 }
1277
1278 igb_cache_ring_register(adapter);
1279
1280 return 0;
1281
1282err_alloc_q_vectors:
1283 igb_reset_interrupt_capability(adapter);
1284 return err;
1285}
1286
1287/**
1288 * igb_request_irq - initialize interrupts
1289 *
1290 * Attempts to configure interrupts using the best available
1291 * capabilities of the hardware and kernel.
1292 **/
1293static int igb_request_irq(struct igb_adapter *adapter)
1294{
1295 struct net_device *netdev = adapter->netdev;
1296 struct pci_dev *pdev = adapter->pdev;
1297 int err = 0;
1298
1299 if (adapter->msix_entries) {
1300 err = igb_request_msix(adapter);
1301 if (!err)
1302 goto request_done;
1303 /* fall back to MSI */
1304 igb_free_all_tx_resources(adapter);
1305 igb_free_all_rx_resources(adapter);
1306
1307 igb_clear_interrupt_scheme(adapter);
1308 igb_reset_sriov_capability(adapter);
1309 err = igb_init_interrupt_scheme(adapter, false);
1310 if (err)
1311 goto request_done;
1312 igb_setup_all_tx_resources(adapter);
1313 igb_setup_all_rx_resources(adapter);
1314 igb_configure(adapter);
1315 }
1316
1317 igb_assign_vector(adapter->q_vector[0], 0);
1318
1319 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1320 err = request_irq(pdev->irq, &igb_intr_msi, 0,
1321 netdev->name, adapter);
1322 if (!err)
1323 goto request_done;
1324
1325 /* fall back to legacy interrupts */
1326 igb_reset_interrupt_capability(adapter);
1327 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1328 }
1329
1330 err = request_irq(pdev->irq, &igb_intr, IRQF_SHARED,
1331 netdev->name, adapter);
1332
1333 if (err)
1334 dev_err(pci_dev_to_dev(pdev), "Error %d getting interrupt\n",
1335 err);
1336
1337request_done:
1338 return err;
1339}
1340
1341static void igb_free_irq(struct igb_adapter *adapter)
1342{
1343 if (adapter->msix_entries) {
1344 int vector = 0, i;
1345
1346 free_irq(adapter->msix_entries[vector++].vector, adapter);
1347
1348 for (i = 0; i < adapter->num_q_vectors; i++)
1349 free_irq(adapter->msix_entries[vector++].vector,
1350 adapter->q_vector[i]);
1351 } else {
1352 free_irq(adapter->pdev->irq, adapter);
1353 }
1354}
1355
1356/**
1357 * igb_irq_disable - Mask off interrupt generation on the NIC
1358 * @adapter: board private structure
1359 **/
1360static void igb_irq_disable(struct igb_adapter *adapter)
1361{
1362 struct e1000_hw *hw = &adapter->hw;
1363
1364 /*
1365 * we need to be careful when disabling interrupts. The VFs are also
1366 * mapped into these registers and so clearing the bits can cause
1367 * issues on the VF drivers so we only need to clear what we set
1368 */
1369 if (adapter->msix_entries) {
1370 u32 regval = E1000_READ_REG(hw, E1000_EIAM);
1371 E1000_WRITE_REG(hw, E1000_EIAM, regval & ~adapter->eims_enable_mask);
1372 E1000_WRITE_REG(hw, E1000_EIMC, adapter->eims_enable_mask);
1373 regval = E1000_READ_REG(hw, E1000_EIAC);
1374 E1000_WRITE_REG(hw, E1000_EIAC, regval & ~adapter->eims_enable_mask);
1375 }
1376
1377 E1000_WRITE_REG(hw, E1000_IAM, 0);
1378 E1000_WRITE_REG(hw, E1000_IMC, ~0);
1379 E1000_WRITE_FLUSH(hw);
1380
1381 if (adapter->msix_entries) {
1382 int vector = 0, i;
1383
1384 synchronize_irq(adapter->msix_entries[vector++].vector);
1385
1386 for (i = 0; i < adapter->num_q_vectors; i++)
1387 synchronize_irq(adapter->msix_entries[vector++].vector);
1388 } else {
1389 synchronize_irq(adapter->pdev->irq);
1390 }
1391}
1392
1393/**
1394 * igb_irq_enable - Enable default interrupt generation settings
1395 * @adapter: board private structure
1396 **/
1397static void igb_irq_enable(struct igb_adapter *adapter)
1398{
1399 struct e1000_hw *hw = &adapter->hw;
1400
1401 if (adapter->msix_entries) {
1402 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1403 u32 regval = E1000_READ_REG(hw, E1000_EIAC);
1404 E1000_WRITE_REG(hw, E1000_EIAC, regval | adapter->eims_enable_mask);
1405 regval = E1000_READ_REG(hw, E1000_EIAM);
1406 E1000_WRITE_REG(hw, E1000_EIAM, regval | adapter->eims_enable_mask);
1407 E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_enable_mask);
1408 if (adapter->vfs_allocated_count) {
1409 E1000_WRITE_REG(hw, E1000_MBVFIMR, 0xFF);
1410 ims |= E1000_IMS_VMMB;
1411 if (adapter->mdd)
1412 if ((adapter->hw.mac.type == e1000_i350) ||
1413 (adapter->hw.mac.type == e1000_i354))
1414 ims |= E1000_IMS_MDDET;
1415 }
1416 E1000_WRITE_REG(hw, E1000_IMS, ims);
1417 } else {
1418 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK |
1419 E1000_IMS_DRSTA);
1420 E1000_WRITE_REG(hw, E1000_IAM, IMS_ENABLE_MASK |
1421 E1000_IMS_DRSTA);
1422 }
1423}
1424
1425static void igb_update_mng_vlan(struct igb_adapter *adapter)
1426{
1427 struct e1000_hw *hw = &adapter->hw;
1428 u16 vid = adapter->hw.mng_cookie.vlan_id;
1429 u16 old_vid = adapter->mng_vlan_id;
1430
1431 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1432 /* add VID to filter table */
1433 igb_vfta_set(adapter, vid, TRUE);
1434 adapter->mng_vlan_id = vid;
1435 } else {
1436 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1437 }
1438
1439 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1440 (vid != old_vid) &&
1441#ifdef HAVE_VLAN_RX_REGISTER
1442 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1443#else
1444 !test_bit(old_vid, adapter->active_vlans)) {
1445#endif
1446 /* remove VID from filter table */
1447 igb_vfta_set(adapter, old_vid, FALSE);
1448 }
1449}
1450
1451/**
1452 * igb_release_hw_control - release control of the h/w to f/w
1453 * @adapter: address of board private structure
1454 *
1455 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1456 * For ASF and Pass Through versions of f/w this means that the
1457 * driver is no longer loaded.
1458 *
1459 **/
1460static void igb_release_hw_control(struct igb_adapter *adapter)
1461{
1462 struct e1000_hw *hw = &adapter->hw;
1463 u32 ctrl_ext;
1464
1465 /* Let firmware take over control of h/w */
1466 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1467 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1468 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1469}
1470
1471/**
1472 * igb_get_hw_control - get control of the h/w from f/w
1473 * @adapter: address of board private structure
1474 *
1475 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1476 * For ASF and Pass Through versions of f/w this means that
1477 * the driver is loaded.
1478 *
1479 **/
1480static void igb_get_hw_control(struct igb_adapter *adapter)
1481{
1482 struct e1000_hw *hw = &adapter->hw;
1483 u32 ctrl_ext;
1484
1485 /* Let firmware know the driver has taken over */
1486 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1487 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1488 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1489}
1490
1491/**
1492 * igb_configure - configure the hardware for RX and TX
1493 * @adapter: private board structure
1494 **/
1495static void igb_configure(struct igb_adapter *adapter)
1496{
1497 struct net_device *netdev = adapter->netdev;
1498 int i;
1499
1500 igb_get_hw_control(adapter);
1501 igb_set_rx_mode(netdev);
1502
1503 igb_restore_vlan(adapter);
1504
1505 igb_setup_tctl(adapter);
1506 igb_setup_mrqc(adapter);
1507 igb_setup_rctl(adapter);
1508
1509 igb_configure_tx(adapter);
1510 igb_configure_rx(adapter);
1511
1512 e1000_rx_fifo_flush_82575(&adapter->hw);
1513#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1514 if (adapter->num_tx_queues > 1)
1515 netdev->features |= NETIF_F_MULTI_QUEUE;
1516 else
1517 netdev->features &= ~NETIF_F_MULTI_QUEUE;
1518#endif
1519
1520 /* call igb_desc_unused which always leaves
1521 * at least 1 descriptor unused to make sure
1522 * next_to_use != next_to_clean */
1523 for (i = 0; i < adapter->num_rx_queues; i++) {
1524 struct igb_ring *ring = adapter->rx_ring[i];
1525 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1526 }
1527}
1528
1529/**
1530 * igb_power_up_link - Power up the phy/serdes link
1531 * @adapter: address of board private structure
1532 **/
1533void igb_power_up_link(struct igb_adapter *adapter)
1534{
1535 e1000_phy_hw_reset(&adapter->hw);
1536
1537 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1538 e1000_power_up_phy(&adapter->hw);
1539 else
1540 e1000_power_up_fiber_serdes_link(&adapter->hw);
1541}
1542
1543/**
1544 * igb_power_down_link - Power down the phy/serdes link
1545 * @adapter: address of board private structure
1546 */
1547static void igb_power_down_link(struct igb_adapter *adapter)
1548{
1549 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1550 e1000_power_down_phy(&adapter->hw);
1551 else
1552 e1000_shutdown_fiber_serdes_link(&adapter->hw);
1553}
1554
1555/* Detect and switch function for Media Auto Sense */
1556static void igb_check_swap_media(struct igb_adapter *adapter)
1557{
1558 struct e1000_hw *hw = &adapter->hw;
1559 u32 ctrl_ext, connsw;
1560 bool swap_now = false;
1561 bool link;
1562
1563 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1564 connsw = E1000_READ_REG(hw, E1000_CONNSW);
1565 link = igb_has_link(adapter);
1566 (void) link;
1567
1568 /* need to live swap if current media is copper and we have fiber/serdes
1569 * to go to.
1570 */
1571
1572 if ((hw->phy.media_type == e1000_media_type_copper) &&
1573 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1574 swap_now = true;
1575 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1576 /* copper signal takes time to appear */
1577 if (adapter->copper_tries < 2) {
1578 adapter->copper_tries++;
1579 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1580 E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1581 return;
1582 } else {
1583 adapter->copper_tries = 0;
1584 if ((connsw & E1000_CONNSW_PHYSD) &&
1585 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1586 swap_now = true;
1587 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1588 E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1589 }
1590 }
1591 }
1592
1593 if (swap_now) {
1594 switch (hw->phy.media_type) {
1595 case e1000_media_type_copper:
1596 dev_info(pci_dev_to_dev(adapter->pdev),
1597 "%s:MAS: changing media to fiber/serdes\n",
1598 adapter->netdev->name);
1599 ctrl_ext |=
1600 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1601 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1602 adapter->copper_tries = 0;
1603 break;
1604 case e1000_media_type_internal_serdes:
1605 case e1000_media_type_fiber:
1606 dev_info(pci_dev_to_dev(adapter->pdev),
1607 "%s:MAS: changing media to copper\n",
1608 adapter->netdev->name);
1609 ctrl_ext &=
1610 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1611 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1612 break;
1613 default:
1614 /* shouldn't get here during regular operation */
1615 dev_err(pci_dev_to_dev(adapter->pdev),
1616 "%s:AMS: Invalid media type found, returning\n",
1617 adapter->netdev->name);
1618 break;
1619 }
1620 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1621 }
1622}
1623
1624#ifdef HAVE_I2C_SUPPORT
1625/* igb_get_i2c_data - Reads the I2C SDA data bit
1626 * @hw: pointer to hardware structure
1627 * @i2cctl: Current value of I2CCTL register
1628 *
1629 * Returns the I2C data bit value
1630 */
1631static int igb_get_i2c_data(void *data)
1632{
11fdf7f2 1633 struct igb_adapter *adapter = data;
7c673cae
FG
1634 struct e1000_hw *hw = &adapter->hw;
1635 s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1636
1637 return (i2cctl & E1000_I2C_DATA_IN) != 0;
1638}
1639
1640/* igb_set_i2c_data - Sets the I2C data bit
1641 * @data: pointer to hardware structure
1642 * @state: I2C data value (0 or 1) to set
1643 *
1644 * Sets the I2C data bit
1645 */
1646static void igb_set_i2c_data(void *data, int state)
1647{
11fdf7f2 1648 struct igb_adapter *adapter = data;
7c673cae
FG
1649 struct e1000_hw *hw = &adapter->hw;
1650 s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1651
1652 if (state)
1653 i2cctl |= E1000_I2C_DATA_OUT;
1654 else
1655 i2cctl &= ~E1000_I2C_DATA_OUT;
1656
1657 i2cctl &= ~E1000_I2C_DATA_OE_N;
1658 i2cctl |= E1000_I2C_CLK_OE_N;
1659
1660 E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
1661 E1000_WRITE_FLUSH(hw);
1662
1663}
1664
1665/* igb_set_i2c_clk - Sets the I2C SCL clock
1666 * @data: pointer to hardware structure
1667 * @state: state to set clock
1668 *
1669 * Sets the I2C clock line to state
1670 */
1671static void igb_set_i2c_clk(void *data, int state)
1672{
11fdf7f2 1673 struct igb_adapter *adapter = data;
7c673cae
FG
1674 struct e1000_hw *hw = &adapter->hw;
1675 s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1676
1677 if (state) {
1678 i2cctl |= E1000_I2C_CLK_OUT;
1679 i2cctl &= ~E1000_I2C_CLK_OE_N;
1680 } else {
1681 i2cctl &= ~E1000_I2C_CLK_OUT;
1682 i2cctl &= ~E1000_I2C_CLK_OE_N;
1683 }
1684 E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
1685 E1000_WRITE_FLUSH(hw);
1686}
1687
1688/* igb_get_i2c_clk - Gets the I2C SCL clock state
1689 * @data: pointer to hardware structure
1690 *
1691 * Gets the I2C clock state
1692 */
1693static int igb_get_i2c_clk(void *data)
1694{
11fdf7f2 1695 struct igb_adapter *adapter = data;
7c673cae
FG
1696 struct e1000_hw *hw = &adapter->hw;
1697 s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
1698
1699 return (i2cctl & E1000_I2C_CLK_IN) != 0;
1700}
1701
1702static const struct i2c_algo_bit_data igb_i2c_algo = {
1703 .setsda = igb_set_i2c_data,
1704 .setscl = igb_set_i2c_clk,
1705 .getsda = igb_get_i2c_data,
1706 .getscl = igb_get_i2c_clk,
1707 .udelay = 5,
1708 .timeout = 20,
1709};
1710
1711/* igb_init_i2c - Init I2C interface
1712 * @adapter: pointer to adapter structure
1713 *
1714 */
1715static s32 igb_init_i2c(struct igb_adapter *adapter)
1716{
1717 s32 status = E1000_SUCCESS;
1718
1719 /* I2C interface supported on i350 devices */
1720 if (adapter->hw.mac.type != e1000_i350)
1721 return E1000_SUCCESS;
1722
1723 /* Initialize the i2c bus which is controlled by the registers.
1724 * This bus will use the i2c_algo_bit structue that implements
1725 * the protocol through toggling of the 4 bits in the register.
1726 */
1727 adapter->i2c_adap.owner = THIS_MODULE;
1728 adapter->i2c_algo = igb_i2c_algo;
1729 adapter->i2c_algo.data = adapter;
1730 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1731 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1732 strlcpy(adapter->i2c_adap.name, "igb BB",
1733 sizeof(adapter->i2c_adap.name));
1734 status = i2c_bit_add_bus(&adapter->i2c_adap);
1735 return status;
1736}
1737
1738#endif /* HAVE_I2C_SUPPORT */
1739/**
1740 * igb_up - Open the interface and prepare it to handle traffic
1741 * @adapter: board private structure
1742 **/
1743int igb_up(struct igb_adapter *adapter)
1744{
1745 struct e1000_hw *hw = &adapter->hw;
1746 int i;
1747
1748 /* hardware has been reset, we need to reload some things */
1749 igb_configure(adapter);
1750
1751 clear_bit(__IGB_DOWN, &adapter->state);
1752
1753 for (i = 0; i < adapter->num_q_vectors; i++)
1754 napi_enable(&(adapter->q_vector[i]->napi));
1755
1756 if (adapter->msix_entries)
1757 igb_configure_msix(adapter);
1758 else
1759 igb_assign_vector(adapter->q_vector[0], 0);
1760
1761 igb_configure_lli(adapter);
1762
1763 /* Clear any pending interrupts. */
1764 E1000_READ_REG(hw, E1000_ICR);
1765 igb_irq_enable(adapter);
1766
1767 /* notify VFs that reset has been completed */
1768 if (adapter->vfs_allocated_count) {
1769 u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
1770 reg_data |= E1000_CTRL_EXT_PFRSTD;
1771 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
1772 }
1773
1774 netif_tx_start_all_queues(adapter->netdev);
1775
1776 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
1777 schedule_work(&adapter->dma_err_task);
1778 /* start the watchdog. */
1779 hw->mac.get_link_status = 1;
1780 schedule_work(&adapter->watchdog_task);
1781
1782 if ((adapter->flags & IGB_FLAG_EEE) &&
1783 (!hw->dev_spec._82575.eee_disable))
1784 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1785
1786 return 0;
1787}
1788
1789void igb_down(struct igb_adapter *adapter)
1790{
1791 struct net_device *netdev = adapter->netdev;
1792 struct e1000_hw *hw = &adapter->hw;
1793 u32 tctl, rctl;
1794 int i;
1795
1796 /* signal that we're down so the interrupt handler does not
1797 * reschedule our watchdog timer */
1798 set_bit(__IGB_DOWN, &adapter->state);
1799
1800 /* disable receives in the hardware */
1801 rctl = E1000_READ_REG(hw, E1000_RCTL);
1802 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1803 /* flush and sleep below */
1804
1805 netif_tx_stop_all_queues(netdev);
1806
1807 /* disable transmits in the hardware */
1808 tctl = E1000_READ_REG(hw, E1000_TCTL);
1809 tctl &= ~E1000_TCTL_EN;
1810 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1811 /* flush both disables and wait for them to finish */
1812 E1000_WRITE_FLUSH(hw);
1813 usleep_range(10000, 20000);
1814
1815 for (i = 0; i < adapter->num_q_vectors; i++)
1816 napi_disable(&(adapter->q_vector[i]->napi));
1817
1818 igb_irq_disable(adapter);
1819
1820 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1821
1822 del_timer_sync(&adapter->watchdog_timer);
1823 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
1824 del_timer_sync(&adapter->dma_err_timer);
1825 del_timer_sync(&adapter->phy_info_timer);
1826
1827 netif_carrier_off(netdev);
1828
1829 /* record the stats before reset*/
1830 igb_update_stats(adapter);
1831
1832 adapter->link_speed = 0;
1833 adapter->link_duplex = 0;
1834
1835#ifdef HAVE_PCI_ERS
1836 if (!pci_channel_offline(adapter->pdev))
1837 igb_reset(adapter);
1838#else
1839 igb_reset(adapter);
1840#endif
1841 igb_clean_all_tx_rings(adapter);
1842 igb_clean_all_rx_rings(adapter);
1843#ifdef IGB_DCA
1844 /* since we reset the hardware DCA settings were cleared */
1845 igb_setup_dca(adapter);
1846#endif
1847}
1848
1849void igb_reinit_locked(struct igb_adapter *adapter)
1850{
1851 WARN_ON(in_interrupt());
1852 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1853 usleep_range(1000, 2000);
1854 igb_down(adapter);
1855 igb_up(adapter);
1856 clear_bit(__IGB_RESETTING, &adapter->state);
1857}
1858
1859/**
1860 * igb_enable_mas - Media Autosense re-enable after swap
1861 *
1862 * @adapter: adapter struct
1863 **/
1864static s32 igb_enable_mas(struct igb_adapter *adapter)
1865{
1866 struct e1000_hw *hw = &adapter->hw;
1867 u32 connsw;
1868 s32 ret_val = E1000_SUCCESS;
1869
1870 connsw = E1000_READ_REG(hw, E1000_CONNSW);
1871 if (hw->phy.media_type == e1000_media_type_copper) {
1872 /* configure for SerDes media detect */
1873 if (!(connsw & E1000_CONNSW_SERDESD)) {
1874 connsw |= E1000_CONNSW_ENRGSRC;
1875 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1876 E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
1877 E1000_WRITE_FLUSH(hw);
1878 } else if (connsw & E1000_CONNSW_SERDESD) {
1879 /* already SerDes, no need to enable anything */
1880 return ret_val;
1881 } else {
1882 dev_info(pci_dev_to_dev(adapter->pdev),
1883 "%s:MAS: Unable to configure feature, disabling..\n",
1884 adapter->netdev->name);
1885 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1886 }
1887 }
1888 return ret_val;
1889}
1890
1891void igb_reset(struct igb_adapter *adapter)
1892{
1893 struct pci_dev *pdev = adapter->pdev;
1894 struct e1000_hw *hw = &adapter->hw;
1895 struct e1000_mac_info *mac = &hw->mac;
1896 struct e1000_fc_info *fc = &hw->fc;
1897 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1898
1899 /* Repartition Pba for greater than 9k mtu
1900 * To take effect CTRL.RST is required.
1901 */
1902 switch (mac->type) {
1903 case e1000_i350:
1904 case e1000_82580:
1905 case e1000_i354:
1906 pba = E1000_READ_REG(hw, E1000_RXPBS);
1907 pba = e1000_rxpbs_adjust_82580(pba);
1908 break;
1909 case e1000_82576:
1910 pba = E1000_READ_REG(hw, E1000_RXPBS);
1911 pba &= E1000_RXPBS_SIZE_MASK_82576;
1912 break;
1913 case e1000_82575:
1914 case e1000_i210:
1915 case e1000_i211:
1916 default:
1917 pba = E1000_PBA_34K;
1918 break;
1919 }
1920
1921 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1922 (mac->type < e1000_82576)) {
1923 /* adjust PBA for jumbo frames */
1924 E1000_WRITE_REG(hw, E1000_PBA, pba);
1925
1926 /* To maintain wire speed transmits, the Tx FIFO should be
1927 * large enough to accommodate two full transmit packets,
1928 * rounded up to the next 1KB and expressed in KB. Likewise,
1929 * the Rx FIFO should be large enough to accommodate at least
1930 * one full receive packet and is similarly rounded up and
1931 * expressed in KB. */
1932 pba = E1000_READ_REG(hw, E1000_PBA);
1933 /* upper 16 bits has Tx packet buffer allocation size in KB */
1934 tx_space = pba >> 16;
1935 /* lower 16 bits has Rx packet buffer allocation size in KB */
1936 pba &= 0xffff;
1937 /* the tx fifo also stores 16 bytes of information about the tx
1938 * but don't include ethernet FCS because hardware appends it */
1939 min_tx_space = (adapter->max_frame_size +
1940 sizeof(union e1000_adv_tx_desc) -
1941 ETH_FCS_LEN) * 2;
1942 min_tx_space = ALIGN(min_tx_space, 1024);
1943 min_tx_space >>= 10;
1944 /* software strips receive CRC, so leave room for it */
1945 min_rx_space = adapter->max_frame_size;
1946 min_rx_space = ALIGN(min_rx_space, 1024);
1947 min_rx_space >>= 10;
1948
1949 /* If current Tx allocation is less than the min Tx FIFO size,
1950 * and the min Tx FIFO size is less than the current Rx FIFO
1951 * allocation, take space away from current Rx allocation */
1952 if (tx_space < min_tx_space &&
1953 ((min_tx_space - tx_space) < pba)) {
1954 pba = pba - (min_tx_space - tx_space);
1955
1956 /* if short on rx space, rx wins and must trump tx
1957 * adjustment */
1958 if (pba < min_rx_space)
1959 pba = min_rx_space;
1960 }
1961 E1000_WRITE_REG(hw, E1000_PBA, pba);
1962 }
1963
1964 /* flow control settings */
1965 /* The high water mark must be low enough to fit one full frame
1966 * (or the size used for early receive) above it in the Rx FIFO.
1967 * Set it to the lower of:
1968 * - 90% of the Rx FIFO size, or
1969 * - the full Rx FIFO size minus one full frame */
1970 hwm = min(((pba << 10) * 9 / 10),
1971 ((pba << 10) - 2 * adapter->max_frame_size));
1972
1973 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1974 fc->low_water = fc->high_water - 16;
1975 fc->pause_time = 0xFFFF;
1976 fc->send_xon = 1;
1977 fc->current_mode = fc->requested_mode;
1978
1979 /* disable receive for all VFs and wait one second */
1980 if (adapter->vfs_allocated_count) {
1981 int i;
1982 /*
1983 * Clear all flags except indication that the PF has set
1984 * the VF MAC addresses administratively
1985 */
1986 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1987 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1988
1989 /* ping all the active vfs to let them know we are going down */
1990 igb_ping_all_vfs(adapter);
1991
1992 /* disable transmits and receives */
1993 E1000_WRITE_REG(hw, E1000_VFRE, 0);
1994 E1000_WRITE_REG(hw, E1000_VFTE, 0);
1995 }
1996
1997 /* Allow time for pending master requests to run */
1998 e1000_reset_hw(hw);
1999 E1000_WRITE_REG(hw, E1000_WUC, 0);
2000
2001 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2002 e1000_setup_init_funcs(hw, TRUE);
2003 igb_check_options(adapter);
2004 e1000_get_bus_info(hw);
2005 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2006 }
2007 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
2008 if (igb_enable_mas(adapter))
2009 dev_err(pci_dev_to_dev(pdev),
2010 "Error enabling Media Auto Sense\n");
2011 }
2012 if (e1000_init_hw(hw))
2013 dev_err(pci_dev_to_dev(pdev), "Hardware Error\n");
2014
2015 /*
2016 * Flow control settings reset on hardware reset, so guarantee flow
2017 * control is off when forcing speed.
2018 */
2019 if (!hw->mac.autoneg)
2020 e1000_force_mac_fc(hw);
2021
2022 igb_init_dmac(adapter, pba);
2023 /* Re-initialize the thermal sensor on i350 devices. */
2024 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2025 /*
2026 * If present, re-initialize the external thermal sensor
2027 * interface.
2028 */
2029 if (adapter->ets)
2030 e1000_set_i2c_bb(hw);
2031 e1000_init_thermal_sensor_thresh(hw);
2032 }
2033
2034 /*Re-establish EEE setting */
2035 if (hw->phy.media_type == e1000_media_type_copper) {
2036 switch (mac->type) {
2037 case e1000_i350:
2038 case e1000_i210:
2039 case e1000_i211:
2040 e1000_set_eee_i350(hw);
2041 break;
2042 case e1000_i354:
2043 e1000_set_eee_i354(hw);
2044 break;
2045 default:
2046 break;
2047 }
2048 }
2049
2050 if (!netif_running(adapter->netdev))
2051 igb_power_down_link(adapter);
2052
2053 igb_update_mng_vlan(adapter);
2054
2055 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2056 E1000_WRITE_REG(hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2057
2058
2059#ifdef HAVE_PTP_1588_CLOCK
2060 /* Re-enable PTP, where applicable. */
2061 igb_ptp_reset(adapter);
2062#endif /* HAVE_PTP_1588_CLOCK */
2063
2064 e1000_get_phy_info(hw);
2065
2066 adapter->devrc++;
2067}
2068
2069#ifdef HAVE_NDO_SET_FEATURES
2070static kni_netdev_features_t igb_fix_features(struct net_device *netdev,
2071 kni_netdev_features_t features)
2072{
2073 /*
2074 * Since there is no support for separate tx vlan accel
2075 * enabled make sure tx flag is cleared if rx is.
2076 */
2077#ifdef NETIF_F_HW_VLAN_CTAG_RX
2078 if (!(features & NETIF_F_HW_VLAN_CTAG_RX))
2079 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2080#else
2081 if (!(features & NETIF_F_HW_VLAN_RX))
2082 features &= ~NETIF_F_HW_VLAN_TX;
2083#endif
2084
2085 /* If Rx checksum is disabled, then LRO should also be disabled */
2086 if (!(features & NETIF_F_RXCSUM))
2087 features &= ~NETIF_F_LRO;
2088
2089 return features;
2090}
2091
2092static int igb_set_features(struct net_device *netdev,
2093 kni_netdev_features_t features)
2094{
2095 u32 changed = netdev->features ^ features;
2096
2097#ifdef NETIF_F_HW_VLAN_CTAG_RX
2098 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2099#else
2100 if (changed & NETIF_F_HW_VLAN_RX)
2101#endif
2102 igb_vlan_mode(netdev, features);
2103
2104 return 0;
2105}
2106
2107#ifdef NTF_SELF
2108#ifdef USE_CONST_DEV_UC_CHAR
2109static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2110 struct net_device *dev,
2111 const unsigned char *addr,
2112#ifdef HAVE_NDO_FDB_ADD_VID
2113 u16 vid,
2114#endif
9f95a23c
TL
2115#ifdef HAVE_NDO_FDB_ADD_EXTACK
2116 u16 flags,
2117 struct netlink_ext_ack *extack)
2118#else
7c673cae 2119 u16 flags)
9f95a23c
TL
2120#endif
2121
7c673cae
FG
2122#else
2123static int igb_ndo_fdb_add(struct ndmsg *ndm,
2124 struct net_device *dev,
2125 unsigned char *addr,
2126 u16 flags)
2127#endif
2128{
2129 struct igb_adapter *adapter = netdev_priv(dev);
2130 struct e1000_hw *hw = &adapter->hw;
2131 int err;
2132
2133 if (!(adapter->vfs_allocated_count))
2134 return -EOPNOTSUPP;
2135
2136 /* Hardware does not support aging addresses so if a
2137 * ndm_state is given only allow permanent addresses
2138 */
2139 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
2140 pr_info("%s: FDB only supports static addresses\n",
2141 igb_driver_name);
2142 return -EINVAL;
2143 }
2144
2145 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2146 u32 rar_uc_entries = hw->mac.rar_entry_count -
2147 (adapter->vfs_allocated_count + 1);
2148
2149 if (netdev_uc_count(dev) < rar_uc_entries)
2150 err = dev_uc_add_excl(dev, addr);
2151 else
2152 err = -ENOMEM;
2153 } else if (is_multicast_ether_addr(addr)) {
2154 err = dev_mc_add_excl(dev, addr);
2155 } else {
2156 err = -EINVAL;
2157 }
2158
2159 /* Only return duplicate errors if NLM_F_EXCL is set */
2160 if (err == -EEXIST && !(flags & NLM_F_EXCL))
2161 err = 0;
2162
2163 return err;
2164}
2165
2166#ifndef USE_DEFAULT_FDB_DEL_DUMP
2167#ifdef USE_CONST_DEV_UC_CHAR
2168static int igb_ndo_fdb_del(struct ndmsg *ndm,
2169 struct net_device *dev,
2170 const unsigned char *addr)
2171#else
2172static int igb_ndo_fdb_del(struct ndmsg *ndm,
2173 struct net_device *dev,
2174 unsigned char *addr)
2175#endif
2176{
2177 struct igb_adapter *adapter = netdev_priv(dev);
2178 int err = -EOPNOTSUPP;
2179
2180 if (ndm->ndm_state & NUD_PERMANENT) {
2181 pr_info("%s: FDB only supports static addresses\n",
2182 igb_driver_name);
2183 return -EINVAL;
2184 }
2185
2186 if (adapter->vfs_allocated_count) {
2187 if (is_unicast_ether_addr(addr))
2188 err = dev_uc_del(dev, addr);
2189 else if (is_multicast_ether_addr(addr))
2190 err = dev_mc_del(dev, addr);
2191 else
2192 err = -EINVAL;
2193 }
2194
2195 return err;
2196}
2197
2198static int igb_ndo_fdb_dump(struct sk_buff *skb,
2199 struct netlink_callback *cb,
2200 struct net_device *dev,
2201 int idx)
2202{
2203 struct igb_adapter *adapter = netdev_priv(dev);
2204
2205 if (adapter->vfs_allocated_count)
2206 idx = ndo_dflt_fdb_dump(skb, cb, dev, idx);
2207
2208 return idx;
2209}
2210#endif /* USE_DEFAULT_FDB_DEL_DUMP */
2211
2212#ifdef HAVE_BRIDGE_ATTRIBS
2213#ifdef HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS
2214static int igb_ndo_bridge_setlink(struct net_device *dev,
2215 struct nlmsghdr *nlh,
9f95a23c
TL
2216#ifdef HAVE_NDO_BRIDGE_SETLINK_EXTACK
2217 u16 flags, struct netlink_ext_ack *extack)
2218#else
7c673cae 2219 u16 flags)
9f95a23c
TL
2220#endif
2221
7c673cae
FG
2222#else
2223static int igb_ndo_bridge_setlink(struct net_device *dev,
2224 struct nlmsghdr *nlh)
2225#endif /* HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS */
2226{
2227 struct igb_adapter *adapter = netdev_priv(dev);
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct nlattr *attr, *br_spec;
2230 int rem;
2231
2232 if (!(adapter->vfs_allocated_count))
2233 return -EOPNOTSUPP;
2234
2235 switch (adapter->hw.mac.type) {
2236 case e1000_82576:
2237 case e1000_i350:
2238 case e1000_i354:
2239 break;
2240 default:
2241 return -EOPNOTSUPP;
2242 }
2243
2244 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
2245
2246 nla_for_each_nested(attr, br_spec, rem) {
2247 __u16 mode;
2248
2249 if (nla_type(attr) != IFLA_BRIDGE_MODE)
2250 continue;
2251
2252 mode = nla_get_u16(attr);
2253 if (mode == BRIDGE_MODE_VEPA) {
2254 e1000_vmdq_set_loopback_pf(hw, 0);
2255 adapter->flags &= ~IGB_FLAG_LOOPBACK_ENABLE;
2256 } else if (mode == BRIDGE_MODE_VEB) {
2257 e1000_vmdq_set_loopback_pf(hw, 1);
2258 adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE;
2259 } else
2260 return -EINVAL;
2261
2262 netdev_info(adapter->netdev, "enabling bridge mode: %s\n",
2263 mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
2264 }
2265
2266 return 0;
2267}
2268
2269#ifdef HAVE_BRIDGE_FILTER
2270#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
2271static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2272 struct net_device *dev, u32 filter_mask,
2273 int nlflags)
2274#else
2275static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2276 struct net_device *dev, u32 filter_mask)
2277#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
2278#else
2279static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
2280 struct net_device *dev)
2281#endif
2282{
2283 struct igb_adapter *adapter = netdev_priv(dev);
2284 u16 mode;
2285
2286 if (!(adapter->vfs_allocated_count))
2287 return -EOPNOTSUPP;
2288
2289 if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE)
2290 mode = BRIDGE_MODE_VEB;
2291 else
2292 mode = BRIDGE_MODE_VEPA;
2293
2294#ifdef HAVE_NDO_DFLT_BRIDGE_ADD_MASK
2295#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS
2296#ifdef HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL
2297 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0,
2298 nlflags, filter_mask, NULL);
2299#else
2300 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, nlflags);
2301#endif /* HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL */
2302#else
2303 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0);
2304#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */
2305#else
2306 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode);
2307#endif /* HAVE_NDO_DFLT_BRIDGE_ADD_MASK */
2308}
2309#endif /* HAVE_BRIDGE_ATTRIBS */
2310#endif /* NTF_SELF */
2311
2312#endif /* HAVE_NDO_SET_FEATURES */
2313#ifdef HAVE_NET_DEVICE_OPS
2314static const struct net_device_ops igb_netdev_ops = {
2315 .ndo_open = igb_open,
2316 .ndo_stop = igb_close,
2317 .ndo_start_xmit = igb_xmit_frame,
2318 .ndo_get_stats = igb_get_stats,
2319 .ndo_set_rx_mode = igb_set_rx_mode,
2320 .ndo_set_mac_address = igb_set_mac,
2321 .ndo_change_mtu = igb_change_mtu,
2322 .ndo_do_ioctl = igb_ioctl,
2323 .ndo_tx_timeout = igb_tx_timeout,
2324 .ndo_validate_addr = eth_validate_addr,
2325 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2326 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2327#ifdef IFLA_VF_MAX
2328 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2329 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2330#ifdef HAVE_VF_MIN_MAX_TXRATE
2331 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2332#else /* HAVE_VF_MIN_MAX_TXRATE */
2333 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2334#endif /* HAVE_VF_MIN_MAX_TXRATE */
2335 .ndo_get_vf_config = igb_ndo_get_vf_config,
2336#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
2337 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2338#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
2339#endif /* IFLA_VF_MAX */
2340#ifdef CONFIG_NET_POLL_CONTROLLER
2341 .ndo_poll_controller = igb_netpoll,
2342#endif
2343#ifdef HAVE_NDO_SET_FEATURES
2344 .ndo_fix_features = igb_fix_features,
2345 .ndo_set_features = igb_set_features,
2346#endif
2347#ifdef HAVE_VLAN_RX_REGISTER
2348 .ndo_vlan_rx_register = igb_vlan_mode,
2349#endif
2350#ifndef HAVE_RHEL6_NETDEV_OPS_EXT_FDB
2351#ifdef NTF_SELF
2352 .ndo_fdb_add = igb_ndo_fdb_add,
2353#ifndef USE_DEFAULT_FDB_DEL_DUMP
2354 .ndo_fdb_del = igb_ndo_fdb_del,
2355 .ndo_fdb_dump = igb_ndo_fdb_dump,
2356#endif
2357#endif /* ! HAVE_RHEL6_NETDEV_OPS_EXT_FDB */
2358#ifdef HAVE_BRIDGE_ATTRIBS
2359 .ndo_bridge_setlink = igb_ndo_bridge_setlink,
2360 .ndo_bridge_getlink = igb_ndo_bridge_getlink,
2361#endif /* HAVE_BRIDGE_ATTRIBS */
2362#endif
2363};
2364
2365#ifdef CONFIG_IGB_VMDQ_NETDEV
2366static const struct net_device_ops igb_vmdq_ops = {
2367 .ndo_open = &igb_vmdq_open,
2368 .ndo_stop = &igb_vmdq_close,
2369 .ndo_start_xmit = &igb_vmdq_xmit_frame,
2370 .ndo_get_stats = &igb_vmdq_get_stats,
2371 .ndo_set_rx_mode = &igb_vmdq_set_rx_mode,
2372 .ndo_validate_addr = eth_validate_addr,
2373 .ndo_set_mac_address = &igb_vmdq_set_mac,
2374 .ndo_change_mtu = &igb_vmdq_change_mtu,
2375 .ndo_tx_timeout = &igb_vmdq_tx_timeout,
2376 .ndo_vlan_rx_register = &igb_vmdq_vlan_rx_register,
2377 .ndo_vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid,
2378 .ndo_vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid,
2379};
2380
2381#endif /* CONFIG_IGB_VMDQ_NETDEV */
2382#endif /* HAVE_NET_DEVICE_OPS */
2383#ifdef CONFIG_IGB_VMDQ_NETDEV
2384void igb_assign_vmdq_netdev_ops(struct net_device *vnetdev)
2385{
2386#ifdef HAVE_NET_DEVICE_OPS
2387 vnetdev->netdev_ops = &igb_vmdq_ops;
2388#else
2389 dev->open = &igb_vmdq_open;
2390 dev->stop = &igb_vmdq_close;
2391 dev->hard_start_xmit = &igb_vmdq_xmit_frame;
2392 dev->get_stats = &igb_vmdq_get_stats;
2393#ifdef HAVE_SET_RX_MODE
2394 dev->set_rx_mode = &igb_vmdq_set_rx_mode;
2395#endif
2396 dev->set_multicast_list = &igb_vmdq_set_rx_mode;
2397 dev->set_mac_address = &igb_vmdq_set_mac;
2398 dev->change_mtu = &igb_vmdq_change_mtu;
2399#ifdef HAVE_TX_TIMEOUT
2400 dev->tx_timeout = &igb_vmdq_tx_timeout;
2401#endif
2402#if defined(NETIF_F_HW_VLAN_TX) || defined(NETIF_F_HW_VLAN_CTAG_TX)
2403 dev->vlan_rx_register = &igb_vmdq_vlan_rx_register;
2404 dev->vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid;
2405 dev->vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid;
2406#endif
2407#endif
2408 igb_vmdq_set_ethtool_ops(vnetdev);
2409 vnetdev->watchdog_timeo = 5 * HZ;
2410
2411}
2412
2413int igb_init_vmdq_netdevs(struct igb_adapter *adapter)
2414{
2415 int pool, err = 0, base_queue;
2416 struct net_device *vnetdev;
2417 struct igb_vmdq_adapter *vmdq_adapter;
2418
2419 for (pool = 1; pool < adapter->vmdq_pools; pool++) {
2420 int qpp = (!adapter->rss_queues ? 1 : adapter->rss_queues);
2421 base_queue = pool * qpp;
2422 vnetdev = alloc_etherdev(sizeof(struct igb_vmdq_adapter));
2423 if (!vnetdev) {
2424 err = -ENOMEM;
2425 break;
2426 }
2427 vmdq_adapter = netdev_priv(vnetdev);
2428 vmdq_adapter->vnetdev = vnetdev;
2429 vmdq_adapter->real_adapter = adapter;
2430 vmdq_adapter->rx_ring = adapter->rx_ring[base_queue];
2431 vmdq_adapter->tx_ring = adapter->tx_ring[base_queue];
2432 igb_assign_vmdq_netdev_ops(vnetdev);
2433 snprintf(vnetdev->name, IFNAMSIZ, "%sv%d",
2434 adapter->netdev->name, pool);
2435 vnetdev->features = adapter->netdev->features;
2436#ifdef HAVE_NETDEV_VLAN_FEATURES
2437 vnetdev->vlan_features = adapter->netdev->vlan_features;
2438#endif
2439 adapter->vmdq_netdev[pool-1] = vnetdev;
2440 err = register_netdev(vnetdev);
2441 if (err)
2442 break;
2443 }
2444 return err;
2445}
2446
2447int igb_remove_vmdq_netdevs(struct igb_adapter *adapter)
2448{
2449 int pool, err = 0;
2450
2451 for (pool = 1; pool < adapter->vmdq_pools; pool++) {
2452 unregister_netdev(adapter->vmdq_netdev[pool-1]);
2453 free_netdev(adapter->vmdq_netdev[pool-1]);
2454 adapter->vmdq_netdev[pool-1] = NULL;
2455 }
2456 return err;
2457}
2458#endif /* CONFIG_IGB_VMDQ_NETDEV */
2459
2460/**
2461 * igb_set_fw_version - Configure version string for ethtool
2462 * @adapter: adapter struct
2463 *
2464 **/
2465static void igb_set_fw_version(struct igb_adapter *adapter)
2466{
2467 struct e1000_hw *hw = &adapter->hw;
2468 struct e1000_fw_version fw;
2469
2470 e1000_get_fw_version(hw, &fw);
2471
2472 switch (hw->mac.type) {
2473 case e1000_i210:
2474 case e1000_i211:
2475 if (!(e1000_get_flash_presence_i210(hw))) {
2476 snprintf(adapter->fw_version,
2477 sizeof(adapter->fw_version),
2478 "%2d.%2d-%d",
2479 fw.invm_major, fw.invm_minor, fw.invm_img_type);
2480 break;
2481 }
2482 /* fall through */
2483 default:
2484 /* if option rom is valid, display its version too*/
2485 if (fw.or_valid) {
2486 snprintf(adapter->fw_version,
2487 sizeof(adapter->fw_version),
2488 "%d.%d, 0x%08x, %d.%d.%d",
2489 fw.eep_major, fw.eep_minor, fw.etrack_id,
2490 fw.or_major, fw.or_build, fw.or_patch);
2491 /* no option rom */
2492 } else {
2493 if (fw.etrack_id != 0X0000) {
2494 snprintf(adapter->fw_version,
2495 sizeof(adapter->fw_version),
2496 "%d.%d, 0x%08x",
2497 fw.eep_major, fw.eep_minor, fw.etrack_id);
2498 } else {
2499 snprintf(adapter->fw_version,
2500 sizeof(adapter->fw_version),
2501 "%d.%d.%d",
2502 fw.eep_major, fw.eep_minor, fw.eep_build);
2503 }
2504 }
2505 break;
2506 }
2507
2508 return;
2509}
2510
2511/**
2512 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2513 *
2514 * @adapter: adapter struct
2515 **/
2516static void igb_init_mas(struct igb_adapter *adapter)
2517{
2518 struct e1000_hw *hw = &adapter->hw;
2519 u16 eeprom_data;
2520
2521 e1000_read_nvm(hw, NVM_COMPAT, 1, &eeprom_data);
2522 switch (hw->bus.func) {
2523 case E1000_FUNC_0:
2524 if (eeprom_data & IGB_MAS_ENABLE_0)
2525 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2526 break;
2527 case E1000_FUNC_1:
2528 if (eeprom_data & IGB_MAS_ENABLE_1)
2529 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2530 break;
2531 case E1000_FUNC_2:
2532 if (eeprom_data & IGB_MAS_ENABLE_2)
2533 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2534 break;
2535 case E1000_FUNC_3:
2536 if (eeprom_data & IGB_MAS_ENABLE_3)
2537 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2538 break;
2539 default:
2540 /* Shouldn't get here */
2541 dev_err(pci_dev_to_dev(adapter->pdev),
2542 "%s:AMS: Invalid port configuration, returning\n",
2543 adapter->netdev->name);
2544 break;
2545 }
2546}
2547
2548/**
2549 * igb_probe - Device Initialization Routine
2550 * @pdev: PCI device information struct
2551 * @ent: entry in igb_pci_tbl
2552 *
2553 * Returns 0 on success, negative on failure
2554 *
2555 * igb_probe initializes an adapter identified by a pci_dev structure.
2556 * The OS initialization, configuring of the adapter private structure,
2557 * and a hardware reset occur.
2558 **/
2559static int __devinit igb_probe(struct pci_dev *pdev,
2560 const struct pci_device_id *ent)
2561{
2562 struct net_device *netdev;
2563 struct igb_adapter *adapter;
2564 struct e1000_hw *hw;
2565 u16 eeprom_data = 0;
2566 u8 pba_str[E1000_PBANUM_LENGTH];
2567 s32 ret_val;
2568 static int global_quad_port_a; /* global quad port a indication */
2569 int i, err, pci_using_dac;
2570 static int cards_found;
2571
2572 err = pci_enable_device_mem(pdev);
2573 if (err)
2574 return err;
2575
2576 pci_using_dac = 0;
2577 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
2578 if (!err) {
2579 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
2580 if (!err)
2581 pci_using_dac = 1;
2582 } else {
2583 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
2584 if (err) {
2585 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
2586 if (err) {
2587 IGB_ERR("No usable DMA configuration, "
2588 "aborting\n");
2589 goto err_dma;
2590 }
2591 }
2592 }
2593
2594#ifndef HAVE_ASPM_QUIRKS
2595 /* 82575 requires that the pci-e link partner disable the L0s state */
2596 switch (pdev->device) {
2597 case E1000_DEV_ID_82575EB_COPPER:
2598 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2599 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2600 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
2601 default:
2602 break;
2603 }
2604
2605#endif /* HAVE_ASPM_QUIRKS */
2606 err = pci_request_selected_regions(pdev,
2607 pci_select_bars(pdev,
2608 IORESOURCE_MEM),
2609 igb_driver_name);
2610 if (err)
2611 goto err_pci_reg;
2612
2613 pci_enable_pcie_error_reporting(pdev);
2614
2615 pci_set_master(pdev);
2616
2617 err = -ENOMEM;
2618#ifdef HAVE_TX_MQ
2619 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2620 IGB_MAX_TX_QUEUES);
2621#else
2622 netdev = alloc_etherdev(sizeof(struct igb_adapter));
2623#endif /* HAVE_TX_MQ */
2624 if (!netdev)
2625 goto err_alloc_etherdev;
2626
2627 SET_MODULE_OWNER(netdev);
2628 SET_NETDEV_DEV(netdev, &pdev->dev);
2629
2630 pci_set_drvdata(pdev, netdev);
2631 adapter = netdev_priv(netdev);
2632 adapter->netdev = netdev;
2633 adapter->pdev = pdev;
2634 hw = &adapter->hw;
2635 hw->back = adapter;
2636 adapter->port_num = hw->bus.func;
2637 adapter->msg_enable = (1 << debug) - 1;
2638
2639#ifdef HAVE_PCI_ERS
2640 err = pci_save_state(pdev);
2641 if (err)
2642 goto err_ioremap;
2643#endif
2644 err = -EIO;
2645 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
2646 pci_resource_len(pdev, 0));
2647 if (!hw->hw_addr)
2648 goto err_ioremap;
2649
2650#ifdef HAVE_NET_DEVICE_OPS
2651 netdev->netdev_ops = &igb_netdev_ops;
2652#else /* HAVE_NET_DEVICE_OPS */
2653 netdev->open = &igb_open;
2654 netdev->stop = &igb_close;
2655 netdev->get_stats = &igb_get_stats;
2656#ifdef HAVE_SET_RX_MODE
2657 netdev->set_rx_mode = &igb_set_rx_mode;
2658#endif
2659 netdev->set_multicast_list = &igb_set_rx_mode;
2660 netdev->set_mac_address = &igb_set_mac;
2661 netdev->change_mtu = &igb_change_mtu;
2662 netdev->do_ioctl = &igb_ioctl;
2663#ifdef HAVE_TX_TIMEOUT
2664 netdev->tx_timeout = &igb_tx_timeout;
2665#endif
2666 netdev->vlan_rx_register = igb_vlan_mode;
2667 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
2668 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
2669#ifdef CONFIG_NET_POLL_CONTROLLER
2670 netdev->poll_controller = igb_netpoll;
2671#endif
2672 netdev->hard_start_xmit = &igb_xmit_frame;
2673#endif /* HAVE_NET_DEVICE_OPS */
2674 igb_set_ethtool_ops(netdev);
2675#ifdef HAVE_TX_TIMEOUT
2676 netdev->watchdog_timeo = 5 * HZ;
2677#endif
2678
2679 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2680
2681 adapter->bd_number = cards_found;
2682
2683 /* setup the private structure */
2684 err = igb_sw_init(adapter);
2685 if (err)
2686 goto err_sw_init;
2687
2688 e1000_get_bus_info(hw);
2689
2690 hw->phy.autoneg_wait_to_complete = FALSE;
2691 hw->mac.adaptive_ifs = FALSE;
2692
2693 /* Copper options */
2694 if (hw->phy.media_type == e1000_media_type_copper) {
2695 hw->phy.mdix = AUTO_ALL_MODES;
2696 hw->phy.disable_polarity_correction = FALSE;
2697 hw->phy.ms_type = e1000_ms_hw_default;
2698 }
2699
2700 if (e1000_check_reset_block(hw))
2701 dev_info(pci_dev_to_dev(pdev),
2702 "PHY reset is blocked due to SOL/IDER session.\n");
2703
2704 /*
2705 * features is initialized to 0 in allocation, it might have bits
2706 * set by igb_sw_init so we should use an or instead of an
2707 * assignment.
2708 */
2709 netdev->features |= NETIF_F_SG |
2710 NETIF_F_IP_CSUM |
2711#ifdef NETIF_F_IPV6_CSUM
2712 NETIF_F_IPV6_CSUM |
2713#endif
2714#ifdef NETIF_F_TSO
2715 NETIF_F_TSO |
2716#ifdef NETIF_F_TSO6
2717 NETIF_F_TSO6 |
2718#endif
2719#endif /* NETIF_F_TSO */
2720#ifdef NETIF_F_RXHASH
2721 NETIF_F_RXHASH |
2722#endif
2723 NETIF_F_RXCSUM |
2724#ifdef NETIF_F_HW_VLAN_CTAG_RX
2725 NETIF_F_HW_VLAN_CTAG_RX |
2726 NETIF_F_HW_VLAN_CTAG_TX;
2727#else
2728 NETIF_F_HW_VLAN_RX |
2729 NETIF_F_HW_VLAN_TX;
2730#endif
2731
2732 if (hw->mac.type >= e1000_82576)
2733 netdev->features |= NETIF_F_SCTP_CSUM;
2734
2735#ifdef HAVE_NDO_SET_FEATURES
2736 /* copy netdev features into list of user selectable features */
2737 netdev->hw_features |= netdev->features;
2738#ifndef IGB_NO_LRO
2739
2740 /* give us the option of enabling LRO later */
2741 netdev->hw_features |= NETIF_F_LRO;
2742#endif
2743#else
2744#ifdef NETIF_F_GRO
2745
2746 /* this is only needed on kernels prior to 2.6.39 */
2747 netdev->features |= NETIF_F_GRO;
2748#endif
2749#endif
2750
2751 /* set this bit last since it cannot be part of hw_features */
2752#ifdef NETIF_F_HW_VLAN_CTAG_FILTER
2753 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2754#else
2755 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2756#endif
2757
2758#ifdef HAVE_NETDEV_VLAN_FEATURES
2759 netdev->vlan_features |= NETIF_F_TSO |
2760 NETIF_F_TSO6 |
2761 NETIF_F_IP_CSUM |
2762 NETIF_F_IPV6_CSUM |
2763 NETIF_F_SG;
2764
2765#endif
2766 if (pci_using_dac)
2767 netdev->features |= NETIF_F_HIGHDMA;
2768
2769 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2770#ifdef DEBUG
2771 if (adapter->dmac != IGB_DMAC_DISABLE)
2772 printk("%s: DMA Coalescing is enabled..\n", netdev->name);
2773#endif
2774
2775 /* before reading the NVM, reset the controller to put the device in a
2776 * known good starting state */
2777 e1000_reset_hw(hw);
2778
2779 /* make sure the NVM is good */
2780 if (e1000_validate_nvm_checksum(hw) < 0) {
2781 dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
2782 " Valid\n");
2783 err = -EIO;
2784 goto err_eeprom;
2785 }
2786
2787 /* copy the MAC address out of the NVM */
2788 if (e1000_read_mac_addr(hw))
2789 dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
2790 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2791#ifdef ETHTOOL_GPERMADDR
2792 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2793
2794 if (!is_valid_ether_addr(netdev->perm_addr)) {
2795#else
2796 if (!is_valid_ether_addr(netdev->dev_addr)) {
2797#endif
2798 dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
2799 err = -EIO;
2800 goto err_eeprom;
2801 }
2802
2803 memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
2804 adapter->mac_table[0].queue = adapter->vfs_allocated_count;
2805 adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
2806 igb_rar_set(adapter, 0);
2807
2808 /* get firmware version for ethtool -i */
2809 igb_set_fw_version(adapter);
2810
2811 /* Check if Media Autosense is enabled */
2812 if (hw->mac.type == e1000_82580)
2813 igb_init_mas(adapter);
11fdf7f2
TL
2814#ifdef HAVE_TIMER_SETUP
2815 timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0);
2816 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
2817 timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0);
2818 timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0);
2819#else
7c673cae
FG
2820 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
2821 (unsigned long) adapter);
2822 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
2823 setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
2824 (unsigned long) adapter);
2825 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
2826 (unsigned long) adapter);
11fdf7f2 2827#endif
7c673cae
FG
2828
2829 INIT_WORK(&adapter->reset_task, igb_reset_task);
2830 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2831 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
2832 INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
2833
2834 /* Initialize link properties that are user-changeable */
2835 adapter->fc_autoneg = true;
2836 hw->mac.autoneg = true;
2837 hw->phy.autoneg_advertised = 0x2f;
2838
2839 hw->fc.requested_mode = e1000_fc_default;
2840 hw->fc.current_mode = e1000_fc_default;
2841
2842 e1000_validate_mdi_setting(hw);
2843
2844 /* By default, support wake on port A */
2845 if (hw->bus.func == 0)
2846 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2847
2848 /* Check the NVM for wake support for non-port A ports */
2849 if (hw->mac.type >= e1000_82580)
2850 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2851 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2852 &eeprom_data);
2853 else if (hw->bus.func == 1)
2854 e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2855
2856 if (eeprom_data & IGB_EEPROM_APME)
2857 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2858
2859 /* now that we have the eeprom settings, apply the special cases where
2860 * the eeprom may be wrong or the board simply won't support wake on
2861 * lan on a particular port */
2862 switch (pdev->device) {
2863 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2864 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2865 break;
2866 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2867 case E1000_DEV_ID_82576_FIBER:
2868 case E1000_DEV_ID_82576_SERDES:
2869 /* Wake events only supported on port A for dual fiber
2870 * regardless of eeprom setting */
2871 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
2872 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2873 break;
2874 case E1000_DEV_ID_82576_QUAD_COPPER:
2875 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2876 /* if quad port adapter, disable WoL on all but port A */
2877 if (global_quad_port_a != 0)
2878 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2879 else
2880 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2881 /* Reset for multiple quad port adapters */
2882 if (++global_quad_port_a == 4)
2883 global_quad_port_a = 0;
2884 break;
2885 default:
2886 /* If the device can't wake, don't set software support */
2887 if (!device_can_wakeup(&adapter->pdev->dev))
2888 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2889 break;
2890 }
2891
2892 /* initialize the wol settings based on the eeprom settings */
2893 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2894 adapter->wol |= E1000_WUFC_MAG;
2895
2896 /* Some vendors want WoL disabled by default, but still supported */
2897 if ((hw->mac.type == e1000_i350) &&
2898 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2899 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2900 adapter->wol = 0;
2901 }
2902
2903 device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
2904 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2905
2906 /* reset the hardware with the new settings */
2907 igb_reset(adapter);
2908 adapter->devrc = 0;
2909
2910#ifdef HAVE_I2C_SUPPORT
2911 /* Init the I2C interface */
2912 err = igb_init_i2c(adapter);
2913 if (err) {
2914 dev_err(&pdev->dev, "failed to init i2c interface\n");
2915 goto err_eeprom;
2916 }
2917#endif /* HAVE_I2C_SUPPORT */
2918
2919 /* let the f/w know that the h/w is now under the control of the
2920 * driver. */
2921 igb_get_hw_control(adapter);
2922
2923 strncpy(netdev->name, "eth%d", IFNAMSIZ);
2924 err = register_netdev(netdev);
2925 if (err)
2926 goto err_register;
2927
2928#ifdef CONFIG_IGB_VMDQ_NETDEV
2929 err = igb_init_vmdq_netdevs(adapter);
2930 if (err)
2931 goto err_register;
2932#endif
2933 /* carrier off reporting is important to ethtool even BEFORE open */
2934 netif_carrier_off(netdev);
2935
2936#ifdef IGB_DCA
2937 if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
2938 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2939 dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
2940 igb_setup_dca(adapter);
2941 }
2942
2943#endif
2944#ifdef HAVE_PTP_1588_CLOCK
2945 /* do hw tstamp init after resetting */
2946 igb_ptp_init(adapter);
2947#endif /* HAVE_PTP_1588_CLOCK */
2948
2949 dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
2950 /* print bus type/speed/width info */
2951 dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
2952 netdev->name,
2953 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
2954 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
2955 (hw->mac.type == e1000_i354) ? "integrated" :
2956 "unknown"),
2957 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2958 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2959 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2960 (hw->mac.type == e1000_i354) ? "integrated" :
2961 "unknown"));
2962 dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
2963 for (i = 0; i < 6; i++)
2964 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
2965
2966 ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
2967 if (ret_val)
2968 strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
2969 dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
2970 pba_str);
2971
2972
2973 /* Initialize the thermal sensor on i350 devices. */
2974 if (hw->mac.type == e1000_i350) {
2975 if (hw->bus.func == 0) {
2976 u16 ets_word;
2977
2978 /*
2979 * Read the NVM to determine if this i350 device
2980 * supports an external thermal sensor.
2981 */
2982 e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
2983 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2984 adapter->ets = true;
2985 else
2986 adapter->ets = false;
2987 }
2988#ifdef IGB_HWMON
2989
2990 igb_sysfs_init(adapter);
2991#else
2992#ifdef IGB_PROCFS
2993
2994 igb_procfs_init(adapter);
2995#endif /* IGB_PROCFS */
2996#endif /* IGB_HWMON */
2997 } else {
2998 adapter->ets = false;
2999 }
3000
3001 if (hw->phy.media_type == e1000_media_type_copper) {
3002 switch (hw->mac.type) {
3003 case e1000_i350:
3004 case e1000_i210:
3005 case e1000_i211:
3006 /* Enable EEE for internal copper PHY devices */
3007 err = e1000_set_eee_i350(hw);
11fdf7f2 3008 if (!err &&
7c673cae
FG
3009 (adapter->flags & IGB_FLAG_EEE))
3010 adapter->eee_advert =
3011 MDIO_EEE_100TX | MDIO_EEE_1000T;
3012 break;
3013 case e1000_i354:
3014 if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
3015 (E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3016 err = e1000_set_eee_i354(hw);
3017 if ((!err) &&
3018 (adapter->flags & IGB_FLAG_EEE))
3019 adapter->eee_advert =
3020 MDIO_EEE_100TX | MDIO_EEE_1000T;
3021 }
3022 break;
3023 default:
3024 break;
3025 }
3026 }
3027
3028 /* send driver version info to firmware */
3029 if (hw->mac.type >= e1000_i350)
3030 igb_init_fw(adapter);
3031
3032#ifndef IGB_NO_LRO
3033 if (netdev->features & NETIF_F_LRO)
3034 dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
3035 else
3036 dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
3037#endif
3038 dev_info(pci_dev_to_dev(pdev),
3039 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3040 adapter->msix_entries ? "MSI-X" :
3041 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3042 adapter->num_rx_queues, adapter->num_tx_queues);
3043
3044 cards_found++;
3045
3046 pm_runtime_put_noidle(&pdev->dev);
3047 return 0;
3048
3049err_register:
3050 igb_release_hw_control(adapter);
3051#ifdef HAVE_I2C_SUPPORT
3052 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3053#endif /* HAVE_I2C_SUPPORT */
3054err_eeprom:
3055 if (!e1000_check_reset_block(hw))
3056 e1000_phy_hw_reset(hw);
3057
3058 if (hw->flash_address)
3059 iounmap(hw->flash_address);
3060err_sw_init:
3061 igb_clear_interrupt_scheme(adapter);
3062 igb_reset_sriov_capability(adapter);
3063 iounmap(hw->hw_addr);
3064err_ioremap:
3065 free_netdev(netdev);
3066err_alloc_etherdev:
3067 pci_release_selected_regions(pdev,
3068 pci_select_bars(pdev, IORESOURCE_MEM));
3069err_pci_reg:
3070err_dma:
3071 pci_disable_device(pdev);
3072 return err;
3073}
3074#ifdef HAVE_I2C_SUPPORT
3075/*
3076 * igb_remove_i2c - Cleanup I2C interface
3077 * @adapter: pointer to adapter structure
3078 *
3079 */
3080static void igb_remove_i2c(struct igb_adapter *adapter)
3081{
3082
3083 /* free the adapter bus structure */
3084 i2c_del_adapter(&adapter->i2c_adap);
3085}
3086#endif /* HAVE_I2C_SUPPORT */
3087
3088/**
3089 * igb_remove - Device Removal Routine
3090 * @pdev: PCI device information struct
3091 *
3092 * igb_remove is called by the PCI subsystem to alert the driver
3093 * that it should release a PCI device. The could be caused by a
3094 * Hot-Plug event, or because the driver is going to be removed from
3095 * memory.
3096 **/
3097static void __devexit igb_remove(struct pci_dev *pdev)
3098{
3099 struct net_device *netdev = pci_get_drvdata(pdev);
3100 struct igb_adapter *adapter = netdev_priv(netdev);
3101 struct e1000_hw *hw = &adapter->hw;
3102
3103 pm_runtime_get_noresume(&pdev->dev);
3104#ifdef HAVE_I2C_SUPPORT
3105 igb_remove_i2c(adapter);
3106#endif /* HAVE_I2C_SUPPORT */
3107#ifdef HAVE_PTP_1588_CLOCK
3108 igb_ptp_stop(adapter);
3109#endif /* HAVE_PTP_1588_CLOCK */
3110
3111 /* flush_scheduled work may reschedule our watchdog task, so
3112 * explicitly disable watchdog tasks from being rescheduled */
3113 set_bit(__IGB_DOWN, &adapter->state);
3114 del_timer_sync(&adapter->watchdog_timer);
3115 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
3116 del_timer_sync(&adapter->dma_err_timer);
3117 del_timer_sync(&adapter->phy_info_timer);
3118
3119 flush_scheduled_work();
3120
3121#ifdef IGB_DCA
3122 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3123 dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
3124 dca_remove_requester(&pdev->dev);
3125 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3126 E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
3127 }
3128#endif
3129
3130 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3131 * would have already happened in close and is redundant. */
3132 igb_release_hw_control(adapter);
3133
3134 unregister_netdev(netdev);
3135#ifdef CONFIG_IGB_VMDQ_NETDEV
3136 igb_remove_vmdq_netdevs(adapter);
3137#endif
3138
3139 igb_clear_interrupt_scheme(adapter);
3140 igb_reset_sriov_capability(adapter);
3141
3142 iounmap(hw->hw_addr);
3143 if (hw->flash_address)
3144 iounmap(hw->flash_address);
3145 pci_release_selected_regions(pdev,
3146 pci_select_bars(pdev, IORESOURCE_MEM));
3147
3148#ifdef IGB_HWMON
3149 igb_sysfs_exit(adapter);
3150#else
3151#ifdef IGB_PROCFS
3152 igb_procfs_exit(adapter);
3153#endif /* IGB_PROCFS */
3154#endif /* IGB_HWMON */
3155 kfree(adapter->mac_table);
3156 kfree(adapter->shadow_vfta);
3157 free_netdev(netdev);
3158
3159 pci_disable_pcie_error_reporting(pdev);
3160
3161 pci_disable_device(pdev);
3162}
3163
3164/**
3165 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3166 * @adapter: board private structure to initialize
3167 *
3168 * igb_sw_init initializes the Adapter private data structure.
3169 * Fields are initialized based on PCI device information and
3170 * OS network device settings (MTU size).
3171 **/
3172static int igb_sw_init(struct igb_adapter *adapter)
3173{
3174 struct e1000_hw *hw = &adapter->hw;
3175 struct net_device *netdev = adapter->netdev;
3176 struct pci_dev *pdev = adapter->pdev;
3177
3178 /* PCI config space info */
3179
3180 hw->vendor_id = pdev->vendor;
3181 hw->device_id = pdev->device;
3182 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3183 hw->subsystem_device_id = pdev->subsystem_device;
3184
3185 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3186
3187 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3188
3189 /* set default ring sizes */
3190 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3191 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3192
3193 /* set default work limits */
3194 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3195
3196 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3197 VLAN_HLEN;
3198
3199 /* Initialize the hardware-specific values */
3200 if (e1000_setup_init_funcs(hw, TRUE)) {
3201 dev_err(pci_dev_to_dev(pdev), "Hardware Initialization Failure\n");
3202 return -EIO;
3203 }
3204
3205 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3206 hw->mac.rar_entry_count,
3207 GFP_ATOMIC);
3208
3209 /* Setup and initialize a copy of the hw vlan table array */
3210 adapter->shadow_vfta = kzalloc(sizeof(u32) * E1000_VFTA_ENTRIES,
3211 GFP_ATOMIC);
3212#ifdef NO_KNI
3213 /* These calls may decrease the number of queues */
3214 if (hw->mac.type < e1000_i210) {
3215 igb_set_sriov_capability(adapter);
3216 }
3217
3218 if (igb_init_interrupt_scheme(adapter, true)) {
3219 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
3220 return -ENOMEM;
3221 }
3222
3223 /* Explicitly disable IRQ since the NIC can be in any state. */
3224 igb_irq_disable(adapter);
3225
3226 set_bit(__IGB_DOWN, &adapter->state);
3227#endif
3228 return 0;
3229}
3230
3231/**
3232 * igb_open - Called when a network interface is made active
3233 * @netdev: network interface device structure
3234 *
3235 * Returns 0 on success, negative value on failure
3236 *
3237 * The open entry point is called when a network interface is made
3238 * active by the system (IFF_UP). At this point all resources needed
3239 * for transmit and receive operations are allocated, the interrupt
3240 * handler is registered with the OS, the watchdog timer is started,
3241 * and the stack is notified that the interface is ready.
3242 **/
3243static int __igb_open(struct net_device *netdev, bool resuming)
3244{
3245 struct igb_adapter *adapter = netdev_priv(netdev);
3246 struct e1000_hw *hw = &adapter->hw;
3247#ifdef CONFIG_PM_RUNTIME
3248 struct pci_dev *pdev = adapter->pdev;
3249#endif /* CONFIG_PM_RUNTIME */
3250 int err;
3251 int i;
3252
3253 /* disallow open during test */
3254 if (test_bit(__IGB_TESTING, &adapter->state)) {
3255 WARN_ON(resuming);
3256 return -EBUSY;
3257 }
3258
3259#ifdef CONFIG_PM_RUNTIME
3260 if (!resuming)
3261 pm_runtime_get_sync(&pdev->dev);
3262#endif /* CONFIG_PM_RUNTIME */
3263
3264 netif_carrier_off(netdev);
3265
3266 /* allocate transmit descriptors */
3267 err = igb_setup_all_tx_resources(adapter);
3268 if (err)
3269 goto err_setup_tx;
3270
3271 /* allocate receive descriptors */
3272 err = igb_setup_all_rx_resources(adapter);
3273 if (err)
3274 goto err_setup_rx;
3275
3276 igb_power_up_link(adapter);
3277
3278 /* before we allocate an interrupt, we must be ready to handle it.
3279 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3280 * as soon as we call pci_request_irq, so we have to setup our
3281 * clean_rx handler before we do so. */
3282 igb_configure(adapter);
3283
3284 err = igb_request_irq(adapter);
3285 if (err)
3286 goto err_req_irq;
3287
3288 /* Notify the stack of the actual queue counts. */
3289 netif_set_real_num_tx_queues(netdev,
3290 adapter->vmdq_pools ? 1 :
3291 adapter->num_tx_queues);
3292
3293 err = netif_set_real_num_rx_queues(netdev,
3294 adapter->vmdq_pools ? 1 :
3295 adapter->num_rx_queues);
3296 if (err)
3297 goto err_set_queues;
3298
3299 /* From here on the code is the same as igb_up() */
3300 clear_bit(__IGB_DOWN, &adapter->state);
3301
3302 for (i = 0; i < adapter->num_q_vectors; i++)
3303 napi_enable(&(adapter->q_vector[i]->napi));
3304 igb_configure_lli(adapter);
3305
3306 /* Clear any pending interrupts. */
3307 E1000_READ_REG(hw, E1000_ICR);
3308
3309 igb_irq_enable(adapter);
3310
3311 /* notify VFs that reset has been completed */
3312 if (adapter->vfs_allocated_count) {
3313 u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT);
3314 reg_data |= E1000_CTRL_EXT_PFRSTD;
3315 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data);
3316 }
3317
3318 netif_tx_start_all_queues(netdev);
3319
3320 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
3321 schedule_work(&adapter->dma_err_task);
3322
3323 /* start the watchdog. */
3324 hw->mac.get_link_status = 1;
3325 schedule_work(&adapter->watchdog_task);
3326
3327 return E1000_SUCCESS;
3328
3329err_set_queues:
3330 igb_free_irq(adapter);
3331err_req_irq:
3332 igb_release_hw_control(adapter);
3333 igb_power_down_link(adapter);
3334 igb_free_all_rx_resources(adapter);
3335err_setup_rx:
3336 igb_free_all_tx_resources(adapter);
3337err_setup_tx:
3338 igb_reset(adapter);
3339
3340#ifdef CONFIG_PM_RUNTIME
3341 if (!resuming)
3342 pm_runtime_put(&pdev->dev);
3343#endif /* CONFIG_PM_RUNTIME */
3344
3345 return err;
3346}
3347
3348static int igb_open(struct net_device *netdev)
3349{
3350 return __igb_open(netdev, false);
3351}
3352
3353/**
3354 * igb_close - Disables a network interface
3355 * @netdev: network interface device structure
3356 *
3357 * Returns 0, this is not allowed to fail
3358 *
3359 * The close entry point is called when an interface is de-activated
3360 * by the OS. The hardware is still under the driver's control, but
3361 * needs to be disabled. A global MAC reset is issued to stop the
3362 * hardware, and all transmit and receive resources are freed.
3363 **/
3364static int __igb_close(struct net_device *netdev, bool suspending)
3365{
3366 struct igb_adapter *adapter = netdev_priv(netdev);
3367#ifdef CONFIG_PM_RUNTIME
3368 struct pci_dev *pdev = adapter->pdev;
3369#endif /* CONFIG_PM_RUNTIME */
3370
3371 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3372
3373#ifdef CONFIG_PM_RUNTIME
3374 if (!suspending)
3375 pm_runtime_get_sync(&pdev->dev);
3376#endif /* CONFIG_PM_RUNTIME */
3377
3378 igb_down(adapter);
3379
3380 igb_release_hw_control(adapter);
3381
3382 igb_free_irq(adapter);
3383
3384 igb_free_all_tx_resources(adapter);
3385 igb_free_all_rx_resources(adapter);
3386
3387#ifdef CONFIG_PM_RUNTIME
3388 if (!suspending)
3389 pm_runtime_put_sync(&pdev->dev);
3390#endif /* CONFIG_PM_RUNTIME */
3391
3392 return 0;
3393}
3394
3395static int igb_close(struct net_device *netdev)
3396{
3397 return __igb_close(netdev, false);
3398}
3399
3400/**
3401 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3402 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3403 *
3404 * Return 0 on success, negative on failure
3405 **/
3406int igb_setup_tx_resources(struct igb_ring *tx_ring)
3407{
3408 struct device *dev = tx_ring->dev;
3409 int size;
3410
3411 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3412 tx_ring->tx_buffer_info = vzalloc(size);
3413 if (!tx_ring->tx_buffer_info)
3414 goto err;
3415
3416 /* round up to nearest 4K */
3417 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3418 tx_ring->size = ALIGN(tx_ring->size, 4096);
3419
3420 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3421 &tx_ring->dma, GFP_KERNEL);
3422
3423 if (!tx_ring->desc)
3424 goto err;
3425
3426 tx_ring->next_to_use = 0;
3427 tx_ring->next_to_clean = 0;
3428
3429 return 0;
3430
3431err:
3432 vfree(tx_ring->tx_buffer_info);
3433 dev_err(dev,
3434 "Unable to allocate memory for the transmit descriptor ring\n");
3435 return -ENOMEM;
3436}
3437
3438/**
3439 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3440 * (Descriptors) for all queues
3441 * @adapter: board private structure
3442 *
3443 * Return 0 on success, negative on failure
3444 **/
3445static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3446{
3447 struct pci_dev *pdev = adapter->pdev;
3448 int i, err = 0;
3449
3450 for (i = 0; i < adapter->num_tx_queues; i++) {
3451 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3452 if (err) {
3453 dev_err(pci_dev_to_dev(pdev),
3454 "Allocation for Tx Queue %u failed\n", i);
3455 for (i--; i >= 0; i--)
3456 igb_free_tx_resources(adapter->tx_ring[i]);
3457 break;
3458 }
3459 }
3460
3461 return err;
3462}
3463
3464/**
3465 * igb_setup_tctl - configure the transmit control registers
3466 * @adapter: Board private structure
3467 **/
3468void igb_setup_tctl(struct igb_adapter *adapter)
3469{
3470 struct e1000_hw *hw = &adapter->hw;
3471 u32 tctl;
3472
3473 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3474 E1000_WRITE_REG(hw, E1000_TXDCTL(0), 0);
3475
3476 /* Program the Transmit Control Register */
3477 tctl = E1000_READ_REG(hw, E1000_TCTL);
3478 tctl &= ~E1000_TCTL_CT;
3479 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3480 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3481
3482 e1000_config_collision_dist(hw);
3483
3484 /* Enable transmits */
3485 tctl |= E1000_TCTL_EN;
3486
3487 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3488}
3489
3490static u32 igb_tx_wthresh(struct igb_adapter *adapter)
3491{
3492 struct e1000_hw *hw = &adapter->hw;
3493 switch (hw->mac.type) {
3494 case e1000_i354:
3495 return 4;
3496 case e1000_82576:
3497 if (adapter->msix_entries)
3498 return 1;
3499 default:
3500 break;
3501 }
3502
3503 return 16;
3504}
3505
3506/**
3507 * igb_configure_tx_ring - Configure transmit ring after Reset
3508 * @adapter: board private structure
3509 * @ring: tx ring to configure
3510 *
3511 * Configure a transmit ring after a reset.
3512 **/
3513void igb_configure_tx_ring(struct igb_adapter *adapter,
3514 struct igb_ring *ring)
3515{
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 txdctl = 0;
3518 u64 tdba = ring->dma;
3519 int reg_idx = ring->reg_idx;
3520
3521 /* disable the queue */
3522 E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), 0);
3523 E1000_WRITE_FLUSH(hw);
3524 mdelay(10);
3525
3526 E1000_WRITE_REG(hw, E1000_TDLEN(reg_idx),
3527 ring->count * sizeof(union e1000_adv_tx_desc));
3528 E1000_WRITE_REG(hw, E1000_TDBAL(reg_idx),
3529 tdba & 0x00000000ffffffffULL);
3530 E1000_WRITE_REG(hw, E1000_TDBAH(reg_idx), tdba >> 32);
3531
3532 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3533 E1000_WRITE_REG(hw, E1000_TDH(reg_idx), 0);
3534 writel(0, ring->tail);
3535
3536 txdctl |= IGB_TX_PTHRESH;
3537 txdctl |= IGB_TX_HTHRESH << 8;
3538 txdctl |= igb_tx_wthresh(adapter) << 16;
3539
3540 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3541 E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), txdctl);
3542}
3543
3544/**
3545 * igb_configure_tx - Configure transmit Unit after Reset
3546 * @adapter: board private structure
3547 *
3548 * Configure the Tx unit of the MAC after a reset.
3549 **/
3550static void igb_configure_tx(struct igb_adapter *adapter)
3551{
3552 int i;
3553
3554 for (i = 0; i < adapter->num_tx_queues; i++)
3555 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3556}
3557
3558/**
3559 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3560 * @rx_ring: rx descriptor ring (for a specific queue) to setup
3561 *
3562 * Returns 0 on success, negative on failure
3563 **/
3564int igb_setup_rx_resources(struct igb_ring *rx_ring)
3565{
3566 struct device *dev = rx_ring->dev;
3567 int size, desc_len;
3568
3569 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3570 rx_ring->rx_buffer_info = vzalloc(size);
3571 if (!rx_ring->rx_buffer_info)
3572 goto err;
3573
3574 desc_len = sizeof(union e1000_adv_rx_desc);
3575
3576 /* Round up to nearest 4K */
3577 rx_ring->size = rx_ring->count * desc_len;
3578 rx_ring->size = ALIGN(rx_ring->size, 4096);
3579
3580 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3581 &rx_ring->dma, GFP_KERNEL);
3582
3583 if (!rx_ring->desc)
3584 goto err;
3585
3586 rx_ring->next_to_alloc = 0;
3587 rx_ring->next_to_clean = 0;
3588 rx_ring->next_to_use = 0;
3589
3590 return 0;
3591
3592err:
3593 vfree(rx_ring->rx_buffer_info);
3594 rx_ring->rx_buffer_info = NULL;
3595 dev_err(dev, "Unable to allocate memory for the receive descriptor"
3596 " ring\n");
3597 return -ENOMEM;
3598}
3599
3600/**
3601 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3602 * (Descriptors) for all queues
3603 * @adapter: board private structure
3604 *
3605 * Return 0 on success, negative on failure
3606 **/
3607static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3608{
3609 struct pci_dev *pdev = adapter->pdev;
3610 int i, err = 0;
3611
3612 for (i = 0; i < adapter->num_rx_queues; i++) {
3613 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3614 if (err) {
3615 dev_err(pci_dev_to_dev(pdev),
3616 "Allocation for Rx Queue %u failed\n", i);
3617 for (i--; i >= 0; i--)
3618 igb_free_rx_resources(adapter->rx_ring[i]);
3619 break;
3620 }
3621 }
3622
3623 return err;
3624}
3625
3626/**
3627 * igb_setup_mrqc - configure the multiple receive queue control registers
3628 * @adapter: Board private structure
3629 **/
3630static void igb_setup_mrqc(struct igb_adapter *adapter)
3631{
3632 struct e1000_hw *hw = &adapter->hw;
3633 u32 mrqc, rxcsum;
3634 u32 j, num_rx_queues, shift = 0, shift2 = 0;
3635 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3636 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3637 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3638 0xFA01ACBE };
3639
3640 /* Fill out hash function seeds */
3641 for (j = 0; j < 10; j++)
3642 E1000_WRITE_REG(hw, E1000_RSSRK(j), rsskey[j]);
3643
3644 num_rx_queues = adapter->rss_queues;
3645
3646 /* 82575 and 82576 supports 2 RSS queues for VMDq */
3647 switch (hw->mac.type) {
3648 case e1000_82575:
3649 if (adapter->vmdq_pools) {
3650 shift = 2;
3651 shift2 = 6;
3652 break;
3653 }
3654 shift = 6;
3655 break;
3656 case e1000_82576:
3657 /* 82576 supports 2 RSS queues for SR-IOV */
3658 if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
3659 shift = 3;
3660 num_rx_queues = 2;
3661 }
3662 break;
3663 default:
3664 break;
3665 }
3666
3667 /*
3668 * Populate the redirection table 4 entries at a time. To do this
3669 * we are generating the results for n and n+2 and then interleaving
3670 * those with the results with n+1 and n+3.
3671 */
3672 for (j = 0; j < 32; j++) {
3673 /* first pass generates n and n+2 */
3674 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3675 u32 reta = (base & 0x07800780) >> (7 - shift);
3676
3677 /* second pass generates n+1 and n+3 */
3678 base += 0x00010001 * num_rx_queues;
3679 reta |= (base & 0x07800780) << (1 + shift);
3680
3681 /* generate 2nd table for 82575 based parts */
3682 if (shift2)
3683 reta |= (0x01010101 * num_rx_queues) << shift2;
3684
3685 E1000_WRITE_REG(hw, E1000_RETA(j), reta);
3686 }
3687
3688 /*
3689 * Disable raw packet checksumming so that RSS hash is placed in
3690 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3691 * offloads as they are enabled by default
3692 */
3693 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3694 rxcsum |= E1000_RXCSUM_PCSD;
3695
3696 if (adapter->hw.mac.type >= e1000_82576)
3697 /* Enable Receive Checksum Offload for SCTP */
3698 rxcsum |= E1000_RXCSUM_CRCOFL;
3699
3700 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3701 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3702
3703 /* Generate RSS hash based on packet types, TCP/UDP
3704 * port numbers and/or IPv4/v6 src and dst addresses
3705 */
3706 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3707 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3708 E1000_MRQC_RSS_FIELD_IPV6 |
3709 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3710 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3711
3712 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3713 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3714 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3715 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3716
3717 /* If VMDq is enabled then we set the appropriate mode for that, else
3718 * we default to RSS so that an RSS hash is calculated per packet even
3719 * if we are only using one queue */
3720 if (adapter->vfs_allocated_count || adapter->vmdq_pools) {
3721 if (hw->mac.type > e1000_82575) {
3722 /* Set the default pool for the PF's first queue */
3723 u32 vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
3724 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3725 E1000_VT_CTL_DISABLE_DEF_POOL);
3726 vtctl |= adapter->vfs_allocated_count <<
3727 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3728 E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
3729 } else if (adapter->rss_queues > 1) {
3730 /* set default queue for pool 1 to queue 2 */
3731 E1000_WRITE_REG(hw, E1000_VT_CTL,
3732 adapter->rss_queues << 7);
3733 }
3734 if (adapter->rss_queues > 1)
3735 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3736 else
3737 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3738 } else {
3739 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3740 }
3741 igb_vmm_control(adapter);
3742
3743 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3744}
3745
3746/**
3747 * igb_setup_rctl - configure the receive control registers
3748 * @adapter: Board private structure
3749 **/
3750void igb_setup_rctl(struct igb_adapter *adapter)
3751{
3752 struct e1000_hw *hw = &adapter->hw;
3753 u32 rctl;
3754
3755 rctl = E1000_READ_REG(hw, E1000_RCTL);
3756
3757 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3758 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3759
3760 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3761 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3762
3763 /*
3764 * enable stripping of CRC. It's unlikely this will break BMC
3765 * redirection as it did with e1000. Newer features require
3766 * that the HW strips the CRC.
3767 */
3768 rctl |= E1000_RCTL_SECRC;
3769
3770 /* disable store bad packets and clear size bits. */
3771 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3772
3773 /* enable LPE to prevent packets larger than max_frame_size */
3774 rctl |= E1000_RCTL_LPE;
3775
3776 /* disable queue 0 to prevent tail write w/o re-config */
3777 E1000_WRITE_REG(hw, E1000_RXDCTL(0), 0);
3778
3779 /* Attention!!! For SR-IOV PF driver operations you must enable
3780 * queue drop for all VF and PF queues to prevent head of line blocking
3781 * if an un-trusted VF does not provide descriptors to hardware.
3782 */
3783 if (adapter->vfs_allocated_count) {
3784 /* set all queue drop enable bits */
3785 E1000_WRITE_REG(hw, E1000_QDE, ALL_QUEUES);
3786 }
3787
3788 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3789}
3790
3791static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3792 int vfn)
3793{
3794 struct e1000_hw *hw = &adapter->hw;
3795 u32 vmolr;
3796
3797 /* if it isn't the PF check to see if VFs are enabled and
3798 * increase the size to support vlan tags */
3799 if (vfn < adapter->vfs_allocated_count &&
3800 adapter->vf_data[vfn].vlans_enabled)
3801 size += VLAN_HLEN;
3802
3803#ifdef CONFIG_IGB_VMDQ_NETDEV
3804 if (vfn >= adapter->vfs_allocated_count) {
3805 int queue = vfn - adapter->vfs_allocated_count;
3806 struct igb_vmdq_adapter *vadapter;
3807
3808 vadapter = netdev_priv(adapter->vmdq_netdev[queue-1]);
3809 if (vadapter->vlgrp)
3810 size += VLAN_HLEN;
3811 }
3812#endif
3813 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
3814 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3815 vmolr |= size | E1000_VMOLR_LPE;
3816 E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
3817
3818 return 0;
3819}
3820
3821/**
3822 * igb_rlpml_set - set maximum receive packet size
3823 * @adapter: board private structure
3824 *
3825 * Configure maximum receivable packet size.
3826 **/
3827static void igb_rlpml_set(struct igb_adapter *adapter)
3828{
3829 u32 max_frame_size = adapter->max_frame_size;
3830 struct e1000_hw *hw = &adapter->hw;
3831 u16 pf_id = adapter->vfs_allocated_count;
3832
3833 if (adapter->vmdq_pools && hw->mac.type != e1000_82575) {
3834 int i;
3835 for (i = 0; i < adapter->vmdq_pools; i++)
3836 igb_set_vf_rlpml(adapter, max_frame_size, pf_id + i);
3837 /*
3838 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3839 * to our max jumbo frame size, in case we need to enable
3840 * jumbo frames on one of the rings later.
3841 * This will not pass over-length frames into the default
3842 * queue because it's gated by the VMOLR.RLPML.
3843 */
3844 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3845 }
3846 /* Set VF RLPML for the PF device. */
3847 if (adapter->vfs_allocated_count)
3848 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3849
3850 E1000_WRITE_REG(hw, E1000_RLPML, max_frame_size);
3851}
3852
3853static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3854 int vfn, bool enable)
3855{
3856 struct e1000_hw *hw = &adapter->hw;
3857 u32 val;
3858 void __iomem *reg;
3859
3860 if (hw->mac.type < e1000_82576)
3861 return;
3862
3863 if (hw->mac.type == e1000_i350)
3864 reg = hw->hw_addr + E1000_DVMOLR(vfn);
3865 else
3866 reg = hw->hw_addr + E1000_VMOLR(vfn);
3867
3868 val = readl(reg);
3869 if (enable)
3870 val |= E1000_VMOLR_STRVLAN;
3871 else
3872 val &= ~(E1000_VMOLR_STRVLAN);
3873 writel(val, reg);
3874}
3875static inline void igb_set_vmolr(struct igb_adapter *adapter,
3876 int vfn, bool aupe)
3877{
3878 struct e1000_hw *hw = &adapter->hw;
3879 u32 vmolr;
3880
3881 /*
3882 * This register exists only on 82576 and newer so if we are older then
3883 * we should exit and do nothing
3884 */
3885 if (hw->mac.type < e1000_82576)
3886 return;
3887
3888 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn));
3889
3890 if (aupe)
3891 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3892 else
3893 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3894
3895 /* clear all bits that might not be set */
3896 vmolr &= ~E1000_VMOLR_RSSE;
3897
3898 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3899 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3900
3901 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3902 vmolr |= E1000_VMOLR_LPE; /* Accept long packets */
3903
3904 E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
3905}
3906
3907/**
3908 * igb_configure_rx_ring - Configure a receive ring after Reset
3909 * @adapter: board private structure
3910 * @ring: receive ring to be configured
3911 *
3912 * Configure the Rx unit of the MAC after a reset.
3913 **/
3914void igb_configure_rx_ring(struct igb_adapter *adapter,
3915 struct igb_ring *ring)
3916{
3917 struct e1000_hw *hw = &adapter->hw;
3918 u64 rdba = ring->dma;
3919 int reg_idx = ring->reg_idx;
3920 u32 srrctl = 0, rxdctl = 0;
3921
3922#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
3923 /*
3924 * RLPML prevents us from receiving a frame larger than max_frame so
3925 * it is safe to just set the rx_buffer_len to max_frame without the
3926 * risk of an skb over panic.
3927 */
3928 ring->rx_buffer_len = max_t(u32, adapter->max_frame_size,
3929 MAXIMUM_ETHERNET_VLAN_SIZE);
3930
3931#endif
3932 /* disable the queue */
3933 E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), 0);
3934
3935 /* Set DMA base address registers */
3936 E1000_WRITE_REG(hw, E1000_RDBAL(reg_idx),
3937 rdba & 0x00000000ffffffffULL);
3938 E1000_WRITE_REG(hw, E1000_RDBAH(reg_idx), rdba >> 32);
3939 E1000_WRITE_REG(hw, E1000_RDLEN(reg_idx),
3940 ring->count * sizeof(union e1000_adv_rx_desc));
3941
3942 /* initialize head and tail */
3943 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3944 E1000_WRITE_REG(hw, E1000_RDH(reg_idx), 0);
3945 writel(0, ring->tail);
3946
3947 /* reset next-to- use/clean to place SW in sync with hardwdare */
3948 ring->next_to_clean = 0;
3949 ring->next_to_use = 0;
3950#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
3951 ring->next_to_alloc = 0;
3952
3953#endif
3954 /* set descriptor configuration */
3955#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
3956 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3957 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3958#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
3959 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
3960 E1000_SRRCTL_BSIZEPKT_SHIFT;
3961#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
3962 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3963#ifdef HAVE_PTP_1588_CLOCK
3964 if (hw->mac.type >= e1000_82580)
3965 srrctl |= E1000_SRRCTL_TIMESTAMP;
3966#endif /* HAVE_PTP_1588_CLOCK */
3967 /*
3968 * We should set the drop enable bit if:
3969 * SR-IOV is enabled
3970 * or
3971 * Flow Control is disabled and number of RX queues > 1
3972 *
3973 * This allows us to avoid head of line blocking for security
3974 * and performance reasons.
3975 */
3976 if (adapter->vfs_allocated_count ||
3977 (adapter->num_rx_queues > 1 &&
3978 (hw->fc.requested_mode == e1000_fc_none ||
3979 hw->fc.requested_mode == e1000_fc_rx_pause)))
3980 srrctl |= E1000_SRRCTL_DROP_EN;
3981
3982 E1000_WRITE_REG(hw, E1000_SRRCTL(reg_idx), srrctl);
3983
3984 /* set filtering for VMDQ pools */
3985 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3986
3987 rxdctl |= IGB_RX_PTHRESH;
3988 rxdctl |= IGB_RX_HTHRESH << 8;
3989 rxdctl |= IGB_RX_WTHRESH << 16;
3990
3991 /* enable receive descriptor fetching */
3992 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3993 E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), rxdctl);
3994}
3995
3996/**
3997 * igb_configure_rx - Configure receive Unit after Reset
3998 * @adapter: board private structure
3999 *
4000 * Configure the Rx unit of the MAC after a reset.
4001 **/
4002static void igb_configure_rx(struct igb_adapter *adapter)
4003{
4004 int i;
4005
4006 /* set UTA to appropriate mode */
4007 igb_set_uta(adapter);
4008
4009 igb_full_sync_mac_table(adapter);
4010 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4011 * the Base and Length of the Rx Descriptor Ring */
4012 for (i = 0; i < adapter->num_rx_queues; i++)
4013 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
4014}
4015
4016/**
4017 * igb_free_tx_resources - Free Tx Resources per Queue
4018 * @tx_ring: Tx descriptor ring for a specific queue
4019 *
4020 * Free all transmit software resources
4021 **/
4022void igb_free_tx_resources(struct igb_ring *tx_ring)
4023{
4024 igb_clean_tx_ring(tx_ring);
4025
4026 vfree(tx_ring->tx_buffer_info);
4027 tx_ring->tx_buffer_info = NULL;
4028
4029 /* if not set, then don't free */
4030 if (!tx_ring->desc)
4031 return;
4032
4033 dma_free_coherent(tx_ring->dev, tx_ring->size,
4034 tx_ring->desc, tx_ring->dma);
4035
4036 tx_ring->desc = NULL;
4037}
4038
4039/**
4040 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4041 * @adapter: board private structure
4042 *
4043 * Free all transmit software resources
4044 **/
4045static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4046{
4047 int i;
4048
4049 for (i = 0; i < adapter->num_tx_queues; i++)
4050 igb_free_tx_resources(adapter->tx_ring[i]);
4051}
4052
4053void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
4054 struct igb_tx_buffer *tx_buffer)
4055{
4056 if (tx_buffer->skb) {
4057 dev_kfree_skb_any(tx_buffer->skb);
4058 if (dma_unmap_len(tx_buffer, len))
4059 dma_unmap_single(ring->dev,
4060 dma_unmap_addr(tx_buffer, dma),
4061 dma_unmap_len(tx_buffer, len),
4062 DMA_TO_DEVICE);
4063 } else if (dma_unmap_len(tx_buffer, len)) {
4064 dma_unmap_page(ring->dev,
4065 dma_unmap_addr(tx_buffer, dma),
4066 dma_unmap_len(tx_buffer, len),
4067 DMA_TO_DEVICE);
4068 }
4069 tx_buffer->next_to_watch = NULL;
4070 tx_buffer->skb = NULL;
4071 dma_unmap_len_set(tx_buffer, len, 0);
4072 /* buffer_info must be completely set up in the transmit path */
4073}
4074
4075/**
4076 * igb_clean_tx_ring - Free Tx Buffers
4077 * @tx_ring: ring to be cleaned
4078 **/
4079static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4080{
4081 struct igb_tx_buffer *buffer_info;
4082 unsigned long size;
4083 u16 i;
4084
4085 if (!tx_ring->tx_buffer_info)
4086 return;
4087 /* Free all the Tx ring sk_buffs */
4088
4089 for (i = 0; i < tx_ring->count; i++) {
4090 buffer_info = &tx_ring->tx_buffer_info[i];
4091 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4092 }
4093
4094 netdev_tx_reset_queue(txring_txq(tx_ring));
4095
4096 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4097 memset(tx_ring->tx_buffer_info, 0, size);
4098
4099 /* Zero out the descriptor ring */
4100 memset(tx_ring->desc, 0, tx_ring->size);
4101
4102 tx_ring->next_to_use = 0;
4103 tx_ring->next_to_clean = 0;
4104}
4105
4106/**
4107 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4108 * @adapter: board private structure
4109 **/
4110static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4111{
4112 int i;
4113
4114 for (i = 0; i < adapter->num_tx_queues; i++)
4115 igb_clean_tx_ring(adapter->tx_ring[i]);
4116}
4117
4118/**
4119 * igb_free_rx_resources - Free Rx Resources
4120 * @rx_ring: ring to clean the resources from
4121 *
4122 * Free all receive software resources
4123 **/
4124void igb_free_rx_resources(struct igb_ring *rx_ring)
4125{
4126 igb_clean_rx_ring(rx_ring);
4127
4128 vfree(rx_ring->rx_buffer_info);
4129 rx_ring->rx_buffer_info = NULL;
4130
4131 /* if not set, then don't free */
4132 if (!rx_ring->desc)
4133 return;
4134
4135 dma_free_coherent(rx_ring->dev, rx_ring->size,
4136 rx_ring->desc, rx_ring->dma);
4137
4138 rx_ring->desc = NULL;
4139}
4140
4141/**
4142 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4143 * @adapter: board private structure
4144 *
4145 * Free all receive software resources
4146 **/
4147static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4148{
4149 int i;
4150
4151 for (i = 0; i < adapter->num_rx_queues; i++)
4152 igb_free_rx_resources(adapter->rx_ring[i]);
4153}
4154
4155/**
4156 * igb_clean_rx_ring - Free Rx Buffers per Queue
4157 * @rx_ring: ring to free buffers from
4158 **/
4159void igb_clean_rx_ring(struct igb_ring *rx_ring)
4160{
4161 unsigned long size;
4162 u16 i;
4163
4164 if (!rx_ring->rx_buffer_info)
4165 return;
4166
4167#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
4168 if (rx_ring->skb)
4169 dev_kfree_skb(rx_ring->skb);
4170 rx_ring->skb = NULL;
4171
4172#endif
4173 /* Free all the Rx ring sk_buffs */
4174 for (i = 0; i < rx_ring->count; i++) {
4175 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4176#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
4177 if (buffer_info->dma) {
4178 dma_unmap_single(rx_ring->dev,
4179 buffer_info->dma,
4180 rx_ring->rx_buffer_len,
4181 DMA_FROM_DEVICE);
4182 buffer_info->dma = 0;
4183 }
4184
4185 if (buffer_info->skb) {
4186 dev_kfree_skb(buffer_info->skb);
4187 buffer_info->skb = NULL;
4188 }
4189#else
4190 if (!buffer_info->page)
4191 continue;
4192
4193 dma_unmap_page(rx_ring->dev,
4194 buffer_info->dma,
4195 PAGE_SIZE,
4196 DMA_FROM_DEVICE);
4197 __free_page(buffer_info->page);
4198
4199 buffer_info->page = NULL;
4200#endif
4201 }
4202
4203 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4204 memset(rx_ring->rx_buffer_info, 0, size);
4205
4206 /* Zero out the descriptor ring */
4207 memset(rx_ring->desc, 0, rx_ring->size);
4208
4209 rx_ring->next_to_alloc = 0;
4210 rx_ring->next_to_clean = 0;
4211 rx_ring->next_to_use = 0;
4212}
4213
4214/**
4215 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4216 * @adapter: board private structure
4217 **/
4218static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4219{
4220 int i;
4221
4222 for (i = 0; i < adapter->num_rx_queues; i++)
4223 igb_clean_rx_ring(adapter->rx_ring[i]);
4224}
4225
4226/**
4227 * igb_set_mac - Change the Ethernet Address of the NIC
4228 * @netdev: network interface device structure
4229 * @p: pointer to an address structure
4230 *
4231 * Returns 0 on success, negative on failure
4232 **/
4233static int igb_set_mac(struct net_device *netdev, void *p)
4234{
4235 struct igb_adapter *adapter = netdev_priv(netdev);
4236 struct e1000_hw *hw = &adapter->hw;
4237 struct sockaddr *addr = p;
4238
4239 if (!is_valid_ether_addr(addr->sa_data))
4240 return -EADDRNOTAVAIL;
4241
4242 igb_del_mac_filter(adapter, hw->mac.addr,
4243 adapter->vfs_allocated_count);
4244 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4245 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4246
4247 /* set the correct pool for the new PF MAC address in entry 0 */
4248 return igb_add_mac_filter(adapter, hw->mac.addr,
4249 adapter->vfs_allocated_count);
4250}
4251
4252/**
4253 * igb_write_mc_addr_list - write multicast addresses to MTA
4254 * @netdev: network interface device structure
4255 *
4256 * Writes multicast address list to the MTA hash table.
4257 * Returns: -ENOMEM on failure
4258 * 0 on no addresses written
4259 * X on writing X addresses to MTA
4260 **/
4261int igb_write_mc_addr_list(struct net_device *netdev)
4262{
4263 struct igb_adapter *adapter = netdev_priv(netdev);
4264 struct e1000_hw *hw = &adapter->hw;
4265#ifdef NETDEV_HW_ADDR_T_MULTICAST
4266 struct netdev_hw_addr *ha;
4267#else
4268 struct dev_mc_list *ha;
4269#endif
4270 u8 *mta_list;
4271 int i, count;
4272#ifdef CONFIG_IGB_VMDQ_NETDEV
4273 int vm;
4274#endif
4275 count = netdev_mc_count(netdev);
4276#ifdef CONFIG_IGB_VMDQ_NETDEV
4277 for (vm = 1; vm < adapter->vmdq_pools; vm++) {
4278 if (!adapter->vmdq_netdev[vm])
4279 break;
4280 if (!netif_running(adapter->vmdq_netdev[vm]))
4281 continue;
4282 count += netdev_mc_count(adapter->vmdq_netdev[vm]);
4283 }
4284#endif
4285
4286 if (!count) {
4287 e1000_update_mc_addr_list(hw, NULL, 0);
4288 return 0;
4289 }
4290 mta_list = kzalloc(count * 6, GFP_ATOMIC);
4291 if (!mta_list)
4292 return -ENOMEM;
4293
4294 /* The shared function expects a packed array of only addresses. */
4295 i = 0;
4296 netdev_for_each_mc_addr(ha, netdev)
4297#ifdef NETDEV_HW_ADDR_T_MULTICAST
4298 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4299#else
4300 memcpy(mta_list + (i++ * ETH_ALEN), ha->dmi_addr, ETH_ALEN);
4301#endif
4302#ifdef CONFIG_IGB_VMDQ_NETDEV
4303 for (vm = 1; vm < adapter->vmdq_pools; vm++) {
4304 if (!adapter->vmdq_netdev[vm])
4305 break;
4306 if (!netif_running(adapter->vmdq_netdev[vm]) ||
4307 !netdev_mc_count(adapter->vmdq_netdev[vm]))
4308 continue;
4309 netdev_for_each_mc_addr(ha, adapter->vmdq_netdev[vm])
4310#ifdef NETDEV_HW_ADDR_T_MULTICAST
4311 memcpy(mta_list + (i++ * ETH_ALEN),
4312 ha->addr, ETH_ALEN);
4313#else
4314 memcpy(mta_list + (i++ * ETH_ALEN),
4315 ha->dmi_addr, ETH_ALEN);
4316#endif
4317 }
4318#endif
4319 e1000_update_mc_addr_list(hw, mta_list, i);
4320 kfree(mta_list);
4321
4322 return count;
4323}
4324
4325void igb_rar_set(struct igb_adapter *adapter, u32 index)
4326{
4327 u32 rar_low, rar_high;
4328 struct e1000_hw *hw = &adapter->hw;
4329 u8 *addr = adapter->mac_table[index].addr;
4330 /* HW expects these in little endian so we reverse the byte order
4331 * from network order (big endian) to little endian
4332 */
4333 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4334 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4335 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4336
4337 /* Indicate to hardware the Address is Valid. */
4338 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE)
4339 rar_high |= E1000_RAH_AV;
4340
4341 if (hw->mac.type == e1000_82575)
4342 rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue;
4343 else
4344 rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue;
4345
4346 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
4347 E1000_WRITE_FLUSH(hw);
4348 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
4349 E1000_WRITE_FLUSH(hw);
4350}
4351
4352void igb_full_sync_mac_table(struct igb_adapter *adapter)
4353{
4354 struct e1000_hw *hw = &adapter->hw;
4355 int i;
4356 for (i = 0; i < hw->mac.rar_entry_count; i++) {
4357 igb_rar_set(adapter, i);
4358 }
4359}
4360
4361void igb_sync_mac_table(struct igb_adapter *adapter)
4362{
4363 struct e1000_hw *hw = &adapter->hw;
4364 int i;
4365 for (i = 0; i < hw->mac.rar_entry_count; i++) {
4366 if (adapter->mac_table[i].state & IGB_MAC_STATE_MODIFIED)
4367 igb_rar_set(adapter, i);
4368 adapter->mac_table[i].state &= ~(IGB_MAC_STATE_MODIFIED);
4369 }
4370}
4371
4372int igb_available_rars(struct igb_adapter *adapter)
4373{
4374 struct e1000_hw *hw = &adapter->hw;
4375 int i, count = 0;
4376
4377 for (i = 0; i < hw->mac.rar_entry_count; i++) {
4378 if (adapter->mac_table[i].state == 0)
4379 count++;
4380 }
4381 return count;
4382}
4383
4384#ifdef HAVE_SET_RX_MODE
4385/**
4386 * igb_write_uc_addr_list - write unicast addresses to RAR table
4387 * @netdev: network interface device structure
4388 *
4389 * Writes unicast address list to the RAR table.
4390 * Returns: -ENOMEM on failure/insufficient address space
4391 * 0 on no addresses written
4392 * X on writing X addresses to the RAR table
4393 **/
4394static int igb_write_uc_addr_list(struct net_device *netdev)
4395{
4396 struct igb_adapter *adapter = netdev_priv(netdev);
4397 unsigned int vfn = adapter->vfs_allocated_count;
4398 int count = 0;
4399
4400 /* return ENOMEM indicating insufficient memory for addresses */
4401 if (netdev_uc_count(netdev) > igb_available_rars(adapter))
4402 return -ENOMEM;
4403 if (!netdev_uc_empty(netdev)) {
4404#ifdef NETDEV_HW_ADDR_T_UNICAST
4405 struct netdev_hw_addr *ha;
4406#else
4407 struct dev_mc_list *ha;
4408#endif
4409 netdev_for_each_uc_addr(ha, netdev) {
4410#ifdef NETDEV_HW_ADDR_T_UNICAST
4411 igb_del_mac_filter(adapter, ha->addr, vfn);
4412 igb_add_mac_filter(adapter, ha->addr, vfn);
4413#else
4414 igb_del_mac_filter(adapter, ha->da_addr, vfn);
4415 igb_add_mac_filter(adapter, ha->da_addr, vfn);
4416#endif
4417 count++;
4418 }
4419 }
4420 return count;
4421}
4422
4423#endif /* HAVE_SET_RX_MODE */
4424/**
4425 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4426 * @netdev: network interface device structure
4427 *
4428 * The set_rx_mode entry point is called whenever the unicast or multicast
4429 * address lists or the network interface flags are updated. This routine is
4430 * responsible for configuring the hardware for proper unicast, multicast,
4431 * promiscuous mode, and all-multi behavior.
4432 **/
4433static void igb_set_rx_mode(struct net_device *netdev)
4434{
4435 struct igb_adapter *adapter = netdev_priv(netdev);
4436 struct e1000_hw *hw = &adapter->hw;
4437 unsigned int vfn = adapter->vfs_allocated_count;
4438 u32 rctl, vmolr = 0;
4439 int count;
4440
4441 /* Check for Promiscuous and All Multicast modes */
4442 rctl = E1000_READ_REG(hw, E1000_RCTL);
4443
4444 /* clear the effected bits */
4445 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4446
4447 if (netdev->flags & IFF_PROMISC) {
4448 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4449 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4450 /* retain VLAN HW filtering if in VT mode */
4451 if (adapter->vfs_allocated_count || adapter->vmdq_pools)
4452 rctl |= E1000_RCTL_VFE;
4453 } else {
4454 if (netdev->flags & IFF_ALLMULTI) {
4455 rctl |= E1000_RCTL_MPE;
4456 vmolr |= E1000_VMOLR_MPME;
4457 } else {
4458 /*
4459 * Write addresses to the MTA, if the attempt fails
4460 * then we should just turn on promiscuous mode so
4461 * that we can at least receive multicast traffic
4462 */
4463 count = igb_write_mc_addr_list(netdev);
4464 if (count < 0) {
4465 rctl |= E1000_RCTL_MPE;
4466 vmolr |= E1000_VMOLR_MPME;
4467 } else if (count) {
4468 vmolr |= E1000_VMOLR_ROMPE;
4469 }
4470 }
4471#ifdef HAVE_SET_RX_MODE
4472 /*
4473 * Write addresses to available RAR registers, if there is not
4474 * sufficient space to store all the addresses then enable
4475 * unicast promiscuous mode
4476 */
4477 count = igb_write_uc_addr_list(netdev);
4478 if (count < 0) {
4479 rctl |= E1000_RCTL_UPE;
4480 vmolr |= E1000_VMOLR_ROPE;
4481 }
4482#endif /* HAVE_SET_RX_MODE */
4483 rctl |= E1000_RCTL_VFE;
4484 }
4485 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4486
4487 /*
4488 * In order to support SR-IOV and eventually VMDq it is necessary to set
4489 * the VMOLR to enable the appropriate modes. Without this workaround
4490 * we will have issues with VLAN tag stripping not being done for frames
4491 * that are only arriving because we are the default pool
4492 */
4493 if (hw->mac.type < e1000_82576)
4494 return;
4495
4496 vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
4497 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4498 E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
4499 igb_restore_vf_multicasts(adapter);
4500}
4501
4502static void igb_check_wvbr(struct igb_adapter *adapter)
4503{
4504 struct e1000_hw *hw = &adapter->hw;
4505 u32 wvbr = 0;
4506
4507 switch (hw->mac.type) {
4508 case e1000_82576:
4509 case e1000_i350:
4510 if (!(wvbr = E1000_READ_REG(hw, E1000_WVBR)))
4511 return;
4512 break;
4513 default:
4514 break;
4515 }
4516
4517 adapter->wvbr |= wvbr;
4518}
4519
4520#define IGB_STAGGERED_QUEUE_OFFSET 8
4521
4522static void igb_spoof_check(struct igb_adapter *adapter)
4523{
4524 int j;
4525
4526 if (!adapter->wvbr)
4527 return;
4528
4529 switch (adapter->hw.mac.type) {
4530 case e1000_82576:
4531 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4532 if (adapter->wvbr & (1 << j) ||
4533 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4534 DPRINTK(DRV, WARNING,
4535 "Spoof event(s) detected on VF %d\n", j);
4536 adapter->wvbr &=
4537 ~((1 << j) |
4538 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4539 }
4540 }
4541 break;
4542 case e1000_i350:
4543 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4544 if (adapter->wvbr & (1 << j)) {
4545 DPRINTK(DRV, WARNING,
4546 "Spoof event(s) detected on VF %d\n", j);
4547 adapter->wvbr &= ~(1 << j);
4548 }
4549 }
4550 break;
4551 default:
4552 break;
4553 }
4554}
4555
4556/* Need to wait a few seconds after link up to get diagnostic information from
4557 * the phy */
11fdf7f2
TL
4558#ifdef HAVE_TIMER_SETUP
4559static void igb_update_phy_info(struct timer_list *t)
4560{
4561 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4562#else
7c673cae
FG
4563static void igb_update_phy_info(unsigned long data)
4564{
4565 struct igb_adapter *adapter = (struct igb_adapter *) data;
11fdf7f2 4566#endif
7c673cae
FG
4567 e1000_get_phy_info(&adapter->hw);
4568}
4569
4570/**
4571 * igb_has_link - check shared code for link and determine up/down
4572 * @adapter: pointer to driver private info
4573 **/
4574bool igb_has_link(struct igb_adapter *adapter)
4575{
4576 struct e1000_hw *hw = &adapter->hw;
4577 bool link_active = FALSE;
4578
4579 /* get_link_status is set on LSC (link status) interrupt or
4580 * rx sequence error interrupt. get_link_status will stay
4581 * false until the e1000_check_for_link establishes link
4582 * for copper adapters ONLY
4583 */
4584 switch (hw->phy.media_type) {
4585 case e1000_media_type_copper:
4586 if (!hw->mac.get_link_status)
4587 return true;
4588 case e1000_media_type_internal_serdes:
4589 e1000_check_for_link(hw);
4590 link_active = !hw->mac.get_link_status;
4591 break;
4592 case e1000_media_type_unknown:
4593 default:
4594 break;
4595 }
4596
4597 if (((hw->mac.type == e1000_i210) ||
4598 (hw->mac.type == e1000_i211)) &&
4599 (hw->phy.id == I210_I_PHY_ID)) {
4600 if (!netif_carrier_ok(adapter->netdev)) {
4601 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4602 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4603 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4604 adapter->link_check_timeout = jiffies;
4605 }
4606 }
4607
4608 return link_active;
4609}
4610
4611/**
4612 * igb_watchdog - Timer Call-back
4613 * @data: pointer to adapter cast into an unsigned long
4614 **/
11fdf7f2
TL
4615#ifdef HAVE_TIMER_SETUP
4616static void igb_watchdog(struct timer_list *t)
4617{
4618 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4619#else
7c673cae
FG
4620static void igb_watchdog(unsigned long data)
4621{
4622 struct igb_adapter *adapter = (struct igb_adapter *)data;
11fdf7f2 4623#endif
7c673cae
FG
4624 /* Do the rest outside of interrupt context */
4625 schedule_work(&adapter->watchdog_task);
4626}
4627
4628static void igb_watchdog_task(struct work_struct *work)
4629{
4630 struct igb_adapter *adapter = container_of(work,
4631 struct igb_adapter,
4632 watchdog_task);
4633 struct e1000_hw *hw = &adapter->hw;
4634 struct net_device *netdev = adapter->netdev;
4635 u32 link;
4636 int i;
4637 u32 thstat, ctrl_ext;
4638 u32 connsw;
4639
4640 link = igb_has_link(adapter);
4641 /* Force link down if we have fiber to swap to */
4642 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4643 if (hw->phy.media_type == e1000_media_type_copper) {
4644 connsw = E1000_READ_REG(hw, E1000_CONNSW);
4645 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4646 link = 0;
4647 }
4648 }
4649
4650 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4651 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4652 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4653 else
4654 link = FALSE;
4655 }
4656
4657 if (link) {
4658 /* Perform a reset if the media type changed. */
4659 if (hw->dev_spec._82575.media_changed) {
4660 hw->dev_spec._82575.media_changed = false;
4661 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4662 igb_reset(adapter);
4663 }
4664
4665 /* Cancel scheduled suspend requests. */
4666 pm_runtime_resume(netdev->dev.parent);
4667
4668 if (!netif_carrier_ok(netdev)) {
4669 u32 ctrl;
4670 e1000_get_speed_and_duplex(hw,
4671 &adapter->link_speed,
4672 &adapter->link_duplex);
4673
4674 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4675 /* Links status message must follow this format */
4676 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
4677 "Flow Control: %s\n",
4678 netdev->name,
4679 adapter->link_speed,
4680 adapter->link_duplex == FULL_DUPLEX ?
4681 "Full Duplex" : "Half Duplex",
4682 ((ctrl & E1000_CTRL_TFCE) &&
4683 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX":
4684 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
4685 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
4686 /* adjust timeout factor according to speed/duplex */
4687 adapter->tx_timeout_factor = 1;
4688 switch (adapter->link_speed) {
4689 case SPEED_10:
4690 adapter->tx_timeout_factor = 14;
4691 break;
4692 case SPEED_100:
4693 /* maybe add some timeout factor ? */
4694 break;
4695 default:
4696 break;
4697 }
4698
4699 netif_carrier_on(netdev);
4700 netif_tx_wake_all_queues(netdev);
4701
4702 igb_ping_all_vfs(adapter);
4703#ifdef IFLA_VF_MAX
4704 igb_check_vf_rate_limit(adapter);
4705#endif /* IFLA_VF_MAX */
4706
4707 /* link state has changed, schedule phy info update */
4708 if (!test_bit(__IGB_DOWN, &adapter->state))
4709 mod_timer(&adapter->phy_info_timer,
4710 round_jiffies(jiffies + 2 * HZ));
4711 }
4712 } else {
4713 if (netif_carrier_ok(netdev)) {
4714 adapter->link_speed = 0;
4715 adapter->link_duplex = 0;
4716 /* check for thermal sensor event on i350 */
4717 if (hw->mac.type == e1000_i350) {
4718 thstat = E1000_READ_REG(hw, E1000_THSTAT);
4719 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4720 if ((hw->phy.media_type ==
4721 e1000_media_type_copper) &&
4722 !(ctrl_ext &
4723 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
4724 if (thstat & E1000_THSTAT_PWR_DOWN) {
4725 printk(KERN_ERR "igb: %s The "
4726 "network adapter was stopped "
4727 "because it overheated.\n",
4728 netdev->name);
4729 }
4730 if (thstat & E1000_THSTAT_LINK_THROTTLE) {
4731 printk(KERN_INFO
4732 "igb: %s The network "
4733 "adapter supported "
4734 "link speed "
4735 "was downshifted "
4736 "because it "
4737 "overheated.\n",
4738 netdev->name);
4739 }
4740 }
4741 }
4742
4743 /* Links status message must follow this format */
4744 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4745 netdev->name);
4746 netif_carrier_off(netdev);
4747 netif_tx_stop_all_queues(netdev);
4748
4749 igb_ping_all_vfs(adapter);
4750
4751 /* link state has changed, schedule phy info update */
4752 if (!test_bit(__IGB_DOWN, &adapter->state))
4753 mod_timer(&adapter->phy_info_timer,
4754 round_jiffies(jiffies + 2 * HZ));
4755 /* link is down, time to check for alternate media */
4756 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4757 igb_check_swap_media(adapter);
4758 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4759 schedule_work(&adapter->reset_task);
4760 /* return immediately */
4761 return;
4762 }
4763 }
4764 pm_schedule_suspend(netdev->dev.parent,
4765 MSEC_PER_SEC * 5);
4766
4767 /* also check for alternate media here */
4768 } else if (!netif_carrier_ok(netdev) &&
4769 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4770 hw->mac.ops.power_up_serdes(hw);
4771 igb_check_swap_media(adapter);
4772 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4773 schedule_work(&adapter->reset_task);
4774 /* return immediately */
4775 return;
4776 }
4777 }
4778 }
4779
4780 igb_update_stats(adapter);
4781
4782 for (i = 0; i < adapter->num_tx_queues; i++) {
4783 struct igb_ring *tx_ring = adapter->tx_ring[i];
4784 if (!netif_carrier_ok(netdev)) {
4785 /* We've lost link, so the controller stops DMA,
4786 * but we've got queued Tx work that's never going
4787 * to get done, so reset controller to flush Tx.
4788 * (Do the reset outside of interrupt context). */
4789 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4790 adapter->tx_timeout_count++;
4791 schedule_work(&adapter->reset_task);
4792 /* return immediately since reset is imminent */
4793 return;
4794 }
4795 }
4796
4797 /* Force detection of hung controller every watchdog period */
4798 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4799 }
4800
4801 /* Cause software interrupt to ensure rx ring is cleaned */
4802 if (adapter->msix_entries) {
4803 u32 eics = 0;
4804 for (i = 0; i < adapter->num_q_vectors; i++)
4805 eics |= adapter->q_vector[i]->eims_value;
4806 E1000_WRITE_REG(hw, E1000_EICS, eics);
4807 } else {
4808 E1000_WRITE_REG(hw, E1000_ICS, E1000_ICS_RXDMT0);
4809 }
4810
4811 igb_spoof_check(adapter);
4812
4813 /* Reset the timer */
4814 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4815 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4816 mod_timer(&adapter->watchdog_timer,
4817 round_jiffies(jiffies + HZ));
4818 else
4819 mod_timer(&adapter->watchdog_timer,
4820 round_jiffies(jiffies + 2 * HZ));
4821 }
4822}
4823
4824static void igb_dma_err_task(struct work_struct *work)
4825{
4826 struct igb_adapter *adapter = container_of(work,
4827 struct igb_adapter,
4828 dma_err_task);
4829 int vf;
4830 struct e1000_hw *hw = &adapter->hw;
4831 struct net_device *netdev = adapter->netdev;
4832 u32 hgptc;
4833 u32 ciaa, ciad;
4834
4835 hgptc = E1000_READ_REG(hw, E1000_HGPTC);
4836 if (hgptc) /* If incrementing then no need for the check below */
4837 goto dma_timer_reset;
4838 /*
4839 * Check to see if a bad DMA write target from an errant or
4840 * malicious VF has caused a PCIe error. If so then we can
4841 * issue a VFLR to the offending VF(s) and then resume without
4842 * requesting a full slot reset.
4843 */
4844
4845 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4846 ciaa = (vf << 16) | 0x80000000;
4847 /* 32 bit read so align, we really want status at offset 6 */
4848 ciaa |= PCI_COMMAND;
4849 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4850 ciad = E1000_READ_REG(hw, E1000_CIAD);
4851 ciaa &= 0x7FFFFFFF;
4852 /* disable debug mode asap after reading data */
4853 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4854 /* Get the upper 16 bits which will be the PCI status reg */
4855 ciad >>= 16;
4856 if (ciad & (PCI_STATUS_REC_MASTER_ABORT |
4857 PCI_STATUS_REC_TARGET_ABORT |
4858 PCI_STATUS_SIG_SYSTEM_ERROR)) {
4859 netdev_err(netdev, "VF %d suffered error\n", vf);
4860 /* Issue VFLR */
4861 ciaa = (vf << 16) | 0x80000000;
4862 ciaa |= 0xA8;
4863 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4864 ciad = 0x00008000; /* VFLR */
4865 E1000_WRITE_REG(hw, E1000_CIAD, ciad);
4866 ciaa &= 0x7FFFFFFF;
4867 E1000_WRITE_REG(hw, E1000_CIAA, ciaa);
4868 }
4869 }
4870dma_timer_reset:
4871 /* Reset the timer */
4872 if (!test_bit(__IGB_DOWN, &adapter->state))
4873 mod_timer(&adapter->dma_err_timer,
4874 round_jiffies(jiffies + HZ / 10));
4875}
4876
4877/**
4878 * igb_dma_err_timer - Timer Call-back
4879 * @data: pointer to adapter cast into an unsigned long
4880 **/
11fdf7f2
TL
4881#ifdef HAVE_TIMER_SETUP
4882static void igb_dma_err_timer(struct timer_list *t)
4883{
4884 struct igb_adapter *adapter = from_timer(adapter, t, dma_err_timer);
4885#else
7c673cae
FG
4886static void igb_dma_err_timer(unsigned long data)
4887{
4888 struct igb_adapter *adapter = (struct igb_adapter *)data;
11fdf7f2 4889#endif
7c673cae
FG
4890 /* Do the rest outside of interrupt context */
4891 schedule_work(&adapter->dma_err_task);
4892}
4893
4894enum latency_range {
4895 lowest_latency = 0,
4896 low_latency = 1,
4897 bulk_latency = 2,
4898 latency_invalid = 255
4899};
4900
4901/**
4902 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4903 *
4904 * Stores a new ITR value based on strictly on packet size. This
4905 * algorithm is less sophisticated than that used in igb_update_itr,
4906 * due to the difficulty of synchronizing statistics across multiple
4907 * receive rings. The divisors and thresholds used by this function
4908 * were determined based on theoretical maximum wire speed and testing
4909 * data, in order to minimize response time while increasing bulk
4910 * throughput.
4911 * This functionality is controlled by the InterruptThrottleRate module
4912 * parameter (see igb_param.c)
4913 * NOTE: This function is called only when operating in a multiqueue
4914 * receive environment.
4915 * @q_vector: pointer to q_vector
4916 **/
4917static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4918{
4919 int new_val = q_vector->itr_val;
4920 int avg_wire_size = 0;
4921 struct igb_adapter *adapter = q_vector->adapter;
4922 unsigned int packets;
4923
4924 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4925 * ints/sec - ITR timer value of 120 ticks.
4926 */
4927 switch (adapter->link_speed) {
4928 case SPEED_10:
4929 case SPEED_100:
4930 new_val = IGB_4K_ITR;
4931 goto set_itr_val;
4932 default:
4933 break;
4934 }
4935
4936 packets = q_vector->rx.total_packets;
4937 if (packets)
4938 avg_wire_size = q_vector->rx.total_bytes / packets;
4939
4940 packets = q_vector->tx.total_packets;
4941 if (packets)
4942 avg_wire_size = max_t(u32, avg_wire_size,
4943 q_vector->tx.total_bytes / packets);
4944
4945 /* if avg_wire_size isn't set no work was done */
4946 if (!avg_wire_size)
4947 goto clear_counts;
4948
4949 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4950 avg_wire_size += 24;
4951
4952 /* Don't starve jumbo frames */
4953 avg_wire_size = min(avg_wire_size, 3000);
4954
4955 /* Give a little boost to mid-size frames */
4956 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4957 new_val = avg_wire_size / 3;
4958 else
4959 new_val = avg_wire_size / 2;
4960
4961 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4962 if (new_val < IGB_20K_ITR &&
4963 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4964 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4965 new_val = IGB_20K_ITR;
4966
4967set_itr_val:
4968 if (new_val != q_vector->itr_val) {
4969 q_vector->itr_val = new_val;
4970 q_vector->set_itr = 1;
4971 }
4972clear_counts:
4973 q_vector->rx.total_bytes = 0;
4974 q_vector->rx.total_packets = 0;
4975 q_vector->tx.total_bytes = 0;
4976 q_vector->tx.total_packets = 0;
4977}
4978
4979/**
4980 * igb_update_itr - update the dynamic ITR value based on statistics
4981 * Stores a new ITR value based on packets and byte
4982 * counts during the last interrupt. The advantage of per interrupt
4983 * computation is faster updates and more accurate ITR for the current
4984 * traffic pattern. Constants in this function were computed
4985 * based on theoretical maximum wire speed and thresholds were set based
4986 * on testing data as well as attempting to minimize response time
4987 * while increasing bulk throughput.
4988 * this functionality is controlled by the InterruptThrottleRate module
4989 * parameter (see igb_param.c)
4990 * NOTE: These calculations are only valid when operating in a single-
4991 * queue environment.
4992 * @q_vector: pointer to q_vector
4993 * @ring_container: ring info to update the itr for
4994 **/
4995static void igb_update_itr(struct igb_q_vector *q_vector,
4996 struct igb_ring_container *ring_container)
4997{
4998 unsigned int packets = ring_container->total_packets;
4999 unsigned int bytes = ring_container->total_bytes;
5000 u8 itrval = ring_container->itr;
5001
5002 /* no packets, exit with status unchanged */
5003 if (packets == 0)
5004 return;
5005
5006 switch (itrval) {
5007 case lowest_latency:
5008 /* handle TSO and jumbo frames */
5009 if (bytes/packets > 8000)
5010 itrval = bulk_latency;
5011 else if ((packets < 5) && (bytes > 512))
5012 itrval = low_latency;
5013 break;
5014 case low_latency: /* 50 usec aka 20000 ints/s */
5015 if (bytes > 10000) {
5016 /* this if handles the TSO accounting */
5017 if (bytes/packets > 8000) {
5018 itrval = bulk_latency;
5019 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
5020 itrval = bulk_latency;
11fdf7f2 5021 } else if (packets > 35) {
7c673cae
FG
5022 itrval = lowest_latency;
5023 }
5024 } else if (bytes/packets > 2000) {
5025 itrval = bulk_latency;
5026 } else if (packets <= 2 && bytes < 512) {
5027 itrval = lowest_latency;
5028 }
5029 break;
5030 case bulk_latency: /* 250 usec aka 4000 ints/s */
5031 if (bytes > 25000) {
5032 if (packets > 35)
5033 itrval = low_latency;
5034 } else if (bytes < 1500) {
5035 itrval = low_latency;
5036 }
5037 break;
5038 }
5039
5040 /* clear work counters since we have the values we need */
5041 ring_container->total_bytes = 0;
5042 ring_container->total_packets = 0;
5043
5044 /* write updated itr to ring container */
5045 ring_container->itr = itrval;
5046}
5047
5048static void igb_set_itr(struct igb_q_vector *q_vector)
5049{
5050 struct igb_adapter *adapter = q_vector->adapter;
5051 u32 new_itr = q_vector->itr_val;
5052 u8 current_itr = 0;
5053
5054 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5055 switch (adapter->link_speed) {
5056 case SPEED_10:
5057 case SPEED_100:
5058 current_itr = 0;
5059 new_itr = IGB_4K_ITR;
5060 goto set_itr_now;
5061 default:
5062 break;
5063 }
5064
5065 igb_update_itr(q_vector, &q_vector->tx);
5066 igb_update_itr(q_vector, &q_vector->rx);
5067
5068 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5069
5070 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5071 if (current_itr == lowest_latency &&
5072 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5073 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5074 current_itr = low_latency;
5075
5076 switch (current_itr) {
5077 /* counts and packets in update_itr are dependent on these numbers */
5078 case lowest_latency:
5079 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5080 break;
5081 case low_latency:
5082 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5083 break;
5084 case bulk_latency:
5085 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5086 break;
5087 default:
5088 break;
5089 }
5090
5091set_itr_now:
5092 if (new_itr != q_vector->itr_val) {
5093 /* this attempts to bias the interrupt rate towards Bulk
5094 * by adding intermediate steps when interrupt rate is
5095 * increasing */
5096 new_itr = new_itr > q_vector->itr_val ?
5097 max((new_itr * q_vector->itr_val) /
5098 (new_itr + (q_vector->itr_val >> 2)),
5099 new_itr) :
5100 new_itr;
5101 /* Don't write the value here; it resets the adapter's
5102 * internal timer, and causes us to delay far longer than
5103 * we should between interrupts. Instead, we write the ITR
5104 * value at the beginning of the next interrupt so the timing
5105 * ends up being correct.
5106 */
5107 q_vector->itr_val = new_itr;
5108 q_vector->set_itr = 1;
5109 }
5110}
5111
5112void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5113 u32 type_tucmd, u32 mss_l4len_idx)
5114{
5115 struct e1000_adv_tx_context_desc *context_desc;
5116 u16 i = tx_ring->next_to_use;
5117
5118 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5119
5120 i++;
5121 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5122
5123 /* set bits to identify this as an advanced context descriptor */
5124 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5125
5126 /* For 82575, context index must be unique per ring. */
5127 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5128 mss_l4len_idx |= tx_ring->reg_idx << 4;
5129
5130 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5131 context_desc->seqnum_seed = 0;
5132 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5133 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5134}
5135
5136static int igb_tso(struct igb_ring *tx_ring,
5137 struct igb_tx_buffer *first,
5138 u8 *hdr_len)
5139{
5140#ifdef NETIF_F_TSO
5141 struct sk_buff *skb = first->skb;
5142 u32 vlan_macip_lens, type_tucmd;
5143 u32 mss_l4len_idx, l4len;
5144
5145 if (skb->ip_summed != CHECKSUM_PARTIAL)
5146 return 0;
5147
5148 if (!skb_is_gso(skb))
5149#endif /* NETIF_F_TSO */
5150 return 0;
5151#ifdef NETIF_F_TSO
5152
5153 if (skb_header_cloned(skb)) {
5154 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5155 if (err)
5156 return err;
5157 }
5158
5159 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5160 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5161
5162 if (first->protocol == __constant_htons(ETH_P_IP)) {
5163 struct iphdr *iph = ip_hdr(skb);
5164 iph->tot_len = 0;
5165 iph->check = 0;
5166 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
5167 iph->daddr, 0,
5168 IPPROTO_TCP,
5169 0);
5170 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5171 first->tx_flags |= IGB_TX_FLAGS_TSO |
5172 IGB_TX_FLAGS_CSUM |
5173 IGB_TX_FLAGS_IPV4;
5174#ifdef NETIF_F_TSO6
5175 } else if (skb_is_gso_v6(skb)) {
5176 ipv6_hdr(skb)->payload_len = 0;
5177 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5178 &ipv6_hdr(skb)->daddr,
5179 0, IPPROTO_TCP, 0);
5180 first->tx_flags |= IGB_TX_FLAGS_TSO |
5181 IGB_TX_FLAGS_CSUM;
5182#endif
5183 }
5184
5185 /* compute header lengths */
5186 l4len = tcp_hdrlen(skb);
5187 *hdr_len = skb_transport_offset(skb) + l4len;
5188
5189 /* update gso size and bytecount with header size */
5190 first->gso_segs = skb_shinfo(skb)->gso_segs;
5191 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5192
5193 /* MSS L4LEN IDX */
5194 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
5195 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5196
5197 /* VLAN MACLEN IPLEN */
5198 vlan_macip_lens = skb_network_header_len(skb);
5199 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5200 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5201
5202 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5203
5204 return 1;
5205#endif /* NETIF_F_TSO */
5206}
5207
5208static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5209{
5210 struct sk_buff *skb = first->skb;
5211 u32 vlan_macip_lens = 0;
5212 u32 mss_l4len_idx = 0;
5213 u32 type_tucmd = 0;
5214
5215 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5216 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5217 return;
5218 } else {
5219 u8 nexthdr = 0;
5220 switch (first->protocol) {
5221 case __constant_htons(ETH_P_IP):
5222 vlan_macip_lens |= skb_network_header_len(skb);
5223 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5224 nexthdr = ip_hdr(skb)->protocol;
5225 break;
5226#ifdef NETIF_F_IPV6_CSUM
5227 case __constant_htons(ETH_P_IPV6):
5228 vlan_macip_lens |= skb_network_header_len(skb);
5229 nexthdr = ipv6_hdr(skb)->nexthdr;
5230 break;
5231#endif
5232 default:
5233 if (unlikely(net_ratelimit())) {
5234 dev_warn(tx_ring->dev,
5235 "partial checksum but proto=%x!\n",
5236 first->protocol);
5237 }
5238 break;
5239 }
5240
5241 switch (nexthdr) {
5242 case IPPROTO_TCP:
5243 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
5244 mss_l4len_idx = tcp_hdrlen(skb) <<
5245 E1000_ADVTXD_L4LEN_SHIFT;
5246 break;
5247#ifdef HAVE_SCTP
5248 case IPPROTO_SCTP:
5249 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
5250 mss_l4len_idx = sizeof(struct sctphdr) <<
5251 E1000_ADVTXD_L4LEN_SHIFT;
5252 break;
5253#endif
5254 case IPPROTO_UDP:
5255 mss_l4len_idx = sizeof(struct udphdr) <<
5256 E1000_ADVTXD_L4LEN_SHIFT;
5257 break;
5258 default:
5259 if (unlikely(net_ratelimit())) {
5260 dev_warn(tx_ring->dev,
5261 "partial checksum but l4 proto=%x!\n",
5262 nexthdr);
5263 }
5264 break;
5265 }
5266
5267 /* update TX checksum flag */
5268 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5269 }
5270
5271 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5272 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5273
5274 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5275}
5276
5277#define IGB_SET_FLAG(_input, _flag, _result) \
5278 ((_flag <= _result) ? \
5279 ((u32)(_input & _flag) * (_result / _flag)) : \
5280 ((u32)(_input & _flag) / (_flag / _result)))
5281
5282static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5283{
5284 /* set type for advanced descriptor with frame checksum insertion */
5285 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5286 E1000_ADVTXD_DCMD_DEXT |
5287 E1000_ADVTXD_DCMD_IFCS;
5288
5289 /* set HW vlan bit if vlan is present */
5290 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5291 (E1000_ADVTXD_DCMD_VLE));
5292
5293 /* set segmentation bits for TSO */
5294 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5295 (E1000_ADVTXD_DCMD_TSE));
5296
5297 /* set timestamp bit if present */
5298 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5299 (E1000_ADVTXD_MAC_TSTAMP));
5300
5301 return cmd_type;
5302}
5303
5304static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5305 union e1000_adv_tx_desc *tx_desc,
5306 u32 tx_flags, unsigned int paylen)
5307{
5308 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5309
5310 /* 82575 requires a unique index per ring */
5311 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5312 olinfo_status |= tx_ring->reg_idx << 4;
5313
5314 /* insert L4 checksum */
5315 olinfo_status |= IGB_SET_FLAG(tx_flags,
5316 IGB_TX_FLAGS_CSUM,
5317 (E1000_TXD_POPTS_TXSM << 8));
5318
5319 /* insert IPv4 checksum */
5320 olinfo_status |= IGB_SET_FLAG(tx_flags,
5321 IGB_TX_FLAGS_IPV4,
5322 (E1000_TXD_POPTS_IXSM << 8));
5323
5324 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5325}
5326
5327static void igb_tx_map(struct igb_ring *tx_ring,
5328 struct igb_tx_buffer *first,
5329 const u8 hdr_len)
5330{
5331 struct sk_buff *skb = first->skb;
5332 struct igb_tx_buffer *tx_buffer;
5333 union e1000_adv_tx_desc *tx_desc;
5334 struct skb_frag_struct *frag;
5335 dma_addr_t dma;
5336 unsigned int data_len, size;
5337 u32 tx_flags = first->tx_flags;
5338 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5339 u16 i = tx_ring->next_to_use;
5340
5341 tx_desc = IGB_TX_DESC(tx_ring, i);
5342
5343 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5344
5345 size = skb_headlen(skb);
5346 data_len = skb->data_len;
5347
5348 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5349
5350 tx_buffer = first;
5351
5352 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5353 if (dma_mapping_error(tx_ring->dev, dma))
5354 goto dma_error;
5355
5356 /* record length, and DMA address */
5357 dma_unmap_len_set(tx_buffer, len, size);
5358 dma_unmap_addr_set(tx_buffer, dma, dma);
5359
5360 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5361
5362 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5363 tx_desc->read.cmd_type_len =
5364 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5365
5366 i++;
5367 tx_desc++;
5368 if (i == tx_ring->count) {
5369 tx_desc = IGB_TX_DESC(tx_ring, 0);
5370 i = 0;
5371 }
5372 tx_desc->read.olinfo_status = 0;
5373
5374 dma += IGB_MAX_DATA_PER_TXD;
5375 size -= IGB_MAX_DATA_PER_TXD;
5376
5377 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5378 }
5379
5380 if (likely(!data_len))
5381 break;
5382
5383 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5384
5385 i++;
5386 tx_desc++;
5387 if (i == tx_ring->count) {
5388 tx_desc = IGB_TX_DESC(tx_ring, 0);
5389 i = 0;
5390 }
5391 tx_desc->read.olinfo_status = 0;
5392
5393 size = skb_frag_size(frag);
5394 data_len -= size;
5395
5396 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5397 size, DMA_TO_DEVICE);
5398
5399 tx_buffer = &tx_ring->tx_buffer_info[i];
5400 }
5401
5402 /* write last descriptor with RS and EOP bits */
5403 cmd_type |= size | IGB_TXD_DCMD;
5404 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5405
5406 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5407 /* set the timestamp */
5408 first->time_stamp = jiffies;
5409
5410 /*
5411 * Force memory writes to complete before letting h/w know there
5412 * are new descriptors to fetch. (Only applicable for weak-ordered
5413 * memory model archs, such as IA-64).
5414 *
5415 * We also need this memory barrier to make certain all of the
5416 * status bits have been updated before next_to_watch is written.
5417 */
5418 wmb();
5419
5420 /* set next_to_watch value indicating a packet is present */
5421 first->next_to_watch = tx_desc;
5422
5423 i++;
5424 if (i == tx_ring->count)
5425 i = 0;
5426
5427 tx_ring->next_to_use = i;
5428
5429 writel(i, tx_ring->tail);
5430
5431 /* we need this if more than one processor can write to our tail
5432 * at a time, it syncronizes IO on IA64/Altix systems */
5433 mmiowb();
5434
5435 return;
5436
5437dma_error:
5438 dev_err(tx_ring->dev, "TX DMA map failed\n");
5439
5440 /* clear dma mappings for failed tx_buffer_info map */
5441 for (;;) {
5442 tx_buffer = &tx_ring->tx_buffer_info[i];
5443 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5444 if (tx_buffer == first)
5445 break;
5446 if (i == 0)
5447 i = tx_ring->count;
5448 i--;
5449 }
5450
5451 tx_ring->next_to_use = i;
5452}
5453
5454static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5455{
5456 struct net_device *netdev = netdev_ring(tx_ring);
5457
5458 if (netif_is_multiqueue(netdev))
5459 netif_stop_subqueue(netdev, ring_queue_index(tx_ring));
5460 else
5461 netif_stop_queue(netdev);
5462
5463 /* Herbert's original patch had:
5464 * smp_mb__after_netif_stop_queue();
5465 * but since that doesn't exist yet, just open code it. */
5466 smp_mb();
5467
5468 /* We need to check again in a case another CPU has just
5469 * made room available. */
5470 if (igb_desc_unused(tx_ring) < size)
5471 return -EBUSY;
5472
5473 /* A reprieve! */
5474 if (netif_is_multiqueue(netdev))
5475 netif_wake_subqueue(netdev, ring_queue_index(tx_ring));
5476 else
5477 netif_wake_queue(netdev);
5478
5479 tx_ring->tx_stats.restart_queue++;
5480
5481 return 0;
5482}
5483
5484static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5485{
5486 if (igb_desc_unused(tx_ring) >= size)
5487 return 0;
5488 return __igb_maybe_stop_tx(tx_ring, size);
5489}
5490
5491netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5492 struct igb_ring *tx_ring)
5493{
5494 struct igb_tx_buffer *first;
5495 int tso;
5496 u32 tx_flags = 0;
5497#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
5498 unsigned short f;
5499#endif
5500 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5501 __be16 protocol = vlan_get_protocol(skb);
5502 u8 hdr_len = 0;
5503
5504 /*
5505 * need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5506 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5507 * + 2 desc gap to keep tail from touching head,
5508 * + 1 desc for context descriptor,
5509 * otherwise try next time
5510 */
5511#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD
5512 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5513 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5514#else
5515 count += skb_shinfo(skb)->nr_frags;
5516#endif
5517 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5518 /* this is a hard error */
5519 return NETDEV_TX_BUSY;
5520 }
5521
5522 /* record the location of the first descriptor for this packet */
5523 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5524 first->skb = skb;
5525 first->bytecount = skb->len;
5526 first->gso_segs = 1;
5527
5528 skb_tx_timestamp(skb);
5529
5530#ifdef HAVE_PTP_1588_CLOCK
5531 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5532 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5533 if (!adapter->ptp_tx_skb) {
5534 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5535 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5536
5537 adapter->ptp_tx_skb = skb_get(skb);
5538 adapter->ptp_tx_start = jiffies;
5539 if (adapter->hw.mac.type == e1000_82576)
5540 schedule_work(&adapter->ptp_tx_work);
5541 }
5542 }
5543#endif /* HAVE_PTP_1588_CLOCK */
5544
5545 if (vlan_tx_tag_present(skb)) {
5546 tx_flags |= IGB_TX_FLAGS_VLAN;
5547 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5548 }
5549
5550 /* record initial flags and protocol */
5551 first->tx_flags = tx_flags;
5552 first->protocol = protocol;
5553
5554 tso = igb_tso(tx_ring, first, &hdr_len);
5555 if (tso < 0)
5556 goto out_drop;
5557 else if (!tso)
5558 igb_tx_csum(tx_ring, first);
5559
5560 igb_tx_map(tx_ring, first, hdr_len);
5561
5562#ifndef HAVE_TRANS_START_IN_QUEUE
5563 netdev_ring(tx_ring)->trans_start = jiffies;
5564
5565#endif
5566 /* Make sure there is space in the ring for the next send. */
5567 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5568
5569 return NETDEV_TX_OK;
5570
5571out_drop:
5572 igb_unmap_and_free_tx_resource(tx_ring, first);
5573
5574 return NETDEV_TX_OK;
5575}
5576
5577#ifdef HAVE_TX_MQ
5578static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5579 struct sk_buff *skb)
5580{
5581 unsigned int r_idx = skb->queue_mapping;
5582
5583 if (r_idx >= adapter->num_tx_queues)
5584 r_idx = r_idx % adapter->num_tx_queues;
5585
5586 return adapter->tx_ring[r_idx];
5587}
5588#else
5589#define igb_tx_queue_mapping(_adapter, _skb) (_adapter)->tx_ring[0]
5590#endif
5591
5592static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5593 struct net_device *netdev)
5594{
5595 struct igb_adapter *adapter = netdev_priv(netdev);
5596
5597 if (test_bit(__IGB_DOWN, &adapter->state)) {
5598 dev_kfree_skb_any(skb);
5599 return NETDEV_TX_OK;
5600 }
5601
5602 if (skb->len <= 0) {
5603 dev_kfree_skb_any(skb);
5604 return NETDEV_TX_OK;
5605 }
5606
5607 /*
5608 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
5609 * in order to meet this minimum size requirement.
5610 */
5611 if (skb->len < 17) {
5612 if (skb_padto(skb, 17))
5613 return NETDEV_TX_OK;
5614 skb->len = 17;
5615 }
5616
5617 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5618}
5619
5620/**
5621 * igb_tx_timeout - Respond to a Tx Hang
5622 * @netdev: network interface device structure
5623 **/
5624static void igb_tx_timeout(struct net_device *netdev)
5625{
5626 struct igb_adapter *adapter = netdev_priv(netdev);
5627 struct e1000_hw *hw = &adapter->hw;
5628
5629 /* Do the reset outside of interrupt context */
5630 adapter->tx_timeout_count++;
5631
5632 if (hw->mac.type >= e1000_82580)
5633 hw->dev_spec._82575.global_device_reset = true;
5634
5635 schedule_work(&adapter->reset_task);
5636 E1000_WRITE_REG(hw, E1000_EICS,
5637 (adapter->eims_enable_mask & ~adapter->eims_other));
5638}
5639
5640static void igb_reset_task(struct work_struct *work)
5641{
5642 struct igb_adapter *adapter;
5643 adapter = container_of(work, struct igb_adapter, reset_task);
5644
5645 igb_reinit_locked(adapter);
5646}
5647
5648/**
5649 * igb_get_stats - Get System Network Statistics
5650 * @netdev: network interface device structure
5651 *
5652 * Returns the address of the device statistics structure.
5653 * The statistics are updated here and also from the timer callback.
5654 **/
5655static struct net_device_stats *igb_get_stats(struct net_device *netdev)
5656{
5657 struct igb_adapter *adapter = netdev_priv(netdev);
5658
5659 if (!test_bit(__IGB_RESETTING, &adapter->state))
5660 igb_update_stats(adapter);
5661
5662#ifdef HAVE_NETDEV_STATS_IN_NETDEV
5663 /* only return the current stats */
5664 return &netdev->stats;
5665#else
5666 /* only return the current stats */
5667 return &adapter->net_stats;
5668#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
5669}
5670
5671/**
5672 * igb_change_mtu - Change the Maximum Transfer Unit
5673 * @netdev: network interface device structure
5674 * @new_mtu: new value for maximum frame size
5675 *
5676 * Returns 0 on success, negative on failure
5677 **/
5678static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5679{
5680 struct igb_adapter *adapter = netdev_priv(netdev);
5681 struct e1000_hw *hw = &adapter->hw;
5682 struct pci_dev *pdev = adapter->pdev;
5683 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5684
5685 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5686 dev_err(pci_dev_to_dev(pdev), "Invalid MTU setting\n");
5687 return -EINVAL;
5688 }
5689
5690#define MAX_STD_JUMBO_FRAME_SIZE 9238
5691 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5692 dev_err(pci_dev_to_dev(pdev), "MTU > 9216 not supported.\n");
5693 return -EINVAL;
5694 }
5695
5696 /* adjust max frame to be at least the size of a standard frame */
5697 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5698 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5699
5700 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5701 usleep_range(1000, 2000);
5702
5703 /* igb_down has a dependency on max_frame_size */
5704 adapter->max_frame_size = max_frame;
5705
5706 if (netif_running(netdev))
5707 igb_down(adapter);
5708
5709 dev_info(pci_dev_to_dev(pdev), "changing MTU from %d to %d\n",
5710 netdev->mtu, new_mtu);
5711 netdev->mtu = new_mtu;
5712 hw->dev_spec._82575.mtu = new_mtu;
5713
5714 if (netif_running(netdev))
5715 igb_up(adapter);
5716 else
5717 igb_reset(adapter);
5718
5719 clear_bit(__IGB_RESETTING, &adapter->state);
5720
5721 return 0;
5722}
5723
5724/**
5725 * igb_update_stats - Update the board statistics counters
5726 * @adapter: board private structure
5727 **/
5728
5729void igb_update_stats(struct igb_adapter *adapter)
5730{
5731#ifdef HAVE_NETDEV_STATS_IN_NETDEV
5732 struct net_device_stats *net_stats = &adapter->netdev->stats;
5733#else
5734 struct net_device_stats *net_stats = &adapter->net_stats;
5735#endif /* HAVE_NETDEV_STATS_IN_NETDEV */
5736 struct e1000_hw *hw = &adapter->hw;
5737#ifdef HAVE_PCI_ERS
5738 struct pci_dev *pdev = adapter->pdev;
5739#endif
5740 u32 reg, mpc;
5741 u16 phy_tmp;
5742 int i;
5743 u64 bytes, packets;
5744#ifndef IGB_NO_LRO
5745 u32 flushed = 0, coal = 0;
5746 struct igb_q_vector *q_vector;
5747#endif
5748
5749#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5750
5751 /*
5752 * Prevent stats update while adapter is being reset, or if the pci
5753 * connection is down.
5754 */
5755 if (adapter->link_speed == 0)
5756 return;
5757#ifdef HAVE_PCI_ERS
5758 if (pci_channel_offline(pdev))
5759 return;
5760
5761#endif
5762#ifndef IGB_NO_LRO
5763 for (i = 0; i < adapter->num_q_vectors; i++) {
5764 q_vector = adapter->q_vector[i];
5765 if (!q_vector)
5766 continue;
5767 flushed += q_vector->lrolist.stats.flushed;
5768 coal += q_vector->lrolist.stats.coal;
5769 }
5770 adapter->lro_stats.flushed = flushed;
5771 adapter->lro_stats.coal = coal;
5772
5773#endif
5774 bytes = 0;
5775 packets = 0;
5776 for (i = 0; i < adapter->num_rx_queues; i++) {
5777 u32 rqdpc_tmp = E1000_READ_REG(hw, E1000_RQDPC(i)) & 0x0FFF;
5778 struct igb_ring *ring = adapter->rx_ring[i];
5779 ring->rx_stats.drops += rqdpc_tmp;
5780 net_stats->rx_fifo_errors += rqdpc_tmp;
5781#ifdef CONFIG_IGB_VMDQ_NETDEV
5782 if (!ring->vmdq_netdev) {
5783 bytes += ring->rx_stats.bytes;
5784 packets += ring->rx_stats.packets;
5785 }
5786#else
5787 bytes += ring->rx_stats.bytes;
5788 packets += ring->rx_stats.packets;
5789#endif
5790 }
5791
5792 net_stats->rx_bytes = bytes;
5793 net_stats->rx_packets = packets;
5794
5795 bytes = 0;
5796 packets = 0;
5797 for (i = 0; i < adapter->num_tx_queues; i++) {
5798 struct igb_ring *ring = adapter->tx_ring[i];
5799#ifdef CONFIG_IGB_VMDQ_NETDEV
5800 if (!ring->vmdq_netdev) {
5801 bytes += ring->tx_stats.bytes;
5802 packets += ring->tx_stats.packets;
5803 }
5804#else
5805 bytes += ring->tx_stats.bytes;
5806 packets += ring->tx_stats.packets;
5807#endif
5808 }
5809 net_stats->tx_bytes = bytes;
5810 net_stats->tx_packets = packets;
5811
5812 /* read stats registers */
5813 adapter->stats.crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
5814 adapter->stats.gprc += E1000_READ_REG(hw, E1000_GPRC);
5815 adapter->stats.gorc += E1000_READ_REG(hw, E1000_GORCL);
5816 E1000_READ_REG(hw, E1000_GORCH); /* clear GORCL */
5817 adapter->stats.bprc += E1000_READ_REG(hw, E1000_BPRC);
5818 adapter->stats.mprc += E1000_READ_REG(hw, E1000_MPRC);
5819 adapter->stats.roc += E1000_READ_REG(hw, E1000_ROC);
5820
5821 adapter->stats.prc64 += E1000_READ_REG(hw, E1000_PRC64);
5822 adapter->stats.prc127 += E1000_READ_REG(hw, E1000_PRC127);
5823 adapter->stats.prc255 += E1000_READ_REG(hw, E1000_PRC255);
5824 adapter->stats.prc511 += E1000_READ_REG(hw, E1000_PRC511);
5825 adapter->stats.prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
5826 adapter->stats.prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
5827 adapter->stats.symerrs += E1000_READ_REG(hw, E1000_SYMERRS);
5828 adapter->stats.sec += E1000_READ_REG(hw, E1000_SEC);
5829
5830 mpc = E1000_READ_REG(hw, E1000_MPC);
5831 adapter->stats.mpc += mpc;
5832 net_stats->rx_fifo_errors += mpc;
5833 adapter->stats.scc += E1000_READ_REG(hw, E1000_SCC);
5834 adapter->stats.ecol += E1000_READ_REG(hw, E1000_ECOL);
5835 adapter->stats.mcc += E1000_READ_REG(hw, E1000_MCC);
5836 adapter->stats.latecol += E1000_READ_REG(hw, E1000_LATECOL);
5837 adapter->stats.dc += E1000_READ_REG(hw, E1000_DC);
5838 adapter->stats.rlec += E1000_READ_REG(hw, E1000_RLEC);
5839 adapter->stats.xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
5840 adapter->stats.xontxc += E1000_READ_REG(hw, E1000_XONTXC);
5841 adapter->stats.xoffrxc += E1000_READ_REG(hw, E1000_XOFFRXC);
5842 adapter->stats.xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
5843 adapter->stats.fcruc += E1000_READ_REG(hw, E1000_FCRUC);
5844 adapter->stats.gptc += E1000_READ_REG(hw, E1000_GPTC);
5845 adapter->stats.gotc += E1000_READ_REG(hw, E1000_GOTCL);
5846 E1000_READ_REG(hw, E1000_GOTCH); /* clear GOTCL */
5847 adapter->stats.rnbc += E1000_READ_REG(hw, E1000_RNBC);
5848 adapter->stats.ruc += E1000_READ_REG(hw, E1000_RUC);
5849 adapter->stats.rfc += E1000_READ_REG(hw, E1000_RFC);
5850 adapter->stats.rjc += E1000_READ_REG(hw, E1000_RJC);
5851 adapter->stats.tor += E1000_READ_REG(hw, E1000_TORH);
5852 adapter->stats.tot += E1000_READ_REG(hw, E1000_TOTH);
5853 adapter->stats.tpr += E1000_READ_REG(hw, E1000_TPR);
5854
5855 adapter->stats.ptc64 += E1000_READ_REG(hw, E1000_PTC64);
5856 adapter->stats.ptc127 += E1000_READ_REG(hw, E1000_PTC127);
5857 adapter->stats.ptc255 += E1000_READ_REG(hw, E1000_PTC255);
5858 adapter->stats.ptc511 += E1000_READ_REG(hw, E1000_PTC511);
5859 adapter->stats.ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
5860 adapter->stats.ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
5861
5862 adapter->stats.mptc += E1000_READ_REG(hw, E1000_MPTC);
5863 adapter->stats.bptc += E1000_READ_REG(hw, E1000_BPTC);
5864
5865 adapter->stats.tpt += E1000_READ_REG(hw, E1000_TPT);
5866 adapter->stats.colc += E1000_READ_REG(hw, E1000_COLC);
5867
5868 adapter->stats.algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
5869 /* read internal phy sepecific stats */
5870 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5871 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5872 adapter->stats.rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
5873
5874 /* this stat has invalid values on i210/i211 */
5875 if ((hw->mac.type != e1000_i210) &&
5876 (hw->mac.type != e1000_i211))
5877 adapter->stats.tncrs += E1000_READ_REG(hw, E1000_TNCRS);
5878 }
5879 adapter->stats.tsctc += E1000_READ_REG(hw, E1000_TSCTC);
5880 adapter->stats.tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
5881
5882 adapter->stats.iac += E1000_READ_REG(hw, E1000_IAC);
5883 adapter->stats.icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
5884 adapter->stats.icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
5885 adapter->stats.icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
5886 adapter->stats.ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
5887 adapter->stats.ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
5888 adapter->stats.ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
5889 adapter->stats.ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
5890 adapter->stats.icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
5891
5892 /* Fill out the OS statistics structure */
5893 net_stats->multicast = adapter->stats.mprc;
5894 net_stats->collisions = adapter->stats.colc;
5895
5896 /* Rx Errors */
5897
5898 /* RLEC on some newer hardware can be incorrect so build
5899 * our own version based on RUC and ROC */
5900 net_stats->rx_errors = adapter->stats.rxerrc +
5901 adapter->stats.crcerrs + adapter->stats.algnerrc +
5902 adapter->stats.ruc + adapter->stats.roc +
5903 adapter->stats.cexterr;
5904 net_stats->rx_length_errors = adapter->stats.ruc +
5905 adapter->stats.roc;
5906 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5907 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5908 net_stats->rx_missed_errors = adapter->stats.mpc;
5909
5910 /* Tx Errors */
5911 net_stats->tx_errors = adapter->stats.ecol +
5912 adapter->stats.latecol;
5913 net_stats->tx_aborted_errors = adapter->stats.ecol;
5914 net_stats->tx_window_errors = adapter->stats.latecol;
5915 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5916
5917 /* Tx Dropped needs to be maintained elsewhere */
5918
5919 /* Phy Stats */
5920 if (hw->phy.media_type == e1000_media_type_copper) {
5921 if ((adapter->link_speed == SPEED_1000) &&
5922 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5923 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5924 adapter->phy_stats.idle_errors += phy_tmp;
5925 }
5926 }
5927
5928 /* Management Stats */
5929 adapter->stats.mgptc += E1000_READ_REG(hw, E1000_MGTPTC);
5930 adapter->stats.mgprc += E1000_READ_REG(hw, E1000_MGTPRC);
5931 if (hw->mac.type > e1000_82580) {
5932 adapter->stats.o2bgptc += E1000_READ_REG(hw, E1000_O2BGPTC);
5933 adapter->stats.o2bspc += E1000_READ_REG(hw, E1000_O2BSPC);
5934 adapter->stats.b2ospc += E1000_READ_REG(hw, E1000_B2OSPC);
5935 adapter->stats.b2ogprc += E1000_READ_REG(hw, E1000_B2OGPRC);
5936 }
5937}
5938
5939static irqreturn_t igb_msix_other(int irq, void *data)
5940{
5941 struct igb_adapter *adapter = data;
5942 struct e1000_hw *hw = &adapter->hw;
5943 u32 icr = E1000_READ_REG(hw, E1000_ICR);
5944 /* reading ICR causes bit 31 of EICR to be cleared */
5945
5946 if (icr & E1000_ICR_DRSTA)
5947 schedule_work(&adapter->reset_task);
5948
5949 if (icr & E1000_ICR_DOUTSYNC) {
5950 /* HW is reporting DMA is out of sync */
5951 adapter->stats.doosync++;
5952 /* The DMA Out of Sync is also indication of a spoof event
5953 * in IOV mode. Check the Wrong VM Behavior register to
5954 * see if it is really a spoof event. */
5955 igb_check_wvbr(adapter);
5956 }
5957
5958 /* Check for a mailbox event */
5959 if (icr & E1000_ICR_VMMB)
5960 igb_msg_task(adapter);
5961
5962 if (icr & E1000_ICR_LSC) {
5963 hw->mac.get_link_status = 1;
5964 /* guard against interrupt when we're going down */
5965 if (!test_bit(__IGB_DOWN, &adapter->state))
5966 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5967 }
5968
5969#ifdef HAVE_PTP_1588_CLOCK
5970 if (icr & E1000_ICR_TS) {
5971 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
5972
5973 if (tsicr & E1000_TSICR_TXTS) {
5974 /* acknowledge the interrupt */
5975 E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
5976 /* retrieve hardware timestamp */
5977 schedule_work(&adapter->ptp_tx_work);
5978 }
5979 }
5980#endif /* HAVE_PTP_1588_CLOCK */
5981
5982 /* Check for MDD event */
5983 if (icr & E1000_ICR_MDDET)
5984 igb_process_mdd_event(adapter);
5985
5986 E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_other);
5987
5988 return IRQ_HANDLED;
5989}
5990
5991static void igb_write_itr(struct igb_q_vector *q_vector)
5992{
5993 struct igb_adapter *adapter = q_vector->adapter;
5994 u32 itr_val = q_vector->itr_val & 0x7FFC;
5995
5996 if (!q_vector->set_itr)
5997 return;
5998
5999 if (!itr_val)
6000 itr_val = 0x4;
6001
6002 if (adapter->hw.mac.type == e1000_82575)
6003 itr_val |= itr_val << 16;
6004 else
6005 itr_val |= E1000_EITR_CNT_IGNR;
6006
6007 writel(itr_val, q_vector->itr_register);
6008 q_vector->set_itr = 0;
6009}
6010
6011static irqreturn_t igb_msix_ring(int irq, void *data)
6012{
6013 struct igb_q_vector *q_vector = data;
6014
6015 /* Write the ITR value calculated from the previous interrupt. */
6016 igb_write_itr(q_vector);
6017
6018 napi_schedule(&q_vector->napi);
6019
6020 return IRQ_HANDLED;
6021}
6022
6023#ifdef IGB_DCA
6024static void igb_update_tx_dca(struct igb_adapter *adapter,
6025 struct igb_ring *tx_ring,
6026 int cpu)
6027{
6028 struct e1000_hw *hw = &adapter->hw;
6029 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6030
6031 if (hw->mac.type != e1000_82575)
6032 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT_82576;
6033
6034 /*
6035 * We can enable relaxed ordering for reads, but not writes when
6036 * DCA is enabled. This is due to a known issue in some chipsets
6037 * which will cause the DCA tag to be cleared.
6038 */
6039 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6040 E1000_DCA_TXCTRL_DATA_RRO_EN |
6041 E1000_DCA_TXCTRL_DESC_DCA_EN;
6042
6043 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6044}
6045
6046static void igb_update_rx_dca(struct igb_adapter *adapter,
6047 struct igb_ring *rx_ring,
6048 int cpu)
6049{
6050 struct e1000_hw *hw = &adapter->hw;
6051 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6052
6053 if (hw->mac.type != e1000_82575)
6054 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT_82576;
6055
6056 /*
6057 * We can enable relaxed ordering for reads, but not writes when
6058 * DCA is enabled. This is due to a known issue in some chipsets
6059 * which will cause the DCA tag to be cleared.
6060 */
6061 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6062 E1000_DCA_RXCTRL_DESC_DCA_EN;
6063
6064 E1000_WRITE_REG(hw, E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6065}
6066
6067static void igb_update_dca(struct igb_q_vector *q_vector)
6068{
6069 struct igb_adapter *adapter = q_vector->adapter;
6070 int cpu = get_cpu();
6071
6072 if (q_vector->cpu == cpu)
6073 goto out_no_update;
6074
6075 if (q_vector->tx.ring)
6076 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6077
6078 if (q_vector->rx.ring)
6079 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6080
6081 q_vector->cpu = cpu;
6082out_no_update:
6083 put_cpu();
6084}
6085
6086static void igb_setup_dca(struct igb_adapter *adapter)
6087{
6088 struct e1000_hw *hw = &adapter->hw;
6089 int i;
6090
6091 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6092 return;
6093
6094 /* Always use CB2 mode, difference is masked in the CB driver. */
6095 E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6096
6097 for (i = 0; i < adapter->num_q_vectors; i++) {
6098 adapter->q_vector[i]->cpu = -1;
6099 igb_update_dca(adapter->q_vector[i]);
6100 }
6101}
6102
6103static int __igb_notify_dca(struct device *dev, void *data)
6104{
6105 struct net_device *netdev = dev_get_drvdata(dev);
6106 struct igb_adapter *adapter = netdev_priv(netdev);
6107 struct pci_dev *pdev = adapter->pdev;
6108 struct e1000_hw *hw = &adapter->hw;
6109 unsigned long event = *(unsigned long *)data;
6110
6111 switch (event) {
6112 case DCA_PROVIDER_ADD:
6113 /* if already enabled, don't do it again */
6114 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6115 break;
6116 if (dca_add_requester(dev) == E1000_SUCCESS) {
6117 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6118 dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
6119 igb_setup_dca(adapter);
6120 break;
6121 }
6122 /* Fall Through since DCA is disabled. */
6123 case DCA_PROVIDER_REMOVE:
6124 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6125 /* without this a class_device is left
6126 * hanging around in the sysfs model */
6127 dca_remove_requester(dev);
6128 dev_info(pci_dev_to_dev(pdev), "DCA disabled\n");
6129 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6130 E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE);
6131 }
6132 break;
6133 }
6134
6135 return E1000_SUCCESS;
6136}
6137
6138static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6139 void *p)
6140{
6141 int ret_val;
6142
6143 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6144 __igb_notify_dca);
6145
6146 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6147}
6148#endif /* IGB_DCA */
6149
6150static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6151{
6152 unsigned char mac_addr[ETH_ALEN];
6153
6154 random_ether_addr(mac_addr);
6155 igb_set_vf_mac(adapter, vf, mac_addr);
6156
6157#ifdef IFLA_VF_MAX
6158#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
6159 /* By default spoof check is enabled for all VFs */
6160 adapter->vf_data[vf].spoofchk_enabled = true;
6161#endif
6162#endif
6163
6164 return true;
6165}
6166
6167static void igb_ping_all_vfs(struct igb_adapter *adapter)
6168{
6169 struct e1000_hw *hw = &adapter->hw;
6170 u32 ping;
6171 int i;
6172
6173 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6174 ping = E1000_PF_CONTROL_MSG;
6175 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6176 ping |= E1000_VT_MSGTYPE_CTS;
6177 e1000_write_mbx(hw, &ping, 1, i);
6178 }
6179}
6180
6181/**
6182 * igb_mta_set_ - Set multicast filter table address
6183 * @adapter: pointer to the adapter structure
6184 * @hash_value: determines the MTA register and bit to set
6185 *
6186 * The multicast table address is a register array of 32-bit registers.
6187 * The hash_value is used to determine what register the bit is in, the
6188 * current value is read, the new bit is OR'd in and the new value is
6189 * written back into the register.
6190 **/
6191void igb_mta_set(struct igb_adapter *adapter, u32 hash_value)
6192{
6193 struct e1000_hw *hw = &adapter->hw;
6194 u32 hash_bit, hash_reg, mta;
6195
6196 /*
6197 * The MTA is a register array of 32-bit registers. It is
6198 * treated like an array of (32*mta_reg_count) bits. We want to
6199 * set bit BitArray[hash_value]. So we figure out what register
6200 * the bit is in, read it, OR in the new bit, then write
6201 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
6202 * mask to bits 31:5 of the hash value which gives us the
6203 * register we're modifying. The hash bit within that register
6204 * is determined by the lower 5 bits of the hash value.
6205 */
6206 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
6207 hash_bit = hash_value & 0x1F;
6208
6209 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
6210
6211 mta |= (1 << hash_bit);
6212
6213 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
6214 E1000_WRITE_FLUSH(hw);
6215}
6216
6217static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6218{
6219
6220 struct e1000_hw *hw = &adapter->hw;
6221 u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
6222 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6223
6224 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6225 IGB_VF_FLAG_MULTI_PROMISC);
6226 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6227
6228#ifdef IGB_ENABLE_VF_PROMISC
6229 if (*msgbuf & E1000_VF_SET_PROMISC_UNICAST) {
6230 vmolr |= E1000_VMOLR_ROPE;
6231 vf_data->flags |= IGB_VF_FLAG_UNI_PROMISC;
6232 *msgbuf &= ~E1000_VF_SET_PROMISC_UNICAST;
6233 }
6234#endif
6235 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6236 vmolr |= E1000_VMOLR_MPME;
6237 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6238 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6239 } else {
6240 /*
6241 * if we have hashes and we are clearing a multicast promisc
6242 * flag we need to write the hashes to the MTA as this step
6243 * was previously skipped
6244 */
6245 if (vf_data->num_vf_mc_hashes > 30) {
6246 vmolr |= E1000_VMOLR_MPME;
6247 } else if (vf_data->num_vf_mc_hashes) {
6248 int j;
6249 vmolr |= E1000_VMOLR_ROMPE;
6250 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6251 igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
6252 }
6253 }
6254
6255 E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
6256
6257 /* there are flags left unprocessed, likely not supported */
6258 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6259 return -EINVAL;
6260
6261 return 0;
6262
6263}
6264
6265static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6266 u32 *msgbuf, u32 vf)
6267{
6268 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6269 u16 *hash_list = (u16 *)&msgbuf[1];
6270 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6271 int i;
6272
6273 /* salt away the number of multicast addresses assigned
6274 * to this VF for later use to restore when the PF multi cast
6275 * list changes
6276 */
6277 vf_data->num_vf_mc_hashes = n;
6278
6279 /* only up to 30 hash values supported */
6280 if (n > 30)
6281 n = 30;
6282
6283 /* store the hashes for later use */
6284 for (i = 0; i < n; i++)
6285 vf_data->vf_mc_hashes[i] = hash_list[i];
6286
6287 /* Flush and reset the mta with the new values */
6288 igb_set_rx_mode(adapter->netdev);
6289
6290 return 0;
6291}
6292
6293static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6294{
6295 struct e1000_hw *hw = &adapter->hw;
6296 struct vf_data_storage *vf_data;
6297 int i, j;
6298
6299 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6300 u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
6301 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6302
6303 vf_data = &adapter->vf_data[i];
6304
6305 if ((vf_data->num_vf_mc_hashes > 30) ||
6306 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6307 vmolr |= E1000_VMOLR_MPME;
6308 } else if (vf_data->num_vf_mc_hashes) {
6309 vmolr |= E1000_VMOLR_ROMPE;
6310 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6311 igb_mta_set(adapter, vf_data->vf_mc_hashes[j]);
6312 }
6313 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
6314 }
6315}
6316
6317static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6318{
6319 struct e1000_hw *hw = &adapter->hw;
6320 u32 pool_mask, reg, vid;
6321 u16 vlan_default;
6322 int i;
6323
6324 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
6325
6326 /* Find the vlan filter for this id */
6327 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6328 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6329
6330 /* remove the vf from the pool */
6331 reg &= ~pool_mask;
6332
6333 /* if pool is empty then remove entry from vfta */
6334 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
6335 (reg & E1000_VLVF_VLANID_ENABLE)) {
6336 reg = 0;
6337 vid = reg & E1000_VLVF_VLANID_MASK;
6338 igb_vfta_set(adapter, vid, FALSE);
6339 }
6340
6341 E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6342 }
6343
6344 adapter->vf_data[vf].vlans_enabled = 0;
6345
6346 vlan_default = adapter->vf_data[vf].default_vf_vlan_id;
6347 if (vlan_default)
6348 igb_vlvf_set(adapter, vlan_default, true, vf);
6349}
6350
6351s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
6352{
6353 struct e1000_hw *hw = &adapter->hw;
6354 u32 reg, i;
6355
6356 /* The vlvf table only exists on 82576 hardware and newer */
6357 if (hw->mac.type < e1000_82576)
6358 return -1;
6359
6360 /* we only need to do this if VMDq is enabled */
6361 if (!adapter->vmdq_pools)
6362 return -1;
6363
6364 /* Find the vlan filter for this id */
6365 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6366 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6367 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
6368 vid == (reg & E1000_VLVF_VLANID_MASK))
6369 break;
6370 }
6371
6372 if (add) {
6373 if (i == E1000_VLVF_ARRAY_SIZE) {
6374 /* Did not find a matching VLAN ID entry that was
6375 * enabled. Search for a free filter entry, i.e.
6376 * one without the enable bit set
6377 */
6378 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6379 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6380 if (!(reg & E1000_VLVF_VLANID_ENABLE))
6381 break;
6382 }
6383 }
6384 if (i < E1000_VLVF_ARRAY_SIZE) {
6385 /* Found an enabled/available entry */
6386 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
6387
6388 /* if !enabled we need to set this up in vfta */
6389 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
6390 /* add VID to filter table */
6391 igb_vfta_set(adapter, vid, TRUE);
6392 reg |= E1000_VLVF_VLANID_ENABLE;
6393 }
6394 reg &= ~E1000_VLVF_VLANID_MASK;
6395 reg |= vid;
6396 E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6397
6398 /* do not modify RLPML for PF devices */
6399 if (vf >= adapter->vfs_allocated_count)
6400 return E1000_SUCCESS;
6401
6402 if (!adapter->vf_data[vf].vlans_enabled) {
6403 u32 size;
6404 reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
6405 size = reg & E1000_VMOLR_RLPML_MASK;
6406 size += 4;
6407 reg &= ~E1000_VMOLR_RLPML_MASK;
6408 reg |= size;
6409 E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
6410 }
6411
6412 adapter->vf_data[vf].vlans_enabled++;
6413 }
6414 } else {
6415 if (i < E1000_VLVF_ARRAY_SIZE) {
6416 /* remove vf from the pool */
6417 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
6418 /* if pool is empty then remove entry from vfta */
6419 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
6420 reg = 0;
6421 igb_vfta_set(adapter, vid, FALSE);
6422 }
6423 E1000_WRITE_REG(hw, E1000_VLVF(i), reg);
6424
6425 /* do not modify RLPML for PF devices */
6426 if (vf >= adapter->vfs_allocated_count)
6427 return E1000_SUCCESS;
6428
6429 adapter->vf_data[vf].vlans_enabled--;
6430 if (!adapter->vf_data[vf].vlans_enabled) {
6431 u32 size;
6432 reg = E1000_READ_REG(hw, E1000_VMOLR(vf));
6433 size = reg & E1000_VMOLR_RLPML_MASK;
6434 size -= 4;
6435 reg &= ~E1000_VMOLR_RLPML_MASK;
6436 reg |= size;
6437 E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg);
6438 }
6439 }
6440 }
6441 return E1000_SUCCESS;
6442}
6443
6444#ifdef IFLA_VF_MAX
6445static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6446{
6447 struct e1000_hw *hw = &adapter->hw;
6448
6449 if (vid)
6450 E1000_WRITE_REG(hw, E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6451 else
6452 E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
6453}
6454
6455static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6456#ifdef HAVE_VF_VLAN_PROTO
6457 int vf, u16 vlan, u8 qos, __be16 vlan_proto)
6458#else
6459 int vf, u16 vlan, u8 qos)
6460#endif
6461{
6462 int err = 0;
6463 struct igb_adapter *adapter = netdev_priv(netdev);
6464
6465 /* VLAN IDs accepted range 0-4094 */
6466 if ((vf >= adapter->vfs_allocated_count) || (vlan > VLAN_VID_MASK-1) || (qos > 7))
6467 return -EINVAL;
6468
6469#ifdef HAVE_VF_VLAN_PROTO
6470 if (vlan_proto != htons(ETH_P_8021Q))
6471 return -EPROTONOSUPPORT;
6472#endif
6473
6474 if (vlan || qos) {
6475 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
6476 if (err)
6477 goto out;
6478 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6479 igb_set_vmolr(adapter, vf, !vlan);
6480 adapter->vf_data[vf].pf_vlan = vlan;
6481 adapter->vf_data[vf].pf_qos = qos;
6482 igb_set_vf_vlan_strip(adapter, vf, true);
6483 dev_info(&adapter->pdev->dev,
6484 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6485 if (test_bit(__IGB_DOWN, &adapter->state)) {
6486 dev_warn(&adapter->pdev->dev,
6487 "The VF VLAN has been set,"
6488 " but the PF device is not up.\n");
6489 dev_warn(&adapter->pdev->dev,
6490 "Bring the PF device up before"
6491 " attempting to use the VF device.\n");
6492 }
6493 } else {
6494 if (adapter->vf_data[vf].pf_vlan)
6495 dev_info(&adapter->pdev->dev,
6496 "Clearing VLAN on VF %d\n", vf);
6497 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
6498 false, vf);
6499 igb_set_vmvir(adapter, vlan, vf);
6500 igb_set_vmolr(adapter, vf, true);
6501 igb_set_vf_vlan_strip(adapter, vf, false);
6502 adapter->vf_data[vf].pf_vlan = 0;
6503 adapter->vf_data[vf].pf_qos = 0;
6504 }
6505out:
6506 return err;
6507}
6508
6509#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
6510static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
6511 bool setting)
6512{
6513 struct igb_adapter *adapter = netdev_priv(netdev);
6514 struct e1000_hw *hw = &adapter->hw;
6515 u32 dtxswc, reg_offset;
6516
6517 if (!adapter->vfs_allocated_count)
6518 return -EOPNOTSUPP;
6519
6520 if (vf >= adapter->vfs_allocated_count)
6521 return -EINVAL;
6522
6523 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
6524 dtxswc = E1000_READ_REG(hw, reg_offset);
6525 if (setting)
6526 dtxswc |= ((1 << vf) |
6527 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
6528 else
6529 dtxswc &= ~((1 << vf) |
6530 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
6531 E1000_WRITE_REG(hw, reg_offset, dtxswc);
6532
6533 adapter->vf_data[vf].spoofchk_enabled = setting;
6534 return E1000_SUCCESS;
6535}
6536#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */
6537#endif /* IFLA_VF_MAX */
6538
6539static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
6540{
6541 struct e1000_hw *hw = &adapter->hw;
6542 int i;
6543 u32 reg;
6544
6545 /* Find the vlan filter for this id */
6546 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
6547 reg = E1000_READ_REG(hw, E1000_VLVF(i));
6548 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
6549 vid == (reg & E1000_VLVF_VLANID_MASK))
6550 break;
6551 }
6552
6553 if (i >= E1000_VLVF_ARRAY_SIZE)
6554 i = -1;
6555
6556 return i;
6557}
6558
6559static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6560{
6561 struct e1000_hw *hw = &adapter->hw;
6562 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6563 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6564 int err = 0;
6565
6566 if (vid)
6567 igb_set_vf_vlan_strip(adapter, vf, true);
6568 else
6569 igb_set_vf_vlan_strip(adapter, vf, false);
6570
6571 /* If in promiscuous mode we need to make sure the PF also has
6572 * the VLAN filter set.
6573 */
6574 if (add && (adapter->netdev->flags & IFF_PROMISC))
6575 err = igb_vlvf_set(adapter, vid, add,
6576 adapter->vfs_allocated_count);
6577 if (err)
6578 goto out;
6579
6580 err = igb_vlvf_set(adapter, vid, add, vf);
6581
6582 if (err)
6583 goto out;
6584
6585 /* Go through all the checks to see if the VLAN filter should
6586 * be wiped completely.
6587 */
6588 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6589 u32 vlvf, bits;
6590
6591 int regndx = igb_find_vlvf_entry(adapter, vid);
6592 if (regndx < 0)
6593 goto out;
6594 /* See if any other pools are set for this VLAN filter
6595 * entry other than the PF.
6596 */
6597 vlvf = bits = E1000_READ_REG(hw, E1000_VLVF(regndx));
6598 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6599 adapter->vfs_allocated_count);
6600 /* If the filter was removed then ensure PF pool bit
6601 * is cleared if the PF only added itself to the pool
6602 * because the PF is in promiscuous mode.
6603 */
6604 if ((vlvf & VLAN_VID_MASK) == vid &&
6605#ifndef HAVE_VLAN_RX_REGISTER
6606 !test_bit(vid, adapter->active_vlans) &&
6607#endif
6608 !bits)
6609 igb_vlvf_set(adapter, vid, add,
6610 adapter->vfs_allocated_count);
6611 }
6612
6613out:
6614 return err;
6615}
6616
6617static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6618{
6619 struct e1000_hw *hw = &adapter->hw;
6620
6621 /* clear flags except flag that the PF has set the MAC */
6622 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6623 adapter->vf_data[vf].last_nack = jiffies;
6624
6625 /* reset offloads to defaults */
6626 igb_set_vmolr(adapter, vf, true);
6627
6628 /* reset vlans for device */
6629 igb_clear_vf_vfta(adapter, vf);
6630#ifdef IFLA_VF_MAX
6631 if (adapter->vf_data[vf].pf_vlan)
6632 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6633 adapter->vf_data[vf].pf_vlan,
6634#ifdef HAVE_VF_VLAN_PROTO
6635 adapter->vf_data[vf].pf_qos,
6636 htons(ETH_P_8021Q));
6637#else
6638 adapter->vf_data[vf].pf_qos);
6639#endif
6640 else
6641 igb_clear_vf_vfta(adapter, vf);
6642#endif
6643
6644 /* reset multicast table array for vf */
6645 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6646
6647 /* Flush and reset the mta with the new values */
6648 igb_set_rx_mode(adapter->netdev);
6649
6650 /*
6651 * Reset the VFs TDWBAL and TDWBAH registers which are not
6652 * cleared by a VFLR
6653 */
6654 E1000_WRITE_REG(hw, E1000_TDWBAH(vf), 0);
6655 E1000_WRITE_REG(hw, E1000_TDWBAL(vf), 0);
6656 if (hw->mac.type == e1000_82576) {
6657 E1000_WRITE_REG(hw, E1000_TDWBAH(IGB_MAX_VF_FUNCTIONS + vf), 0);
6658 E1000_WRITE_REG(hw, E1000_TDWBAL(IGB_MAX_VF_FUNCTIONS + vf), 0);
6659 }
6660}
6661
6662static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6663{
6664 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6665
6666 /* generate a new mac address as we were hotplug removed/added */
6667 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6668 random_ether_addr(vf_mac);
6669
6670 /* process remaining reset events */
6671 igb_vf_reset(adapter, vf);
6672}
6673
6674static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6675{
6676 struct e1000_hw *hw = &adapter->hw;
6677 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6678 u32 reg, msgbuf[3];
6679 u8 *addr = (u8 *)(&msgbuf[1]);
6680
6681 /* process all the same items cleared in a function level reset */
6682 igb_vf_reset(adapter, vf);
6683
6684 /* set vf mac address */
6685 igb_del_mac_filter(adapter, vf_mac, vf);
6686 igb_add_mac_filter(adapter, vf_mac, vf);
6687
6688 /* enable transmit and receive for vf */
6689 reg = E1000_READ_REG(hw, E1000_VFTE);
6690 E1000_WRITE_REG(hw, E1000_VFTE, reg | (1 << vf));
6691 reg = E1000_READ_REG(hw, E1000_VFRE);
6692 E1000_WRITE_REG(hw, E1000_VFRE, reg | (1 << vf));
6693
6694 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6695
6696 /* reply to reset with ack and vf mac address */
6697 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6698 memcpy(addr, vf_mac, 6);
6699 e1000_write_mbx(hw, msgbuf, 3, vf);
6700}
6701
6702static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6703{
6704 /*
6705 * The VF MAC Address is stored in a packed array of bytes
6706 * starting at the second 32 bit word of the msg array
6707 */
6708 unsigned char *addr = (unsigned char *)&msg[1];
6709 int err = -1;
6710
6711 if (is_valid_ether_addr(addr))
6712 err = igb_set_vf_mac(adapter, vf, addr);
6713
6714 return err;
6715}
6716
6717static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6718{
6719 struct e1000_hw *hw = &adapter->hw;
6720 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6721 u32 msg = E1000_VT_MSGTYPE_NACK;
6722
6723 /* if device isn't clear to send it shouldn't be reading either */
6724 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6725 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6726 e1000_write_mbx(hw, &msg, 1, vf);
6727 vf_data->last_nack = jiffies;
6728 }
6729}
6730
6731static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6732{
6733 struct pci_dev *pdev = adapter->pdev;
6734 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6735 struct e1000_hw *hw = &adapter->hw;
6736 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6737 s32 retval;
6738
6739 retval = e1000_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6740
6741 if (retval) {
6742 dev_err(pci_dev_to_dev(pdev), "Error receiving message from VF\n");
6743 return;
6744 }
6745
6746 /* this is a message we already processed, do nothing */
6747 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6748 return;
6749
6750 /*
6751 * until the vf completes a reset it should not be
6752 * allowed to start any configuration.
6753 */
6754
6755 if (msgbuf[0] == E1000_VF_RESET) {
6756 igb_vf_reset_msg(adapter, vf);
6757 return;
6758 }
6759
6760 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6761 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
6762 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6763 e1000_write_mbx(hw, msgbuf, 1, vf);
6764 vf_data->last_nack = jiffies;
6765 }
6766 return;
6767 }
6768
6769 switch ((msgbuf[0] & 0xFFFF)) {
6770 case E1000_VF_SET_MAC_ADDR:
6771 retval = -EINVAL;
6772#ifndef IGB_DISABLE_VF_MAC_SET
6773 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6774 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6775 else
6776 DPRINTK(DRV, INFO,
6777 "VF %d attempted to override administratively "
6778 "set MAC address\nReload the VF driver to "
6779 "resume operations\n", vf);
6780#endif
6781 break;
6782 case E1000_VF_SET_PROMISC:
6783 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6784 break;
6785 case E1000_VF_SET_MULTICAST:
6786 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6787 break;
6788 case E1000_VF_SET_LPE:
6789 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6790 break;
6791 case E1000_VF_SET_VLAN:
6792 retval = -1;
6793#ifdef IFLA_VF_MAX
6794 if (vf_data->pf_vlan)
6795 DPRINTK(DRV, INFO,
6796 "VF %d attempted to override administratively "
6797 "set VLAN tag\nReload the VF driver to "
6798 "resume operations\n", vf);
6799 else
6800#endif
6801 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6802 break;
6803 default:
6804 dev_err(pci_dev_to_dev(pdev), "Unhandled Msg %08x\n", msgbuf[0]);
6805 retval = -E1000_ERR_MBX;
6806 break;
6807 }
6808
6809 /* notify the VF of the results of what it sent us */
6810 if (retval)
6811 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6812 else
6813 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6814
6815 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6816
6817 e1000_write_mbx(hw, msgbuf, 1, vf);
6818}
6819
6820static void igb_msg_task(struct igb_adapter *adapter)
6821{
6822 struct e1000_hw *hw = &adapter->hw;
6823 u32 vf;
6824
6825 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6826 /* process any reset requests */
6827 if (!e1000_check_for_rst(hw, vf))
6828 igb_vf_reset_event(adapter, vf);
6829
6830 /* process any messages pending */
6831 if (!e1000_check_for_msg(hw, vf))
6832 igb_rcv_msg_from_vf(adapter, vf);
6833
6834 /* process any acks */
6835 if (!e1000_check_for_ack(hw, vf))
6836 igb_rcv_ack_from_vf(adapter, vf);
6837 }
6838}
6839
6840/**
6841 * igb_set_uta - Set unicast filter table address
6842 * @adapter: board private structure
6843 *
6844 * The unicast table address is a register array of 32-bit registers.
6845 * The table is meant to be used in a way similar to how the MTA is used
6846 * however due to certain limitations in the hardware it is necessary to
6847 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6848 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6849 **/
6850static void igb_set_uta(struct igb_adapter *adapter)
6851{
6852 struct e1000_hw *hw = &adapter->hw;
6853 int i;
6854
6855 /* The UTA table only exists on 82576 hardware and newer */
6856 if (hw->mac.type < e1000_82576)
6857 return;
6858
6859 /* we only need to do this if VMDq is enabled */
6860 if (!adapter->vmdq_pools)
6861 return;
6862
6863 for (i = 0; i < hw->mac.uta_reg_count; i++)
6864 E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, ~0);
6865}
6866
6867/**
6868 * igb_intr_msi - Interrupt Handler
6869 * @irq: interrupt number
6870 * @data: pointer to a network interface device structure
6871 **/
6872static irqreturn_t igb_intr_msi(int irq, void *data)
6873{
6874 struct igb_adapter *adapter = data;
6875 struct igb_q_vector *q_vector = adapter->q_vector[0];
6876 struct e1000_hw *hw = &adapter->hw;
6877 /* read ICR disables interrupts using IAM */
6878 u32 icr = E1000_READ_REG(hw, E1000_ICR);
6879
6880 igb_write_itr(q_vector);
6881
6882 if (icr & E1000_ICR_DRSTA)
6883 schedule_work(&adapter->reset_task);
6884
6885 if (icr & E1000_ICR_DOUTSYNC) {
6886 /* HW is reporting DMA is out of sync */
6887 adapter->stats.doosync++;
6888 }
6889
6890 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6891 hw->mac.get_link_status = 1;
6892 if (!test_bit(__IGB_DOWN, &adapter->state))
6893 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6894 }
6895
6896#ifdef HAVE_PTP_1588_CLOCK
6897 if (icr & E1000_ICR_TS) {
6898 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
6899
6900 if (tsicr & E1000_TSICR_TXTS) {
6901 /* acknowledge the interrupt */
6902 E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
6903 /* retrieve hardware timestamp */
6904 schedule_work(&adapter->ptp_tx_work);
6905 }
6906 }
6907#endif /* HAVE_PTP_1588_CLOCK */
6908
6909 napi_schedule(&q_vector->napi);
6910
6911 return IRQ_HANDLED;
6912}
6913
6914/**
6915 * igb_intr - Legacy Interrupt Handler
6916 * @irq: interrupt number
6917 * @data: pointer to a network interface device structure
6918 **/
6919static irqreturn_t igb_intr(int irq, void *data)
6920{
6921 struct igb_adapter *adapter = data;
6922 struct igb_q_vector *q_vector = adapter->q_vector[0];
6923 struct e1000_hw *hw = &adapter->hw;
6924 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6925 * need for the IMC write */
6926 u32 icr = E1000_READ_REG(hw, E1000_ICR);
6927
6928 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6929 * not set, then the adapter didn't send an interrupt */
6930 if (!(icr & E1000_ICR_INT_ASSERTED))
6931 return IRQ_NONE;
6932
6933 igb_write_itr(q_vector);
6934
6935 if (icr & E1000_ICR_DRSTA)
6936 schedule_work(&adapter->reset_task);
6937
6938 if (icr & E1000_ICR_DOUTSYNC) {
6939 /* HW is reporting DMA is out of sync */
6940 adapter->stats.doosync++;
6941 }
6942
6943 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6944 hw->mac.get_link_status = 1;
6945 /* guard against interrupt when we're going down */
6946 if (!test_bit(__IGB_DOWN, &adapter->state))
6947 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6948 }
6949
6950#ifdef HAVE_PTP_1588_CLOCK
6951 if (icr & E1000_ICR_TS) {
6952 u32 tsicr = E1000_READ_REG(hw, E1000_TSICR);
6953
6954 if (tsicr & E1000_TSICR_TXTS) {
6955 /* acknowledge the interrupt */
6956 E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS);
6957 /* retrieve hardware timestamp */
6958 schedule_work(&adapter->ptp_tx_work);
6959 }
6960 }
6961#endif /* HAVE_PTP_1588_CLOCK */
6962
6963 napi_schedule(&q_vector->napi);
6964
6965 return IRQ_HANDLED;
6966}
6967
6968void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6969{
6970 struct igb_adapter *adapter = q_vector->adapter;
6971 struct e1000_hw *hw = &adapter->hw;
6972
6973 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6974 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6975 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6976 igb_set_itr(q_vector);
6977 else
6978 igb_update_ring_itr(q_vector);
6979 }
6980
6981 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6982 if (adapter->msix_entries)
6983 E1000_WRITE_REG(hw, E1000_EIMS, q_vector->eims_value);
6984 else
6985 igb_irq_enable(adapter);
6986 }
6987}
6988
6989/**
6990 * igb_poll - NAPI Rx polling callback
6991 * @napi: napi polling structure
6992 * @budget: count of how many packets we should handle
6993 **/
6994static int igb_poll(struct napi_struct *napi, int budget)
6995{
6996 struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi);
6997 bool clean_complete = true;
6998
6999#ifdef IGB_DCA
7000 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7001 igb_update_dca(q_vector);
7002#endif
7003 if (q_vector->tx.ring)
7004 clean_complete = igb_clean_tx_irq(q_vector);
7005
7006 if (q_vector->rx.ring)
7007 clean_complete &= igb_clean_rx_irq(q_vector, budget);
7008
7009#ifndef HAVE_NETDEV_NAPI_LIST
7010 /* if netdev is disabled we need to stop polling */
7011 if (!netif_running(q_vector->adapter->netdev))
7012 clean_complete = true;
7013
7014#endif
7015 /* If all work not completed, return budget and keep polling */
7016 if (!clean_complete)
7017 return budget;
7018
7019 /* If not enough Rx work done, exit the polling mode */
7020 napi_complete(napi);
7021 igb_ring_irq_enable(q_vector);
7022
7023 return 0;
7024}
7025
7026/**
7027 * igb_clean_tx_irq - Reclaim resources after transmit completes
7028 * @q_vector: pointer to q_vector containing needed info
7029 * returns TRUE if ring is completely cleaned
7030 **/
7031static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
7032{
7033 struct igb_adapter *adapter = q_vector->adapter;
7034 struct igb_ring *tx_ring = q_vector->tx.ring;
7035 struct igb_tx_buffer *tx_buffer;
7036 union e1000_adv_tx_desc *tx_desc;
7037 unsigned int total_bytes = 0, total_packets = 0;
7038 unsigned int budget = q_vector->tx.work_limit;
7039 unsigned int i = tx_ring->next_to_clean;
7040
7041 if (test_bit(__IGB_DOWN, &adapter->state))
7042 return true;
7043
7044 tx_buffer = &tx_ring->tx_buffer_info[i];
7045 tx_desc = IGB_TX_DESC(tx_ring, i);
7046 i -= tx_ring->count;
7047
7048 do {
7049 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7050
7051 /* if next_to_watch is not set then there is no work pending */
7052 if (!eop_desc)
7053 break;
7054
7055 /* prevent any other reads prior to eop_desc */
7056 read_barrier_depends();
7057
7058 /* if DD is not set pending work has not been completed */
7059 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7060 break;
7061
7062 /* clear next_to_watch to prevent false hangs */
7063 tx_buffer->next_to_watch = NULL;
7064
7065 /* update the statistics for this packet */
7066 total_bytes += tx_buffer->bytecount;
7067 total_packets += tx_buffer->gso_segs;
7068
7069 /* free the skb */
7070 dev_kfree_skb_any(tx_buffer->skb);
7071
7072 /* unmap skb header data */
7073 dma_unmap_single(tx_ring->dev,
7074 dma_unmap_addr(tx_buffer, dma),
7075 dma_unmap_len(tx_buffer, len),
7076 DMA_TO_DEVICE);
7077
7078 /* clear tx_buffer data */
7079 tx_buffer->skb = NULL;
7080 dma_unmap_len_set(tx_buffer, len, 0);
7081
7082 /* clear last DMA location and unmap remaining buffers */
7083 while (tx_desc != eop_desc) {
7084 tx_buffer++;
7085 tx_desc++;
7086 i++;
7087 if (unlikely(!i)) {
7088 i -= tx_ring->count;
7089 tx_buffer = tx_ring->tx_buffer_info;
7090 tx_desc = IGB_TX_DESC(tx_ring, 0);
7091 }
7092
7093 /* unmap any remaining paged data */
7094 if (dma_unmap_len(tx_buffer, len)) {
7095 dma_unmap_page(tx_ring->dev,
7096 dma_unmap_addr(tx_buffer, dma),
7097 dma_unmap_len(tx_buffer, len),
7098 DMA_TO_DEVICE);
7099 dma_unmap_len_set(tx_buffer, len, 0);
7100 }
7101 }
7102
7103 /* move us one more past the eop_desc for start of next pkt */
7104 tx_buffer++;
7105 tx_desc++;
7106 i++;
7107 if (unlikely(!i)) {
7108 i -= tx_ring->count;
7109 tx_buffer = tx_ring->tx_buffer_info;
7110 tx_desc = IGB_TX_DESC(tx_ring, 0);
7111 }
7112
7113 /* issue prefetch for next Tx descriptor */
7114 prefetch(tx_desc);
7115
7116 /* update budget accounting */
7117 budget--;
7118 } while (likely(budget));
7119
7120 netdev_tx_completed_queue(txring_txq(tx_ring),
7121 total_packets, total_bytes);
7122
7123 i += tx_ring->count;
7124 tx_ring->next_to_clean = i;
7125 tx_ring->tx_stats.bytes += total_bytes;
7126 tx_ring->tx_stats.packets += total_packets;
7127 q_vector->tx.total_bytes += total_bytes;
7128 q_vector->tx.total_packets += total_packets;
7129
7130#ifdef DEBUG
7131 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags) &&
7132 !(adapter->disable_hw_reset && adapter->tx_hang_detected)) {
7133#else
7134 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7135#endif
7136 struct e1000_hw *hw = &adapter->hw;
7137
7138 /* Detect a transmit hang in hardware, this serializes the
7139 * check with the clearing of time_stamp and movement of i */
7140 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7141 if (tx_buffer->next_to_watch &&
7142 time_after(jiffies, tx_buffer->time_stamp +
7143 (adapter->tx_timeout_factor * HZ))
7144 && !(E1000_READ_REG(hw, E1000_STATUS) &
7145 E1000_STATUS_TXOFF)) {
7146
7147 /* detected Tx unit hang */
7148#ifdef DEBUG
7149 adapter->tx_hang_detected = TRUE;
7150 if (adapter->disable_hw_reset) {
7151 DPRINTK(DRV, WARNING,
7152 "Deactivating netdev watchdog timer\n");
7153 if (del_timer(&netdev_ring(tx_ring)->watchdog_timer))
7154 dev_put(netdev_ring(tx_ring));
7155#ifndef HAVE_NET_DEVICE_OPS
7156 netdev_ring(tx_ring)->tx_timeout = NULL;
7157#endif
7158 }
7159#endif /* DEBUG */
7160 dev_err(tx_ring->dev,
7161 "Detected Tx Unit Hang\n"
7162 " Tx Queue <%d>\n"
7163 " TDH <%x>\n"
7164 " TDT <%x>\n"
7165 " next_to_use <%x>\n"
7166 " next_to_clean <%x>\n"
7167 "buffer_info[next_to_clean]\n"
7168 " time_stamp <%lx>\n"
7169 " next_to_watch <%p>\n"
7170 " jiffies <%lx>\n"
7171 " desc.status <%x>\n",
7172 tx_ring->queue_index,
7173 E1000_READ_REG(hw, E1000_TDH(tx_ring->reg_idx)),
7174 readl(tx_ring->tail),
7175 tx_ring->next_to_use,
7176 tx_ring->next_to_clean,
7177 tx_buffer->time_stamp,
7178 tx_buffer->next_to_watch,
7179 jiffies,
7180 tx_buffer->next_to_watch->wb.status);
7181 if (netif_is_multiqueue(netdev_ring(tx_ring)))
7182 netif_stop_subqueue(netdev_ring(tx_ring),
7183 ring_queue_index(tx_ring));
7184 else
7185 netif_stop_queue(netdev_ring(tx_ring));
7186
7187 /* we are about to reset, no point in enabling stuff */
7188 return true;
7189 }
7190 }
7191
7192#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7193 if (unlikely(total_packets &&
7194 netif_carrier_ok(netdev_ring(tx_ring)) &&
7195 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7196 /* Make sure that anybody stopping the queue after this
7197 * sees the new next_to_clean.
7198 */
7199 smp_mb();
7200 if (netif_is_multiqueue(netdev_ring(tx_ring))) {
7201 if (__netif_subqueue_stopped(netdev_ring(tx_ring),
7202 ring_queue_index(tx_ring)) &&
7203 !(test_bit(__IGB_DOWN, &adapter->state))) {
7204 netif_wake_subqueue(netdev_ring(tx_ring),
7205 ring_queue_index(tx_ring));
7206 tx_ring->tx_stats.restart_queue++;
7207 }
7208 } else {
7209 if (netif_queue_stopped(netdev_ring(tx_ring)) &&
7210 !(test_bit(__IGB_DOWN, &adapter->state))) {
7211 netif_wake_queue(netdev_ring(tx_ring));
7212 tx_ring->tx_stats.restart_queue++;
7213 }
7214 }
7215 }
7216
7217 return !!budget;
7218}
7219
7220#ifdef HAVE_VLAN_RX_REGISTER
7221/**
7222 * igb_receive_skb - helper function to handle rx indications
7223 * @q_vector: structure containing interrupt and ring information
7224 * @skb: packet to send up
7225 **/
7226static void igb_receive_skb(struct igb_q_vector *q_vector,
7227 struct sk_buff *skb)
7228{
7229 struct vlan_group **vlgrp = netdev_priv(skb->dev);
7230
7231 if (IGB_CB(skb)->vid) {
7232 if (*vlgrp) {
7233 vlan_gro_receive(&q_vector->napi, *vlgrp,
7234 IGB_CB(skb)->vid, skb);
7235 } else {
7236 dev_kfree_skb_any(skb);
7237 }
7238 } else {
7239 napi_gro_receive(&q_vector->napi, skb);
7240 }
7241}
7242
7243#endif /* HAVE_VLAN_RX_REGISTER */
7244#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7245/**
7246 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7247 * @rx_ring: rx descriptor ring to store buffers on
7248 * @old_buff: donor buffer to have page reused
7249 *
7250 * Synchronizes page for reuse by the adapter
7251 **/
7252static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7253 struct igb_rx_buffer *old_buff)
7254{
7255 struct igb_rx_buffer *new_buff;
7256 u16 nta = rx_ring->next_to_alloc;
7257
7258 new_buff = &rx_ring->rx_buffer_info[nta];
7259
7260 /* update, and store next to alloc */
7261 nta++;
7262 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7263
7264 /* transfer page from old buffer to new buffer */
7265 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
7266
7267 /* sync the buffer for use by the device */
7268 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
7269 old_buff->page_offset,
7270 IGB_RX_BUFSZ,
7271 DMA_FROM_DEVICE);
7272}
7273
7274static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
7275 struct page *page,
7276 unsigned int truesize)
7277{
7278 /* avoid re-using remote pages */
7279 if (unlikely(page_to_nid(page) != numa_node_id()))
7280 return false;
7281
7282#if (PAGE_SIZE < 8192)
7283 /* if we are only owner of page we can reuse it */
7284 if (unlikely(page_count(page) != 1))
7285 return false;
7286
7287 /* flip page offset to other buffer */
7288 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
7289
7290#else
7291 /* move offset up to the next cache line */
7292 rx_buffer->page_offset += truesize;
7293
7294 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
7295 return false;
7296#endif
7297
7298 /* bump ref count on page before it is given to the stack */
7299 get_page(page);
7300
7301 return true;
7302}
7303
7304/**
7305 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7306 * @rx_ring: rx descriptor ring to transact packets on
7307 * @rx_buffer: buffer containing page to add
7308 * @rx_desc: descriptor containing length of buffer written by hardware
7309 * @skb: sk_buff to place the data into
7310 *
7311 * This function will add the data contained in rx_buffer->page to the skb.
7312 * This is done either through a direct copy if the data in the buffer is
7313 * less than the skb header size, otherwise it will just attach the page as
7314 * a frag to the skb.
7315 *
7316 * The function will then update the page offset if necessary and return
7317 * true if the buffer can be reused by the adapter.
7318 **/
7319static bool igb_add_rx_frag(struct igb_ring *rx_ring,
7320 struct igb_rx_buffer *rx_buffer,
7321 union e1000_adv_rx_desc *rx_desc,
7322 struct sk_buff *skb)
7323{
7324 struct page *page = rx_buffer->page;
7325 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
7326#if (PAGE_SIZE < 8192)
7327 unsigned int truesize = IGB_RX_BUFSZ;
7328#else
7329 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
7330#endif
7331
7332 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
7333 unsigned char *va = page_address(page) + rx_buffer->page_offset;
7334
7335#ifdef HAVE_PTP_1588_CLOCK
7336 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7337 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7338 va += IGB_TS_HDR_LEN;
7339 size -= IGB_TS_HDR_LEN;
7340 }
7341#endif /* HAVE_PTP_1588_CLOCK */
7342
7343 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
7344
7345 /* we can reuse buffer as-is, just make sure it is local */
7346 if (likely(page_to_nid(page) == numa_node_id()))
7347 return true;
7348
7349 /* this page cannot be reused so discard it */
7350 put_page(page);
7351 return false;
7352 }
7353
7354 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
7355 rx_buffer->page_offset, size, truesize);
7356
7357 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
7358}
7359
7360static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
7361 union e1000_adv_rx_desc *rx_desc,
7362 struct sk_buff *skb)
7363{
7364 struct igb_rx_buffer *rx_buffer;
7365 struct page *page;
7366
7367 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7368
7369 page = rx_buffer->page;
7370 prefetchw(page);
7371
7372 if (likely(!skb)) {
7373 void *page_addr = page_address(page) +
7374 rx_buffer->page_offset;
7375
7376 /* prefetch first cache line of first page */
7377 prefetch(page_addr);
7378#if L1_CACHE_BYTES < 128
7379 prefetch(page_addr + L1_CACHE_BYTES);
7380#endif
7381
7382 /* allocate a skb to store the frags */
7383 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
7384 IGB_RX_HDR_LEN);
7385 if (unlikely(!skb)) {
7386 rx_ring->rx_stats.alloc_failed++;
7387 return NULL;
7388 }
7389
7390 /*
7391 * we will be copying header into skb->data in
7392 * pskb_may_pull so it is in our interest to prefetch
7393 * it now to avoid a possible cache miss
7394 */
7395 prefetchw(skb->data);
7396 }
7397
7398 /* we are reusing so sync this buffer for CPU use */
7399 dma_sync_single_range_for_cpu(rx_ring->dev,
7400 rx_buffer->dma,
7401 rx_buffer->page_offset,
7402 IGB_RX_BUFSZ,
7403 DMA_FROM_DEVICE);
7404
7405 /* pull page into skb */
7406 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
7407 /* hand second half of page back to the ring */
7408 igb_reuse_rx_page(rx_ring, rx_buffer);
7409 } else {
7410 /* we are not reusing the buffer so unmap it */
7411 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
7412 PAGE_SIZE, DMA_FROM_DEVICE);
7413 }
7414
7415 /* clear contents of rx_buffer */
7416 rx_buffer->page = NULL;
7417
7418 return skb;
7419}
7420
7421#endif
7422static inline void igb_rx_checksum(struct igb_ring *ring,
7423 union e1000_adv_rx_desc *rx_desc,
7424 struct sk_buff *skb)
7425{
7426 skb_checksum_none_assert(skb);
7427
7428 /* Ignore Checksum bit is set */
7429 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7430 return;
7431
7432 /* Rx checksum disabled via ethtool */
7433 if (!(netdev_ring(ring)->features & NETIF_F_RXCSUM))
7434 return;
7435
7436 /* TCP/UDP checksum error bit is set */
7437 if (igb_test_staterr(rx_desc,
7438 E1000_RXDEXT_STATERR_TCPE |
7439 E1000_RXDEXT_STATERR_IPE)) {
7440 /*
7441 * work around errata with sctp packets where the TCPE aka
7442 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7443 * packets, (aka let the stack check the crc32c)
7444 */
7445 if (!((skb->len == 60) &&
7446 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags)))
7447 ring->rx_stats.csum_err++;
7448
7449 /* let the stack verify checksum errors */
7450 return;
7451 }
7452 /* It must be a TCP or UDP packet with a valid checksum */
7453 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7454 E1000_RXD_STAT_UDPCS))
7455 skb->ip_summed = CHECKSUM_UNNECESSARY;
7456}
7457
7458#ifdef NETIF_F_RXHASH
7459static inline void igb_rx_hash(struct igb_ring *ring,
7460 union e1000_adv_rx_desc *rx_desc,
7461 struct sk_buff *skb)
7462{
7463 if (netdev_ring(ring)->features & NETIF_F_RXHASH)
7464 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7465 PKT_HASH_TYPE_L3);
7466}
7467
7468#endif
7469#ifndef IGB_NO_LRO
7470#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7471/**
7472 * igb_merge_active_tail - merge active tail into lro skb
7473 * @tail: pointer to active tail in frag_list
7474 *
7475 * This function merges the length and data of an active tail into the
7476 * skb containing the frag_list. It resets the tail's pointer to the head,
7477 * but it leaves the heads pointer to tail intact.
7478 **/
7479static inline struct sk_buff *igb_merge_active_tail(struct sk_buff *tail)
7480{
7481 struct sk_buff *head = IGB_CB(tail)->head;
7482
7483 if (!head)
7484 return tail;
7485
7486 head->len += tail->len;
7487 head->data_len += tail->len;
7488 head->truesize += tail->len;
7489
7490 IGB_CB(tail)->head = NULL;
7491
7492 return head;
7493}
7494
7495/**
7496 * igb_add_active_tail - adds an active tail into the skb frag_list
7497 * @head: pointer to the start of the skb
7498 * @tail: pointer to active tail to add to frag_list
7499 *
7500 * This function adds an active tail to the end of the frag list. This tail
7501 * will still be receiving data so we cannot yet ad it's stats to the main
7502 * skb. That is done via igb_merge_active_tail.
7503 **/
7504static inline void igb_add_active_tail(struct sk_buff *head, struct sk_buff *tail)
7505{
7506 struct sk_buff *old_tail = IGB_CB(head)->tail;
7507
7508 if (old_tail) {
7509 igb_merge_active_tail(old_tail);
7510 old_tail->next = tail;
7511 } else {
7512 skb_shinfo(head)->frag_list = tail;
7513 }
7514
7515 IGB_CB(tail)->head = head;
7516 IGB_CB(head)->tail = tail;
7517
7518 IGB_CB(head)->append_cnt++;
7519}
7520
7521/**
7522 * igb_close_active_frag_list - cleanup pointers on a frag_list skb
7523 * @head: pointer to head of an active frag list
7524 *
7525 * This function will clear the frag_tail_tracker pointer on an active
7526 * frag_list and returns true if the pointer was actually set
7527 **/
7528static inline bool igb_close_active_frag_list(struct sk_buff *head)
7529{
7530 struct sk_buff *tail = IGB_CB(head)->tail;
7531
7532 if (!tail)
7533 return false;
7534
7535 igb_merge_active_tail(tail);
7536
7537 IGB_CB(head)->tail = NULL;
7538
7539 return true;
7540}
7541
7542#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
7543/**
7544 * igb_can_lro - returns true if packet is TCP/IPV4 and LRO is enabled
7545 * @adapter: board private structure
7546 * @rx_desc: pointer to the rx descriptor
7547 * @skb: pointer to the skb to be merged
7548 *
7549 **/
7550static inline bool igb_can_lro(struct igb_ring *rx_ring,
7551 union e1000_adv_rx_desc *rx_desc,
7552 struct sk_buff *skb)
7553{
7554 struct iphdr *iph = (struct iphdr *)skb->data;
7555 __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
7556
7557 /* verify hardware indicates this is IPv4/TCP */
7558 if((!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) ||
7559 !(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))))
7560 return false;
7561
7562 /* .. and LRO is enabled */
7563 if (!(netdev_ring(rx_ring)->features & NETIF_F_LRO))
7564 return false;
7565
7566 /* .. and we are not in promiscuous mode */
7567 if (netdev_ring(rx_ring)->flags & IFF_PROMISC)
7568 return false;
7569
7570 /* .. and the header is large enough for us to read IP/TCP fields */
7571 if (!pskb_may_pull(skb, sizeof(struct igb_lrohdr)))
7572 return false;
7573
7574 /* .. and there are no VLANs on packet */
7575 if (skb->protocol != __constant_htons(ETH_P_IP))
7576 return false;
7577
7578 /* .. and we are version 4 with no options */
7579 if (*(u8 *)iph != 0x45)
7580 return false;
7581
7582 /* .. and the packet is not fragmented */
7583 if (iph->frag_off & htons(IP_MF | IP_OFFSET))
7584 return false;
7585
7586 /* .. and that next header is TCP */
7587 if (iph->protocol != IPPROTO_TCP)
7588 return false;
7589
7590 return true;
7591}
7592
7593static inline struct igb_lrohdr *igb_lro_hdr(struct sk_buff *skb)
7594{
7595 return (struct igb_lrohdr *)skb->data;
7596}
7597
7598/**
7599 * igb_lro_flush - Indicate packets to upper layer.
7600 *
7601 * Update IP and TCP header part of head skb if more than one
7602 * skb's chained and indicate packets to upper layer.
7603 **/
7604static void igb_lro_flush(struct igb_q_vector *q_vector,
7605 struct sk_buff *skb)
7606{
7607 struct igb_lro_list *lrolist = &q_vector->lrolist;
7608
7609 __skb_unlink(skb, &lrolist->active);
7610
7611 if (IGB_CB(skb)->append_cnt) {
7612 struct igb_lrohdr *lroh = igb_lro_hdr(skb);
7613
7614#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7615 /* close any active lro contexts */
7616 igb_close_active_frag_list(skb);
7617
7618#endif
7619 /* incorporate ip header and re-calculate checksum */
7620 lroh->iph.tot_len = ntohs(skb->len);
7621 lroh->iph.check = 0;
7622
7623 /* header length is 5 since we know no options exist */
7624 lroh->iph.check = ip_fast_csum((u8 *)lroh, 5);
7625
7626 /* clear TCP checksum to indicate we are an LRO frame */
7627 lroh->th.check = 0;
7628
7629 /* incorporate latest timestamp into the tcp header */
7630 if (IGB_CB(skb)->tsecr) {
7631 lroh->ts[2] = IGB_CB(skb)->tsecr;
7632 lroh->ts[1] = htonl(IGB_CB(skb)->tsval);
7633 }
7634#ifdef NETIF_F_GSO
7635
7636 skb_shinfo(skb)->gso_size = IGB_CB(skb)->mss;
7637 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
7638#endif
7639 }
7640
7641#ifdef HAVE_VLAN_RX_REGISTER
7642 igb_receive_skb(q_vector, skb);
7643#else
7644 napi_gro_receive(&q_vector->napi, skb);
7645#endif
7646 lrolist->stats.flushed++;
7647}
7648
7649static void igb_lro_flush_all(struct igb_q_vector *q_vector)
7650{
7651 struct igb_lro_list *lrolist = &q_vector->lrolist;
7652 struct sk_buff *skb, *tmp;
7653
7654 skb_queue_reverse_walk_safe(&lrolist->active, skb, tmp)
7655 igb_lro_flush(q_vector, skb);
7656}
7657
7658/*
7659 * igb_lro_header_ok - Main LRO function.
7660 **/
7661static void igb_lro_header_ok(struct sk_buff *skb)
7662{
7663 struct igb_lrohdr *lroh = igb_lro_hdr(skb);
7664 u16 opt_bytes, data_len;
7665
7666#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
7667 IGB_CB(skb)->tail = NULL;
7668#endif
7669 IGB_CB(skb)->tsecr = 0;
7670 IGB_CB(skb)->append_cnt = 0;
7671 IGB_CB(skb)->mss = 0;
7672
7673 /* ensure that the checksum is valid */
7674 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
7675 return;
7676
7677 /* If we see CE codepoint in IP header, packet is not mergeable */
7678 if (INET_ECN_is_ce(ipv4_get_dsfield(&lroh->iph)))
7679 return;
7680
7681 /* ensure no bits set besides ack or psh */
7682 if (lroh->th.fin || lroh->th.syn || lroh->th.rst ||
7683 lroh->th.urg || lroh->th.ece || lroh->th.cwr ||
7684 !lroh->th.ack)
7685 return;
7686
7687 /* store the total packet length */
7688 data_len = ntohs(lroh->iph.tot_len);
7689
7690 /* remove any padding from the end of the skb */
7691 __pskb_trim(skb, data_len);
7692
7693 /* remove header length from data length */
7694 data_len -= sizeof(struct igb_lrohdr);
7695
7696 /*
7697 * check for timestamps. Since the only option we handle are timestamps,
7698 * we only have to handle the simple case of aligned timestamps
7699 */
7700 opt_bytes = (lroh->th.doff << 2) - sizeof(struct tcphdr);
7701 if (opt_bytes != 0) {
7702 if ((opt_bytes != TCPOLEN_TSTAMP_ALIGNED) ||
7703 !pskb_may_pull(skb, sizeof(struct igb_lrohdr) +
7704 TCPOLEN_TSTAMP_ALIGNED) ||
7705 (lroh->ts[0] != htonl((TCPOPT_NOP << 24) |
7706 (TCPOPT_NOP << 16) |
7707 (TCPOPT_TIMESTAMP << 8) |
7708 TCPOLEN_TIMESTAMP)) ||
7709 (lroh->ts[2] == 0)) {
7710 return;
7711 }
7712
7713 IGB_CB(skb)->tsval = ntohl(lroh->ts[1]);
7714 IGB_CB(skb)->tsecr = lroh->ts[2];
7715
7716 data_len -= TCPOLEN_TSTAMP_ALIGNED;
7717 }
7718
7719 /* record data_len as mss for the packet */
7720 IGB_CB(skb)->mss = data_len;
7721 IGB_CB(skb)->next_seq = ntohl(lroh->th.seq);
7722}
7723
7724#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7725static void igb_merge_frags(struct sk_buff *lro_skb, struct sk_buff *new_skb)
7726{
7727 struct skb_shared_info *sh_info;
7728 struct skb_shared_info *new_skb_info;
7729 unsigned int data_len;
7730
7731 sh_info = skb_shinfo(lro_skb);
7732 new_skb_info = skb_shinfo(new_skb);
7733
7734 /* copy frags into the last skb */
7735 memcpy(sh_info->frags + sh_info->nr_frags,
7736 new_skb_info->frags,
7737 new_skb_info->nr_frags * sizeof(skb_frag_t));
7738
7739 /* copy size data over */
7740 sh_info->nr_frags += new_skb_info->nr_frags;
7741 data_len = IGB_CB(new_skb)->mss;
7742 lro_skb->len += data_len;
7743 lro_skb->data_len += data_len;
7744 lro_skb->truesize += data_len;
7745
7746 /* wipe record of data from new_skb */
7747 new_skb_info->nr_frags = 0;
7748 new_skb->len = new_skb->data_len = 0;
7749 dev_kfree_skb_any(new_skb);
7750}
7751
7752#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
7753/**
7754 * igb_lro_receive - if able, queue skb into lro chain
7755 * @q_vector: structure containing interrupt and ring information
7756 * @new_skb: pointer to current skb being checked
7757 *
7758 * Checks whether the skb given is eligible for LRO and if that's
7759 * fine chains it to the existing lro_skb based on flowid. If an LRO for
7760 * the flow doesn't exist create one.
7761 **/
7762static void igb_lro_receive(struct igb_q_vector *q_vector,
7763 struct sk_buff *new_skb)
7764{
7765 struct sk_buff *lro_skb;
7766 struct igb_lro_list *lrolist = &q_vector->lrolist;
7767 struct igb_lrohdr *lroh = igb_lro_hdr(new_skb);
7768 __be32 saddr = lroh->iph.saddr;
7769 __be32 daddr = lroh->iph.daddr;
7770 __be32 tcp_ports = *(__be32 *)&lroh->th;
7771 u16 data_len;
7772#ifdef HAVE_VLAN_RX_REGISTER
7773 u16 vid = IGB_CB(new_skb)->vid;
7774#else
7775 u16 vid = new_skb->vlan_tci;
7776#endif
7777
7778 igb_lro_header_ok(new_skb);
7779
7780 /*
7781 * we have a packet that might be eligible for LRO,
7782 * so see if it matches anything we might expect
7783 */
7784 skb_queue_walk(&lrolist->active, lro_skb) {
7785 if (*(__be32 *)&igb_lro_hdr(lro_skb)->th != tcp_ports ||
7786 igb_lro_hdr(lro_skb)->iph.saddr != saddr ||
7787 igb_lro_hdr(lro_skb)->iph.daddr != daddr)
7788 continue;
7789
7790#ifdef HAVE_VLAN_RX_REGISTER
7791 if (IGB_CB(lro_skb)->vid != vid)
7792#else
7793 if (lro_skb->vlan_tci != vid)
7794#endif
7795 continue;
7796
7797 /* out of order packet */
7798 if (IGB_CB(lro_skb)->next_seq != IGB_CB(new_skb)->next_seq) {
7799 igb_lro_flush(q_vector, lro_skb);
7800 IGB_CB(new_skb)->mss = 0;
7801 break;
7802 }
7803
7804 /* TCP timestamp options have changed */
7805 if (!IGB_CB(lro_skb)->tsecr != !IGB_CB(new_skb)->tsecr) {
7806 igb_lro_flush(q_vector, lro_skb);
7807 break;
7808 }
7809
7810 /* make sure timestamp values are increasing */
7811 if (IGB_CB(lro_skb)->tsecr &&
7812 IGB_CB(lro_skb)->tsval > IGB_CB(new_skb)->tsval) {
7813 igb_lro_flush(q_vector, lro_skb);
7814 IGB_CB(new_skb)->mss = 0;
7815 break;
7816 }
7817
7818 data_len = IGB_CB(new_skb)->mss;
7819
7820 /* Check for all of the above below
7821 * malformed header
7822 * no tcp data
7823 * resultant packet would be too large
7824 * new skb is larger than our current mss
7825 * data would remain in header
7826 * we would consume more frags then the sk_buff contains
7827 * ack sequence numbers changed
7828 * window size has changed
7829 */
7830 if (data_len == 0 ||
7831 data_len > IGB_CB(lro_skb)->mss ||
7832 data_len > IGB_CB(lro_skb)->free ||
7833#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7834 data_len != new_skb->data_len ||
7835 skb_shinfo(new_skb)->nr_frags >=
7836 (MAX_SKB_FRAGS - skb_shinfo(lro_skb)->nr_frags) ||
7837#endif
7838 igb_lro_hdr(lro_skb)->th.ack_seq != lroh->th.ack_seq ||
7839 igb_lro_hdr(lro_skb)->th.window != lroh->th.window) {
7840 igb_lro_flush(q_vector, lro_skb);
7841 break;
7842 }
7843
7844 /* Remove IP and TCP header*/
7845 skb_pull(new_skb, new_skb->len - data_len);
7846
7847 /* update timestamp and timestamp echo response */
7848 IGB_CB(lro_skb)->tsval = IGB_CB(new_skb)->tsval;
7849 IGB_CB(lro_skb)->tsecr = IGB_CB(new_skb)->tsecr;
7850
7851 /* update sequence and free space */
7852 IGB_CB(lro_skb)->next_seq += data_len;
7853 IGB_CB(lro_skb)->free -= data_len;
7854
7855 /* update append_cnt */
7856 IGB_CB(lro_skb)->append_cnt++;
7857
7858#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
7859 /* if header is empty pull pages into current skb */
7860 igb_merge_frags(lro_skb, new_skb);
7861#else
7862 /* chain this new skb in frag_list */
7863 igb_add_active_tail(lro_skb, new_skb);
7864#endif
7865
7866 if ((data_len < IGB_CB(lro_skb)->mss) || lroh->th.psh ||
7867 skb_shinfo(lro_skb)->nr_frags == MAX_SKB_FRAGS) {
7868 igb_lro_hdr(lro_skb)->th.psh |= lroh->th.psh;
7869 igb_lro_flush(q_vector, lro_skb);
7870 }
7871
7872 lrolist->stats.coal++;
7873 return;
7874 }
7875
7876 if (IGB_CB(new_skb)->mss && !lroh->th.psh) {
7877 /* if we are at capacity flush the tail */
7878 if (skb_queue_len(&lrolist->active) >= IGB_LRO_MAX) {
7879 lro_skb = skb_peek_tail(&lrolist->active);
7880 if (lro_skb)
7881 igb_lro_flush(q_vector, lro_skb);
7882 }
7883
7884 /* update sequence and free space */
7885 IGB_CB(new_skb)->next_seq += IGB_CB(new_skb)->mss;
7886 IGB_CB(new_skb)->free = 65521 - new_skb->len;
7887
7888 /* .. and insert at the front of the active list */
7889 __skb_queue_head(&lrolist->active, new_skb);
7890
7891 lrolist->stats.coal++;
7892 return;
7893 }
7894
7895 /* packet not handled by any of the above, pass it to the stack */
7896#ifdef HAVE_VLAN_RX_REGISTER
7897 igb_receive_skb(q_vector, new_skb);
7898#else
7899 napi_gro_receive(&q_vector->napi, new_skb);
7900#endif
7901}
7902
7903#endif /* IGB_NO_LRO */
7904/**
7905 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7906 * @rx_ring: rx descriptor ring packet is being transacted on
7907 * @rx_desc: pointer to the EOP Rx descriptor
7908 * @skb: pointer to current skb being populated
7909 *
7910 * This function checks the ring, descriptor, and packet information in
7911 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7912 * other fields within the skb.
7913 **/
7914static void igb_process_skb_fields(struct igb_ring *rx_ring,
7915 union e1000_adv_rx_desc *rx_desc,
7916 struct sk_buff *skb)
7917{
7918 struct net_device *dev = rx_ring->netdev;
7919 __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
7920
7921#ifdef NETIF_F_RXHASH
7922 igb_rx_hash(rx_ring, rx_desc, skb);
7923
7924#endif
7925 igb_rx_checksum(rx_ring, rx_desc, skb);
7926
7927 /* update packet type stats */
7928 if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4))
7929 rx_ring->rx_stats.ipv4_packets++;
7930 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4_EX))
7931 rx_ring->rx_stats.ipv4e_packets++;
7932 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6))
7933 rx_ring->rx_stats.ipv6_packets++;
7934 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6_EX))
7935 rx_ring->rx_stats.ipv6e_packets++;
7936 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP))
7937 rx_ring->rx_stats.tcp_packets++;
7938 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_UDP))
7939 rx_ring->rx_stats.udp_packets++;
7940 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_SCTP))
7941 rx_ring->rx_stats.sctp_packets++;
7942 else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_NFS))
7943 rx_ring->rx_stats.nfs_packets++;
7944
7945#ifdef HAVE_PTP_1588_CLOCK
7946 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
7947#endif /* HAVE_PTP_1588_CLOCK */
7948
7949#ifdef NETIF_F_HW_VLAN_CTAG_RX
7950 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7951#else
7952 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
7953#endif
7954 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7955 u16 vid = 0;
7956 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7957 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7958 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7959 else
7960 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7961#ifdef HAVE_VLAN_RX_REGISTER
7962 IGB_CB(skb)->vid = vid;
7963 } else {
7964 IGB_CB(skb)->vid = 0;
7965#else
7966
7967#ifdef HAVE_VLAN_PROTOCOL
7968 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7969#else
7970 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7971#endif
7972
7973
7974#endif
7975 }
7976
7977 skb_record_rx_queue(skb, rx_ring->queue_index);
7978
7979 skb->protocol = eth_type_trans(skb, dev);
7980}
7981
7982/**
7983 * igb_is_non_eop - process handling of non-EOP buffers
7984 * @rx_ring: Rx ring being processed
7985 * @rx_desc: Rx descriptor for current buffer
7986 *
7987 * This function updates next to clean. If the buffer is an EOP buffer
7988 * this function exits returning false, otherwise it will place the
7989 * sk_buff in the next buffer to be chained and return true indicating
7990 * that this is in fact a non-EOP buffer.
7991 **/
7992static bool igb_is_non_eop(struct igb_ring *rx_ring,
7993 union e1000_adv_rx_desc *rx_desc)
7994{
7995 u32 ntc = rx_ring->next_to_clean + 1;
7996
7997 /* fetch, update, and store next to clean */
7998 ntc = (ntc < rx_ring->count) ? ntc : 0;
7999 rx_ring->next_to_clean = ntc;
8000
8001 prefetch(IGB_RX_DESC(rx_ring, ntc));
8002
8003 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8004 return false;
8005
8006 return true;
8007}
8008
8009#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8010/* igb_clean_rx_irq -- * legacy */
8011static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
8012{
8013 struct igb_ring *rx_ring = q_vector->rx.ring;
8014 unsigned int total_bytes = 0, total_packets = 0;
8015 u16 cleaned_count = igb_desc_unused(rx_ring);
8016
8017 do {
8018 struct igb_rx_buffer *rx_buffer;
8019 union e1000_adv_rx_desc *rx_desc;
8020 struct sk_buff *skb;
8021 u16 ntc;
8022
8023 /* return some buffers to hardware, one at a time is too slow */
8024 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8025 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8026 cleaned_count = 0;
8027 }
8028
8029 ntc = rx_ring->next_to_clean;
8030 rx_desc = IGB_RX_DESC(rx_ring, ntc);
8031 rx_buffer = &rx_ring->rx_buffer_info[ntc];
8032
8033 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
8034 break;
8035
8036 /*
8037 * This memory barrier is needed to keep us from reading
8038 * any other fields out of the rx_desc until we know the
8039 * RXD_STAT_DD bit is set
8040 */
8041 rmb();
8042
8043 skb = rx_buffer->skb;
8044
8045 prefetch(skb->data);
8046
8047 /* pull the header of the skb in */
8048 __skb_put(skb, le16_to_cpu(rx_desc->wb.upper.length));
8049
8050 /* clear skb reference in buffer info structure */
8051 rx_buffer->skb = NULL;
8052
8053 cleaned_count++;
8054
8055 BUG_ON(igb_is_non_eop(rx_ring, rx_desc));
8056
8057 dma_unmap_single(rx_ring->dev, rx_buffer->dma,
8058 rx_ring->rx_buffer_len,
8059 DMA_FROM_DEVICE);
8060 rx_buffer->dma = 0;
8061
8062 if (igb_test_staterr(rx_desc,
8063 E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
8064 dev_kfree_skb_any(skb);
8065 continue;
8066 }
8067
8068 total_bytes += skb->len;
8069
8070 /* populate checksum, timestamp, VLAN, and protocol */
8071 igb_process_skb_fields(rx_ring, rx_desc, skb);
8072
8073#ifndef IGB_NO_LRO
8074 if (igb_can_lro(rx_ring, rx_desc, skb))
8075 igb_lro_receive(q_vector, skb);
8076 else
8077#endif
8078#ifdef HAVE_VLAN_RX_REGISTER
8079 igb_receive_skb(q_vector, skb);
8080#else
8081 napi_gro_receive(&q_vector->napi, skb);
8082#endif
8083
8084#ifndef NETIF_F_GRO
8085 netdev_ring(rx_ring)->last_rx = jiffies;
8086
8087#endif
8088 /* update budget accounting */
8089 total_packets++;
8090 } while (likely(total_packets < budget));
8091
8092 rx_ring->rx_stats.packets += total_packets;
8093 rx_ring->rx_stats.bytes += total_bytes;
8094 q_vector->rx.total_packets += total_packets;
8095 q_vector->rx.total_bytes += total_bytes;
8096
8097 if (cleaned_count)
8098 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8099
8100#ifndef IGB_NO_LRO
8101 igb_lro_flush_all(q_vector);
8102
8103#endif /* IGB_NO_LRO */
8104 return total_packets < budget;
8105}
8106#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8107/**
8108 * igb_get_headlen - determine size of header for LRO/GRO
8109 * @data: pointer to the start of the headers
8110 * @max_len: total length of section to find headers in
8111 *
8112 * This function is meant to determine the length of headers that will
8113 * be recognized by hardware for LRO, and GRO offloads. The main
8114 * motivation of doing this is to only perform one pull for IPv4 TCP
8115 * packets so that we can do basic things like calculating the gso_size
8116 * based on the average data per packet.
8117 **/
8118static unsigned int igb_get_headlen(unsigned char *data,
8119 unsigned int max_len)
8120{
8121 union {
8122 unsigned char *network;
8123 /* l2 headers */
8124 struct ethhdr *eth;
8125 struct vlan_hdr *vlan;
8126 /* l3 headers */
8127 struct iphdr *ipv4;
8128 struct ipv6hdr *ipv6;
8129 } hdr;
8130 __be16 protocol;
8131 u8 nexthdr = 0; /* default to not TCP */
8132 u8 hlen;
8133
8134 /* this should never happen, but better safe than sorry */
8135 if (max_len < ETH_HLEN)
8136 return max_len;
8137
8138 /* initialize network frame pointer */
8139 hdr.network = data;
8140
8141 /* set first protocol and move network header forward */
8142 protocol = hdr.eth->h_proto;
8143 hdr.network += ETH_HLEN;
8144
8145 /* handle any vlan tag if present */
8146 if (protocol == __constant_htons(ETH_P_8021Q)) {
8147 if ((hdr.network - data) > (max_len - VLAN_HLEN))
8148 return max_len;
8149
8150 protocol = hdr.vlan->h_vlan_encapsulated_proto;
8151 hdr.network += VLAN_HLEN;
8152 }
8153
8154 /* handle L3 protocols */
8155 if (protocol == __constant_htons(ETH_P_IP)) {
8156 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
8157 return max_len;
8158
8159 /* access ihl as a u8 to avoid unaligned access on ia64 */
8160 hlen = (hdr.network[0] & 0x0F) << 2;
8161
8162 /* verify hlen meets minimum size requirements */
8163 if (hlen < sizeof(struct iphdr))
8164 return hdr.network - data;
8165
8166 /* record next protocol if header is present */
8167 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
8168 nexthdr = hdr.ipv4->protocol;
8169#ifdef NETIF_F_TSO6
8170 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
8171 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
8172 return max_len;
8173
8174 /* record next protocol */
8175 nexthdr = hdr.ipv6->nexthdr;
8176 hlen = sizeof(struct ipv6hdr);
8177#endif /* NETIF_F_TSO6 */
8178 } else {
8179 return hdr.network - data;
8180 }
8181
8182 /* relocate pointer to start of L4 header */
8183 hdr.network += hlen;
8184
8185 /* finally sort out TCP */
8186 if (nexthdr == IPPROTO_TCP) {
8187 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
8188 return max_len;
8189
8190 /* access doff as a u8 to avoid unaligned access on ia64 */
8191 hlen = (hdr.network[12] & 0xF0) >> 2;
8192
8193 /* verify hlen meets minimum size requirements */
8194 if (hlen < sizeof(struct tcphdr))
8195 return hdr.network - data;
8196
8197 hdr.network += hlen;
8198 } else if (nexthdr == IPPROTO_UDP) {
8199 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
8200 return max_len;
8201
8202 hdr.network += sizeof(struct udphdr);
8203 }
8204
8205 /*
8206 * If everything has gone correctly hdr.network should be the
8207 * data section of the packet and will be the end of the header.
8208 * If not then it probably represents the end of the last recognized
8209 * header.
8210 */
8211 if ((hdr.network - data) < max_len)
8212 return hdr.network - data;
8213 else
8214 return max_len;
8215}
8216
8217/**
8218 * igb_pull_tail - igb specific version of skb_pull_tail
8219 * @rx_ring: rx descriptor ring packet is being transacted on
8220 * @rx_desc: pointer to the EOP Rx descriptor
8221 * @skb: pointer to current skb being adjusted
8222 *
8223 * This function is an igb specific version of __pskb_pull_tail. The
8224 * main difference between this version and the original function is that
8225 * this function can make several assumptions about the state of things
8226 * that allow for significant optimizations versus the standard function.
8227 * As a result we can do things like drop a frag and maintain an accurate
8228 * truesize for the skb.
8229 */
8230static void igb_pull_tail(struct igb_ring *rx_ring,
8231 union e1000_adv_rx_desc *rx_desc,
8232 struct sk_buff *skb)
8233{
8234 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
8235 unsigned char *va;
8236 unsigned int pull_len;
8237
8238 /*
8239 * it is valid to use page_address instead of kmap since we are
8240 * working with pages allocated out of the lomem pool per
8241 * alloc_page(GFP_ATOMIC)
8242 */
8243 va = skb_frag_address(frag);
8244
8245#ifdef HAVE_PTP_1588_CLOCK
8246 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8247 /* retrieve timestamp from buffer */
8248 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8249
8250 /* update pointers to remove timestamp header */
8251 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
8252 frag->page_offset += IGB_TS_HDR_LEN;
8253 skb->data_len -= IGB_TS_HDR_LEN;
8254 skb->len -= IGB_TS_HDR_LEN;
8255
8256 /* move va to start of packet data */
8257 va += IGB_TS_HDR_LEN;
8258 }
8259#endif /* HAVE_PTP_1588_CLOCK */
8260
8261 /*
8262 * we need the header to contain the greater of either ETH_HLEN or
8263 * 60 bytes if the skb->len is less than 60 for skb_pad.
8264 */
8265 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
8266
8267 /* align pull length to size of long to optimize memcpy performance */
8268 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
8269
8270 /* update all of the pointers */
8271 skb_frag_size_sub(frag, pull_len);
8272 frag->page_offset += pull_len;
8273 skb->data_len -= pull_len;
8274 skb->tail += pull_len;
8275}
8276
8277/**
8278 * igb_cleanup_headers - Correct corrupted or empty headers
8279 * @rx_ring: rx descriptor ring packet is being transacted on
8280 * @rx_desc: pointer to the EOP Rx descriptor
8281 * @skb: pointer to current skb being fixed
8282 *
8283 * Address the case where we are pulling data in on pages only
8284 * and as such no data is present in the skb header.
8285 *
8286 * In addition if skb is not at least 60 bytes we need to pad it so that
8287 * it is large enough to qualify as a valid Ethernet frame.
8288 *
8289 * Returns true if an error was encountered and skb was freed.
8290 **/
8291static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8292 union e1000_adv_rx_desc *rx_desc,
8293 struct sk_buff *skb)
8294{
8295
8296 if (unlikely((igb_test_staterr(rx_desc,
8297 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8298 struct net_device *netdev = rx_ring->netdev;
8299 if (!(netdev->features & NETIF_F_RXALL)) {
8300 dev_kfree_skb_any(skb);
8301 return true;
8302 }
8303 }
8304
8305 /* place header in linear portion of buffer */
8306 if (skb_is_nonlinear(skb))
8307 igb_pull_tail(rx_ring, rx_desc, skb);
8308
8309 /* if skb_pad returns an error the skb was freed */
8310 if (unlikely(skb->len < 60)) {
8311 int pad_len = 60 - skb->len;
8312
8313 if (skb_pad(skb, pad_len))
8314 return true;
8315 __skb_put(skb, pad_len);
8316 }
8317
8318 return false;
8319}
8320
8321/* igb_clean_rx_irq -- * packet split */
8322static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
8323{
8324 struct igb_ring *rx_ring = q_vector->rx.ring;
8325 struct sk_buff *skb = rx_ring->skb;
8326 unsigned int total_bytes = 0, total_packets = 0;
8327 u16 cleaned_count = igb_desc_unused(rx_ring);
8328
8329 do {
8330 union e1000_adv_rx_desc *rx_desc;
8331
8332 /* return some buffers to hardware, one at a time is too slow */
8333 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8334 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8335 cleaned_count = 0;
8336 }
8337
8338 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8339
8340 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
8341 break;
8342
8343 /*
8344 * This memory barrier is needed to keep us from reading
8345 * any other fields out of the rx_desc until we know the
8346 * RXD_STAT_DD bit is set
8347 */
8348 rmb();
8349
8350 /* retrieve a buffer from the ring */
8351 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
8352
8353 /* exit if we failed to retrieve a buffer */
8354 if (!skb)
8355 break;
8356
8357 cleaned_count++;
8358
8359 /* fetch next buffer in frame if non-eop */
8360 if (igb_is_non_eop(rx_ring, rx_desc))
8361 continue;
8362
8363 /* verify the packet layout is correct */
8364 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8365 skb = NULL;
8366 continue;
8367 }
8368
8369 /* probably a little skewed due to removing CRC */
8370 total_bytes += skb->len;
8371
8372 /* populate checksum, timestamp, VLAN, and protocol */
8373 igb_process_skb_fields(rx_ring, rx_desc, skb);
8374
8375#ifndef IGB_NO_LRO
8376 if (igb_can_lro(rx_ring, rx_desc, skb))
8377 igb_lro_receive(q_vector, skb);
8378 else
8379#endif
8380#ifdef HAVE_VLAN_RX_REGISTER
8381 igb_receive_skb(q_vector, skb);
8382#else
8383 napi_gro_receive(&q_vector->napi, skb);
8384#endif
8385#ifndef NETIF_F_GRO
8386
8387 netdev_ring(rx_ring)->last_rx = jiffies;
8388#endif
8389
8390 /* reset skb pointer */
8391 skb = NULL;
8392
8393 /* update budget accounting */
8394 total_packets++;
8395 } while (likely(total_packets < budget));
8396
8397 /* place incomplete frames back on ring for completion */
8398 rx_ring->skb = skb;
8399
8400 rx_ring->rx_stats.packets += total_packets;
8401 rx_ring->rx_stats.bytes += total_bytes;
8402 q_vector->rx.total_packets += total_packets;
8403 q_vector->rx.total_bytes += total_bytes;
8404
8405 if (cleaned_count)
8406 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8407
8408#ifndef IGB_NO_LRO
8409 igb_lro_flush_all(q_vector);
8410
8411#endif /* IGB_NO_LRO */
8412 return total_packets < budget;
8413}
8414#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8415
8416#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8417static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
8418 struct igb_rx_buffer *bi)
8419{
8420 struct sk_buff *skb = bi->skb;
8421 dma_addr_t dma = bi->dma;
8422
8423 if (dma)
8424 return true;
8425
8426 if (likely(!skb)) {
8427 skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring),
8428 rx_ring->rx_buffer_len);
8429 bi->skb = skb;
8430 if (!skb) {
8431 rx_ring->rx_stats.alloc_failed++;
8432 return false;
8433 }
8434
8435 /* initialize skb for ring */
8436 skb_record_rx_queue(skb, ring_queue_index(rx_ring));
8437 }
8438
8439 dma = dma_map_single(rx_ring->dev, skb->data,
8440 rx_ring->rx_buffer_len, DMA_FROM_DEVICE);
8441
8442 /* if mapping failed free memory back to system since
8443 * there isn't much point in holding memory we can't use
8444 */
8445 if (dma_mapping_error(rx_ring->dev, dma)) {
8446 dev_kfree_skb_any(skb);
8447 bi->skb = NULL;
8448
8449 rx_ring->rx_stats.alloc_failed++;
8450 return false;
8451 }
8452
8453 bi->dma = dma;
8454 return true;
8455}
8456
8457#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8458static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8459 struct igb_rx_buffer *bi)
8460{
8461 struct page *page = bi->page;
8462 dma_addr_t dma;
8463
8464 /* since we are recycling buffers we should seldom need to alloc */
8465 if (likely(page))
8466 return true;
8467
8468 /* alloc new page for storage */
8469 page = alloc_page(GFP_ATOMIC | __GFP_COLD);
8470 if (unlikely(!page)) {
8471 rx_ring->rx_stats.alloc_failed++;
8472 return false;
8473 }
8474
8475 /* map page for use */
8476 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
8477
8478 /*
8479 * if mapping failed free memory back to system since
8480 * there isn't much point in holding memory we can't use
8481 */
8482 if (dma_mapping_error(rx_ring->dev, dma)) {
8483 __free_page(page);
8484
8485 rx_ring->rx_stats.alloc_failed++;
8486 return false;
8487 }
8488
8489 bi->dma = dma;
8490 bi->page = page;
8491 bi->page_offset = 0;
8492
8493 return true;
8494}
8495
8496#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8497/**
8498 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8499 * @adapter: address of board private structure
8500 **/
8501void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8502{
8503 union e1000_adv_rx_desc *rx_desc;
8504 struct igb_rx_buffer *bi;
8505 u16 i = rx_ring->next_to_use;
8506
8507 /* nothing to do */
8508 if (!cleaned_count)
8509 return;
8510
8511 rx_desc = IGB_RX_DESC(rx_ring, i);
8512 bi = &rx_ring->rx_buffer_info[i];
8513 i -= rx_ring->count;
8514
8515 do {
8516#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8517 if (!igb_alloc_mapped_skb(rx_ring, bi))
8518#else
8519 if (!igb_alloc_mapped_page(rx_ring, bi))
8520#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */
8521 break;
8522
8523 /*
8524 * Refresh the desc even if buffer_addrs didn't change
8525 * because each write-back erases this info.
8526 */
8527#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT
8528 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
8529#else
8530 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8531#endif
8532
8533 rx_desc++;
8534 bi++;
8535 i++;
8536 if (unlikely(!i)) {
8537 rx_desc = IGB_RX_DESC(rx_ring, 0);
8538 bi = rx_ring->rx_buffer_info;
8539 i -= rx_ring->count;
8540 }
8541
8542 /* clear the hdr_addr for the next_to_use descriptor */
8543 rx_desc->read.hdr_addr = 0;
8544
8545 cleaned_count--;
8546 } while (cleaned_count);
8547
8548 i += rx_ring->count;
8549
8550 if (rx_ring->next_to_use != i) {
8551 /* record the next descriptor to use */
8552 rx_ring->next_to_use = i;
8553
8554#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT
8555 /* update next to alloc since we have filled the ring */
8556 rx_ring->next_to_alloc = i;
8557
8558#endif
8559 /*
8560 * Force memory writes to complete before letting h/w
8561 * know there are new descriptors to fetch. (Only
8562 * applicable for weak-ordered memory model archs,
8563 * such as IA-64).
8564 */
8565 wmb();
8566 writel(i, rx_ring->tail);
8567 }
8568}
8569
8570#ifdef SIOCGMIIPHY
8571/**
8572 * igb_mii_ioctl -
8573 * @netdev:
8574 * @ifreq:
8575 * @cmd:
8576 **/
8577static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8578{
8579 struct igb_adapter *adapter = netdev_priv(netdev);
8580 struct mii_ioctl_data *data = if_mii(ifr);
8581
8582 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8583 return -EOPNOTSUPP;
8584
8585 switch (cmd) {
8586 case SIOCGMIIPHY:
8587 data->phy_id = adapter->hw.phy.addr;
8588 break;
8589 case SIOCGMIIREG:
8590 if (!capable(CAP_NET_ADMIN))
8591 return -EPERM;
8592 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8593 &data->val_out))
8594 return -EIO;
8595 break;
8596 case SIOCSMIIREG:
8597 default:
8598 return -EOPNOTSUPP;
8599 }
8600 return E1000_SUCCESS;
8601}
8602
8603#endif
8604/**
8605 * igb_ioctl -
8606 * @netdev:
8607 * @ifreq:
8608 * @cmd:
8609 **/
8610static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8611{
8612 switch (cmd) {
8613#ifdef SIOCGMIIPHY
8614 case SIOCGMIIPHY:
8615 case SIOCGMIIREG:
8616 case SIOCSMIIREG:
8617 return igb_mii_ioctl(netdev, ifr, cmd);
8618#endif
8619#ifdef HAVE_PTP_1588_CLOCK
8620 case SIOCSHWTSTAMP:
8621 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
8622#endif /* HAVE_PTP_1588_CLOCK */
8623#ifdef ETHTOOL_OPS_COMPAT
8624 case SIOCETHTOOL:
8625 return ethtool_ioctl(ifr);
8626#endif
8627 default:
8628 return -EOPNOTSUPP;
8629 }
8630}
8631
8632s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8633{
8634 struct igb_adapter *adapter = hw->back;
8635 u16 cap_offset;
8636
8637 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8638 if (!cap_offset)
8639 return -E1000_ERR_CONFIG;
8640
8641 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
8642
8643 return E1000_SUCCESS;
8644}
8645
8646s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8647{
8648 struct igb_adapter *adapter = hw->back;
8649 u16 cap_offset;
8650
8651 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8652 if (!cap_offset)
8653 return -E1000_ERR_CONFIG;
8654
8655 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
8656
8657 return E1000_SUCCESS;
8658}
8659
8660#ifdef HAVE_VLAN_RX_REGISTER
8661static void igb_vlan_mode(struct net_device *netdev, struct vlan_group *vlgrp)
8662#else
8663void igb_vlan_mode(struct net_device *netdev, u32 features)
8664#endif
8665{
8666 struct igb_adapter *adapter = netdev_priv(netdev);
8667 struct e1000_hw *hw = &adapter->hw;
8668 u32 ctrl, rctl;
8669 int i;
8670#ifdef HAVE_VLAN_RX_REGISTER
8671 bool enable = !!vlgrp;
8672
8673 igb_irq_disable(adapter);
8674
8675 adapter->vlgrp = vlgrp;
8676
8677 if (!test_bit(__IGB_DOWN, &adapter->state))
8678 igb_irq_enable(adapter);
8679#else
8680#ifdef NETIF_F_HW_VLAN_CTAG_RX
8681 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8682#else
8683 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
8684#endif
8685#endif
8686
8687 if (enable) {
8688 /* enable VLAN tag insert/strip */
8689 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8690 ctrl |= E1000_CTRL_VME;
8691 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8692
8693 /* Disable CFI check */
8694 rctl = E1000_READ_REG(hw, E1000_RCTL);
8695 rctl &= ~E1000_RCTL_CFIEN;
8696 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
8697 } else {
8698 /* disable VLAN tag insert/strip */
8699 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8700 ctrl &= ~E1000_CTRL_VME;
8701 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8702 }
8703
8704#ifndef CONFIG_IGB_VMDQ_NETDEV
8705 for (i = 0; i < adapter->vmdq_pools; i++) {
8706 igb_set_vf_vlan_strip(adapter,
8707 adapter->vfs_allocated_count + i,
8708 enable);
8709 }
8710
8711#else
8712 igb_set_vf_vlan_strip(adapter,
8713 adapter->vfs_allocated_count,
8714 enable);
8715
8716 for (i = 1; i < adapter->vmdq_pools; i++) {
8717#ifdef HAVE_VLAN_RX_REGISTER
8718 struct igb_vmdq_adapter *vadapter;
8719 vadapter = netdev_priv(adapter->vmdq_netdev[i-1]);
8720 enable = !!vadapter->vlgrp;
8721#else
8722 struct net_device *vnetdev;
8723 vnetdev = adapter->vmdq_netdev[i-1];
8724#ifdef NETIF_F_HW_VLAN_CTAG_RX
8725 enable = !!(vnetdev->features & NETIF_F_HW_VLAN_CTAG_RX);
8726#else
8727 enable = !!(vnetdev->features & NETIF_F_HW_VLAN_RX);
8728#endif
8729#endif
8730 igb_set_vf_vlan_strip(adapter,
8731 adapter->vfs_allocated_count + i,
8732 enable);
8733 }
8734
8735#endif
8736 igb_rlpml_set(adapter);
8737}
8738
8739#ifdef HAVE_VLAN_PROTOCOL
8740static int igb_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
8741#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
8742#ifdef NETIF_F_HW_VLAN_CTAG_RX
8743static int igb_vlan_rx_add_vid(struct net_device *netdev,
8744 __always_unused __be16 proto, u16 vid)
8745#else
8746static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
8747#endif
8748#else
8749static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
8750#endif
8751{
8752 struct igb_adapter *adapter = netdev_priv(netdev);
8753 int pf_id = adapter->vfs_allocated_count;
8754
8755 /* attempt to add filter to vlvf array */
8756 igb_vlvf_set(adapter, vid, TRUE, pf_id);
8757
8758 /* add the filter since PF can receive vlans w/o entry in vlvf */
8759 igb_vfta_set(adapter, vid, TRUE);
8760#ifndef HAVE_NETDEV_VLAN_FEATURES
8761
8762 /* Copy feature flags from netdev to the vlan netdev for this vid.
8763 * This allows things like TSO to bubble down to our vlan device.
8764 * There is no need to update netdev for vlan 0 (DCB), since it
8765 * wouldn't has v_netdev.
8766 */
8767 if (adapter->vlgrp) {
8768 struct vlan_group *vlgrp = adapter->vlgrp;
8769 struct net_device *v_netdev = vlan_group_get_device(vlgrp, vid);
8770 if (v_netdev) {
8771 v_netdev->features |= netdev->features;
8772 vlan_group_set_device(vlgrp, vid, v_netdev);
8773 }
8774 }
8775#endif
8776#ifndef HAVE_VLAN_RX_REGISTER
8777
8778 set_bit(vid, adapter->active_vlans);
8779#endif
8780#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
8781 return 0;
8782#endif
8783}
8784
8785#ifdef HAVE_VLAN_PROTOCOL
8786static int igb_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
8787#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID
8788#ifdef NETIF_F_HW_VLAN_CTAG_RX
8789static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8790 __always_unused __be16 proto, u16 vid)
8791#else
8792static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
8793#endif
8794#else
8795static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
8796#endif
8797{
8798 struct igb_adapter *adapter = netdev_priv(netdev);
8799 int pf_id = adapter->vfs_allocated_count;
8800 s32 err;
8801
8802#ifdef HAVE_VLAN_RX_REGISTER
8803 igb_irq_disable(adapter);
8804
8805 vlan_group_set_device(adapter->vlgrp, vid, NULL);
8806
8807 if (!test_bit(__IGB_DOWN, &adapter->state))
8808 igb_irq_enable(adapter);
8809
8810#endif /* HAVE_VLAN_RX_REGISTER */
8811 /* remove vlan from VLVF table array */
8812 err = igb_vlvf_set(adapter, vid, FALSE, pf_id);
8813
8814 /* if vid was not present in VLVF just remove it from table */
8815 if (err)
8816 igb_vfta_set(adapter, vid, FALSE);
8817#ifndef HAVE_VLAN_RX_REGISTER
8818
8819 clear_bit(vid, adapter->active_vlans);
8820#endif
8821#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID
8822 return 0;
8823#endif
8824}
8825
8826static void igb_restore_vlan(struct igb_adapter *adapter)
8827{
8828#ifdef HAVE_VLAN_RX_REGISTER
8829 igb_vlan_mode(adapter->netdev, adapter->vlgrp);
8830
8831 if (adapter->vlgrp) {
8832 u16 vid;
8833 for (vid = 0; vid < VLAN_N_VID; vid++) {
8834 if (!vlan_group_get_device(adapter->vlgrp, vid))
8835 continue;
8836#ifdef NETIF_F_HW_VLAN_CTAG_RX
8837 igb_vlan_rx_add_vid(adapter->netdev,
8838 htons(ETH_P_8021Q), vid);
8839#else
8840 igb_vlan_rx_add_vid(adapter->netdev, vid);
8841#endif
8842 }
8843 }
8844#else
8845 u16 vid;
8846
8847 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8848
8849 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
8850#ifdef NETIF_F_HW_VLAN_CTAG_RX
8851 igb_vlan_rx_add_vid(adapter->netdev,
8852 htons(ETH_P_8021Q), vid);
8853#else
8854 igb_vlan_rx_add_vid(adapter->netdev, vid);
8855#endif
8856#endif
8857}
8858
8859int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
8860{
8861 struct pci_dev *pdev = adapter->pdev;
8862 struct e1000_mac_info *mac = &adapter->hw.mac;
8863
8864 mac->autoneg = 0;
8865
8866 /* SerDes device's does not support 10Mbps Full/duplex
8867 * and 100Mbps Half duplex
8868 */
8869 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8870 switch (spddplx) {
8871 case SPEED_10 + DUPLEX_HALF:
8872 case SPEED_10 + DUPLEX_FULL:
8873 case SPEED_100 + DUPLEX_HALF:
8874 dev_err(pci_dev_to_dev(pdev),
8875 "Unsupported Speed/Duplex configuration\n");
8876 return -EINVAL;
8877 default:
8878 break;
8879 }
8880 }
8881
8882 switch (spddplx) {
8883 case SPEED_10 + DUPLEX_HALF:
8884 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8885 break;
8886 case SPEED_10 + DUPLEX_FULL:
8887 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8888 break;
8889 case SPEED_100 + DUPLEX_HALF:
8890 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8891 break;
8892 case SPEED_100 + DUPLEX_FULL:
8893 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8894 break;
8895 case SPEED_1000 + DUPLEX_FULL:
8896 mac->autoneg = 1;
8897 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8898 break;
8899 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8900 default:
8901 dev_err(pci_dev_to_dev(pdev), "Unsupported Speed/Duplex configuration\n");
8902 return -EINVAL;
8903 }
8904
8905 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8906 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8907
8908 return 0;
8909}
8910
8911static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8912 bool runtime)
8913{
8914 struct net_device *netdev = pci_get_drvdata(pdev);
8915 struct igb_adapter *adapter = netdev_priv(netdev);
8916 struct e1000_hw *hw = &adapter->hw;
8917 u32 ctrl, rctl, status;
8918 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8919#ifdef CONFIG_PM
8920 int retval = 0;
8921#endif
8922
8923 netif_device_detach(netdev);
8924
8925 status = E1000_READ_REG(hw, E1000_STATUS);
8926 if (status & E1000_STATUS_LU)
8927 wufc &= ~E1000_WUFC_LNKC;
8928
8929 if (netif_running(netdev))
8930 __igb_close(netdev, true);
8931
8932 igb_clear_interrupt_scheme(adapter);
8933
8934#ifdef CONFIG_PM
8935 retval = pci_save_state(pdev);
8936 if (retval)
8937 return retval;
8938#endif
8939
8940 if (wufc) {
8941 igb_setup_rctl(adapter);
8942 igb_set_rx_mode(netdev);
8943
8944 /* turn on all-multi mode if wake on multicast is enabled */
8945 if (wufc & E1000_WUFC_MC) {
8946 rctl = E1000_READ_REG(hw, E1000_RCTL);
8947 rctl |= E1000_RCTL_MPE;
8948 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
8949 }
8950
8951 ctrl = E1000_READ_REG(hw, E1000_CTRL);
8952 /* phy power management enable */
8953 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8954 ctrl |= E1000_CTRL_ADVD3WUC;
8955 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
8956
8957 /* Allow time for pending master requests to run */
8958 e1000_disable_pcie_master(hw);
8959
8960 E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PME_EN);
8961 E1000_WRITE_REG(hw, E1000_WUFC, wufc);
8962 } else {
8963 E1000_WRITE_REG(hw, E1000_WUC, 0);
8964 E1000_WRITE_REG(hw, E1000_WUFC, 0);
8965 }
8966
8967 *enable_wake = wufc || adapter->en_mng_pt;
8968 if (!*enable_wake)
8969 igb_power_down_link(adapter);
8970 else
8971 igb_power_up_link(adapter);
8972
8973 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8974 * would have already happened in close and is redundant. */
8975 igb_release_hw_control(adapter);
8976
8977 pci_disable_device(pdev);
8978
8979 return 0;
8980}
8981
8982#ifdef CONFIG_PM
8983#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8984static int igb_suspend(struct device *dev)
8985#else
8986static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
8987#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8988{
8989#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
8990 struct pci_dev *pdev = to_pci_dev(dev);
8991#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
8992 int retval;
8993 bool wake;
8994
8995 retval = __igb_shutdown(pdev, &wake, 0);
8996 if (retval)
8997 return retval;
8998
8999 if (wake) {
9000 pci_prepare_to_sleep(pdev);
9001 } else {
9002 pci_wake_from_d3(pdev, false);
9003 pci_set_power_state(pdev, PCI_D3hot);
9004 }
9005
9006 return 0;
9007}
9008
9009#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
9010static int igb_resume(struct device *dev)
9011#else
9012static int igb_resume(struct pci_dev *pdev)
9013#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
9014{
9015#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
9016 struct pci_dev *pdev = to_pci_dev(dev);
9017#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
9018 struct net_device *netdev = pci_get_drvdata(pdev);
9019 struct igb_adapter *adapter = netdev_priv(netdev);
9020 struct e1000_hw *hw = &adapter->hw;
9021 u32 err;
9022
9023 pci_set_power_state(pdev, PCI_D0);
9024 pci_restore_state(pdev);
9025 pci_save_state(pdev);
9026
9027 err = pci_enable_device_mem(pdev);
9028 if (err) {
9029 dev_err(pci_dev_to_dev(pdev),
9030 "igb: Cannot enable PCI device from suspend\n");
9031 return err;
9032 }
9033 pci_set_master(pdev);
9034
9035 pci_enable_wake(pdev, PCI_D3hot, 0);
9036 pci_enable_wake(pdev, PCI_D3cold, 0);
9037
9038 if (igb_init_interrupt_scheme(adapter, true)) {
9039 dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n");
9040 return -ENOMEM;
9041 }
9042
9043 igb_reset(adapter);
9044
9045 /* let the f/w know that the h/w is now under the control of the
9046 * driver. */
9047 igb_get_hw_control(adapter);
9048
9049 E1000_WRITE_REG(hw, E1000_WUS, ~0);
9050
9051 if (netdev->flags & IFF_UP) {
9052 rtnl_lock();
9053 err = __igb_open(netdev, true);
9054 rtnl_unlock();
9055 if (err)
9056 return err;
9057 }
9058
9059 netif_device_attach(netdev);
9060
9061 return 0;
9062}
9063
9064#ifdef CONFIG_PM_RUNTIME
9065#ifdef HAVE_SYSTEM_SLEEP_PM_OPS
9066static int igb_runtime_idle(struct device *dev)
9067{
9068 struct pci_dev *pdev = to_pci_dev(dev);
9069 struct net_device *netdev = pci_get_drvdata(pdev);
9070 struct igb_adapter *adapter = netdev_priv(netdev);
9071
9072 if (!igb_has_link(adapter))
9073 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9074
9075 return -EBUSY;
9076}
9077
9078static int igb_runtime_suspend(struct device *dev)
9079{
9080 struct pci_dev *pdev = to_pci_dev(dev);
9081 int retval;
9082 bool wake;
9083
9084 retval = __igb_shutdown(pdev, &wake, 1);
9085 if (retval)
9086 return retval;
9087
9088 if (wake) {
9089 pci_prepare_to_sleep(pdev);
9090 } else {
9091 pci_wake_from_d3(pdev, false);
9092 pci_set_power_state(pdev, PCI_D3hot);
9093 }
9094
9095 return 0;
9096}
9097
9098static int igb_runtime_resume(struct device *dev)
9099{
9100 return igb_resume(dev);
9101}
9102#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */
9103#endif /* CONFIG_PM_RUNTIME */
9104#endif /* CONFIG_PM */
9105
9106#ifdef USE_REBOOT_NOTIFIER
9107/* only want to do this for 2.4 kernels? */
9108static int igb_notify_reboot(struct notifier_block *nb, unsigned long event,
9109 void *p)
9110{
9111 struct pci_dev *pdev = NULL;
9112 bool wake;
9113
9114 switch (event) {
9115 case SYS_DOWN:
9116 case SYS_HALT:
9117 case SYS_POWER_OFF:
9118 while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
9119 if (pci_dev_driver(pdev) == &igb_driver) {
9120 __igb_shutdown(pdev, &wake, 0);
9121 if (event == SYS_POWER_OFF) {
9122 pci_wake_from_d3(pdev, wake);
9123 pci_set_power_state(pdev, PCI_D3hot);
9124 }
9125 }
9126 }
9127 }
9128 return NOTIFY_DONE;
9129}
9130#else
9131static void igb_shutdown(struct pci_dev *pdev)
9132{
9133 bool wake = false;
9134
9135 __igb_shutdown(pdev, &wake, 0);
9136
9137 if (system_state == SYSTEM_POWER_OFF) {
9138 pci_wake_from_d3(pdev, wake);
9139 pci_set_power_state(pdev, PCI_D3hot);
9140 }
9141}
9142#endif /* USE_REBOOT_NOTIFIER */
9143
9144#ifdef CONFIG_NET_POLL_CONTROLLER
9145/*
9146 * Polling 'interrupt' - used by things like netconsole to send skbs
9147 * without having to re-enable interrupts. It's not called while
9148 * the interrupt routine is executing.
9149 */
9150static void igb_netpoll(struct net_device *netdev)
9151{
9152 struct igb_adapter *adapter = netdev_priv(netdev);
9153 struct e1000_hw *hw = &adapter->hw;
9154 struct igb_q_vector *q_vector;
9155 int i;
9156
9157 for (i = 0; i < adapter->num_q_vectors; i++) {
9158 q_vector = adapter->q_vector[i];
9159 if (adapter->msix_entries)
9160 E1000_WRITE_REG(hw, E1000_EIMC, q_vector->eims_value);
9161 else
9162 igb_irq_disable(adapter);
9163 napi_schedule(&q_vector->napi);
9164 }
9165}
9166#endif /* CONFIG_NET_POLL_CONTROLLER */
9167
9168#ifdef HAVE_PCI_ERS
9169#define E1000_DEV_ID_82576_VF 0x10CA
9170/**
9171 * igb_io_error_detected - called when PCI error is detected
9172 * @pdev: Pointer to PCI device
9173 * @state: The current pci connection state
9174 *
9175 * This function is called after a PCI bus error affecting
9176 * this device has been detected.
9177 */
9178static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9179 pci_channel_state_t state)
9180{
9181 struct net_device *netdev = pci_get_drvdata(pdev);
9182 struct igb_adapter *adapter = netdev_priv(netdev);
9183
9184#ifdef CONFIG_PCI_IOV__UNUSED
9185 struct pci_dev *bdev, *vfdev;
9186 u32 dw0, dw1, dw2, dw3;
9187 int vf, pos;
9188 u16 req_id, pf_func;
9189
9190 if (!(adapter->flags & IGB_FLAG_DETECT_BAD_DMA))
9191 goto skip_bad_vf_detection;
9192
9193 bdev = pdev->bus->self;
9194 while (bdev && (pci_pcie_type(bdev) != PCI_EXP_TYPE_ROOT_PORT))
9195 bdev = bdev->bus->self;
9196
9197 if (!bdev)
9198 goto skip_bad_vf_detection;
9199
9200 pos = pci_find_ext_capability(bdev, PCI_EXT_CAP_ID_ERR);
9201 if (!pos)
9202 goto skip_bad_vf_detection;
9203
9204 pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG, &dw0);
9205 pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 4, &dw1);
9206 pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 8, &dw2);
9207 pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 12, &dw3);
9208
9209 req_id = dw1 >> 16;
9210 /* On the 82576 if bit 7 of the requestor ID is set then it's a VF */
9211 if (!(req_id & 0x0080))
9212 goto skip_bad_vf_detection;
9213
9214 pf_func = req_id & 0x01;
9215 if ((pf_func & 1) == (pdev->devfn & 1)) {
9216
9217 vf = (req_id & 0x7F) >> 1;
9218 dev_err(pci_dev_to_dev(pdev),
9219 "VF %d has caused a PCIe error\n", vf);
9220 dev_err(pci_dev_to_dev(pdev),
9221 "TLP: dw0: %8.8x\tdw1: %8.8x\tdw2: "
9222 "%8.8x\tdw3: %8.8x\n",
9223 dw0, dw1, dw2, dw3);
9224
9225 /* Find the pci device of the offending VF */
9226 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
9227 E1000_DEV_ID_82576_VF, NULL);
9228 while (vfdev) {
9229 if (vfdev->devfn == (req_id & 0xFF))
9230 break;
9231 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL,
9232 E1000_DEV_ID_82576_VF, vfdev);
9233 }
9234 /*
9235 * There's a slim chance the VF could have been hot plugged,
9236 * so if it is no longer present we don't need to issue the
9237 * VFLR. Just clean up the AER in that case.
9238 */
9239 if (vfdev) {
9240 dev_err(pci_dev_to_dev(pdev),
9241 "Issuing VFLR to VF %d\n", vf);
9242 pci_write_config_dword(vfdev, 0xA8, 0x00008000);
9243 }
9244
9245 pci_cleanup_aer_uncorrect_error_status(pdev);
9246 }
9247
9248 /*
9249 * Even though the error may have occurred on the other port
9250 * we still need to increment the vf error reference count for
9251 * both ports because the I/O resume function will be called
9252 * for both of them.
9253 */
9254 adapter->vferr_refcount++;
9255
9256 return PCI_ERS_RESULT_RECOVERED;
9257
9258skip_bad_vf_detection:
9259#endif /* CONFIG_PCI_IOV */
9260
9261 netif_device_detach(netdev);
9262
9263 if (state == pci_channel_io_perm_failure)
9264 return PCI_ERS_RESULT_DISCONNECT;
9265
9266 if (netif_running(netdev))
9267 igb_down(adapter);
9268 pci_disable_device(pdev);
9269
9270 /* Request a slot slot reset. */
9271 return PCI_ERS_RESULT_NEED_RESET;
9272}
9273
9274/**
9275 * igb_io_slot_reset - called after the pci bus has been reset.
9276 * @pdev: Pointer to PCI device
9277 *
9278 * Restart the card from scratch, as if from a cold-boot. Implementation
9279 * resembles the first-half of the igb_resume routine.
9280 */
9281static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9282{
9283 struct net_device *netdev = pci_get_drvdata(pdev);
9284 struct igb_adapter *adapter = netdev_priv(netdev);
9285 struct e1000_hw *hw = &adapter->hw;
9286 pci_ers_result_t result;
9287
9288 if (pci_enable_device_mem(pdev)) {
9289 dev_err(pci_dev_to_dev(pdev),
9290 "Cannot re-enable PCI device after reset.\n");
9291 result = PCI_ERS_RESULT_DISCONNECT;
9292 } else {
9293 pci_set_master(pdev);
9294 pci_restore_state(pdev);
9295 pci_save_state(pdev);
9296
9297 pci_enable_wake(pdev, PCI_D3hot, 0);
9298 pci_enable_wake(pdev, PCI_D3cold, 0);
9299
9300 schedule_work(&adapter->reset_task);
9301 E1000_WRITE_REG(hw, E1000_WUS, ~0);
9302 result = PCI_ERS_RESULT_RECOVERED;
9303 }
9304
9305 pci_cleanup_aer_uncorrect_error_status(pdev);
9306
9307 return result;
9308}
9309
9310/**
9311 * igb_io_resume - called when traffic can start flowing again.
9312 * @pdev: Pointer to PCI device
9313 *
9314 * This callback is called when the error recovery driver tells us that
9315 * its OK to resume normal operation. Implementation resembles the
9316 * second-half of the igb_resume routine.
9317 */
9318static void igb_io_resume(struct pci_dev *pdev)
9319{
9320 struct net_device *netdev = pci_get_drvdata(pdev);
9321 struct igb_adapter *adapter = netdev_priv(netdev);
9322
9323 if (adapter->vferr_refcount) {
9324 dev_info(pci_dev_to_dev(pdev), "Resuming after VF err\n");
9325 adapter->vferr_refcount--;
9326 return;
9327 }
9328
9329 if (netif_running(netdev)) {
9330 if (igb_up(adapter)) {
9331 dev_err(pci_dev_to_dev(pdev), "igb_up failed after reset\n");
9332 return;
9333 }
9334 }
9335
9336 netif_device_attach(netdev);
9337
9338 /* let the f/w know that the h/w is now under the control of the
9339 * driver. */
9340 igb_get_hw_control(adapter);
9341}
9342
9343#endif /* HAVE_PCI_ERS */
9344
9345int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue)
9346{
9347 struct e1000_hw *hw = &adapter->hw;
9348 int i;
9349
9350 if (is_zero_ether_addr(addr))
9351 return 0;
9352
9353 for (i = 0; i < hw->mac.rar_entry_count; i++) {
9354 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
9355 continue;
9356 adapter->mac_table[i].state = (IGB_MAC_STATE_MODIFIED |
9357 IGB_MAC_STATE_IN_USE);
9358 memcpy(adapter->mac_table[i].addr, addr, ETH_ALEN);
9359 adapter->mac_table[i].queue = queue;
9360 igb_sync_mac_table(adapter);
9361 return 0;
9362 }
9363 return -ENOMEM;
9364}
9365int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue)
9366{
9367 /* search table for addr, if found, set to 0 and sync */
9368 int i;
9369 struct e1000_hw *hw = &adapter->hw;
9370
9371 if (is_zero_ether_addr(addr))
9372 return 0;
9373 for (i = 0; i < hw->mac.rar_entry_count; i++) {
9374 if (ether_addr_equal(addr, adapter->mac_table[i].addr) &&
9375 adapter->mac_table[i].queue == queue) {
9376 adapter->mac_table[i].state = IGB_MAC_STATE_MODIFIED;
9377 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
9378 adapter->mac_table[i].queue = 0;
9379 igb_sync_mac_table(adapter);
9380 return 0;
9381 }
9382 }
9383 return -ENOMEM;
9384}
9385static int igb_set_vf_mac(struct igb_adapter *adapter,
9386 int vf, unsigned char *mac_addr)
9387{
9388 igb_del_mac_filter(adapter, adapter->vf_data[vf].vf_mac_addresses, vf);
9389 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
9390
9391 igb_add_mac_filter(adapter, mac_addr, vf);
9392
9393 return 0;
9394}
9395
9396#ifdef IFLA_VF_MAX
9397static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9398{
9399 struct igb_adapter *adapter = netdev_priv(netdev);
9400 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
9401 return -EINVAL;
9402 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9403 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
9404 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
9405 " change effective.\n");
9406 if (test_bit(__IGB_DOWN, &adapter->state)) {
9407 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
9408 " but the PF device is not up.\n");
9409 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
9410 " attempting to use the VF device.\n");
9411 }
9412 return igb_set_vf_mac(adapter, vf, mac);
9413}
9414
9415static int igb_link_mbps(int internal_link_speed)
9416{
9417 switch (internal_link_speed) {
9418 case SPEED_100:
9419 return 100;
9420 case SPEED_1000:
9421 return 1000;
9422 case SPEED_2500:
9423 return 2500;
9424 default:
9425 return 0;
9426 }
9427}
9428
9429static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9430 int link_speed)
9431{
9432 int rf_dec, rf_int;
9433 u32 bcnrc_val;
9434
9435 if (tx_rate != 0) {
9436 /* Calculate the rate factor values to set */
9437 rf_int = link_speed / tx_rate;
9438 rf_dec = (link_speed - (rf_int * tx_rate));
9439 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
9440
9441 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9442 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
9443 E1000_RTTBCNRC_RF_INT_MASK);
9444 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9445 } else {
9446 bcnrc_val = 0;
9447 }
9448
9449 E1000_WRITE_REG(hw, E1000_RTTDQSEL, vf); /* vf X uses queue X */
9450 /*
9451 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9452 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9453 */
9454 E1000_WRITE_REG(hw, E1000_RTTBCNRM(0), 0x14);
9455 E1000_WRITE_REG(hw, E1000_RTTBCNRC, bcnrc_val);
9456}
9457
9458static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9459{
9460 int actual_link_speed, i;
9461 bool reset_rate = false;
9462
9463 /* VF TX rate limit was not set */
9464 if ((adapter->vf_rate_link_speed == 0) ||
9465 (adapter->hw.mac.type != e1000_82576))
9466 return;
9467
9468 actual_link_speed = igb_link_mbps(adapter->link_speed);
9469 if (actual_link_speed != adapter->vf_rate_link_speed) {
9470 reset_rate = true;
9471 adapter->vf_rate_link_speed = 0;
9472 dev_info(&adapter->pdev->dev,
9473 "Link speed has been changed. VF Transmit rate is disabled\n");
9474 }
9475
9476 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9477 if (reset_rate)
9478 adapter->vf_data[i].tx_rate = 0;
9479
9480 igb_set_vf_rate_limit(&adapter->hw, i,
9481 adapter->vf_data[i].tx_rate, actual_link_speed);
9482 }
9483}
9484
9485#ifdef HAVE_VF_MIN_MAX_TXRATE
9486static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int min_tx_rate,
9487 int tx_rate)
9488#else /* HAVE_VF_MIN_MAX_TXRATE */
9489static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
9490#endif /* HAVE_VF_MIN_MAX_TXRATE */
9491{
9492 struct igb_adapter *adapter = netdev_priv(netdev);
9493 struct e1000_hw *hw = &adapter->hw;
9494 int actual_link_speed;
9495
9496 if (hw->mac.type != e1000_82576)
9497 return -EOPNOTSUPP;
9498
9499#ifdef HAVE_VF_MIN_MAX_TXRATE
9500 if (min_tx_rate)
9501 return -EINVAL;
9502#endif /* HAVE_VF_MIN_MAX_TXRATE */
9503
9504 actual_link_speed = igb_link_mbps(adapter->link_speed);
9505 if ((vf >= adapter->vfs_allocated_count) ||
9506 (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) ||
9507 (tx_rate < 0) || (tx_rate > actual_link_speed))
9508 return -EINVAL;
9509
9510 adapter->vf_rate_link_speed = actual_link_speed;
9511 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
9512 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
9513
9514 return 0;
9515}
9516
9517static int igb_ndo_get_vf_config(struct net_device *netdev,
9518 int vf, struct ifla_vf_info *ivi)
9519{
9520 struct igb_adapter *adapter = netdev_priv(netdev);
9521 if (vf >= adapter->vfs_allocated_count)
9522 return -EINVAL;
9523 ivi->vf = vf;
9524 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9525#ifdef HAVE_VF_MIN_MAX_TXRATE
9526 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9527 ivi->min_tx_rate = 0;
9528#else /* HAVE_VF_MIN_MAX_TXRATE */
9529 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
9530#endif /* HAVE_VF_MIN_MAX_TXRATE */
9531 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9532 ivi->qos = adapter->vf_data[vf].pf_qos;
9533#ifdef HAVE_VF_SPOOFCHK_CONFIGURE
9534 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9535#endif
9536 return 0;
9537}
9538#endif
9539static void igb_vmm_control(struct igb_adapter *adapter)
9540{
9541 struct e1000_hw *hw = &adapter->hw;
9542 int count;
9543 u32 reg;
9544
9545 switch (hw->mac.type) {
9546 case e1000_82575:
9547 default:
9548 /* replication is not supported for 82575 */
9549 return;
9550 case e1000_82576:
9551 /* notify HW that the MAC is adding vlan tags */
9552 reg = E1000_READ_REG(hw, E1000_DTXCTL);
9553 reg |= (E1000_DTXCTL_VLAN_ADDED |
9554 E1000_DTXCTL_SPOOF_INT);
9555 E1000_WRITE_REG(hw, E1000_DTXCTL, reg);
9556 case e1000_82580:
9557 /* enable replication vlan tag stripping */
9558 reg = E1000_READ_REG(hw, E1000_RPLOLR);
9559 reg |= E1000_RPLOLR_STRVLAN;
9560 E1000_WRITE_REG(hw, E1000_RPLOLR, reg);
9561 case e1000_i350:
9562 case e1000_i354:
9563 /* none of the above registers are supported by i350 */
9564 break;
9565 }
9566
9567 /* Enable Malicious Driver Detection */
9568 if ((adapter->vfs_allocated_count) &&
9569 (adapter->mdd)) {
9570 if (hw->mac.type == e1000_i350)
9571 igb_enable_mdd(adapter);
9572 }
9573
9574 /* enable replication and loopback support */
9575 count = adapter->vfs_allocated_count || adapter->vmdq_pools;
9576 if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE && count)
9577 e1000_vmdq_set_loopback_pf(hw, 1);
9578 e1000_vmdq_set_anti_spoofing_pf(hw,
9579 adapter->vfs_allocated_count || adapter->vmdq_pools,
9580 adapter->vfs_allocated_count);
9581 e1000_vmdq_set_replication_pf(hw, adapter->vfs_allocated_count ||
9582 adapter->vmdq_pools);
9583}
9584
9585static void igb_init_fw(struct igb_adapter *adapter)
9586{
9587 struct e1000_fw_drv_info fw_cmd;
9588 struct e1000_hw *hw = &adapter->hw;
9589 int i;
9590 u16 mask;
9591
9592 if (hw->mac.type == e1000_i210)
9593 mask = E1000_SWFW_EEP_SM;
9594 else
9595 mask = E1000_SWFW_PHY0_SM;
9596 /* i211 parts do not support this feature */
9597 if (hw->mac.type == e1000_i211)
9598 hw->mac.arc_subsystem_valid = false;
9599
9600 if (!hw->mac.ops.acquire_swfw_sync(hw, mask)) {
9601 for (i = 0; i <= FW_MAX_RETRIES; i++) {
9602 E1000_WRITE_REG(hw, E1000_FWSTS, E1000_FWSTS_FWRI);
9603 fw_cmd.hdr.cmd = FW_CMD_DRV_INFO;
9604 fw_cmd.hdr.buf_len = FW_CMD_DRV_INFO_LEN;
9605 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CMD_RESERVED;
9606 fw_cmd.port_num = hw->bus.func;
9607 fw_cmd.drv_version = FW_FAMILY_DRV_VER;
9608 fw_cmd.hdr.checksum = 0;
9609 fw_cmd.hdr.checksum = e1000_calculate_checksum((u8 *)&fw_cmd,
9610 (FW_HDR_LEN +
9611 fw_cmd.hdr.buf_len));
9612 e1000_host_interface_command(hw, (u8*)&fw_cmd,
9613 sizeof(fw_cmd));
9614 if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_STATUS_SUCCESS)
9615 break;
9616 }
9617 } else
9618 dev_warn(pci_dev_to_dev(adapter->pdev),
9619 "Unable to get semaphore, firmware init failed.\n");
9620 hw->mac.ops.release_swfw_sync(hw, mask);
9621}
9622
9623static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9624{
9625 struct e1000_hw *hw = &adapter->hw;
9626 u32 dmac_thr;
9627 u16 hwm;
9628 u32 status;
9629
9630 if (hw->mac.type == e1000_i211)
9631 return;
9632
9633 if (hw->mac.type > e1000_82580) {
9634 if (adapter->dmac != IGB_DMAC_DISABLE) {
9635 u32 reg;
9636
9637 /* force threshold to 0. */
9638 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
9639
9640 /*
9641 * DMA Coalescing high water mark needs to be greater
9642 * than the Rx threshold. Set hwm to PBA - max frame
9643 * size in 16B units, capping it at PBA - 6KB.
9644 */
9645 hwm = 64 * pba - adapter->max_frame_size / 16;
9646 if (hwm < 64 * (pba - 6))
9647 hwm = 64 * (pba - 6);
9648 reg = E1000_READ_REG(hw, E1000_FCRTC);
9649 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9650 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9651 & E1000_FCRTC_RTH_COAL_MASK);
9652 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
9653
9654 /*
9655 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
9656 * frame size, capping it at PBA - 10KB.
9657 */
9658 dmac_thr = pba - adapter->max_frame_size / 512;
9659 if (dmac_thr < pba - 10)
9660 dmac_thr = pba - 10;
9661 reg = E1000_READ_REG(hw, E1000_DMACR);
9662 reg &= ~E1000_DMACR_DMACTHR_MASK;
9663 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9664 & E1000_DMACR_DMACTHR_MASK);
9665
9666 /* transition to L0x or L1 if available..*/
9667 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9668
9669 /* Check if status is 2.5Gb backplane connection
9670 * before configuration of watchdog timer, which is
9671 * in msec values in 12.8usec intervals
9672 * watchdog timer= msec values in 32usec intervals
9673 * for non 2.5Gb connection
9674 */
9675 if (hw->mac.type == e1000_i354) {
9676 status = E1000_READ_REG(hw, E1000_STATUS);
9677 if ((status & E1000_STATUS_2P5_SKU) &&
9678 (!(status & E1000_STATUS_2P5_SKU_OVER)))
9679 reg |= ((adapter->dmac * 5) >> 6);
9680 else
9681 reg |= ((adapter->dmac) >> 5);
9682 } else {
9683 reg |= ((adapter->dmac) >> 5);
9684 }
9685
9686 /*
9687 * Disable BMC-to-OS Watchdog enable
9688 * on devices that support OS-to-BMC
9689 */
9690 if (hw->mac.type != e1000_i354)
9691 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9692 E1000_WRITE_REG(hw, E1000_DMACR, reg);
9693
9694 /* no lower threshold to disable coalescing(smart fifb)-UTRESH=0*/
9695 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
9696
9697 /* This sets the time to wait before requesting
9698 * transition to low power state to number of usecs
9699 * needed to receive 1 512 byte frame at gigabit
9700 * line rate. On i350 device, time to make transition
9701 * to Lx state is delayed by 4 usec with flush disable
9702 * bit set to avoid losing mailbox interrupts
9703 */
9704 reg = E1000_READ_REG(hw, E1000_DMCTLX);
9705 if (hw->mac.type == e1000_i350)
9706 reg |= IGB_DMCTLX_DCFLUSH_DIS;
9707
9708 /* in 2.5Gb connection, TTLX unit is 0.4 usec
9709 * which is 0x4*2 = 0xA. But delay is still 4 usec
9710 */
9711 if (hw->mac.type == e1000_i354) {
9712 status = E1000_READ_REG(hw, E1000_STATUS);
9713 if ((status & E1000_STATUS_2P5_SKU) &&
9714 (!(status & E1000_STATUS_2P5_SKU_OVER)))
9715 reg |= 0xA;
9716 else
9717 reg |= 0x4;
9718 } else {
9719 reg |= 0x4;
9720 }
9721 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
9722
9723 /* free space in tx packet buffer to wake from DMA coal */
9724 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9725 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9726
9727 /* make low power state decision controlled by DMA coal */
9728 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
9729 reg &= ~E1000_PCIEMISC_LX_DECISION;
9730 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
9731 } /* endif adapter->dmac is not disabled */
9732 } else if (hw->mac.type == e1000_82580) {
9733 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
9734 E1000_WRITE_REG(hw, E1000_PCIEMISC,
9735 reg & ~E1000_PCIEMISC_LX_DECISION);
9736 E1000_WRITE_REG(hw, E1000_DMACR, 0);
9737 }
9738}
9739
9740#ifdef HAVE_I2C_SUPPORT
9741/* igb_read_i2c_byte - Reads 8 bit word over I2C
9742 * @hw: pointer to hardware structure
9743 * @byte_offset: byte offset to read
9744 * @dev_addr: device address
9745 * @data: value read
9746 *
9747 * Performs byte read operation over I2C interface at
9748 * a specified device address.
9749 */
9750s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9751 u8 dev_addr, u8 *data)
9752{
9753 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9754 struct i2c_client *this_client = adapter->i2c_client;
9755 s32 status;
9756 u16 swfw_mask = 0;
9757
9758 if (!this_client)
9759 return E1000_ERR_I2C;
9760
9761 swfw_mask = E1000_SWFW_PHY0_SM;
9762
9763 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
9764 != E1000_SUCCESS)
9765 return E1000_ERR_SWFW_SYNC;
9766
9767 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9768 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9769
9770 if (status < 0)
9771 return E1000_ERR_I2C;
9772 else {
9773 *data = status;
9774 return E1000_SUCCESS;
9775 }
9776}
9777
9778/* igb_write_i2c_byte - Writes 8 bit word over I2C
9779 * @hw: pointer to hardware structure
9780 * @byte_offset: byte offset to write
9781 * @dev_addr: device address
9782 * @data: value to write
9783 *
9784 * Performs byte write operation over I2C interface at
9785 * a specified device address.
9786 */
9787s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9788 u8 dev_addr, u8 data)
9789{
9790 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9791 struct i2c_client *this_client = adapter->i2c_client;
9792 s32 status;
9793 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9794
9795 if (!this_client)
9796 return E1000_ERR_I2C;
9797
9798 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
9799 return E1000_ERR_SWFW_SYNC;
9800 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9801 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9802
9803 if (status)
9804 return E1000_ERR_I2C;
9805 else
9806 return E1000_SUCCESS;
9807}
9808#endif /* HAVE_I2C_SUPPORT */
9809/* igb_main.c */
9810
9811
9812/**
9813 * igb_probe - Device Initialization Routine
9814 * @pdev: PCI device information struct
9815 * @ent: entry in igb_pci_tbl
9816 *
9817 * Returns 0 on success, negative on failure
9818 *
9819 * igb_probe initializes an adapter identified by a pci_dev structure.
9820 * The OS initialization, configuring of the adapter private structure,
9821 * and a hardware reset occur.
9822 **/
9823int igb_kni_probe(struct pci_dev *pdev,
9824 struct net_device **lad_dev)
9825{
9826 struct net_device *netdev;
9827 struct igb_adapter *adapter;
9828 struct e1000_hw *hw;
9829 u16 eeprom_data = 0;
9830 u8 pba_str[E1000_PBANUM_LENGTH];
9831 s32 ret_val;
9832 static int global_quad_port_a; /* global quad port a indication */
9833 int i, err, pci_using_dac = 0;
9834 static int cards_found;
9835
9836 err = pci_enable_device_mem(pdev);
9837 if (err)
9838 return err;
9839
9840#ifdef NO_KNI
9841 pci_using_dac = 0;
9842 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
9843 if (!err) {
9844 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64));
9845 if (!err)
9846 pci_using_dac = 1;
9847 } else {
9848 err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
9849 if (err) {
9850 err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32));
9851 if (err) {
9852 IGB_ERR("No usable DMA configuration, "
9853 "aborting\n");
9854 goto err_dma;
9855 }
9856 }
9857 }
9858
9859#ifndef HAVE_ASPM_QUIRKS
9860 /* 82575 requires that the pci-e link partner disable the L0s state */
9861 switch (pdev->device) {
9862 case E1000_DEV_ID_82575EB_COPPER:
9863 case E1000_DEV_ID_82575EB_FIBER_SERDES:
9864 case E1000_DEV_ID_82575GB_QUAD_COPPER:
9865 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
9866 default:
9867 break;
9868 }
9869
9870#endif /* HAVE_ASPM_QUIRKS */
9871 err = pci_request_selected_regions(pdev,
9872 pci_select_bars(pdev,
9873 IORESOURCE_MEM),
9874 igb_driver_name);
9875 if (err)
9876 goto err_pci_reg;
9877
9878 pci_enable_pcie_error_reporting(pdev);
9879
9880 pci_set_master(pdev);
9881
9882 err = -ENOMEM;
9883#endif /* NO_KNI */
9884#ifdef HAVE_TX_MQ
9885 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
9886 IGB_MAX_TX_QUEUES);
9887#else
9888 netdev = alloc_etherdev(sizeof(struct igb_adapter));
9889#endif /* HAVE_TX_MQ */
9890 if (!netdev)
9891 goto err_alloc_etherdev;
9892
9893 SET_MODULE_OWNER(netdev);
9894 SET_NETDEV_DEV(netdev, &pdev->dev);
9895
9896 //pci_set_drvdata(pdev, netdev);
9897 adapter = netdev_priv(netdev);
9898 adapter->netdev = netdev;
9899 adapter->pdev = pdev;
9900 hw = &adapter->hw;
9901 hw->back = adapter;
9902 adapter->port_num = hw->bus.func;
9903 adapter->msg_enable = (1 << debug) - 1;
9904
9905#ifdef HAVE_PCI_ERS
9906 err = pci_save_state(pdev);
9907 if (err)
9908 goto err_ioremap;
9909#endif
9910 err = -EIO;
9911 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
9912 pci_resource_len(pdev, 0));
9913 if (!hw->hw_addr)
9914 goto err_ioremap;
9915
9916#ifdef HAVE_NET_DEVICE_OPS
9917 netdev->netdev_ops = &igb_netdev_ops;
9918#else /* HAVE_NET_DEVICE_OPS */
9919 netdev->open = &igb_open;
9920 netdev->stop = &igb_close;
9921 netdev->get_stats = &igb_get_stats;
9922#ifdef HAVE_SET_RX_MODE
9923 netdev->set_rx_mode = &igb_set_rx_mode;
9924#endif
9925 netdev->set_multicast_list = &igb_set_rx_mode;
9926 netdev->set_mac_address = &igb_set_mac;
9927 netdev->change_mtu = &igb_change_mtu;
9928 netdev->do_ioctl = &igb_ioctl;
9929#ifdef HAVE_TX_TIMEOUT
9930 netdev->tx_timeout = &igb_tx_timeout;
9931#endif
9932 netdev->vlan_rx_register = igb_vlan_mode;
9933 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
9934 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
9935#ifdef CONFIG_NET_POLL_CONTROLLER
9936 netdev->poll_controller = igb_netpoll;
9937#endif
9938 netdev->hard_start_xmit = &igb_xmit_frame;
9939#endif /* HAVE_NET_DEVICE_OPS */
9940 igb_set_ethtool_ops(netdev);
9941#ifdef HAVE_TX_TIMEOUT
9942 netdev->watchdog_timeo = 5 * HZ;
9943#endif
9944
9945 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
9946
9947 adapter->bd_number = cards_found;
9948
9949 /* setup the private structure */
9950 err = igb_sw_init(adapter);
9951 if (err)
9952 goto err_sw_init;
9953
9954 e1000_get_bus_info(hw);
9955
9956 hw->phy.autoneg_wait_to_complete = FALSE;
9957 hw->mac.adaptive_ifs = FALSE;
9958
9959 /* Copper options */
9960 if (hw->phy.media_type == e1000_media_type_copper) {
9961 hw->phy.mdix = AUTO_ALL_MODES;
9962 hw->phy.disable_polarity_correction = FALSE;
9963 hw->phy.ms_type = e1000_ms_hw_default;
9964 }
9965
9966 if (e1000_check_reset_block(hw))
9967 dev_info(pci_dev_to_dev(pdev),
9968 "PHY reset is blocked due to SOL/IDER session.\n");
9969
9970 /*
9971 * features is initialized to 0 in allocation, it might have bits
9972 * set by igb_sw_init so we should use an or instead of an
9973 * assignment.
9974 */
9975 netdev->features |= NETIF_F_SG |
9976 NETIF_F_IP_CSUM |
9977#ifdef NETIF_F_IPV6_CSUM
9978 NETIF_F_IPV6_CSUM |
9979#endif
9980#ifdef NETIF_F_TSO
9981 NETIF_F_TSO |
9982#ifdef NETIF_F_TSO6
9983 NETIF_F_TSO6 |
9984#endif
9985#endif /* NETIF_F_TSO */
9986#ifdef NETIF_F_RXHASH
9987 NETIF_F_RXHASH |
9988#endif
9989 NETIF_F_RXCSUM |
9990#ifdef NETIF_F_HW_VLAN_CTAG_RX
9991 NETIF_F_HW_VLAN_CTAG_RX |
9992 NETIF_F_HW_VLAN_CTAG_TX;
9993#else
9994 NETIF_F_HW_VLAN_RX |
9995 NETIF_F_HW_VLAN_TX;
9996#endif
9997
9998 if (hw->mac.type >= e1000_82576)
9999 netdev->features |= NETIF_F_SCTP_CSUM;
10000
10001#ifdef HAVE_NDO_SET_FEATURES
10002 /* copy netdev features into list of user selectable features */
10003 netdev->hw_features |= netdev->features;
10004#ifndef IGB_NO_LRO
10005
10006 /* give us the option of enabling LRO later */
10007 netdev->hw_features |= NETIF_F_LRO;
10008#endif
10009#else
10010#ifdef NETIF_F_GRO
10011
10012 /* this is only needed on kernels prior to 2.6.39 */
10013 netdev->features |= NETIF_F_GRO;
10014#endif
10015#endif
10016
10017 /* set this bit last since it cannot be part of hw_features */
10018#ifdef NETIF_F_HW_VLAN_CTAG_FILTER
10019 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
10020#else
10021 netdev->features |= NETIF_F_HW_VLAN_FILTER;
10022#endif
10023
10024#ifdef HAVE_NETDEV_VLAN_FEATURES
10025 netdev->vlan_features |= NETIF_F_TSO |
10026 NETIF_F_TSO6 |
10027 NETIF_F_IP_CSUM |
10028 NETIF_F_IPV6_CSUM |
10029 NETIF_F_SG;
10030
10031#endif
10032 if (pci_using_dac)
10033 netdev->features |= NETIF_F_HIGHDMA;
10034
10035#ifdef NO_KNI
10036 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
10037#ifdef DEBUG
10038 if (adapter->dmac != IGB_DMAC_DISABLE)
10039 printk("%s: DMA Coalescing is enabled..\n", netdev->name);
10040#endif
10041
10042 /* before reading the NVM, reset the controller to put the device in a
10043 * known good starting state */
10044 e1000_reset_hw(hw);
10045#endif /* NO_KNI */
10046
10047 /* make sure the NVM is good */
10048 if (e1000_validate_nvm_checksum(hw) < 0) {
10049 dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not"
10050 " Valid\n");
10051 err = -EIO;
10052 goto err_eeprom;
10053 }
10054
10055 /* copy the MAC address out of the NVM */
10056 if (e1000_read_mac_addr(hw))
10057 dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n");
10058 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
10059#ifdef ETHTOOL_GPERMADDR
10060 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
10061
10062 if (!is_valid_ether_addr(netdev->perm_addr)) {
10063#else
10064 if (!is_valid_ether_addr(netdev->dev_addr)) {
10065#endif
10066 dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n");
10067 err = -EIO;
10068 goto err_eeprom;
10069 }
10070
10071 memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len);
10072 adapter->mac_table[0].queue = adapter->vfs_allocated_count;
10073 adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE);
10074 igb_rar_set(adapter, 0);
10075
10076 /* get firmware version for ethtool -i */
10077 igb_set_fw_version(adapter);
10078
10079 /* Check if Media Autosense is enabled */
10080 if (hw->mac.type == e1000_82580)
10081 igb_init_mas(adapter);
10082
10083#ifdef NO_KNI
11fdf7f2
TL
10084#ifdef HAVE_TIMER_SETUP
10085 timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0);
10086 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
10087 timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0);
10088 timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0);
10089#else
7c673cae
FG
10090 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
10091 (unsigned long) adapter);
10092 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
10093 setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer,
10094 (unsigned long) adapter);
10095 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
10096 (unsigned long) adapter);
11fdf7f2 10097#endif
7c673cae
FG
10098
10099 INIT_WORK(&adapter->reset_task, igb_reset_task);
10100 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
10101 if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA)
10102 INIT_WORK(&adapter->dma_err_task, igb_dma_err_task);
10103#endif
10104
10105 /* Initialize link properties that are user-changeable */
10106 adapter->fc_autoneg = true;
10107 hw->mac.autoneg = true;
10108 hw->phy.autoneg_advertised = 0x2f;
10109
10110 hw->fc.requested_mode = e1000_fc_default;
10111 hw->fc.current_mode = e1000_fc_default;
10112
10113 e1000_validate_mdi_setting(hw);
10114
10115 /* By default, support wake on port A */
10116 if (hw->bus.func == 0)
10117 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10118
10119 /* Check the NVM for wake support for non-port A ports */
10120 if (hw->mac.type >= e1000_82580)
10121 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
10122 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
10123 &eeprom_data);
10124 else if (hw->bus.func == 1)
10125 e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
10126
10127 if (eeprom_data & IGB_EEPROM_APME)
10128 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10129
10130 /* now that we have the eeprom settings, apply the special cases where
10131 * the eeprom may be wrong or the board simply won't support wake on
10132 * lan on a particular port */
10133 switch (pdev->device) {
10134 case E1000_DEV_ID_82575GB_QUAD_COPPER:
10135 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10136 break;
10137 case E1000_DEV_ID_82575EB_FIBER_SERDES:
10138 case E1000_DEV_ID_82576_FIBER:
10139 case E1000_DEV_ID_82576_SERDES:
10140 /* Wake events only supported on port A for dual fiber
10141 * regardless of eeprom setting */
10142 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
10143 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10144 break;
10145 case E1000_DEV_ID_82576_QUAD_COPPER:
10146 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
10147 /* if quad port adapter, disable WoL on all but port A */
10148 if (global_quad_port_a != 0)
10149 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10150 else
10151 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
10152 /* Reset for multiple quad port adapters */
10153 if (++global_quad_port_a == 4)
10154 global_quad_port_a = 0;
10155 break;
10156 default:
10157 /* If the device can't wake, don't set software support */
10158 if (!device_can_wakeup(&adapter->pdev->dev))
10159 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
10160 break;
10161 }
10162
10163 /* initialize the wol settings based on the eeprom settings */
10164 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
10165 adapter->wol |= E1000_WUFC_MAG;
10166
10167 /* Some vendors want WoL disabled by default, but still supported */
10168 if ((hw->mac.type == e1000_i350) &&
10169 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
10170 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
10171 adapter->wol = 0;
10172 }
10173
10174#ifdef NO_KNI
10175 device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev),
10176 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
10177
10178 /* reset the hardware with the new settings */
10179 igb_reset(adapter);
10180 adapter->devrc = 0;
10181
10182#ifdef HAVE_I2C_SUPPORT
10183 /* Init the I2C interface */
10184 err = igb_init_i2c(adapter);
10185 if (err) {
10186 dev_err(&pdev->dev, "failed to init i2c interface\n");
10187 goto err_eeprom;
10188 }
10189#endif /* HAVE_I2C_SUPPORT */
10190
10191 /* let the f/w know that the h/w is now under the control of the
10192 * driver. */
10193 igb_get_hw_control(adapter);
10194
10195 strncpy(netdev->name, "eth%d", IFNAMSIZ);
10196 err = register_netdev(netdev);
10197 if (err)
10198 goto err_register;
10199
10200#ifdef CONFIG_IGB_VMDQ_NETDEV
10201 err = igb_init_vmdq_netdevs(adapter);
10202 if (err)
10203 goto err_register;
10204#endif
10205 /* carrier off reporting is important to ethtool even BEFORE open */
10206 netif_carrier_off(netdev);
10207
10208#ifdef IGB_DCA
10209 if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) {
10210 adapter->flags |= IGB_FLAG_DCA_ENABLED;
10211 dev_info(pci_dev_to_dev(pdev), "DCA enabled\n");
10212 igb_setup_dca(adapter);
10213 }
10214
10215#endif
10216#ifdef HAVE_PTP_1588_CLOCK
10217 /* do hw tstamp init after resetting */
10218 igb_ptp_init(adapter);
10219#endif /* HAVE_PTP_1588_CLOCK */
10220
10221#endif /* NO_KNI */
10222 dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n");
10223 /* print bus type/speed/width info */
10224 dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ",
10225 netdev->name,
10226 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" :
10227 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" :
10228 (hw->mac.type == e1000_i354) ? "integrated" :
10229 "unknown"),
10230 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
10231 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
10232 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
10233 (hw->mac.type == e1000_i354) ? "integrated" :
10234 "unknown"));
10235 dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name);
10236 for (i = 0; i < 6; i++)
10237 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
10238
10239 ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH);
10240 if (ret_val)
10241 strncpy(pba_str, "Unknown", sizeof(pba_str) - 1);
10242 dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name,
10243 pba_str);
10244
10245
10246 /* Initialize the thermal sensor on i350 devices. */
10247 if (hw->mac.type == e1000_i350) {
10248 if (hw->bus.func == 0) {
10249 u16 ets_word;
10250
10251 /*
10252 * Read the NVM to determine if this i350 device
10253 * supports an external thermal sensor.
10254 */
10255 e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word);
10256 if (ets_word != 0x0000 && ets_word != 0xFFFF)
10257 adapter->ets = true;
10258 else
10259 adapter->ets = false;
10260 }
10261#ifdef NO_KNI
10262#ifdef IGB_HWMON
10263
10264 igb_sysfs_init(adapter);
10265#else
10266#ifdef IGB_PROCFS
10267
10268 igb_procfs_init(adapter);
10269#endif /* IGB_PROCFS */
10270#endif /* IGB_HWMON */
10271#endif /* NO_KNI */
10272 } else {
10273 adapter->ets = false;
10274 }
10275
10276 if (hw->phy.media_type == e1000_media_type_copper) {
10277 switch (hw->mac.type) {
10278 case e1000_i350:
10279 case e1000_i210:
10280 case e1000_i211:
10281 /* Enable EEE for internal copper PHY devices */
10282 err = e1000_set_eee_i350(hw);
10283 if ((!err) &&
10284 (adapter->flags & IGB_FLAG_EEE))
10285 adapter->eee_advert =
10286 MDIO_EEE_100TX | MDIO_EEE_1000T;
10287 break;
10288 case e1000_i354:
10289 if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) &
10290 (E1000_CTRL_EXT_LINK_MODE_SGMII)) {
10291 err = e1000_set_eee_i354(hw);
10292 if ((!err) &&
10293 (adapter->flags & IGB_FLAG_EEE))
10294 adapter->eee_advert =
10295 MDIO_EEE_100TX | MDIO_EEE_1000T;
10296 }
10297 break;
10298 default:
10299 break;
10300 }
10301 }
10302
10303 /* send driver version info to firmware */
10304 if (hw->mac.type >= e1000_i350)
10305 igb_init_fw(adapter);
10306
10307#ifndef IGB_NO_LRO
10308 if (netdev->features & NETIF_F_LRO)
10309 dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n");
10310 else
10311 dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n");
10312#endif
10313 dev_info(pci_dev_to_dev(pdev),
10314 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
10315 adapter->msix_entries ? "MSI-X" :
10316 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
10317 adapter->num_rx_queues, adapter->num_tx_queues);
10318
10319 cards_found++;
10320 *lad_dev = netdev;
10321
10322 pm_runtime_put_noidle(&pdev->dev);
10323 return 0;
10324
10325//err_register:
10326// igb_release_hw_control(adapter);
10327#ifdef HAVE_I2C_SUPPORT
10328 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
10329#endif /* HAVE_I2C_SUPPORT */
10330err_eeprom:
10331// if (!e1000_check_reset_block(hw))
10332// e1000_phy_hw_reset(hw);
10333
10334 if (hw->flash_address)
10335 iounmap(hw->flash_address);
10336err_sw_init:
10337// igb_clear_interrupt_scheme(adapter);
10338// igb_reset_sriov_capability(adapter);
10339 iounmap(hw->hw_addr);
10340err_ioremap:
10341 free_netdev(netdev);
10342err_alloc_etherdev:
10343// pci_release_selected_regions(pdev,
10344// pci_select_bars(pdev, IORESOURCE_MEM));
10345//err_pci_reg:
10346//err_dma:
10347 pci_disable_device(pdev);
10348 return err;
10349}
10350
10351
10352void igb_kni_remove(struct pci_dev *pdev)
10353{
10354 pci_disable_device(pdev);
10355}