]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/lib/librte_eal/linuxapp/eal/eal_memory.c
update download target update for octopus release
[ceph.git] / ceph / src / spdk / dpdk / lib / librte_eal / linuxapp / eal / eal_memory.c
CommitLineData
11fdf7f2
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2013 6WIND S.A.
4 */
5
6#define _FILE_OFFSET_BITS 64
7#include <errno.h>
8#include <stdarg.h>
9#include <stdbool.h>
10#include <stdlib.h>
11#include <stdio.h>
12#include <stdint.h>
13#include <inttypes.h>
14#include <string.h>
15#include <sys/mman.h>
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/queue.h>
19#include <sys/file.h>
20#include <unistd.h>
21#include <limits.h>
22#include <sys/ioctl.h>
23#include <sys/time.h>
24#include <signal.h>
25#include <setjmp.h>
26#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
27#include <numa.h>
28#include <numaif.h>
29#endif
30
31#include <rte_errno.h>
32#include <rte_log.h>
33#include <rte_memory.h>
34#include <rte_launch.h>
35#include <rte_eal.h>
36#include <rte_eal_memconfig.h>
37#include <rte_per_lcore.h>
38#include <rte_lcore.h>
39#include <rte_common.h>
40#include <rte_string_fns.h>
41
42#include "eal_private.h"
43#include "eal_memalloc.h"
44#include "eal_internal_cfg.h"
45#include "eal_filesystem.h"
46#include "eal_hugepages.h"
47
48#define PFN_MASK_SIZE 8
49
50/**
51 * @file
52 * Huge page mapping under linux
53 *
54 * To reserve a big contiguous amount of memory, we use the hugepage
55 * feature of linux. For that, we need to have hugetlbfs mounted. This
56 * code will create many files in this directory (one per page) and
57 * map them in virtual memory. For each page, we will retrieve its
58 * physical address and remap it in order to have a virtual contiguous
59 * zone as well as a physical contiguous zone.
60 */
61
62static bool phys_addrs_available = true;
63
64#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
65
66static void
67test_phys_addrs_available(void)
68{
69 uint64_t tmp = 0;
70 phys_addr_t physaddr;
71
72 if (!rte_eal_has_hugepages()) {
73 RTE_LOG(ERR, EAL,
74 "Started without hugepages support, physical addresses not available\n");
75 phys_addrs_available = false;
76 return;
77 }
78
79 physaddr = rte_mem_virt2phy(&tmp);
80 if (physaddr == RTE_BAD_PHYS_ADDR) {
81 if (rte_eal_iova_mode() == RTE_IOVA_PA)
82 RTE_LOG(ERR, EAL,
83 "Cannot obtain physical addresses: %s. "
84 "Only vfio will function.\n",
85 strerror(errno));
86 phys_addrs_available = false;
87 }
88}
89
90/*
91 * Get physical address of any mapped virtual address in the current process.
92 */
93phys_addr_t
94rte_mem_virt2phy(const void *virtaddr)
95{
96 int fd, retval;
97 uint64_t page, physaddr;
98 unsigned long virt_pfn;
99 int page_size;
100 off_t offset;
101
102 /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
103 if (!phys_addrs_available)
104 return RTE_BAD_IOVA;
105
106 /* standard page size */
107 page_size = getpagesize();
108
109 fd = open("/proc/self/pagemap", O_RDONLY);
110 if (fd < 0) {
111 RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
112 __func__, strerror(errno));
113 return RTE_BAD_IOVA;
114 }
115
116 virt_pfn = (unsigned long)virtaddr / page_size;
117 offset = sizeof(uint64_t) * virt_pfn;
118 if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
119 RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
120 __func__, strerror(errno));
121 close(fd);
122 return RTE_BAD_IOVA;
123 }
124
125 retval = read(fd, &page, PFN_MASK_SIZE);
126 close(fd);
127 if (retval < 0) {
128 RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
129 __func__, strerror(errno));
130 return RTE_BAD_IOVA;
131 } else if (retval != PFN_MASK_SIZE) {
132 RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap "
133 "but expected %d:\n",
134 __func__, retval, PFN_MASK_SIZE);
135 return RTE_BAD_IOVA;
136 }
137
138 /*
139 * the pfn (page frame number) are bits 0-54 (see
140 * pagemap.txt in linux Documentation)
141 */
142 if ((page & 0x7fffffffffffffULL) == 0)
143 return RTE_BAD_IOVA;
144
145 physaddr = ((page & 0x7fffffffffffffULL) * page_size)
146 + ((unsigned long)virtaddr % page_size);
147
148 return physaddr;
149}
150
151rte_iova_t
152rte_mem_virt2iova(const void *virtaddr)
153{
154 if (rte_eal_iova_mode() == RTE_IOVA_VA)
155 return (uintptr_t)virtaddr;
156 return rte_mem_virt2phy(virtaddr);
157}
158
159/*
160 * For each hugepage in hugepg_tbl, fill the physaddr value. We find
161 * it by browsing the /proc/self/pagemap special file.
162 */
163static int
164find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
165{
166 unsigned int i;
167 phys_addr_t addr;
168
169 for (i = 0; i < hpi->num_pages[0]; i++) {
170 addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
171 if (addr == RTE_BAD_PHYS_ADDR)
172 return -1;
173 hugepg_tbl[i].physaddr = addr;
174 }
175 return 0;
176}
177
178/*
179 * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
180 */
181static int
182set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
183{
184 unsigned int i;
185 static phys_addr_t addr;
186
187 for (i = 0; i < hpi->num_pages[0]; i++) {
188 hugepg_tbl[i].physaddr = addr;
189 addr += hugepg_tbl[i].size;
190 }
191 return 0;
192}
193
194/*
195 * Check whether address-space layout randomization is enabled in
196 * the kernel. This is important for multi-process as it can prevent
197 * two processes mapping data to the same virtual address
198 * Returns:
199 * 0 - address space randomization disabled
200 * 1/2 - address space randomization enabled
201 * negative error code on error
202 */
203static int
204aslr_enabled(void)
205{
206 char c;
207 int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
208 if (fd < 0)
209 return -errno;
210 retval = read(fd, &c, 1);
211 close(fd);
212 if (retval < 0)
213 return -errno;
214 if (retval == 0)
215 return -EIO;
216 switch (c) {
217 case '0' : return 0;
218 case '1' : return 1;
219 case '2' : return 2;
220 default: return -EINVAL;
221 }
222}
223
224static sigjmp_buf huge_jmpenv;
225
226static void huge_sigbus_handler(int signo __rte_unused)
227{
228 siglongjmp(huge_jmpenv, 1);
229}
230
231/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
232 * non-static local variable in the stack frame calling sigsetjmp might be
233 * clobbered by a call to longjmp.
234 */
235static int huge_wrap_sigsetjmp(void)
236{
237 return sigsetjmp(huge_jmpenv, 1);
238}
239
240#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
241/* Callback for numa library. */
242void numa_error(char *where)
243{
244 RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
245}
246#endif
247
248/*
249 * Mmap all hugepages of hugepage table: it first open a file in
250 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
251 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
252 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
253 * map contiguous physical blocks in contiguous virtual blocks.
254 */
255static unsigned
256map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
257 uint64_t *essential_memory __rte_unused)
258{
259 int fd;
260 unsigned i;
261 void *virtaddr;
262#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
263 int node_id = -1;
264 int essential_prev = 0;
265 int oldpolicy;
266 struct bitmask *oldmask = numa_allocate_nodemask();
267 bool have_numa = true;
268 unsigned long maxnode = 0;
269
270 /* Check if kernel supports NUMA. */
271 if (numa_available() != 0) {
272 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
273 have_numa = false;
274 }
275
276 if (have_numa) {
277 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
278 if (get_mempolicy(&oldpolicy, oldmask->maskp,
279 oldmask->size + 1, 0, 0) < 0) {
280 RTE_LOG(ERR, EAL,
281 "Failed to get current mempolicy: %s. "
282 "Assuming MPOL_DEFAULT.\n", strerror(errno));
283 oldpolicy = MPOL_DEFAULT;
284 }
285 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
286 if (internal_config.socket_mem[i])
287 maxnode = i + 1;
288 }
289#endif
290
291 for (i = 0; i < hpi->num_pages[0]; i++) {
292 struct hugepage_file *hf = &hugepg_tbl[i];
293 uint64_t hugepage_sz = hpi->hugepage_sz;
294
295#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
296 if (maxnode) {
297 unsigned int j;
298
299 for (j = 0; j < maxnode; j++)
300 if (essential_memory[j])
301 break;
302
303 if (j == maxnode) {
304 node_id = (node_id + 1) % maxnode;
305 while (!internal_config.socket_mem[node_id]) {
306 node_id++;
307 node_id %= maxnode;
308 }
309 essential_prev = 0;
310 } else {
311 node_id = j;
312 essential_prev = essential_memory[j];
313
314 if (essential_memory[j] < hugepage_sz)
315 essential_memory[j] = 0;
316 else
317 essential_memory[j] -= hugepage_sz;
318 }
319
320 RTE_LOG(DEBUG, EAL,
321 "Setting policy MPOL_PREFERRED for socket %d\n",
322 node_id);
323 numa_set_preferred(node_id);
324 }
325#endif
326
327 hf->file_id = i;
328 hf->size = hugepage_sz;
329 eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
330 hpi->hugedir, hf->file_id);
331 hf->filepath[sizeof(hf->filepath) - 1] = '\0';
332
333 /* try to create hugepage file */
334 fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
335 if (fd < 0) {
336 RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
337 strerror(errno));
338 goto out;
339 }
340
341 /* map the segment, and populate page tables,
342 * the kernel fills this segment with zeros. we don't care where
343 * this gets mapped - we already have contiguous memory areas
344 * ready for us to map into.
345 */
346 virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
347 MAP_SHARED | MAP_POPULATE, fd, 0);
348 if (virtaddr == MAP_FAILED) {
349 RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
350 strerror(errno));
351 close(fd);
352 goto out;
353 }
354
355 hf->orig_va = virtaddr;
356
357 /* In linux, hugetlb limitations, like cgroup, are
358 * enforced at fault time instead of mmap(), even
359 * with the option of MAP_POPULATE. Kernel will send
360 * a SIGBUS signal. To avoid to be killed, save stack
361 * environment here, if SIGBUS happens, we can jump
362 * back here.
363 */
364 if (huge_wrap_sigsetjmp()) {
365 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
366 "hugepages of size %u MB\n",
367 (unsigned int)(hugepage_sz / 0x100000));
368 munmap(virtaddr, hugepage_sz);
369 close(fd);
370 unlink(hugepg_tbl[i].filepath);
371#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
372 if (maxnode)
373 essential_memory[node_id] =
374 essential_prev;
375#endif
376 goto out;
377 }
378 *(int *)virtaddr = 0;
379
380 /* set shared lock on the file. */
381 if (flock(fd, LOCK_SH) < 0) {
382 RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
383 __func__, strerror(errno));
384 close(fd);
385 goto out;
386 }
387
388 close(fd);
389 }
390
391out:
392#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
393 if (maxnode) {
394 RTE_LOG(DEBUG, EAL,
395 "Restoring previous memory policy: %d\n", oldpolicy);
396 if (oldpolicy == MPOL_DEFAULT) {
397 numa_set_localalloc();
398 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
399 oldmask->size + 1) < 0) {
400 RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
401 strerror(errno));
402 numa_set_localalloc();
403 }
404 }
405 numa_free_cpumask(oldmask);
406#endif
407 return i;
408}
409
410/*
411 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
412 * page.
413 */
414static int
415find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
416{
417 int socket_id;
418 char *end, *nodestr;
419 unsigned i, hp_count = 0;
420 uint64_t virt_addr;
421 char buf[BUFSIZ];
422 char hugedir_str[PATH_MAX];
423 FILE *f;
424
425 f = fopen("/proc/self/numa_maps", "r");
426 if (f == NULL) {
427 RTE_LOG(NOTICE, EAL, "NUMA support not available"
428 " consider that all memory is in socket_id 0\n");
429 return 0;
430 }
431
432 snprintf(hugedir_str, sizeof(hugedir_str),
433 "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
434
435 /* parse numa map */
436 while (fgets(buf, sizeof(buf), f) != NULL) {
437
438 /* ignore non huge page */
439 if (strstr(buf, " huge ") == NULL &&
440 strstr(buf, hugedir_str) == NULL)
441 continue;
442
443 /* get zone addr */
444 virt_addr = strtoull(buf, &end, 16);
445 if (virt_addr == 0 || end == buf) {
446 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
447 goto error;
448 }
449
450 /* get node id (socket id) */
451 nodestr = strstr(buf, " N");
452 if (nodestr == NULL) {
453 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
454 goto error;
455 }
456 nodestr += 2;
457 end = strstr(nodestr, "=");
458 if (end == NULL) {
459 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
460 goto error;
461 }
462 end[0] = '\0';
463 end = NULL;
464
465 socket_id = strtoul(nodestr, &end, 0);
466 if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
467 RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
468 goto error;
469 }
470
471 /* if we find this page in our mappings, set socket_id */
472 for (i = 0; i < hpi->num_pages[0]; i++) {
473 void *va = (void *)(unsigned long)virt_addr;
474 if (hugepg_tbl[i].orig_va == va) {
475 hugepg_tbl[i].socket_id = socket_id;
476 hp_count++;
477#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
478 RTE_LOG(DEBUG, EAL,
479 "Hugepage %s is on socket %d\n",
480 hugepg_tbl[i].filepath, socket_id);
481#endif
482 }
483 }
484 }
485
486 if (hp_count < hpi->num_pages[0])
487 goto error;
488
489 fclose(f);
490 return 0;
491
492error:
493 fclose(f);
494 return -1;
495}
496
497static int
498cmp_physaddr(const void *a, const void *b)
499{
500#ifndef RTE_ARCH_PPC_64
501 const struct hugepage_file *p1 = a;
502 const struct hugepage_file *p2 = b;
503#else
504 /* PowerPC needs memory sorted in reverse order from x86 */
505 const struct hugepage_file *p1 = b;
506 const struct hugepage_file *p2 = a;
507#endif
508 if (p1->physaddr < p2->physaddr)
509 return -1;
510 else if (p1->physaddr > p2->physaddr)
511 return 1;
512 else
513 return 0;
514}
515
516/*
517 * Uses mmap to create a shared memory area for storage of data
518 * Used in this file to store the hugepage file map on disk
519 */
520static void *
521create_shared_memory(const char *filename, const size_t mem_size)
522{
523 void *retval;
524 int fd;
525
526 /* if no shared files mode is used, create anonymous memory instead */
527 if (internal_config.no_shconf) {
528 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
529 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
530 if (retval == MAP_FAILED)
531 return NULL;
532 return retval;
533 }
534
535 fd = open(filename, O_CREAT | O_RDWR, 0666);
536 if (fd < 0)
537 return NULL;
538 if (ftruncate(fd, mem_size) < 0) {
539 close(fd);
540 return NULL;
541 }
542 retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
543 close(fd);
544 if (retval == MAP_FAILED)
545 return NULL;
546 return retval;
547}
548
549/*
550 * this copies *active* hugepages from one hugepage table to another.
551 * destination is typically the shared memory.
552 */
553static int
554copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
555 const struct hugepage_file * src, int src_size)
556{
557 int src_pos, dst_pos = 0;
558
559 for (src_pos = 0; src_pos < src_size; src_pos++) {
560 if (src[src_pos].orig_va != NULL) {
561 /* error on overflow attempt */
562 if (dst_pos == dest_size)
563 return -1;
564 memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
565 dst_pos++;
566 }
567 }
568 return 0;
569}
570
571static int
572unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
573 unsigned num_hp_info)
574{
575 unsigned socket, size;
576 int page, nrpages = 0;
577
578 /* get total number of hugepages */
579 for (size = 0; size < num_hp_info; size++)
580 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
581 nrpages +=
582 internal_config.hugepage_info[size].num_pages[socket];
583
584 for (page = 0; page < nrpages; page++) {
585 struct hugepage_file *hp = &hugepg_tbl[page];
586
587 if (hp->orig_va != NULL && unlink(hp->filepath)) {
588 RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
589 __func__, hp->filepath, strerror(errno));
590 }
591 }
592 return 0;
593}
594
595/*
596 * unmaps hugepages that are not going to be used. since we originally allocate
597 * ALL hugepages (not just those we need), additional unmapping needs to be done.
598 */
599static int
600unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
601 struct hugepage_info *hpi,
602 unsigned num_hp_info)
603{
604 unsigned socket, size;
605 int page, nrpages = 0;
606
607 /* get total number of hugepages */
608 for (size = 0; size < num_hp_info; size++)
609 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
610 nrpages += internal_config.hugepage_info[size].num_pages[socket];
611
612 for (size = 0; size < num_hp_info; size++) {
613 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
614 unsigned pages_found = 0;
615
616 /* traverse until we have unmapped all the unused pages */
617 for (page = 0; page < nrpages; page++) {
618 struct hugepage_file *hp = &hugepg_tbl[page];
619
620 /* find a page that matches the criteria */
621 if ((hp->size == hpi[size].hugepage_sz) &&
622 (hp->socket_id == (int) socket)) {
623
624 /* if we skipped enough pages, unmap the rest */
625 if (pages_found == hpi[size].num_pages[socket]) {
626 uint64_t unmap_len;
627
628 unmap_len = hp->size;
629
630 /* get start addr and len of the remaining segment */
631 munmap(hp->orig_va,
632 (size_t)unmap_len);
633
634 hp->orig_va = NULL;
635 if (unlink(hp->filepath) == -1) {
636 RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
637 __func__, hp->filepath, strerror(errno));
638 return -1;
639 }
640 } else {
641 /* lock the page and skip */
642 pages_found++;
643 }
644
645 } /* match page */
646 } /* foreach page */
647 } /* foreach socket */
648 } /* foreach pagesize */
649
650 return 0;
651}
652
653static int
654remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
655{
656 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
657 struct rte_memseg_list *msl;
658 struct rte_fbarray *arr;
659 int cur_page, seg_len;
660 unsigned int msl_idx;
661 int ms_idx;
662 uint64_t page_sz;
663 size_t memseg_len;
664 int socket_id;
665
666 page_sz = hugepages[seg_start].size;
667 socket_id = hugepages[seg_start].socket_id;
668 seg_len = seg_end - seg_start;
669
670 RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
671 (seg_len * page_sz) >> 20ULL, socket_id);
672
673 /* find free space in memseg lists */
674 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
675 bool empty;
676 msl = &mcfg->memsegs[msl_idx];
677 arr = &msl->memseg_arr;
678
679 if (msl->page_sz != page_sz)
680 continue;
681 if (msl->socket_id != socket_id)
682 continue;
683
684 /* leave space for a hole if array is not empty */
685 empty = arr->count == 0;
686 ms_idx = rte_fbarray_find_next_n_free(arr, 0,
687 seg_len + (empty ? 0 : 1));
688
689 /* memseg list is full? */
690 if (ms_idx < 0)
691 continue;
692
693 /* leave some space between memsegs, they are not IOVA
694 * contiguous, so they shouldn't be VA contiguous either.
695 */
696 if (!empty)
697 ms_idx++;
698 break;
699 }
700 if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
701 RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
702 RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
703 RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
704 return -1;
705 }
706
707#ifdef RTE_ARCH_PPC64
708 /* for PPC64 we go through the list backwards */
709 for (cur_page = seg_end - 1; cur_page >= seg_start;
710 cur_page--, ms_idx++) {
711#else
712 for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
713#endif
714 struct hugepage_file *hfile = &hugepages[cur_page];
715 struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
716 void *addr;
717 int fd;
718
719 fd = open(hfile->filepath, O_RDWR);
720 if (fd < 0) {
721 RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
722 hfile->filepath, strerror(errno));
723 return -1;
724 }
725 /* set shared lock on the file. */
726 if (flock(fd, LOCK_SH) < 0) {
727 RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
728 hfile->filepath, strerror(errno));
729 close(fd);
730 return -1;
731 }
732 memseg_len = (size_t)page_sz;
733 addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
734
735 /* we know this address is already mmapped by memseg list, so
736 * using MAP_FIXED here is safe
737 */
738 addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
739 MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
740 if (addr == MAP_FAILED) {
741 RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
742 hfile->filepath, strerror(errno));
743 close(fd);
744 return -1;
745 }
746
747 /* we have a new address, so unmap previous one */
748#ifndef RTE_ARCH_64
749 /* in 32-bit legacy mode, we have already unmapped the page */
750 if (!internal_config.legacy_mem)
751 munmap(hfile->orig_va, page_sz);
752#else
753 munmap(hfile->orig_va, page_sz);
754#endif
755
756 hfile->orig_va = NULL;
757 hfile->final_va = addr;
758
759 /* rewrite physical addresses in IOVA as VA mode */
760 if (rte_eal_iova_mode() == RTE_IOVA_VA)
761 hfile->physaddr = (uintptr_t)addr;
762
763 /* set up memseg data */
764 ms->addr = addr;
765 ms->hugepage_sz = page_sz;
766 ms->len = memseg_len;
767 ms->iova = hfile->physaddr;
768 ms->socket_id = hfile->socket_id;
769 ms->nchannel = rte_memory_get_nchannel();
770 ms->nrank = rte_memory_get_nrank();
771
772 rte_fbarray_set_used(arr, ms_idx);
773
774 close(fd);
775 }
776 RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
777 (seg_len * page_sz) >> 20, socket_id);
778 return 0;
779}
780
781static uint64_t
782get_mem_amount(uint64_t page_sz, uint64_t max_mem)
783{
784 uint64_t area_sz, max_pages;
785
786 /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
787 max_pages = RTE_MAX_MEMSEG_PER_LIST;
788 max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
789
790 area_sz = RTE_MIN(page_sz * max_pages, max_mem);
791
792 /* make sure the list isn't smaller than the page size */
793 area_sz = RTE_MAX(area_sz, page_sz);
794
795 return RTE_ALIGN(area_sz, page_sz);
796}
797
798static int
799free_memseg_list(struct rte_memseg_list *msl)
800{
801 if (rte_fbarray_destroy(&msl->memseg_arr)) {
802 RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
803 return -1;
804 }
805 memset(msl, 0, sizeof(*msl));
806 return 0;
807}
808
809#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
810static int
811alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
812 int n_segs, int socket_id, int type_msl_idx)
813{
814 char name[RTE_FBARRAY_NAME_LEN];
815
816 snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
817 type_msl_idx);
818 if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
819 sizeof(struct rte_memseg))) {
820 RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
821 rte_strerror(rte_errno));
822 return -1;
823 }
824
825 msl->page_sz = page_sz;
826 msl->socket_id = socket_id;
827 msl->base_va = NULL;
828
829 RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
830 (size_t)page_sz >> 10, socket_id);
831
832 return 0;
833}
834
835static int
836alloc_va_space(struct rte_memseg_list *msl)
837{
838 uint64_t page_sz;
839 size_t mem_sz;
840 void *addr;
841 int flags = 0;
842
843#ifdef RTE_ARCH_PPC_64
844 flags |= MAP_HUGETLB;
845#endif
846
847 page_sz = msl->page_sz;
848 mem_sz = page_sz * msl->memseg_arr.len;
849
850 addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
851 if (addr == NULL) {
852 if (rte_errno == EADDRNOTAVAIL)
853 RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
854 (unsigned long long)mem_sz, msl->base_va);
855 else
856 RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
857 return -1;
858 }
859 msl->base_va = addr;
860
861 return 0;
862}
863
864/*
865 * Our VA space is not preallocated yet, so preallocate it here. We need to know
866 * how many segments there are in order to map all pages into one address space,
867 * and leave appropriate holes between segments so that rte_malloc does not
868 * concatenate them into one big segment.
869 *
870 * we also need to unmap original pages to free up address space.
871 */
872static int __rte_unused
873prealloc_segments(struct hugepage_file *hugepages, int n_pages)
874{
875 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
876 int cur_page, seg_start_page, end_seg, new_memseg;
877 unsigned int hpi_idx, socket, i;
878 int n_contig_segs, n_segs;
879 int msl_idx;
880
881 /* before we preallocate segments, we need to free up our VA space.
882 * we're not removing files, and we already have information about
883 * PA-contiguousness, so it is safe to unmap everything.
884 */
885 for (cur_page = 0; cur_page < n_pages; cur_page++) {
886 struct hugepage_file *hpi = &hugepages[cur_page];
887 munmap(hpi->orig_va, hpi->size);
888 hpi->orig_va = NULL;
889 }
890
891 /* we cannot know how many page sizes and sockets we have discovered, so
892 * loop over all of them
893 */
894 for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
895 hpi_idx++) {
896 uint64_t page_sz =
897 internal_config.hugepage_info[hpi_idx].hugepage_sz;
898
899 for (i = 0; i < rte_socket_count(); i++) {
900 struct rte_memseg_list *msl;
901
902 socket = rte_socket_id_by_idx(i);
903 n_contig_segs = 0;
904 n_segs = 0;
905 seg_start_page = -1;
906
907 for (cur_page = 0; cur_page < n_pages; cur_page++) {
908 struct hugepage_file *prev, *cur;
909 int prev_seg_start_page = -1;
910
911 cur = &hugepages[cur_page];
912 prev = cur_page == 0 ? NULL :
913 &hugepages[cur_page - 1];
914
915 new_memseg = 0;
916 end_seg = 0;
917
918 if (cur->size == 0)
919 end_seg = 1;
920 else if (cur->socket_id != (int) socket)
921 end_seg = 1;
922 else if (cur->size != page_sz)
923 end_seg = 1;
924 else if (cur_page == 0)
925 new_memseg = 1;
926#ifdef RTE_ARCH_PPC_64
927 /* On PPC64 architecture, the mmap always start
928 * from higher address to lower address. Here,
929 * physical addresses are in descending order.
930 */
931 else if ((prev->physaddr - cur->physaddr) !=
932 cur->size)
933 new_memseg = 1;
934#else
935 else if ((cur->physaddr - prev->physaddr) !=
936 cur->size)
937 new_memseg = 1;
938#endif
939 if (new_memseg) {
940 /* if we're already inside a segment,
941 * new segment means end of current one
942 */
943 if (seg_start_page != -1) {
944 end_seg = 1;
945 prev_seg_start_page =
946 seg_start_page;
947 }
948 seg_start_page = cur_page;
949 }
950
951 if (end_seg) {
952 if (prev_seg_start_page != -1) {
953 /* we've found a new segment */
954 n_contig_segs++;
955 n_segs += cur_page -
956 prev_seg_start_page;
957 } else if (seg_start_page != -1) {
958 /* we didn't find new segment,
959 * but did end current one
960 */
961 n_contig_segs++;
962 n_segs += cur_page -
963 seg_start_page;
964 seg_start_page = -1;
965 continue;
966 } else {
967 /* we're skipping this page */
968 continue;
969 }
970 }
971 /* segment continues */
972 }
973 /* check if we missed last segment */
974 if (seg_start_page != -1) {
975 n_contig_segs++;
976 n_segs += cur_page - seg_start_page;
977 }
978
979 /* if no segments were found, do not preallocate */
980 if (n_segs == 0)
981 continue;
982
983 /* we now have total number of pages that we will
984 * allocate for this segment list. add separator pages
985 * to the total count, and preallocate VA space.
986 */
987 n_segs += n_contig_segs - 1;
988
989 /* now, preallocate VA space for these segments */
990
991 /* first, find suitable memseg list for this */
992 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
993 msl_idx++) {
994 msl = &mcfg->memsegs[msl_idx];
995
996 if (msl->base_va != NULL)
997 continue;
998 break;
999 }
1000 if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
1001 RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
1002 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
1003 return -1;
1004 }
1005
1006 /* now, allocate fbarray itself */
1007 if (alloc_memseg_list(msl, page_sz, n_segs, socket,
1008 msl_idx) < 0)
1009 return -1;
1010
1011 /* finally, allocate VA space */
1012 if (alloc_va_space(msl) < 0)
1013 return -1;
1014 }
1015 }
1016 return 0;
1017}
1018
1019/*
1020 * We cannot reallocate memseg lists on the fly because PPC64 stores pages
1021 * backwards, therefore we have to process the entire memseg first before
1022 * remapping it into memseg list VA space.
1023 */
1024static int
1025remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
1026{
1027 int cur_page, seg_start_page, new_memseg, ret;
1028
1029 seg_start_page = 0;
1030 for (cur_page = 0; cur_page < n_pages; cur_page++) {
1031 struct hugepage_file *prev, *cur;
1032
1033 new_memseg = 0;
1034
1035 cur = &hugepages[cur_page];
1036 prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
1037
1038 /* if size is zero, no more pages left */
1039 if (cur->size == 0)
1040 break;
1041
1042 if (cur_page == 0)
1043 new_memseg = 1;
1044 else if (cur->socket_id != prev->socket_id)
1045 new_memseg = 1;
1046 else if (cur->size != prev->size)
1047 new_memseg = 1;
1048#ifdef RTE_ARCH_PPC_64
1049 /* On PPC64 architecture, the mmap always start from higher
1050 * address to lower address. Here, physical addresses are in
1051 * descending order.
1052 */
1053 else if ((prev->physaddr - cur->physaddr) != cur->size)
1054 new_memseg = 1;
1055#else
1056 else if ((cur->physaddr - prev->physaddr) != cur->size)
1057 new_memseg = 1;
1058#endif
1059
1060 if (new_memseg) {
1061 /* if this isn't the first time, remap segment */
1062 if (cur_page != 0) {
1063 ret = remap_segment(hugepages, seg_start_page,
1064 cur_page);
1065 if (ret != 0)
1066 return -1;
1067 }
1068 /* remember where we started */
1069 seg_start_page = cur_page;
1070 }
1071 /* continuation of previous memseg */
1072 }
1073 /* we were stopped, but we didn't remap the last segment, do it now */
1074 if (cur_page != 0) {
1075 ret = remap_segment(hugepages, seg_start_page,
1076 cur_page);
1077 if (ret != 0)
1078 return -1;
1079 }
1080 return 0;
1081}
1082
1083static inline uint64_t
1084get_socket_mem_size(int socket)
1085{
1086 uint64_t size = 0;
1087 unsigned i;
1088
1089 for (i = 0; i < internal_config.num_hugepage_sizes; i++){
1090 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1091 size += hpi->hugepage_sz * hpi->num_pages[socket];
1092 }
1093
1094 return size;
1095}
1096
1097/*
1098 * This function is a NUMA-aware equivalent of calc_num_pages.
1099 * It takes in the list of hugepage sizes and the
1100 * number of pages thereof, and calculates the best number of
1101 * pages of each size to fulfill the request for <memory> ram
1102 */
1103static int
1104calc_num_pages_per_socket(uint64_t * memory,
1105 struct hugepage_info *hp_info,
1106 struct hugepage_info *hp_used,
1107 unsigned num_hp_info)
1108{
1109 unsigned socket, j, i = 0;
1110 unsigned requested, available;
1111 int total_num_pages = 0;
1112 uint64_t remaining_mem, cur_mem;
1113 uint64_t total_mem = internal_config.memory;
1114
1115 if (num_hp_info == 0)
1116 return -1;
1117
1118 /* if specific memory amounts per socket weren't requested */
1119 if (internal_config.force_sockets == 0) {
1120 size_t total_size;
1121#ifdef RTE_ARCH_64
1122 int cpu_per_socket[RTE_MAX_NUMA_NODES];
1123 size_t default_size;
1124 unsigned lcore_id;
1125
1126 /* Compute number of cores per socket */
1127 memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
1128 RTE_LCORE_FOREACH(lcore_id) {
1129 cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
1130 }
1131
1132 /*
1133 * Automatically spread requested memory amongst detected sockets according
1134 * to number of cores from cpu mask present on each socket
1135 */
1136 total_size = internal_config.memory;
1137 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1138
1139 /* Set memory amount per socket */
1140 default_size = (internal_config.memory * cpu_per_socket[socket])
1141 / rte_lcore_count();
1142
1143 /* Limit to maximum available memory on socket */
1144 default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
1145
1146 /* Update sizes */
1147 memory[socket] = default_size;
1148 total_size -= default_size;
1149 }
1150
1151 /*
1152 * If some memory is remaining, try to allocate it by getting all
1153 * available memory from sockets, one after the other
1154 */
1155 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
1156 /* take whatever is available */
1157 default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
1158 total_size);
1159
1160 /* Update sizes */
1161 memory[socket] += default_size;
1162 total_size -= default_size;
1163 }
1164#else
1165 /* in 32-bit mode, allocate all of the memory only on master
1166 * lcore socket
1167 */
1168 total_size = internal_config.memory;
1169 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
1170 socket++) {
1171 struct rte_config *cfg = rte_eal_get_configuration();
1172 unsigned int master_lcore_socket;
1173
1174 master_lcore_socket =
1175 rte_lcore_to_socket_id(cfg->master_lcore);
1176
1177 if (master_lcore_socket != socket)
1178 continue;
1179
1180 /* Update sizes */
1181 memory[socket] = total_size;
1182 break;
1183 }
1184#endif
1185 }
1186
1187 for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
1188 /* skips if the memory on specific socket wasn't requested */
1189 for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
1190 strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
1191 sizeof(hp_used[i].hugedir));
1192 hp_used[i].num_pages[socket] = RTE_MIN(
1193 memory[socket] / hp_info[i].hugepage_sz,
1194 hp_info[i].num_pages[socket]);
1195
1196 cur_mem = hp_used[i].num_pages[socket] *
1197 hp_used[i].hugepage_sz;
1198
1199 memory[socket] -= cur_mem;
1200 total_mem -= cur_mem;
1201
1202 total_num_pages += hp_used[i].num_pages[socket];
1203
1204 /* check if we have met all memory requests */
1205 if (memory[socket] == 0)
1206 break;
1207
1208 /* check if we have any more pages left at this size, if so
1209 * move on to next size */
1210 if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
1211 continue;
1212 /* At this point we know that there are more pages available that are
1213 * bigger than the memory we want, so lets see if we can get enough
1214 * from other page sizes.
1215 */
1216 remaining_mem = 0;
1217 for (j = i+1; j < num_hp_info; j++)
1218 remaining_mem += hp_info[j].hugepage_sz *
1219 hp_info[j].num_pages[socket];
1220
1221 /* is there enough other memory, if not allocate another page and quit */
1222 if (remaining_mem < memory[socket]){
1223 cur_mem = RTE_MIN(memory[socket],
1224 hp_info[i].hugepage_sz);
1225 memory[socket] -= cur_mem;
1226 total_mem -= cur_mem;
1227 hp_used[i].num_pages[socket]++;
1228 total_num_pages++;
1229 break; /* we are done with this socket*/
1230 }
1231 }
1232 /* if we didn't satisfy all memory requirements per socket */
1233 if (memory[socket] > 0 &&
1234 internal_config.socket_mem[socket] != 0) {
1235 /* to prevent icc errors */
1236 requested = (unsigned) (internal_config.socket_mem[socket] /
1237 0x100000);
1238 available = requested -
1239 ((unsigned) (memory[socket] / 0x100000));
1240 RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
1241 "Requested: %uMB, available: %uMB\n", socket,
1242 requested, available);
1243 return -1;
1244 }
1245 }
1246
1247 /* if we didn't satisfy total memory requirements */
1248 if (total_mem > 0) {
1249 requested = (unsigned) (internal_config.memory / 0x100000);
1250 available = requested - (unsigned) (total_mem / 0x100000);
1251 RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
1252 " available: %uMB\n", requested, available);
1253 return -1;
1254 }
1255 return total_num_pages;
1256}
1257
1258static inline size_t
1259eal_get_hugepage_mem_size(void)
1260{
1261 uint64_t size = 0;
1262 unsigned i, j;
1263
1264 for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
1265 struct hugepage_info *hpi = &internal_config.hugepage_info[i];
1266 if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
1267 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1268 size += hpi->hugepage_sz * hpi->num_pages[j];
1269 }
1270 }
1271 }
1272
1273 return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
1274}
1275
1276static struct sigaction huge_action_old;
1277static int huge_need_recover;
1278
1279static void
1280huge_register_sigbus(void)
1281{
1282 sigset_t mask;
1283 struct sigaction action;
1284
1285 sigemptyset(&mask);
1286 sigaddset(&mask, SIGBUS);
1287 action.sa_flags = 0;
1288 action.sa_mask = mask;
1289 action.sa_handler = huge_sigbus_handler;
1290
1291 huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
1292}
1293
1294static void
1295huge_recover_sigbus(void)
1296{
1297 if (huge_need_recover) {
1298 sigaction(SIGBUS, &huge_action_old, NULL);
1299 huge_need_recover = 0;
1300 }
1301}
1302
1303/*
1304 * Prepare physical memory mapping: fill configuration structure with
1305 * these infos, return 0 on success.
1306 * 1. map N huge pages in separate files in hugetlbfs
1307 * 2. find associated physical addr
1308 * 3. find associated NUMA socket ID
1309 * 4. sort all huge pages by physical address
1310 * 5. remap these N huge pages in the correct order
1311 * 6. unmap the first mapping
1312 * 7. fill memsegs in configuration with contiguous zones
1313 */
1314static int
1315eal_legacy_hugepage_init(void)
1316{
1317 struct rte_mem_config *mcfg;
1318 struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
1319 struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1320 struct rte_fbarray *arr;
1321 struct rte_memseg *ms;
1322
1323 uint64_t memory[RTE_MAX_NUMA_NODES];
1324
1325 unsigned hp_offset;
1326 int i, j;
1327 int nr_hugefiles, nr_hugepages = 0;
1328 void *addr;
1329
1330 test_phys_addrs_available();
1331
1332 memset(used_hp, 0, sizeof(used_hp));
1333
1334 /* get pointer to global configuration */
1335 mcfg = rte_eal_get_configuration()->mem_config;
1336
1337 /* hugetlbfs can be disabled */
1338 if (internal_config.no_hugetlbfs) {
1339 struct rte_memseg_list *msl;
1340 uint64_t page_sz;
1341 int n_segs, cur_seg;
1342
1343 /* nohuge mode is legacy mode */
1344 internal_config.legacy_mem = 1;
1345
1346 /* create a memseg list */
1347 msl = &mcfg->memsegs[0];
1348
1349 page_sz = RTE_PGSIZE_4K;
1350 n_segs = internal_config.memory / page_sz;
1351
1352 if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
1353 sizeof(struct rte_memseg))) {
1354 RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1355 return -1;
1356 }
1357
1358 addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
1359 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1360 if (addr == MAP_FAILED) {
1361 RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1362 strerror(errno));
1363 return -1;
1364 }
1365 msl->base_va = addr;
1366 msl->page_sz = page_sz;
1367 msl->socket_id = 0;
1368
1369 /* populate memsegs. each memseg is one page long */
1370 for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
1371 arr = &msl->memseg_arr;
1372
1373 ms = rte_fbarray_get(arr, cur_seg);
1374 if (rte_eal_iova_mode() == RTE_IOVA_VA)
1375 ms->iova = (uintptr_t)addr;
1376 else
1377 ms->iova = RTE_BAD_IOVA;
1378 ms->addr = addr;
1379 ms->hugepage_sz = page_sz;
1380 ms->socket_id = 0;
1381 ms->len = page_sz;
1382
1383 rte_fbarray_set_used(arr, cur_seg);
1384
1385 addr = RTE_PTR_ADD(addr, (size_t)page_sz);
1386 }
1387 return 0;
1388 }
1389
1390 /* allocate single hugetlbfs file on the master numa node */
1391 if (internal_config.single_file_segments) {
1392 struct hugepage_info *hpi = NULL;
1393 struct rte_memseg_list *msl;
1394 size_t vma_len;
1395 int n_segs, cur_seg;
1396 char filepath[PATH_MAX];
1397 unsigned node_id = 0;
1398#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1399 int oldpolicy;
1400 struct bitmask *oldmask = numa_allocate_nodemask();
1401 bool have_numa = true;
1402
1403 node_id = rte_lcore_to_socket_id(rte_get_master_lcore());
1404 if (numa_available() != 0) {
1405 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
1406 have_numa = false;
1407 } else {
1408 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
1409 if (get_mempolicy(&oldpolicy, oldmask->maskp,
1410 oldmask->size + 1, 0, 0) < 0) {
1411 RTE_LOG(ERR, EAL,
1412 "Failed to get current mempolicy: %s. "
1413 "Assuming MPOL_DEFAULT.\n", strerror(errno));
1414 oldpolicy = MPOL_DEFAULT;
1415 }
1416
1417 RTE_LOG(DEBUG, EAL,
1418 "Setting policy MPOL_PREFERRED for socket %d\n",
1419 node_id);
1420 numa_set_preferred(node_id);
1421 }
1422#endif
1423
1424 if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1425 internal_config.memory = eal_get_hugepage_mem_size();
1426
1427 /* choose optimal hugetlbfs for the mapping */
1428 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1429 hpi = &internal_config.hugepage_info[i];
1430 if (hpi->hugepage_sz > internal_config.memory ||
1431 hpi->num_pages[0] * hpi->hugepage_sz <
1432 internal_config.memory)
1433 hpi = NULL;
1434 }
1435
1436 if (hpi == NULL) {
1437 RTE_LOG(ERR, EAL,
1438 "Cannot find a single hugetlbfs with %"PRIu64" MB free mem.\n",
1439 internal_config.memory);
1440 return -1;
1441 }
1442
1443 eal_get_hugefile_path(filepath, sizeof(filepath), hpi->hugedir, 0);
1444 filepath[sizeof(filepath) - 1] = '\0';
1445
1446 /* try to create hugepage file */
1447 int fd = open(filepath, O_CREAT | O_RDWR, 0600);
1448 if (fd < 0) {
1449 RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
1450 strerror(errno));
1451 return -1;
1452 }
1453
1454 /* length needs to be manually aligned for future munmap */
1455 vma_len = RTE_ALIGN_CEIL(internal_config.memory, hpi->hugepage_sz);
1456 addr = eal_get_virtual_area(NULL, &vma_len, hpi->hugepage_sz, 0, 0);
1457 if (addr == NULL) {
1458 RTE_LOG(ERR, EAL,
1459 "Cannot reserve virtually-contiguous %"PRIu64" MB.\n",
1460 internal_config.memory);
1461 return -1;
1462 }
1463
1464 addr = mmap(addr, vma_len, PROT_READ | PROT_WRITE,
1465 MAP_SHARED | MAP_POPULATE, fd, 0);
1466 if (addr == MAP_FAILED) {
1467 RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
1468 strerror(errno));
1469 return -1;
1470 }
1471
1472#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1473 if (have_numa) {
1474 RTE_LOG(DEBUG, EAL,
1475 "Restoring previous memory policy: %d\n", oldpolicy);
1476 if (oldpolicy == MPOL_DEFAULT) {
1477 numa_set_localalloc();
1478 } else if (set_mempolicy(oldpolicy, oldmask->maskp,
1479 oldmask->size + 1) < 0) {
1480 RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
1481 strerror(errno));
1482 numa_set_localalloc();
1483 }
1484 }
1485 numa_free_cpumask(oldmask);
1486#endif
1487 /* create a memseg list */
1488 msl = &mcfg->memsegs[0];
1489
1490 n_segs = vma_len / hpi->hugepage_sz;
1491
1492 if (rte_fbarray_init(&msl->memseg_arr, "singlefileseg", n_segs,
1493 sizeof(struct rte_memseg))) {
1494 RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
1495 return -1;
1496 }
1497
1498 msl->base_va = addr;
1499 msl->page_sz = hpi->hugepage_sz;
1500 msl->socket_id = node_id;
1501
1502 /* populate memsegs. each memseg is one page long */
1503 for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
1504 arr = &msl->memseg_arr;
1505
1506 ms = rte_fbarray_get(arr, cur_seg);
1507 if (rte_eal_iova_mode() == RTE_IOVA_VA)
1508 ms->iova = (uintptr_t)addr;
1509 else
1510 ms->iova = RTE_BAD_IOVA;
1511 ms->addr = addr;
1512 ms->hugepage_sz = hpi->hugepage_sz;
1513 ms->socket_id = node_id;
1514 ms->len = hpi->hugepage_sz;
1515
1516 rte_fbarray_set_used(arr, cur_seg);
1517
1518 addr = RTE_PTR_ADD(addr, (size_t)hpi->hugepage_sz);
1519 }
1520
1521 return 0;
1522 }
1523
1524 /* calculate total number of hugepages available. at this point we haven't
1525 * yet started sorting them so they all are on socket 0 */
1526 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1527 /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
1528 used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
1529
1530 nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
1531 }
1532
1533 /*
1534 * allocate a memory area for hugepage table.
1535 * this isn't shared memory yet. due to the fact that we need some
1536 * processing done on these pages, shared memory will be created
1537 * at a later stage.
1538 */
1539 tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
1540 if (tmp_hp == NULL)
1541 goto fail;
1542
1543 memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
1544
1545 hp_offset = 0; /* where we start the current page size entries */
1546
1547 huge_register_sigbus();
1548
1549 /* make a copy of socket_mem, needed for balanced allocation. */
1550 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1551 memory[i] = internal_config.socket_mem[i];
1552
1553 /* map all hugepages and sort them */
1554 for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
1555 unsigned pages_old, pages_new;
1556 struct hugepage_info *hpi;
1557
1558 /*
1559 * we don't yet mark hugepages as used at this stage, so
1560 * we just map all hugepages available to the system
1561 * all hugepages are still located on socket 0
1562 */
1563 hpi = &internal_config.hugepage_info[i];
1564
1565 if (hpi->num_pages[0] == 0)
1566 continue;
1567
1568 /* map all hugepages available */
1569 pages_old = hpi->num_pages[0];
1570 pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
1571 if (pages_new < pages_old) {
1572 RTE_LOG(DEBUG, EAL,
1573 "%d not %d hugepages of size %u MB allocated\n",
1574 pages_new, pages_old,
1575 (unsigned)(hpi->hugepage_sz / 0x100000));
1576
1577 int pages = pages_old - pages_new;
1578
1579 nr_hugepages -= pages;
1580 hpi->num_pages[0] = pages_new;
1581 if (pages_new == 0)
1582 continue;
1583 }
1584
1585 if (phys_addrs_available &&
1586 rte_eal_iova_mode() != RTE_IOVA_VA) {
1587 /* find physical addresses for each hugepage */
1588 if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1589 RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
1590 "for %u MB pages\n",
1591 (unsigned int)(hpi->hugepage_sz / 0x100000));
1592 goto fail;
1593 }
1594 } else {
1595 /* set physical addresses for each hugepage */
1596 if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
1597 RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
1598 "for %u MB pages\n",
1599 (unsigned int)(hpi->hugepage_sz / 0x100000));
1600 goto fail;
1601 }
1602 }
1603
1604 if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
1605 RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
1606 (unsigned)(hpi->hugepage_sz / 0x100000));
1607 goto fail;
1608 }
1609
1610 qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
1611 sizeof(struct hugepage_file), cmp_physaddr);
1612
1613 /* we have processed a num of hugepages of this size, so inc offset */
1614 hp_offset += hpi->num_pages[0];
1615 }
1616
1617 huge_recover_sigbus();
1618
1619 if (internal_config.memory == 0 && internal_config.force_sockets == 0)
1620 internal_config.memory = eal_get_hugepage_mem_size();
1621
1622 nr_hugefiles = nr_hugepages;
1623
1624
1625 /* clean out the numbers of pages */
1626 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
1627 for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
1628 internal_config.hugepage_info[i].num_pages[j] = 0;
1629
1630 /* get hugepages for each socket */
1631 for (i = 0; i < nr_hugefiles; i++) {
1632 int socket = tmp_hp[i].socket_id;
1633
1634 /* find a hugepage info with right size and increment num_pages */
1635 const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
1636 (int)internal_config.num_hugepage_sizes);
1637 for (j = 0; j < nb_hpsizes; j++) {
1638 if (tmp_hp[i].size ==
1639 internal_config.hugepage_info[j].hugepage_sz) {
1640 internal_config.hugepage_info[j].num_pages[socket]++;
1641 }
1642 }
1643 }
1644
1645 /* make a copy of socket_mem, needed for number of pages calculation */
1646 for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
1647 memory[i] = internal_config.socket_mem[i];
1648
1649 /* calculate final number of pages */
1650 nr_hugepages = calc_num_pages_per_socket(memory,
1651 internal_config.hugepage_info, used_hp,
1652 internal_config.num_hugepage_sizes);
1653
1654 /* error if not enough memory available */
1655 if (nr_hugepages < 0)
1656 goto fail;
1657
1658 /* reporting in! */
1659 for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
1660 for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
1661 if (used_hp[i].num_pages[j] > 0) {
1662 RTE_LOG(DEBUG, EAL,
1663 "Requesting %u pages of size %uMB"
1664 " from socket %i\n",
1665 used_hp[i].num_pages[j],
1666 (unsigned)
1667 (used_hp[i].hugepage_sz / 0x100000),
1668 j);
1669 }
1670 }
1671 }
1672
1673 /* create shared memory */
1674 hugepage = create_shared_memory(eal_hugepage_data_path(),
1675 nr_hugefiles * sizeof(struct hugepage_file));
1676
1677 if (hugepage == NULL) {
1678 RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
1679 goto fail;
1680 }
1681 memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
1682
1683 /*
1684 * unmap pages that we won't need (looks at used_hp).
1685 * also, sets final_va to NULL on pages that were unmapped.
1686 */
1687 if (unmap_unneeded_hugepages(tmp_hp, used_hp,
1688 internal_config.num_hugepage_sizes) < 0) {
1689 RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
1690 goto fail;
1691 }
1692
1693 /*
1694 * copy stuff from malloc'd hugepage* to the actual shared memory.
1695 * this procedure only copies those hugepages that have orig_va
1696 * not NULL. has overflow protection.
1697 */
1698 if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
1699 tmp_hp, nr_hugefiles) < 0) {
1700 RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
1701 goto fail;
1702 }
1703
1704#ifndef RTE_ARCH_64
1705 /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
1706 if (internal_config.legacy_mem &&
1707 prealloc_segments(hugepage, nr_hugefiles)) {
1708 RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
1709 goto fail;
1710 }
1711#endif
1712
1713 /* remap all pages we do need into memseg list VA space, so that those
1714 * pages become first-class citizens in DPDK memory subsystem
1715 */
1716 if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
1717 RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
1718 goto fail;
1719 }
1720
1721 /* free the hugepage backing files */
1722 if (internal_config.hugepage_unlink &&
1723 unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
1724 RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
1725 goto fail;
1726 }
1727
1728 /* free the temporary hugepage table */
1729 free(tmp_hp);
1730 tmp_hp = NULL;
1731
1732 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1733
1734 /* we're not going to allocate more pages, so release VA space for
1735 * unused memseg lists
1736 */
1737 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1738 struct rte_memseg_list *msl = &mcfg->memsegs[i];
1739 size_t mem_sz;
1740
1741 /* skip inactive lists */
1742 if (msl->base_va == NULL)
1743 continue;
1744 /* skip lists where there is at least one page allocated */
1745 if (msl->memseg_arr.count > 0)
1746 continue;
1747 /* this is an unused list, deallocate it */
1748 mem_sz = (size_t)msl->page_sz * msl->memseg_arr.len;
1749 munmap(msl->base_va, mem_sz);
1750 msl->base_va = NULL;
1751
1752 /* destroy backing fbarray */
1753 rte_fbarray_destroy(&msl->memseg_arr);
1754 }
1755
1756 return 0;
1757
1758fail:
1759 huge_recover_sigbus();
1760 free(tmp_hp);
1761 if (hugepage != NULL)
1762 munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
1763
1764 return -1;
1765}
1766
1767static int __rte_unused
1768hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
1769{
1770 struct hugepage_info *hpi = arg;
1771
1772 if (msl->page_sz != hpi->hugepage_sz)
1773 return 0;
1774
1775 hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
1776 return 0;
1777}
1778
1779static int
1780limits_callback(int socket_id, size_t cur_limit, size_t new_len)
1781{
1782 RTE_SET_USED(socket_id);
1783 RTE_SET_USED(cur_limit);
1784 RTE_SET_USED(new_len);
1785 return -1;
1786}
1787
1788static int
1789eal_hugepage_init(void)
1790{
1791 struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
1792 uint64_t memory[RTE_MAX_NUMA_NODES];
1793 int hp_sz_idx, socket_id;
1794
1795 test_phys_addrs_available();
1796
1797 memset(used_hp, 0, sizeof(used_hp));
1798
1799 for (hp_sz_idx = 0;
1800 hp_sz_idx < (int) internal_config.num_hugepage_sizes;
1801 hp_sz_idx++) {
1802#ifndef RTE_ARCH_64
1803 struct hugepage_info dummy;
1804 unsigned int i;
1805#endif
1806 /* also initialize used_hp hugepage sizes in used_hp */
1807 struct hugepage_info *hpi;
1808 hpi = &internal_config.hugepage_info[hp_sz_idx];
1809 used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
1810
1811#ifndef RTE_ARCH_64
1812 /* for 32-bit, limit number of pages on socket to whatever we've
1813 * preallocated, as we cannot allocate more.
1814 */
1815 memset(&dummy, 0, sizeof(dummy));
1816 dummy.hugepage_sz = hpi->hugepage_sz;
1817 if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
1818 return -1;
1819
1820 for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
1821 hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
1822 dummy.num_pages[i]);
1823 }
1824#endif
1825 }
1826
1827 /* make a copy of socket_mem, needed for balanced allocation. */
1828 for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
1829 memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
1830
1831 /* calculate final number of pages */
1832 if (calc_num_pages_per_socket(memory,
1833 internal_config.hugepage_info, used_hp,
1834 internal_config.num_hugepage_sizes) < 0)
1835 return -1;
1836
1837 for (hp_sz_idx = 0;
1838 hp_sz_idx < (int)internal_config.num_hugepage_sizes;
1839 hp_sz_idx++) {
1840 for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
1841 socket_id++) {
1842 struct rte_memseg **pages;
1843 struct hugepage_info *hpi = &used_hp[hp_sz_idx];
1844 unsigned int num_pages = hpi->num_pages[socket_id];
1845 int num_pages_alloc, i;
1846
1847 if (num_pages == 0)
1848 continue;
1849
1850 pages = malloc(sizeof(*pages) * num_pages);
1851
1852 RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
1853 num_pages, hpi->hugepage_sz >> 20, socket_id);
1854
1855 num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages,
1856 num_pages, hpi->hugepage_sz,
1857 socket_id, true);
1858 if (num_pages_alloc < 0) {
1859 free(pages);
1860 return -1;
1861 }
1862
1863 /* mark preallocated pages as unfreeable */
1864 for (i = 0; i < num_pages_alloc; i++) {
1865 struct rte_memseg *ms = pages[i];
1866 ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
1867 }
1868 free(pages);
1869 }
1870 }
1871 /* if socket limits were specified, set them */
1872 if (internal_config.force_socket_limits) {
1873 unsigned int i;
1874 for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
1875 uint64_t limit = internal_config.socket_limit[i];
1876 if (limit == 0)
1877 continue;
1878 if (rte_mem_alloc_validator_register("socket-limit",
1879 limits_callback, i, limit))
1880 RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
1881 }
1882 }
1883 return 0;
1884}
1885
1886/*
1887 * uses fstat to report the size of a file on disk
1888 */
1889static off_t
1890getFileSize(int fd)
1891{
1892 struct stat st;
1893 if (fstat(fd, &st) < 0)
1894 return 0;
1895 return st.st_size;
1896}
1897
1898/*
1899 * This creates the memory mappings in the secondary process to match that of
1900 * the server process. It goes through each memory segment in the DPDK runtime
1901 * configuration and finds the hugepages which form that segment, mapping them
1902 * in order to form a contiguous block in the virtual memory space
1903 */
1904static int
1905eal_legacy_hugepage_attach(void)
1906{
1907 struct hugepage_file *hp = NULL;
1908 unsigned int num_hp = 0;
1909 unsigned int i = 0;
1910 unsigned int cur_seg;
1911 off_t size = 0;
1912 int fd, fd_hugepage = -1;
1913
1914 if (aslr_enabled() > 0) {
1915 RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
1916 "(ASLR) is enabled in the kernel.\n");
1917 RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory "
1918 "into secondary processes\n");
1919 }
1920
1921 test_phys_addrs_available();
1922
1923 fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
1924 if (fd_hugepage < 0) {
1925 RTE_LOG(ERR, EAL, "Could not open %s\n",
1926 eal_hugepage_data_path());
1927 goto error;
1928 }
1929
1930 size = getFileSize(fd_hugepage);
1931 hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
1932 if (hp == MAP_FAILED) {
1933 RTE_LOG(ERR, EAL, "Could not mmap %s\n",
1934 eal_hugepage_data_path());
1935 goto error;
1936 }
1937
1938 num_hp = size / sizeof(struct hugepage_file);
1939 RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
1940
1941 /* map all segments into memory to make sure we get the addrs. the
1942 * segments themselves are already in memseg list (which is shared and
1943 * has its VA space already preallocated), so we just need to map
1944 * everything into correct addresses.
1945 */
1946 for (i = 0; i < num_hp; i++) {
1947 struct hugepage_file *hf = &hp[i];
1948 size_t map_sz = hf->size;
1949 void *map_addr = hf->final_va;
1950
1951 /* if size is zero, no more pages left */
1952 if (map_sz == 0)
1953 break;
1954
1955 fd = open(hf->filepath, O_RDWR);
1956 if (fd < 0) {
1957 RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
1958 hf->filepath, strerror(errno));
1959 goto error;
1960 }
1961
1962 map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
1963 MAP_SHARED | MAP_FIXED, fd, 0);
1964 if (map_addr == MAP_FAILED) {
1965 RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
1966 hf->filepath, strerror(errno));
1967 close(fd);
1968 goto error;
1969 }
1970
1971 /* set shared lock on the file. */
1972 if (flock(fd, LOCK_SH) < 0) {
1973 RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
1974 __func__, strerror(errno));
1975 close(fd);
1976 goto error;
1977 }
1978
1979 close(fd);
1980 }
1981 /* unmap the hugepage config file, since we are done using it */
1982 munmap(hp, size);
1983 close(fd_hugepage);
1984 return 0;
1985
1986error:
1987 /* map all segments into memory to make sure we get the addrs */
1988 cur_seg = 0;
1989 for (cur_seg = 0; cur_seg < i; cur_seg++) {
1990 struct hugepage_file *hf = &hp[i];
1991 size_t map_sz = hf->size;
1992 void *map_addr = hf->final_va;
1993
1994 munmap(map_addr, map_sz);
1995 }
1996 if (hp != NULL && hp != MAP_FAILED)
1997 munmap(hp, size);
1998 if (fd_hugepage >= 0)
1999 close(fd_hugepage);
2000 return -1;
2001}
2002
2003static int
2004eal_hugepage_attach(void)
2005{
2006 if (eal_memalloc_sync_with_primary()) {
2007 RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
2008 if (aslr_enabled() > 0)
2009 RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
2010 return -1;
2011 }
2012 return 0;
2013}
2014
2015int
2016rte_eal_hugepage_init(void)
2017{
2018 return internal_config.legacy_mem ?
2019 eal_legacy_hugepage_init() :
2020 eal_hugepage_init();
2021}
2022
2023int
2024rte_eal_hugepage_attach(void)
2025{
2026 return internal_config.legacy_mem ?
2027 eal_legacy_hugepage_attach() :
2028 eal_hugepage_attach();
2029}
2030
2031int
2032rte_eal_using_phys_addrs(void)
2033{
2034 return phys_addrs_available;
2035}
2036
2037static int __rte_unused
2038memseg_primary_init_32(void)
2039{
2040 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2041 int active_sockets, hpi_idx, msl_idx = 0;
2042 unsigned int socket_id, i;
2043 struct rte_memseg_list *msl;
2044 uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
2045 uint64_t max_mem;
2046
2047 /* no-huge does not need this at all */
2048 if (internal_config.no_hugetlbfs)
2049 return 0;
2050
2051 /* this is a giant hack, but desperate times call for desperate
2052 * measures. in legacy 32-bit mode, we cannot preallocate VA space,
2053 * because having upwards of 2 gigabytes of VA space already mapped will
2054 * interfere with our ability to map and sort hugepages.
2055 *
2056 * therefore, in legacy 32-bit mode, we will be initializing memseg
2057 * lists much later - in eal_memory.c, right after we unmap all the
2058 * unneeded pages. this will not affect secondary processes, as those
2059 * should be able to mmap the space without (too many) problems.
2060 */
2061 if (internal_config.legacy_mem)
2062 return 0;
2063
2064 /* 32-bit mode is a very special case. we cannot know in advance where
2065 * the user will want to allocate their memory, so we have to do some
2066 * heuristics.
2067 */
2068 active_sockets = 0;
2069 total_requested_mem = 0;
2070 if (internal_config.force_sockets)
2071 for (i = 0; i < rte_socket_count(); i++) {
2072 uint64_t mem;
2073
2074 socket_id = rte_socket_id_by_idx(i);
2075 mem = internal_config.socket_mem[socket_id];
2076
2077 if (mem == 0)
2078 continue;
2079
2080 active_sockets++;
2081 total_requested_mem += mem;
2082 }
2083 else
2084 total_requested_mem = internal_config.memory;
2085
2086 max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2087 if (total_requested_mem > max_mem) {
2088 RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
2089 (unsigned int)(max_mem >> 20));
2090 return -1;
2091 }
2092 total_extra_mem = max_mem - total_requested_mem;
2093 extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
2094 total_extra_mem / active_sockets;
2095
2096 /* the allocation logic is a little bit convoluted, but here's how it
2097 * works, in a nutshell:
2098 * - if user hasn't specified on which sockets to allocate memory via
2099 * --socket-mem, we allocate all of our memory on master core socket.
2100 * - if user has specified sockets to allocate memory on, there may be
2101 * some "unused" memory left (e.g. if user has specified --socket-mem
2102 * such that not all memory adds up to 2 gigabytes), so add it to all
2103 * sockets that are in use equally.
2104 *
2105 * page sizes are sorted by size in descending order, so we can safely
2106 * assume that we dispense with bigger page sizes first.
2107 */
2108
2109 /* create memseg lists */
2110 for (i = 0; i < rte_socket_count(); i++) {
2111 int hp_sizes = (int) internal_config.num_hugepage_sizes;
2112 uint64_t max_socket_mem, cur_socket_mem;
2113 unsigned int master_lcore_socket;
2114 struct rte_config *cfg = rte_eal_get_configuration();
2115 bool skip;
2116
2117 socket_id = rte_socket_id_by_idx(i);
2118
2119#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2120 if (socket_id > 0)
2121 break;
2122#endif
2123
2124 /* if we didn't specifically request memory on this socket */
2125 skip = active_sockets != 0 &&
2126 internal_config.socket_mem[socket_id] == 0;
2127 /* ...or if we didn't specifically request memory on *any*
2128 * socket, and this is not master lcore
2129 */
2130 master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
2131 skip |= active_sockets == 0 && socket_id != master_lcore_socket;
2132
2133 if (skip) {
2134 RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
2135 socket_id);
2136 continue;
2137 }
2138
2139 /* max amount of memory on this socket */
2140 max_socket_mem = (active_sockets != 0 ?
2141 internal_config.socket_mem[socket_id] :
2142 internal_config.memory) +
2143 extra_mem_per_socket;
2144 cur_socket_mem = 0;
2145
2146 for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
2147 uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
2148 uint64_t hugepage_sz;
2149 struct hugepage_info *hpi;
2150 int type_msl_idx, max_segs, total_segs = 0;
2151
2152 hpi = &internal_config.hugepage_info[hpi_idx];
2153 hugepage_sz = hpi->hugepage_sz;
2154
2155 /* check if pages are actually available */
2156 if (hpi->num_pages[socket_id] == 0)
2157 continue;
2158
2159 max_segs = RTE_MAX_MEMSEG_PER_TYPE;
2160 max_pagesz_mem = max_socket_mem - cur_socket_mem;
2161
2162 /* make it multiple of page size */
2163 max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
2164 hugepage_sz);
2165
2166 RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
2167 "%" PRIu64 "M on socket %i\n",
2168 max_pagesz_mem >> 20, socket_id);
2169
2170 type_msl_idx = 0;
2171 while (cur_pagesz_mem < max_pagesz_mem &&
2172 total_segs < max_segs) {
2173 uint64_t cur_mem;
2174 unsigned int n_segs;
2175
2176 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2177 RTE_LOG(ERR, EAL,
2178 "No more space in memseg lists, please increase %s\n",
2179 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2180 return -1;
2181 }
2182
2183 msl = &mcfg->memsegs[msl_idx];
2184
2185 cur_mem = get_mem_amount(hugepage_sz,
2186 max_pagesz_mem);
2187 n_segs = cur_mem / hugepage_sz;
2188
2189 if (alloc_memseg_list(msl, hugepage_sz, n_segs,
2190 socket_id, type_msl_idx)) {
2191 /* failing to allocate a memseg list is
2192 * a serious error.
2193 */
2194 RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
2195 return -1;
2196 }
2197
2198 if (alloc_va_space(msl)) {
2199 /* if we couldn't allocate VA space, we
2200 * can try with smaller page sizes.
2201 */
2202 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
2203 /* deallocate memseg list */
2204 if (free_memseg_list(msl))
2205 return -1;
2206 break;
2207 }
2208
2209 total_segs += msl->memseg_arr.len;
2210 cur_pagesz_mem = total_segs * hugepage_sz;
2211 type_msl_idx++;
2212 msl_idx++;
2213 }
2214 cur_socket_mem += cur_pagesz_mem;
2215 }
2216 if (cur_socket_mem == 0) {
2217 RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
2218 socket_id);
2219 return -1;
2220 }
2221 }
2222
2223 return 0;
2224}
2225
2226static int __rte_unused
2227memseg_primary_init(void)
2228{
2229 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2230 int i, socket_id, hpi_idx, msl_idx = 0;
2231 struct rte_memseg_list *msl;
2232 uint64_t max_mem, total_mem;
2233
2234 /* no-huge does not need this at all */
2235 if (internal_config.no_hugetlbfs)
2236 return 0;
2237
2238 max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
2239 total_mem = 0;
2240
2241 /* create memseg lists */
2242 for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
2243 hpi_idx++) {
2244 struct hugepage_info *hpi;
2245 uint64_t hugepage_sz;
2246
2247 hpi = &internal_config.hugepage_info[hpi_idx];
2248 hugepage_sz = hpi->hugepage_sz;
2249
2250 for (i = 0; i < (int) rte_socket_count(); i++) {
2251 uint64_t max_type_mem, total_type_mem = 0;
2252 int type_msl_idx, max_segs, total_segs = 0;
2253
2254 socket_id = rte_socket_id_by_idx(i);
2255
2256#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
2257 if (socket_id > 0)
2258 break;
2259#endif
2260
2261 if (total_mem >= max_mem)
2262 break;
2263
2264 max_type_mem = RTE_MIN(max_mem - total_mem,
2265 (uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
2266 max_segs = RTE_MAX_MEMSEG_PER_TYPE;
2267
2268 type_msl_idx = 0;
2269 while (total_type_mem < max_type_mem &&
2270 total_segs < max_segs) {
2271 uint64_t cur_max_mem, cur_mem;
2272 unsigned int n_segs;
2273
2274 if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
2275 RTE_LOG(ERR, EAL,
2276 "No more space in memseg lists, please increase %s\n",
2277 RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
2278 return -1;
2279 }
2280
2281 msl = &mcfg->memsegs[msl_idx++];
2282
2283 cur_max_mem = max_type_mem - total_type_mem;
2284
2285 cur_mem = get_mem_amount(hugepage_sz,
2286 cur_max_mem);
2287 n_segs = cur_mem / hugepage_sz;
2288
2289 if (alloc_memseg_list(msl, hugepage_sz, n_segs,
2290 socket_id, type_msl_idx))
2291 return -1;
2292
2293 total_segs += msl->memseg_arr.len;
2294 total_type_mem = total_segs * hugepage_sz;
2295 type_msl_idx++;
2296
2297 if (alloc_va_space(msl)) {
2298 RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
2299 return -1;
2300 }
2301 }
2302 total_mem += total_type_mem;
2303 }
2304 }
2305 return 0;
2306}
2307
2308static int
2309memseg_secondary_init(void)
2310{
2311 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
2312 int msl_idx = 0;
2313 struct rte_memseg_list *msl;
2314
2315 for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
2316
2317 msl = &mcfg->memsegs[msl_idx];
2318
2319 /* skip empty memseg lists */
2320 if (msl->memseg_arr.len == 0)
2321 continue;
2322
2323 if (rte_fbarray_attach(&msl->memseg_arr)) {
2324 RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
2325 return -1;
2326 }
2327
2328 /* preallocate VA space */
2329 if (alloc_va_space(msl)) {
2330 RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
2331 return -1;
2332 }
2333 }
2334
2335 return 0;
2336}
2337
2338int
2339rte_eal_memseg_init(void)
2340{
2341 return rte_eal_process_type() == RTE_PROC_PRIMARY ?
2342#ifndef RTE_ARCH_64
2343 memseg_primary_init_32() :
2344#else
2345 memseg_primary_init() :
2346#endif
2347 memseg_secondary_init();
2348}