]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/dpdk/lib/librte_mbuf/rte_mbuf.c
bump version to 18.2.2-pve1
[ceph.git] / ceph / src / spdk / dpdk / lib / librte_mbuf / rte_mbuf.c
CommitLineData
11fdf7f2
TL
1/* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
7c673cae
FG
4 */
5
6#include <string.h>
7#include <stdio.h>
8#include <stdlib.h>
9#include <stdint.h>
10#include <stdarg.h>
11#include <inttypes.h>
12#include <errno.h>
13#include <ctype.h>
14#include <sys/queue.h>
15
11fdf7f2 16#include <rte_compat.h>
7c673cae
FG
17#include <rte_debug.h>
18#include <rte_common.h>
19#include <rte_log.h>
20#include <rte_memory.h>
7c673cae
FG
21#include <rte_launch.h>
22#include <rte_eal.h>
23#include <rte_per_lcore.h>
24#include <rte_lcore.h>
25#include <rte_atomic.h>
26#include <rte_branch_prediction.h>
27#include <rte_mempool.h>
28#include <rte_mbuf.h>
11fdf7f2 29#include <rte_mbuf_pool_ops.h>
7c673cae
FG
30#include <rte_string_fns.h>
31#include <rte_hexdump.h>
32#include <rte_errno.h>
33#include <rte_memcpy.h>
34
7c673cae
FG
35/*
36 * pktmbuf pool constructor, given as a callback function to
11fdf7f2
TL
37 * rte_mempool_create(), or called directly if using
38 * rte_mempool_create_empty()/rte_mempool_populate()
7c673cae
FG
39 */
40void
41rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
42{
43 struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
44 struct rte_pktmbuf_pool_private default_mbp_priv;
45 uint16_t roomsz;
46
47 RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));
48
49 /* if no structure is provided, assume no mbuf private area */
50 user_mbp_priv = opaque_arg;
51 if (user_mbp_priv == NULL) {
f67539c2 52 memset(&default_mbp_priv, 0, sizeof(default_mbp_priv));
7c673cae
FG
53 if (mp->elt_size > sizeof(struct rte_mbuf))
54 roomsz = mp->elt_size - sizeof(struct rte_mbuf);
55 else
56 roomsz = 0;
57 default_mbp_priv.mbuf_data_room_size = roomsz;
58 user_mbp_priv = &default_mbp_priv;
59 }
60
61 RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
f67539c2
TL
62 ((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ?
63 sizeof(struct rte_mbuf_ext_shared_info) :
64 user_mbp_priv->mbuf_data_room_size) +
7c673cae 65 user_mbp_priv->mbuf_priv_size);
f67539c2
TL
66 RTE_ASSERT((user_mbp_priv->flags &
67 ~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0);
7c673cae
FG
68
69 mbp_priv = rte_mempool_get_priv(mp);
70 memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
71}
72
73/*
74 * pktmbuf constructor, given as a callback function to
11fdf7f2 75 * rte_mempool_obj_iter() or rte_mempool_create().
7c673cae
FG
76 * Set the fields of a packet mbuf to their default values.
77 */
78void
79rte_pktmbuf_init(struct rte_mempool *mp,
f67539c2 80 __rte_unused void *opaque_arg,
7c673cae 81 void *_m,
f67539c2 82 __rte_unused unsigned i)
7c673cae
FG
83{
84 struct rte_mbuf *m = _m;
85 uint32_t mbuf_size, buf_len, priv_size;
86
87 priv_size = rte_pktmbuf_priv_size(mp);
88 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
89 buf_len = rte_pktmbuf_data_room_size(mp);
90
91 RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
92 RTE_ASSERT(mp->elt_size >= mbuf_size);
93 RTE_ASSERT(buf_len <= UINT16_MAX);
94
11fdf7f2 95 memset(m, 0, mbuf_size);
7c673cae
FG
96 /* start of buffer is after mbuf structure and priv data */
97 m->priv_size = priv_size;
98 m->buf_addr = (char *)m + mbuf_size;
11fdf7f2 99 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
7c673cae
FG
100 m->buf_len = (uint16_t)buf_len;
101
102 /* keep some headroom between start of buffer and data */
103 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
104
105 /* init some constant fields */
106 m->pool = mp;
107 m->nb_segs = 1;
11fdf7f2
TL
108 m->port = MBUF_INVALID_PORT;
109 rte_mbuf_refcnt_set(m, 1);
110 m->next = NULL;
7c673cae
FG
111}
112
f67539c2
TL
113/*
114 * @internal The callback routine called when reference counter in shinfo
115 * for mbufs with pinned external buffer reaches zero. It means there is
116 * no more reference to buffer backing mbuf and this one should be freed.
117 * This routine is called for the regular (not with pinned external or
118 * indirect buffer) mbufs on detaching from the mbuf with pinned external
119 * buffer.
120 */
121static void
122rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque)
123{
124 struct rte_mbuf *m = opaque;
125
126 RTE_SET_USED(addr);
127 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
128 RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m));
129 RTE_ASSERT(m->shinfo->fcb_opaque == m);
130
131 rte_mbuf_ext_refcnt_set(m->shinfo, 1);
132 m->ol_flags = EXT_ATTACHED_MBUF;
133 if (m->next != NULL) {
134 m->next = NULL;
135 m->nb_segs = 1;
136 }
137 rte_mbuf_raw_free(m);
138}
139
140/** The context to initialize the mbufs with pinned external buffers. */
141struct rte_pktmbuf_extmem_init_ctx {
142 const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */
143 unsigned int ext_num; /* number of descriptors in array. */
144 unsigned int ext; /* loop descriptor index. */
145 size_t off; /* loop buffer offset. */
146};
147
148/**
149 * @internal Packet mbuf constructor for pools with pinned external memory.
150 *
151 * This function initializes some fields in the mbuf structure that are
152 * not modified by the user once created (origin pool, buffer start
153 * address, and so on). This function is given as a callback function to
154 * rte_mempool_obj_iter() called from rte_mempool_create_extmem().
155 *
156 * @param mp
157 * The mempool from which mbufs originate.
158 * @param opaque_arg
159 * A pointer to the rte_pktmbuf_extmem_init_ctx - initialization
160 * context structure
161 * @param m
162 * The mbuf to initialize.
163 * @param i
164 * The index of the mbuf in the pool table.
165 */
166static void
167__rte_pktmbuf_init_extmem(struct rte_mempool *mp,
168 void *opaque_arg,
169 void *_m,
170 __rte_unused unsigned int i)
171{
172 struct rte_mbuf *m = _m;
173 struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg;
174 const struct rte_pktmbuf_extmem *ext_mem;
175 uint32_t mbuf_size, buf_len, priv_size;
176 struct rte_mbuf_ext_shared_info *shinfo;
177
178 priv_size = rte_pktmbuf_priv_size(mp);
179 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
180 buf_len = rte_pktmbuf_data_room_size(mp);
181
182 RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
183 RTE_ASSERT(mp->elt_size >= mbuf_size);
184 RTE_ASSERT(buf_len <= UINT16_MAX);
185
186 memset(m, 0, mbuf_size);
187 m->priv_size = priv_size;
188 m->buf_len = (uint16_t)buf_len;
189
190 /* set the data buffer pointers to external memory */
191 ext_mem = ctx->ext_mem + ctx->ext;
192
193 RTE_ASSERT(ctx->ext < ctx->ext_num);
194 RTE_ASSERT(ctx->off < ext_mem->buf_len);
195
196 m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off);
197 m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ?
198 RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off);
199
200 ctx->off += ext_mem->elt_size;
201 if (ctx->off >= ext_mem->buf_len) {
202 ctx->off = 0;
203 ++ctx->ext;
204 }
205 /* keep some headroom between start of buffer and data */
206 m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
207
208 /* init some constant fields */
209 m->pool = mp;
210 m->nb_segs = 1;
211 m->port = MBUF_INVALID_PORT;
212 m->ol_flags = EXT_ATTACHED_MBUF;
213 rte_mbuf_refcnt_set(m, 1);
214 m->next = NULL;
215
216 /* init external buffer shared info items */
217 shinfo = RTE_PTR_ADD(m, mbuf_size);
218 m->shinfo = shinfo;
219 shinfo->free_cb = rte_pktmbuf_free_pinned_extmem;
220 shinfo->fcb_opaque = m;
221 rte_mbuf_ext_refcnt_set(shinfo, 1);
222}
223
11fdf7f2 224/* Helper to create a mbuf pool with given mempool ops name*/
7c673cae 225struct rte_mempool *
11fdf7f2
TL
226rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
227 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
228 int socket_id, const char *ops_name)
7c673cae
FG
229{
230 struct rte_mempool *mp;
231 struct rte_pktmbuf_pool_private mbp_priv;
11fdf7f2 232 const char *mp_ops_name = ops_name;
7c673cae
FG
233 unsigned elt_size;
234 int ret;
235
236 if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
237 RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
238 priv_size);
239 rte_errno = EINVAL;
240 return NULL;
241 }
242 elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
243 (unsigned)data_room_size;
f67539c2 244 memset(&mbp_priv, 0, sizeof(mbp_priv));
7c673cae
FG
245 mbp_priv.mbuf_data_room_size = data_room_size;
246 mbp_priv.mbuf_priv_size = priv_size;
247
248 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
249 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
250 if (mp == NULL)
251 return NULL;
252
11fdf7f2
TL
253 if (mp_ops_name == NULL)
254 mp_ops_name = rte_mbuf_best_mempool_ops();
255 ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
7c673cae
FG
256 if (ret != 0) {
257 RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
258 rte_mempool_free(mp);
259 rte_errno = -ret;
260 return NULL;
261 }
262 rte_pktmbuf_pool_init(mp, &mbp_priv);
263
264 ret = rte_mempool_populate_default(mp);
265 if (ret < 0) {
266 rte_mempool_free(mp);
267 rte_errno = -ret;
268 return NULL;
269 }
270
271 rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
272
273 return mp;
274}
275
11fdf7f2
TL
276/* helper to create a mbuf pool */
277struct rte_mempool *
278rte_pktmbuf_pool_create(const char *name, unsigned int n,
279 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
280 int socket_id)
281{
282 return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
283 data_room_size, socket_id, NULL);
284}
285
f67539c2
TL
286/* Helper to create a mbuf pool with pinned external data buffers. */
287struct rte_mempool *
288rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
289 unsigned int cache_size, uint16_t priv_size,
290 uint16_t data_room_size, int socket_id,
291 const struct rte_pktmbuf_extmem *ext_mem,
292 unsigned int ext_num)
293{
294 struct rte_mempool *mp;
295 struct rte_pktmbuf_pool_private mbp_priv;
296 struct rte_pktmbuf_extmem_init_ctx init_ctx;
297 const char *mp_ops_name;
298 unsigned int elt_size;
299 unsigned int i, n_elts = 0;
300 int ret;
301
302 if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
303 RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
304 priv_size);
305 rte_errno = EINVAL;
306 return NULL;
307 }
308 /* Check the external memory descriptors. */
309 for (i = 0; i < ext_num; i++) {
310 const struct rte_pktmbuf_extmem *extm = ext_mem + i;
311
312 if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) {
313 RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n");
314 rte_errno = EINVAL;
315 return NULL;
316 }
317 if (data_room_size > extm->elt_size) {
318 RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n",
319 priv_size);
320 rte_errno = EINVAL;
321 return NULL;
322 }
323 n_elts += extm->buf_len / extm->elt_size;
324 }
325 /* Check whether enough external memory provided. */
326 if (n_elts < n) {
327 RTE_LOG(ERR, MBUF, "not enough extmem\n");
328 rte_errno = ENOMEM;
329 return NULL;
330 }
331 elt_size = sizeof(struct rte_mbuf) +
332 (unsigned int)priv_size +
333 sizeof(struct rte_mbuf_ext_shared_info);
334
335 memset(&mbp_priv, 0, sizeof(mbp_priv));
336 mbp_priv.mbuf_data_room_size = data_room_size;
337 mbp_priv.mbuf_priv_size = priv_size;
338 mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
339
340 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
341 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
342 if (mp == NULL)
343 return NULL;
344
345 mp_ops_name = rte_mbuf_best_mempool_ops();
346 ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
347 if (ret != 0) {
348 RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
349 rte_mempool_free(mp);
350 rte_errno = -ret;
351 return NULL;
352 }
353 rte_pktmbuf_pool_init(mp, &mbp_priv);
354
355 ret = rte_mempool_populate_default(mp);
356 if (ret < 0) {
357 rte_mempool_free(mp);
358 rte_errno = -ret;
359 return NULL;
360 }
361
362 init_ctx = (struct rte_pktmbuf_extmem_init_ctx){
363 .ext_mem = ext_mem,
364 .ext_num = ext_num,
365 .ext = 0,
366 .off = 0,
367 };
368 rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx);
369
370 return mp;
371}
372
7c673cae
FG
373/* do some sanity checks on a mbuf: panic if it fails */
374void
375rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
9f95a23c
TL
376{
377 const char *reason;
378
379 if (rte_mbuf_check(m, is_header, &reason))
380 rte_panic("%s\n", reason);
381}
382
9f95a23c
TL
383int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
384 const char **reason)
7c673cae 385{
11fdf7f2 386 unsigned int nb_segs, pkt_len;
7c673cae 387
9f95a23c
TL
388 if (m == NULL) {
389 *reason = "mbuf is NULL";
390 return -1;
391 }
7c673cae
FG
392
393 /* generic checks */
9f95a23c
TL
394 if (m->pool == NULL) {
395 *reason = "bad mbuf pool";
396 return -1;
397 }
398 if (m->buf_iova == 0) {
399 *reason = "bad IO addr";
400 return -1;
401 }
402 if (m->buf_addr == NULL) {
403 *reason = "bad virt addr";
404 return -1;
405 }
7c673cae
FG
406
407 uint16_t cnt = rte_mbuf_refcnt_read(m);
9f95a23c
TL
408 if ((cnt == 0) || (cnt == UINT16_MAX)) {
409 *reason = "bad ref cnt";
410 return -1;
411 }
7c673cae
FG
412
413 /* nothing to check for sub-segments */
414 if (is_header == 0)
9f95a23c 415 return 0;
7c673cae 416
11fdf7f2 417 /* data_len is supposed to be not more than pkt_len */
9f95a23c
TL
418 if (m->data_len > m->pkt_len) {
419 *reason = "bad data_len";
420 return -1;
421 }
11fdf7f2 422
7c673cae 423 nb_segs = m->nb_segs;
11fdf7f2
TL
424 pkt_len = m->pkt_len;
425
426 do {
9f95a23c
TL
427 if (m->data_off > m->buf_len) {
428 *reason = "data offset too big in mbuf segment";
429 return -1;
430 }
431 if (m->data_off + m->data_len > m->buf_len) {
432 *reason = "data length too big in mbuf segment";
433 return -1;
434 }
11fdf7f2
TL
435 nb_segs -= 1;
436 pkt_len -= m->data_len;
437 } while ((m = m->next) != NULL);
438
9f95a23c
TL
439 if (nb_segs) {
440 *reason = "bad nb_segs";
441 return -1;
442 }
443 if (pkt_len) {
444 *reason = "bad pkt_len";
445 return -1;
446 }
447
448 return 0;
7c673cae
FG
449}
450
f67539c2
TL
451/**
452 * @internal helper function for freeing a bulk of packet mbuf segments
453 * via an array holding the packet mbuf segments from the same mempool
454 * pending to be freed.
455 *
456 * @param m
457 * The packet mbuf segment to be freed.
458 * @param pending
459 * Pointer to the array of packet mbuf segments pending to be freed.
460 * @param nb_pending
461 * Pointer to the number of elements held in the array.
462 * @param pending_sz
463 * Number of elements the array can hold.
464 * Note: The compiler should optimize this parameter away when using a
465 * constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
466 */
467static void
468__rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
469 struct rte_mbuf ** const pending, unsigned int * const nb_pending,
470 const unsigned int pending_sz)
471{
472 m = rte_pktmbuf_prefree_seg(m);
473 if (likely(m != NULL)) {
474 if (*nb_pending == pending_sz ||
475 (*nb_pending > 0 && m->pool != pending[0]->pool)) {
476 rte_mempool_put_bulk(pending[0]->pool,
477 (void **)pending, *nb_pending);
478 *nb_pending = 0;
479 }
480
481 pending[(*nb_pending)++] = m;
482 }
483}
484
485/**
486 * Size of the array holding mbufs from the same mempool pending to be freed
487 * in bulk.
488 */
489#define RTE_PKTMBUF_FREE_PENDING_SZ 64
490
491/* Free a bulk of packet mbufs back into their original mempools. */
492void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
493{
494 struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
495 unsigned int idx, nb_pending = 0;
496
497 for (idx = 0; idx < count; idx++) {
498 m = mbufs[idx];
499 if (unlikely(m == NULL))
500 continue;
501
502 __rte_mbuf_sanity_check(m, 1);
503
504 do {
505 m_next = m->next;
506 __rte_pktmbuf_free_seg_via_array(m,
507 pending, &nb_pending,
508 RTE_PKTMBUF_FREE_PENDING_SZ);
509 m = m_next;
510 } while (m != NULL);
511 }
512
513 if (nb_pending > 0)
514 rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
515}
516
517/* Creates a shallow copy of mbuf */
518struct rte_mbuf *
519rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
520{
521 struct rte_mbuf *mc, *mi, **prev;
522 uint32_t pktlen;
523 uint16_t nseg;
524
525 mc = rte_pktmbuf_alloc(mp);
526 if (unlikely(mc == NULL))
527 return NULL;
528
529 mi = mc;
530 prev = &mi->next;
531 pktlen = md->pkt_len;
532 nseg = 0;
533
534 do {
535 nseg++;
536 rte_pktmbuf_attach(mi, md);
537 *prev = mi;
538 prev = &mi->next;
539 } while ((md = md->next) != NULL &&
540 (mi = rte_pktmbuf_alloc(mp)) != NULL);
541
542 *prev = NULL;
543 mc->nb_segs = nseg;
544 mc->pkt_len = pktlen;
545
546 /* Allocation of new indirect segment failed */
547 if (unlikely(mi == NULL)) {
548 rte_pktmbuf_free(mc);
549 return NULL;
550 }
551
552 __rte_mbuf_sanity_check(mc, 1);
553 return mc;
554}
555
556/* convert multi-segment mbuf to single mbuf */
557int
558__rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
559{
560 size_t seg_len, copy_len;
561 struct rte_mbuf *m;
562 struct rte_mbuf *m_next;
563 char *buffer;
564
565 /* Extend first segment to the total packet length */
566 copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
567
568 if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
569 return -1;
570
571 buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
572 mbuf->data_len = (uint16_t)(mbuf->pkt_len);
573
574 /* Append data from next segments to the first one */
575 m = mbuf->next;
576 while (m != NULL) {
577 m_next = m->next;
578
579 seg_len = rte_pktmbuf_data_len(m);
580 rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
581 buffer += seg_len;
582
583 rte_pktmbuf_free_seg(m);
584 m = m_next;
585 }
586
587 mbuf->next = NULL;
588 mbuf->nb_segs = 1;
589
590 return 0;
591}
592
593/* Create a deep copy of mbuf */
594struct rte_mbuf *
595rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
596 uint32_t off, uint32_t len)
597{
598 const struct rte_mbuf *seg = m;
599 struct rte_mbuf *mc, *m_last, **prev;
600
601 /* garbage in check */
602 __rte_mbuf_sanity_check(m, 1);
603
604 /* check for request to copy at offset past end of mbuf */
605 if (unlikely(off >= m->pkt_len))
606 return NULL;
607
608 mc = rte_pktmbuf_alloc(mp);
609 if (unlikely(mc == NULL))
610 return NULL;
611
612 /* truncate requested length to available data */
613 if (len > m->pkt_len - off)
614 len = m->pkt_len - off;
615
616 __rte_pktmbuf_copy_hdr(mc, m);
617
618 /* copied mbuf is not indirect or external */
619 mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);
620
621 prev = &mc->next;
622 m_last = mc;
623 while (len > 0) {
624 uint32_t copy_len;
625
626 /* skip leading mbuf segments */
627 while (off >= seg->data_len) {
628 off -= seg->data_len;
629 seg = seg->next;
630 }
631
632 /* current buffer is full, chain a new one */
633 if (rte_pktmbuf_tailroom(m_last) == 0) {
634 m_last = rte_pktmbuf_alloc(mp);
635 if (unlikely(m_last == NULL)) {
636 rte_pktmbuf_free(mc);
637 return NULL;
638 }
639 ++mc->nb_segs;
640 *prev = m_last;
641 prev = &m_last->next;
642 }
643
644 /*
645 * copy the min of data in input segment (seg)
646 * vs space available in output (m_last)
647 */
648 copy_len = RTE_MIN(seg->data_len - off, len);
649 if (copy_len > rte_pktmbuf_tailroom(m_last))
650 copy_len = rte_pktmbuf_tailroom(m_last);
651
652 /* append from seg to m_last */
653 rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
654 m_last->data_len),
655 rte_pktmbuf_mtod_offset(seg, char *, off),
656 copy_len);
657
658 /* update offsets and lengths */
659 m_last->data_len += copy_len;
660 mc->pkt_len += copy_len;
661 off += copy_len;
662 len -= copy_len;
663 }
664
665 /* garbage out check */
666 __rte_mbuf_sanity_check(mc, 1);
667 return mc;
668}
669
7c673cae
FG
670/* dump a mbuf on console */
671void
672rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
673{
674 unsigned int len;
11fdf7f2 675 unsigned int nb_segs;
7c673cae
FG
676
677 __rte_mbuf_sanity_check(m, 1);
678
f67539c2
TL
679 fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n",
680 m, m->buf_iova, m->buf_len);
681 fprintf(f, " pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u",
682 m->pkt_len, m->ol_flags, m->nb_segs, m->port);
683
684 if (m->ol_flags & (PKT_RX_VLAN | PKT_TX_VLAN))
685 fprintf(f, ", vlan_tci=%u", m->vlan_tci);
686
687 fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type);
688
7c673cae
FG
689 nb_segs = m->nb_segs;
690
691 while (m && nb_segs != 0) {
692 __rte_mbuf_sanity_check(m, 0);
693
f67539c2
TL
694 fprintf(f, " segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n",
695 m, rte_pktmbuf_mtod(m, void *),
696 m->data_len, m->data_off, rte_mbuf_refcnt_read(m));
697
7c673cae
FG
698 len = dump_len;
699 if (len > m->data_len)
700 len = m->data_len;
701 if (len != 0)
702 rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
703 dump_len -= len;
704 m = m->next;
705 nb_segs --;
706 }
707}
708
709/* read len data bytes in a mbuf at specified offset (internal) */
710const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
711 uint32_t len, void *buf)
712{
713 const struct rte_mbuf *seg = m;
714 uint32_t buf_off = 0, copy_len;
715
716 if (off + len > rte_pktmbuf_pkt_len(m))
717 return NULL;
718
719 while (off >= rte_pktmbuf_data_len(seg)) {
720 off -= rte_pktmbuf_data_len(seg);
721 seg = seg->next;
722 }
723
724 if (off + len <= rte_pktmbuf_data_len(seg))
725 return rte_pktmbuf_mtod_offset(seg, char *, off);
726
727 /* rare case: header is split among several segments */
728 while (len > 0) {
729 copy_len = rte_pktmbuf_data_len(seg) - off;
730 if (copy_len > len)
731 copy_len = len;
732 rte_memcpy((char *)buf + buf_off,
733 rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
734 off = 0;
735 buf_off += copy_len;
736 len -= copy_len;
737 seg = seg->next;
738 }
739
740 return buf;
741}
742
743/*
744 * Get the name of a RX offload flag. Must be kept synchronized with flag
745 * definitions in rte_mbuf.h.
746 */
747const char *rte_get_rx_ol_flag_name(uint64_t mask)
748{
749 switch (mask) {
11fdf7f2 750 case PKT_RX_VLAN: return "PKT_RX_VLAN";
7c673cae
FG
751 case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
752 case PKT_RX_FDIR: return "PKT_RX_FDIR";
753 case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
754 case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
755 case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
756 case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
757 case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
758 case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
759 case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
760 case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
761 case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
762 case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
9f95a23c
TL
763 case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
764 case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
7c673cae 765 case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
9f95a23c 766 case PKT_RX_QINQ: return "PKT_RX_QINQ";
7c673cae 767 case PKT_RX_LRO: return "PKT_RX_LRO";
11fdf7f2
TL
768 case PKT_RX_TIMESTAMP: return "PKT_RX_TIMESTAMP";
769 case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
770 case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
9f95a23c
TL
771 case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
772 case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
773 case PKT_RX_OUTER_L4_CKSUM_INVALID:
774 return "PKT_RX_OUTER_L4_CKSUM_INVALID";
775
7c673cae
FG
776 default: return NULL;
777 }
778}
779
780struct flag_mask {
781 uint64_t flag;
782 uint64_t mask;
783 const char *default_name;
784};
785
786/* write the list of rx ol flags in buffer buf */
787int
788rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
789{
790 const struct flag_mask rx_flags[] = {
11fdf7f2 791 { PKT_RX_VLAN, PKT_RX_VLAN, NULL },
7c673cae
FG
792 { PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
793 { PKT_RX_FDIR, PKT_RX_FDIR, NULL },
794 { PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
795 { PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
796 { PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
797 { PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
798 "PKT_RX_L4_CKSUM_UNKNOWN" },
799 { PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
800 { PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
801 { PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
802 { PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
803 "PKT_RX_IP_CKSUM_UNKNOWN" },
804 { PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
805 { PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
806 { PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
807 { PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
9f95a23c
TL
808 { PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
809 { PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
7c673cae
FG
810 { PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
811 { PKT_RX_LRO, PKT_RX_LRO, NULL },
11fdf7f2
TL
812 { PKT_RX_TIMESTAMP, PKT_RX_TIMESTAMP, NULL },
813 { PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
814 { PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
815 { PKT_RX_QINQ, PKT_RX_QINQ, NULL },
9f95a23c
TL
816 { PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
817 { PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
818 NULL },
819 { PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
820 NULL },
821 { PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
822 "PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
7c673cae
FG
823 };
824 const char *name;
825 unsigned int i;
826 int ret;
827
828 if (buflen == 0)
829 return -1;
830
831 buf[0] = '\0';
832 for (i = 0; i < RTE_DIM(rx_flags); i++) {
833 if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
834 continue;
835 name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
836 if (name == NULL)
837 name = rx_flags[i].default_name;
838 ret = snprintf(buf, buflen, "%s ", name);
839 if (ret < 0)
840 return -1;
841 if ((size_t)ret >= buflen)
842 return -1;
843 buf += ret;
844 buflen -= ret;
845 }
846
847 return 0;
848}
849
850/*
851 * Get the name of a TX offload flag. Must be kept synchronized with flag
852 * definitions in rte_mbuf.h.
853 */
854const char *rte_get_tx_ol_flag_name(uint64_t mask)
855{
856 switch (mask) {
9f95a23c 857 case PKT_TX_VLAN: return "PKT_TX_VLAN";
7c673cae
FG
858 case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
859 case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
860 case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
861 case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
862 case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
863 case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
864 case PKT_TX_IPV4: return "PKT_TX_IPV4";
865 case PKT_TX_IPV6: return "PKT_TX_IPV6";
866 case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
867 case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
868 case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
869 case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
f67539c2 870 case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
7c673cae
FG
871 case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
872 case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
873 case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
11fdf7f2
TL
874 case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
875 case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
876 case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
877 case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
9f95a23c 878 case PKT_TX_QINQ: return "PKT_TX_QINQ";
11fdf7f2
TL
879 case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
880 case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
9f95a23c
TL
881 case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
882 case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
7c673cae
FG
883 default: return NULL;
884 }
885}
886
887/* write the list of tx ol flags in buffer buf */
888int
889rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
890{
891 const struct flag_mask tx_flags[] = {
9f95a23c 892 { PKT_TX_VLAN, PKT_TX_VLAN, NULL },
7c673cae
FG
893 { PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
894 { PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
895 { PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
896 { PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
897 { PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
898 { PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
899 { PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
900 { PKT_TX_IPV4, PKT_TX_IPV4, NULL },
901 { PKT_TX_IPV6, PKT_TX_IPV6, NULL },
902 { PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
903 { PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
904 { PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
9f95a23c 905 { PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
f67539c2 906 { PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
9f95a23c
TL
907 { PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
908 { PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
909 { PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
910 { PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
911 { PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
912 { PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
913 { PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
914 { PKT_TX_QINQ, PKT_TX_QINQ, NULL },
11fdf7f2
TL
915 { PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
916 { PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
9f95a23c
TL
917 { PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
918 { PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
7c673cae
FG
919 };
920 const char *name;
921 unsigned int i;
922 int ret;
923
924 if (buflen == 0)
925 return -1;
926
927 buf[0] = '\0';
928 for (i = 0; i < RTE_DIM(tx_flags); i++) {
929 if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
930 continue;
931 name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
932 if (name == NULL)
933 name = tx_flags[i].default_name;
934 ret = snprintf(buf, buflen, "%s ", name);
935 if (ret < 0)
936 return -1;
937 if ((size_t)ret >= buflen)
938 return -1;
939 buf += ret;
940 buflen -= ret;
941 }
942
943 return 0;
944}