]> git.proxmox.com Git - ceph.git/blame - ceph/src/spdk/module/bdev/crypto/vbdev_crypto.c
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / spdk / module / bdev / crypto / vbdev_crypto.c
CommitLineData
11fdf7f2
TL
1/*-
2 * BSD LICENSE
3 *
4 * Copyright (c) Intel Corporation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include "vbdev_crypto.h"
35
36#include "spdk/env.h"
37#include "spdk/conf.h"
38#include "spdk/endian.h"
f67539c2 39#include "spdk/thread.h"
11fdf7f2 40#include "spdk/bdev_module.h"
f67539c2 41#include "spdk_internal/log.h"
9f95a23c 42
11fdf7f2 43#include <rte_config.h>
9f95a23c 44#include <rte_version.h>
11fdf7f2
TL
45#include <rte_bus_vdev.h>
46#include <rte_crypto.h>
47#include <rte_cryptodev.h>
48#include <rte_cryptodev_pmd.h>
49
50/* To add support for new device types, follow the examples of the following...
51 * Note that the string names are defined by the DPDK PMD in question so be
52 * sure to use the exact names.
53 */
54#define MAX_NUM_DRV_TYPES 2
f67539c2
TL
55
56/* The VF spread is the number of queue pairs between virtual functions, we use this to
57 * load balance the QAT device.
58 */
59#define QAT_VF_SPREAD 32
60static uint8_t g_qat_total_qp = 0;
61static uint8_t g_next_qat_index;
62
11fdf7f2
TL
63const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT };
64
65/* Global list of available crypto devices. */
66struct vbdev_dev {
67 struct rte_cryptodev_info cdev_info; /* includes device friendly name */
68 uint8_t cdev_id; /* identifier for the device */
69 TAILQ_ENTRY(vbdev_dev) link;
70};
71static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
72
f67539c2
TL
73/* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
74 * so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
75 * pattern for assigning queue pairs where with AESNI there is not.
76 */
11fdf7f2
TL
77struct device_qp {
78 struct vbdev_dev *device; /* ptr to crypto device */
79 uint8_t qp; /* queue pair for this node */
80 bool in_use; /* whether this node is in use or not */
f67539c2 81 uint8_t index; /* used by QAT to load balance placement of qpairs */
11fdf7f2
TL
82 TAILQ_ENTRY(device_qp) link;
83};
f67539c2
TL
84static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
85static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
11fdf7f2
TL
86static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
87
88
89/* In order to limit the number of resources we need to do one crypto
90 * operation per LBA (we use LBA as IV), we tell the bdev layer that
91 * our max IO size is something reasonable. Units here are in bytes.
92 */
93#define CRYPTO_MAX_IO (64 * 1024)
94
95/* This controls how many ops will be dequeued from the crypto driver in one run
96 * of the poller. It is mainly a performance knob as it effectively determines how
97 * much work the poller has to do. However even that can vary between crypto drivers
98 * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
f67539c2 99 * QAT driver just dequeues what has been completed already.
11fdf7f2
TL
100 */
101#define MAX_DEQUEUE_BURST_SIZE 64
102
103/* When enqueueing, we need to supply the crypto driver with an array of pointers to
104 * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
f67539c2 105 * value in conjunction with the other defines to make sure we're not using crazy amounts
11fdf7f2
TL
106 * of memory. All of these numbers can and probably should be adjusted based on the
107 * workload. By default we'll use the worst case (smallest) block size for the
108 * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
109 * blocks would give us an enqueue array size of 128.
110 */
111#define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
112
113/* The number of MBUFS we need must be a power of two and to support other small IOs
114 * in addition to the limits mentioned above, we go to the next power of two. It is
f67539c2 115 * big number because it is one mempool for source and destination mbufs. It may
11fdf7f2
TL
116 * need to be bigger to support multiple crypto drivers at once.
117 */
118#define NUM_MBUFS 32768
119#define POOL_CACHE_SIZE 256
f67539c2
TL
120#define MAX_CRYPTO_VOLUMES 128
121#define NUM_SESSIONS (2 * MAX_CRYPTO_VOLUMES)
122#define SESS_MEMPOOL_CACHE_SIZE 0
123uint8_t g_number_of_claimed_volumes = 0;
11fdf7f2
TL
124
125/* This is the max number of IOs we can supply to any crypto device QP at one time.
126 * It can vary between drivers.
127 */
128#define CRYPTO_QP_DESCRIPTORS 2048
129
130/* Specific to AES_CBC. */
131#define AES_CBC_IV_LENGTH 16
132#define AES_CBC_KEY_LENGTH 16
f67539c2
TL
133#define AES_XTS_KEY_LENGTH 16 /* XTS uses 2 keys, each of this size. */
134#define AESNI_MB_NUM_QP 64
11fdf7f2
TL
135
136/* Common for suported devices. */
137#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
138 sizeof(struct rte_crypto_sym_op))
f67539c2 139#define QUEUED_OP_OFFSET (IV_OFFSET + AES_CBC_IV_LENGTH)
11fdf7f2
TL
140
141static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
142static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
143static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
144static void vbdev_crypto_examine(struct spdk_bdev *bdev);
145static int vbdev_crypto_claim(struct spdk_bdev *bdev);
f67539c2 146static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
11fdf7f2 147
f67539c2 148/* List of crypto_bdev names and their base bdevs via configuration file. */
11fdf7f2
TL
149struct bdev_names {
150 char *vbdev_name; /* name of the vbdev to create */
151 char *bdev_name; /* base bdev name */
152
153 /* Note, for dev/test we allow use of key in the config file, for production
154 * use, you must use an RPC to specify the key for security reasons.
155 */
156 uint8_t *key; /* key per bdev */
157 char *drv_name; /* name of the crypto device driver */
f67539c2
TL
158 char *cipher; /* AES_CBC or AES_XTS */
159 uint8_t *key2; /* key #2 for AES_XTS, per bdev */
11fdf7f2
TL
160 TAILQ_ENTRY(bdev_names) link;
161};
162static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
163
164/* List of virtual bdevs and associated info for each. We keep the device friendly name here even
165 * though its also in the device struct because we use it early on.
166 */
167struct vbdev_crypto {
168 struct spdk_bdev *base_bdev; /* the thing we're attaching to */
169 struct spdk_bdev_desc *base_desc; /* its descriptor we get from open */
170 struct spdk_bdev crypto_bdev; /* the crypto virtual bdev */
171 uint8_t *key; /* key per bdev */
f67539c2
TL
172 uint8_t *key2; /* for XTS */
173 uint8_t *xts_key; /* key + key 2 */
11fdf7f2 174 char *drv_name; /* name of the crypto device driver */
f67539c2 175 char *cipher; /* cipher used */
9f95a23c
TL
176 struct rte_cryptodev_sym_session *session_encrypt; /* encryption session for this bdev */
177 struct rte_cryptodev_sym_session *session_decrypt; /* decryption session for this bdev */
178 struct rte_crypto_sym_xform cipher_xform; /* crypto control struct for this bdev */
11fdf7f2 179 TAILQ_ENTRY(vbdev_crypto) link;
f67539c2 180 struct spdk_thread *thread; /* thread where base device is opened */
11fdf7f2
TL
181};
182static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
183
184/* Shared mempools between all devices on this system */
9f95a23c
TL
185static struct rte_mempool *g_session_mp = NULL;
186static struct rte_mempool *g_session_mp_priv = NULL;
11fdf7f2
TL
187static struct spdk_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
188static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */
189
f67539c2
TL
190/* For queueing up crypto operations that we can't submit for some reason */
191struct vbdev_crypto_op {
192 uint8_t cdev_id;
193 uint8_t qp;
194 struct rte_crypto_op *crypto_op;
195 struct spdk_bdev_io *bdev_io;
196 TAILQ_ENTRY(vbdev_crypto_op) link;
197};
198#define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
199
11fdf7f2
TL
200/* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
201 * We store things in here that are needed on per thread basis like the base_channel for this thread,
202 * and the poller for this thread.
203 */
204struct crypto_io_channel {
205 struct spdk_io_channel *base_ch; /* IO channel of base device */
206 struct spdk_poller *poller; /* completion poller */
207 struct device_qp *device_qp; /* unique device/qp combination for this channel */
9f95a23c
TL
208 TAILQ_HEAD(, spdk_bdev_io) pending_cry_ios; /* outstanding operations to the crypto device */
209 struct spdk_io_channel_iter *iter; /* used with for_each_channel in reset */
f67539c2 210 TAILQ_HEAD(, vbdev_crypto_op) queued_cry_ops; /* queued for re-submission to CryptoDev */
11fdf7f2
TL
211};
212
213/* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
214 * each IO for us.
215 */
216struct crypto_bdev_io {
217 int cryop_cnt_remaining; /* counter used when completing crypto ops */
218 struct crypto_io_channel *crypto_ch; /* need to store for crypto completion handling */
219 struct vbdev_crypto *crypto_bdev; /* the crypto node struct associated with this IO */
11fdf7f2
TL
220 struct spdk_bdev_io *orig_io; /* the original IO */
221 struct spdk_bdev_io *read_io; /* the read IO we issued */
f67539c2
TL
222 int8_t bdev_io_status; /* the status we'll report back on the bdev IO */
223 bool on_pending_list;
224 /* Used for the single contiguous buffer that serves as the crypto destination target for writes */
225 uint64_t aux_num_blocks; /* num of blocks for the contiguous buffer */
226 uint64_t aux_offset_blocks; /* block offset on media */
227 void *aux_buf_raw; /* raw buffer that the bdev layer gave us for write buffer */
228 struct iovec aux_buf_iov; /* iov representing aligned contig write buffer */
229
230 /* for bdev_io_wait */
231 struct spdk_bdev_io_wait_entry bdev_io_wait;
232 struct spdk_io_channel *ch;
11fdf7f2
TL
233};
234
9f95a23c
TL
235/* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
236static int
237create_vbdev_dev(uint8_t index, uint16_t num_lcores)
238{
239 struct vbdev_dev *device;
240 uint8_t j, cdev_id, cdrv_id;
241 struct device_qp *dev_qp;
242 struct device_qp *tmp_qp;
243 int rc;
f67539c2 244 TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
9f95a23c
TL
245
246 device = calloc(1, sizeof(struct vbdev_dev));
247 if (!device) {
248 return -ENOMEM;
249 }
250
251 /* Get details about this device. */
252 rte_cryptodev_info_get(index, &device->cdev_info);
253 cdrv_id = device->cdev_info.driver_id;
254 cdev_id = device->cdev_id = index;
255
256 /* Before going any further, make sure we have enough resources for this
257 * device type to function. We need a unique queue pair per core accross each
258 * device type to remain lockless....
259 */
260 if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
261 device->cdev_info.max_nb_queue_pairs) < num_lcores) {
262 SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
263 device->cdev_info.driver_name);
264 SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
265 rc = -EINVAL;
266 goto err;
267 }
268
269 /* Setup queue pairs. */
270 struct rte_cryptodev_config conf = {
271 .nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
272 .socket_id = SPDK_ENV_SOCKET_ID_ANY
273 };
274
275 rc = rte_cryptodev_configure(cdev_id, &conf);
276 if (rc < 0) {
277 SPDK_ERRLOG("Failed to configure cryptodev %u\n", cdev_id);
278 rc = -EINVAL;
279 goto err;
280 }
281
282 struct rte_cryptodev_qp_conf qp_conf = {
283 .nb_descriptors = CRYPTO_QP_DESCRIPTORS,
284#if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
285 .mp_session = g_session_mp,
286 .mp_session_private = g_session_mp_priv,
287#endif
288 };
289
f67539c2 290 /* Pre-setup all potential qpairs now and assign them in the channel
9f95a23c
TL
291 * callback. If we were to create them there, we'd have to stop the
292 * entire device affecting all other threads that might be using it
293 * even on other queue pairs.
294 */
295 for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
296#if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
297 rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
298#else
299 rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY,
300 g_session_mp);
301#endif
302
303 if (rc < 0) {
304 SPDK_ERRLOG("Failed to setup queue pair %u on "
305 "cryptodev %u\n", j, cdev_id);
306 rc = -EINVAL;
307 goto err;
308 }
309 }
310
311 rc = rte_cryptodev_start(cdev_id);
312 if (rc < 0) {
313 SPDK_ERRLOG("Failed to start device %u: error %d\n",
314 cdev_id, rc);
315 rc = -EINVAL;
316 goto err;
317 }
318
f67539c2
TL
319 /* Select the right device/qp list based on driver name
320 * or error if it does not exist.
321 */
322 if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
323 dev_qp_head = (struct device_qps *)&g_device_qp_qat;
324 } else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
325 dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
326 } else {
327 rc = -EINVAL;
328 goto err;
329 }
330
331 /* Build up lists of device/qp combinations per PMD */
9f95a23c
TL
332 for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
333 dev_qp = calloc(1, sizeof(struct device_qp));
334 if (!dev_qp) {
335 rc = -ENOMEM;
f67539c2 336 goto err_qp_alloc;
9f95a23c
TL
337 }
338 dev_qp->device = device;
339 dev_qp->qp = j;
340 dev_qp->in_use = false;
f67539c2
TL
341 if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
342 g_qat_total_qp++;
343 }
344 TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
9f95a23c
TL
345 }
346
347 /* Add to our list of available crypto devices. */
348 TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
349
350 return 0;
f67539c2
TL
351err_qp_alloc:
352 TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
353 TAILQ_REMOVE(dev_qp_head, dev_qp, link);
9f95a23c
TL
354 free(dev_qp);
355 }
f67539c2 356err:
9f95a23c
TL
357 free(device);
358
359 return rc;
9f95a23c
TL
360}
361
11fdf7f2
TL
362/* This is called from the module's init function. We setup all crypto devices early on as we are unable
363 * to easily dynamically configure queue pairs after the drivers are up and running. So, here, we
364 * configure the max capabilities of each device and assign threads to queue pairs as channels are
365 * requested.
366 */
367static int
368vbdev_crypto_init_crypto_drivers(void)
369{
370 uint8_t cdev_count;
f67539c2
TL
371 uint8_t cdev_id;
372 int i, rc = 0;
9f95a23c
TL
373 struct vbdev_dev *device;
374 struct vbdev_dev *tmp_dev;
f67539c2 375 struct device_qp *dev_qp;
11fdf7f2
TL
376 unsigned int max_sess_size = 0, sess_size;
377 uint16_t num_lcores = rte_lcore_count();
f67539c2 378 char aesni_args[32];
11fdf7f2
TL
379
380 /* Only the first call, via RPC or module init should init the crypto drivers. */
381 if (g_session_mp != NULL) {
382 return 0;
383 }
384
385 /* We always init AESNI_MB */
f67539c2
TL
386 snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
387 rc = rte_vdev_init(AESNI_MB, aesni_args);
9f95a23c 388 if (rc) {
11fdf7f2
TL
389 SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB);
390 return -EINVAL;
391 }
392
393 /* If we have no crypto devices, there's no reason to continue. */
394 cdev_count = rte_cryptodev_count();
395 if (cdev_count == 0) {
396 return 0;
397 }
398
399 /*
400 * Create global mempools, shared by all devices regardless of type.
401 */
402
403 /* First determine max session size, most pools are shared by all the devices,
404 * so we need to find the global max sessions size.
405 */
406 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
407 sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
408 if (sess_size > max_sess_size) {
409 max_sess_size = sess_size;
410 }
411 }
412
9f95a23c 413#if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
f67539c2
TL
414 g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
415 SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
416 NULL, SOCKET_ID_ANY, 0);
9f95a23c
TL
417 if (g_session_mp_priv == NULL) {
418 SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
419 return -ENOMEM;
420 }
421
422 g_session_mp = rte_cryptodev_sym_session_pool_create(
423 "session_mp",
f67539c2 424 NUM_SESSIONS, 0, SESS_MEMPOOL_CACHE_SIZE, 0,
9f95a23c
TL
425 SOCKET_ID_ANY);
426#else
f67539c2
TL
427 g_session_mp = rte_mempool_create("session_mp", NUM_SESSIONS, max_sess_size,
428 SESS_MEMPOOL_CACHE_SIZE,
9f95a23c
TL
429 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
430#endif
11fdf7f2
TL
431 if (g_session_mp == NULL) {
432 SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
9f95a23c 433 goto error_create_session_mp;
11fdf7f2
TL
434 return -ENOMEM;
435 }
436
437 g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
438 SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
439 SPDK_ENV_SOCKET_ID_ANY);
440 if (g_mbuf_mp == NULL) {
441 SPDK_ERRLOG("Cannot create mbuf pool\n");
442 rc = -ENOMEM;
443 goto error_create_mbuf;
444 }
445
f67539c2
TL
446 /* We use per op private data to store the IV and our own struct
447 * for queueing ops.
448 */
11fdf7f2
TL
449 g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
450 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
451 NUM_MBUFS,
452 POOL_CACHE_SIZE,
f67539c2 453 AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH,
11fdf7f2 454 rte_socket_id());
f67539c2 455
11fdf7f2
TL
456 if (g_crypto_op_mp == NULL) {
457 SPDK_ERRLOG("Cannot create op pool\n");
458 rc = -ENOMEM;
459 goto error_create_op;
460 }
461
9f95a23c 462 /* Init all devices */
11fdf7f2 463 for (i = 0; i < cdev_count; i++) {
9f95a23c
TL
464 rc = create_vbdev_dev(i, num_lcores);
465 if (rc) {
466 goto err;
11fdf7f2
TL
467 }
468 }
f67539c2
TL
469
470 /* Assign index values to the QAT device qp nodes so that we can
471 * assign them for optimal performance.
472 */
473 i = 0;
474 TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
475 dev_qp->index = i++;
476 }
477
11fdf7f2
TL
478 return 0;
479
480 /* Error cleanup paths. */
9f95a23c
TL
481err:
482 TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
483 TAILQ_REMOVE(&g_vbdev_devs, device, link);
484 free(device);
11fdf7f2 485 }
11fdf7f2 486 rte_mempool_free(g_crypto_op_mp);
9f95a23c 487 g_crypto_op_mp = NULL;
11fdf7f2
TL
488error_create_op:
489 spdk_mempool_free(g_mbuf_mp);
9f95a23c 490 g_mbuf_mp = NULL;
11fdf7f2 491error_create_mbuf:
9f95a23c
TL
492 rte_mempool_free(g_session_mp);
493 g_session_mp = NULL;
494error_create_session_mp:
495 if (g_session_mp_priv != NULL) {
496 rte_mempool_free(g_session_mp_priv);
497 g_session_mp_priv = NULL;
498 }
11fdf7f2
TL
499 return rc;
500}
501
502/* Following an encrypt or decrypt we need to then either write the encrypted data or finish
503 * the read on decrypted data. Do that here.
504 */
505static void
506_crypto_operation_complete(struct spdk_bdev_io *bdev_io)
507{
508 struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
509 crypto_bdev);
510 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
511 struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
512 struct spdk_bdev_io *free_me = io_ctx->read_io;
513 int rc = 0;
514
9f95a23c 515 TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
11fdf7f2 516
9f95a23c
TL
517 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
518
519 /* Complete the original IO and then free the one that we created
f67539c2 520 * as a result of issuing an IO via submit_request.
9f95a23c 521 */
f67539c2 522 if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
11fdf7f2 523 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
9f95a23c
TL
524 } else {
525 SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
526 rc = -EINVAL;
527 }
528 spdk_bdev_free_io(free_me);
11fdf7f2 529
9f95a23c 530 } else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
11fdf7f2 531
f67539c2 532 if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
11fdf7f2
TL
533 /* Write the encrypted data. */
534 rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
f67539c2
TL
535 &io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
536 io_ctx->aux_num_blocks, _complete_internal_write,
11fdf7f2
TL
537 bdev_io);
538 } else {
9f95a23c
TL
539 SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
540 rc = -EINVAL;
11fdf7f2 541 }
9f95a23c 542
11fdf7f2 543 } else {
9f95a23c
TL
544 SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
545 bdev_io->type);
546 rc = -EINVAL;
11fdf7f2
TL
547 }
548
9f95a23c 549 if (rc) {
11fdf7f2
TL
550 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
551 }
11fdf7f2
TL
552}
553
f67539c2
TL
554static int _crypto_operation(struct spdk_bdev_io *bdev_io,
555 enum rte_crypto_cipher_operation crypto_op,
556 void *aux_buf);
557
11fdf7f2
TL
558/* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
559 * the device. Then we need to decide if what we've got so far (including previous poller
560 * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
561 * accordingly. This means either completing a read or issuing a new write.
562 */
563static int
564crypto_dev_poller(void *args)
565{
566 struct crypto_io_channel *crypto_ch = args;
567 uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
f67539c2 568 int i, num_dequeued_ops, num_enqueued_ops;
11fdf7f2
TL
569 struct spdk_bdev_io *bdev_io = NULL;
570 struct crypto_bdev_io *io_ctx = NULL;
571 struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
572 struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
573 int num_mbufs = 0;
f67539c2 574 struct vbdev_crypto_op *op_to_resubmit;
11fdf7f2
TL
575
576 /* Each run of the poller will get just what the device has available
577 * at the moment we call it, we don't check again after draining the
578 * first batch.
579 */
580 num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
581 dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
582
583 /* Check if operation was processed successfully */
584 for (i = 0; i < num_dequeued_ops; i++) {
585
586 /* We don't know the order or association of the crypto ops wrt any
587 * partiular bdev_io so need to look at each and determine if it's
588 * the last one for it's bdev_io or not.
589 */
590 bdev_io = (struct spdk_bdev_io *)dequeued_ops[i]->sym->m_src->userdata;
591 assert(bdev_io != NULL);
f67539c2 592 io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
11fdf7f2
TL
593
594 if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
595 SPDK_ERRLOG("error with op %d status %u\n", i,
596 dequeued_ops[i]->status);
597 /* Update the bdev status to error, we'll still process the
598 * rest of the crypto ops for this bdev_io though so they
599 * aren't left hanging.
600 */
f67539c2 601 io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
11fdf7f2
TL
602 }
603
11fdf7f2
TL
604 assert(io_ctx->cryop_cnt_remaining > 0);
605
606 /* Return the associated src and dst mbufs by collecting them into
607 * an array that we can use the bulk API to free after the loop.
608 */
609 dequeued_ops[i]->sym->m_src->userdata = NULL;
610 mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
611 if (dequeued_ops[i]->sym->m_dst) {
612 mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
613 }
614
615 /* done encrypting, complete the bdev_io */
616 if (--io_ctx->cryop_cnt_remaining == 0) {
617
9f95a23c
TL
618 /* If we're completing this with an outstanding reset we need
619 * to fail it.
620 */
621 if (crypto_ch->iter) {
f67539c2 622 io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
9f95a23c
TL
623 }
624
11fdf7f2
TL
625 /* Complete the IO */
626 _crypto_operation_complete(bdev_io);
11fdf7f2
TL
627 }
628 }
629
630 /* Now bulk free both mbufs and crypto operations. */
631 if (num_dequeued_ops > 0) {
632 rte_mempool_put_bulk(g_crypto_op_mp,
633 (void **)dequeued_ops,
634 num_dequeued_ops);
635 assert(num_mbufs > 0);
636 spdk_mempool_put_bulk(g_mbuf_mp,
637 (void **)mbufs_to_free,
638 num_mbufs);
639 }
640
f67539c2
TL
641 /* Check if there are any pending crypto ops to process */
642 while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
643 op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
644 io_ctx = (struct crypto_bdev_io *)op_to_resubmit->bdev_io->driver_ctx;
645 num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
646 op_to_resubmit->qp,
647 &op_to_resubmit->crypto_op,
648 1);
649 if (num_enqueued_ops == 1) {
650 /* Make sure we don't put this on twice as one bdev_io is made up
651 * of many crypto ops.
652 */
653 if (io_ctx->on_pending_list == false) {
654 TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, op_to_resubmit->bdev_io, module_link);
655 io_ctx->on_pending_list = true;
656 }
657 TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
658 } else {
659 /* if we couldn't get one, just break and try again later. */
660 break;
661 }
662 }
663
9f95a23c
TL
664 /* If the channel iter is not NULL, we need to continue to poll
665 * until the pending list is empty, then we can move on to the
666 * next channel.
667 */
668 if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
669 SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
670 spdk_for_each_channel_continue(crypto_ch->iter, 0);
671 crypto_ch->iter = NULL;
672 }
673
11fdf7f2
TL
674 return num_dequeued_ops;
675}
676
677/* We're either encrypting on the way down or decrypting on the way back. */
678static int
f67539c2
TL
679_crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
680 void *aux_buf)
11fdf7f2 681{
11fdf7f2
TL
682 uint16_t num_enqueued_ops = 0;
683 uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
684 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
685 struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
686 uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
687 uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
688 uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
689 int rc;
11fdf7f2
TL
690 uint32_t iov_index = 0;
691 uint32_t allocated = 0;
692 uint8_t *current_iov = NULL;
693 uint64_t total_remaining = 0;
f67539c2
TL
694 uint64_t updated_length, current_iov_remaining = 0;
695 uint32_t crypto_index = 0;
11fdf7f2
TL
696 uint32_t en_offset = 0;
697 struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
698 struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
699 struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
700 int burst;
f67539c2
TL
701 struct vbdev_crypto_op *op_to_queue;
702 uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
11fdf7f2
TL
703
704 assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
705
706 /* Get the number of source mbufs that we need. These will always be 1:1 because we
707 * don't support chaining. The reason we don't is because of our decision to use
708 * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
709 * op would be > 1 LBA.
710 */
711 rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt);
712 if (rc) {
713 SPDK_ERRLOG("ERROR trying to get src_mbufs!\n");
714 return -ENOMEM;
715 }
716
717 /* Get the same amount but these buffers to describe the encrypted data location (dst). */
718 if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
719 rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt);
720 if (rc) {
721 SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n");
722 rc = -ENOMEM;
723 goto error_get_dst;
724 }
725 }
726
f67539c2
TL
727#ifdef __clang_analyzer__
728 /* silence scan-build false positive */
729 SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
730#endif
11fdf7f2
TL
731 /* Allocate crypto operations. */
732 allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
733 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
734 crypto_ops, cryop_cnt);
735 if (allocated < cryop_cnt) {
736 SPDK_ERRLOG("ERROR trying to get crypto ops!\n");
737 rc = -ENOMEM;
738 goto error_get_ops;
739 }
740
11fdf7f2
TL
741 /* For encryption, we need to prepare a single contiguous buffer as the encryption
742 * destination, we'll then pass that along for the write after encryption is done.
743 * This is done to avoiding encrypting the provided write buffer which may be
744 * undesirable in some use cases.
745 */
746 if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
f67539c2
TL
747 io_ctx->aux_buf_iov.iov_len = total_length;
748 io_ctx->aux_buf_raw = aux_buf;
749 io_ctx->aux_buf_iov.iov_base = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
750 io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
751 io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
11fdf7f2
TL
752 }
753
754 /* This value is used in the completion callback to determine when the bdev_io is
755 * complete.
756 */
757 io_ctx->cryop_cnt_remaining = cryop_cnt;
758
759 /* As we don't support chaining because of a decision to use LBA as IV, construction
9f95a23c 760 * of crypto operations is straightforward. We build both the op, the mbuf and the
11fdf7f2
TL
761 * dst_mbuf in our local arrays by looping through the length of the bdev IO and
762 * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
f67539c2 763 * LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
11fdf7f2
TL
764 * mbuf per crypto operation.
765 */
766 total_remaining = total_length;
767 current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
768 current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
769 do {
770 uint8_t *iv_ptr;
771 uint64_t op_block_offset;
772
773 /* Set the mbuf elements address and length. Null out the next pointer. */
774 src_mbufs[crypto_index]->buf_addr = current_iov;
f67539c2
TL
775 src_mbufs[crypto_index]->data_len = updated_length = crypto_len;
776 /* TODO: Make this assignment conditional on QAT usage and add an assert. */
777 src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov, &updated_length);
11fdf7f2
TL
778 src_mbufs[crypto_index]->next = NULL;
779 /* Store context in every mbuf as we don't know anything about completion order */
780 src_mbufs[crypto_index]->userdata = bdev_io;
781
782 /* Set the IV - we use the LBA of the crypto_op */
783 iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
784 IV_OFFSET);
785 memset(iv_ptr, 0, AES_CBC_IV_LENGTH);
786 op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
787 rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
788
789 /* Set the data to encrypt/decrypt length */
790 crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
791 crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
792
793 /* link the mbuf to the crypto op. */
794 crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
795 if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
796 crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index];
797 } else {
798 crypto_ops[crypto_index]->sym->m_dst = NULL;
799 }
800
801 /* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
802 * that will be used to process the write on completion to the same buffer. Setting
803 * up the en_buffer is a little simpler as we know the destination buffer is single IOV.
804 */
805 if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
806
807 /* Set the relevant destination en_mbuf elements. */
f67539c2
TL
808 dst_mbufs[crypto_index]->buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
809 dst_mbufs[crypto_index]->data_len = updated_length = crypto_len;
810 /* TODO: Make this assignment conditional on QAT usage and add an assert. */
9f95a23c 811 dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr,
f67539c2 812 &updated_length);
11fdf7f2
TL
813 crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
814 en_offset += crypto_len;
815 dst_mbufs[crypto_index]->next = NULL;
11fdf7f2 816
9f95a23c
TL
817 /* Attach the crypto session to the operation */
818 rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
819 io_ctx->crypto_bdev->session_encrypt);
820 if (rc) {
821 rc = -EINVAL;
822 goto error_attach_session;
823 }
824
825 } else {
826 /* Attach the crypto session to the operation */
827 rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
828 io_ctx->crypto_bdev->session_decrypt);
829 if (rc) {
830 rc = -EINVAL;
831 goto error_attach_session;
832 }
833
834
11fdf7f2
TL
835 }
836
837 /* Subtract our running totals for the op in progress and the overall bdev io */
838 total_remaining -= crypto_len;
839 current_iov_remaining -= crypto_len;
840
841 /* move our current IOV pointer accordingly. */
842 current_iov += crypto_len;
843
844 /* move on to the next crypto operation */
845 crypto_index++;
846
847 /* If we're done with this IOV, move to the next one. */
848 if (current_iov_remaining == 0 && total_remaining > 0) {
849 iov_index++;
850 current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
851 current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
852 }
853 } while (total_remaining > 0);
854
855 /* Enqueue everything we've got but limit by the max number of descriptors we
856 * configured the crypto device for.
857 */
f67539c2
TL
858 burst = spdk_min(cryop_cnt, CRYPTO_QP_DESCRIPTORS);
859 num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
860 &crypto_ops[0],
861 burst);
862
863 /* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
864 if (num_enqueued_ops > 0) {
865 TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
866 io_ctx->on_pending_list = true;
867 }
868 /* We were unable to enqueue everything but did get some, so need to decide what
869 * to do based on the status of the last op.
870 */
871 if (num_enqueued_ops < cryop_cnt) {
872 switch (crypto_ops[num_enqueued_ops]->status) {
873 case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
874 /* Queue them up on a linked list to be resubmitted via the poller. */
875 for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
876 op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
877 uint8_t *, QUEUED_OP_OFFSET);
878 op_to_queue->cdev_id = cdev_id;
879 op_to_queue->qp = crypto_ch->device_qp->qp;
880 op_to_queue->crypto_op = crypto_ops[crypto_index];
881 op_to_queue->bdev_io = bdev_io;
882 TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
883 op_to_queue,
884 link);
885 }
886 break;
887 default:
888 /* For all other statuses, set the io_ctx bdev_io status so that
889 * the poller will pick the failure up for the overall bdev status.
11fdf7f2 890 */
f67539c2
TL
891 io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
892 if (num_enqueued_ops == 0) {
893 /* If nothing was enqueued, but the last one wasn't because of
894 * busy, fail it now as the poller won't know anything about it.
895 */
896 _crypto_operation_complete(bdev_io);
897 rc = -EINVAL;
898 goto error_attach_session;
899 }
900 break;
11fdf7f2 901 }
f67539c2 902 }
9f95a23c 903
11fdf7f2
TL
904 return rc;
905
906 /* Error cleanup paths. */
907error_attach_session:
11fdf7f2
TL
908error_get_ops:
909 if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
910 spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0],
911 cryop_cnt);
912 }
913 if (allocated > 0) {
914 rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
915 allocated);
916 }
917error_get_dst:
918 spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0],
919 cryop_cnt);
920 return rc;
921}
922
9f95a23c
TL
923/* This function is called after all channels have been quiesced following
924 * a bdev reset.
925 */
926static void
927_ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
928{
929 struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
930
931 assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
932 assert(io_ctx->orig_io != NULL);
933
934 spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
935}
936
937/* This function is called per channel to quiesce IOs before completing a
938 * bdev reset that we received.
939 */
940static void
941_ch_quiesce(struct spdk_io_channel_iter *i)
942{
943 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
944 struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
945
946 crypto_ch->iter = i;
947 /* When the poller runs, it will see the non-NULL iter and handle
948 * the quiesce.
949 */
950}
951
11fdf7f2
TL
952/* Completion callback for IO that were issued from this bdev other than read/write.
953 * They have their own for readability.
954 */
955static void
956_complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
957{
958 struct spdk_bdev_io *orig_io = cb_arg;
959 int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
960
9f95a23c
TL
961 if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
962 struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
963
964 assert(orig_io == orig_ctx->orig_io);
965
966 spdk_bdev_free_io(bdev_io);
967
968 spdk_for_each_channel(orig_ctx->crypto_bdev,
969 _ch_quiesce,
970 orig_ctx,
971 _ch_quiesce_done);
972 return;
973 }
974
11fdf7f2
TL
975 spdk_bdev_io_complete(orig_io, status);
976 spdk_bdev_free_io(bdev_io);
977}
978
979/* Completion callback for writes that were issued from this bdev. */
980static void
981_complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
982{
983 struct spdk_bdev_io *orig_io = cb_arg;
984 int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
985 struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
986
f67539c2
TL
987 spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
988
11fdf7f2
TL
989 spdk_bdev_io_complete(orig_io, status);
990 spdk_bdev_free_io(bdev_io);
991}
992
993/* Completion callback for reads that were issued from this bdev. */
994static void
995_complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
996{
997 struct spdk_bdev_io *orig_io = cb_arg;
998 struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
999
1000 if (success) {
1001
1002 /* Save off this bdev_io so it can be freed after decryption. */
1003 orig_ctx->read_io = bdev_io;
1004
f67539c2 1005 if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
9f95a23c
TL
1006 return;
1007 } else {
1008 SPDK_ERRLOG("ERROR decrypting\n");
11fdf7f2
TL
1009 }
1010 } else {
9f95a23c 1011 SPDK_ERRLOG("ERROR on read prior to decrypting\n");
11fdf7f2 1012 }
9f95a23c
TL
1013
1014 spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
1015 spdk_bdev_free_io(bdev_io);
11fdf7f2
TL
1016}
1017
f67539c2
TL
1018static void
1019vbdev_crypto_resubmit_io(void *arg)
1020{
1021 struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
1022 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1023
1024 vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
1025}
1026
1027static void
1028vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
1029{
1030 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1031 int rc;
1032
1033 io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
1034 io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
1035 io_ctx->bdev_io_wait.cb_arg = bdev_io;
1036
1037 rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
1038 if (rc != 0) {
1039 SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
1040 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1041 }
1042}
1043
11fdf7f2
TL
1044/* Callback for getting a buf from the bdev pool in the event that the caller passed
1045 * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
1046 * beneath us before we're done with it.
1047 */
1048static void
9f95a23c
TL
1049crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1050 bool success)
11fdf7f2
TL
1051{
1052 struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1053 crypto_bdev);
1054 struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
f67539c2 1055 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
11fdf7f2
TL
1056 int rc;
1057
9f95a23c
TL
1058 if (!success) {
1059 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1060 return;
1061 }
1062
11fdf7f2
TL
1063 rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
1064 bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
1065 bdev_io->u.bdev.num_blocks, _complete_internal_read,
1066 bdev_io);
1067 if (rc != 0) {
f67539c2
TL
1068 if (rc == -ENOMEM) {
1069 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "No memory, queue the IO.\n");
1070 io_ctx->ch = ch;
1071 vbdev_crypto_queue_io(bdev_io);
1072 } else {
1073 SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1074 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1075 }
1076 }
1077}
1078
1079/* For encryption we don't want to encrypt the data in place as the host isn't
1080 * expecting us to mangle its data buffers so we need to encrypt into the bdev
1081 * aux buffer, then we can use that as the source for the disk data transfer.
1082 */
1083static void
1084crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
1085 void *aux_buf)
1086{
1087 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1088 int rc = 0;
1089
1090 rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
1091 if (rc != 0) {
1092 spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
1093 if (rc == -ENOMEM) {
1094 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "No memory, queue the IO.\n");
1095 io_ctx->ch = ch;
1096 vbdev_crypto_queue_io(bdev_io);
1097 } else {
1098 SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1099 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1100 }
11fdf7f2
TL
1101 }
1102}
1103
1104/* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
1105 * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
1106 * and call our cpl callback provided below along with the original bdev_io so that we can
1107 * complete it once this IO completes. For crypto operations, we'll either encrypt it first
1108 * (writes) then call back into bdev to submit it or we'll submit a read and then catch it
1109 * on the way back for decryption.
1110 */
1111static void
1112vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1113{
1114 struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
1115 crypto_bdev);
1116 struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
1117 struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
1118 int rc = 0;
1119
1120 memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
1121 io_ctx->crypto_bdev = crypto_bdev;
1122 io_ctx->crypto_ch = crypto_ch;
1123 io_ctx->orig_io = bdev_io;
f67539c2 1124 io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
11fdf7f2
TL
1125
1126 switch (bdev_io->type) {
1127 case SPDK_BDEV_IO_TYPE_READ:
1128 spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
1129 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1130 break;
1131 case SPDK_BDEV_IO_TYPE_WRITE:
f67539c2
TL
1132 /* Tell the bdev layer that we need an aux buf in addition to the data
1133 * buf already associated with the bdev.
1134 */
1135 spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
11fdf7f2
TL
1136 break;
1137 case SPDK_BDEV_IO_TYPE_UNMAP:
1138 rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1139 bdev_io->u.bdev.offset_blocks,
1140 bdev_io->u.bdev.num_blocks,
1141 _complete_internal_io, bdev_io);
1142 break;
1143 case SPDK_BDEV_IO_TYPE_FLUSH:
1144 rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
1145 bdev_io->u.bdev.offset_blocks,
1146 bdev_io->u.bdev.num_blocks,
1147 _complete_internal_io, bdev_io);
1148 break;
1149 case SPDK_BDEV_IO_TYPE_RESET:
1150 rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
1151 _complete_internal_io, bdev_io);
1152 break;
1153 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1154 default:
1155 SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
1156 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1157 return;
1158 }
1159
1160 if (rc != 0) {
f67539c2
TL
1161 if (rc == -ENOMEM) {
1162 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "No memory, queue the IO.\n");
1163 io_ctx->ch = ch;
1164 vbdev_crypto_queue_io(bdev_io);
1165 } else {
1166 SPDK_ERRLOG("ERROR on bdev_io submission!\n");
1167 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1168 }
11fdf7f2
TL
1169 }
1170}
1171
1172/* We'll just call the base bdev and let it answer except for WZ command which
1173 * we always say we don't support so that the bdev layer will actually send us
1174 * real writes that we can encrypt.
1175 */
1176static bool
1177vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
1178{
1179 struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1180
1181 switch (io_type) {
1182 case SPDK_BDEV_IO_TYPE_WRITE:
1183 case SPDK_BDEV_IO_TYPE_UNMAP:
1184 case SPDK_BDEV_IO_TYPE_RESET:
1185 case SPDK_BDEV_IO_TYPE_READ:
1186 case SPDK_BDEV_IO_TYPE_FLUSH:
1187 return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
1188 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1189 /* Force the bdev layer to issue actual writes of zeroes so we can
1190 * encrypt them as regular writes.
1191 */
1192 default:
1193 return false;
1194 }
1195}
1196
9f95a23c
TL
1197/* Callback for unregistering the IO device. */
1198static void
1199_device_unregister_cb(void *io_device)
1200{
1201 struct vbdev_crypto *crypto_bdev = io_device;
1202
1203 /* Done with this crypto_bdev. */
1204 rte_cryptodev_sym_session_free(crypto_bdev->session_decrypt);
1205 rte_cryptodev_sym_session_free(crypto_bdev->session_encrypt);
1206 free(crypto_bdev->drv_name);
f67539c2
TL
1207 if (crypto_bdev->key) {
1208 memset(crypto_bdev->key, 0, strnlen(crypto_bdev->key, (AES_CBC_KEY_LENGTH + 1)));
1209 free(crypto_bdev->key);
1210 }
1211 if (crypto_bdev->key2) {
1212 memset(crypto_bdev->key2, 0, strnlen(crypto_bdev->key2, (AES_XTS_KEY_LENGTH + 1)));
1213 free(crypto_bdev->key2);
1214 }
1215 if (crypto_bdev->xts_key) {
1216 memset(crypto_bdev->xts_key, 0, strnlen(crypto_bdev->xts_key, (AES_XTS_KEY_LENGTH * 2) + 1));
1217 free(crypto_bdev->xts_key);
1218 }
9f95a23c
TL
1219 free(crypto_bdev->crypto_bdev.name);
1220 free(crypto_bdev);
1221}
1222
f67539c2
TL
1223/* Wrapper for the bdev close operation. */
1224static void
1225_vbdev_crypto_destruct(void *ctx)
1226{
1227 struct spdk_bdev_desc *desc = ctx;
1228
1229 spdk_bdev_close(desc);
1230}
1231
11fdf7f2
TL
1232/* Called after we've unregistered following a hot remove callback.
1233 * Our finish entry point will be called next.
1234 */
1235static int
1236vbdev_crypto_destruct(void *ctx)
1237{
1238 struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1239
9f95a23c
TL
1240 /* Remove this device from the internal list */
1241 TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
1242
11fdf7f2
TL
1243 /* Unclaim the underlying bdev. */
1244 spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
1245
f67539c2
TL
1246 /* Close the underlying bdev on its same opened thread. */
1247 if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
1248 spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
1249 } else {
1250 spdk_bdev_close(crypto_bdev->base_desc);
1251 }
11fdf7f2 1252
9f95a23c
TL
1253 /* Unregister the io_device. */
1254 spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
1255
f67539c2
TL
1256 g_number_of_claimed_volumes--;
1257
11fdf7f2
TL
1258 return 0;
1259}
1260
1261/* We supplied this as an entry point for upper layers who want to communicate to this
1262 * bdev. This is how they get a channel. We are passed the same context we provided when
1263 * we created our crypto vbdev in examine() which, for this bdev, is the address of one of
1264 * our context nodes. From here we'll ask the SPDK channel code to fill out our channel
1265 * struct and we'll keep it in our crypto node.
1266 */
1267static struct spdk_io_channel *
1268vbdev_crypto_get_io_channel(void *ctx)
1269{
1270 struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1271
1272 /* The IO channel code will allocate a channel for us which consists of
f67539c2 1273 * the SPDK channel structure plus the size of our crypto_io_channel struct
11fdf7f2
TL
1274 * that we passed in when we registered our IO device. It will then call
1275 * our channel create callback to populate any elements that we need to
1276 * update.
1277 */
1278 return spdk_get_io_channel(crypto_bdev);
1279}
1280
f67539c2 1281/* This is the output for bdev_get_bdevs() for this vbdev */
11fdf7f2
TL
1282static int
1283vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
1284{
1285 struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
1286
1287 spdk_json_write_name(w, "crypto");
1288 spdk_json_write_object_begin(w);
1289 spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1290 spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1291 spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1292 spdk_json_write_named_string(w, "key", crypto_bdev->key);
f67539c2
TL
1293 if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1294 spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1295 }
1296 spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
11fdf7f2
TL
1297 spdk_json_write_object_end(w);
1298 return 0;
1299}
1300
1301static int
1302vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
1303{
9f95a23c 1304 struct vbdev_crypto *crypto_bdev;
11fdf7f2 1305
9f95a23c 1306 TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
11fdf7f2 1307 spdk_json_write_object_begin(w);
f67539c2 1308 spdk_json_write_named_string(w, "method", "bdev_crypto_create");
11fdf7f2
TL
1309 spdk_json_write_named_object_begin(w, "params");
1310 spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
1311 spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
1312 spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name);
1313 spdk_json_write_named_string(w, "key", crypto_bdev->key);
f67539c2
TL
1314 if (strcmp(crypto_bdev->cipher, AES_XTS) == 0) {
1315 spdk_json_write_named_string(w, "key2", crypto_bdev->key);
1316 }
1317 spdk_json_write_named_string(w, "cipher", crypto_bdev->cipher);
11fdf7f2
TL
1318 spdk_json_write_object_end(w);
1319 spdk_json_write_object_end(w);
1320 }
1321 return 0;
1322}
1323
f67539c2
TL
1324/* Helper function for the channel creation callback. */
1325static void
1326_assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
1327 struct crypto_io_channel *crypto_ch)
1328{
1329 pthread_mutex_lock(&g_device_qp_lock);
1330 if (strcmp(crypto_bdev->drv_name, QAT) == 0) {
1331 /* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
1332 * workload out over the multiple virtual functions in the device. For the devices
1333 * where this isn't the case, it doesn't hurt.
1334 */
1335 TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
1336 if (device_qp->index != g_next_qat_index) {
1337 continue;
1338 }
1339 if (device_qp->in_use == false) {
1340 crypto_ch->device_qp = device_qp;
1341 device_qp->in_use = true;
1342 g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
1343 break;
1344 } else {
1345 /* if the preferred index is used, skip to the next one in this set. */
1346 g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
1347 }
1348 }
1349 } else if (strcmp(crypto_bdev->drv_name, AESNI_MB) == 0) {
1350 TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
1351 if (device_qp->in_use == false) {
1352 crypto_ch->device_qp = device_qp;
1353 device_qp->in_use = true;
1354 break;
1355 }
1356 }
1357 }
1358 pthread_mutex_unlock(&g_device_qp_lock);
1359}
1360
11fdf7f2
TL
1361/* We provide this callback for the SPDK channel code to create a channel using
1362 * the channel struct we provided in our module get_io_channel() entry point. Here
1363 * we get and save off an underlying base channel of the device below us so that
1364 * we can communicate with the base bdev on a per channel basis. We also register the
1365 * poller used to complete crypto operations from the device.
1366 */
1367static int
1368crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
1369{
1370 struct crypto_io_channel *crypto_ch = ctx_buf;
1371 struct vbdev_crypto *crypto_bdev = io_device;
f67539c2 1372 struct device_qp *device_qp = NULL;
11fdf7f2
TL
1373
1374 crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
f67539c2 1375 crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
11fdf7f2
TL
1376 crypto_ch->device_qp = NULL;
1377
f67539c2
TL
1378 /* Assign a device/qp combination that is unique per channel per PMD. */
1379 _assign_device_qp(crypto_bdev, device_qp, crypto_ch);
11fdf7f2 1380 assert(crypto_ch->device_qp);
9f95a23c 1381
f67539c2 1382 /* We use this queue to track outstanding IO in our layer. */
9f95a23c
TL
1383 TAILQ_INIT(&crypto_ch->pending_cry_ios);
1384
f67539c2
TL
1385 /* We use this to queue up crypto ops when the device is busy. */
1386 TAILQ_INIT(&crypto_ch->queued_cry_ops);
1387
11fdf7f2
TL
1388 return 0;
1389}
1390
1391/* We provide this callback for the SPDK channel code to destroy a channel
1392 * created with our create callback. We just need to undo anything we did
1393 * when we created.
1394 */
1395static void
1396crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
1397{
1398 struct crypto_io_channel *crypto_ch = ctx_buf;
1399
1400 pthread_mutex_lock(&g_device_qp_lock);
1401 crypto_ch->device_qp->in_use = false;
1402 pthread_mutex_unlock(&g_device_qp_lock);
1403
1404 spdk_poller_unregister(&crypto_ch->poller);
1405 spdk_put_io_channel(crypto_ch->base_ch);
1406}
1407
1408/* Create the association from the bdev and vbdev name and insert
1409 * on the global list. */
1410static int
1411vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name,
f67539c2
TL
1412 const char *crypto_pmd, const char *key,
1413 const char *cipher, const char *key2)
11fdf7f2
TL
1414{
1415 struct bdev_names *name;
1416 int rc, j;
1417 bool found = false;
1418
9f95a23c
TL
1419 TAILQ_FOREACH(name, &g_bdev_names, link) {
1420 if (strcmp(vbdev_name, name->vbdev_name) == 0) {
1421 SPDK_ERRLOG("crypto bdev %s already exists\n", vbdev_name);
1422 return -EEXIST;
1423 }
1424 }
1425
11fdf7f2
TL
1426 name = calloc(1, sizeof(struct bdev_names));
1427 if (!name) {
1428 SPDK_ERRLOG("could not allocate bdev_names\n");
1429 return -ENOMEM;
1430 }
1431
1432 name->bdev_name = strdup(bdev_name);
1433 if (!name->bdev_name) {
1434 SPDK_ERRLOG("could not allocate name->bdev_name\n");
1435 rc = -ENOMEM;
1436 goto error_alloc_bname;
1437 }
1438
1439 name->vbdev_name = strdup(vbdev_name);
1440 if (!name->vbdev_name) {
1441 SPDK_ERRLOG("could not allocate name->vbdev_name\n");
1442 rc = -ENOMEM;
1443 goto error_alloc_vname;
1444 }
1445
1446 name->drv_name = strdup(crypto_pmd);
1447 if (!name->drv_name) {
1448 SPDK_ERRLOG("could not allocate name->drv_name\n");
1449 rc = -ENOMEM;
1450 goto error_alloc_dname;
1451 }
1452 for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
1453 if (strcmp(crypto_pmd, g_driver_names[j]) == 0) {
1454 found = true;
1455 break;
1456 }
1457 }
1458 if (!found) {
1459 SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd);
1460 rc = -EINVAL;
1461 goto error_invalid_pmd;
1462 }
1463
1464 name->key = strdup(key);
1465 if (!name->key) {
1466 SPDK_ERRLOG("could not allocate name->key\n");
1467 rc = -ENOMEM;
1468 goto error_alloc_key;
1469 }
f67539c2
TL
1470 if (strnlen(name->key, (AES_CBC_KEY_LENGTH + 1)) != AES_CBC_KEY_LENGTH) {
1471 SPDK_ERRLOG("invalid AES_CBC key length\n");
11fdf7f2
TL
1472 rc = -EINVAL;
1473 goto error_invalid_key;
1474 }
1475
f67539c2
TL
1476 if (strncmp(cipher, AES_XTS, sizeof(AES_XTS)) == 0) {
1477 /* To please scan-build, input validation makes sure we can't
1478 * have this cipher without providing a key2.
1479 */
1480 name->cipher = AES_XTS;
1481 assert(key2);
1482 if (strnlen(key2, (AES_XTS_KEY_LENGTH + 1)) != AES_XTS_KEY_LENGTH) {
1483 SPDK_ERRLOG("invalid AES_XTS key length\n");
1484 rc = -EINVAL;
1485 goto error_invalid_key2;
1486 }
1487
1488 name->key2 = strdup(key2);
1489 if (!name->key2) {
1490 SPDK_ERRLOG("could not allocate name->key2\n");
1491 rc = -ENOMEM;
1492 goto error_alloc_key2;
1493 }
1494 } else if (strncmp(cipher, AES_CBC, sizeof(AES_CBC)) == 0) {
1495 name->cipher = AES_CBC;
1496 } else {
1497 SPDK_ERRLOG("Invalid cipher: %s\n", cipher);
1498 rc = -EINVAL;
1499 goto error_cipher;
1500 }
1501
11fdf7f2
TL
1502 TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
1503
1504 return 0;
1505
1506 /* Error cleanup paths. */
f67539c2
TL
1507error_cipher:
1508 free(name->key2);
1509error_alloc_key2:
1510error_invalid_key2:
11fdf7f2 1511error_invalid_key:
f67539c2 1512 free(name->key);
11fdf7f2
TL
1513error_alloc_key:
1514error_invalid_pmd:
1515 free(name->drv_name);
1516error_alloc_dname:
1517 free(name->vbdev_name);
1518error_alloc_vname:
1519 free(name->bdev_name);
1520error_alloc_bname:
1521 free(name);
1522 return rc;
1523}
1524
1525/* RPC entry point for crypto creation. */
1526int
1527create_crypto_disk(const char *bdev_name, const char *vbdev_name,
f67539c2
TL
1528 const char *crypto_pmd, const char *key,
1529 const char *cipher, const char *key2)
11fdf7f2
TL
1530{
1531 struct spdk_bdev *bdev = NULL;
11fdf7f2
TL
1532 int rc = 0;
1533
1534 bdev = spdk_bdev_get_by_name(bdev_name);
1535
f67539c2 1536 rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key, cipher, key2);
11fdf7f2
TL
1537 if (rc) {
1538 return rc;
1539 }
1540
1541 if (!bdev) {
9f95a23c 1542 SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
11fdf7f2
TL
1543 return 0;
1544 }
1545
1546 rc = vbdev_crypto_claim(bdev);
1547 if (rc) {
1548 return rc;
1549 }
1550
11fdf7f2
TL
1551 return rc;
1552}
1553
f67539c2 1554/* Called at driver init time, parses config file to prepare for examine calls,
11fdf7f2
TL
1555 * also fully initializes the crypto drivers.
1556 */
1557static int
1558vbdev_crypto_init(void)
1559{
1560 struct spdk_conf_section *sp = NULL;
1561 const char *conf_bdev_name = NULL;
1562 const char *conf_vbdev_name = NULL;
1563 const char *crypto_pmd = NULL;
1564 int i;
1565 int rc = 0;
1566 const char *key = NULL;
f67539c2
TL
1567 const char *cipher = NULL;
1568 const char *key2 = NULL;
11fdf7f2
TL
1569
1570 /* Fully configure both SW and HW drivers. */
1571 rc = vbdev_crypto_init_crypto_drivers();
1572 if (rc) {
1573 SPDK_ERRLOG("Error setting up crypto devices\n");
1574 return rc;
1575 }
1576
1577 sp = spdk_conf_find_section(NULL, "crypto");
1578 if (sp == NULL) {
1579 return 0;
1580 }
1581
1582 for (i = 0; ; i++) {
1583
1584 if (!spdk_conf_section_get_nval(sp, "CRY", i)) {
1585 break;
1586 }
1587
1588 conf_bdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 0);
1589 if (!conf_bdev_name) {
1590 SPDK_ERRLOG("crypto configuration missing bdev name\n");
1591 return -EINVAL;
1592 }
1593
1594 conf_vbdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 1);
1595 if (!conf_vbdev_name) {
1596 SPDK_ERRLOG("crypto configuration missing crypto_bdev name\n");
1597 return -EINVAL;
1598 }
1599
1600 key = spdk_conf_section_get_nmval(sp, "CRY", i, 2);
1601 if (!key) {
1602 SPDK_ERRLOG("crypto configuration missing crypto_bdev key\n");
1603 return -EINVAL;
1604 }
1605 SPDK_NOTICELOG("WARNING: You are storing your key in a plain text file!!\n");
1606
1607 crypto_pmd = spdk_conf_section_get_nmval(sp, "CRY", i, 3);
1608 if (!crypto_pmd) {
1609 SPDK_ERRLOG("crypto configuration missing driver type\n");
1610 return -EINVAL;
1611 }
1612
f67539c2
TL
1613 /* These are optional. */
1614 cipher = spdk_conf_section_get_nmval(sp, "CRY", i, 4);
1615 if (cipher == NULL) {
1616 cipher = AES_CBC;
1617 }
1618 key2 = spdk_conf_section_get_nmval(sp, "CRY", i, 5);
1619
1620 /* Note: config file options do not support QAT AES_XTS, use RPC */
11fdf7f2 1621 rc = vbdev_crypto_insert_name(conf_bdev_name, conf_vbdev_name,
f67539c2 1622 crypto_pmd, key, cipher, key2);
11fdf7f2
TL
1623 if (rc != 0) {
1624 return rc;
1625 }
1626 }
1627
1628 return rc;
1629}
1630
1631/* Called when the entire module is being torn down. */
1632static void
1633vbdev_crypto_finish(void)
1634{
1635 struct bdev_names *name;
1636 struct vbdev_dev *device;
1637 struct device_qp *dev_qp;
9f95a23c
TL
1638 unsigned i;
1639 int rc;
11fdf7f2
TL
1640
1641 while ((name = TAILQ_FIRST(&g_bdev_names))) {
1642 TAILQ_REMOVE(&g_bdev_names, name, link);
1643 free(name->drv_name);
1644 free(name->key);
1645 free(name->bdev_name);
1646 free(name->vbdev_name);
f67539c2 1647 free(name->key2);
11fdf7f2
TL
1648 free(name);
1649 }
1650
1651 while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
9f95a23c
TL
1652 struct rte_cryptodev *rte_dev;
1653
11fdf7f2
TL
1654 TAILQ_REMOVE(&g_vbdev_devs, device, link);
1655 rte_cryptodev_stop(device->cdev_id);
9f95a23c
TL
1656
1657 assert(device->cdev_id < RTE_CRYPTO_MAX_DEVS);
1658 rte_dev = &rte_cryptodevs[device->cdev_id];
1659
1660 if (rte_dev->dev_ops->queue_pair_release != NULL) {
1661 for (i = 0; i < device->cdev_info.max_nb_queue_pairs; i++) {
1662 rte_dev->dev_ops->queue_pair_release(rte_dev, i);
1663 }
1664 }
11fdf7f2
TL
1665 free(device);
1666 }
9f95a23c
TL
1667 rc = rte_vdev_uninit(AESNI_MB);
1668 if (rc) {
1669 SPDK_ERRLOG("%d from rte_vdev_uninit\n", rc);
1670 }
11fdf7f2 1671
f67539c2
TL
1672 while ((dev_qp = TAILQ_FIRST(&g_device_qp_qat))) {
1673 TAILQ_REMOVE(&g_device_qp_qat, dev_qp, link);
1674 free(dev_qp);
1675 }
1676
1677 while ((dev_qp = TAILQ_FIRST(&g_device_qp_aesni_mb))) {
1678 TAILQ_REMOVE(&g_device_qp_aesni_mb, dev_qp, link);
11fdf7f2
TL
1679 free(dev_qp);
1680 }
1681
1682 rte_mempool_free(g_crypto_op_mp);
1683 spdk_mempool_free(g_mbuf_mp);
9f95a23c
TL
1684 rte_mempool_free(g_session_mp);
1685 if (g_session_mp_priv != NULL) {
1686 rte_mempool_free(g_session_mp_priv);
1687 }
11fdf7f2
TL
1688}
1689
1690/* During init we'll be asked how much memory we'd like passed to us
1691 * in bev_io structures as context. Here's where we specify how
1692 * much context we want per IO.
1693 */
1694static int
1695vbdev_crypto_get_ctx_size(void)
1696{
1697 return sizeof(struct crypto_bdev_io);
1698}
1699
1700/* Called when SPDK wants to save the current config of this vbdev module to
1701 * a file.
1702 */
1703static void
1704vbdev_crypto_get_spdk_running_config(FILE *fp)
1705{
1706 struct bdev_names *names = NULL;
1707 fprintf(fp, "\n[crypto]\n");
1708 TAILQ_FOREACH(names, &g_bdev_names, link) {
1709 fprintf(fp, " crypto %s %s ", names->bdev_name, names->vbdev_name);
1710 fprintf(fp, "\n");
1711 }
1712
1713 fprintf(fp, "\n");
1714}
1715
1716/* Called when the underlying base bdev goes away. */
1717static void
1718vbdev_crypto_examine_hotremove_cb(void *ctx)
1719{
1720 struct vbdev_crypto *crypto_bdev, *tmp;
1721 struct spdk_bdev *bdev_find = ctx;
1722
1723 TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
1724 if (bdev_find == crypto_bdev->base_bdev) {
1725 spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
1726 }
1727 }
1728}
1729
1730static void
1731vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1732{
1733 /* No config per bdev needed */
1734}
1735
1736/* When we register our bdev this is how we specify our entry points. */
1737static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
1738 .destruct = vbdev_crypto_destruct,
1739 .submit_request = vbdev_crypto_submit_request,
1740 .io_type_supported = vbdev_crypto_io_type_supported,
1741 .get_io_channel = vbdev_crypto_get_io_channel,
1742 .dump_info_json = vbdev_crypto_dump_info_json,
1743 .write_config_json = vbdev_crypto_write_config_json
1744};
1745
1746static struct spdk_bdev_module crypto_if = {
1747 .name = "crypto",
1748 .module_init = vbdev_crypto_init,
1749 .config_text = vbdev_crypto_get_spdk_running_config,
1750 .get_ctx_size = vbdev_crypto_get_ctx_size,
1751 .examine_config = vbdev_crypto_examine,
1752 .module_fini = vbdev_crypto_finish,
1753 .config_json = vbdev_crypto_config_json
1754};
1755
9f95a23c 1756SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
11fdf7f2
TL
1757
1758static int
1759vbdev_crypto_claim(struct spdk_bdev *bdev)
1760{
1761 struct bdev_names *name;
1762 struct vbdev_crypto *vbdev;
9f95a23c
TL
1763 struct vbdev_dev *device;
1764 bool found = false;
11fdf7f2
TL
1765 int rc = 0;
1766
f67539c2
TL
1767 if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
1768 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "Reached max number of claimed volumes\n");
1769 rc = -EINVAL;
1770 goto error_vbdev_alloc;
1771 }
1772 g_number_of_claimed_volumes++;
1773
11fdf7f2
TL
1774 /* Check our list of names from config versus this bdev and if
1775 * there's a match, create the crypto_bdev & bdev accordingly.
1776 */
1777 TAILQ_FOREACH(name, &g_bdev_names, link) {
1778 if (strcmp(name->bdev_name, bdev->name) != 0) {
1779 continue;
1780 }
f67539c2 1781 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "Match on %s\n", bdev->name);
11fdf7f2 1782
11fdf7f2
TL
1783 vbdev = calloc(1, sizeof(struct vbdev_crypto));
1784 if (!vbdev) {
1785 SPDK_ERRLOG("could not allocate crypto_bdev\n");
1786 rc = -ENOMEM;
1787 goto error_vbdev_alloc;
1788 }
1789
1790 /* The base bdev that we're attaching to. */
1791 vbdev->base_bdev = bdev;
1792 vbdev->crypto_bdev.name = strdup(name->vbdev_name);
1793 if (!vbdev->crypto_bdev.name) {
1794 SPDK_ERRLOG("could not allocate crypto_bdev name\n");
1795 rc = -ENOMEM;
1796 goto error_bdev_name;
1797 }
1798
1799 vbdev->key = strdup(name->key);
1800 if (!vbdev->key) {
1801 SPDK_ERRLOG("could not allocate crypto_bdev key\n");
1802 rc = -ENOMEM;
1803 goto error_alloc_key;
1804 }
1805
f67539c2
TL
1806 if (name->key2) {
1807 vbdev->key2 = strdup(name->key2);
1808 if (!vbdev->key2) {
1809 SPDK_ERRLOG("could not allocate crypto_bdev key2\n");
1810 rc = -ENOMEM;
1811 goto error_alloc_key2;
1812 }
1813 }
1814
11fdf7f2
TL
1815 vbdev->drv_name = strdup(name->drv_name);
1816 if (!vbdev->drv_name) {
1817 SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n");
1818 rc = -ENOMEM;
1819 goto error_drv_name;
1820 }
1821
1822 vbdev->crypto_bdev.product_name = "crypto";
1823 vbdev->crypto_bdev.write_cache = bdev->write_cache;
f67539c2 1824 vbdev->cipher = AES_CBC;
9f95a23c
TL
1825 if (strcmp(vbdev->drv_name, QAT) == 0) {
1826 vbdev->crypto_bdev.required_alignment =
1827 spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
1828 SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
1829 vbdev->crypto_bdev.required_alignment);
f67539c2
TL
1830 if (strcmp(name->cipher, AES_CBC) == 0) {
1831 SPDK_NOTICELOG("QAT using cipher: AES_CBC\n");
1832 } else {
1833 SPDK_NOTICELOG("QAT using cipher: AES_XTS\n");
1834 vbdev->cipher = AES_XTS;
1835 /* DPDK expects they keys to be concatenated together. */
1836 vbdev->xts_key = calloc(1, (AES_XTS_KEY_LENGTH * 2) + 1);
1837 if (vbdev->xts_key == NULL) {
1838 SPDK_ERRLOG("could not allocate memory for XTS key\n");
1839 rc = -ENOMEM;
1840 goto error_xts_key;
1841 }
1842 memcpy(vbdev->xts_key, vbdev->key, AES_XTS_KEY_LENGTH);
1843 assert(name->key2);
1844 memcpy(vbdev->xts_key + AES_XTS_KEY_LENGTH, name->key2, AES_XTS_KEY_LENGTH + 1);
1845 }
9f95a23c
TL
1846 } else {
1847 vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
1848 }
11fdf7f2
TL
1849 /* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
1850 * in units of blocks.
1851 */
1852 if (bdev->optimal_io_boundary > 0) {
1853 vbdev->crypto_bdev.optimal_io_boundary =
1854 spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
1855 } else {
1856 vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
1857 }
1858 vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
1859 vbdev->crypto_bdev.blocklen = bdev->blocklen;
1860 vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
1861
1862 /* This is the context that is passed to us when the bdev
1863 * layer calls in so we'll save our crypto_bdev node here.
1864 */
1865 vbdev->crypto_bdev.ctxt = vbdev;
1866 vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
1867 vbdev->crypto_bdev.module = &crypto_if;
1868 TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
1869
1870 spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
1871 sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
1872
1873 rc = spdk_bdev_open(bdev, true, vbdev_crypto_examine_hotremove_cb,
1874 bdev, &vbdev->base_desc);
1875 if (rc) {
1876 SPDK_ERRLOG("could not open bdev %s\n", spdk_bdev_get_name(bdev));
1877 goto error_open;
1878 }
1879
f67539c2
TL
1880 /* Save the thread where the base device is opened */
1881 vbdev->thread = spdk_get_thread();
1882
11fdf7f2
TL
1883 rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
1884 if (rc) {
1885 SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev));
1886 goto error_claim;
1887 }
1888
9f95a23c
TL
1889 /* To init the session we have to get the cryptoDev device ID for this vbdev */
1890 TAILQ_FOREACH(device, &g_vbdev_devs, link) {
1891 if (strcmp(device->cdev_info.driver_name, vbdev->drv_name) == 0) {
1892 found = true;
1893 break;
1894 }
1895 }
1896 if (found == false) {
1897 SPDK_ERRLOG("ERROR can't match crypto device driver to crypto vbdev!\n");
1898 rc = -EINVAL;
1899 goto error_cant_find_devid;
1900 }
1901
1902 /* Get sessions. */
1903 vbdev->session_encrypt = rte_cryptodev_sym_session_create(g_session_mp);
1904 if (NULL == vbdev->session_encrypt) {
1905 SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1906 rc = -EINVAL;
1907 goto error_session_en_create;
1908 }
1909
1910 vbdev->session_decrypt = rte_cryptodev_sym_session_create(g_session_mp);
1911 if (NULL == vbdev->session_decrypt) {
1912 SPDK_ERRLOG("ERROR trying to create crypto session!\n");
1913 rc = -EINVAL;
1914 goto error_session_de_create;
1915 }
1916
1917 /* Init our per vbdev xform with the desired cipher options. */
1918 vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
9f95a23c 1919 vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
f67539c2
TL
1920 if (strcmp(name->cipher, AES_CBC) == 0) {
1921 vbdev->cipher_xform.cipher.key.data = vbdev->key;
1922 vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1923 vbdev->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH;
1924 } else {
1925 vbdev->cipher_xform.cipher.key.data = vbdev->xts_key;
1926 vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
1927 vbdev->cipher_xform.cipher.key.length = AES_XTS_KEY_LENGTH * 2;
1928 }
9f95a23c
TL
1929 vbdev->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH;
1930
1931 vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1932 rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_encrypt,
1933 &vbdev->cipher_xform,
1934 g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1935 if (rc < 0) {
1936 SPDK_ERRLOG("ERROR trying to init encrypt session!\n");
1937 rc = -EINVAL;
1938 goto error_session_init;
1939 }
1940
1941 vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
1942 rc = rte_cryptodev_sym_session_init(device->cdev_id, vbdev->session_decrypt,
1943 &vbdev->cipher_xform,
1944 g_session_mp_priv ? g_session_mp_priv : g_session_mp);
1945 if (rc < 0) {
1946 SPDK_ERRLOG("ERROR trying to init decrypt session!\n");
1947 rc = -EINVAL;
1948 goto error_session_init;
1949 }
1950
1951 rc = spdk_bdev_register(&vbdev->crypto_bdev);
1952 if (rc < 0) {
1953 SPDK_ERRLOG("ERROR trying to register bdev\n");
1954 rc = -EINVAL;
1955 goto error_bdev_register;
1956 }
f67539c2 1957 SPDK_DEBUGLOG(SPDK_LOG_CRYPTO, "registered io_device and virtual bdev for: %s\n",
9f95a23c
TL
1958 name->vbdev_name);
1959 break;
11fdf7f2
TL
1960 }
1961
1962 return rc;
1963
1964 /* Error cleanup paths. */
9f95a23c
TL
1965error_bdev_register:
1966error_session_init:
1967 rte_cryptodev_sym_session_free(vbdev->session_decrypt);
1968error_session_de_create:
1969 rte_cryptodev_sym_session_free(vbdev->session_encrypt);
1970error_session_en_create:
1971error_cant_find_devid:
11fdf7f2
TL
1972error_claim:
1973 spdk_bdev_close(vbdev->base_desc);
1974error_open:
1975 TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
1976 spdk_io_device_unregister(vbdev, NULL);
f67539c2
TL
1977 free(vbdev->xts_key);
1978error_xts_key:
11fdf7f2
TL
1979 free(vbdev->drv_name);
1980error_drv_name:
f67539c2
TL
1981 free(vbdev->key2);
1982error_alloc_key2:
11fdf7f2
TL
1983 free(vbdev->key);
1984error_alloc_key:
1985 free(vbdev->crypto_bdev.name);
1986error_bdev_name:
1987 free(vbdev);
1988error_vbdev_alloc:
f67539c2 1989 g_number_of_claimed_volumes--;
11fdf7f2
TL
1990 return rc;
1991}
1992
1993/* RPC entry for deleting a crypto vbdev. */
1994void
1995delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn,
1996 void *cb_arg)
1997{
1998 struct bdev_names *name;
1999
2000 if (!bdev || bdev->module != &crypto_if) {
2001 cb_fn(cb_arg, -ENODEV);
2002 return;
2003 }
2004
2005 /* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
2006 * vbdev does not get re-created if the same bdev is constructed at some other time,
2007 * unless the underlying bdev was hot-removed.
2008 */
2009 TAILQ_FOREACH(name, &g_bdev_names, link) {
2010 if (strcmp(name->vbdev_name, bdev->name) == 0) {
2011 TAILQ_REMOVE(&g_bdev_names, name, link);
2012 free(name->bdev_name);
2013 free(name->vbdev_name);
2014 free(name->drv_name);
2015 free(name->key);
f67539c2 2016 free(name->key2);
11fdf7f2
TL
2017 free(name);
2018 break;
2019 }
2020 }
2021
9f95a23c 2022 /* Additional cleanup happens in the destruct callback. */
11fdf7f2
TL
2023 spdk_bdev_unregister(bdev, cb_fn, cb_arg);
2024}
2025
2026/* Because we specified this function in our crypto bdev function table when we
2027 * registered our crypto bdev, we'll get this call anytime a new bdev shows up.
2028 * Here we need to decide if we care about it and if so what to do. We
2029 * parsed the config file at init so we check the new bdev against the list
2030 * we built up at that time and if the user configured us to attach to this
2031 * bdev, here's where we do it.
2032 */
2033static void
2034vbdev_crypto_examine(struct spdk_bdev *bdev)
2035{
11fdf7f2 2036 vbdev_crypto_claim(bdev);
11fdf7f2
TL
2037 spdk_bdev_module_examine_done(&crypto_if);
2038}
2039
f67539c2 2040SPDK_LOG_REGISTER_COMPONENT("vbdev_crypto", SPDK_LOG_CRYPTO)