]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
kvm: Introduce kvm logging interface (Glauber Costa)
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
5fafdf24 3 *
5a9fdfec
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
f54b3f92 23#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
0ac4bd56
FB
24#define WORDS_ALIGNED
25#endif
26
5fafdf24
TS
27/* some important defines:
28 *
0ac4bd56
FB
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
5fafdf24 31 *
0ac4bd56
FB
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
5fafdf24 34 *
0ac4bd56 35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
5fafdf24 36 *
0ac4bd56
FB
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
f193c797 40#include "bswap.h"
939ef593 41#include "softfloat.h"
f193c797
FB
42
43#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44#define BSWAP_NEEDED
45#endif
46
47#ifdef BSWAP_NEEDED
48
49static inline uint16_t tswap16(uint16_t s)
50{
51 return bswap16(s);
52}
53
54static inline uint32_t tswap32(uint32_t s)
55{
56 return bswap32(s);
57}
58
59static inline uint64_t tswap64(uint64_t s)
60{
61 return bswap64(s);
62}
63
64static inline void tswap16s(uint16_t *s)
65{
66 *s = bswap16(*s);
67}
68
69static inline void tswap32s(uint32_t *s)
70{
71 *s = bswap32(*s);
72}
73
74static inline void tswap64s(uint64_t *s)
75{
76 *s = bswap64(*s);
77}
78
79#else
80
81static inline uint16_t tswap16(uint16_t s)
82{
83 return s;
84}
85
86static inline uint32_t tswap32(uint32_t s)
87{
88 return s;
89}
90
91static inline uint64_t tswap64(uint64_t s)
92{
93 return s;
94}
95
96static inline void tswap16s(uint16_t *s)
97{
98}
99
100static inline void tswap32s(uint32_t *s)
101{
102}
103
104static inline void tswap64s(uint64_t *s)
105{
106}
107
108#endif
109
110#if TARGET_LONG_SIZE == 4
111#define tswapl(s) tswap32(s)
112#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 113#define bswaptls(s) bswap32s(s)
f193c797
FB
114#else
115#define tswapl(s) tswap64(s)
116#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 117#define bswaptls(s) bswap64s(s)
f193c797
FB
118#endif
119
0ca9d380
AJ
120typedef union {
121 float32 f;
122 uint32_t l;
123} CPU_FloatU;
124
832ed0fa
FB
125/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
0ac4bd56 127typedef union {
53cd6637 128 float64 d;
9d60cac0
FB
129#if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
0ac4bd56 131 struct {
0ac4bd56 132 uint32_t upper;
832ed0fa 133 uint32_t lower;
0ac4bd56
FB
134 } l;
135#else
136 struct {
0ac4bd56 137 uint32_t lower;
832ed0fa 138 uint32_t upper;
0ac4bd56
FB
139 } l;
140#endif
141 uint64_t ll;
142} CPU_DoubleU;
143
1f587329
BS
144#ifdef TARGET_SPARC
145typedef union {
146 float128 q;
147#if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159#else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170#endif
171} CPU_QuadU;
172#endif
173
61382a50
FB
174/* CPU memory access without any memory or io remapping */
175
83d73968
FB
176/*
177 * the generic syntax for the memory accesses is:
178 *
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 *
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 *
183 * type is:
184 * (empty): integer access
185 * f : float access
5fafdf24 186 *
83d73968
FB
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
191 *
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
5fafdf24 197 *
83d73968
FB
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
203 *
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
208 */
c27004ec 209static inline int ldub_p(void *ptr)
5a9fdfec
FB
210{
211 return *(uint8_t *)ptr;
212}
213
c27004ec 214static inline int ldsb_p(void *ptr)
5a9fdfec
FB
215{
216 return *(int8_t *)ptr;
217}
218
c27004ec 219static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
220{
221 *(uint8_t *)ptr = v;
222}
223
224/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
2df3b95d 227#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
5a9fdfec
FB
228
229/* conservative code for little endian unaligned accesses */
2df3b95d 230static inline int lduw_le_p(void *ptr)
5a9fdfec
FB
231{
232#ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236#else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239#endif
240}
241
2df3b95d 242static inline int ldsw_le_p(void *ptr)
5a9fdfec
FB
243{
244#ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248#else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251#endif
252}
253
2df3b95d 254static inline int ldl_le_p(void *ptr)
5a9fdfec
FB
255{
256#ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260#else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263#endif
264}
265
2df3b95d 266static inline uint64_t ldq_le_p(void *ptr)
5a9fdfec
FB
267{
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
f0aca822
FB
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
5a9fdfec
FB
272 return v1 | ((uint64_t)v2 << 32);
273}
274
2df3b95d 275static inline void stw_le_p(void *ptr, int v)
5a9fdfec
FB
276{
277#ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279#else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283#endif
284}
285
2df3b95d 286static inline void stl_le_p(void *ptr, int v)
5a9fdfec
FB
287{
288#ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290#else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296#endif
297}
298
2df3b95d 299static inline void stq_le_p(void *ptr, uint64_t v)
5a9fdfec
FB
300{
301 uint8_t *p = ptr;
f0aca822
FB
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
5a9fdfec
FB
304}
305
306/* float access */
307
2df3b95d 308static inline float32 ldfl_le_p(void *ptr)
5a9fdfec
FB
309{
310 union {
53cd6637 311 float32 f;
5a9fdfec
FB
312 uint32_t i;
313 } u;
2df3b95d 314 u.i = ldl_le_p(ptr);
5a9fdfec
FB
315 return u.f;
316}
317
2df3b95d 318static inline void stfl_le_p(void *ptr, float32 v)
5a9fdfec
FB
319{
320 union {
53cd6637 321 float32 f;
5a9fdfec
FB
322 uint32_t i;
323 } u;
324 u.f = v;
2df3b95d 325 stl_le_p(ptr, u.i);
5a9fdfec
FB
326}
327
2df3b95d 328static inline float64 ldfq_le_p(void *ptr)
5a9fdfec 329{
0ac4bd56 330 CPU_DoubleU u;
2df3b95d
FB
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
5a9fdfec
FB
333 return u.d;
334}
335
2df3b95d 336static inline void stfq_le_p(void *ptr, float64 v)
5a9fdfec 337{
0ac4bd56 338 CPU_DoubleU u;
5a9fdfec 339 u.d = v;
2df3b95d
FB
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
5a9fdfec
FB
342}
343
2df3b95d
FB
344#else
345
346static inline int lduw_le_p(void *ptr)
347{
348 return *(uint16_t *)ptr;
349}
350
351static inline int ldsw_le_p(void *ptr)
352{
353 return *(int16_t *)ptr;
354}
93ac68bc 355
2df3b95d
FB
356static inline int ldl_le_p(void *ptr)
357{
358 return *(uint32_t *)ptr;
359}
360
361static inline uint64_t ldq_le_p(void *ptr)
362{
363 return *(uint64_t *)ptr;
364}
365
366static inline void stw_le_p(void *ptr, int v)
367{
368 *(uint16_t *)ptr = v;
369}
370
371static inline void stl_le_p(void *ptr, int v)
372{
373 *(uint32_t *)ptr = v;
374}
375
376static inline void stq_le_p(void *ptr, uint64_t v)
377{
378 *(uint64_t *)ptr = v;
379}
380
381/* float access */
382
383static inline float32 ldfl_le_p(void *ptr)
384{
385 return *(float32 *)ptr;
386}
387
388static inline float64 ldfq_le_p(void *ptr)
389{
390 return *(float64 *)ptr;
391}
392
393static inline void stfl_le_p(void *ptr, float32 v)
394{
395 *(float32 *)ptr = v;
396}
397
398static inline void stfq_le_p(void *ptr, float64 v)
399{
400 *(float64 *)ptr = v;
401}
402#endif
403
404#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406static inline int lduw_be_p(void *ptr)
93ac68bc 407{
83d73968
FB
408#if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415#else
93ac68bc 416 uint8_t *b = (uint8_t *) ptr;
83d73968
FB
417 return ((b[0] << 8) | b[1]);
418#endif
93ac68bc
FB
419}
420
2df3b95d 421static inline int ldsw_be_p(void *ptr)
93ac68bc 422{
83d73968
FB
423#if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430#else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433#endif
93ac68bc
FB
434}
435
2df3b95d 436static inline int ldl_be_p(void *ptr)
93ac68bc 437{
4f2ac237 438#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445#else
93ac68bc 446 uint8_t *b = (uint8_t *) ptr;
83d73968
FB
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448#endif
93ac68bc
FB
449}
450
2df3b95d 451static inline uint64_t ldq_be_p(void *ptr)
93ac68bc
FB
452{
453 uint32_t a,b;
2df3b95d 454 a = ldl_be_p(ptr);
4d7a0880 455 b = ldl_be_p((uint8_t *)ptr + 4);
93ac68bc
FB
456 return (((uint64_t)a<<32)|b);
457}
458
2df3b95d 459static inline void stw_be_p(void *ptr, int v)
93ac68bc 460{
83d73968
FB
461#if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466#else
93ac68bc
FB
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
83d73968 470#endif
93ac68bc
FB
471}
472
2df3b95d 473static inline void stl_be_p(void *ptr, int v)
93ac68bc 474{
4f2ac237 475#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480#else
93ac68bc
FB
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
83d73968 486#endif
93ac68bc
FB
487}
488
2df3b95d 489static inline void stq_be_p(void *ptr, uint64_t v)
93ac68bc 490{
2df3b95d 491 stl_be_p(ptr, v >> 32);
4d7a0880 492 stl_be_p((uint8_t *)ptr + 4, v);
0ac4bd56
FB
493}
494
495/* float access */
496
2df3b95d 497static inline float32 ldfl_be_p(void *ptr)
0ac4bd56
FB
498{
499 union {
53cd6637 500 float32 f;
0ac4bd56
FB
501 uint32_t i;
502 } u;
2df3b95d 503 u.i = ldl_be_p(ptr);
0ac4bd56
FB
504 return u.f;
505}
506
2df3b95d 507static inline void stfl_be_p(void *ptr, float32 v)
0ac4bd56
FB
508{
509 union {
53cd6637 510 float32 f;
0ac4bd56
FB
511 uint32_t i;
512 } u;
513 u.f = v;
2df3b95d 514 stl_be_p(ptr, u.i);
0ac4bd56
FB
515}
516
2df3b95d 517static inline float64 ldfq_be_p(void *ptr)
0ac4bd56
FB
518{
519 CPU_DoubleU u;
2df3b95d 520 u.l.upper = ldl_be_p(ptr);
4d7a0880 521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
0ac4bd56
FB
522 return u.d;
523}
524
2df3b95d 525static inline void stfq_be_p(void *ptr, float64 v)
0ac4bd56
FB
526{
527 CPU_DoubleU u;
528 u.d = v;
2df3b95d 529 stl_be_p(ptr, u.l.upper);
4d7a0880 530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
93ac68bc
FB
531}
532
5a9fdfec
FB
533#else
534
2df3b95d 535static inline int lduw_be_p(void *ptr)
5a9fdfec
FB
536{
537 return *(uint16_t *)ptr;
538}
539
2df3b95d 540static inline int ldsw_be_p(void *ptr)
5a9fdfec
FB
541{
542 return *(int16_t *)ptr;
543}
544
2df3b95d 545static inline int ldl_be_p(void *ptr)
5a9fdfec
FB
546{
547 return *(uint32_t *)ptr;
548}
549
2df3b95d 550static inline uint64_t ldq_be_p(void *ptr)
5a9fdfec
FB
551{
552 return *(uint64_t *)ptr;
553}
554
2df3b95d 555static inline void stw_be_p(void *ptr, int v)
5a9fdfec
FB
556{
557 *(uint16_t *)ptr = v;
558}
559
2df3b95d 560static inline void stl_be_p(void *ptr, int v)
5a9fdfec
FB
561{
562 *(uint32_t *)ptr = v;
563}
564
2df3b95d 565static inline void stq_be_p(void *ptr, uint64_t v)
5a9fdfec
FB
566{
567 *(uint64_t *)ptr = v;
568}
569
570/* float access */
571
2df3b95d 572static inline float32 ldfl_be_p(void *ptr)
5a9fdfec 573{
53cd6637 574 return *(float32 *)ptr;
5a9fdfec
FB
575}
576
2df3b95d 577static inline float64 ldfq_be_p(void *ptr)
5a9fdfec 578{
53cd6637 579 return *(float64 *)ptr;
5a9fdfec
FB
580}
581
2df3b95d 582static inline void stfl_be_p(void *ptr, float32 v)
5a9fdfec 583{
53cd6637 584 *(float32 *)ptr = v;
5a9fdfec
FB
585}
586
2df3b95d 587static inline void stfq_be_p(void *ptr, float64 v)
5a9fdfec 588{
53cd6637 589 *(float64 *)ptr = v;
5a9fdfec 590}
2df3b95d
FB
591
592#endif
593
594/* target CPU memory access functions */
595#if defined(TARGET_WORDS_BIGENDIAN)
596#define lduw_p(p) lduw_be_p(p)
597#define ldsw_p(p) ldsw_be_p(p)
598#define ldl_p(p) ldl_be_p(p)
599#define ldq_p(p) ldq_be_p(p)
600#define ldfl_p(p) ldfl_be_p(p)
601#define ldfq_p(p) ldfq_be_p(p)
602#define stw_p(p, v) stw_be_p(p, v)
603#define stl_p(p, v) stl_be_p(p, v)
604#define stq_p(p, v) stq_be_p(p, v)
605#define stfl_p(p, v) stfl_be_p(p, v)
606#define stfq_p(p, v) stfq_be_p(p, v)
607#else
608#define lduw_p(p) lduw_le_p(p)
609#define ldsw_p(p) ldsw_le_p(p)
610#define ldl_p(p) ldl_le_p(p)
611#define ldq_p(p) ldq_le_p(p)
612#define ldfl_p(p) ldfl_le_p(p)
613#define ldfq_p(p) ldfq_le_p(p)
614#define stw_p(p, v) stw_le_p(p, v)
615#define stl_p(p, v) stl_le_p(p, v)
616#define stq_p(p, v) stq_le_p(p, v)
617#define stfl_p(p, v) stfl_le_p(p, v)
618#define stfq_p(p, v) stfq_le_p(p, v)
5a9fdfec
FB
619#endif
620
61382a50
FB
621/* MMU memory access macros */
622
53a5960a
PB
623#if defined(CONFIG_USER_ONLY)
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627//#define GUEST_BASE 0x20000000
628#define GUEST_BASE 0
629
630/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
706b0a15 632#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
53a5960a
PB
633
634#define saddr(x) g2h(x)
635#define laddr(x) g2h(x)
636
637#else /* !CONFIG_USER_ONLY */
c27004ec
FB
638/* NOTE: we use double casts if pointers and target_ulong have
639 different sizes */
53a5960a
PB
640#define saddr(x) (uint8_t *)(long)(x)
641#define laddr(x) (uint8_t *)(long)(x)
642#endif
643
644#define ldub_raw(p) ldub_p(laddr((p)))
645#define ldsb_raw(p) ldsb_p(laddr((p)))
646#define lduw_raw(p) lduw_p(laddr((p)))
647#define ldsw_raw(p) ldsw_p(laddr((p)))
648#define ldl_raw(p) ldl_p(laddr((p)))
649#define ldq_raw(p) ldq_p(laddr((p)))
650#define ldfl_raw(p) ldfl_p(laddr((p)))
651#define ldfq_raw(p) ldfq_p(laddr((p)))
652#define stb_raw(p, v) stb_p(saddr((p)), v)
653#define stw_raw(p, v) stw_p(saddr((p)), v)
654#define stl_raw(p, v) stl_p(saddr((p)), v)
655#define stq_raw(p, v) stq_p(saddr((p)), v)
656#define stfl_raw(p, v) stfl_p(saddr((p)), v)
657#define stfq_raw(p, v) stfq_p(saddr((p)), v)
c27004ec
FB
658
659
5fafdf24 660#if defined(CONFIG_USER_ONLY)
61382a50
FB
661
662/* if user mode, no other memory access functions */
663#define ldub(p) ldub_raw(p)
664#define ldsb(p) ldsb_raw(p)
665#define lduw(p) lduw_raw(p)
666#define ldsw(p) ldsw_raw(p)
667#define ldl(p) ldl_raw(p)
668#define ldq(p) ldq_raw(p)
669#define ldfl(p) ldfl_raw(p)
670#define ldfq(p) ldfq_raw(p)
671#define stb(p, v) stb_raw(p, v)
672#define stw(p, v) stw_raw(p, v)
673#define stl(p, v) stl_raw(p, v)
674#define stq(p, v) stq_raw(p, v)
675#define stfl(p, v) stfl_raw(p, v)
676#define stfq(p, v) stfq_raw(p, v)
677
678#define ldub_code(p) ldub_raw(p)
679#define ldsb_code(p) ldsb_raw(p)
680#define lduw_code(p) lduw_raw(p)
681#define ldsw_code(p) ldsw_raw(p)
682#define ldl_code(p) ldl_raw(p)
bc98a7ef 683#define ldq_code(p) ldq_raw(p)
61382a50
FB
684
685#define ldub_kernel(p) ldub_raw(p)
686#define ldsb_kernel(p) ldsb_raw(p)
687#define lduw_kernel(p) lduw_raw(p)
688#define ldsw_kernel(p) ldsw_raw(p)
689#define ldl_kernel(p) ldl_raw(p)
bc98a7ef 690#define ldq_kernel(p) ldq_raw(p)
0ac4bd56
FB
691#define ldfl_kernel(p) ldfl_raw(p)
692#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
693#define stb_kernel(p, v) stb_raw(p, v)
694#define stw_kernel(p, v) stw_raw(p, v)
695#define stl_kernel(p, v) stl_raw(p, v)
696#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
697#define stfl_kernel(p, v) stfl_raw(p, v)
698#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
699
700#endif /* defined(CONFIG_USER_ONLY) */
701
5a9fdfec
FB
702/* page related stuff */
703
03875444 704#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
5a9fdfec
FB
705#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707
53a5960a 708/* ??? These should be the larger of unsigned long and target_ulong. */
83fb7adf
FB
709extern unsigned long qemu_real_host_page_size;
710extern unsigned long qemu_host_page_bits;
711extern unsigned long qemu_host_page_size;
712extern unsigned long qemu_host_page_mask;
5a9fdfec 713
83fb7adf 714#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
715
716/* same as PROT_xxx */
717#define PAGE_READ 0x0001
718#define PAGE_WRITE 0x0002
719#define PAGE_EXEC 0x0004
720#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721#define PAGE_VALID 0x0008
722/* original state of the write flag (used when tracking self-modifying
723 code */
5fafdf24 724#define PAGE_WRITE_ORG 0x0010
50a9569b 725#define PAGE_RESERVED 0x0020
5a9fdfec
FB
726
727void page_dump(FILE *f);
53a5960a
PB
728int page_get_flags(target_ulong address);
729void page_set_flags(target_ulong start, target_ulong end, int flags);
3d97b40b 730int page_check_range(target_ulong start, target_ulong len, int flags);
5a9fdfec 731
26a5f13b 732void cpu_exec_init_all(unsigned long tb_size);
c5be9f08
TS
733CPUState *cpu_copy(CPUState *env);
734
5fafdf24 735void cpu_dump_state(CPUState *env, FILE *f,
7fe48483
FB
736 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
737 int flags);
76a66253
JM
738void cpu_dump_statistics (CPUState *env, FILE *f,
739 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
740 int flags);
7fe48483 741
a90b7318 742void cpu_abort(CPUState *env, const char *fmt, ...)
c3d2689d
AZ
743 __attribute__ ((__format__ (__printf__, 2, 3)))
744 __attribute__ ((__noreturn__));
f0aca822 745extern CPUState *first_cpu;
e2f22898 746extern CPUState *cpu_single_env;
2e70f6ef
PB
747extern int64_t qemu_icount;
748extern int use_icount;
5a9fdfec 749
9acbed06
FB
750#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
751#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
752#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 753#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
98699967 754#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
ba3c64fb 755#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
3b21e03e 756#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
6658ffb8 757#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
0573fbfc 758#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
474ea849 759#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
98699967 760
4690764b 761void cpu_interrupt(CPUState *s, int mask);
b54ad049 762void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 763
a1d1bb31
AL
764/* Breakpoint/watchpoint flags */
765#define BP_MEM_READ 0x01
766#define BP_MEM_WRITE 0x02
767#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
06d55cc1 768#define BP_STOP_BEFORE_ACCESS 0x04
6e140f28 769#define BP_WATCHPOINT_HIT 0x08
a1d1bb31 770#define BP_GDB 0x10
2dc9f411 771#define BP_CPU 0x20
a1d1bb31
AL
772
773int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
774 CPUBreakpoint **breakpoint);
775int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
776void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
777void cpu_breakpoint_remove_all(CPUState *env, int mask);
778int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
779 int flags, CPUWatchpoint **watchpoint);
780int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
781 target_ulong len, int flags);
782void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
783void cpu_watchpoint_remove_all(CPUState *env, int mask);
60897d36
EI
784
785#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
786#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
787#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
788
c33a346e 789void cpu_single_step(CPUState *env, int enabled);
d95dc32d 790void cpu_reset(CPUState *s);
4c3a88a2 791
13eb76e0
FB
792/* Return the physical page corresponding to a virtual one. Use it
793 only for debugging because no protection checks are done. Return -1
794 if no page found. */
9b3c35e0 795target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
13eb76e0 796
5fafdf24 797#define CPU_LOG_TB_OUT_ASM (1 << 0)
9fddaa0c 798#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
799#define CPU_LOG_TB_OP (1 << 2)
800#define CPU_LOG_TB_OP_OPT (1 << 3)
801#define CPU_LOG_INT (1 << 4)
802#define CPU_LOG_EXEC (1 << 5)
803#define CPU_LOG_PCALL (1 << 6)
fd872598 804#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 805#define CPU_LOG_TB_CPU (1 << 8)
f193c797
FB
806
807/* define log items */
808typedef struct CPULogItem {
809 int mask;
810 const char *name;
811 const char *help;
812} CPULogItem;
813
c7cd6a37 814extern const CPULogItem cpu_log_items[];
f193c797 815
34865134
FB
816void cpu_set_log(int log_flags);
817void cpu_set_log_filename(const char *filename);
f193c797 818int cpu_str_to_log_mask(const char *str);
34865134 819
09683d35
FB
820/* IO ports API */
821
822/* NOTE: as these functions may be even used when there is an isa
823 brige on non x86 targets, we always defined them */
824#ifndef NO_CPU_IO_DEFS
825void cpu_outb(CPUState *env, int addr, int val);
826void cpu_outw(CPUState *env, int addr, int val);
827void cpu_outl(CPUState *env, int addr, int val);
828int cpu_inb(CPUState *env, int addr);
829int cpu_inw(CPUState *env, int addr);
830int cpu_inl(CPUState *env, int addr);
831#endif
832
00f82b8a
AJ
833/* address in the RAM (different from a physical address) */
834#ifdef USE_KQEMU
835typedef uint32_t ram_addr_t;
836#else
837typedef unsigned long ram_addr_t;
838#endif
839
33417e70
FB
840/* memory API */
841
00f82b8a 842extern ram_addr_t phys_ram_size;
edf75d59
FB
843extern int phys_ram_fd;
844extern uint8_t *phys_ram_base;
1ccde1cb 845extern uint8_t *phys_ram_dirty;
00f82b8a 846extern ram_addr_t ram_size;
edf75d59
FB
847
848/* physical memory access */
0f459d16
PB
849
850/* MMIO pages are identified by a combination of an IO device index and
851 3 flags. The ROMD code stores the page ram offset in iotlb entry,
852 so only a limited number of ids are avaiable. */
853
854#define IO_MEM_SHIFT 3
98699967 855#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
edf75d59
FB
856
857#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
858#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
859#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
0f459d16
PB
860#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
861
862/* Acts like a ROM when read and like a device when written. */
2a4188a3 863#define IO_MEM_ROMD (1)
db7b5426 864#define IO_MEM_SUBPAGE (2)
4254fab8 865#define IO_MEM_SUBWIDTH (4)
edf75d59 866
0f459d16
PB
867/* Flags stored in the low bits of the TLB virtual address. These are
868 defined so that fast path ram access is all zeros. */
869/* Zero if TLB entry is valid. */
870#define TLB_INVALID_MASK (1 << 3)
871/* Set if TLB entry references a clean RAM page. The iotlb entry will
872 contain the page physical address. */
873#define TLB_NOTDIRTY (1 << 4)
874/* Set if TLB entry is an IO callback. */
875#define TLB_MMIO (1 << 5)
876
7727994d
FB
877typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
878typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
33417e70 879
5fafdf24 880void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
881 ram_addr_t size,
882 ram_addr_t phys_offset);
883ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
884ram_addr_t qemu_ram_alloc(ram_addr_t);
e9a1ab19 885void qemu_ram_free(ram_addr_t addr);
33417e70
FB
886int cpu_register_io_memory(int io_index,
887 CPUReadMemoryFunc **mem_read,
7727994d
FB
888 CPUWriteMemoryFunc **mem_write,
889 void *opaque);
8926b517
FB
890CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
891CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
33417e70 892
2e12669a 893void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0 894 int len, int is_write);
5fafdf24 895static inline void cpu_physical_memory_read(target_phys_addr_t addr,
2e12669a 896 uint8_t *buf, int len)
8b1f24b0
FB
897{
898 cpu_physical_memory_rw(addr, buf, len, 0);
899}
5fafdf24 900static inline void cpu_physical_memory_write(target_phys_addr_t addr,
2e12669a 901 const uint8_t *buf, int len)
8b1f24b0
FB
902{
903 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
904}
aab33094
FB
905uint32_t ldub_phys(target_phys_addr_t addr);
906uint32_t lduw_phys(target_phys_addr_t addr);
8df1cd07 907uint32_t ldl_phys(target_phys_addr_t addr);
aab33094 908uint64_t ldq_phys(target_phys_addr_t addr);
8df1cd07 909void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
bc98a7ef 910void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
aab33094
FB
911void stb_phys(target_phys_addr_t addr, uint32_t val);
912void stw_phys(target_phys_addr_t addr, uint32_t val);
8df1cd07 913void stl_phys(target_phys_addr_t addr, uint32_t val);
aab33094 914void stq_phys(target_phys_addr_t addr, uint64_t val);
8b1f24b0 915
5fafdf24 916void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa 917 const uint8_t *buf, int len);
5fafdf24 918int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
8b1f24b0 919 uint8_t *buf, int len, int is_write);
13eb76e0 920
74576198
AL
921#define VGA_DIRTY_FLAG 0x01
922#define CODE_DIRTY_FLAG 0x02
923#define KQEMU_DIRTY_FLAG 0x04
924#define MIGRATION_DIRTY_FLAG 0x08
0a962c02 925
1ccde1cb 926/* read dirty bit (return 0 or 1) */
04c504cc 927static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1ccde1cb 928{
0a962c02
FB
929 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
930}
931
5fafdf24 932static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
0a962c02
FB
933 int dirty_flags)
934{
935 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
936}
937
04c504cc 938static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1ccde1cb 939{
0a962c02 940 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
941}
942
04c504cc 943void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 944 int dirty_flags);
04c504cc 945void cpu_tlb_update_dirty(CPUState *env);
1ccde1cb 946
74576198
AL
947int cpu_physical_memory_set_dirty_tracking(int enable);
948
949int cpu_physical_memory_get_dirty_tracking(void);
950
e3db7226
FB
951void dump_exec_info(FILE *f,
952 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
953
effedbc9
FB
954/*******************************************/
955/* host CPU ticks (if available) */
956
957#if defined(__powerpc__)
958
5fafdf24 959static inline uint32_t get_tbl(void)
effedbc9
FB
960{
961 uint32_t tbl;
962 asm volatile("mftb %0" : "=r" (tbl));
963 return tbl;
964}
965
5fafdf24 966static inline uint32_t get_tbu(void)
effedbc9
FB
967{
968 uint32_t tbl;
969 asm volatile("mftbu %0" : "=r" (tbl));
970 return tbl;
971}
972
973static inline int64_t cpu_get_real_ticks(void)
974{
975 uint32_t l, h, h1;
976 /* NOTE: we test if wrapping has occurred */
977 do {
978 h = get_tbu();
979 l = get_tbl();
980 h1 = get_tbu();
981 } while (h != h1);
982 return ((int64_t)h << 32) | l;
983}
984
985#elif defined(__i386__)
986
987static inline int64_t cpu_get_real_ticks(void)
5f1ce948
FB
988{
989 int64_t val;
990 asm volatile ("rdtsc" : "=A" (val));
991 return val;
992}
993
effedbc9
FB
994#elif defined(__x86_64__)
995
996static inline int64_t cpu_get_real_ticks(void)
997{
998 uint32_t low,high;
999 int64_t val;
1000 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1001 val = high;
1002 val <<= 32;
1003 val |= low;
1004 return val;
1005}
1006
f54b3f92
AJ
1007#elif defined(__hppa__)
1008
1009static inline int64_t cpu_get_real_ticks(void)
1010{
1011 int val;
1012 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1013 return val;
1014}
1015
effedbc9
FB
1016#elif defined(__ia64)
1017
1018static inline int64_t cpu_get_real_ticks(void)
1019{
1020 int64_t val;
1021 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1022 return val;
1023}
1024
1025#elif defined(__s390__)
1026
1027static inline int64_t cpu_get_real_ticks(void)
1028{
1029 int64_t val;
1030 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1031 return val;
1032}
1033
3142255c 1034#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
effedbc9
FB
1035
1036static inline int64_t cpu_get_real_ticks (void)
1037{
1038#if defined(_LP64)
1039 uint64_t rval;
1040 asm volatile("rd %%tick,%0" : "=r"(rval));
1041 return rval;
1042#else
1043 union {
1044 uint64_t i64;
1045 struct {
1046 uint32_t high;
1047 uint32_t low;
1048 } i32;
1049 } rval;
1050 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1051 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1052 return rval.i64;
1053#endif
1054}
c4b89d18
TS
1055
1056#elif defined(__mips__)
1057
1058static inline int64_t cpu_get_real_ticks(void)
1059{
1060#if __mips_isa_rev >= 2
1061 uint32_t count;
1062 static uint32_t cyc_per_count = 0;
1063
1064 if (!cyc_per_count)
1065 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1066
1067 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1068 return (int64_t)(count * cyc_per_count);
1069#else
1070 /* FIXME */
1071 static int64_t ticks = 0;
1072 return ticks++;
1073#endif
1074}
1075
46152182
PB
1076#else
1077/* The host CPU doesn't have an easily accessible cycle counter.
85028e4d
TS
1078 Just return a monotonically increasing value. This will be
1079 totally wrong, but hopefully better than nothing. */
46152182
PB
1080static inline int64_t cpu_get_real_ticks (void)
1081{
1082 static int64_t ticks = 0;
1083 return ticks++;
1084}
effedbc9
FB
1085#endif
1086
1087/* profiling */
1088#ifdef CONFIG_PROFILER
1089static inline int64_t profile_getclock(void)
1090{
1091 return cpu_get_real_ticks();
1092}
1093
5f1ce948
FB
1094extern int64_t kqemu_time, kqemu_time_start;
1095extern int64_t qemu_time, qemu_time_start;
1096extern int64_t tlb_flush_time;
1097extern int64_t kqemu_exec_count;
1098extern int64_t dev_time;
1099extern int64_t kqemu_ret_int_count;
1100extern int64_t kqemu_ret_excp_count;
1101extern int64_t kqemu_ret_intr_count;
5f1ce948
FB
1102#endif
1103
5a9fdfec 1104#endif /* CPU_ALL_H */