]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
soft float support
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
0ac4bd56
FB
23#if defined(__arm__) || defined(__sparc__)
24#define WORDS_ALIGNED
25#endif
26
27/* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
f193c797
FB
40#include "bswap.h"
41
42#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43#define BSWAP_NEEDED
44#endif
45
46#ifdef BSWAP_NEEDED
47
48static inline uint16_t tswap16(uint16_t s)
49{
50 return bswap16(s);
51}
52
53static inline uint32_t tswap32(uint32_t s)
54{
55 return bswap32(s);
56}
57
58static inline uint64_t tswap64(uint64_t s)
59{
60 return bswap64(s);
61}
62
63static inline void tswap16s(uint16_t *s)
64{
65 *s = bswap16(*s);
66}
67
68static inline void tswap32s(uint32_t *s)
69{
70 *s = bswap32(*s);
71}
72
73static inline void tswap64s(uint64_t *s)
74{
75 *s = bswap64(*s);
76}
77
78#else
79
80static inline uint16_t tswap16(uint16_t s)
81{
82 return s;
83}
84
85static inline uint32_t tswap32(uint32_t s)
86{
87 return s;
88}
89
90static inline uint64_t tswap64(uint64_t s)
91{
92 return s;
93}
94
95static inline void tswap16s(uint16_t *s)
96{
97}
98
99static inline void tswap32s(uint32_t *s)
100{
101}
102
103static inline void tswap64s(uint64_t *s)
104{
105}
106
107#endif
108
109#if TARGET_LONG_SIZE == 4
110#define tswapl(s) tswap32(s)
111#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 112#define bswaptls(s) bswap32s(s)
f193c797
FB
113#else
114#define tswapl(s) tswap64(s)
115#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 116#define bswaptls(s) bswap64s(s)
f193c797
FB
117#endif
118
832ed0fa
FB
119/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
0ac4bd56
FB
121typedef union {
122 double d;
832ed0fa 123#if defined(WORDS_BIGENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
0ac4bd56 124 struct {
0ac4bd56 125 uint32_t upper;
832ed0fa 126 uint32_t lower;
0ac4bd56
FB
127 } l;
128#else
129 struct {
0ac4bd56 130 uint32_t lower;
832ed0fa 131 uint32_t upper;
0ac4bd56
FB
132 } l;
133#endif
134 uint64_t ll;
135} CPU_DoubleU;
136
61382a50
FB
137/* CPU memory access without any memory or io remapping */
138
83d73968
FB
139/*
140 * the generic syntax for the memory accesses is:
141 *
142 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
143 *
144 * store: st{type}{size}{endian}_{access_type}(ptr, val)
145 *
146 * type is:
147 * (empty): integer access
148 * f : float access
149 *
150 * sign is:
151 * (empty): for floats or 32 bit size
152 * u : unsigned
153 * s : signed
154 *
155 * size is:
156 * b: 8 bits
157 * w: 16 bits
158 * l: 32 bits
159 * q: 64 bits
160 *
161 * endian is:
162 * (empty): target cpu endianness or 8 bit access
163 * r : reversed target cpu endianness (not implemented yet)
164 * be : big endian (not implemented yet)
165 * le : little endian (not implemented yet)
166 *
167 * access_type is:
168 * raw : host memory access
169 * user : user mode access using soft MMU
170 * kernel : kernel mode access using soft MMU
171 */
c27004ec 172static inline int ldub_p(void *ptr)
5a9fdfec
FB
173{
174 return *(uint8_t *)ptr;
175}
176
c27004ec 177static inline int ldsb_p(void *ptr)
5a9fdfec
FB
178{
179 return *(int8_t *)ptr;
180}
181
c27004ec 182static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
183{
184 *(uint8_t *)ptr = v;
185}
186
187/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
188 kernel handles unaligned load/stores may give better results, but
189 it is a system wide setting : bad */
0ac4bd56 190#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
5a9fdfec
FB
191
192/* conservative code for little endian unaligned accesses */
c27004ec 193static inline int lduw_p(void *ptr)
5a9fdfec
FB
194{
195#ifdef __powerpc__
196 int val;
197 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
198 return val;
199#else
200 uint8_t *p = ptr;
201 return p[0] | (p[1] << 8);
202#endif
203}
204
c27004ec 205static inline int ldsw_p(void *ptr)
5a9fdfec
FB
206{
207#ifdef __powerpc__
208 int val;
209 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
210 return (int16_t)val;
211#else
212 uint8_t *p = ptr;
213 return (int16_t)(p[0] | (p[1] << 8));
214#endif
215}
216
c27004ec 217static inline int ldl_p(void *ptr)
5a9fdfec
FB
218{
219#ifdef __powerpc__
220 int val;
221 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
222 return val;
223#else
224 uint8_t *p = ptr;
225 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
226#endif
227}
228
c27004ec 229static inline uint64_t ldq_p(void *ptr)
5a9fdfec
FB
230{
231 uint8_t *p = ptr;
232 uint32_t v1, v2;
c27004ec
FB
233 v1 = ldl_p(p);
234 v2 = ldl_p(p + 4);
5a9fdfec
FB
235 return v1 | ((uint64_t)v2 << 32);
236}
237
c27004ec 238static inline void stw_p(void *ptr, int v)
5a9fdfec
FB
239{
240#ifdef __powerpc__
241 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
242#else
243 uint8_t *p = ptr;
244 p[0] = v;
245 p[1] = v >> 8;
246#endif
247}
248
c27004ec 249static inline void stl_p(void *ptr, int v)
5a9fdfec
FB
250{
251#ifdef __powerpc__
252 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
253#else
254 uint8_t *p = ptr;
255 p[0] = v;
256 p[1] = v >> 8;
257 p[2] = v >> 16;
258 p[3] = v >> 24;
259#endif
260}
261
c27004ec 262static inline void stq_p(void *ptr, uint64_t v)
5a9fdfec
FB
263{
264 uint8_t *p = ptr;
c27004ec
FB
265 stl_p(p, (uint32_t)v);
266 stl_p(p + 4, v >> 32);
5a9fdfec
FB
267}
268
269/* float access */
270
c27004ec 271static inline float ldfl_p(void *ptr)
5a9fdfec
FB
272{
273 union {
274 float f;
275 uint32_t i;
276 } u;
c27004ec 277 u.i = ldl_p(ptr);
5a9fdfec
FB
278 return u.f;
279}
280
c27004ec 281static inline void stfl_p(void *ptr, float v)
5a9fdfec
FB
282{
283 union {
284 float f;
285 uint32_t i;
286 } u;
287 u.f = v;
c27004ec 288 stl_p(ptr, u.i);
5a9fdfec
FB
289}
290
c27004ec 291static inline double ldfq_p(void *ptr)
5a9fdfec 292{
0ac4bd56 293 CPU_DoubleU u;
c27004ec
FB
294 u.l.lower = ldl_p(ptr);
295 u.l.upper = ldl_p(ptr + 4);
5a9fdfec
FB
296 return u.d;
297}
298
c27004ec 299static inline void stfq_p(void *ptr, double v)
5a9fdfec 300{
0ac4bd56 301 CPU_DoubleU u;
5a9fdfec 302 u.d = v;
c27004ec
FB
303 stl_p(ptr, u.l.lower);
304 stl_p(ptr + 4, u.l.upper);
5a9fdfec
FB
305}
306
0ac4bd56 307#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
93ac68bc 308
c27004ec 309static inline int lduw_p(void *ptr)
93ac68bc 310{
83d73968
FB
311#if defined(__i386__)
312 int val;
313 asm volatile ("movzwl %1, %0\n"
314 "xchgb %b0, %h0\n"
315 : "=q" (val)
316 : "m" (*(uint16_t *)ptr));
317 return val;
318#else
93ac68bc 319 uint8_t *b = (uint8_t *) ptr;
83d73968
FB
320 return ((b[0] << 8) | b[1]);
321#endif
93ac68bc
FB
322}
323
c27004ec 324static inline int ldsw_p(void *ptr)
93ac68bc 325{
83d73968
FB
326#if defined(__i386__)
327 int val;
328 asm volatile ("movzwl %1, %0\n"
329 "xchgb %b0, %h0\n"
330 : "=q" (val)
331 : "m" (*(uint16_t *)ptr));
332 return (int16_t)val;
333#else
334 uint8_t *b = (uint8_t *) ptr;
335 return (int16_t)((b[0] << 8) | b[1]);
336#endif
93ac68bc
FB
337}
338
c27004ec 339static inline int ldl_p(void *ptr)
93ac68bc 340{
4f2ac237 341#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
342 int val;
343 asm volatile ("movl %1, %0\n"
344 "bswap %0\n"
345 : "=r" (val)
346 : "m" (*(uint32_t *)ptr));
347 return val;
348#else
93ac68bc 349 uint8_t *b = (uint8_t *) ptr;
83d73968
FB
350 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
351#endif
93ac68bc
FB
352}
353
c27004ec 354static inline uint64_t ldq_p(void *ptr)
93ac68bc
FB
355{
356 uint32_t a,b;
c27004ec
FB
357 a = ldl_p(ptr);
358 b = ldl_p(ptr+4);
93ac68bc
FB
359 return (((uint64_t)a<<32)|b);
360}
361
c27004ec 362static inline void stw_p(void *ptr, int v)
93ac68bc 363{
83d73968
FB
364#if defined(__i386__)
365 asm volatile ("xchgb %b0, %h0\n"
366 "movw %w0, %1\n"
367 : "=q" (v)
368 : "m" (*(uint16_t *)ptr), "0" (v));
369#else
93ac68bc
FB
370 uint8_t *d = (uint8_t *) ptr;
371 d[0] = v >> 8;
372 d[1] = v;
83d73968 373#endif
93ac68bc
FB
374}
375
c27004ec 376static inline void stl_p(void *ptr, int v)
93ac68bc 377{
4f2ac237 378#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
379 asm volatile ("bswap %0\n"
380 "movl %0, %1\n"
381 : "=r" (v)
382 : "m" (*(uint32_t *)ptr), "0" (v));
383#else
93ac68bc
FB
384 uint8_t *d = (uint8_t *) ptr;
385 d[0] = v >> 24;
386 d[1] = v >> 16;
387 d[2] = v >> 8;
388 d[3] = v;
83d73968 389#endif
93ac68bc
FB
390}
391
c27004ec 392static inline void stq_p(void *ptr, uint64_t v)
93ac68bc 393{
c27004ec
FB
394 stl_p(ptr, v >> 32);
395 stl_p(ptr + 4, v);
0ac4bd56
FB
396}
397
398/* float access */
399
c27004ec 400static inline float ldfl_p(void *ptr)
0ac4bd56
FB
401{
402 union {
403 float f;
404 uint32_t i;
405 } u;
c27004ec 406 u.i = ldl_p(ptr);
0ac4bd56
FB
407 return u.f;
408}
409
c27004ec 410static inline void stfl_p(void *ptr, float v)
0ac4bd56
FB
411{
412 union {
413 float f;
414 uint32_t i;
415 } u;
416 u.f = v;
c27004ec 417 stl_p(ptr, u.i);
0ac4bd56
FB
418}
419
c27004ec 420static inline double ldfq_p(void *ptr)
0ac4bd56
FB
421{
422 CPU_DoubleU u;
c27004ec
FB
423 u.l.upper = ldl_p(ptr);
424 u.l.lower = ldl_p(ptr + 4);
0ac4bd56
FB
425 return u.d;
426}
427
c27004ec 428static inline void stfq_p(void *ptr, double v)
0ac4bd56
FB
429{
430 CPU_DoubleU u;
431 u.d = v;
c27004ec
FB
432 stl_p(ptr, u.l.upper);
433 stl_p(ptr + 4, u.l.lower);
93ac68bc
FB
434}
435
5a9fdfec
FB
436#else
437
c27004ec 438static inline int lduw_p(void *ptr)
5a9fdfec
FB
439{
440 return *(uint16_t *)ptr;
441}
442
c27004ec 443static inline int ldsw_p(void *ptr)
5a9fdfec
FB
444{
445 return *(int16_t *)ptr;
446}
447
c27004ec 448static inline int ldl_p(void *ptr)
5a9fdfec
FB
449{
450 return *(uint32_t *)ptr;
451}
452
c27004ec 453static inline uint64_t ldq_p(void *ptr)
5a9fdfec
FB
454{
455 return *(uint64_t *)ptr;
456}
457
c27004ec 458static inline void stw_p(void *ptr, int v)
5a9fdfec
FB
459{
460 *(uint16_t *)ptr = v;
461}
462
c27004ec 463static inline void stl_p(void *ptr, int v)
5a9fdfec
FB
464{
465 *(uint32_t *)ptr = v;
466}
467
c27004ec 468static inline void stq_p(void *ptr, uint64_t v)
5a9fdfec
FB
469{
470 *(uint64_t *)ptr = v;
471}
472
473/* float access */
474
c27004ec 475static inline float ldfl_p(void *ptr)
5a9fdfec
FB
476{
477 return *(float *)ptr;
478}
479
c27004ec 480static inline double ldfq_p(void *ptr)
5a9fdfec
FB
481{
482 return *(double *)ptr;
483}
484
c27004ec 485static inline void stfl_p(void *ptr, float v)
5a9fdfec
FB
486{
487 *(float *)ptr = v;
488}
489
c27004ec 490static inline void stfq_p(void *ptr, double v)
5a9fdfec
FB
491{
492 *(double *)ptr = v;
493}
494#endif
495
61382a50
FB
496/* MMU memory access macros */
497
c27004ec
FB
498/* NOTE: we use double casts if pointers and target_ulong have
499 different sizes */
500#define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
501#define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
502#define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
503#define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
504#define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
505#define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
506#define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
507#define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
508#define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
509#define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
510#define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
511#define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
512#define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
513#define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
514
515
61382a50
FB
516#if defined(CONFIG_USER_ONLY)
517
518/* if user mode, no other memory access functions */
519#define ldub(p) ldub_raw(p)
520#define ldsb(p) ldsb_raw(p)
521#define lduw(p) lduw_raw(p)
522#define ldsw(p) ldsw_raw(p)
523#define ldl(p) ldl_raw(p)
524#define ldq(p) ldq_raw(p)
525#define ldfl(p) ldfl_raw(p)
526#define ldfq(p) ldfq_raw(p)
527#define stb(p, v) stb_raw(p, v)
528#define stw(p, v) stw_raw(p, v)
529#define stl(p, v) stl_raw(p, v)
530#define stq(p, v) stq_raw(p, v)
531#define stfl(p, v) stfl_raw(p, v)
532#define stfq(p, v) stfq_raw(p, v)
533
534#define ldub_code(p) ldub_raw(p)
535#define ldsb_code(p) ldsb_raw(p)
536#define lduw_code(p) lduw_raw(p)
537#define ldsw_code(p) ldsw_raw(p)
538#define ldl_code(p) ldl_raw(p)
539
540#define ldub_kernel(p) ldub_raw(p)
541#define ldsb_kernel(p) ldsb_raw(p)
542#define lduw_kernel(p) lduw_raw(p)
543#define ldsw_kernel(p) ldsw_raw(p)
544#define ldl_kernel(p) ldl_raw(p)
0ac4bd56
FB
545#define ldfl_kernel(p) ldfl_raw(p)
546#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
547#define stb_kernel(p, v) stb_raw(p, v)
548#define stw_kernel(p, v) stw_raw(p, v)
549#define stl_kernel(p, v) stl_raw(p, v)
550#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
551#define stfl_kernel(p, v) stfl_raw(p, v)
552#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
553
554#endif /* defined(CONFIG_USER_ONLY) */
555
5a9fdfec
FB
556/* page related stuff */
557
558#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
559#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
560#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
561
83fb7adf
FB
562extern unsigned long qemu_real_host_page_size;
563extern unsigned long qemu_host_page_bits;
564extern unsigned long qemu_host_page_size;
565extern unsigned long qemu_host_page_mask;
5a9fdfec 566
83fb7adf 567#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
568
569/* same as PROT_xxx */
570#define PAGE_READ 0x0001
571#define PAGE_WRITE 0x0002
572#define PAGE_EXEC 0x0004
573#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
574#define PAGE_VALID 0x0008
575/* original state of the write flag (used when tracking self-modifying
576 code */
577#define PAGE_WRITE_ORG 0x0010
578
579void page_dump(FILE *f);
580int page_get_flags(unsigned long address);
581void page_set_flags(unsigned long start, unsigned long end, int flags);
582void page_unprotect_range(uint8_t *data, unsigned long data_size);
583
584#define SINGLE_CPU_DEFINES
585#ifdef SINGLE_CPU_DEFINES
586
587#if defined(TARGET_I386)
588
589#define CPUState CPUX86State
590#define cpu_init cpu_x86_init
591#define cpu_exec cpu_x86_exec
592#define cpu_gen_code cpu_x86_gen_code
5a9fdfec
FB
593#define cpu_signal_handler cpu_x86_signal_handler
594
595#elif defined(TARGET_ARM)
596
597#define CPUState CPUARMState
598#define cpu_init cpu_arm_init
599#define cpu_exec cpu_arm_exec
600#define cpu_gen_code cpu_arm_gen_code
5a9fdfec
FB
601#define cpu_signal_handler cpu_arm_signal_handler
602
93ac68bc
FB
603#elif defined(TARGET_SPARC)
604
605#define CPUState CPUSPARCState
606#define cpu_init cpu_sparc_init
607#define cpu_exec cpu_sparc_exec
608#define cpu_gen_code cpu_sparc_gen_code
93ac68bc
FB
609#define cpu_signal_handler cpu_sparc_signal_handler
610
67867308
FB
611#elif defined(TARGET_PPC)
612
613#define CPUState CPUPPCState
614#define cpu_init cpu_ppc_init
615#define cpu_exec cpu_ppc_exec
616#define cpu_gen_code cpu_ppc_gen_code
67867308
FB
617#define cpu_signal_handler cpu_ppc_signal_handler
618
5a9fdfec
FB
619#else
620
621#error unsupported target CPU
622
623#endif
624
972ddf78
FB
625#endif /* SINGLE_CPU_DEFINES */
626
7fe48483
FB
627void cpu_dump_state(CPUState *env, FILE *f,
628 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
629 int flags);
630
972ddf78 631void cpu_abort(CPUState *env, const char *fmt, ...);
e2f22898 632extern CPUState *cpu_single_env;
9acbed06 633extern int code_copy_enabled;
5a9fdfec 634
9acbed06
FB
635#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
636#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
637#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 638#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
4690764b 639void cpu_interrupt(CPUState *s, int mask);
b54ad049 640void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 641
2e12669a
FB
642int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
643int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
c33a346e 644void cpu_single_step(CPUState *env, int enabled);
d95dc32d 645void cpu_reset(CPUState *s);
4c3a88a2 646
13eb76e0
FB
647/* Return the physical page corresponding to a virtual one. Use it
648 only for debugging because no protection checks are done. Return -1
649 if no page found. */
650target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
651
9fddaa0c
FB
652#define CPU_LOG_TB_OUT_ASM (1 << 0)
653#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
654#define CPU_LOG_TB_OP (1 << 2)
655#define CPU_LOG_TB_OP_OPT (1 << 3)
656#define CPU_LOG_INT (1 << 4)
657#define CPU_LOG_EXEC (1 << 5)
658#define CPU_LOG_PCALL (1 << 6)
fd872598 659#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 660#define CPU_LOG_TB_CPU (1 << 8)
f193c797
FB
661
662/* define log items */
663typedef struct CPULogItem {
664 int mask;
665 const char *name;
666 const char *help;
667} CPULogItem;
668
669extern CPULogItem cpu_log_items[];
670
34865134
FB
671void cpu_set_log(int log_flags);
672void cpu_set_log_filename(const char *filename);
f193c797 673int cpu_str_to_log_mask(const char *str);
34865134 674
09683d35
FB
675/* IO ports API */
676
677/* NOTE: as these functions may be even used when there is an isa
678 brige on non x86 targets, we always defined them */
679#ifndef NO_CPU_IO_DEFS
680void cpu_outb(CPUState *env, int addr, int val);
681void cpu_outw(CPUState *env, int addr, int val);
682void cpu_outl(CPUState *env, int addr, int val);
683int cpu_inb(CPUState *env, int addr);
684int cpu_inw(CPUState *env, int addr);
685int cpu_inl(CPUState *env, int addr);
686#endif
687
33417e70
FB
688/* memory API */
689
edf75d59
FB
690extern int phys_ram_size;
691extern int phys_ram_fd;
692extern uint8_t *phys_ram_base;
1ccde1cb 693extern uint8_t *phys_ram_dirty;
edf75d59
FB
694
695/* physical memory access */
696#define IO_MEM_NB_ENTRIES 256
697#define TLB_INVALID_MASK (1 << 3)
698#define IO_MEM_SHIFT 4
699
700#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
701#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
702#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
1ccde1cb
FB
703#define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
704#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
edf75d59 705
7727994d
FB
706typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
707typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
33417e70 708
2e12669a
FB
709void cpu_register_physical_memory(target_phys_addr_t start_addr,
710 unsigned long size,
711 unsigned long phys_offset);
33417e70
FB
712int cpu_register_io_memory(int io_index,
713 CPUReadMemoryFunc **mem_read,
7727994d
FB
714 CPUWriteMemoryFunc **mem_write,
715 void *opaque);
8926b517
FB
716CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
717CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
33417e70 718
2e12669a 719void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0 720 int len, int is_write);
2e12669a
FB
721static inline void cpu_physical_memory_read(target_phys_addr_t addr,
722 uint8_t *buf, int len)
8b1f24b0
FB
723{
724 cpu_physical_memory_rw(addr, buf, len, 0);
725}
2e12669a
FB
726static inline void cpu_physical_memory_write(target_phys_addr_t addr,
727 const uint8_t *buf, int len)
8b1f24b0
FB
728{
729 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
730}
8df1cd07
FB
731uint32_t ldl_phys(target_phys_addr_t addr);
732void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
733void stl_phys(target_phys_addr_t addr, uint32_t val);
8b1f24b0
FB
734
735int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
736 uint8_t *buf, int len, int is_write);
13eb76e0 737
0a962c02
FB
738#define VGA_DIRTY_FLAG 0x01
739
1ccde1cb
FB
740/* read dirty bit (return 0 or 1) */
741static inline int cpu_physical_memory_is_dirty(target_ulong addr)
742{
0a962c02
FB
743 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
744}
745
746static inline int cpu_physical_memory_get_dirty(target_ulong addr,
747 int dirty_flags)
748{
749 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
750}
751
752static inline void cpu_physical_memory_set_dirty(target_ulong addr)
753{
0a962c02 754 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
755}
756
0a962c02
FB
757void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
758 int dirty_flags);
1ccde1cb 759
e3db7226
FB
760void dump_exec_info(FILE *f,
761 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
762
5a9fdfec 763#endif /* CPU_ALL_H */