]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
pci: add define for communication class devices
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
5fafdf24 3 *
5a9fdfec
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
5a9fdfec
FB
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
7d99a001 23#include "qemu-common.h"
1ad2134f 24#include "cpu-common.h"
0ac4bd56 25
5fafdf24
TS
26/* some important defines:
27 *
0ac4bd56
FB
28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29 * memory accesses.
5fafdf24 30 *
0ac4bd56
FB
31 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32 * otherwise little endian.
5fafdf24 33 *
0ac4bd56 34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
5fafdf24 35 *
0ac4bd56
FB
36 * TARGET_WORDS_BIGENDIAN : same for target cpu
37 */
38
939ef593 39#include "softfloat.h"
f193c797
FB
40
41#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42#define BSWAP_NEEDED
43#endif
44
45#ifdef BSWAP_NEEDED
46
47static inline uint16_t tswap16(uint16_t s)
48{
49 return bswap16(s);
50}
51
52static inline uint32_t tswap32(uint32_t s)
53{
54 return bswap32(s);
55}
56
57static inline uint64_t tswap64(uint64_t s)
58{
59 return bswap64(s);
60}
61
62static inline void tswap16s(uint16_t *s)
63{
64 *s = bswap16(*s);
65}
66
67static inline void tswap32s(uint32_t *s)
68{
69 *s = bswap32(*s);
70}
71
72static inline void tswap64s(uint64_t *s)
73{
74 *s = bswap64(*s);
75}
76
77#else
78
79static inline uint16_t tswap16(uint16_t s)
80{
81 return s;
82}
83
84static inline uint32_t tswap32(uint32_t s)
85{
86 return s;
87}
88
89static inline uint64_t tswap64(uint64_t s)
90{
91 return s;
92}
93
94static inline void tswap16s(uint16_t *s)
95{
96}
97
98static inline void tswap32s(uint32_t *s)
99{
100}
101
102static inline void tswap64s(uint64_t *s)
103{
104}
105
106#endif
107
108#if TARGET_LONG_SIZE == 4
109#define tswapl(s) tswap32(s)
110#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 111#define bswaptls(s) bswap32s(s)
f193c797
FB
112#else
113#define tswapl(s) tswap64(s)
114#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 115#define bswaptls(s) bswap64s(s)
f193c797
FB
116#endif
117
0ca9d380
AJ
118typedef union {
119 float32 f;
120 uint32_t l;
121} CPU_FloatU;
122
832ed0fa
FB
123/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
124 endian ! */
0ac4bd56 125typedef union {
53cd6637 126 float64 d;
9d60cac0
FB
127#if defined(WORDS_BIGENDIAN) \
128 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
0ac4bd56 129 struct {
0ac4bd56 130 uint32_t upper;
832ed0fa 131 uint32_t lower;
0ac4bd56
FB
132 } l;
133#else
134 struct {
0ac4bd56 135 uint32_t lower;
832ed0fa 136 uint32_t upper;
0ac4bd56
FB
137 } l;
138#endif
139 uint64_t ll;
140} CPU_DoubleU;
141
1f587329
BS
142#ifdef TARGET_SPARC
143typedef union {
144 float128 q;
145#if defined(WORDS_BIGENDIAN) \
146 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
147 struct {
148 uint32_t upmost;
149 uint32_t upper;
150 uint32_t lower;
151 uint32_t lowest;
152 } l;
153 struct {
154 uint64_t upper;
155 uint64_t lower;
156 } ll;
157#else
158 struct {
159 uint32_t lowest;
160 uint32_t lower;
161 uint32_t upper;
162 uint32_t upmost;
163 } l;
164 struct {
165 uint64_t lower;
166 uint64_t upper;
167 } ll;
168#endif
169} CPU_QuadU;
170#endif
171
61382a50
FB
172/* CPU memory access without any memory or io remapping */
173
83d73968
FB
174/*
175 * the generic syntax for the memory accesses is:
176 *
177 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
178 *
179 * store: st{type}{size}{endian}_{access_type}(ptr, val)
180 *
181 * type is:
182 * (empty): integer access
183 * f : float access
5fafdf24 184 *
83d73968
FB
185 * sign is:
186 * (empty): for floats or 32 bit size
187 * u : unsigned
188 * s : signed
189 *
190 * size is:
191 * b: 8 bits
192 * w: 16 bits
193 * l: 32 bits
194 * q: 64 bits
5fafdf24 195 *
83d73968
FB
196 * endian is:
197 * (empty): target cpu endianness or 8 bit access
198 * r : reversed target cpu endianness (not implemented yet)
199 * be : big endian (not implemented yet)
200 * le : little endian (not implemented yet)
201 *
202 * access_type is:
203 * raw : host memory access
204 * user : user mode access using soft MMU
205 * kernel : kernel mode access using soft MMU
206 */
8bba3ea1 207static inline int ldub_p(const void *ptr)
5a9fdfec
FB
208{
209 return *(uint8_t *)ptr;
210}
211
8bba3ea1 212static inline int ldsb_p(const void *ptr)
5a9fdfec
FB
213{
214 return *(int8_t *)ptr;
215}
216
c27004ec 217static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
218{
219 *(uint8_t *)ptr = v;
220}
221
222/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
223 kernel handles unaligned load/stores may give better results, but
224 it is a system wide setting : bad */
2df3b95d 225#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
5a9fdfec
FB
226
227/* conservative code for little endian unaligned accesses */
8bba3ea1 228static inline int lduw_le_p(const void *ptr)
5a9fdfec 229{
e58ffeb3 230#ifdef _ARCH_PPC
5a9fdfec
FB
231 int val;
232 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
233 return val;
234#else
e01fe6d5 235 const uint8_t *p = ptr;
5a9fdfec
FB
236 return p[0] | (p[1] << 8);
237#endif
238}
239
8bba3ea1 240static inline int ldsw_le_p(const void *ptr)
5a9fdfec 241{
e58ffeb3 242#ifdef _ARCH_PPC
5a9fdfec
FB
243 int val;
244 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
245 return (int16_t)val;
246#else
e01fe6d5 247 const uint8_t *p = ptr;
5a9fdfec
FB
248 return (int16_t)(p[0] | (p[1] << 8));
249#endif
250}
251
8bba3ea1 252static inline int ldl_le_p(const void *ptr)
5a9fdfec 253{
e58ffeb3 254#ifdef _ARCH_PPC
5a9fdfec
FB
255 int val;
256 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
257 return val;
258#else
e01fe6d5 259 const uint8_t *p = ptr;
5a9fdfec
FB
260 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
261#endif
262}
263
8bba3ea1 264static inline uint64_t ldq_le_p(const void *ptr)
5a9fdfec 265{
e01fe6d5 266 const uint8_t *p = ptr;
5a9fdfec 267 uint32_t v1, v2;
f0aca822
FB
268 v1 = ldl_le_p(p);
269 v2 = ldl_le_p(p + 4);
5a9fdfec
FB
270 return v1 | ((uint64_t)v2 << 32);
271}
272
2df3b95d 273static inline void stw_le_p(void *ptr, int v)
5a9fdfec 274{
e58ffeb3 275#ifdef _ARCH_PPC
5a9fdfec
FB
276 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
277#else
278 uint8_t *p = ptr;
279 p[0] = v;
280 p[1] = v >> 8;
281#endif
282}
283
2df3b95d 284static inline void stl_le_p(void *ptr, int v)
5a9fdfec 285{
e58ffeb3 286#ifdef _ARCH_PPC
5a9fdfec
FB
287 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
288#else
289 uint8_t *p = ptr;
290 p[0] = v;
291 p[1] = v >> 8;
292 p[2] = v >> 16;
293 p[3] = v >> 24;
294#endif
295}
296
2df3b95d 297static inline void stq_le_p(void *ptr, uint64_t v)
5a9fdfec
FB
298{
299 uint8_t *p = ptr;
f0aca822
FB
300 stl_le_p(p, (uint32_t)v);
301 stl_le_p(p + 4, v >> 32);
5a9fdfec
FB
302}
303
304/* float access */
305
8bba3ea1 306static inline float32 ldfl_le_p(const void *ptr)
5a9fdfec
FB
307{
308 union {
53cd6637 309 float32 f;
5a9fdfec
FB
310 uint32_t i;
311 } u;
2df3b95d 312 u.i = ldl_le_p(ptr);
5a9fdfec
FB
313 return u.f;
314}
315
2df3b95d 316static inline void stfl_le_p(void *ptr, float32 v)
5a9fdfec
FB
317{
318 union {
53cd6637 319 float32 f;
5a9fdfec
FB
320 uint32_t i;
321 } u;
322 u.f = v;
2df3b95d 323 stl_le_p(ptr, u.i);
5a9fdfec
FB
324}
325
8bba3ea1 326static inline float64 ldfq_le_p(const void *ptr)
5a9fdfec 327{
0ac4bd56 328 CPU_DoubleU u;
2df3b95d
FB
329 u.l.lower = ldl_le_p(ptr);
330 u.l.upper = ldl_le_p(ptr + 4);
5a9fdfec
FB
331 return u.d;
332}
333
2df3b95d 334static inline void stfq_le_p(void *ptr, float64 v)
5a9fdfec 335{
0ac4bd56 336 CPU_DoubleU u;
5a9fdfec 337 u.d = v;
2df3b95d
FB
338 stl_le_p(ptr, u.l.lower);
339 stl_le_p(ptr + 4, u.l.upper);
5a9fdfec
FB
340}
341
2df3b95d
FB
342#else
343
8bba3ea1 344static inline int lduw_le_p(const void *ptr)
2df3b95d
FB
345{
346 return *(uint16_t *)ptr;
347}
348
8bba3ea1 349static inline int ldsw_le_p(const void *ptr)
2df3b95d
FB
350{
351 return *(int16_t *)ptr;
352}
93ac68bc 353
8bba3ea1 354static inline int ldl_le_p(const void *ptr)
2df3b95d
FB
355{
356 return *(uint32_t *)ptr;
357}
358
8bba3ea1 359static inline uint64_t ldq_le_p(const void *ptr)
2df3b95d
FB
360{
361 return *(uint64_t *)ptr;
362}
363
364static inline void stw_le_p(void *ptr, int v)
365{
366 *(uint16_t *)ptr = v;
367}
368
369static inline void stl_le_p(void *ptr, int v)
370{
371 *(uint32_t *)ptr = v;
372}
373
374static inline void stq_le_p(void *ptr, uint64_t v)
375{
376 *(uint64_t *)ptr = v;
377}
378
379/* float access */
380
8bba3ea1 381static inline float32 ldfl_le_p(const void *ptr)
2df3b95d
FB
382{
383 return *(float32 *)ptr;
384}
385
8bba3ea1 386static inline float64 ldfq_le_p(const void *ptr)
2df3b95d
FB
387{
388 return *(float64 *)ptr;
389}
390
391static inline void stfl_le_p(void *ptr, float32 v)
392{
393 *(float32 *)ptr = v;
394}
395
396static inline void stfq_le_p(void *ptr, float64 v)
397{
398 *(float64 *)ptr = v;
399}
400#endif
401
402#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
403
8bba3ea1 404static inline int lduw_be_p(const void *ptr)
93ac68bc 405{
83d73968
FB
406#if defined(__i386__)
407 int val;
408 asm volatile ("movzwl %1, %0\n"
409 "xchgb %b0, %h0\n"
410 : "=q" (val)
411 : "m" (*(uint16_t *)ptr));
412 return val;
413#else
e01fe6d5 414 const uint8_t *b = ptr;
83d73968
FB
415 return ((b[0] << 8) | b[1]);
416#endif
93ac68bc
FB
417}
418
8bba3ea1 419static inline int ldsw_be_p(const void *ptr)
93ac68bc 420{
83d73968
FB
421#if defined(__i386__)
422 int val;
423 asm volatile ("movzwl %1, %0\n"
424 "xchgb %b0, %h0\n"
425 : "=q" (val)
426 : "m" (*(uint16_t *)ptr));
427 return (int16_t)val;
428#else
e01fe6d5 429 const uint8_t *b = ptr;
83d73968
FB
430 return (int16_t)((b[0] << 8) | b[1]);
431#endif
93ac68bc
FB
432}
433
8bba3ea1 434static inline int ldl_be_p(const void *ptr)
93ac68bc 435{
4f2ac237 436#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
437 int val;
438 asm volatile ("movl %1, %0\n"
439 "bswap %0\n"
440 : "=r" (val)
441 : "m" (*(uint32_t *)ptr));
442 return val;
443#else
e01fe6d5 444 const uint8_t *b = ptr;
83d73968
FB
445 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
446#endif
93ac68bc
FB
447}
448
8bba3ea1 449static inline uint64_t ldq_be_p(const void *ptr)
93ac68bc
FB
450{
451 uint32_t a,b;
2df3b95d 452 a = ldl_be_p(ptr);
4d7a0880 453 b = ldl_be_p((uint8_t *)ptr + 4);
93ac68bc
FB
454 return (((uint64_t)a<<32)|b);
455}
456
2df3b95d 457static inline void stw_be_p(void *ptr, int v)
93ac68bc 458{
83d73968
FB
459#if defined(__i386__)
460 asm volatile ("xchgb %b0, %h0\n"
461 "movw %w0, %1\n"
462 : "=q" (v)
463 : "m" (*(uint16_t *)ptr), "0" (v));
464#else
93ac68bc
FB
465 uint8_t *d = (uint8_t *) ptr;
466 d[0] = v >> 8;
467 d[1] = v;
83d73968 468#endif
93ac68bc
FB
469}
470
2df3b95d 471static inline void stl_be_p(void *ptr, int v)
93ac68bc 472{
4f2ac237 473#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
474 asm volatile ("bswap %0\n"
475 "movl %0, %1\n"
476 : "=r" (v)
477 : "m" (*(uint32_t *)ptr), "0" (v));
478#else
93ac68bc
FB
479 uint8_t *d = (uint8_t *) ptr;
480 d[0] = v >> 24;
481 d[1] = v >> 16;
482 d[2] = v >> 8;
483 d[3] = v;
83d73968 484#endif
93ac68bc
FB
485}
486
2df3b95d 487static inline void stq_be_p(void *ptr, uint64_t v)
93ac68bc 488{
2df3b95d 489 stl_be_p(ptr, v >> 32);
4d7a0880 490 stl_be_p((uint8_t *)ptr + 4, v);
0ac4bd56
FB
491}
492
493/* float access */
494
8bba3ea1 495static inline float32 ldfl_be_p(const void *ptr)
0ac4bd56
FB
496{
497 union {
53cd6637 498 float32 f;
0ac4bd56
FB
499 uint32_t i;
500 } u;
2df3b95d 501 u.i = ldl_be_p(ptr);
0ac4bd56
FB
502 return u.f;
503}
504
2df3b95d 505static inline void stfl_be_p(void *ptr, float32 v)
0ac4bd56
FB
506{
507 union {
53cd6637 508 float32 f;
0ac4bd56
FB
509 uint32_t i;
510 } u;
511 u.f = v;
2df3b95d 512 stl_be_p(ptr, u.i);
0ac4bd56
FB
513}
514
8bba3ea1 515static inline float64 ldfq_be_p(const void *ptr)
0ac4bd56
FB
516{
517 CPU_DoubleU u;
2df3b95d 518 u.l.upper = ldl_be_p(ptr);
4d7a0880 519 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
0ac4bd56
FB
520 return u.d;
521}
522
2df3b95d 523static inline void stfq_be_p(void *ptr, float64 v)
0ac4bd56
FB
524{
525 CPU_DoubleU u;
526 u.d = v;
2df3b95d 527 stl_be_p(ptr, u.l.upper);
4d7a0880 528 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
93ac68bc
FB
529}
530
5a9fdfec
FB
531#else
532
8bba3ea1 533static inline int lduw_be_p(const void *ptr)
5a9fdfec
FB
534{
535 return *(uint16_t *)ptr;
536}
537
8bba3ea1 538static inline int ldsw_be_p(const void *ptr)
5a9fdfec
FB
539{
540 return *(int16_t *)ptr;
541}
542
8bba3ea1 543static inline int ldl_be_p(const void *ptr)
5a9fdfec
FB
544{
545 return *(uint32_t *)ptr;
546}
547
8bba3ea1 548static inline uint64_t ldq_be_p(const void *ptr)
5a9fdfec
FB
549{
550 return *(uint64_t *)ptr;
551}
552
2df3b95d 553static inline void stw_be_p(void *ptr, int v)
5a9fdfec
FB
554{
555 *(uint16_t *)ptr = v;
556}
557
2df3b95d 558static inline void stl_be_p(void *ptr, int v)
5a9fdfec
FB
559{
560 *(uint32_t *)ptr = v;
561}
562
2df3b95d 563static inline void stq_be_p(void *ptr, uint64_t v)
5a9fdfec
FB
564{
565 *(uint64_t *)ptr = v;
566}
567
568/* float access */
569
8bba3ea1 570static inline float32 ldfl_be_p(const void *ptr)
5a9fdfec 571{
53cd6637 572 return *(float32 *)ptr;
5a9fdfec
FB
573}
574
8bba3ea1 575static inline float64 ldfq_be_p(const void *ptr)
5a9fdfec 576{
53cd6637 577 return *(float64 *)ptr;
5a9fdfec
FB
578}
579
2df3b95d 580static inline void stfl_be_p(void *ptr, float32 v)
5a9fdfec 581{
53cd6637 582 *(float32 *)ptr = v;
5a9fdfec
FB
583}
584
2df3b95d 585static inline void stfq_be_p(void *ptr, float64 v)
5a9fdfec 586{
53cd6637 587 *(float64 *)ptr = v;
5a9fdfec 588}
2df3b95d
FB
589
590#endif
591
592/* target CPU memory access functions */
593#if defined(TARGET_WORDS_BIGENDIAN)
594#define lduw_p(p) lduw_be_p(p)
595#define ldsw_p(p) ldsw_be_p(p)
596#define ldl_p(p) ldl_be_p(p)
597#define ldq_p(p) ldq_be_p(p)
598#define ldfl_p(p) ldfl_be_p(p)
599#define ldfq_p(p) ldfq_be_p(p)
600#define stw_p(p, v) stw_be_p(p, v)
601#define stl_p(p, v) stl_be_p(p, v)
602#define stq_p(p, v) stq_be_p(p, v)
603#define stfl_p(p, v) stfl_be_p(p, v)
604#define stfq_p(p, v) stfq_be_p(p, v)
605#else
606#define lduw_p(p) lduw_le_p(p)
607#define ldsw_p(p) ldsw_le_p(p)
608#define ldl_p(p) ldl_le_p(p)
609#define ldq_p(p) ldq_le_p(p)
610#define ldfl_p(p) ldfl_le_p(p)
611#define ldfq_p(p) ldfq_le_p(p)
612#define stw_p(p, v) stw_le_p(p, v)
613#define stl_p(p, v) stl_le_p(p, v)
614#define stq_p(p, v) stq_le_p(p, v)
615#define stfl_p(p, v) stfl_le_p(p, v)
616#define stfq_p(p, v) stfq_le_p(p, v)
5a9fdfec
FB
617#endif
618
61382a50
FB
619/* MMU memory access macros */
620
53a5960a 621#if defined(CONFIG_USER_ONLY)
0e62fd79
AJ
622#include <assert.h>
623#include "qemu-types.h"
624
53a5960a
PB
625/* On some host systems the guest address space is reserved on the host.
626 * This allows the guest address space to be offset to a convenient location.
627 */
628//#define GUEST_BASE 0x20000000
629#define GUEST_BASE 0
630
631/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
632#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
0e62fd79
AJ
633#define h2g(x) ({ \
634 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
635 /* Check if given address fits target address space */ \
636 assert(__ret == (abi_ulong)__ret); \
637 (abi_ulong)__ret; \
638})
14cc46b1
AJ
639#define h2g_valid(x) ({ \
640 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
641 (__guest == (abi_ulong)__guest); \
642})
53a5960a
PB
643
644#define saddr(x) g2h(x)
645#define laddr(x) g2h(x)
646
647#else /* !CONFIG_USER_ONLY */
c27004ec
FB
648/* NOTE: we use double casts if pointers and target_ulong have
649 different sizes */
53a5960a
PB
650#define saddr(x) (uint8_t *)(long)(x)
651#define laddr(x) (uint8_t *)(long)(x)
652#endif
653
654#define ldub_raw(p) ldub_p(laddr((p)))
655#define ldsb_raw(p) ldsb_p(laddr((p)))
656#define lduw_raw(p) lduw_p(laddr((p)))
657#define ldsw_raw(p) ldsw_p(laddr((p)))
658#define ldl_raw(p) ldl_p(laddr((p)))
659#define ldq_raw(p) ldq_p(laddr((p)))
660#define ldfl_raw(p) ldfl_p(laddr((p)))
661#define ldfq_raw(p) ldfq_p(laddr((p)))
662#define stb_raw(p, v) stb_p(saddr((p)), v)
663#define stw_raw(p, v) stw_p(saddr((p)), v)
664#define stl_raw(p, v) stl_p(saddr((p)), v)
665#define stq_raw(p, v) stq_p(saddr((p)), v)
666#define stfl_raw(p, v) stfl_p(saddr((p)), v)
667#define stfq_raw(p, v) stfq_p(saddr((p)), v)
c27004ec
FB
668
669
5fafdf24 670#if defined(CONFIG_USER_ONLY)
61382a50
FB
671
672/* if user mode, no other memory access functions */
673#define ldub(p) ldub_raw(p)
674#define ldsb(p) ldsb_raw(p)
675#define lduw(p) lduw_raw(p)
676#define ldsw(p) ldsw_raw(p)
677#define ldl(p) ldl_raw(p)
678#define ldq(p) ldq_raw(p)
679#define ldfl(p) ldfl_raw(p)
680#define ldfq(p) ldfq_raw(p)
681#define stb(p, v) stb_raw(p, v)
682#define stw(p, v) stw_raw(p, v)
683#define stl(p, v) stl_raw(p, v)
684#define stq(p, v) stq_raw(p, v)
685#define stfl(p, v) stfl_raw(p, v)
686#define stfq(p, v) stfq_raw(p, v)
687
688#define ldub_code(p) ldub_raw(p)
689#define ldsb_code(p) ldsb_raw(p)
690#define lduw_code(p) lduw_raw(p)
691#define ldsw_code(p) ldsw_raw(p)
692#define ldl_code(p) ldl_raw(p)
bc98a7ef 693#define ldq_code(p) ldq_raw(p)
61382a50
FB
694
695#define ldub_kernel(p) ldub_raw(p)
696#define ldsb_kernel(p) ldsb_raw(p)
697#define lduw_kernel(p) lduw_raw(p)
698#define ldsw_kernel(p) ldsw_raw(p)
699#define ldl_kernel(p) ldl_raw(p)
bc98a7ef 700#define ldq_kernel(p) ldq_raw(p)
0ac4bd56
FB
701#define ldfl_kernel(p) ldfl_raw(p)
702#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
703#define stb_kernel(p, v) stb_raw(p, v)
704#define stw_kernel(p, v) stw_raw(p, v)
705#define stl_kernel(p, v) stl_raw(p, v)
706#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
707#define stfl_kernel(p, v) stfl_raw(p, v)
708#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
709
710#endif /* defined(CONFIG_USER_ONLY) */
711
5a9fdfec
FB
712/* page related stuff */
713
03875444 714#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
5a9fdfec
FB
715#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
716#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
717
53a5960a 718/* ??? These should be the larger of unsigned long and target_ulong. */
83fb7adf
FB
719extern unsigned long qemu_real_host_page_size;
720extern unsigned long qemu_host_page_bits;
721extern unsigned long qemu_host_page_size;
722extern unsigned long qemu_host_page_mask;
5a9fdfec 723
83fb7adf 724#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
725
726/* same as PROT_xxx */
727#define PAGE_READ 0x0001
728#define PAGE_WRITE 0x0002
729#define PAGE_EXEC 0x0004
730#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
731#define PAGE_VALID 0x0008
732/* original state of the write flag (used when tracking self-modifying
733 code */
5fafdf24 734#define PAGE_WRITE_ORG 0x0010
50a9569b 735#define PAGE_RESERVED 0x0020
5a9fdfec
FB
736
737void page_dump(FILE *f);
edf8e2af
MW
738int walk_memory_regions(void *,
739 int (*fn)(void *, unsigned long, unsigned long, unsigned long));
53a5960a
PB
740int page_get_flags(target_ulong address);
741void page_set_flags(target_ulong start, target_ulong end, int flags);
3d97b40b 742int page_check_range(target_ulong start, target_ulong len, int flags);
5a9fdfec 743
26a5f13b 744void cpu_exec_init_all(unsigned long tb_size);
c5be9f08
TS
745CPUState *cpu_copy(CPUState *env);
746
5fafdf24 747void cpu_dump_state(CPUState *env, FILE *f,
7fe48483
FB
748 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
749 int flags);
76a66253
JM
750void cpu_dump_statistics (CPUState *env, FILE *f,
751 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752 int flags);
7fe48483 753
a5e50b26 754void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
7d99a001 755 __attribute__ ((__format__ (__printf__, 2, 3)));
f0aca822 756extern CPUState *first_cpu;
e2f22898 757extern CPUState *cpu_single_env;
2e70f6ef
PB
758extern int64_t qemu_icount;
759extern int use_icount;
5a9fdfec 760
9acbed06
FB
761#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
762#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 763#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
98699967 764#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
ba3c64fb 765#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
3b21e03e 766#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
6658ffb8 767#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
0573fbfc 768#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
474ea849 769#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
98699967 770
4690764b 771void cpu_interrupt(CPUState *s, int mask);
b54ad049 772void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 773
3098dba0
AJ
774void cpu_exit(CPUState *s);
775
6a4955a8
AL
776int qemu_cpu_has_work(CPUState *env);
777
a1d1bb31
AL
778/* Breakpoint/watchpoint flags */
779#define BP_MEM_READ 0x01
780#define BP_MEM_WRITE 0x02
781#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
06d55cc1 782#define BP_STOP_BEFORE_ACCESS 0x04
6e140f28 783#define BP_WATCHPOINT_HIT 0x08
a1d1bb31 784#define BP_GDB 0x10
2dc9f411 785#define BP_CPU 0x20
a1d1bb31
AL
786
787int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
788 CPUBreakpoint **breakpoint);
789int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
790void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
791void cpu_breakpoint_remove_all(CPUState *env, int mask);
792int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
793 int flags, CPUWatchpoint **watchpoint);
794int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
795 target_ulong len, int flags);
796void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
797void cpu_watchpoint_remove_all(CPUState *env, int mask);
60897d36
EI
798
799#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
800#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
801#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
802
c33a346e 803void cpu_single_step(CPUState *env, int enabled);
d95dc32d 804void cpu_reset(CPUState *s);
4c3a88a2 805
13eb76e0
FB
806/* Return the physical page corresponding to a virtual one. Use it
807 only for debugging because no protection checks are done. Return -1
808 if no page found. */
9b3c35e0 809target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
13eb76e0 810
5fafdf24 811#define CPU_LOG_TB_OUT_ASM (1 << 0)
9fddaa0c 812#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
813#define CPU_LOG_TB_OP (1 << 2)
814#define CPU_LOG_TB_OP_OPT (1 << 3)
815#define CPU_LOG_INT (1 << 4)
816#define CPU_LOG_EXEC (1 << 5)
817#define CPU_LOG_PCALL (1 << 6)
fd872598 818#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 819#define CPU_LOG_TB_CPU (1 << 8)
eca1bdf4 820#define CPU_LOG_RESET (1 << 9)
f193c797
FB
821
822/* define log items */
823typedef struct CPULogItem {
824 int mask;
825 const char *name;
826 const char *help;
827} CPULogItem;
828
c7cd6a37 829extern const CPULogItem cpu_log_items[];
f193c797 830
34865134
FB
831void cpu_set_log(int log_flags);
832void cpu_set_log_filename(const char *filename);
f193c797 833int cpu_str_to_log_mask(const char *str);
34865134 834
09683d35
FB
835/* IO ports API */
836
837/* NOTE: as these functions may be even used when there is an isa
838 brige on non x86 targets, we always defined them */
839#ifndef NO_CPU_IO_DEFS
840void cpu_outb(CPUState *env, int addr, int val);
841void cpu_outw(CPUState *env, int addr, int val);
842void cpu_outl(CPUState *env, int addr, int val);
843int cpu_inb(CPUState *env, int addr);
844int cpu_inw(CPUState *env, int addr);
845int cpu_inl(CPUState *env, int addr);
846#endif
847
33417e70
FB
848/* memory API */
849
edf75d59 850extern int phys_ram_fd;
1ccde1cb 851extern uint8_t *phys_ram_dirty;
00f82b8a 852extern ram_addr_t ram_size;
94a6b54f 853extern ram_addr_t last_ram_offset;
edf75d59
FB
854
855/* physical memory access */
0f459d16
PB
856
857/* MMIO pages are identified by a combination of an IO device index and
858 3 flags. The ROMD code stores the page ram offset in iotlb entry,
859 so only a limited number of ids are avaiable. */
860
98699967 861#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
edf75d59 862
0f459d16
PB
863/* Flags stored in the low bits of the TLB virtual address. These are
864 defined so that fast path ram access is all zeros. */
865/* Zero if TLB entry is valid. */
866#define TLB_INVALID_MASK (1 << 3)
867/* Set if TLB entry references a clean RAM page. The iotlb entry will
868 contain the page physical address. */
869#define TLB_NOTDIRTY (1 << 4)
870/* Set if TLB entry is an IO callback. */
871#define TLB_MMIO (1 << 5)
872
5fafdf24 873int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
8b1f24b0 874 uint8_t *buf, int len, int is_write);
13eb76e0 875
74576198
AL
876#define VGA_DIRTY_FLAG 0x01
877#define CODE_DIRTY_FLAG 0x02
878#define KQEMU_DIRTY_FLAG 0x04
879#define MIGRATION_DIRTY_FLAG 0x08
0a962c02 880
1ccde1cb 881/* read dirty bit (return 0 or 1) */
04c504cc 882static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1ccde1cb 883{
0a962c02
FB
884 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
885}
886
5fafdf24 887static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
0a962c02
FB
888 int dirty_flags)
889{
890 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
891}
892
04c504cc 893static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1ccde1cb 894{
0a962c02 895 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
896}
897
04c504cc 898void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 899 int dirty_flags);
04c504cc 900void cpu_tlb_update_dirty(CPUState *env);
1ccde1cb 901
74576198
AL
902int cpu_physical_memory_set_dirty_tracking(int enable);
903
904int cpu_physical_memory_get_dirty_tracking(void);
905
151f7749
JK
906int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
907 target_phys_addr_t end_addr);
2bec46dc 908
e3db7226
FB
909void dump_exec_info(FILE *f,
910 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
911
f65ed4c1
AL
912/* Coalesced MMIO regions are areas where write operations can be reordered.
913 * This usually implies that write operations are side-effect free. This allows
914 * batching which can make a major impact on performance when using
915 * virtualization.
916 */
917void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
918
919void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
920
effedbc9
FB
921/*******************************************/
922/* host CPU ticks (if available) */
923
e58ffeb3 924#if defined(_ARCH_PPC)
effedbc9 925
effedbc9
FB
926static inline int64_t cpu_get_real_ticks(void)
927{
5e10fc90 928 int64_t retval;
929#ifdef _ARCH_PPC64
930 /* This reads timebase in one 64bit go and includes Cell workaround from:
931 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
932 */
933 __asm__ __volatile__ (
934 "mftb %0\n\t"
935 "cmpwi %0,0\n\t"
936 "beq- $-8"
937 : "=r" (retval));
938#else
939 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
940 unsigned long junk;
941 __asm__ __volatile__ (
942 "mftbu %1\n\t"
943 "mftb %L0\n\t"
944 "mftbu %0\n\t"
945 "cmpw %0,%1\n\t"
946 "bne $-16"
947 : "=r" (retval), "=r" (junk));
948#endif
949 return retval;
effedbc9
FB
950}
951
952#elif defined(__i386__)
953
954static inline int64_t cpu_get_real_ticks(void)
5f1ce948
FB
955{
956 int64_t val;
957 asm volatile ("rdtsc" : "=A" (val));
958 return val;
959}
960
effedbc9
FB
961#elif defined(__x86_64__)
962
963static inline int64_t cpu_get_real_ticks(void)
964{
965 uint32_t low,high;
966 int64_t val;
967 asm volatile("rdtsc" : "=a" (low), "=d" (high));
968 val = high;
969 val <<= 32;
970 val |= low;
971 return val;
972}
973
f54b3f92
AJ
974#elif defined(__hppa__)
975
976static inline int64_t cpu_get_real_ticks(void)
977{
978 int val;
979 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
980 return val;
981}
982
effedbc9
FB
983#elif defined(__ia64)
984
985static inline int64_t cpu_get_real_ticks(void)
986{
987 int64_t val;
988 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
989 return val;
990}
991
992#elif defined(__s390__)
993
994static inline int64_t cpu_get_real_ticks(void)
995{
996 int64_t val;
997 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
998 return val;
999}
1000
3142255c 1001#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
effedbc9
FB
1002
1003static inline int64_t cpu_get_real_ticks (void)
1004{
1005#if defined(_LP64)
1006 uint64_t rval;
1007 asm volatile("rd %%tick,%0" : "=r"(rval));
1008 return rval;
1009#else
1010 union {
1011 uint64_t i64;
1012 struct {
1013 uint32_t high;
1014 uint32_t low;
1015 } i32;
1016 } rval;
1017 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1018 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1019 return rval.i64;
1020#endif
1021}
c4b89d18
TS
1022
1023#elif defined(__mips__)
1024
1025static inline int64_t cpu_get_real_ticks(void)
1026{
1027#if __mips_isa_rev >= 2
1028 uint32_t count;
1029 static uint32_t cyc_per_count = 0;
1030
1031 if (!cyc_per_count)
1032 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1033
1034 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1035 return (int64_t)(count * cyc_per_count);
1036#else
1037 /* FIXME */
1038 static int64_t ticks = 0;
1039 return ticks++;
1040#endif
1041}
1042
46152182
PB
1043#else
1044/* The host CPU doesn't have an easily accessible cycle counter.
85028e4d
TS
1045 Just return a monotonically increasing value. This will be
1046 totally wrong, but hopefully better than nothing. */
46152182
PB
1047static inline int64_t cpu_get_real_ticks (void)
1048{
1049 static int64_t ticks = 0;
1050 return ticks++;
1051}
effedbc9
FB
1052#endif
1053
1054/* profiling */
1055#ifdef CONFIG_PROFILER
1056static inline int64_t profile_getclock(void)
1057{
1058 return cpu_get_real_ticks();
1059}
1060
5f1ce948
FB
1061extern int64_t kqemu_time, kqemu_time_start;
1062extern int64_t qemu_time, qemu_time_start;
1063extern int64_t tlb_flush_time;
1064extern int64_t kqemu_exec_count;
1065extern int64_t dev_time;
1066extern int64_t kqemu_ret_int_count;
1067extern int64_t kqemu_ret_excp_count;
1068extern int64_t kqemu_ret_intr_count;
5f1ce948
FB
1069#endif
1070
5a9fdfec 1071#endif /* CPU_ALL_H */