]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
Disable phsyical memory handling in userspace emulation.
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
5fafdf24 3 *
5a9fdfec
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
5a9fdfec
FB
18 */
19#ifndef CPU_ALL_H
20#define CPU_ALL_H
21
7d99a001 22#include "qemu-common.h"
1ad2134f 23#include "cpu-common.h"
0ac4bd56 24
5fafdf24
TS
25/* some important defines:
26 *
0ac4bd56
FB
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
5fafdf24 29 *
e2542fe2 30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
0ac4bd56 31 * otherwise little endian.
5fafdf24 32 *
0ac4bd56 33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
5fafdf24 34 *
0ac4bd56
FB
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
939ef593 38#include "softfloat.h"
f193c797 39
e2542fe2 40#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
f193c797
FB
41#define BSWAP_NEEDED
42#endif
43
44#ifdef BSWAP_NEEDED
45
46static inline uint16_t tswap16(uint16_t s)
47{
48 return bswap16(s);
49}
50
51static inline uint32_t tswap32(uint32_t s)
52{
53 return bswap32(s);
54}
55
56static inline uint64_t tswap64(uint64_t s)
57{
58 return bswap64(s);
59}
60
61static inline void tswap16s(uint16_t *s)
62{
63 *s = bswap16(*s);
64}
65
66static inline void tswap32s(uint32_t *s)
67{
68 *s = bswap32(*s);
69}
70
71static inline void tswap64s(uint64_t *s)
72{
73 *s = bswap64(*s);
74}
75
76#else
77
78static inline uint16_t tswap16(uint16_t s)
79{
80 return s;
81}
82
83static inline uint32_t tswap32(uint32_t s)
84{
85 return s;
86}
87
88static inline uint64_t tswap64(uint64_t s)
89{
90 return s;
91}
92
93static inline void tswap16s(uint16_t *s)
94{
95}
96
97static inline void tswap32s(uint32_t *s)
98{
99}
100
101static inline void tswap64s(uint64_t *s)
102{
103}
104
105#endif
106
107#if TARGET_LONG_SIZE == 4
108#define tswapl(s) tswap32(s)
109#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 110#define bswaptls(s) bswap32s(s)
f193c797
FB
111#else
112#define tswapl(s) tswap64(s)
113#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 114#define bswaptls(s) bswap64s(s)
f193c797
FB
115#endif
116
0ca9d380
AJ
117typedef union {
118 float32 f;
119 uint32_t l;
120} CPU_FloatU;
121
832ed0fa
FB
122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
0ac4bd56 124typedef union {
53cd6637 125 float64 d;
e2542fe2 126#if defined(HOST_WORDS_BIGENDIAN) \
9d60cac0 127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
0ac4bd56 128 struct {
0ac4bd56 129 uint32_t upper;
832ed0fa 130 uint32_t lower;
0ac4bd56
FB
131 } l;
132#else
133 struct {
0ac4bd56 134 uint32_t lower;
832ed0fa 135 uint32_t upper;
0ac4bd56
FB
136 } l;
137#endif
138 uint64_t ll;
139} CPU_DoubleU;
140
1f587329
BS
141#ifdef TARGET_SPARC
142typedef union {
143 float128 q;
e2542fe2 144#if defined(HOST_WORDS_BIGENDIAN) \
1f587329
BS
145 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146 struct {
147 uint32_t upmost;
148 uint32_t upper;
149 uint32_t lower;
150 uint32_t lowest;
151 } l;
152 struct {
153 uint64_t upper;
154 uint64_t lower;
155 } ll;
156#else
157 struct {
158 uint32_t lowest;
159 uint32_t lower;
160 uint32_t upper;
161 uint32_t upmost;
162 } l;
163 struct {
164 uint64_t lower;
165 uint64_t upper;
166 } ll;
167#endif
168} CPU_QuadU;
169#endif
170
61382a50
FB
171/* CPU memory access without any memory or io remapping */
172
83d73968
FB
173/*
174 * the generic syntax for the memory accesses is:
175 *
176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177 *
178 * store: st{type}{size}{endian}_{access_type}(ptr, val)
179 *
180 * type is:
181 * (empty): integer access
182 * f : float access
5fafdf24 183 *
83d73968
FB
184 * sign is:
185 * (empty): for floats or 32 bit size
186 * u : unsigned
187 * s : signed
188 *
189 * size is:
190 * b: 8 bits
191 * w: 16 bits
192 * l: 32 bits
193 * q: 64 bits
5fafdf24 194 *
83d73968
FB
195 * endian is:
196 * (empty): target cpu endianness or 8 bit access
197 * r : reversed target cpu endianness (not implemented yet)
198 * be : big endian (not implemented yet)
199 * le : little endian (not implemented yet)
200 *
201 * access_type is:
202 * raw : host memory access
203 * user : user mode access using soft MMU
204 * kernel : kernel mode access using soft MMU
205 */
8bba3ea1 206static inline int ldub_p(const void *ptr)
5a9fdfec
FB
207{
208 return *(uint8_t *)ptr;
209}
210
8bba3ea1 211static inline int ldsb_p(const void *ptr)
5a9fdfec
FB
212{
213 return *(int8_t *)ptr;
214}
215
c27004ec 216static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
217{
218 *(uint8_t *)ptr = v;
219}
220
221/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222 kernel handles unaligned load/stores may give better results, but
223 it is a system wide setting : bad */
e2542fe2 224#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
5a9fdfec
FB
225
226/* conservative code for little endian unaligned accesses */
8bba3ea1 227static inline int lduw_le_p(const void *ptr)
5a9fdfec 228{
e58ffeb3 229#ifdef _ARCH_PPC
5a9fdfec
FB
230 int val;
231 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232 return val;
233#else
e01fe6d5 234 const uint8_t *p = ptr;
5a9fdfec
FB
235 return p[0] | (p[1] << 8);
236#endif
237}
238
8bba3ea1 239static inline int ldsw_le_p(const void *ptr)
5a9fdfec 240{
e58ffeb3 241#ifdef _ARCH_PPC
5a9fdfec
FB
242 int val;
243 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244 return (int16_t)val;
245#else
e01fe6d5 246 const uint8_t *p = ptr;
5a9fdfec
FB
247 return (int16_t)(p[0] | (p[1] << 8));
248#endif
249}
250
8bba3ea1 251static inline int ldl_le_p(const void *ptr)
5a9fdfec 252{
e58ffeb3 253#ifdef _ARCH_PPC
5a9fdfec
FB
254 int val;
255 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256 return val;
257#else
e01fe6d5 258 const uint8_t *p = ptr;
5a9fdfec
FB
259 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260#endif
261}
262
8bba3ea1 263static inline uint64_t ldq_le_p(const void *ptr)
5a9fdfec 264{
e01fe6d5 265 const uint8_t *p = ptr;
5a9fdfec 266 uint32_t v1, v2;
f0aca822
FB
267 v1 = ldl_le_p(p);
268 v2 = ldl_le_p(p + 4);
5a9fdfec
FB
269 return v1 | ((uint64_t)v2 << 32);
270}
271
2df3b95d 272static inline void stw_le_p(void *ptr, int v)
5a9fdfec 273{
e58ffeb3 274#ifdef _ARCH_PPC
5a9fdfec
FB
275 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276#else
277 uint8_t *p = ptr;
278 p[0] = v;
279 p[1] = v >> 8;
280#endif
281}
282
2df3b95d 283static inline void stl_le_p(void *ptr, int v)
5a9fdfec 284{
e58ffeb3 285#ifdef _ARCH_PPC
5a9fdfec
FB
286 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287#else
288 uint8_t *p = ptr;
289 p[0] = v;
290 p[1] = v >> 8;
291 p[2] = v >> 16;
292 p[3] = v >> 24;
293#endif
294}
295
2df3b95d 296static inline void stq_le_p(void *ptr, uint64_t v)
5a9fdfec
FB
297{
298 uint8_t *p = ptr;
f0aca822
FB
299 stl_le_p(p, (uint32_t)v);
300 stl_le_p(p + 4, v >> 32);
5a9fdfec
FB
301}
302
303/* float access */
304
8bba3ea1 305static inline float32 ldfl_le_p(const void *ptr)
5a9fdfec
FB
306{
307 union {
53cd6637 308 float32 f;
5a9fdfec
FB
309 uint32_t i;
310 } u;
2df3b95d 311 u.i = ldl_le_p(ptr);
5a9fdfec
FB
312 return u.f;
313}
314
2df3b95d 315static inline void stfl_le_p(void *ptr, float32 v)
5a9fdfec
FB
316{
317 union {
53cd6637 318 float32 f;
5a9fdfec
FB
319 uint32_t i;
320 } u;
321 u.f = v;
2df3b95d 322 stl_le_p(ptr, u.i);
5a9fdfec
FB
323}
324
8bba3ea1 325static inline float64 ldfq_le_p(const void *ptr)
5a9fdfec 326{
0ac4bd56 327 CPU_DoubleU u;
2df3b95d
FB
328 u.l.lower = ldl_le_p(ptr);
329 u.l.upper = ldl_le_p(ptr + 4);
5a9fdfec
FB
330 return u.d;
331}
332
2df3b95d 333static inline void stfq_le_p(void *ptr, float64 v)
5a9fdfec 334{
0ac4bd56 335 CPU_DoubleU u;
5a9fdfec 336 u.d = v;
2df3b95d
FB
337 stl_le_p(ptr, u.l.lower);
338 stl_le_p(ptr + 4, u.l.upper);
5a9fdfec
FB
339}
340
2df3b95d
FB
341#else
342
8bba3ea1 343static inline int lduw_le_p(const void *ptr)
2df3b95d
FB
344{
345 return *(uint16_t *)ptr;
346}
347
8bba3ea1 348static inline int ldsw_le_p(const void *ptr)
2df3b95d
FB
349{
350 return *(int16_t *)ptr;
351}
93ac68bc 352
8bba3ea1 353static inline int ldl_le_p(const void *ptr)
2df3b95d
FB
354{
355 return *(uint32_t *)ptr;
356}
357
8bba3ea1 358static inline uint64_t ldq_le_p(const void *ptr)
2df3b95d
FB
359{
360 return *(uint64_t *)ptr;
361}
362
363static inline void stw_le_p(void *ptr, int v)
364{
365 *(uint16_t *)ptr = v;
366}
367
368static inline void stl_le_p(void *ptr, int v)
369{
370 *(uint32_t *)ptr = v;
371}
372
373static inline void stq_le_p(void *ptr, uint64_t v)
374{
375 *(uint64_t *)ptr = v;
376}
377
378/* float access */
379
8bba3ea1 380static inline float32 ldfl_le_p(const void *ptr)
2df3b95d
FB
381{
382 return *(float32 *)ptr;
383}
384
8bba3ea1 385static inline float64 ldfq_le_p(const void *ptr)
2df3b95d
FB
386{
387 return *(float64 *)ptr;
388}
389
390static inline void stfl_le_p(void *ptr, float32 v)
391{
392 *(float32 *)ptr = v;
393}
394
395static inline void stfq_le_p(void *ptr, float64 v)
396{
397 *(float64 *)ptr = v;
398}
399#endif
400
e2542fe2 401#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
2df3b95d 402
8bba3ea1 403static inline int lduw_be_p(const void *ptr)
93ac68bc 404{
83d73968
FB
405#if defined(__i386__)
406 int val;
407 asm volatile ("movzwl %1, %0\n"
408 "xchgb %b0, %h0\n"
409 : "=q" (val)
410 : "m" (*(uint16_t *)ptr));
411 return val;
412#else
e01fe6d5 413 const uint8_t *b = ptr;
83d73968
FB
414 return ((b[0] << 8) | b[1]);
415#endif
93ac68bc
FB
416}
417
8bba3ea1 418static inline int ldsw_be_p(const void *ptr)
93ac68bc 419{
83d73968
FB
420#if defined(__i386__)
421 int val;
422 asm volatile ("movzwl %1, %0\n"
423 "xchgb %b0, %h0\n"
424 : "=q" (val)
425 : "m" (*(uint16_t *)ptr));
426 return (int16_t)val;
427#else
e01fe6d5 428 const uint8_t *b = ptr;
83d73968
FB
429 return (int16_t)((b[0] << 8) | b[1]);
430#endif
93ac68bc
FB
431}
432
8bba3ea1 433static inline int ldl_be_p(const void *ptr)
93ac68bc 434{
4f2ac237 435#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
436 int val;
437 asm volatile ("movl %1, %0\n"
438 "bswap %0\n"
439 : "=r" (val)
440 : "m" (*(uint32_t *)ptr));
441 return val;
442#else
e01fe6d5 443 const uint8_t *b = ptr;
83d73968
FB
444 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445#endif
93ac68bc
FB
446}
447
8bba3ea1 448static inline uint64_t ldq_be_p(const void *ptr)
93ac68bc
FB
449{
450 uint32_t a,b;
2df3b95d 451 a = ldl_be_p(ptr);
4d7a0880 452 b = ldl_be_p((uint8_t *)ptr + 4);
93ac68bc
FB
453 return (((uint64_t)a<<32)|b);
454}
455
2df3b95d 456static inline void stw_be_p(void *ptr, int v)
93ac68bc 457{
83d73968
FB
458#if defined(__i386__)
459 asm volatile ("xchgb %b0, %h0\n"
460 "movw %w0, %1\n"
461 : "=q" (v)
462 : "m" (*(uint16_t *)ptr), "0" (v));
463#else
93ac68bc
FB
464 uint8_t *d = (uint8_t *) ptr;
465 d[0] = v >> 8;
466 d[1] = v;
83d73968 467#endif
93ac68bc
FB
468}
469
2df3b95d 470static inline void stl_be_p(void *ptr, int v)
93ac68bc 471{
4f2ac237 472#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
473 asm volatile ("bswap %0\n"
474 "movl %0, %1\n"
475 : "=r" (v)
476 : "m" (*(uint32_t *)ptr), "0" (v));
477#else
93ac68bc
FB
478 uint8_t *d = (uint8_t *) ptr;
479 d[0] = v >> 24;
480 d[1] = v >> 16;
481 d[2] = v >> 8;
482 d[3] = v;
83d73968 483#endif
93ac68bc
FB
484}
485
2df3b95d 486static inline void stq_be_p(void *ptr, uint64_t v)
93ac68bc 487{
2df3b95d 488 stl_be_p(ptr, v >> 32);
4d7a0880 489 stl_be_p((uint8_t *)ptr + 4, v);
0ac4bd56
FB
490}
491
492/* float access */
493
8bba3ea1 494static inline float32 ldfl_be_p(const void *ptr)
0ac4bd56
FB
495{
496 union {
53cd6637 497 float32 f;
0ac4bd56
FB
498 uint32_t i;
499 } u;
2df3b95d 500 u.i = ldl_be_p(ptr);
0ac4bd56
FB
501 return u.f;
502}
503
2df3b95d 504static inline void stfl_be_p(void *ptr, float32 v)
0ac4bd56
FB
505{
506 union {
53cd6637 507 float32 f;
0ac4bd56
FB
508 uint32_t i;
509 } u;
510 u.f = v;
2df3b95d 511 stl_be_p(ptr, u.i);
0ac4bd56
FB
512}
513
8bba3ea1 514static inline float64 ldfq_be_p(const void *ptr)
0ac4bd56
FB
515{
516 CPU_DoubleU u;
2df3b95d 517 u.l.upper = ldl_be_p(ptr);
4d7a0880 518 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
0ac4bd56
FB
519 return u.d;
520}
521
2df3b95d 522static inline void stfq_be_p(void *ptr, float64 v)
0ac4bd56
FB
523{
524 CPU_DoubleU u;
525 u.d = v;
2df3b95d 526 stl_be_p(ptr, u.l.upper);
4d7a0880 527 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
93ac68bc
FB
528}
529
5a9fdfec
FB
530#else
531
8bba3ea1 532static inline int lduw_be_p(const void *ptr)
5a9fdfec
FB
533{
534 return *(uint16_t *)ptr;
535}
536
8bba3ea1 537static inline int ldsw_be_p(const void *ptr)
5a9fdfec
FB
538{
539 return *(int16_t *)ptr;
540}
541
8bba3ea1 542static inline int ldl_be_p(const void *ptr)
5a9fdfec
FB
543{
544 return *(uint32_t *)ptr;
545}
546
8bba3ea1 547static inline uint64_t ldq_be_p(const void *ptr)
5a9fdfec
FB
548{
549 return *(uint64_t *)ptr;
550}
551
2df3b95d 552static inline void stw_be_p(void *ptr, int v)
5a9fdfec
FB
553{
554 *(uint16_t *)ptr = v;
555}
556
2df3b95d 557static inline void stl_be_p(void *ptr, int v)
5a9fdfec
FB
558{
559 *(uint32_t *)ptr = v;
560}
561
2df3b95d 562static inline void stq_be_p(void *ptr, uint64_t v)
5a9fdfec
FB
563{
564 *(uint64_t *)ptr = v;
565}
566
567/* float access */
568
8bba3ea1 569static inline float32 ldfl_be_p(const void *ptr)
5a9fdfec 570{
53cd6637 571 return *(float32 *)ptr;
5a9fdfec
FB
572}
573
8bba3ea1 574static inline float64 ldfq_be_p(const void *ptr)
5a9fdfec 575{
53cd6637 576 return *(float64 *)ptr;
5a9fdfec
FB
577}
578
2df3b95d 579static inline void stfl_be_p(void *ptr, float32 v)
5a9fdfec 580{
53cd6637 581 *(float32 *)ptr = v;
5a9fdfec
FB
582}
583
2df3b95d 584static inline void stfq_be_p(void *ptr, float64 v)
5a9fdfec 585{
53cd6637 586 *(float64 *)ptr = v;
5a9fdfec 587}
2df3b95d
FB
588
589#endif
590
591/* target CPU memory access functions */
592#if defined(TARGET_WORDS_BIGENDIAN)
593#define lduw_p(p) lduw_be_p(p)
594#define ldsw_p(p) ldsw_be_p(p)
595#define ldl_p(p) ldl_be_p(p)
596#define ldq_p(p) ldq_be_p(p)
597#define ldfl_p(p) ldfl_be_p(p)
598#define ldfq_p(p) ldfq_be_p(p)
599#define stw_p(p, v) stw_be_p(p, v)
600#define stl_p(p, v) stl_be_p(p, v)
601#define stq_p(p, v) stq_be_p(p, v)
602#define stfl_p(p, v) stfl_be_p(p, v)
603#define stfq_p(p, v) stfq_be_p(p, v)
604#else
605#define lduw_p(p) lduw_le_p(p)
606#define ldsw_p(p) ldsw_le_p(p)
607#define ldl_p(p) ldl_le_p(p)
608#define ldq_p(p) ldq_le_p(p)
609#define ldfl_p(p) ldfl_le_p(p)
610#define ldfq_p(p) ldfq_le_p(p)
611#define stw_p(p, v) stw_le_p(p, v)
612#define stl_p(p, v) stl_le_p(p, v)
613#define stq_p(p, v) stq_le_p(p, v)
614#define stfl_p(p, v) stfl_le_p(p, v)
615#define stfq_p(p, v) stfq_le_p(p, v)
5a9fdfec
FB
616#endif
617
61382a50
FB
618/* MMU memory access macros */
619
53a5960a 620#if defined(CONFIG_USER_ONLY)
0e62fd79
AJ
621#include <assert.h>
622#include "qemu-types.h"
623
53a5960a
PB
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
379f6698
PB
627#if defined(CONFIG_USE_GUEST_BASE)
628extern unsigned long guest_base;
629extern int have_guest_base;
630#define GUEST_BASE guest_base
631#else
632#define GUEST_BASE 0ul
633#endif
53a5960a
PB
634
635/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
636#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
b9f83121
RH
637
638#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
639#define h2g_valid(x) 1
640#else
641#define h2g_valid(x) ({ \
642 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
643 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
644})
645#endif
646
0e62fd79
AJ
647#define h2g(x) ({ \
648 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
649 /* Check if given address fits target address space */ \
b9f83121 650 assert(h2g_valid(x)); \
0e62fd79
AJ
651 (abi_ulong)__ret; \
652})
53a5960a
PB
653
654#define saddr(x) g2h(x)
655#define laddr(x) g2h(x)
656
657#else /* !CONFIG_USER_ONLY */
c27004ec
FB
658/* NOTE: we use double casts if pointers and target_ulong have
659 different sizes */
53a5960a
PB
660#define saddr(x) (uint8_t *)(long)(x)
661#define laddr(x) (uint8_t *)(long)(x)
662#endif
663
664#define ldub_raw(p) ldub_p(laddr((p)))
665#define ldsb_raw(p) ldsb_p(laddr((p)))
666#define lduw_raw(p) lduw_p(laddr((p)))
667#define ldsw_raw(p) ldsw_p(laddr((p)))
668#define ldl_raw(p) ldl_p(laddr((p)))
669#define ldq_raw(p) ldq_p(laddr((p)))
670#define ldfl_raw(p) ldfl_p(laddr((p)))
671#define ldfq_raw(p) ldfq_p(laddr((p)))
672#define stb_raw(p, v) stb_p(saddr((p)), v)
673#define stw_raw(p, v) stw_p(saddr((p)), v)
674#define stl_raw(p, v) stl_p(saddr((p)), v)
675#define stq_raw(p, v) stq_p(saddr((p)), v)
676#define stfl_raw(p, v) stfl_p(saddr((p)), v)
677#define stfq_raw(p, v) stfq_p(saddr((p)), v)
c27004ec
FB
678
679
5fafdf24 680#if defined(CONFIG_USER_ONLY)
61382a50
FB
681
682/* if user mode, no other memory access functions */
683#define ldub(p) ldub_raw(p)
684#define ldsb(p) ldsb_raw(p)
685#define lduw(p) lduw_raw(p)
686#define ldsw(p) ldsw_raw(p)
687#define ldl(p) ldl_raw(p)
688#define ldq(p) ldq_raw(p)
689#define ldfl(p) ldfl_raw(p)
690#define ldfq(p) ldfq_raw(p)
691#define stb(p, v) stb_raw(p, v)
692#define stw(p, v) stw_raw(p, v)
693#define stl(p, v) stl_raw(p, v)
694#define stq(p, v) stq_raw(p, v)
695#define stfl(p, v) stfl_raw(p, v)
696#define stfq(p, v) stfq_raw(p, v)
697
698#define ldub_code(p) ldub_raw(p)
699#define ldsb_code(p) ldsb_raw(p)
700#define lduw_code(p) lduw_raw(p)
701#define ldsw_code(p) ldsw_raw(p)
702#define ldl_code(p) ldl_raw(p)
bc98a7ef 703#define ldq_code(p) ldq_raw(p)
61382a50
FB
704
705#define ldub_kernel(p) ldub_raw(p)
706#define ldsb_kernel(p) ldsb_raw(p)
707#define lduw_kernel(p) lduw_raw(p)
708#define ldsw_kernel(p) ldsw_raw(p)
709#define ldl_kernel(p) ldl_raw(p)
bc98a7ef 710#define ldq_kernel(p) ldq_raw(p)
0ac4bd56
FB
711#define ldfl_kernel(p) ldfl_raw(p)
712#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
713#define stb_kernel(p, v) stb_raw(p, v)
714#define stw_kernel(p, v) stw_raw(p, v)
715#define stl_kernel(p, v) stl_raw(p, v)
716#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
717#define stfl_kernel(p, v) stfl_raw(p, v)
718#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
719
720#endif /* defined(CONFIG_USER_ONLY) */
721
5a9fdfec
FB
722/* page related stuff */
723
03875444 724#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
5a9fdfec
FB
725#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
726#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
727
53a5960a 728/* ??? These should be the larger of unsigned long and target_ulong. */
83fb7adf
FB
729extern unsigned long qemu_real_host_page_size;
730extern unsigned long qemu_host_page_bits;
731extern unsigned long qemu_host_page_size;
732extern unsigned long qemu_host_page_mask;
5a9fdfec 733
83fb7adf 734#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
735
736/* same as PROT_xxx */
737#define PAGE_READ 0x0001
738#define PAGE_WRITE 0x0002
739#define PAGE_EXEC 0x0004
740#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
741#define PAGE_VALID 0x0008
742/* original state of the write flag (used when tracking self-modifying
743 code */
5fafdf24 744#define PAGE_WRITE_ORG 0x0010
50a9569b 745#define PAGE_RESERVED 0x0020
5a9fdfec
FB
746
747void page_dump(FILE *f);
5cd2c5b6
RH
748
749typedef int (*walk_memory_regions_fn)(void *, unsigned long,
750 unsigned long, unsigned long);
751int walk_memory_regions(void *, walk_memory_regions_fn);
752
53a5960a
PB
753int page_get_flags(target_ulong address);
754void page_set_flags(target_ulong start, target_ulong end, int flags);
3d97b40b 755int page_check_range(target_ulong start, target_ulong len, int flags);
5a9fdfec 756
26a5f13b 757void cpu_exec_init_all(unsigned long tb_size);
c5be9f08 758CPUState *cpu_copy(CPUState *env);
950f1472 759CPUState *qemu_get_cpu(int cpu);
c5be9f08 760
5fafdf24 761void cpu_dump_state(CPUState *env, FILE *f,
7fe48483
FB
762 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
763 int flags);
76a66253
JM
764void cpu_dump_statistics (CPUState *env, FILE *f,
765 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
766 int flags);
7fe48483 767
a5e50b26 768void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
7d99a001 769 __attribute__ ((__format__ (__printf__, 2, 3)));
f0aca822 770extern CPUState *first_cpu;
e2f22898 771extern CPUState *cpu_single_env;
2e70f6ef
PB
772extern int64_t qemu_icount;
773extern int use_icount;
5a9fdfec 774
9acbed06
FB
775#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
776#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 777#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
98699967 778#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
ba3c64fb 779#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
3b21e03e 780#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
6658ffb8 781#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
0573fbfc 782#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
474ea849 783#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
b09ea7d5
GN
784#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
785#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
79c4f6b0 786#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
98699967 787
4690764b 788void cpu_interrupt(CPUState *s, int mask);
b54ad049 789void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 790
3098dba0
AJ
791void cpu_exit(CPUState *s);
792
6a4955a8
AL
793int qemu_cpu_has_work(CPUState *env);
794
a1d1bb31
AL
795/* Breakpoint/watchpoint flags */
796#define BP_MEM_READ 0x01
797#define BP_MEM_WRITE 0x02
798#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
06d55cc1 799#define BP_STOP_BEFORE_ACCESS 0x04
6e140f28 800#define BP_WATCHPOINT_HIT 0x08
a1d1bb31 801#define BP_GDB 0x10
2dc9f411 802#define BP_CPU 0x20
a1d1bb31
AL
803
804int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
805 CPUBreakpoint **breakpoint);
806int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
807void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
808void cpu_breakpoint_remove_all(CPUState *env, int mask);
809int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
810 int flags, CPUWatchpoint **watchpoint);
811int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
812 target_ulong len, int flags);
813void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
814void cpu_watchpoint_remove_all(CPUState *env, int mask);
60897d36
EI
815
816#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
817#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
818#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
819
c33a346e 820void cpu_single_step(CPUState *env, int enabled);
d95dc32d 821void cpu_reset(CPUState *s);
4c3a88a2 822
13eb76e0
FB
823/* Return the physical page corresponding to a virtual one. Use it
824 only for debugging because no protection checks are done. Return -1
825 if no page found. */
c227f099 826target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
13eb76e0 827
5fafdf24 828#define CPU_LOG_TB_OUT_ASM (1 << 0)
9fddaa0c 829#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
830#define CPU_LOG_TB_OP (1 << 2)
831#define CPU_LOG_TB_OP_OPT (1 << 3)
832#define CPU_LOG_INT (1 << 4)
833#define CPU_LOG_EXEC (1 << 5)
834#define CPU_LOG_PCALL (1 << 6)
fd872598 835#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 836#define CPU_LOG_TB_CPU (1 << 8)
eca1bdf4 837#define CPU_LOG_RESET (1 << 9)
f193c797
FB
838
839/* define log items */
840typedef struct CPULogItem {
841 int mask;
842 const char *name;
843 const char *help;
844} CPULogItem;
845
c7cd6a37 846extern const CPULogItem cpu_log_items[];
f193c797 847
34865134
FB
848void cpu_set_log(int log_flags);
849void cpu_set_log_filename(const char *filename);
f193c797 850int cpu_str_to_log_mask(const char *str);
34865134 851
b3755a91
PB
852#if !defined(CONFIG_USER_ONLY)
853
33417e70
FB
854/* memory API */
855
edf75d59 856extern int phys_ram_fd;
1ccde1cb 857extern uint8_t *phys_ram_dirty;
c227f099
AL
858extern ram_addr_t ram_size;
859extern ram_addr_t last_ram_offset;
edf75d59 860
c902760f
MT
861extern const char *mem_path;
862extern int mem_prealloc;
863
edf75d59 864/* physical memory access */
0f459d16
PB
865
866/* MMIO pages are identified by a combination of an IO device index and
867 3 flags. The ROMD code stores the page ram offset in iotlb entry,
868 so only a limited number of ids are avaiable. */
869
98699967 870#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
edf75d59 871
0f459d16
PB
872/* Flags stored in the low bits of the TLB virtual address. These are
873 defined so that fast path ram access is all zeros. */
874/* Zero if TLB entry is valid. */
875#define TLB_INVALID_MASK (1 << 3)
876/* Set if TLB entry references a clean RAM page. The iotlb entry will
877 contain the page physical address. */
878#define TLB_NOTDIRTY (1 << 4)
879/* Set if TLB entry is an IO callback. */
880#define TLB_MMIO (1 << 5)
881
74576198
AL
882#define VGA_DIRTY_FLAG 0x01
883#define CODE_DIRTY_FLAG 0x02
74576198 884#define MIGRATION_DIRTY_FLAG 0x08
0a962c02 885
1ccde1cb 886/* read dirty bit (return 0 or 1) */
c227f099 887static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1ccde1cb 888{
0a962c02
FB
889 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
890}
891
c227f099 892static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
0a962c02
FB
893 int dirty_flags)
894{
895 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
896}
897
c227f099 898static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1ccde1cb 899{
0a962c02 900 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
901}
902
c227f099 903void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 904 int dirty_flags);
04c504cc 905void cpu_tlb_update_dirty(CPUState *env);
1ccde1cb 906
74576198
AL
907int cpu_physical_memory_set_dirty_tracking(int enable);
908
909int cpu_physical_memory_get_dirty_tracking(void);
910
c227f099
AL
911int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
912 target_phys_addr_t end_addr);
2bec46dc 913
e3db7226
FB
914void dump_exec_info(FILE *f,
915 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
916
f65ed4c1
AL
917/* Coalesced MMIO regions are areas where write operations can be reordered.
918 * This usually implies that write operations are side-effect free. This allows
919 * batching which can make a major impact on performance when using
920 * virtualization.
921 */
c227f099 922void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
f65ed4c1 923
c227f099 924void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
f65ed4c1 925
62a2744c
SY
926void qemu_flush_coalesced_mmio_buffer(void);
927
b3755a91
PB
928#endif /* !CONFIG_USER_ONLY */
929
930int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
931 uint8_t *buf, int len, int is_write);
932
effedbc9
FB
933/*******************************************/
934/* host CPU ticks (if available) */
935
e58ffeb3 936#if defined(_ARCH_PPC)
effedbc9 937
effedbc9
FB
938static inline int64_t cpu_get_real_ticks(void)
939{
5e10fc90 940 int64_t retval;
941#ifdef _ARCH_PPC64
942 /* This reads timebase in one 64bit go and includes Cell workaround from:
943 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
944 */
945 __asm__ __volatile__ (
946 "mftb %0\n\t"
947 "cmpwi %0,0\n\t"
948 "beq- $-8"
949 : "=r" (retval));
950#else
951 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
952 unsigned long junk;
953 __asm__ __volatile__ (
954 "mftbu %1\n\t"
955 "mftb %L0\n\t"
956 "mftbu %0\n\t"
957 "cmpw %0,%1\n\t"
958 "bne $-16"
959 : "=r" (retval), "=r" (junk));
960#endif
961 return retval;
effedbc9
FB
962}
963
964#elif defined(__i386__)
965
966static inline int64_t cpu_get_real_ticks(void)
5f1ce948
FB
967{
968 int64_t val;
969 asm volatile ("rdtsc" : "=A" (val));
970 return val;
971}
972
effedbc9
FB
973#elif defined(__x86_64__)
974
975static inline int64_t cpu_get_real_ticks(void)
976{
977 uint32_t low,high;
978 int64_t val;
979 asm volatile("rdtsc" : "=a" (low), "=d" (high));
980 val = high;
981 val <<= 32;
982 val |= low;
983 return val;
984}
985
f54b3f92
AJ
986#elif defined(__hppa__)
987
988static inline int64_t cpu_get_real_ticks(void)
989{
990 int val;
991 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
992 return val;
993}
994
effedbc9
FB
995#elif defined(__ia64)
996
997static inline int64_t cpu_get_real_ticks(void)
998{
999 int64_t val;
1000 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1001 return val;
1002}
1003
1004#elif defined(__s390__)
1005
1006static inline int64_t cpu_get_real_ticks(void)
1007{
1008 int64_t val;
1009 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1010 return val;
1011}
1012
3142255c 1013#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
effedbc9
FB
1014
1015static inline int64_t cpu_get_real_ticks (void)
1016{
1017#if defined(_LP64)
1018 uint64_t rval;
1019 asm volatile("rd %%tick,%0" : "=r"(rval));
1020 return rval;
1021#else
1022 union {
1023 uint64_t i64;
1024 struct {
1025 uint32_t high;
1026 uint32_t low;
1027 } i32;
1028 } rval;
1029 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1030 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1031 return rval.i64;
1032#endif
1033}
c4b89d18 1034
9706c06d
AJ
1035#elif defined(__mips__) && \
1036 ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
fea0ac23
AP
1037/*
1038 * binutils wants to use rdhwr only on mips32r2
1039 * but as linux kernel emulate it, it's fine
1040 * to use it.
1041 *
1042 */
1043#define MIPS_RDHWR(rd, value) { \
1044 __asm__ __volatile__ ( \
1045 ".set push\n\t" \
1046 ".set mips32r2\n\t" \
1047 "rdhwr %0, "rd"\n\t" \
1048 ".set pop" \
1049 : "=r" (value)); \
1050}
c4b89d18
TS
1051
1052static inline int64_t cpu_get_real_ticks(void)
1053{
fea0ac23 1054/* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
c4b89d18
TS
1055 uint32_t count;
1056 static uint32_t cyc_per_count = 0;
1057
1058 if (!cyc_per_count)
fea0ac23 1059 MIPS_RDHWR("$3", cyc_per_count);
c4b89d18 1060
fea0ac23 1061 MIPS_RDHWR("$2", count);
c4b89d18 1062 return (int64_t)(count * cyc_per_count);
c4b89d18
TS
1063}
1064
46152182
PB
1065#else
1066/* The host CPU doesn't have an easily accessible cycle counter.
85028e4d
TS
1067 Just return a monotonically increasing value. This will be
1068 totally wrong, but hopefully better than nothing. */
46152182
PB
1069static inline int64_t cpu_get_real_ticks (void)
1070{
1071 static int64_t ticks = 0;
1072 return ticks++;
1073}
effedbc9
FB
1074#endif
1075
1076/* profiling */
1077#ifdef CONFIG_PROFILER
1078static inline int64_t profile_getclock(void)
1079{
1080 return cpu_get_real_ticks();
1081}
1082
5f1ce948
FB
1083extern int64_t qemu_time, qemu_time_start;
1084extern int64_t tlb_flush_time;
5f1ce948 1085extern int64_t dev_time;
5f1ce948
FB
1086#endif
1087
79c4f6b0
HY
1088void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1089 uint64_t mcg_status, uint64_t addr, uint64_t misc);
1090
5a9fdfec 1091#endif /* CPU_ALL_H */