]>
Commit | Line | Data |
---|---|---|
7d13299d FB |
1 | /* |
2 | * i386 emulator main execution loop | |
5fafdf24 | 3 | * |
66321a11 | 4 | * Copyright (c) 2003-2005 Fabrice Bellard |
7d13299d | 5 | * |
3ef693a0 FB |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
7d13299d | 10 | * |
3ef693a0 FB |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
7d13299d | 15 | * |
3ef693a0 FB |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with this library; if not, write to the Free Software | |
fad6cb1a | 18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA |
7d13299d | 19 | */ |
e4533c7a | 20 | #include "config.h" |
7cb69cae | 21 | #define CPU_NO_GLOBAL_REGS |
93ac68bc | 22 | #include "exec.h" |
956034d7 | 23 | #include "disas.h" |
7cb69cae | 24 | #include "tcg.h" |
7ba1e619 | 25 | #include "kvm.h" |
7d13299d | 26 | |
fbf9eeb3 FB |
27 | #if !defined(CONFIG_SOFTMMU) |
28 | #undef EAX | |
29 | #undef ECX | |
30 | #undef EDX | |
31 | #undef EBX | |
32 | #undef ESP | |
33 | #undef EBP | |
34 | #undef ESI | |
35 | #undef EDI | |
36 | #undef EIP | |
37 | #include <signal.h> | |
84778508 | 38 | #ifdef __linux__ |
fbf9eeb3 FB |
39 | #include <sys/ucontext.h> |
40 | #endif | |
84778508 | 41 | #endif |
fbf9eeb3 | 42 | |
572a9d4a BS |
43 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
44 | // Work around ugly bugs in glibc that mangle global register contents | |
45 | #undef env | |
46 | #define env cpu_single_env | |
47 | #endif | |
48 | ||
36bdbe54 FB |
49 | int tb_invalidated_flag; |
50 | ||
dc99065b | 51 | //#define DEBUG_EXEC |
9de5e440 | 52 | //#define DEBUG_SIGNAL |
7d13299d | 53 | |
e4533c7a FB |
54 | void cpu_loop_exit(void) |
55 | { | |
bfed01fc TS |
56 | /* NOTE: the register at this point must be saved by hand because |
57 | longjmp restore them */ | |
58 | regs_to_env(); | |
e4533c7a FB |
59 | longjmp(env->jmp_env, 1); |
60 | } | |
bfed01fc | 61 | |
fbf9eeb3 FB |
62 | /* exit the current TB from a signal handler. The host registers are |
63 | restored in a state compatible with the CPU emulator | |
64 | */ | |
5fafdf24 | 65 | void cpu_resume_from_signal(CPUState *env1, void *puc) |
fbf9eeb3 FB |
66 | { |
67 | #if !defined(CONFIG_SOFTMMU) | |
84778508 | 68 | #ifdef __linux__ |
fbf9eeb3 | 69 | struct ucontext *uc = puc; |
84778508 BS |
70 | #elif defined(__OpenBSD__) |
71 | struct sigcontext *uc = puc; | |
72 | #endif | |
fbf9eeb3 FB |
73 | #endif |
74 | ||
75 | env = env1; | |
76 | ||
77 | /* XXX: restore cpu registers saved in host registers */ | |
78 | ||
79 | #if !defined(CONFIG_SOFTMMU) | |
80 | if (puc) { | |
81 | /* XXX: use siglongjmp ? */ | |
84778508 | 82 | #ifdef __linux__ |
fbf9eeb3 | 83 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); |
84778508 BS |
84 | #elif defined(__OpenBSD__) |
85 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); | |
86 | #endif | |
fbf9eeb3 FB |
87 | } |
88 | #endif | |
9a3ea654 | 89 | env->exception_index = -1; |
fbf9eeb3 FB |
90 | longjmp(env->jmp_env, 1); |
91 | } | |
92 | ||
2e70f6ef PB |
93 | /* Execute the code without caching the generated code. An interpreter |
94 | could be used if available. */ | |
95 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) | |
96 | { | |
97 | unsigned long next_tb; | |
98 | TranslationBlock *tb; | |
99 | ||
100 | /* Should never happen. | |
101 | We only end up here when an existing TB is too long. */ | |
102 | if (max_cycles > CF_COUNT_MASK) | |
103 | max_cycles = CF_COUNT_MASK; | |
104 | ||
105 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
106 | max_cycles); | |
107 | env->current_tb = tb; | |
108 | /* execute the generated code */ | |
109 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr); | |
110 | ||
111 | if ((next_tb & 3) == 2) { | |
112 | /* Restore PC. This may happen if async event occurs before | |
113 | the TB starts executing. */ | |
622ed360 | 114 | cpu_pc_from_tb(env, tb); |
2e70f6ef PB |
115 | } |
116 | tb_phys_invalidate(tb, -1); | |
117 | tb_free(tb); | |
118 | } | |
119 | ||
8a40a180 FB |
120 | static TranslationBlock *tb_find_slow(target_ulong pc, |
121 | target_ulong cs_base, | |
c068688b | 122 | uint64_t flags) |
8a40a180 FB |
123 | { |
124 | TranslationBlock *tb, **ptb1; | |
8a40a180 FB |
125 | unsigned int h; |
126 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
3b46e624 | 127 | |
8a40a180 | 128 | tb_invalidated_flag = 0; |
3b46e624 | 129 | |
8a40a180 | 130 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ |
3b46e624 | 131 | |
8a40a180 FB |
132 | /* find translated block using physical mappings */ |
133 | phys_pc = get_phys_addr_code(env, pc); | |
134 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
135 | phys_page2 = -1; | |
136 | h = tb_phys_hash_func(phys_pc); | |
137 | ptb1 = &tb_phys_hash[h]; | |
138 | for(;;) { | |
139 | tb = *ptb1; | |
140 | if (!tb) | |
141 | goto not_found; | |
5fafdf24 | 142 | if (tb->pc == pc && |
8a40a180 | 143 | tb->page_addr[0] == phys_page1 && |
5fafdf24 | 144 | tb->cs_base == cs_base && |
8a40a180 FB |
145 | tb->flags == flags) { |
146 | /* check next page if needed */ | |
147 | if (tb->page_addr[1] != -1) { | |
5fafdf24 | 148 | virt_page2 = (pc & TARGET_PAGE_MASK) + |
8a40a180 FB |
149 | TARGET_PAGE_SIZE; |
150 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
151 | if (tb->page_addr[1] == phys_page2) | |
152 | goto found; | |
153 | } else { | |
154 | goto found; | |
155 | } | |
156 | } | |
157 | ptb1 = &tb->phys_hash_next; | |
158 | } | |
159 | not_found: | |
2e70f6ef PB |
160 | /* if no translated code available, then translate it now */ |
161 | tb = tb_gen_code(env, pc, cs_base, flags, 0); | |
3b46e624 | 162 | |
8a40a180 | 163 | found: |
8a40a180 FB |
164 | /* we add the TB in the virtual pc hash table */ |
165 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
8a40a180 FB |
166 | return tb; |
167 | } | |
168 | ||
169 | static inline TranslationBlock *tb_find_fast(void) | |
170 | { | |
171 | TranslationBlock *tb; | |
172 | target_ulong cs_base, pc; | |
6b917547 | 173 | int flags; |
8a40a180 FB |
174 | |
175 | /* we record a subset of the CPU state. It will | |
176 | always be the same before a given translated block | |
177 | is executed. */ | |
6b917547 | 178 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
bce61846 | 179 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
551bd27f TS |
180 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || |
181 | tb->flags != flags)) { | |
8a40a180 FB |
182 | tb = tb_find_slow(pc, cs_base, flags); |
183 | } | |
184 | return tb; | |
185 | } | |
186 | ||
dde2367e AL |
187 | static CPUDebugExcpHandler *debug_excp_handler; |
188 | ||
189 | CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler) | |
190 | { | |
191 | CPUDebugExcpHandler *old_handler = debug_excp_handler; | |
192 | ||
193 | debug_excp_handler = handler; | |
194 | return old_handler; | |
195 | } | |
196 | ||
6e140f28 AL |
197 | static void cpu_handle_debug_exception(CPUState *env) |
198 | { | |
199 | CPUWatchpoint *wp; | |
200 | ||
201 | if (!env->watchpoint_hit) | |
c0ce998e | 202 | TAILQ_FOREACH(wp, &env->watchpoints, entry) |
6e140f28 | 203 | wp->flags &= ~BP_WATCHPOINT_HIT; |
dde2367e AL |
204 | |
205 | if (debug_excp_handler) | |
206 | debug_excp_handler(env); | |
6e140f28 AL |
207 | } |
208 | ||
7d13299d FB |
209 | /* main execution loop */ |
210 | ||
e4533c7a | 211 | int cpu_exec(CPUState *env1) |
7d13299d | 212 | { |
1057eaa7 PB |
213 | #define DECLARE_HOST_REGS 1 |
214 | #include "hostregs_helper.h" | |
8a40a180 | 215 | int ret, interrupt_request; |
8a40a180 | 216 | TranslationBlock *tb; |
c27004ec | 217 | uint8_t *tc_ptr; |
d5975363 | 218 | unsigned long next_tb; |
8c6939c0 | 219 | |
bfed01fc TS |
220 | if (cpu_halted(env1) == EXCP_HALTED) |
221 | return EXCP_HALTED; | |
5a1e3cfc | 222 | |
5fafdf24 | 223 | cpu_single_env = env1; |
6a00d601 | 224 | |
7d13299d | 225 | /* first we save global registers */ |
1057eaa7 PB |
226 | #define SAVE_HOST_REGS 1 |
227 | #include "hostregs_helper.h" | |
c27004ec | 228 | env = env1; |
e4533c7a | 229 | |
0d1a29f9 | 230 | env_to_regs(); |
ecb644f4 | 231 | #if defined(TARGET_I386) |
9de5e440 | 232 | /* put eflags in CPU temporary format */ |
fc2b4c48 FB |
233 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
234 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
9de5e440 | 235 | CC_OP = CC_OP_EFLAGS; |
fc2b4c48 | 236 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
93ac68bc | 237 | #elif defined(TARGET_SPARC) |
e6e5906b PB |
238 | #elif defined(TARGET_M68K) |
239 | env->cc_op = CC_OP_FLAGS; | |
240 | env->cc_dest = env->sr & 0xf; | |
241 | env->cc_x = (env->sr >> 4) & 1; | |
ecb644f4 TS |
242 | #elif defined(TARGET_ALPHA) |
243 | #elif defined(TARGET_ARM) | |
244 | #elif defined(TARGET_PPC) | |
6af0bf9c | 245 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 246 | #elif defined(TARGET_SH4) |
f1ccf904 | 247 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 248 | /* XXXXX */ |
e4533c7a FB |
249 | #else |
250 | #error unsupported target CPU | |
251 | #endif | |
3fb2ded1 | 252 | env->exception_index = -1; |
9d27abd9 | 253 | |
7d13299d | 254 | /* prepare setjmp context for exception handling */ |
3fb2ded1 FB |
255 | for(;;) { |
256 | if (setjmp(env->jmp_env) == 0) { | |
ee8b7021 | 257 | env->current_tb = NULL; |
3fb2ded1 FB |
258 | /* if an exception is pending, we execute it here */ |
259 | if (env->exception_index >= 0) { | |
260 | if (env->exception_index >= EXCP_INTERRUPT) { | |
261 | /* exit request from the cpu execution loop */ | |
262 | ret = env->exception_index; | |
6e140f28 AL |
263 | if (ret == EXCP_DEBUG) |
264 | cpu_handle_debug_exception(env); | |
3fb2ded1 | 265 | break; |
72d239ed AJ |
266 | } else { |
267 | #if defined(CONFIG_USER_ONLY) | |
3fb2ded1 | 268 | /* if user mode only, we simulate a fake exception |
9f083493 | 269 | which will be handled outside the cpu execution |
3fb2ded1 | 270 | loop */ |
83479e77 | 271 | #if defined(TARGET_I386) |
5fafdf24 TS |
272 | do_interrupt_user(env->exception_index, |
273 | env->exception_is_int, | |
274 | env->error_code, | |
3fb2ded1 | 275 | env->exception_next_eip); |
eba01623 FB |
276 | /* successfully delivered */ |
277 | env->old_exception = -1; | |
83479e77 | 278 | #endif |
3fb2ded1 FB |
279 | ret = env->exception_index; |
280 | break; | |
72d239ed | 281 | #else |
83479e77 | 282 | #if defined(TARGET_I386) |
3fb2ded1 FB |
283 | /* simulate a real cpu exception. On i386, it can |
284 | trigger new exceptions, but we do not handle | |
285 | double or triple faults yet. */ | |
5fafdf24 TS |
286 | do_interrupt(env->exception_index, |
287 | env->exception_is_int, | |
288 | env->error_code, | |
d05e66d2 | 289 | env->exception_next_eip, 0); |
678dde13 TS |
290 | /* successfully delivered */ |
291 | env->old_exception = -1; | |
ce09776b FB |
292 | #elif defined(TARGET_PPC) |
293 | do_interrupt(env); | |
6af0bf9c FB |
294 | #elif defined(TARGET_MIPS) |
295 | do_interrupt(env); | |
e95c8d51 | 296 | #elif defined(TARGET_SPARC) |
f2bc7e7f | 297 | do_interrupt(env); |
b5ff1b31 FB |
298 | #elif defined(TARGET_ARM) |
299 | do_interrupt(env); | |
fdf9b3e8 FB |
300 | #elif defined(TARGET_SH4) |
301 | do_interrupt(env); | |
eddf68a6 JM |
302 | #elif defined(TARGET_ALPHA) |
303 | do_interrupt(env); | |
f1ccf904 TS |
304 | #elif defined(TARGET_CRIS) |
305 | do_interrupt(env); | |
0633879f PB |
306 | #elif defined(TARGET_M68K) |
307 | do_interrupt(0); | |
72d239ed | 308 | #endif |
83479e77 | 309 | #endif |
3fb2ded1 FB |
310 | } |
311 | env->exception_index = -1; | |
5fafdf24 | 312 | } |
9df217a3 FB |
313 | #ifdef USE_KQEMU |
314 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
315 | int ret; | |
a7812ae4 | 316 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); |
9df217a3 FB |
317 | ret = kqemu_cpu_exec(env); |
318 | /* put eflags in CPU temporary format */ | |
319 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
320 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
321 | CC_OP = CC_OP_EFLAGS; | |
322 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
323 | if (ret == 1) { | |
324 | /* exception */ | |
325 | longjmp(env->jmp_env, 1); | |
326 | } else if (ret == 2) { | |
327 | /* softmmu execution needed */ | |
328 | } else { | |
329 | if (env->interrupt_request != 0) { | |
330 | /* hardware interrupt will be executed just after */ | |
331 | } else { | |
332 | /* otherwise, we restart */ | |
333 | longjmp(env->jmp_env, 1); | |
334 | } | |
335 | } | |
3fb2ded1 | 336 | } |
9df217a3 FB |
337 | #endif |
338 | ||
7ba1e619 | 339 | if (kvm_enabled()) { |
becfc390 AL |
340 | kvm_cpu_exec(env); |
341 | longjmp(env->jmp_env, 1); | |
7ba1e619 AL |
342 | } |
343 | ||
b5fc09ae | 344 | next_tb = 0; /* force lookup of first TB */ |
3fb2ded1 | 345 | for(;;) { |
68a79315 | 346 | interrupt_request = env->interrupt_request; |
e1638bd8 | 347 | if (unlikely(interrupt_request)) { |
348 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { | |
349 | /* Mask out external interrupts for this step. */ | |
350 | interrupt_request &= ~(CPU_INTERRUPT_HARD | | |
351 | CPU_INTERRUPT_FIQ | | |
352 | CPU_INTERRUPT_SMI | | |
353 | CPU_INTERRUPT_NMI); | |
354 | } | |
6658ffb8 PB |
355 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
356 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
357 | env->exception_index = EXCP_DEBUG; | |
358 | cpu_loop_exit(); | |
359 | } | |
a90b7318 | 360 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
f1ccf904 | 361 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) |
a90b7318 AZ |
362 | if (interrupt_request & CPU_INTERRUPT_HALT) { |
363 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
364 | env->halted = 1; | |
365 | env->exception_index = EXCP_HLT; | |
366 | cpu_loop_exit(); | |
367 | } | |
368 | #endif | |
68a79315 | 369 | #if defined(TARGET_I386) |
db620f46 FB |
370 | if (env->hflags2 & HF2_GIF_MASK) { |
371 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
372 | !(env->hflags & HF_SMM_MASK)) { | |
373 | svm_check_intercept(SVM_EXIT_SMI); | |
374 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
375 | do_smm_enter(); | |
376 | next_tb = 0; | |
377 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
378 | !(env->hflags2 & HF2_NMI_MASK)) { | |
379 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
380 | env->hflags2 |= HF2_NMI_MASK; | |
381 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1); | |
382 | next_tb = 0; | |
383 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
384 | (((env->hflags2 & HF2_VINTR_MASK) && | |
385 | (env->hflags2 & HF2_HIF_MASK)) || | |
386 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
387 | (env->eflags & IF_MASK && | |
388 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
389 | int intno; | |
390 | svm_check_intercept(SVM_EXIT_INTR); | |
391 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); | |
392 | intno = cpu_get_pic_interrupt(env); | |
93fcfe39 | 393 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); |
db620f46 FB |
394 | do_interrupt(intno, 0, 0, 0, 1); |
395 | /* ensure that no TB jump will be modified as | |
396 | the program flow was changed */ | |
397 | next_tb = 0; | |
0573fbfc | 398 | #if !defined(CONFIG_USER_ONLY) |
db620f46 FB |
399 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
400 | (env->eflags & IF_MASK) && | |
401 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
402 | int intno; | |
403 | /* FIXME: this should respect TPR */ | |
404 | svm_check_intercept(SVM_EXIT_VINTR); | |
db620f46 | 405 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); |
93fcfe39 | 406 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); |
db620f46 | 407 | do_interrupt(intno, 0, 0, 0, 1); |
d40c54d6 | 408 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
db620f46 | 409 | next_tb = 0; |
907a5b26 | 410 | #endif |
db620f46 | 411 | } |
68a79315 | 412 | } |
ce09776b | 413 | #elif defined(TARGET_PPC) |
9fddaa0c FB |
414 | #if 0 |
415 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
416 | cpu_ppc_reset(env); | |
417 | } | |
418 | #endif | |
47103572 | 419 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
e9df014c JM |
420 | ppc_hw_interrupt(env); |
421 | if (env->pending_interrupts == 0) | |
422 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
b5fc09ae | 423 | next_tb = 0; |
ce09776b | 424 | } |
6af0bf9c FB |
425 | #elif defined(TARGET_MIPS) |
426 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
24c7b0e3 | 427 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && |
6af0bf9c | 428 | (env->CP0_Status & (1 << CP0St_IE)) && |
24c7b0e3 TS |
429 | !(env->CP0_Status & (1 << CP0St_EXL)) && |
430 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
6af0bf9c FB |
431 | !(env->hflags & MIPS_HFLAG_DM)) { |
432 | /* Raise it */ | |
433 | env->exception_index = EXCP_EXT_INTERRUPT; | |
434 | env->error_code = 0; | |
435 | do_interrupt(env); | |
b5fc09ae | 436 | next_tb = 0; |
6af0bf9c | 437 | } |
e95c8d51 | 438 | #elif defined(TARGET_SPARC) |
66321a11 FB |
439 | if ((interrupt_request & CPU_INTERRUPT_HARD) && |
440 | (env->psret != 0)) { | |
441 | int pil = env->interrupt_index & 15; | |
442 | int type = env->interrupt_index & 0xf0; | |
443 | ||
444 | if (((type == TT_EXTINT) && | |
445 | (pil == 15 || pil > env->psrpil)) || | |
446 | type != TT_EXTINT) { | |
447 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
f2bc7e7f BS |
448 | env->exception_index = env->interrupt_index; |
449 | do_interrupt(env); | |
66321a11 | 450 | env->interrupt_index = 0; |
327ac2e7 BS |
451 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
452 | cpu_check_irqs(env); | |
453 | #endif | |
b5fc09ae | 454 | next_tb = 0; |
66321a11 | 455 | } |
e95c8d51 FB |
456 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
457 | //do_interrupt(0, 0, 0, 0, 0); | |
458 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
a90b7318 | 459 | } |
b5ff1b31 FB |
460 | #elif defined(TARGET_ARM) |
461 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
462 | && !(env->uncached_cpsr & CPSR_F)) { | |
463 | env->exception_index = EXCP_FIQ; | |
464 | do_interrupt(env); | |
b5fc09ae | 465 | next_tb = 0; |
b5ff1b31 | 466 | } |
9ee6e8bb PB |
467 | /* ARMv7-M interrupt return works by loading a magic value |
468 | into the PC. On real hardware the load causes the | |
469 | return to occur. The qemu implementation performs the | |
470 | jump normally, then does the exception return when the | |
471 | CPU tries to execute code at the magic address. | |
472 | This will cause the magic PC value to be pushed to | |
473 | the stack if an interrupt occured at the wrong time. | |
474 | We avoid this by disabling interrupts when | |
475 | pc contains a magic address. */ | |
b5ff1b31 | 476 | if (interrupt_request & CPU_INTERRUPT_HARD |
9ee6e8bb PB |
477 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
478 | || !(env->uncached_cpsr & CPSR_I))) { | |
b5ff1b31 FB |
479 | env->exception_index = EXCP_IRQ; |
480 | do_interrupt(env); | |
b5fc09ae | 481 | next_tb = 0; |
b5ff1b31 | 482 | } |
fdf9b3e8 | 483 | #elif defined(TARGET_SH4) |
e96e2044 TS |
484 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
485 | do_interrupt(env); | |
b5fc09ae | 486 | next_tb = 0; |
e96e2044 | 487 | } |
eddf68a6 JM |
488 | #elif defined(TARGET_ALPHA) |
489 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
490 | do_interrupt(env); | |
b5fc09ae | 491 | next_tb = 0; |
eddf68a6 | 492 | } |
f1ccf904 | 493 | #elif defined(TARGET_CRIS) |
1b1a38b0 EI |
494 | if (interrupt_request & CPU_INTERRUPT_HARD |
495 | && (env->pregs[PR_CCS] & I_FLAG)) { | |
496 | env->exception_index = EXCP_IRQ; | |
497 | do_interrupt(env); | |
498 | next_tb = 0; | |
499 | } | |
500 | if (interrupt_request & CPU_INTERRUPT_NMI | |
501 | && (env->pregs[PR_CCS] & M_FLAG)) { | |
502 | env->exception_index = EXCP_NMI; | |
f1ccf904 | 503 | do_interrupt(env); |
b5fc09ae | 504 | next_tb = 0; |
f1ccf904 | 505 | } |
0633879f PB |
506 | #elif defined(TARGET_M68K) |
507 | if (interrupt_request & CPU_INTERRUPT_HARD | |
508 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
509 | < env->pending_level) { | |
510 | /* Real hardware gets the interrupt vector via an | |
511 | IACK cycle at this point. Current emulated | |
512 | hardware doesn't rely on this, so we | |
513 | provide/save the vector when the interrupt is | |
514 | first signalled. */ | |
515 | env->exception_index = env->pending_vector; | |
516 | do_interrupt(1); | |
b5fc09ae | 517 | next_tb = 0; |
0633879f | 518 | } |
68a79315 | 519 | #endif |
9d05095e FB |
520 | /* Don't use the cached interupt_request value, |
521 | do_interrupt may have updated the EXITTB flag. */ | |
b5ff1b31 | 522 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { |
bf3e8bf1 FB |
523 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
524 | /* ensure that no TB jump will be modified as | |
525 | the program flow was changed */ | |
b5fc09ae | 526 | next_tb = 0; |
bf3e8bf1 | 527 | } |
68a79315 FB |
528 | if (interrupt_request & CPU_INTERRUPT_EXIT) { |
529 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
530 | env->exception_index = EXCP_INTERRUPT; | |
531 | cpu_loop_exit(); | |
532 | } | |
3fb2ded1 | 533 | } |
7d13299d | 534 | #ifdef DEBUG_EXEC |
b5ff1b31 | 535 | if ((loglevel & CPU_LOG_TB_CPU)) { |
3fb2ded1 | 536 | /* restore flags in standard format */ |
ecb644f4 TS |
537 | regs_to_env(); |
538 | #if defined(TARGET_I386) | |
a7812ae4 | 539 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); |
93fcfe39 | 540 | log_cpu_state(env, X86_DUMP_CCOP); |
3fb2ded1 | 541 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
e4533c7a | 542 | #elif defined(TARGET_ARM) |
93fcfe39 | 543 | log_cpu_state(env, 0); |
93ac68bc | 544 | #elif defined(TARGET_SPARC) |
93fcfe39 | 545 | log_cpu_state(env, 0); |
67867308 | 546 | #elif defined(TARGET_PPC) |
93fcfe39 | 547 | log_cpu_state(env, 0); |
e6e5906b PB |
548 | #elif defined(TARGET_M68K) |
549 | cpu_m68k_flush_flags(env, env->cc_op); | |
550 | env->cc_op = CC_OP_FLAGS; | |
551 | env->sr = (env->sr & 0xffe0) | |
552 | | env->cc_dest | (env->cc_x << 4); | |
93fcfe39 | 553 | log_cpu_state(env, 0); |
6af0bf9c | 554 | #elif defined(TARGET_MIPS) |
93fcfe39 | 555 | log_cpu_state(env, 0); |
fdf9b3e8 | 556 | #elif defined(TARGET_SH4) |
93fcfe39 | 557 | log_cpu_state(env, 0); |
eddf68a6 | 558 | #elif defined(TARGET_ALPHA) |
93fcfe39 | 559 | log_cpu_state(env, 0); |
f1ccf904 | 560 | #elif defined(TARGET_CRIS) |
93fcfe39 | 561 | log_cpu_state(env, 0); |
e4533c7a | 562 | #else |
5fafdf24 | 563 | #error unsupported target CPU |
e4533c7a | 564 | #endif |
3fb2ded1 | 565 | } |
7d13299d | 566 | #endif |
d5975363 | 567 | spin_lock(&tb_lock); |
8a40a180 | 568 | tb = tb_find_fast(); |
d5975363 PB |
569 | /* Note: we do it here to avoid a gcc bug on Mac OS X when |
570 | doing it in tb_find_slow */ | |
571 | if (tb_invalidated_flag) { | |
572 | /* as some TB could have been invalidated because | |
573 | of memory exceptions while generating the code, we | |
574 | must recompute the hash index here */ | |
575 | next_tb = 0; | |
2e70f6ef | 576 | tb_invalidated_flag = 0; |
d5975363 | 577 | } |
9d27abd9 | 578 | #ifdef DEBUG_EXEC |
93fcfe39 AL |
579 | qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
580 | (long)tb->tc_ptr, tb->pc, | |
581 | lookup_symbol(tb->pc)); | |
9d27abd9 | 582 | #endif |
8a40a180 FB |
583 | /* see if we can patch the calling TB. When the TB |
584 | spans two pages, we cannot safely do a direct | |
585 | jump. */ | |
c27004ec | 586 | { |
b5fc09ae | 587 | if (next_tb != 0 && |
4d7a0880 | 588 | #ifdef USE_KQEMU |
f32fc648 FB |
589 | (env->kqemu_enabled != 2) && |
590 | #endif | |
ec6338ba | 591 | tb->page_addr[1] == -1) { |
b5fc09ae | 592 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); |
3fb2ded1 | 593 | } |
c27004ec | 594 | } |
d5975363 | 595 | spin_unlock(&tb_lock); |
83479e77 | 596 | env->current_tb = tb; |
55e8b85e | 597 | |
598 | /* cpu_interrupt might be called while translating the | |
599 | TB, but before it is linked into a potentially | |
600 | infinite loop and becomes env->current_tb. Avoid | |
601 | starting execution if there is a pending interrupt. */ | |
602 | if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT)) | |
603 | env->current_tb = NULL; | |
604 | ||
2e70f6ef PB |
605 | while (env->current_tb) { |
606 | tc_ptr = tb->tc_ptr; | |
3fb2ded1 | 607 | /* execute the generated code */ |
572a9d4a BS |
608 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
609 | #undef env | |
2e70f6ef | 610 | env = cpu_single_env; |
572a9d4a BS |
611 | #define env cpu_single_env |
612 | #endif | |
2e70f6ef PB |
613 | next_tb = tcg_qemu_tb_exec(tc_ptr); |
614 | env->current_tb = NULL; | |
615 | if ((next_tb & 3) == 2) { | |
bf20dc07 | 616 | /* Instruction counter expired. */ |
2e70f6ef PB |
617 | int insns_left; |
618 | tb = (TranslationBlock *)(long)(next_tb & ~3); | |
619 | /* Restore PC. */ | |
622ed360 | 620 | cpu_pc_from_tb(env, tb); |
2e70f6ef PB |
621 | insns_left = env->icount_decr.u32; |
622 | if (env->icount_extra && insns_left >= 0) { | |
623 | /* Refill decrementer and continue execution. */ | |
624 | env->icount_extra += insns_left; | |
625 | if (env->icount_extra > 0xffff) { | |
626 | insns_left = 0xffff; | |
627 | } else { | |
628 | insns_left = env->icount_extra; | |
629 | } | |
630 | env->icount_extra -= insns_left; | |
631 | env->icount_decr.u16.low = insns_left; | |
632 | } else { | |
633 | if (insns_left > 0) { | |
634 | /* Execute remaining instructions. */ | |
635 | cpu_exec_nocache(insns_left, tb); | |
636 | } | |
637 | env->exception_index = EXCP_INTERRUPT; | |
638 | next_tb = 0; | |
639 | cpu_loop_exit(); | |
640 | } | |
641 | } | |
642 | } | |
4cbf74b6 FB |
643 | /* reset soft MMU for next block (it can currently |
644 | only be set by a memory fault) */ | |
f32fc648 FB |
645 | #if defined(USE_KQEMU) |
646 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
647 | if (kqemu_is_ok(env) && | |
648 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
649 | cpu_loop_exit(); | |
650 | } | |
4cbf74b6 | 651 | #endif |
50a518e3 | 652 | } /* for(;;) */ |
3fb2ded1 | 653 | } else { |
0d1a29f9 | 654 | env_to_regs(); |
7d13299d | 655 | } |
3fb2ded1 FB |
656 | } /* for(;;) */ |
657 | ||
7d13299d | 658 | |
e4533c7a | 659 | #if defined(TARGET_I386) |
9de5e440 | 660 | /* restore flags in standard format */ |
a7812ae4 | 661 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); |
e4533c7a | 662 | #elif defined(TARGET_ARM) |
b7bcbe95 | 663 | /* XXX: Save/restore host fpu exception state?. */ |
93ac68bc | 664 | #elif defined(TARGET_SPARC) |
67867308 | 665 | #elif defined(TARGET_PPC) |
e6e5906b PB |
666 | #elif defined(TARGET_M68K) |
667 | cpu_m68k_flush_flags(env, env->cc_op); | |
668 | env->cc_op = CC_OP_FLAGS; | |
669 | env->sr = (env->sr & 0xffe0) | |
670 | | env->cc_dest | (env->cc_x << 4); | |
6af0bf9c | 671 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 672 | #elif defined(TARGET_SH4) |
eddf68a6 | 673 | #elif defined(TARGET_ALPHA) |
f1ccf904 | 674 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 675 | /* XXXXX */ |
e4533c7a FB |
676 | #else |
677 | #error unsupported target CPU | |
678 | #endif | |
1057eaa7 PB |
679 | |
680 | /* restore global registers */ | |
1057eaa7 PB |
681 | #include "hostregs_helper.h" |
682 | ||
6a00d601 | 683 | /* fail safe : never use cpu_single_env outside cpu_exec() */ |
5fafdf24 | 684 | cpu_single_env = NULL; |
7d13299d FB |
685 | return ret; |
686 | } | |
6dbad63e | 687 | |
fbf9eeb3 FB |
688 | /* must only be called from the generated code as an exception can be |
689 | generated */ | |
690 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
691 | { | |
dc5d0b3d FB |
692 | /* XXX: cannot enable it yet because it yields to MMU exception |
693 | where NIP != read address on PowerPC */ | |
694 | #if 0 | |
fbf9eeb3 FB |
695 | target_ulong phys_addr; |
696 | phys_addr = get_phys_addr_code(env, start); | |
697 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
dc5d0b3d | 698 | #endif |
fbf9eeb3 FB |
699 | } |
700 | ||
1a18c71b | 701 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) |
e4533c7a | 702 | |
6dbad63e FB |
703 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
704 | { | |
705 | CPUX86State *saved_env; | |
706 | ||
707 | saved_env = env; | |
708 | env = s; | |
a412ac57 | 709 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
a513fe19 | 710 | selector &= 0xffff; |
5fafdf24 | 711 | cpu_x86_load_seg_cache(env, seg_reg, selector, |
c27004ec | 712 | (selector << 4), 0xffff, 0); |
a513fe19 | 713 | } else { |
5d97559d | 714 | helper_load_seg(seg_reg, selector); |
a513fe19 | 715 | } |
6dbad63e FB |
716 | env = saved_env; |
717 | } | |
9de5e440 | 718 | |
6f12a2a6 | 719 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
720 | { |
721 | CPUX86State *saved_env; | |
722 | ||
723 | saved_env = env; | |
724 | env = s; | |
3b46e624 | 725 | |
6f12a2a6 | 726 | helper_fsave(ptr, data32); |
d0a1ffc9 FB |
727 | |
728 | env = saved_env; | |
729 | } | |
730 | ||
6f12a2a6 | 731 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
732 | { |
733 | CPUX86State *saved_env; | |
734 | ||
735 | saved_env = env; | |
736 | env = s; | |
3b46e624 | 737 | |
6f12a2a6 | 738 | helper_frstor(ptr, data32); |
d0a1ffc9 FB |
739 | |
740 | env = saved_env; | |
741 | } | |
742 | ||
e4533c7a FB |
743 | #endif /* TARGET_I386 */ |
744 | ||
67b915a5 FB |
745 | #if !defined(CONFIG_SOFTMMU) |
746 | ||
3fb2ded1 FB |
747 | #if defined(TARGET_I386) |
748 | ||
b56dad1c | 749 | /* 'pc' is the host PC at which the exception was raised. 'address' is |
fd6ce8f6 FB |
750 | the effective address of the memory exception. 'is_write' is 1 if a |
751 | write caused the exception and otherwise 0'. 'old_set' is the | |
752 | signal set which should be restored */ | |
2b413144 | 753 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
5fafdf24 | 754 | int is_write, sigset_t *old_set, |
bf3e8bf1 | 755 | void *puc) |
9de5e440 | 756 | { |
a513fe19 FB |
757 | TranslationBlock *tb; |
758 | int ret; | |
68a79315 | 759 | |
83479e77 FB |
760 | if (cpu_single_env) |
761 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
fd6ce8f6 | 762 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 763 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
bf3e8bf1 | 764 | pc, address, is_write, *(unsigned long *)old_set); |
9de5e440 | 765 | #endif |
25eb4484 | 766 | /* XXX: locking issue */ |
53a5960a | 767 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
fd6ce8f6 FB |
768 | return 1; |
769 | } | |
fbf9eeb3 | 770 | |
3fb2ded1 | 771 | /* see if it is an MMU fault */ |
6ebbf390 | 772 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
3fb2ded1 FB |
773 | if (ret < 0) |
774 | return 0; /* not an MMU fault */ | |
775 | if (ret == 0) | |
776 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
777 | /* now we have a real cpu fault */ | |
a513fe19 FB |
778 | tb = tb_find_pc(pc); |
779 | if (tb) { | |
9de5e440 FB |
780 | /* the PC is inside the translated code. It means that we have |
781 | a virtual CPU fault */ | |
bf3e8bf1 | 782 | cpu_restore_state(tb, env, pc, puc); |
3fb2ded1 | 783 | } |
4cbf74b6 | 784 | if (ret == 1) { |
3fb2ded1 | 785 | #if 0 |
5fafdf24 | 786 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
4cbf74b6 | 787 | env->eip, env->cr[2], env->error_code); |
3fb2ded1 | 788 | #endif |
4cbf74b6 FB |
789 | /* we restore the process signal mask as the sigreturn should |
790 | do it (XXX: use sigsetjmp) */ | |
791 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
54ca9095 | 792 | raise_exception_err(env->exception_index, env->error_code); |
4cbf74b6 FB |
793 | } else { |
794 | /* activate soft MMU for this block */ | |
3f337316 | 795 | env->hflags |= HF_SOFTMMU_MASK; |
fbf9eeb3 | 796 | cpu_resume_from_signal(env, puc); |
4cbf74b6 | 797 | } |
3fb2ded1 FB |
798 | /* never comes here */ |
799 | return 1; | |
800 | } | |
801 | ||
e4533c7a | 802 | #elif defined(TARGET_ARM) |
3fb2ded1 | 803 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
bf3e8bf1 FB |
804 | int is_write, sigset_t *old_set, |
805 | void *puc) | |
3fb2ded1 | 806 | { |
68016c62 FB |
807 | TranslationBlock *tb; |
808 | int ret; | |
809 | ||
810 | if (cpu_single_env) | |
811 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
812 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 813 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
814 | pc, address, is_write, *(unsigned long *)old_set); |
815 | #endif | |
9f0777ed | 816 | /* XXX: locking issue */ |
53a5960a | 817 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
9f0777ed FB |
818 | return 1; |
819 | } | |
68016c62 | 820 | /* see if it is an MMU fault */ |
6ebbf390 | 821 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
822 | if (ret < 0) |
823 | return 0; /* not an MMU fault */ | |
824 | if (ret == 0) | |
825 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
826 | /* now we have a real cpu fault */ | |
827 | tb = tb_find_pc(pc); | |
828 | if (tb) { | |
829 | /* the PC is inside the translated code. It means that we have | |
830 | a virtual CPU fault */ | |
831 | cpu_restore_state(tb, env, pc, puc); | |
832 | } | |
833 | /* we restore the process signal mask as the sigreturn should | |
834 | do it (XXX: use sigsetjmp) */ | |
835 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
836 | cpu_loop_exit(); | |
968c74da AJ |
837 | /* never comes here */ |
838 | return 1; | |
3fb2ded1 | 839 | } |
93ac68bc FB |
840 | #elif defined(TARGET_SPARC) |
841 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
842 | int is_write, sigset_t *old_set, |
843 | void *puc) | |
93ac68bc | 844 | { |
68016c62 FB |
845 | TranslationBlock *tb; |
846 | int ret; | |
847 | ||
848 | if (cpu_single_env) | |
849 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
850 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 851 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
852 | pc, address, is_write, *(unsigned long *)old_set); |
853 | #endif | |
b453b70b | 854 | /* XXX: locking issue */ |
53a5960a | 855 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
b453b70b FB |
856 | return 1; |
857 | } | |
68016c62 | 858 | /* see if it is an MMU fault */ |
6ebbf390 | 859 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
860 | if (ret < 0) |
861 | return 0; /* not an MMU fault */ | |
862 | if (ret == 0) | |
863 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
864 | /* now we have a real cpu fault */ | |
865 | tb = tb_find_pc(pc); | |
866 | if (tb) { | |
867 | /* the PC is inside the translated code. It means that we have | |
868 | a virtual CPU fault */ | |
869 | cpu_restore_state(tb, env, pc, puc); | |
870 | } | |
871 | /* we restore the process signal mask as the sigreturn should | |
872 | do it (XXX: use sigsetjmp) */ | |
873 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
874 | cpu_loop_exit(); | |
968c74da AJ |
875 | /* never comes here */ |
876 | return 1; | |
93ac68bc | 877 | } |
67867308 FB |
878 | #elif defined (TARGET_PPC) |
879 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
880 | int is_write, sigset_t *old_set, |
881 | void *puc) | |
67867308 FB |
882 | { |
883 | TranslationBlock *tb; | |
ce09776b | 884 | int ret; |
3b46e624 | 885 | |
67867308 FB |
886 | if (cpu_single_env) |
887 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
67867308 | 888 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 889 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
67867308 FB |
890 | pc, address, is_write, *(unsigned long *)old_set); |
891 | #endif | |
892 | /* XXX: locking issue */ | |
53a5960a | 893 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
67867308 FB |
894 | return 1; |
895 | } | |
896 | ||
ce09776b | 897 | /* see if it is an MMU fault */ |
6ebbf390 | 898 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
ce09776b FB |
899 | if (ret < 0) |
900 | return 0; /* not an MMU fault */ | |
901 | if (ret == 0) | |
902 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
903 | ||
67867308 FB |
904 | /* now we have a real cpu fault */ |
905 | tb = tb_find_pc(pc); | |
906 | if (tb) { | |
907 | /* the PC is inside the translated code. It means that we have | |
908 | a virtual CPU fault */ | |
bf3e8bf1 | 909 | cpu_restore_state(tb, env, pc, puc); |
67867308 | 910 | } |
ce09776b | 911 | if (ret == 1) { |
67867308 | 912 | #if 0 |
5fafdf24 | 913 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
ce09776b | 914 | env->nip, env->error_code, tb); |
67867308 FB |
915 | #endif |
916 | /* we restore the process signal mask as the sigreturn should | |
917 | do it (XXX: use sigsetjmp) */ | |
bf3e8bf1 | 918 | sigprocmask(SIG_SETMASK, old_set, NULL); |
e06fcd75 | 919 | cpu_loop_exit(); |
ce09776b FB |
920 | } else { |
921 | /* activate soft MMU for this block */ | |
fbf9eeb3 | 922 | cpu_resume_from_signal(env, puc); |
ce09776b | 923 | } |
67867308 | 924 | /* never comes here */ |
e6e5906b PB |
925 | return 1; |
926 | } | |
927 | ||
928 | #elif defined(TARGET_M68K) | |
929 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
930 | int is_write, sigset_t *old_set, | |
931 | void *puc) | |
932 | { | |
933 | TranslationBlock *tb; | |
934 | int ret; | |
935 | ||
936 | if (cpu_single_env) | |
937 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
938 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 939 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
e6e5906b PB |
940 | pc, address, is_write, *(unsigned long *)old_set); |
941 | #endif | |
942 | /* XXX: locking issue */ | |
943 | if (is_write && page_unprotect(address, pc, puc)) { | |
944 | return 1; | |
945 | } | |
946 | /* see if it is an MMU fault */ | |
6ebbf390 | 947 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
e6e5906b PB |
948 | if (ret < 0) |
949 | return 0; /* not an MMU fault */ | |
950 | if (ret == 0) | |
951 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
952 | /* now we have a real cpu fault */ | |
953 | tb = tb_find_pc(pc); | |
954 | if (tb) { | |
955 | /* the PC is inside the translated code. It means that we have | |
956 | a virtual CPU fault */ | |
957 | cpu_restore_state(tb, env, pc, puc); | |
958 | } | |
959 | /* we restore the process signal mask as the sigreturn should | |
960 | do it (XXX: use sigsetjmp) */ | |
961 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
962 | cpu_loop_exit(); | |
963 | /* never comes here */ | |
67867308 FB |
964 | return 1; |
965 | } | |
6af0bf9c FB |
966 | |
967 | #elif defined (TARGET_MIPS) | |
968 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
969 | int is_write, sigset_t *old_set, | |
970 | void *puc) | |
971 | { | |
972 | TranslationBlock *tb; | |
973 | int ret; | |
3b46e624 | 974 | |
6af0bf9c FB |
975 | if (cpu_single_env) |
976 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
977 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 978 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
6af0bf9c FB |
979 | pc, address, is_write, *(unsigned long *)old_set); |
980 | #endif | |
981 | /* XXX: locking issue */ | |
53a5960a | 982 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
6af0bf9c FB |
983 | return 1; |
984 | } | |
985 | ||
986 | /* see if it is an MMU fault */ | |
6ebbf390 | 987 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
6af0bf9c FB |
988 | if (ret < 0) |
989 | return 0; /* not an MMU fault */ | |
990 | if (ret == 0) | |
991 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
992 | ||
993 | /* now we have a real cpu fault */ | |
994 | tb = tb_find_pc(pc); | |
995 | if (tb) { | |
996 | /* the PC is inside the translated code. It means that we have | |
997 | a virtual CPU fault */ | |
998 | cpu_restore_state(tb, env, pc, puc); | |
999 | } | |
1000 | if (ret == 1) { | |
1001 | #if 0 | |
5fafdf24 | 1002 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", |
1eb5207b | 1003 | env->PC, env->error_code, tb); |
6af0bf9c FB |
1004 | #endif |
1005 | /* we restore the process signal mask as the sigreturn should | |
1006 | do it (XXX: use sigsetjmp) */ | |
1007 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
f9480ffc | 1008 | cpu_loop_exit(); |
6af0bf9c FB |
1009 | } else { |
1010 | /* activate soft MMU for this block */ | |
1011 | cpu_resume_from_signal(env, puc); | |
1012 | } | |
1013 | /* never comes here */ | |
1014 | return 1; | |
1015 | } | |
1016 | ||
fdf9b3e8 FB |
1017 | #elif defined (TARGET_SH4) |
1018 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1019 | int is_write, sigset_t *old_set, | |
1020 | void *puc) | |
1021 | { | |
1022 | TranslationBlock *tb; | |
1023 | int ret; | |
3b46e624 | 1024 | |
fdf9b3e8 FB |
1025 | if (cpu_single_env) |
1026 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1027 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1028 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
fdf9b3e8 FB |
1029 | pc, address, is_write, *(unsigned long *)old_set); |
1030 | #endif | |
1031 | /* XXX: locking issue */ | |
1032 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1033 | return 1; | |
1034 | } | |
1035 | ||
1036 | /* see if it is an MMU fault */ | |
6ebbf390 | 1037 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
fdf9b3e8 FB |
1038 | if (ret < 0) |
1039 | return 0; /* not an MMU fault */ | |
1040 | if (ret == 0) | |
1041 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1042 | ||
1043 | /* now we have a real cpu fault */ | |
eddf68a6 JM |
1044 | tb = tb_find_pc(pc); |
1045 | if (tb) { | |
1046 | /* the PC is inside the translated code. It means that we have | |
1047 | a virtual CPU fault */ | |
1048 | cpu_restore_state(tb, env, pc, puc); | |
1049 | } | |
1050 | #if 0 | |
5fafdf24 | 1051 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
eddf68a6 JM |
1052 | env->nip, env->error_code, tb); |
1053 | #endif | |
1054 | /* we restore the process signal mask as the sigreturn should | |
1055 | do it (XXX: use sigsetjmp) */ | |
1056 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1057 | cpu_loop_exit(); | |
1058 | /* never comes here */ | |
1059 | return 1; | |
1060 | } | |
1061 | ||
1062 | #elif defined (TARGET_ALPHA) | |
1063 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1064 | int is_write, sigset_t *old_set, | |
1065 | void *puc) | |
1066 | { | |
1067 | TranslationBlock *tb; | |
1068 | int ret; | |
3b46e624 | 1069 | |
eddf68a6 JM |
1070 | if (cpu_single_env) |
1071 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1072 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1073 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
eddf68a6 JM |
1074 | pc, address, is_write, *(unsigned long *)old_set); |
1075 | #endif | |
1076 | /* XXX: locking issue */ | |
1077 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1078 | return 1; | |
1079 | } | |
1080 | ||
1081 | /* see if it is an MMU fault */ | |
6ebbf390 | 1082 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
eddf68a6 JM |
1083 | if (ret < 0) |
1084 | return 0; /* not an MMU fault */ | |
1085 | if (ret == 0) | |
1086 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1087 | ||
1088 | /* now we have a real cpu fault */ | |
fdf9b3e8 FB |
1089 | tb = tb_find_pc(pc); |
1090 | if (tb) { | |
1091 | /* the PC is inside the translated code. It means that we have | |
1092 | a virtual CPU fault */ | |
1093 | cpu_restore_state(tb, env, pc, puc); | |
1094 | } | |
fdf9b3e8 | 1095 | #if 0 |
5fafdf24 | 1096 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
fdf9b3e8 FB |
1097 | env->nip, env->error_code, tb); |
1098 | #endif | |
1099 | /* we restore the process signal mask as the sigreturn should | |
1100 | do it (XXX: use sigsetjmp) */ | |
355fb23d PB |
1101 | sigprocmask(SIG_SETMASK, old_set, NULL); |
1102 | cpu_loop_exit(); | |
fdf9b3e8 FB |
1103 | /* never comes here */ |
1104 | return 1; | |
1105 | } | |
f1ccf904 TS |
1106 | #elif defined (TARGET_CRIS) |
1107 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1108 | int is_write, sigset_t *old_set, | |
1109 | void *puc) | |
1110 | { | |
1111 | TranslationBlock *tb; | |
1112 | int ret; | |
1113 | ||
1114 | if (cpu_single_env) | |
1115 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1116 | #if defined(DEBUG_SIGNAL) | |
1117 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1118 | pc, address, is_write, *(unsigned long *)old_set); | |
1119 | #endif | |
1120 | /* XXX: locking issue */ | |
1121 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1122 | return 1; | |
1123 | } | |
1124 | ||
1125 | /* see if it is an MMU fault */ | |
6ebbf390 | 1126 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
f1ccf904 TS |
1127 | if (ret < 0) |
1128 | return 0; /* not an MMU fault */ | |
1129 | if (ret == 0) | |
1130 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1131 | ||
1132 | /* now we have a real cpu fault */ | |
1133 | tb = tb_find_pc(pc); | |
1134 | if (tb) { | |
1135 | /* the PC is inside the translated code. It means that we have | |
1136 | a virtual CPU fault */ | |
1137 | cpu_restore_state(tb, env, pc, puc); | |
1138 | } | |
f1ccf904 TS |
1139 | /* we restore the process signal mask as the sigreturn should |
1140 | do it (XXX: use sigsetjmp) */ | |
1141 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1142 | cpu_loop_exit(); | |
1143 | /* never comes here */ | |
1144 | return 1; | |
1145 | } | |
1146 | ||
e4533c7a FB |
1147 | #else |
1148 | #error unsupported target CPU | |
1149 | #endif | |
9de5e440 | 1150 | |
2b413144 FB |
1151 | #if defined(__i386__) |
1152 | ||
d8ecc0b9 FB |
1153 | #if defined(__APPLE__) |
1154 | # include <sys/ucontext.h> | |
1155 | ||
1156 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1157 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1158 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1159 | #else | |
1160 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1161 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1162 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1163 | #endif | |
1164 | ||
5fafdf24 | 1165 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1166 | void *puc) |
9de5e440 | 1167 | { |
5a7b542b | 1168 | siginfo_t *info = pinfo; |
9de5e440 FB |
1169 | struct ucontext *uc = puc; |
1170 | unsigned long pc; | |
bf3e8bf1 | 1171 | int trapno; |
97eb5b14 | 1172 | |
d691f669 FB |
1173 | #ifndef REG_EIP |
1174 | /* for glibc 2.1 */ | |
fd6ce8f6 FB |
1175 | #define REG_EIP EIP |
1176 | #define REG_ERR ERR | |
1177 | #define REG_TRAPNO TRAPNO | |
d691f669 | 1178 | #endif |
d8ecc0b9 FB |
1179 | pc = EIP_sig(uc); |
1180 | trapno = TRAP_sig(uc); | |
ec6338ba FB |
1181 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1182 | trapno == 0xe ? | |
1183 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1184 | &uc->uc_sigmask, puc); | |
2b413144 FB |
1185 | } |
1186 | ||
bc51c5c9 FB |
1187 | #elif defined(__x86_64__) |
1188 | ||
b3efe5c8 BS |
1189 | #ifdef __NetBSD__ |
1190 | #define REG_ERR _REG_ERR | |
1191 | #define REG_TRAPNO _REG_TRAPNO | |
1192 | ||
1193 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)] | |
1194 | #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc) | |
1195 | #else | |
1196 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)] | |
1197 | #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP) | |
1198 | #endif | |
1199 | ||
5a7b542b | 1200 | int cpu_signal_handler(int host_signum, void *pinfo, |
bc51c5c9 FB |
1201 | void *puc) |
1202 | { | |
5a7b542b | 1203 | siginfo_t *info = pinfo; |
bc51c5c9 | 1204 | unsigned long pc; |
b3efe5c8 BS |
1205 | #ifdef __NetBSD__ |
1206 | ucontext_t *uc = puc; | |
1207 | #else | |
1208 | struct ucontext *uc = puc; | |
1209 | #endif | |
bc51c5c9 | 1210 | |
b3efe5c8 | 1211 | pc = QEMU_UC_MACHINE_PC(uc); |
5fafdf24 | 1212 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
b3efe5c8 BS |
1213 | QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ? |
1214 | (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0, | |
bc51c5c9 FB |
1215 | &uc->uc_sigmask, puc); |
1216 | } | |
1217 | ||
e58ffeb3 | 1218 | #elif defined(_ARCH_PPC) |
2b413144 | 1219 | |
83fb7adf FB |
1220 | /*********************************************************************** |
1221 | * signal context platform-specific definitions | |
1222 | * From Wine | |
1223 | */ | |
1224 | #ifdef linux | |
1225 | /* All Registers access - only for local access */ | |
1226 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1227 | /* Gpr Registers access */ | |
1228 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1229 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1230 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1231 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1232 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1233 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1234 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1235 | /* Float Registers access */ | |
1236 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1237 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1238 | /* Exception Registers access */ | |
1239 | # define DAR_sig(context) REG_sig(dar, context) | |
1240 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1241 | # define TRAP_sig(context) REG_sig(trap, context) | |
1242 | #endif /* linux */ | |
1243 | ||
1244 | #ifdef __APPLE__ | |
1245 | # include <sys/ucontext.h> | |
1246 | typedef struct ucontext SIGCONTEXT; | |
1247 | /* All Registers access - only for local access */ | |
1248 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1249 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1250 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1251 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1252 | /* Gpr Registers access */ | |
1253 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1254 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1255 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1256 | # define CTR_sig(context) REG_sig(ctr, context) | |
1257 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1258 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1259 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1260 | /* Float Registers access */ | |
1261 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1262 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1263 | /* Exception Registers access */ | |
1264 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1265 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1266 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1267 | #endif /* __APPLE__ */ | |
1268 | ||
5fafdf24 | 1269 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1270 | void *puc) |
2b413144 | 1271 | { |
5a7b542b | 1272 | siginfo_t *info = pinfo; |
25eb4484 | 1273 | struct ucontext *uc = puc; |
25eb4484 | 1274 | unsigned long pc; |
25eb4484 FB |
1275 | int is_write; |
1276 | ||
83fb7adf | 1277 | pc = IAR_sig(uc); |
25eb4484 FB |
1278 | is_write = 0; |
1279 | #if 0 | |
1280 | /* ppc 4xx case */ | |
83fb7adf | 1281 | if (DSISR_sig(uc) & 0x00800000) |
25eb4484 FB |
1282 | is_write = 1; |
1283 | #else | |
83fb7adf | 1284 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
25eb4484 FB |
1285 | is_write = 1; |
1286 | #endif | |
5fafdf24 | 1287 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1288 | is_write, &uc->uc_sigmask, puc); |
2b413144 FB |
1289 | } |
1290 | ||
2f87c607 FB |
1291 | #elif defined(__alpha__) |
1292 | ||
5fafdf24 | 1293 | int cpu_signal_handler(int host_signum, void *pinfo, |
2f87c607 FB |
1294 | void *puc) |
1295 | { | |
5a7b542b | 1296 | siginfo_t *info = pinfo; |
2f87c607 FB |
1297 | struct ucontext *uc = puc; |
1298 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1299 | uint32_t insn = *pc; | |
1300 | int is_write = 0; | |
1301 | ||
8c6939c0 | 1302 | /* XXX: need kernel patch to get write flag faster */ |
2f87c607 FB |
1303 | switch (insn >> 26) { |
1304 | case 0x0d: // stw | |
1305 | case 0x0e: // stb | |
1306 | case 0x0f: // stq_u | |
1307 | case 0x24: // stf | |
1308 | case 0x25: // stg | |
1309 | case 0x26: // sts | |
1310 | case 0x27: // stt | |
1311 | case 0x2c: // stl | |
1312 | case 0x2d: // stq | |
1313 | case 0x2e: // stl_c | |
1314 | case 0x2f: // stq_c | |
1315 | is_write = 1; | |
1316 | } | |
1317 | ||
5fafdf24 | 1318 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1319 | is_write, &uc->uc_sigmask, puc); |
2f87c607 | 1320 | } |
8c6939c0 FB |
1321 | #elif defined(__sparc__) |
1322 | ||
5fafdf24 | 1323 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1324 | void *puc) |
8c6939c0 | 1325 | { |
5a7b542b | 1326 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1327 | int is_write; |
1328 | uint32_t insn; | |
6b4c11cd | 1329 | #if !defined(__arch64__) || defined(HOST_SOLARIS) |
c9e1e2b0 BS |
1330 | uint32_t *regs = (uint32_t *)(info + 1); |
1331 | void *sigmask = (regs + 20); | |
8c6939c0 | 1332 | /* XXX: is there a standard glibc define ? */ |
c9e1e2b0 BS |
1333 | unsigned long pc = regs[1]; |
1334 | #else | |
84778508 | 1335 | #ifdef __linux__ |
c9e1e2b0 BS |
1336 | struct sigcontext *sc = puc; |
1337 | unsigned long pc = sc->sigc_regs.tpc; | |
1338 | void *sigmask = (void *)sc->sigc_mask; | |
84778508 BS |
1339 | #elif defined(__OpenBSD__) |
1340 | struct sigcontext *uc = puc; | |
1341 | unsigned long pc = uc->sc_pc; | |
1342 | void *sigmask = (void *)(long)uc->sc_mask; | |
1343 | #endif | |
c9e1e2b0 BS |
1344 | #endif |
1345 | ||
8c6939c0 FB |
1346 | /* XXX: need kernel patch to get write flag faster */ |
1347 | is_write = 0; | |
1348 | insn = *(uint32_t *)pc; | |
1349 | if ((insn >> 30) == 3) { | |
1350 | switch((insn >> 19) & 0x3f) { | |
1351 | case 0x05: // stb | |
1352 | case 0x06: // sth | |
1353 | case 0x04: // st | |
1354 | case 0x07: // std | |
1355 | case 0x24: // stf | |
1356 | case 0x27: // stdf | |
1357 | case 0x25: // stfsr | |
1358 | is_write = 1; | |
1359 | break; | |
1360 | } | |
1361 | } | |
5fafdf24 | 1362 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1363 | is_write, sigmask, NULL); |
8c6939c0 FB |
1364 | } |
1365 | ||
1366 | #elif defined(__arm__) | |
1367 | ||
5fafdf24 | 1368 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1369 | void *puc) |
8c6939c0 | 1370 | { |
5a7b542b | 1371 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1372 | struct ucontext *uc = puc; |
1373 | unsigned long pc; | |
1374 | int is_write; | |
3b46e624 | 1375 | |
48bbf11b | 1376 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) |
5c49b363 AZ |
1377 | pc = uc->uc_mcontext.gregs[R15]; |
1378 | #else | |
4eee57f5 | 1379 | pc = uc->uc_mcontext.arm_pc; |
5c49b363 | 1380 | #endif |
8c6939c0 FB |
1381 | /* XXX: compute is_write */ |
1382 | is_write = 0; | |
5fafdf24 | 1383 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
8c6939c0 | 1384 | is_write, |
f3a9676a | 1385 | &uc->uc_sigmask, puc); |
8c6939c0 FB |
1386 | } |
1387 | ||
38e584a0 FB |
1388 | #elif defined(__mc68000) |
1389 | ||
5fafdf24 | 1390 | int cpu_signal_handler(int host_signum, void *pinfo, |
38e584a0 FB |
1391 | void *puc) |
1392 | { | |
5a7b542b | 1393 | siginfo_t *info = pinfo; |
38e584a0 FB |
1394 | struct ucontext *uc = puc; |
1395 | unsigned long pc; | |
1396 | int is_write; | |
3b46e624 | 1397 | |
38e584a0 FB |
1398 | pc = uc->uc_mcontext.gregs[16]; |
1399 | /* XXX: compute is_write */ | |
1400 | is_write = 0; | |
5fafdf24 | 1401 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
38e584a0 | 1402 | is_write, |
bf3e8bf1 | 1403 | &uc->uc_sigmask, puc); |
38e584a0 FB |
1404 | } |
1405 | ||
b8076a74 FB |
1406 | #elif defined(__ia64) |
1407 | ||
1408 | #ifndef __ISR_VALID | |
1409 | /* This ought to be in <bits/siginfo.h>... */ | |
1410 | # define __ISR_VALID 1 | |
b8076a74 FB |
1411 | #endif |
1412 | ||
5a7b542b | 1413 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
b8076a74 | 1414 | { |
5a7b542b | 1415 | siginfo_t *info = pinfo; |
b8076a74 FB |
1416 | struct ucontext *uc = puc; |
1417 | unsigned long ip; | |
1418 | int is_write = 0; | |
1419 | ||
1420 | ip = uc->uc_mcontext.sc_ip; | |
1421 | switch (host_signum) { | |
1422 | case SIGILL: | |
1423 | case SIGFPE: | |
1424 | case SIGSEGV: | |
1425 | case SIGBUS: | |
1426 | case SIGTRAP: | |
fd4a43e4 | 1427 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) |
b8076a74 FB |
1428 | /* ISR.W (write-access) is bit 33: */ |
1429 | is_write = (info->si_isr >> 33) & 1; | |
1430 | break; | |
1431 | ||
1432 | default: | |
1433 | break; | |
1434 | } | |
1435 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1436 | is_write, | |
1437 | &uc->uc_sigmask, puc); | |
1438 | } | |
1439 | ||
90cb9493 FB |
1440 | #elif defined(__s390__) |
1441 | ||
5fafdf24 | 1442 | int cpu_signal_handler(int host_signum, void *pinfo, |
90cb9493 FB |
1443 | void *puc) |
1444 | { | |
5a7b542b | 1445 | siginfo_t *info = pinfo; |
90cb9493 FB |
1446 | struct ucontext *uc = puc; |
1447 | unsigned long pc; | |
1448 | int is_write; | |
3b46e624 | 1449 | |
90cb9493 FB |
1450 | pc = uc->uc_mcontext.psw.addr; |
1451 | /* XXX: compute is_write */ | |
1452 | is_write = 0; | |
5fafdf24 | 1453 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 TS |
1454 | is_write, &uc->uc_sigmask, puc); |
1455 | } | |
1456 | ||
1457 | #elif defined(__mips__) | |
1458 | ||
5fafdf24 | 1459 | int cpu_signal_handler(int host_signum, void *pinfo, |
c4b89d18 TS |
1460 | void *puc) |
1461 | { | |
9617efe8 | 1462 | siginfo_t *info = pinfo; |
c4b89d18 TS |
1463 | struct ucontext *uc = puc; |
1464 | greg_t pc = uc->uc_mcontext.pc; | |
1465 | int is_write; | |
3b46e624 | 1466 | |
c4b89d18 TS |
1467 | /* XXX: compute is_write */ |
1468 | is_write = 0; | |
5fafdf24 | 1469 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 | 1470 | is_write, &uc->uc_sigmask, puc); |
90cb9493 FB |
1471 | } |
1472 | ||
f54b3f92 AJ |
1473 | #elif defined(__hppa__) |
1474 | ||
1475 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1476 | void *puc) | |
1477 | { | |
1478 | struct siginfo *info = pinfo; | |
1479 | struct ucontext *uc = puc; | |
1480 | unsigned long pc; | |
1481 | int is_write; | |
1482 | ||
1483 | pc = uc->uc_mcontext.sc_iaoq[0]; | |
1484 | /* FIXME: compute is_write */ | |
1485 | is_write = 0; | |
1486 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1487 | is_write, | |
1488 | &uc->uc_sigmask, puc); | |
1489 | } | |
1490 | ||
9de5e440 | 1491 | #else |
2b413144 | 1492 | |
3fb2ded1 | 1493 | #error host CPU specific signal handler needed |
2b413144 | 1494 | |
9de5e440 | 1495 | #endif |
67b915a5 FB |
1496 | |
1497 | #endif /* !defined(CONFIG_SOFTMMU) */ |