]> git.proxmox.com Git - qemu.git/blame - cpu-exec.c
ELF loader (Thiemo Seufer)
[qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
93ac68bc 43#if defined(TARGET_ARM) || defined(TARGET_SPARC)
e4533c7a
FB
44/* XXX: unify with i386 target */
45void cpu_loop_exit(void)
46{
47 longjmp(env->jmp_env, 1);
48}
49#endif
3475187d
FB
50#ifndef TARGET_SPARC
51#define reg_T2
52#endif
e4533c7a 53
fbf9eeb3
FB
54/* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57void cpu_resume_from_signal(CPUState *env1, void *puc)
58{
59#if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61#endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67#if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72#endif
73 longjmp(env->jmp_env, 1);
74}
75
8a40a180
FB
76
77static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80{
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
15388002 129 tb_invalidated_flag = 1;
8a40a180
FB
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
8a40a180
FB
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151}
152
153static inline TranslationBlock *tb_find_fast(void)
154{
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162#if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167#elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
40f137e1
PB
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
8a40a180
FB
174 cs_base = 0;
175 pc = env->regs[15];
176#elif defined(TARGET_SPARC)
177#ifdef TARGET_SPARC64
178 flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179#else
180 flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181#endif
182 cs_base = env->npc;
183 pc = env->pc;
184#elif defined(TARGET_PPC)
185 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186 (msr_se << MSR_SE) | (msr_le << MSR_LE);
187 cs_base = 0;
188 pc = env->nip;
189#elif defined(TARGET_MIPS)
56b19403 190 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 191 cs_base = 0;
8a40a180
FB
192 pc = env->PC;
193#else
194#error unsupported CPU
195#endif
196 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
197 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
198 tb->flags != flags, 0)) {
199 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
200 /* Note: we do it here to avoid a gcc bug on Mac OS X when
201 doing it in tb_find_slow */
202 if (tb_invalidated_flag) {
203 /* as some TB could have been invalidated because
204 of memory exceptions while generating the code, we
205 must recompute the hash index here */
206 T0 = 0;
207 }
8a40a180
FB
208 }
209 return tb;
210}
211
212
7d13299d
FB
213/* main execution loop */
214
e4533c7a 215int cpu_exec(CPUState *env1)
7d13299d 216{
3475187d
FB
217 int saved_T0, saved_T1;
218#if defined(reg_T2)
219 int saved_T2;
220#endif
e4533c7a 221 CPUState *saved_env;
3475187d 222#if defined(TARGET_I386)
04369ff2
FB
223#ifdef reg_EAX
224 int saved_EAX;
225#endif
226#ifdef reg_ECX
227 int saved_ECX;
228#endif
229#ifdef reg_EDX
230 int saved_EDX;
231#endif
232#ifdef reg_EBX
233 int saved_EBX;
234#endif
235#ifdef reg_ESP
236 int saved_ESP;
237#endif
238#ifdef reg_EBP
239 int saved_EBP;
240#endif
241#ifdef reg_ESI
242 int saved_ESI;
243#endif
244#ifdef reg_EDI
245 int saved_EDI;
8c6939c0 246#endif
3475187d
FB
247#elif defined(TARGET_SPARC)
248#if defined(reg_REGWPTR)
249 uint32_t *saved_regwptr;
250#endif
251#endif
8c6939c0
FB
252#ifdef __sparc__
253 int saved_i7, tmp_T0;
04369ff2 254#endif
8a40a180 255 int ret, interrupt_request;
7d13299d 256 void (*gen_func)(void);
8a40a180 257 TranslationBlock *tb;
c27004ec 258 uint8_t *tc_ptr;
8c6939c0 259
5a1e3cfc
FB
260#if defined(TARGET_I386)
261 /* handle exit of HALTED state */
262 if (env1->hflags & HF_HALTED_MASK) {
263 /* disable halt condition */
264 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
265 (env1->eflags & IF_MASK)) {
266 env1->hflags &= ~HF_HALTED_MASK;
267 } else {
268 return EXCP_HALTED;
e80e1cc4
FB
269 }
270 }
271#elif defined(TARGET_PPC)
50443c98 272 if (env1->halted) {
e80e1cc4
FB
273 if (env1->msr[MSR_EE] &&
274 (env1->interrupt_request &
275 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
50443c98 276 env1->halted = 0;
e80e1cc4
FB
277 } else {
278 return EXCP_HALTED;
5a1e3cfc
FB
279 }
280 }
ba3c64fb
FB
281#elif defined(TARGET_SPARC)
282 if (env1->halted) {
283 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
284 (env1->psret != 0)) {
285 env1->halted = 0;
286 } else {
287 return EXCP_HALTED;
288 }
289 }
9332f9da
FB
290#elif defined(TARGET_ARM)
291 if (env1->halted) {
292 /* An interrupt wakes the CPU even if the I and F CPSR bits are
293 set. */
294 if (env1->interrupt_request
295 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
296 env1->halted = 0;
297 } else {
298 return EXCP_HALTED;
299 }
300 }
6810e154
FB
301#elif defined(TARGET_MIPS)
302 if (env1->halted) {
303 if (env1->interrupt_request &
304 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
305 env1->halted = 0;
306 } else {
307 return EXCP_HALTED;
308 }
309 }
5a1e3cfc
FB
310#endif
311
6a00d601
FB
312 cpu_single_env = env1;
313
7d13299d 314 /* first we save global registers */
c27004ec
FB
315 saved_env = env;
316 env = env1;
7d13299d
FB
317 saved_T0 = T0;
318 saved_T1 = T1;
3475187d 319#if defined(reg_T2)
e4533c7a 320 saved_T2 = T2;
3475187d 321#endif
e4533c7a
FB
322#ifdef __sparc__
323 /* we also save i7 because longjmp may not restore it */
324 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
325#endif
326
327#if defined(TARGET_I386)
04369ff2
FB
328#ifdef reg_EAX
329 saved_EAX = EAX;
04369ff2
FB
330#endif
331#ifdef reg_ECX
332 saved_ECX = ECX;
04369ff2
FB
333#endif
334#ifdef reg_EDX
335 saved_EDX = EDX;
04369ff2
FB
336#endif
337#ifdef reg_EBX
338 saved_EBX = EBX;
04369ff2
FB
339#endif
340#ifdef reg_ESP
341 saved_ESP = ESP;
04369ff2
FB
342#endif
343#ifdef reg_EBP
344 saved_EBP = EBP;
04369ff2
FB
345#endif
346#ifdef reg_ESI
347 saved_ESI = ESI;
04369ff2
FB
348#endif
349#ifdef reg_EDI
350 saved_EDI = EDI;
04369ff2 351#endif
0d1a29f9
FB
352
353 env_to_regs();
9de5e440 354 /* put eflags in CPU temporary format */
fc2b4c48
FB
355 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 357 CC_OP = CC_OP_EFLAGS;
fc2b4c48 358 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 359#elif defined(TARGET_ARM)
93ac68bc 360#elif defined(TARGET_SPARC)
3475187d
FB
361#if defined(reg_REGWPTR)
362 saved_regwptr = REGWPTR;
363#endif
67867308 364#elif defined(TARGET_PPC)
6af0bf9c 365#elif defined(TARGET_MIPS)
e4533c7a
FB
366#else
367#error unsupported target CPU
368#endif
3fb2ded1 369 env->exception_index = -1;
9d27abd9 370
7d13299d 371 /* prepare setjmp context for exception handling */
3fb2ded1
FB
372 for(;;) {
373 if (setjmp(env->jmp_env) == 0) {
ee8b7021 374 env->current_tb = NULL;
3fb2ded1
FB
375 /* if an exception is pending, we execute it here */
376 if (env->exception_index >= 0) {
377 if (env->exception_index >= EXCP_INTERRUPT) {
378 /* exit request from the cpu execution loop */
379 ret = env->exception_index;
380 break;
381 } else if (env->user_mode_only) {
382 /* if user mode only, we simulate a fake exception
383 which will be hanlded outside the cpu execution
384 loop */
83479e77 385#if defined(TARGET_I386)
3fb2ded1
FB
386 do_interrupt_user(env->exception_index,
387 env->exception_is_int,
388 env->error_code,
389 env->exception_next_eip);
83479e77 390#endif
3fb2ded1
FB
391 ret = env->exception_index;
392 break;
393 } else {
83479e77 394#if defined(TARGET_I386)
3fb2ded1
FB
395 /* simulate a real cpu exception. On i386, it can
396 trigger new exceptions, but we do not handle
397 double or triple faults yet. */
398 do_interrupt(env->exception_index,
399 env->exception_is_int,
400 env->error_code,
d05e66d2 401 env->exception_next_eip, 0);
ce09776b
FB
402#elif defined(TARGET_PPC)
403 do_interrupt(env);
6af0bf9c
FB
404#elif defined(TARGET_MIPS)
405 do_interrupt(env);
e95c8d51 406#elif defined(TARGET_SPARC)
1a0c3292 407 do_interrupt(env->exception_index);
b5ff1b31
FB
408#elif defined(TARGET_ARM)
409 do_interrupt(env);
83479e77 410#endif
3fb2ded1
FB
411 }
412 env->exception_index = -1;
9df217a3
FB
413 }
414#ifdef USE_KQEMU
415 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
416 int ret;
417 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
418 ret = kqemu_cpu_exec(env);
419 /* put eflags in CPU temporary format */
420 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
421 DF = 1 - (2 * ((env->eflags >> 10) & 1));
422 CC_OP = CC_OP_EFLAGS;
423 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
424 if (ret == 1) {
425 /* exception */
426 longjmp(env->jmp_env, 1);
427 } else if (ret == 2) {
428 /* softmmu execution needed */
429 } else {
430 if (env->interrupt_request != 0) {
431 /* hardware interrupt will be executed just after */
432 } else {
433 /* otherwise, we restart */
434 longjmp(env->jmp_env, 1);
435 }
436 }
3fb2ded1 437 }
9df217a3
FB
438#endif
439
3fb2ded1
FB
440 T0 = 0; /* force lookup of first TB */
441 for(;;) {
8c6939c0 442#ifdef __sparc__
3fb2ded1
FB
443 /* g1 can be modified by some libc? functions */
444 tmp_T0 = T0;
8c6939c0 445#endif
68a79315 446 interrupt_request = env->interrupt_request;
2e255c6b 447 if (__builtin_expect(interrupt_request, 0)) {
68a79315
FB
448#if defined(TARGET_I386)
449 /* if hardware interrupt pending, we execute it */
450 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
3f337316
FB
451 (env->eflags & IF_MASK) &&
452 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 453 int intno;
fbf9eeb3 454 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
a541f297 455 intno = cpu_get_pic_interrupt(env);
f193c797 456 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
457 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
458 }
d05e66d2 459 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
460 /* ensure that no TB jump will be modified as
461 the program flow was changed */
462#ifdef __sparc__
463 tmp_T0 = 0;
464#else
465 T0 = 0;
466#endif
68a79315 467 }
ce09776b 468#elif defined(TARGET_PPC)
9fddaa0c
FB
469#if 0
470 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
471 cpu_ppc_reset(env);
472 }
473#endif
474 if (msr_ee != 0) {
8a40a180 475 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
9fddaa0c
FB
476 /* Raise it */
477 env->exception_index = EXCP_EXTERNAL;
478 env->error_code = 0;
ce09776b 479 do_interrupt(env);
8a40a180
FB
480 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
481#ifdef __sparc__
482 tmp_T0 = 0;
483#else
484 T0 = 0;
485#endif
486 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
487 /* Raise it */
488 env->exception_index = EXCP_DECR;
489 env->error_code = 0;
490 do_interrupt(env);
9fddaa0c 491 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
8a40a180
FB
492#ifdef __sparc__
493 tmp_T0 = 0;
494#else
495 T0 = 0;
496#endif
497 }
ce09776b 498 }
6af0bf9c
FB
499#elif defined(TARGET_MIPS)
500 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
501 (env->CP0_Status & (1 << CP0St_IE)) &&
7ebab699 502 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
6af0bf9c
FB
503 !(env->hflags & MIPS_HFLAG_EXL) &&
504 !(env->hflags & MIPS_HFLAG_ERL) &&
505 !(env->hflags & MIPS_HFLAG_DM)) {
506 /* Raise it */
507 env->exception_index = EXCP_EXT_INTERRUPT;
508 env->error_code = 0;
509 do_interrupt(env);
510 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
8a40a180
FB
511#ifdef __sparc__
512 tmp_T0 = 0;
513#else
514 T0 = 0;
515#endif
6af0bf9c 516 }
e95c8d51 517#elif defined(TARGET_SPARC)
66321a11
FB
518 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
519 (env->psret != 0)) {
520 int pil = env->interrupt_index & 15;
521 int type = env->interrupt_index & 0xf0;
522
523 if (((type == TT_EXTINT) &&
524 (pil == 15 || pil > env->psrpil)) ||
525 type != TT_EXTINT) {
526 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
527 do_interrupt(env->interrupt_index);
528 env->interrupt_index = 0;
8a40a180
FB
529#ifdef __sparc__
530 tmp_T0 = 0;
531#else
532 T0 = 0;
533#endif
66321a11 534 }
e95c8d51
FB
535 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
536 //do_interrupt(0, 0, 0, 0, 0);
537 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
ba3c64fb
FB
538 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
539 env1->halted = 1;
540 return EXCP_HALTED;
541 }
b5ff1b31
FB
542#elif defined(TARGET_ARM)
543 if (interrupt_request & CPU_INTERRUPT_FIQ
544 && !(env->uncached_cpsr & CPSR_F)) {
545 env->exception_index = EXCP_FIQ;
546 do_interrupt(env);
547 }
548 if (interrupt_request & CPU_INTERRUPT_HARD
549 && !(env->uncached_cpsr & CPSR_I)) {
550 env->exception_index = EXCP_IRQ;
551 do_interrupt(env);
552 }
68a79315 553#endif
b5ff1b31 554 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
555 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
556 /* ensure that no TB jump will be modified as
557 the program flow was changed */
558#ifdef __sparc__
559 tmp_T0 = 0;
560#else
561 T0 = 0;
562#endif
563 }
68a79315
FB
564 if (interrupt_request & CPU_INTERRUPT_EXIT) {
565 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
566 env->exception_index = EXCP_INTERRUPT;
567 cpu_loop_exit();
568 }
3fb2ded1 569 }
7d13299d 570#ifdef DEBUG_EXEC
b5ff1b31 571 if ((loglevel & CPU_LOG_TB_CPU)) {
e4533c7a 572#if defined(TARGET_I386)
3fb2ded1 573 /* restore flags in standard format */
fc9f715d 574#ifdef reg_EAX
3fb2ded1 575 env->regs[R_EAX] = EAX;
fc9f715d
FB
576#endif
577#ifdef reg_EBX
3fb2ded1 578 env->regs[R_EBX] = EBX;
fc9f715d
FB
579#endif
580#ifdef reg_ECX
3fb2ded1 581 env->regs[R_ECX] = ECX;
fc9f715d
FB
582#endif
583#ifdef reg_EDX
3fb2ded1 584 env->regs[R_EDX] = EDX;
fc9f715d
FB
585#endif
586#ifdef reg_ESI
3fb2ded1 587 env->regs[R_ESI] = ESI;
fc9f715d
FB
588#endif
589#ifdef reg_EDI
3fb2ded1 590 env->regs[R_EDI] = EDI;
fc9f715d
FB
591#endif
592#ifdef reg_EBP
3fb2ded1 593 env->regs[R_EBP] = EBP;
fc9f715d
FB
594#endif
595#ifdef reg_ESP
3fb2ded1 596 env->regs[R_ESP] = ESP;
fc9f715d 597#endif
3fb2ded1 598 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 599 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 600 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 601#elif defined(TARGET_ARM)
7fe48483 602 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 603#elif defined(TARGET_SPARC)
3475187d
FB
604 REGWPTR = env->regbase + (env->cwp * 16);
605 env->regwptr = REGWPTR;
606 cpu_dump_state(env, logfile, fprintf, 0);
67867308 607#elif defined(TARGET_PPC)
7fe48483 608 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
609#elif defined(TARGET_MIPS)
610 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a
FB
611#else
612#error unsupported target CPU
613#endif
3fb2ded1 614 }
7d13299d 615#endif
8a40a180 616 tb = tb_find_fast();
9d27abd9 617#ifdef DEBUG_EXEC
c1135f61 618 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
619 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
620 (long)tb->tc_ptr, tb->pc,
621 lookup_symbol(tb->pc));
3fb2ded1 622 }
9d27abd9 623#endif
8c6939c0 624#ifdef __sparc__
3fb2ded1 625 T0 = tmp_T0;
8c6939c0 626#endif
8a40a180
FB
627 /* see if we can patch the calling TB. When the TB
628 spans two pages, we cannot safely do a direct
629 jump. */
c27004ec 630 {
8a40a180 631 if (T0 != 0 &&
f32fc648
FB
632#if USE_KQEMU
633 (env->kqemu_enabled != 2) &&
634#endif
8a40a180 635 tb->page_addr[1] == -1
bf3e8bf1
FB
636#if defined(TARGET_I386) && defined(USE_CODE_COPY)
637 && (tb->cflags & CF_CODE_COPY) ==
638 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
639#endif
640 ) {
3fb2ded1 641 spin_lock(&tb_lock);
c27004ec 642 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
643#if defined(USE_CODE_COPY)
644 /* propagates the FP use info */
645 ((TranslationBlock *)(T0 & ~3))->cflags |=
646 (tb->cflags & CF_FP_USED);
647#endif
3fb2ded1
FB
648 spin_unlock(&tb_lock);
649 }
c27004ec 650 }
3fb2ded1 651 tc_ptr = tb->tc_ptr;
83479e77 652 env->current_tb = tb;
3fb2ded1
FB
653 /* execute the generated code */
654 gen_func = (void *)tc_ptr;
8c6939c0 655#if defined(__sparc__)
3fb2ded1
FB
656 __asm__ __volatile__("call %0\n\t"
657 "mov %%o7,%%i0"
658 : /* no outputs */
659 : "r" (gen_func)
660 : "i0", "i1", "i2", "i3", "i4", "i5");
8c6939c0 661#elif defined(__arm__)
3fb2ded1
FB
662 asm volatile ("mov pc, %0\n\t"
663 ".global exec_loop\n\t"
664 "exec_loop:\n\t"
665 : /* no outputs */
666 : "r" (gen_func)
667 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
668#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
669{
670 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
671 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
672 save_native_fp_state(env);
673 }
bf3e8bf1
FB
674 gen_func();
675 } else {
97eb5b14
FB
676 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
677 restore_native_fp_state(env);
678 }
bf3e8bf1
FB
679 /* we work with native eflags */
680 CC_SRC = cc_table[CC_OP].compute_all();
681 CC_OP = CC_OP_EFLAGS;
682 asm(".globl exec_loop\n"
683 "\n"
684 "debug1:\n"
685 " pushl %%ebp\n"
686 " fs movl %10, %9\n"
687 " fs movl %11, %%eax\n"
688 " andl $0x400, %%eax\n"
689 " fs orl %8, %%eax\n"
690 " pushl %%eax\n"
691 " popf\n"
692 " fs movl %%esp, %12\n"
693 " fs movl %0, %%eax\n"
694 " fs movl %1, %%ecx\n"
695 " fs movl %2, %%edx\n"
696 " fs movl %3, %%ebx\n"
697 " fs movl %4, %%esp\n"
698 " fs movl %5, %%ebp\n"
699 " fs movl %6, %%esi\n"
700 " fs movl %7, %%edi\n"
701 " fs jmp *%9\n"
702 "exec_loop:\n"
703 " fs movl %%esp, %4\n"
704 " fs movl %12, %%esp\n"
705 " fs movl %%eax, %0\n"
706 " fs movl %%ecx, %1\n"
707 " fs movl %%edx, %2\n"
708 " fs movl %%ebx, %3\n"
709 " fs movl %%ebp, %5\n"
710 " fs movl %%esi, %6\n"
711 " fs movl %%edi, %7\n"
712 " pushf\n"
713 " popl %%eax\n"
714 " movl %%eax, %%ecx\n"
715 " andl $0x400, %%ecx\n"
716 " shrl $9, %%ecx\n"
717 " andl $0x8d5, %%eax\n"
718 " fs movl %%eax, %8\n"
719 " movl $1, %%eax\n"
720 " subl %%ecx, %%eax\n"
721 " fs movl %%eax, %11\n"
722 " fs movl %9, %%ebx\n" /* get T0 value */
723 " popl %%ebp\n"
724 :
725 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
726 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
727 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
728 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
729 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
730 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
731 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
732 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
733 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
734 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
735 "a" (gen_func),
736 "m" (*(uint8_t *)offsetof(CPUState, df)),
737 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
738 : "%ecx", "%edx"
739 );
740 }
741}
b8076a74
FB
742#elif defined(__ia64)
743 struct fptr {
744 void *ip;
745 void *gp;
746 } fp;
747
748 fp.ip = tc_ptr;
749 fp.gp = code_gen_buffer + 2 * (1 << 20);
750 (*(void (*)(void)) &fp)();
ae228531 751#else
3fb2ded1 752 gen_func();
ae228531 753#endif
83479e77 754 env->current_tb = NULL;
4cbf74b6
FB
755 /* reset soft MMU for next block (it can currently
756 only be set by a memory fault) */
757#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
758 if (env->hflags & HF_SOFTMMU_MASK) {
759 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
760 /* do not allow linking to another block */
761 T0 = 0;
762 }
f32fc648
FB
763#endif
764#if defined(USE_KQEMU)
765#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
766 if (kqemu_is_ok(env) &&
767 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
768 cpu_loop_exit();
769 }
4cbf74b6 770#endif
3fb2ded1
FB
771 }
772 } else {
0d1a29f9 773 env_to_regs();
7d13299d 774 }
3fb2ded1
FB
775 } /* for(;;) */
776
7d13299d 777
e4533c7a 778#if defined(TARGET_I386)
97eb5b14
FB
779#if defined(USE_CODE_COPY)
780 if (env->native_fp_regs) {
781 save_native_fp_state(env);
782 }
783#endif
9de5e440 784 /* restore flags in standard format */
fc2b4c48 785 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
9de5e440 786
7d13299d 787 /* restore global registers */
04369ff2
FB
788#ifdef reg_EAX
789 EAX = saved_EAX;
790#endif
791#ifdef reg_ECX
792 ECX = saved_ECX;
793#endif
794#ifdef reg_EDX
795 EDX = saved_EDX;
796#endif
797#ifdef reg_EBX
798 EBX = saved_EBX;
799#endif
800#ifdef reg_ESP
801 ESP = saved_ESP;
802#endif
803#ifdef reg_EBP
804 EBP = saved_EBP;
805#endif
806#ifdef reg_ESI
807 ESI = saved_ESI;
808#endif
809#ifdef reg_EDI
810 EDI = saved_EDI;
8c6939c0 811#endif
e4533c7a 812#elif defined(TARGET_ARM)
b7bcbe95 813 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 814#elif defined(TARGET_SPARC)
3475187d
FB
815#if defined(reg_REGWPTR)
816 REGWPTR = saved_regwptr;
817#endif
67867308 818#elif defined(TARGET_PPC)
6af0bf9c 819#elif defined(TARGET_MIPS)
e4533c7a
FB
820#else
821#error unsupported target CPU
822#endif
8c6939c0
FB
823#ifdef __sparc__
824 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 825#endif
7d13299d
FB
826 T0 = saved_T0;
827 T1 = saved_T1;
3475187d 828#if defined(reg_T2)
e4533c7a 829 T2 = saved_T2;
3475187d 830#endif
7d13299d 831 env = saved_env;
6a00d601
FB
832 /* fail safe : never use cpu_single_env outside cpu_exec() */
833 cpu_single_env = NULL;
7d13299d
FB
834 return ret;
835}
6dbad63e 836
fbf9eeb3
FB
837/* must only be called from the generated code as an exception can be
838 generated */
839void tb_invalidate_page_range(target_ulong start, target_ulong end)
840{
dc5d0b3d
FB
841 /* XXX: cannot enable it yet because it yields to MMU exception
842 where NIP != read address on PowerPC */
843#if 0
fbf9eeb3
FB
844 target_ulong phys_addr;
845 phys_addr = get_phys_addr_code(env, start);
846 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 847#endif
fbf9eeb3
FB
848}
849
1a18c71b 850#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 851
6dbad63e
FB
852void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
853{
854 CPUX86State *saved_env;
855
856 saved_env = env;
857 env = s;
a412ac57 858 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 859 selector &= 0xffff;
2e255c6b 860 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 861 (selector << 4), 0xffff, 0);
a513fe19 862 } else {
b453b70b 863 load_seg(seg_reg, selector);
a513fe19 864 }
6dbad63e
FB
865 env = saved_env;
866}
9de5e440 867
d0a1ffc9
FB
868void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
869{
870 CPUX86State *saved_env;
871
872 saved_env = env;
873 env = s;
874
c27004ec 875 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
876
877 env = saved_env;
878}
879
880void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
881{
882 CPUX86State *saved_env;
883
884 saved_env = env;
885 env = s;
886
c27004ec 887 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
888
889 env = saved_env;
890}
891
e4533c7a
FB
892#endif /* TARGET_I386 */
893
67b915a5
FB
894#if !defined(CONFIG_SOFTMMU)
895
3fb2ded1
FB
896#if defined(TARGET_I386)
897
b56dad1c 898/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
899 the effective address of the memory exception. 'is_write' is 1 if a
900 write caused the exception and otherwise 0'. 'old_set' is the
901 signal set which should be restored */
2b413144 902static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
903 int is_write, sigset_t *old_set,
904 void *puc)
9de5e440 905{
a513fe19
FB
906 TranslationBlock *tb;
907 int ret;
68a79315 908
83479e77
FB
909 if (cpu_single_env)
910 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 911#if defined(DEBUG_SIGNAL)
bf3e8bf1
FB
912 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 914#endif
25eb4484 915 /* XXX: locking issue */
53a5960a 916 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
917 return 1;
918 }
fbf9eeb3 919
3fb2ded1 920 /* see if it is an MMU fault */
93a40ea9
FB
921 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
922 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
923 if (ret < 0)
924 return 0; /* not an MMU fault */
925 if (ret == 0)
926 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
a513fe19
FB
928 tb = tb_find_pc(pc);
929 if (tb) {
9de5e440
FB
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
bf3e8bf1 932 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 933 }
4cbf74b6 934 if (ret == 1) {
3fb2ded1 935#if 0
4cbf74b6
FB
936 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
937 env->eip, env->cr[2], env->error_code);
3fb2ded1 938#endif
4cbf74b6
FB
939 /* we restore the process signal mask as the sigreturn should
940 do it (XXX: use sigsetjmp) */
941 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 942 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
943 } else {
944 /* activate soft MMU for this block */
3f337316 945 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 946 cpu_resume_from_signal(env, puc);
4cbf74b6 947 }
3fb2ded1
FB
948 /* never comes here */
949 return 1;
950}
951
e4533c7a 952#elif defined(TARGET_ARM)
3fb2ded1 953static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
954 int is_write, sigset_t *old_set,
955 void *puc)
3fb2ded1 956{
68016c62
FB
957 TranslationBlock *tb;
958 int ret;
959
960 if (cpu_single_env)
961 env = cpu_single_env; /* XXX: find a correct solution for multithread */
962#if defined(DEBUG_SIGNAL)
963 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
964 pc, address, is_write, *(unsigned long *)old_set);
965#endif
9f0777ed 966 /* XXX: locking issue */
53a5960a 967 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
968 return 1;
969 }
68016c62
FB
970 /* see if it is an MMU fault */
971 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
972 if (ret < 0)
973 return 0; /* not an MMU fault */
974 if (ret == 0)
975 return 1; /* the MMU fault was handled without causing real CPU fault */
976 /* now we have a real cpu fault */
977 tb = tb_find_pc(pc);
978 if (tb) {
979 /* the PC is inside the translated code. It means that we have
980 a virtual CPU fault */
981 cpu_restore_state(tb, env, pc, puc);
982 }
983 /* we restore the process signal mask as the sigreturn should
984 do it (XXX: use sigsetjmp) */
985 sigprocmask(SIG_SETMASK, old_set, NULL);
986 cpu_loop_exit();
3fb2ded1 987}
93ac68bc
FB
988#elif defined(TARGET_SPARC)
989static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
990 int is_write, sigset_t *old_set,
991 void *puc)
93ac68bc 992{
68016c62
FB
993 TranslationBlock *tb;
994 int ret;
995
996 if (cpu_single_env)
997 env = cpu_single_env; /* XXX: find a correct solution for multithread */
998#if defined(DEBUG_SIGNAL)
999 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1000 pc, address, is_write, *(unsigned long *)old_set);
1001#endif
b453b70b 1002 /* XXX: locking issue */
53a5960a 1003 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
1004 return 1;
1005 }
68016c62
FB
1006 /* see if it is an MMU fault */
1007 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1008 if (ret < 0)
1009 return 0; /* not an MMU fault */
1010 if (ret == 0)
1011 return 1; /* the MMU fault was handled without causing real CPU fault */
1012 /* now we have a real cpu fault */
1013 tb = tb_find_pc(pc);
1014 if (tb) {
1015 /* the PC is inside the translated code. It means that we have
1016 a virtual CPU fault */
1017 cpu_restore_state(tb, env, pc, puc);
1018 }
1019 /* we restore the process signal mask as the sigreturn should
1020 do it (XXX: use sigsetjmp) */
1021 sigprocmask(SIG_SETMASK, old_set, NULL);
1022 cpu_loop_exit();
93ac68bc 1023}
67867308
FB
1024#elif defined (TARGET_PPC)
1025static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
1026 int is_write, sigset_t *old_set,
1027 void *puc)
67867308
FB
1028{
1029 TranslationBlock *tb;
ce09776b 1030 int ret;
67867308 1031
67867308
FB
1032 if (cpu_single_env)
1033 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308
FB
1034#if defined(DEBUG_SIGNAL)
1035 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1036 pc, address, is_write, *(unsigned long *)old_set);
1037#endif
1038 /* XXX: locking issue */
53a5960a 1039 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
1040 return 1;
1041 }
1042
ce09776b 1043 /* see if it is an MMU fault */
7f957d28 1044 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
1045 if (ret < 0)
1046 return 0; /* not an MMU fault */
1047 if (ret == 0)
1048 return 1; /* the MMU fault was handled without causing real CPU fault */
1049
67867308
FB
1050 /* now we have a real cpu fault */
1051 tb = tb_find_pc(pc);
1052 if (tb) {
1053 /* the PC is inside the translated code. It means that we have
1054 a virtual CPU fault */
bf3e8bf1 1055 cpu_restore_state(tb, env, pc, puc);
67867308 1056 }
ce09776b 1057 if (ret == 1) {
67867308 1058#if 0
ce09776b
FB
1059 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1060 env->nip, env->error_code, tb);
67867308
FB
1061#endif
1062 /* we restore the process signal mask as the sigreturn should
1063 do it (XXX: use sigsetjmp) */
bf3e8bf1 1064 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 1065 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
1066 } else {
1067 /* activate soft MMU for this block */
fbf9eeb3 1068 cpu_resume_from_signal(env, puc);
ce09776b 1069 }
67867308
FB
1070 /* never comes here */
1071 return 1;
1072}
6af0bf9c
FB
1073
1074#elif defined (TARGET_MIPS)
1075static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1076 int is_write, sigset_t *old_set,
1077 void *puc)
1078{
1079 TranslationBlock *tb;
1080 int ret;
1081
1082 if (cpu_single_env)
1083 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1084#if defined(DEBUG_SIGNAL)
1085 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1086 pc, address, is_write, *(unsigned long *)old_set);
1087#endif
1088 /* XXX: locking issue */
53a5960a 1089 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1090 return 1;
1091 }
1092
1093 /* see if it is an MMU fault */
cc9442b9 1094 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1095 if (ret < 0)
1096 return 0; /* not an MMU fault */
1097 if (ret == 0)
1098 return 1; /* the MMU fault was handled without causing real CPU fault */
1099
1100 /* now we have a real cpu fault */
1101 tb = tb_find_pc(pc);
1102 if (tb) {
1103 /* the PC is inside the translated code. It means that we have
1104 a virtual CPU fault */
1105 cpu_restore_state(tb, env, pc, puc);
1106 }
1107 if (ret == 1) {
1108#if 0
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env->nip, env->error_code, tb);
1111#endif
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK, old_set, NULL);
1115 do_raise_exception_err(env->exception_index, env->error_code);
1116 } else {
1117 /* activate soft MMU for this block */
1118 cpu_resume_from_signal(env, puc);
1119 }
1120 /* never comes here */
1121 return 1;
1122}
1123
e4533c7a
FB
1124#else
1125#error unsupported target CPU
1126#endif
9de5e440 1127
2b413144
FB
1128#if defined(__i386__)
1129
bf3e8bf1
FB
1130#if defined(USE_CODE_COPY)
1131static void cpu_send_trap(unsigned long pc, int trap,
1132 struct ucontext *uc)
1133{
1134 TranslationBlock *tb;
1135
1136 if (cpu_single_env)
1137 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1138 /* now we have a real cpu fault */
1139 tb = tb_find_pc(pc);
1140 if (tb) {
1141 /* the PC is inside the translated code. It means that we have
1142 a virtual CPU fault */
1143 cpu_restore_state(tb, env, pc, uc);
1144 }
1145 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1146 raise_exception_err(trap, env->error_code);
1147}
1148#endif
1149
e4533c7a
FB
1150int cpu_signal_handler(int host_signum, struct siginfo *info,
1151 void *puc)
9de5e440 1152{
9de5e440
FB
1153 struct ucontext *uc = puc;
1154 unsigned long pc;
bf3e8bf1 1155 int trapno;
97eb5b14 1156
d691f669
FB
1157#ifndef REG_EIP
1158/* for glibc 2.1 */
fd6ce8f6
FB
1159#define REG_EIP EIP
1160#define REG_ERR ERR
1161#define REG_TRAPNO TRAPNO
d691f669 1162#endif
fc2b4c48 1163 pc = uc->uc_mcontext.gregs[REG_EIP];
bf3e8bf1
FB
1164 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1165#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1166 if (trapno == 0x00 || trapno == 0x05) {
1167 /* send division by zero or bound exception */
1168 cpu_send_trap(pc, trapno, uc);
1169 return 1;
1170 } else
1171#endif
1172 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1173 trapno == 0xe ?
1174 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1175 &uc->uc_sigmask, puc);
2b413144
FB
1176}
1177
bc51c5c9
FB
1178#elif defined(__x86_64__)
1179
1180int cpu_signal_handler(int host_signum, struct siginfo *info,
1181 void *puc)
1182{
1183 struct ucontext *uc = puc;
1184 unsigned long pc;
1185
1186 pc = uc->uc_mcontext.gregs[REG_RIP];
1187 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1188 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1189 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1190 &uc->uc_sigmask, puc);
1191}
1192
83fb7adf 1193#elif defined(__powerpc__)
2b413144 1194
83fb7adf
FB
1195/***********************************************************************
1196 * signal context platform-specific definitions
1197 * From Wine
1198 */
1199#ifdef linux
1200/* All Registers access - only for local access */
1201# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1202/* Gpr Registers access */
1203# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1204# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1205# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1206# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1207# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1208# define LR_sig(context) REG_sig(link, context) /* Link register */
1209# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1210/* Float Registers access */
1211# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1212# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1213/* Exception Registers access */
1214# define DAR_sig(context) REG_sig(dar, context)
1215# define DSISR_sig(context) REG_sig(dsisr, context)
1216# define TRAP_sig(context) REG_sig(trap, context)
1217#endif /* linux */
1218
1219#ifdef __APPLE__
1220# include <sys/ucontext.h>
1221typedef struct ucontext SIGCONTEXT;
1222/* All Registers access - only for local access */
1223# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1224# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1225# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1226# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1227/* Gpr Registers access */
1228# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1229# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1230# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1231# define CTR_sig(context) REG_sig(ctr, context)
1232# define XER_sig(context) REG_sig(xer, context) /* Link register */
1233# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1234# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1235/* Float Registers access */
1236# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1237# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1238/* Exception Registers access */
1239# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1240# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1241# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1242#endif /* __APPLE__ */
1243
d1d9f421 1244int cpu_signal_handler(int host_signum, struct siginfo *info,
e4533c7a 1245 void *puc)
2b413144 1246{
25eb4484 1247 struct ucontext *uc = puc;
25eb4484 1248 unsigned long pc;
25eb4484
FB
1249 int is_write;
1250
83fb7adf 1251 pc = IAR_sig(uc);
25eb4484
FB
1252 is_write = 0;
1253#if 0
1254 /* ppc 4xx case */
83fb7adf 1255 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1256 is_write = 1;
1257#else
83fb7adf 1258 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1259 is_write = 1;
1260#endif
1261 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1262 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1263}
1264
2f87c607
FB
1265#elif defined(__alpha__)
1266
e4533c7a 1267int cpu_signal_handler(int host_signum, struct siginfo *info,
2f87c607
FB
1268 void *puc)
1269{
1270 struct ucontext *uc = puc;
1271 uint32_t *pc = uc->uc_mcontext.sc_pc;
1272 uint32_t insn = *pc;
1273 int is_write = 0;
1274
8c6939c0 1275 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1276 switch (insn >> 26) {
1277 case 0x0d: // stw
1278 case 0x0e: // stb
1279 case 0x0f: // stq_u
1280 case 0x24: // stf
1281 case 0x25: // stg
1282 case 0x26: // sts
1283 case 0x27: // stt
1284 case 0x2c: // stl
1285 case 0x2d: // stq
1286 case 0x2e: // stl_c
1287 case 0x2f: // stq_c
1288 is_write = 1;
1289 }
1290
1291 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1292 is_write, &uc->uc_sigmask, puc);
2f87c607 1293}
8c6939c0
FB
1294#elif defined(__sparc__)
1295
e4533c7a
FB
1296int cpu_signal_handler(int host_signum, struct siginfo *info,
1297 void *puc)
8c6939c0
FB
1298{
1299 uint32_t *regs = (uint32_t *)(info + 1);
1300 void *sigmask = (regs + 20);
1301 unsigned long pc;
1302 int is_write;
1303 uint32_t insn;
1304
1305 /* XXX: is there a standard glibc define ? */
1306 pc = regs[1];
1307 /* XXX: need kernel patch to get write flag faster */
1308 is_write = 0;
1309 insn = *(uint32_t *)pc;
1310 if ((insn >> 30) == 3) {
1311 switch((insn >> 19) & 0x3f) {
1312 case 0x05: // stb
1313 case 0x06: // sth
1314 case 0x04: // st
1315 case 0x07: // std
1316 case 0x24: // stf
1317 case 0x27: // stdf
1318 case 0x25: // stfsr
1319 is_write = 1;
1320 break;
1321 }
1322 }
1323 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1324 is_write, sigmask, NULL);
8c6939c0
FB
1325}
1326
1327#elif defined(__arm__)
1328
e4533c7a
FB
1329int cpu_signal_handler(int host_signum, struct siginfo *info,
1330 void *puc)
8c6939c0
FB
1331{
1332 struct ucontext *uc = puc;
1333 unsigned long pc;
1334 int is_write;
1335
1336 pc = uc->uc_mcontext.gregs[R15];
1337 /* XXX: compute is_write */
1338 is_write = 0;
1339 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1340 is_write,
1341 &uc->uc_sigmask);
1342}
1343
38e584a0
FB
1344#elif defined(__mc68000)
1345
1346int cpu_signal_handler(int host_signum, struct siginfo *info,
1347 void *puc)
1348{
1349 struct ucontext *uc = puc;
1350 unsigned long pc;
1351 int is_write;
1352
1353 pc = uc->uc_mcontext.gregs[16];
1354 /* XXX: compute is_write */
1355 is_write = 0;
1356 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1357 is_write,
bf3e8bf1 1358 &uc->uc_sigmask, puc);
38e584a0
FB
1359}
1360
b8076a74
FB
1361#elif defined(__ia64)
1362
1363#ifndef __ISR_VALID
1364 /* This ought to be in <bits/siginfo.h>... */
1365# define __ISR_VALID 1
b8076a74
FB
1366#endif
1367
1368int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1369{
1370 struct ucontext *uc = puc;
1371 unsigned long ip;
1372 int is_write = 0;
1373
1374 ip = uc->uc_mcontext.sc_ip;
1375 switch (host_signum) {
1376 case SIGILL:
1377 case SIGFPE:
1378 case SIGSEGV:
1379 case SIGBUS:
1380 case SIGTRAP:
fd4a43e4 1381 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1382 /* ISR.W (write-access) is bit 33: */
1383 is_write = (info->si_isr >> 33) & 1;
1384 break;
1385
1386 default:
1387 break;
1388 }
1389 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1390 is_write,
1391 &uc->uc_sigmask, puc);
1392}
1393
90cb9493
FB
1394#elif defined(__s390__)
1395
1396int cpu_signal_handler(int host_signum, struct siginfo *info,
1397 void *puc)
1398{
1399 struct ucontext *uc = puc;
1400 unsigned long pc;
1401 int is_write;
1402
1403 pc = uc->uc_mcontext.psw.addr;
1404 /* XXX: compute is_write */
1405 is_write = 0;
1406 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1407 is_write,
1408 &uc->uc_sigmask, puc);
1409}
1410
9de5e440 1411#else
2b413144 1412
3fb2ded1 1413#error host CPU specific signal handler needed
2b413144 1414
9de5e440 1415#endif
67b915a5
FB
1416
1417#endif /* !defined(CONFIG_SOFTMMU) */