]> git.proxmox.com Git - qemu.git/blame - cpu-exec.c
Fix monitor disasm output for Sparc64 target
[qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
eddf68a6
JM
43#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44 defined(TARGET_ALPHA)
e4533c7a
FB
45/* XXX: unify with i386 target */
46void cpu_loop_exit(void)
47{
48 longjmp(env->jmp_env, 1);
49}
50#endif
e6e5906b 51#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
3475187d
FB
52#define reg_T2
53#endif
e4533c7a 54
fbf9eeb3
FB
55/* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
57 */
58void cpu_resume_from_signal(CPUState *env1, void *puc)
59{
60#if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62#endif
63
64 env = env1;
65
66 /* XXX: restore cpu registers saved in host registers */
67
68#if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 }
73#endif
74 longjmp(env->jmp_env, 1);
75}
76
8a40a180
FB
77
78static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
81{
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
87
88 spin_lock(&tb_lock);
89
90 tb_invalidated_flag = 0;
91
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
117 }
118 }
119 ptb1 = &tb->phys_hash_next;
120 }
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
15388002 130 tb_invalidated_flag = 1;
8a40a180
FB
131 }
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
144 }
145 tb_link_phys(tb, phys_pc, phys_page2);
146
147 found:
8a40a180
FB
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
152}
153
154static inline TranslationBlock *tb_find_fast(void)
155{
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
159
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163#if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168#elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
40f137e1
PB
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
8a40a180
FB
175 cs_base = 0;
176 pc = env->regs[15];
177#elif defined(TARGET_SPARC)
178#ifdef TARGET_SPARC64
a80dde08
FB
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
8a40a180 182#else
a80dde08
FB
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
8a40a180
FB
186#endif
187 cs_base = env->npc;
188 pc = env->pc;
189#elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194#elif defined(TARGET_MIPS)
56b19403 195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 196 cs_base = 0;
8a40a180 197 pc = env->PC;
e6e5906b
PB
198#elif defined(TARGET_M68K)
199 flags = env->fpcr & M68K_FPCR_PREC;
200 cs_base = 0;
201 pc = env->pc;
fdf9b3e8
FB
202#elif defined(TARGET_SH4)
203 flags = env->sr & (SR_MD | SR_RB);
204 cs_base = 0; /* XXXXX */
205 pc = env->pc;
eddf68a6
JM
206#elif defined(TARGET_ALPHA)
207 flags = env->ps;
208 cs_base = 0;
209 pc = env->pc;
8a40a180
FB
210#else
211#error unsupported CPU
212#endif
213 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215 tb->flags != flags, 0)) {
216 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
217 /* Note: we do it here to avoid a gcc bug on Mac OS X when
218 doing it in tb_find_slow */
219 if (tb_invalidated_flag) {
220 /* as some TB could have been invalidated because
221 of memory exceptions while generating the code, we
222 must recompute the hash index here */
223 T0 = 0;
224 }
8a40a180
FB
225 }
226 return tb;
227}
228
229
7d13299d
FB
230/* main execution loop */
231
e4533c7a 232int cpu_exec(CPUState *env1)
7d13299d 233{
1057eaa7
PB
234#define DECLARE_HOST_REGS 1
235#include "hostregs_helper.h"
236#if defined(TARGET_SPARC)
3475187d
FB
237#if defined(reg_REGWPTR)
238 uint32_t *saved_regwptr;
239#endif
240#endif
fdbb4691 241#if defined(__sparc__) && !defined(HOST_SOLARIS)
b49d07ba
TS
242 int saved_i7;
243 target_ulong tmp_T0;
04369ff2 244#endif
8a40a180 245 int ret, interrupt_request;
7d13299d 246 void (*gen_func)(void);
8a40a180 247 TranslationBlock *tb;
c27004ec 248 uint8_t *tc_ptr;
8c6939c0 249
5a1e3cfc
FB
250#if defined(TARGET_I386)
251 /* handle exit of HALTED state */
252 if (env1->hflags & HF_HALTED_MASK) {
253 /* disable halt condition */
254 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255 (env1->eflags & IF_MASK)) {
256 env1->hflags &= ~HF_HALTED_MASK;
257 } else {
258 return EXCP_HALTED;
e80e1cc4
FB
259 }
260 }
261#elif defined(TARGET_PPC)
50443c98 262 if (env1->halted) {
e80e1cc4 263 if (env1->msr[MSR_EE] &&
47103572 264 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
50443c98 265 env1->halted = 0;
e80e1cc4
FB
266 } else {
267 return EXCP_HALTED;
5a1e3cfc
FB
268 }
269 }
ba3c64fb
FB
270#elif defined(TARGET_SPARC)
271 if (env1->halted) {
272 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273 (env1->psret != 0)) {
274 env1->halted = 0;
275 } else {
276 return EXCP_HALTED;
277 }
278 }
9332f9da
FB
279#elif defined(TARGET_ARM)
280 if (env1->halted) {
281 /* An interrupt wakes the CPU even if the I and F CPSR bits are
282 set. */
283 if (env1->interrupt_request
284 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
285 env1->halted = 0;
286 } else {
287 return EXCP_HALTED;
288 }
289 }
6810e154
FB
290#elif defined(TARGET_MIPS)
291 if (env1->halted) {
292 if (env1->interrupt_request &
293 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
294 env1->halted = 0;
295 } else {
296 return EXCP_HALTED;
297 }
298 }
eddf68a6
JM
299#elif defined(TARGET_ALPHA)
300 if (env1->halted) {
301 if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
302 env1->halted = 0;
303 } else {
304 return EXCP_HALTED;
305 }
306 }
5a1e3cfc
FB
307#endif
308
6a00d601
FB
309 cpu_single_env = env1;
310
7d13299d 311 /* first we save global registers */
1057eaa7
PB
312#define SAVE_HOST_REGS 1
313#include "hostregs_helper.h"
c27004ec 314 env = env1;
fdbb4691 315#if defined(__sparc__) && !defined(HOST_SOLARIS)
e4533c7a
FB
316 /* we also save i7 because longjmp may not restore it */
317 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
318#endif
319
320#if defined(TARGET_I386)
0d1a29f9 321 env_to_regs();
9de5e440 322 /* put eflags in CPU temporary format */
fc2b4c48
FB
323 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 325 CC_OP = CC_OP_EFLAGS;
fc2b4c48 326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 327#elif defined(TARGET_ARM)
93ac68bc 328#elif defined(TARGET_SPARC)
3475187d
FB
329#if defined(reg_REGWPTR)
330 saved_regwptr = REGWPTR;
331#endif
67867308 332#elif defined(TARGET_PPC)
e6e5906b
PB
333#elif defined(TARGET_M68K)
334 env->cc_op = CC_OP_FLAGS;
335 env->cc_dest = env->sr & 0xf;
336 env->cc_x = (env->sr >> 4) & 1;
6af0bf9c 337#elif defined(TARGET_MIPS)
fdf9b3e8
FB
338#elif defined(TARGET_SH4)
339 /* XXXXX */
eddf68a6
JM
340#elif defined(TARGET_ALPHA)
341 env_to_regs();
e4533c7a
FB
342#else
343#error unsupported target CPU
344#endif
3fb2ded1 345 env->exception_index = -1;
9d27abd9 346
7d13299d 347 /* prepare setjmp context for exception handling */
3fb2ded1
FB
348 for(;;) {
349 if (setjmp(env->jmp_env) == 0) {
ee8b7021 350 env->current_tb = NULL;
3fb2ded1
FB
351 /* if an exception is pending, we execute it here */
352 if (env->exception_index >= 0) {
353 if (env->exception_index >= EXCP_INTERRUPT) {
354 /* exit request from the cpu execution loop */
355 ret = env->exception_index;
356 break;
357 } else if (env->user_mode_only) {
358 /* if user mode only, we simulate a fake exception
9f083493 359 which will be handled outside the cpu execution
3fb2ded1 360 loop */
83479e77 361#if defined(TARGET_I386)
3fb2ded1
FB
362 do_interrupt_user(env->exception_index,
363 env->exception_is_int,
364 env->error_code,
365 env->exception_next_eip);
83479e77 366#endif
3fb2ded1
FB
367 ret = env->exception_index;
368 break;
369 } else {
83479e77 370#if defined(TARGET_I386)
3fb2ded1
FB
371 /* simulate a real cpu exception. On i386, it can
372 trigger new exceptions, but we do not handle
373 double or triple faults yet. */
374 do_interrupt(env->exception_index,
375 env->exception_is_int,
376 env->error_code,
d05e66d2 377 env->exception_next_eip, 0);
678dde13
TS
378 /* successfully delivered */
379 env->old_exception = -1;
ce09776b
FB
380#elif defined(TARGET_PPC)
381 do_interrupt(env);
6af0bf9c
FB
382#elif defined(TARGET_MIPS)
383 do_interrupt(env);
e95c8d51 384#elif defined(TARGET_SPARC)
1a0c3292 385 do_interrupt(env->exception_index);
b5ff1b31
FB
386#elif defined(TARGET_ARM)
387 do_interrupt(env);
fdf9b3e8
FB
388#elif defined(TARGET_SH4)
389 do_interrupt(env);
eddf68a6
JM
390#elif defined(TARGET_ALPHA)
391 do_interrupt(env);
83479e77 392#endif
3fb2ded1
FB
393 }
394 env->exception_index = -1;
9df217a3
FB
395 }
396#ifdef USE_KQEMU
397 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
398 int ret;
399 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
400 ret = kqemu_cpu_exec(env);
401 /* put eflags in CPU temporary format */
402 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
403 DF = 1 - (2 * ((env->eflags >> 10) & 1));
404 CC_OP = CC_OP_EFLAGS;
405 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406 if (ret == 1) {
407 /* exception */
408 longjmp(env->jmp_env, 1);
409 } else if (ret == 2) {
410 /* softmmu execution needed */
411 } else {
412 if (env->interrupt_request != 0) {
413 /* hardware interrupt will be executed just after */
414 } else {
415 /* otherwise, we restart */
416 longjmp(env->jmp_env, 1);
417 }
418 }
3fb2ded1 419 }
9df217a3
FB
420#endif
421
3fb2ded1
FB
422 T0 = 0; /* force lookup of first TB */
423 for(;;) {
fdbb4691 424#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1
FB
425 /* g1 can be modified by some libc? functions */
426 tmp_T0 = T0;
8c6939c0 427#endif
68a79315 428 interrupt_request = env->interrupt_request;
2e255c6b 429 if (__builtin_expect(interrupt_request, 0)) {
6658ffb8
PB
430 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
431 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
432 env->exception_index = EXCP_DEBUG;
433 cpu_loop_exit();
434 }
68a79315 435#if defined(TARGET_I386)
3b21e03e
FB
436 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
437 !(env->hflags & HF_SMM_MASK)) {
438 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
439 do_smm_enter();
440#if defined(__sparc__) && !defined(HOST_SOLARIS)
441 tmp_T0 = 0;
442#else
443 T0 = 0;
444#endif
445 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
3f337316
FB
446 (env->eflags & IF_MASK) &&
447 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 448 int intno;
fbf9eeb3 449 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
a541f297 450 intno = cpu_get_pic_interrupt(env);
f193c797 451 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
452 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
453 }
d05e66d2 454 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
455 /* ensure that no TB jump will be modified as
456 the program flow was changed */
fdbb4691 457#if defined(__sparc__) && !defined(HOST_SOLARIS)
907a5b26
FB
458 tmp_T0 = 0;
459#else
460 T0 = 0;
461#endif
68a79315 462 }
ce09776b 463#elif defined(TARGET_PPC)
9fddaa0c
FB
464#if 0
465 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
466 cpu_ppc_reset(env);
467 }
468#endif
47103572
JM
469 if (interrupt_request & CPU_INTERRUPT_HARD) {
470 if (ppc_hw_interrupt(env) == 1) {
471 /* Some exception was raised */
472 if (env->pending_interrupts == 0)
473 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 474#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
475 tmp_T0 = 0;
476#else
477 T0 = 0;
478#endif
479 }
ce09776b 480 }
6af0bf9c
FB
481#elif defined(TARGET_MIPS)
482 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
24c7b0e3 483 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
6af0bf9c 484 (env->CP0_Status & (1 << CP0St_IE)) &&
24c7b0e3
TS
485 !(env->CP0_Status & (1 << CP0St_EXL)) &&
486 !(env->CP0_Status & (1 << CP0St_ERL)) &&
6af0bf9c
FB
487 !(env->hflags & MIPS_HFLAG_DM)) {
488 /* Raise it */
489 env->exception_index = EXCP_EXT_INTERRUPT;
490 env->error_code = 0;
491 do_interrupt(env);
fdbb4691 492#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
493 tmp_T0 = 0;
494#else
495 T0 = 0;
496#endif
6af0bf9c 497 }
e95c8d51 498#elif defined(TARGET_SPARC)
66321a11
FB
499 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
500 (env->psret != 0)) {
501 int pil = env->interrupt_index & 15;
502 int type = env->interrupt_index & 0xf0;
503
504 if (((type == TT_EXTINT) &&
505 (pil == 15 || pil > env->psrpil)) ||
506 type != TT_EXTINT) {
507 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
508 do_interrupt(env->interrupt_index);
509 env->interrupt_index = 0;
fdbb4691 510#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
511 tmp_T0 = 0;
512#else
513 T0 = 0;
514#endif
66321a11 515 }
e95c8d51
FB
516 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
517 //do_interrupt(0, 0, 0, 0, 0);
518 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
ba3c64fb 519 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
df52b000
FB
520 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
521 env->halted = 1;
522 env->exception_index = EXCP_HLT;
523 cpu_loop_exit();
ba3c64fb 524 }
b5ff1b31
FB
525#elif defined(TARGET_ARM)
526 if (interrupt_request & CPU_INTERRUPT_FIQ
527 && !(env->uncached_cpsr & CPSR_F)) {
528 env->exception_index = EXCP_FIQ;
529 do_interrupt(env);
530 }
531 if (interrupt_request & CPU_INTERRUPT_HARD
532 && !(env->uncached_cpsr & CPSR_I)) {
533 env->exception_index = EXCP_IRQ;
534 do_interrupt(env);
535 }
fdf9b3e8
FB
536#elif defined(TARGET_SH4)
537 /* XXXXX */
eddf68a6
JM
538#elif defined(TARGET_ALPHA)
539 if (interrupt_request & CPU_INTERRUPT_HARD) {
540 do_interrupt(env);
541 }
68a79315 542#endif
9d05095e
FB
543 /* Don't use the cached interupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
b5ff1b31 545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
fdbb4691 549#if defined(__sparc__) && !defined(HOST_SOLARIS)
bf3e8bf1
FB
550 tmp_T0 = 0;
551#else
552 T0 = 0;
553#endif
554 }
68a79315
FB
555 if (interrupt_request & CPU_INTERRUPT_EXIT) {
556 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
557 env->exception_index = EXCP_INTERRUPT;
558 cpu_loop_exit();
559 }
3fb2ded1 560 }
7d13299d 561#ifdef DEBUG_EXEC
b5ff1b31 562 if ((loglevel & CPU_LOG_TB_CPU)) {
e4533c7a 563#if defined(TARGET_I386)
3fb2ded1 564 /* restore flags in standard format */
fc9f715d 565#ifdef reg_EAX
3fb2ded1 566 env->regs[R_EAX] = EAX;
fc9f715d
FB
567#endif
568#ifdef reg_EBX
3fb2ded1 569 env->regs[R_EBX] = EBX;
fc9f715d
FB
570#endif
571#ifdef reg_ECX
3fb2ded1 572 env->regs[R_ECX] = ECX;
fc9f715d
FB
573#endif
574#ifdef reg_EDX
3fb2ded1 575 env->regs[R_EDX] = EDX;
fc9f715d
FB
576#endif
577#ifdef reg_ESI
3fb2ded1 578 env->regs[R_ESI] = ESI;
fc9f715d
FB
579#endif
580#ifdef reg_EDI
3fb2ded1 581 env->regs[R_EDI] = EDI;
fc9f715d
FB
582#endif
583#ifdef reg_EBP
3fb2ded1 584 env->regs[R_EBP] = EBP;
fc9f715d
FB
585#endif
586#ifdef reg_ESP
3fb2ded1 587 env->regs[R_ESP] = ESP;
fc9f715d 588#endif
3fb2ded1 589 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 590 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 591 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 592#elif defined(TARGET_ARM)
7fe48483 593 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 594#elif defined(TARGET_SPARC)
3475187d
FB
595 REGWPTR = env->regbase + (env->cwp * 16);
596 env->regwptr = REGWPTR;
597 cpu_dump_state(env, logfile, fprintf, 0);
67867308 598#elif defined(TARGET_PPC)
7fe48483 599 cpu_dump_state(env, logfile, fprintf, 0);
e6e5906b
PB
600#elif defined(TARGET_M68K)
601 cpu_m68k_flush_flags(env, env->cc_op);
602 env->cc_op = CC_OP_FLAGS;
603 env->sr = (env->sr & 0xffe0)
604 | env->cc_dest | (env->cc_x << 4);
605 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
606#elif defined(TARGET_MIPS)
607 cpu_dump_state(env, logfile, fprintf, 0);
fdf9b3e8
FB
608#elif defined(TARGET_SH4)
609 cpu_dump_state(env, logfile, fprintf, 0);
eddf68a6
JM
610#elif defined(TARGET_ALPHA)
611 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a
FB
612#else
613#error unsupported target CPU
614#endif
3fb2ded1 615 }
7d13299d 616#endif
8a40a180 617 tb = tb_find_fast();
9d27abd9 618#ifdef DEBUG_EXEC
c1135f61 619 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
620 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
621 (long)tb->tc_ptr, tb->pc,
622 lookup_symbol(tb->pc));
3fb2ded1 623 }
9d27abd9 624#endif
fdbb4691 625#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1 626 T0 = tmp_T0;
8c6939c0 627#endif
8a40a180
FB
628 /* see if we can patch the calling TB. When the TB
629 spans two pages, we cannot safely do a direct
630 jump. */
c27004ec 631 {
8a40a180 632 if (T0 != 0 &&
f32fc648
FB
633#if USE_KQEMU
634 (env->kqemu_enabled != 2) &&
635#endif
8a40a180 636 tb->page_addr[1] == -1
bf3e8bf1
FB
637#if defined(TARGET_I386) && defined(USE_CODE_COPY)
638 && (tb->cflags & CF_CODE_COPY) ==
639 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
640#endif
641 ) {
3fb2ded1 642 spin_lock(&tb_lock);
c27004ec 643 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
644#if defined(USE_CODE_COPY)
645 /* propagates the FP use info */
646 ((TranslationBlock *)(T0 & ~3))->cflags |=
647 (tb->cflags & CF_FP_USED);
648#endif
3fb2ded1
FB
649 spin_unlock(&tb_lock);
650 }
c27004ec 651 }
3fb2ded1 652 tc_ptr = tb->tc_ptr;
83479e77 653 env->current_tb = tb;
3fb2ded1
FB
654 /* execute the generated code */
655 gen_func = (void *)tc_ptr;
8c6939c0 656#if defined(__sparc__)
3fb2ded1
FB
657 __asm__ __volatile__("call %0\n\t"
658 "mov %%o7,%%i0"
659 : /* no outputs */
660 : "r" (gen_func)
fdbb4691 661 : "i0", "i1", "i2", "i3", "i4", "i5",
faab7592 662 "o0", "o1", "o2", "o3", "o4", "o5",
fdbb4691
FB
663 "l0", "l1", "l2", "l3", "l4", "l5",
664 "l6", "l7");
8c6939c0 665#elif defined(__arm__)
3fb2ded1
FB
666 asm volatile ("mov pc, %0\n\t"
667 ".global exec_loop\n\t"
668 "exec_loop:\n\t"
669 : /* no outputs */
670 : "r" (gen_func)
671 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
672#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
673{
674 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
675 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
676 save_native_fp_state(env);
677 }
bf3e8bf1
FB
678 gen_func();
679 } else {
97eb5b14
FB
680 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
681 restore_native_fp_state(env);
682 }
bf3e8bf1
FB
683 /* we work with native eflags */
684 CC_SRC = cc_table[CC_OP].compute_all();
685 CC_OP = CC_OP_EFLAGS;
686 asm(".globl exec_loop\n"
687 "\n"
688 "debug1:\n"
689 " pushl %%ebp\n"
690 " fs movl %10, %9\n"
691 " fs movl %11, %%eax\n"
692 " andl $0x400, %%eax\n"
693 " fs orl %8, %%eax\n"
694 " pushl %%eax\n"
695 " popf\n"
696 " fs movl %%esp, %12\n"
697 " fs movl %0, %%eax\n"
698 " fs movl %1, %%ecx\n"
699 " fs movl %2, %%edx\n"
700 " fs movl %3, %%ebx\n"
701 " fs movl %4, %%esp\n"
702 " fs movl %5, %%ebp\n"
703 " fs movl %6, %%esi\n"
704 " fs movl %7, %%edi\n"
705 " fs jmp *%9\n"
706 "exec_loop:\n"
707 " fs movl %%esp, %4\n"
708 " fs movl %12, %%esp\n"
709 " fs movl %%eax, %0\n"
710 " fs movl %%ecx, %1\n"
711 " fs movl %%edx, %2\n"
712 " fs movl %%ebx, %3\n"
713 " fs movl %%ebp, %5\n"
714 " fs movl %%esi, %6\n"
715 " fs movl %%edi, %7\n"
716 " pushf\n"
717 " popl %%eax\n"
718 " movl %%eax, %%ecx\n"
719 " andl $0x400, %%ecx\n"
720 " shrl $9, %%ecx\n"
721 " andl $0x8d5, %%eax\n"
722 " fs movl %%eax, %8\n"
723 " movl $1, %%eax\n"
724 " subl %%ecx, %%eax\n"
725 " fs movl %%eax, %11\n"
726 " fs movl %9, %%ebx\n" /* get T0 value */
727 " popl %%ebp\n"
728 :
729 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
730 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
731 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
732 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
733 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
734 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
735 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
736 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
737 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
738 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
739 "a" (gen_func),
740 "m" (*(uint8_t *)offsetof(CPUState, df)),
741 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
742 : "%ecx", "%edx"
743 );
744 }
745}
b8076a74
FB
746#elif defined(__ia64)
747 struct fptr {
748 void *ip;
749 void *gp;
750 } fp;
751
752 fp.ip = tc_ptr;
753 fp.gp = code_gen_buffer + 2 * (1 << 20);
754 (*(void (*)(void)) &fp)();
ae228531 755#else
3fb2ded1 756 gen_func();
ae228531 757#endif
83479e77 758 env->current_tb = NULL;
4cbf74b6
FB
759 /* reset soft MMU for next block (it can currently
760 only be set by a memory fault) */
761#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
762 if (env->hflags & HF_SOFTMMU_MASK) {
763 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
764 /* do not allow linking to another block */
765 T0 = 0;
766 }
f32fc648
FB
767#endif
768#if defined(USE_KQEMU)
769#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
770 if (kqemu_is_ok(env) &&
771 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
772 cpu_loop_exit();
773 }
4cbf74b6 774#endif
3fb2ded1
FB
775 }
776 } else {
0d1a29f9 777 env_to_regs();
7d13299d 778 }
3fb2ded1
FB
779 } /* for(;;) */
780
7d13299d 781
e4533c7a 782#if defined(TARGET_I386)
97eb5b14
FB
783#if defined(USE_CODE_COPY)
784 if (env->native_fp_regs) {
785 save_native_fp_state(env);
786 }
787#endif
9de5e440 788 /* restore flags in standard format */
fc2b4c48 789 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
e4533c7a 790#elif defined(TARGET_ARM)
b7bcbe95 791 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 792#elif defined(TARGET_SPARC)
3475187d
FB
793#if defined(reg_REGWPTR)
794 REGWPTR = saved_regwptr;
795#endif
67867308 796#elif defined(TARGET_PPC)
e6e5906b
PB
797#elif defined(TARGET_M68K)
798 cpu_m68k_flush_flags(env, env->cc_op);
799 env->cc_op = CC_OP_FLAGS;
800 env->sr = (env->sr & 0xffe0)
801 | env->cc_dest | (env->cc_x << 4);
6af0bf9c 802#elif defined(TARGET_MIPS)
fdf9b3e8 803#elif defined(TARGET_SH4)
eddf68a6 804#elif defined(TARGET_ALPHA)
fdf9b3e8 805 /* XXXXX */
e4533c7a
FB
806#else
807#error unsupported target CPU
808#endif
1057eaa7
PB
809
810 /* restore global registers */
fdbb4691 811#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 812 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 813#endif
1057eaa7
PB
814#include "hostregs_helper.h"
815
6a00d601
FB
816 /* fail safe : never use cpu_single_env outside cpu_exec() */
817 cpu_single_env = NULL;
7d13299d
FB
818 return ret;
819}
6dbad63e 820
fbf9eeb3
FB
821/* must only be called from the generated code as an exception can be
822 generated */
823void tb_invalidate_page_range(target_ulong start, target_ulong end)
824{
dc5d0b3d
FB
825 /* XXX: cannot enable it yet because it yields to MMU exception
826 where NIP != read address on PowerPC */
827#if 0
fbf9eeb3
FB
828 target_ulong phys_addr;
829 phys_addr = get_phys_addr_code(env, start);
830 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 831#endif
fbf9eeb3
FB
832}
833
1a18c71b 834#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 835
6dbad63e
FB
836void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
837{
838 CPUX86State *saved_env;
839
840 saved_env = env;
841 env = s;
a412ac57 842 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 843 selector &= 0xffff;
2e255c6b 844 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 845 (selector << 4), 0xffff, 0);
a513fe19 846 } else {
b453b70b 847 load_seg(seg_reg, selector);
a513fe19 848 }
6dbad63e
FB
849 env = saved_env;
850}
9de5e440 851
d0a1ffc9
FB
852void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
853{
854 CPUX86State *saved_env;
855
856 saved_env = env;
857 env = s;
858
c27004ec 859 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
860
861 env = saved_env;
862}
863
864void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
865{
866 CPUX86State *saved_env;
867
868 saved_env = env;
869 env = s;
870
c27004ec 871 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
872
873 env = saved_env;
874}
875
e4533c7a
FB
876#endif /* TARGET_I386 */
877
67b915a5
FB
878#if !defined(CONFIG_SOFTMMU)
879
3fb2ded1
FB
880#if defined(TARGET_I386)
881
b56dad1c 882/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
883 the effective address of the memory exception. 'is_write' is 1 if a
884 write caused the exception and otherwise 0'. 'old_set' is the
885 signal set which should be restored */
2b413144 886static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
887 int is_write, sigset_t *old_set,
888 void *puc)
9de5e440 889{
a513fe19
FB
890 TranslationBlock *tb;
891 int ret;
68a79315 892
83479e77
FB
893 if (cpu_single_env)
894 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 895#if defined(DEBUG_SIGNAL)
bf3e8bf1
FB
896 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
897 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 898#endif
25eb4484 899 /* XXX: locking issue */
53a5960a 900 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
901 return 1;
902 }
fbf9eeb3 903
3fb2ded1 904 /* see if it is an MMU fault */
93a40ea9
FB
905 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
906 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
907 if (ret < 0)
908 return 0; /* not an MMU fault */
909 if (ret == 0)
910 return 1; /* the MMU fault was handled without causing real CPU fault */
911 /* now we have a real cpu fault */
a513fe19
FB
912 tb = tb_find_pc(pc);
913 if (tb) {
9de5e440
FB
914 /* the PC is inside the translated code. It means that we have
915 a virtual CPU fault */
bf3e8bf1 916 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 917 }
4cbf74b6 918 if (ret == 1) {
3fb2ded1 919#if 0
4cbf74b6
FB
920 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
921 env->eip, env->cr[2], env->error_code);
3fb2ded1 922#endif
4cbf74b6
FB
923 /* we restore the process signal mask as the sigreturn should
924 do it (XXX: use sigsetjmp) */
925 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 926 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
927 } else {
928 /* activate soft MMU for this block */
3f337316 929 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 930 cpu_resume_from_signal(env, puc);
4cbf74b6 931 }
3fb2ded1
FB
932 /* never comes here */
933 return 1;
934}
935
e4533c7a 936#elif defined(TARGET_ARM)
3fb2ded1 937static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
938 int is_write, sigset_t *old_set,
939 void *puc)
3fb2ded1 940{
68016c62
FB
941 TranslationBlock *tb;
942 int ret;
943
944 if (cpu_single_env)
945 env = cpu_single_env; /* XXX: find a correct solution for multithread */
946#if defined(DEBUG_SIGNAL)
947 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
948 pc, address, is_write, *(unsigned long *)old_set);
949#endif
9f0777ed 950 /* XXX: locking issue */
53a5960a 951 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
952 return 1;
953 }
68016c62
FB
954 /* see if it is an MMU fault */
955 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
956 if (ret < 0)
957 return 0; /* not an MMU fault */
958 if (ret == 0)
959 return 1; /* the MMU fault was handled without causing real CPU fault */
960 /* now we have a real cpu fault */
961 tb = tb_find_pc(pc);
962 if (tb) {
963 /* the PC is inside the translated code. It means that we have
964 a virtual CPU fault */
965 cpu_restore_state(tb, env, pc, puc);
966 }
967 /* we restore the process signal mask as the sigreturn should
968 do it (XXX: use sigsetjmp) */
969 sigprocmask(SIG_SETMASK, old_set, NULL);
970 cpu_loop_exit();
3fb2ded1 971}
93ac68bc
FB
972#elif defined(TARGET_SPARC)
973static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
974 int is_write, sigset_t *old_set,
975 void *puc)
93ac68bc 976{
68016c62
FB
977 TranslationBlock *tb;
978 int ret;
979
980 if (cpu_single_env)
981 env = cpu_single_env; /* XXX: find a correct solution for multithread */
982#if defined(DEBUG_SIGNAL)
983 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
984 pc, address, is_write, *(unsigned long *)old_set);
985#endif
b453b70b 986 /* XXX: locking issue */
53a5960a 987 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
988 return 1;
989 }
68016c62
FB
990 /* see if it is an MMU fault */
991 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
992 if (ret < 0)
993 return 0; /* not an MMU fault */
994 if (ret == 0)
995 return 1; /* the MMU fault was handled without causing real CPU fault */
996 /* now we have a real cpu fault */
997 tb = tb_find_pc(pc);
998 if (tb) {
999 /* the PC is inside the translated code. It means that we have
1000 a virtual CPU fault */
1001 cpu_restore_state(tb, env, pc, puc);
1002 }
1003 /* we restore the process signal mask as the sigreturn should
1004 do it (XXX: use sigsetjmp) */
1005 sigprocmask(SIG_SETMASK, old_set, NULL);
1006 cpu_loop_exit();
93ac68bc 1007}
67867308
FB
1008#elif defined (TARGET_PPC)
1009static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
1010 int is_write, sigset_t *old_set,
1011 void *puc)
67867308
FB
1012{
1013 TranslationBlock *tb;
ce09776b 1014 int ret;
67867308 1015
67867308
FB
1016 if (cpu_single_env)
1017 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308
FB
1018#if defined(DEBUG_SIGNAL)
1019 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1020 pc, address, is_write, *(unsigned long *)old_set);
1021#endif
1022 /* XXX: locking issue */
53a5960a 1023 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
1024 return 1;
1025 }
1026
ce09776b 1027 /* see if it is an MMU fault */
7f957d28 1028 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
1029 if (ret < 0)
1030 return 0; /* not an MMU fault */
1031 if (ret == 0)
1032 return 1; /* the MMU fault was handled without causing real CPU fault */
1033
67867308
FB
1034 /* now we have a real cpu fault */
1035 tb = tb_find_pc(pc);
1036 if (tb) {
1037 /* the PC is inside the translated code. It means that we have
1038 a virtual CPU fault */
bf3e8bf1 1039 cpu_restore_state(tb, env, pc, puc);
67867308 1040 }
ce09776b 1041 if (ret == 1) {
67867308 1042#if 0
ce09776b
FB
1043 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1044 env->nip, env->error_code, tb);
67867308
FB
1045#endif
1046 /* we restore the process signal mask as the sigreturn should
1047 do it (XXX: use sigsetjmp) */
bf3e8bf1 1048 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 1049 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
1050 } else {
1051 /* activate soft MMU for this block */
fbf9eeb3 1052 cpu_resume_from_signal(env, puc);
ce09776b 1053 }
67867308 1054 /* never comes here */
e6e5906b
PB
1055 return 1;
1056}
1057
1058#elif defined(TARGET_M68K)
1059static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1060 int is_write, sigset_t *old_set,
1061 void *puc)
1062{
1063 TranslationBlock *tb;
1064 int ret;
1065
1066 if (cpu_single_env)
1067 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1068#if defined(DEBUG_SIGNAL)
1069 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1070 pc, address, is_write, *(unsigned long *)old_set);
1071#endif
1072 /* XXX: locking issue */
1073 if (is_write && page_unprotect(address, pc, puc)) {
1074 return 1;
1075 }
1076 /* see if it is an MMU fault */
1077 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1078 if (ret < 0)
1079 return 0; /* not an MMU fault */
1080 if (ret == 0)
1081 return 1; /* the MMU fault was handled without causing real CPU fault */
1082 /* now we have a real cpu fault */
1083 tb = tb_find_pc(pc);
1084 if (tb) {
1085 /* the PC is inside the translated code. It means that we have
1086 a virtual CPU fault */
1087 cpu_restore_state(tb, env, pc, puc);
1088 }
1089 /* we restore the process signal mask as the sigreturn should
1090 do it (XXX: use sigsetjmp) */
1091 sigprocmask(SIG_SETMASK, old_set, NULL);
1092 cpu_loop_exit();
1093 /* never comes here */
67867308
FB
1094 return 1;
1095}
6af0bf9c
FB
1096
1097#elif defined (TARGET_MIPS)
1098static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1099 int is_write, sigset_t *old_set,
1100 void *puc)
1101{
1102 TranslationBlock *tb;
1103 int ret;
1104
1105 if (cpu_single_env)
1106 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1107#if defined(DEBUG_SIGNAL)
1108 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1109 pc, address, is_write, *(unsigned long *)old_set);
1110#endif
1111 /* XXX: locking issue */
53a5960a 1112 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1113 return 1;
1114 }
1115
1116 /* see if it is an MMU fault */
cc9442b9 1117 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1118 if (ret < 0)
1119 return 0; /* not an MMU fault */
1120 if (ret == 0)
1121 return 1; /* the MMU fault was handled without causing real CPU fault */
1122
1123 /* now we have a real cpu fault */
1124 tb = tb_find_pc(pc);
1125 if (tb) {
1126 /* the PC is inside the translated code. It means that we have
1127 a virtual CPU fault */
1128 cpu_restore_state(tb, env, pc, puc);
1129 }
1130 if (ret == 1) {
1131#if 0
1132 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1133 env->nip, env->error_code, tb);
1134#endif
1135 /* we restore the process signal mask as the sigreturn should
1136 do it (XXX: use sigsetjmp) */
1137 sigprocmask(SIG_SETMASK, old_set, NULL);
1138 do_raise_exception_err(env->exception_index, env->error_code);
1139 } else {
1140 /* activate soft MMU for this block */
1141 cpu_resume_from_signal(env, puc);
1142 }
1143 /* never comes here */
1144 return 1;
1145}
1146
fdf9b3e8
FB
1147#elif defined (TARGET_SH4)
1148static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1149 int is_write, sigset_t *old_set,
1150 void *puc)
1151{
1152 TranslationBlock *tb;
1153 int ret;
1154
1155 if (cpu_single_env)
1156 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1157#if defined(DEBUG_SIGNAL)
1158 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1159 pc, address, is_write, *(unsigned long *)old_set);
1160#endif
1161 /* XXX: locking issue */
1162 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1163 return 1;
1164 }
1165
1166 /* see if it is an MMU fault */
1167 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1168 if (ret < 0)
1169 return 0; /* not an MMU fault */
1170 if (ret == 0)
1171 return 1; /* the MMU fault was handled without causing real CPU fault */
1172
1173 /* now we have a real cpu fault */
eddf68a6
JM
1174 tb = tb_find_pc(pc);
1175 if (tb) {
1176 /* the PC is inside the translated code. It means that we have
1177 a virtual CPU fault */
1178 cpu_restore_state(tb, env, pc, puc);
1179 }
1180#if 0
1181 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1182 env->nip, env->error_code, tb);
1183#endif
1184 /* we restore the process signal mask as the sigreturn should
1185 do it (XXX: use sigsetjmp) */
1186 sigprocmask(SIG_SETMASK, old_set, NULL);
1187 cpu_loop_exit();
1188 /* never comes here */
1189 return 1;
1190}
1191
1192#elif defined (TARGET_ALPHA)
1193static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1194 int is_write, sigset_t *old_set,
1195 void *puc)
1196{
1197 TranslationBlock *tb;
1198 int ret;
1199
1200 if (cpu_single_env)
1201 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1202#if defined(DEBUG_SIGNAL)
1203 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1204 pc, address, is_write, *(unsigned long *)old_set);
1205#endif
1206 /* XXX: locking issue */
1207 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1208 return 1;
1209 }
1210
1211 /* see if it is an MMU fault */
1212 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1213 if (ret < 0)
1214 return 0; /* not an MMU fault */
1215 if (ret == 0)
1216 return 1; /* the MMU fault was handled without causing real CPU fault */
1217
1218 /* now we have a real cpu fault */
fdf9b3e8
FB
1219 tb = tb_find_pc(pc);
1220 if (tb) {
1221 /* the PC is inside the translated code. It means that we have
1222 a virtual CPU fault */
1223 cpu_restore_state(tb, env, pc, puc);
1224 }
fdf9b3e8
FB
1225#if 0
1226 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1227 env->nip, env->error_code, tb);
1228#endif
1229 /* we restore the process signal mask as the sigreturn should
1230 do it (XXX: use sigsetjmp) */
355fb23d
PB
1231 sigprocmask(SIG_SETMASK, old_set, NULL);
1232 cpu_loop_exit();
fdf9b3e8
FB
1233 /* never comes here */
1234 return 1;
1235}
e4533c7a
FB
1236#else
1237#error unsupported target CPU
1238#endif
9de5e440 1239
2b413144
FB
1240#if defined(__i386__)
1241
d8ecc0b9
FB
1242#if defined(__APPLE__)
1243# include <sys/ucontext.h>
1244
1245# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1246# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1247# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1248#else
1249# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1250# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1251# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1252#endif
1253
bf3e8bf1
FB
1254#if defined(USE_CODE_COPY)
1255static void cpu_send_trap(unsigned long pc, int trap,
1256 struct ucontext *uc)
1257{
1258 TranslationBlock *tb;
1259
1260 if (cpu_single_env)
1261 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1262 /* now we have a real cpu fault */
1263 tb = tb_find_pc(pc);
1264 if (tb) {
1265 /* the PC is inside the translated code. It means that we have
1266 a virtual CPU fault */
1267 cpu_restore_state(tb, env, pc, uc);
1268 }
1269 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1270 raise_exception_err(trap, env->error_code);
1271}
1272#endif
1273
5a7b542b 1274int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1275 void *puc)
9de5e440 1276{
5a7b542b 1277 siginfo_t *info = pinfo;
9de5e440
FB
1278 struct ucontext *uc = puc;
1279 unsigned long pc;
bf3e8bf1 1280 int trapno;
97eb5b14 1281
d691f669
FB
1282#ifndef REG_EIP
1283/* for glibc 2.1 */
fd6ce8f6
FB
1284#define REG_EIP EIP
1285#define REG_ERR ERR
1286#define REG_TRAPNO TRAPNO
d691f669 1287#endif
d8ecc0b9
FB
1288 pc = EIP_sig(uc);
1289 trapno = TRAP_sig(uc);
bf3e8bf1
FB
1290#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1291 if (trapno == 0x00 || trapno == 0x05) {
1292 /* send division by zero or bound exception */
1293 cpu_send_trap(pc, trapno, uc);
1294 return 1;
1295 } else
1296#endif
1297 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1298 trapno == 0xe ?
d8ecc0b9 1299 (ERROR_sig(uc) >> 1) & 1 : 0,
bf3e8bf1 1300 &uc->uc_sigmask, puc);
2b413144
FB
1301}
1302
bc51c5c9
FB
1303#elif defined(__x86_64__)
1304
5a7b542b 1305int cpu_signal_handler(int host_signum, void *pinfo,
bc51c5c9
FB
1306 void *puc)
1307{
5a7b542b 1308 siginfo_t *info = pinfo;
bc51c5c9
FB
1309 struct ucontext *uc = puc;
1310 unsigned long pc;
1311
1312 pc = uc->uc_mcontext.gregs[REG_RIP];
1313 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1314 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1315 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1316 &uc->uc_sigmask, puc);
1317}
1318
83fb7adf 1319#elif defined(__powerpc__)
2b413144 1320
83fb7adf
FB
1321/***********************************************************************
1322 * signal context platform-specific definitions
1323 * From Wine
1324 */
1325#ifdef linux
1326/* All Registers access - only for local access */
1327# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1328/* Gpr Registers access */
1329# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1330# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1331# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1332# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1333# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1334# define LR_sig(context) REG_sig(link, context) /* Link register */
1335# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1336/* Float Registers access */
1337# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1338# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1339/* Exception Registers access */
1340# define DAR_sig(context) REG_sig(dar, context)
1341# define DSISR_sig(context) REG_sig(dsisr, context)
1342# define TRAP_sig(context) REG_sig(trap, context)
1343#endif /* linux */
1344
1345#ifdef __APPLE__
1346# include <sys/ucontext.h>
1347typedef struct ucontext SIGCONTEXT;
1348/* All Registers access - only for local access */
1349# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1350# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1351# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1352# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1353/* Gpr Registers access */
1354# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1355# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1356# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1357# define CTR_sig(context) REG_sig(ctr, context)
1358# define XER_sig(context) REG_sig(xer, context) /* Link register */
1359# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1360# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1361/* Float Registers access */
1362# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1363# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1364/* Exception Registers access */
1365# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1366# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1367# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1368#endif /* __APPLE__ */
1369
5a7b542b 1370int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1371 void *puc)
2b413144 1372{
5a7b542b 1373 siginfo_t *info = pinfo;
25eb4484 1374 struct ucontext *uc = puc;
25eb4484 1375 unsigned long pc;
25eb4484
FB
1376 int is_write;
1377
83fb7adf 1378 pc = IAR_sig(uc);
25eb4484
FB
1379 is_write = 0;
1380#if 0
1381 /* ppc 4xx case */
83fb7adf 1382 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1383 is_write = 1;
1384#else
83fb7adf 1385 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1386 is_write = 1;
1387#endif
1388 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1389 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1390}
1391
2f87c607
FB
1392#elif defined(__alpha__)
1393
5a7b542b 1394int cpu_signal_handler(int host_signum, void *pinfo,
2f87c607
FB
1395 void *puc)
1396{
5a7b542b 1397 siginfo_t *info = pinfo;
2f87c607
FB
1398 struct ucontext *uc = puc;
1399 uint32_t *pc = uc->uc_mcontext.sc_pc;
1400 uint32_t insn = *pc;
1401 int is_write = 0;
1402
8c6939c0 1403 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1404 switch (insn >> 26) {
1405 case 0x0d: // stw
1406 case 0x0e: // stb
1407 case 0x0f: // stq_u
1408 case 0x24: // stf
1409 case 0x25: // stg
1410 case 0x26: // sts
1411 case 0x27: // stt
1412 case 0x2c: // stl
1413 case 0x2d: // stq
1414 case 0x2e: // stl_c
1415 case 0x2f: // stq_c
1416 is_write = 1;
1417 }
1418
1419 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1420 is_write, &uc->uc_sigmask, puc);
2f87c607 1421}
8c6939c0
FB
1422#elif defined(__sparc__)
1423
5a7b542b 1424int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1425 void *puc)
8c6939c0 1426{
5a7b542b 1427 siginfo_t *info = pinfo;
8c6939c0
FB
1428 uint32_t *regs = (uint32_t *)(info + 1);
1429 void *sigmask = (regs + 20);
1430 unsigned long pc;
1431 int is_write;
1432 uint32_t insn;
1433
1434 /* XXX: is there a standard glibc define ? */
1435 pc = regs[1];
1436 /* XXX: need kernel patch to get write flag faster */
1437 is_write = 0;
1438 insn = *(uint32_t *)pc;
1439 if ((insn >> 30) == 3) {
1440 switch((insn >> 19) & 0x3f) {
1441 case 0x05: // stb
1442 case 0x06: // sth
1443 case 0x04: // st
1444 case 0x07: // std
1445 case 0x24: // stf
1446 case 0x27: // stdf
1447 case 0x25: // stfsr
1448 is_write = 1;
1449 break;
1450 }
1451 }
1452 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1453 is_write, sigmask, NULL);
8c6939c0
FB
1454}
1455
1456#elif defined(__arm__)
1457
5a7b542b 1458int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1459 void *puc)
8c6939c0 1460{
5a7b542b 1461 siginfo_t *info = pinfo;
8c6939c0
FB
1462 struct ucontext *uc = puc;
1463 unsigned long pc;
1464 int is_write;
1465
1466 pc = uc->uc_mcontext.gregs[R15];
1467 /* XXX: compute is_write */
1468 is_write = 0;
1469 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1470 is_write,
f3a9676a 1471 &uc->uc_sigmask, puc);
8c6939c0
FB
1472}
1473
38e584a0
FB
1474#elif defined(__mc68000)
1475
5a7b542b 1476int cpu_signal_handler(int host_signum, void *pinfo,
38e584a0
FB
1477 void *puc)
1478{
5a7b542b 1479 siginfo_t *info = pinfo;
38e584a0
FB
1480 struct ucontext *uc = puc;
1481 unsigned long pc;
1482 int is_write;
1483
1484 pc = uc->uc_mcontext.gregs[16];
1485 /* XXX: compute is_write */
1486 is_write = 0;
1487 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1488 is_write,
bf3e8bf1 1489 &uc->uc_sigmask, puc);
38e584a0
FB
1490}
1491
b8076a74
FB
1492#elif defined(__ia64)
1493
1494#ifndef __ISR_VALID
1495 /* This ought to be in <bits/siginfo.h>... */
1496# define __ISR_VALID 1
b8076a74
FB
1497#endif
1498
5a7b542b 1499int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
b8076a74 1500{
5a7b542b 1501 siginfo_t *info = pinfo;
b8076a74
FB
1502 struct ucontext *uc = puc;
1503 unsigned long ip;
1504 int is_write = 0;
1505
1506 ip = uc->uc_mcontext.sc_ip;
1507 switch (host_signum) {
1508 case SIGILL:
1509 case SIGFPE:
1510 case SIGSEGV:
1511 case SIGBUS:
1512 case SIGTRAP:
fd4a43e4 1513 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1514 /* ISR.W (write-access) is bit 33: */
1515 is_write = (info->si_isr >> 33) & 1;
1516 break;
1517
1518 default:
1519 break;
1520 }
1521 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1522 is_write,
1523 &uc->uc_sigmask, puc);
1524}
1525
90cb9493
FB
1526#elif defined(__s390__)
1527
5a7b542b 1528int cpu_signal_handler(int host_signum, void *pinfo,
90cb9493
FB
1529 void *puc)
1530{
5a7b542b 1531 siginfo_t *info = pinfo;
90cb9493
FB
1532 struct ucontext *uc = puc;
1533 unsigned long pc;
1534 int is_write;
1535
1536 pc = uc->uc_mcontext.psw.addr;
1537 /* XXX: compute is_write */
1538 is_write = 0;
1539 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1540 is_write,
1541 &uc->uc_sigmask, puc);
1542}
1543
9de5e440 1544#else
2b413144 1545
3fb2ded1 1546#error host CPU specific signal handler needed
2b413144 1547
9de5e440 1548#endif
67b915a5
FB
1549
1550#endif /* !defined(CONFIG_SOFTMMU) */