]> git.proxmox.com Git - qemu.git/blame - cpu-exec.c
Align stack when loading bFLT binaries.
[qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
e6e5906b 43#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
e4533c7a
FB
44/* XXX: unify with i386 target */
45void cpu_loop_exit(void)
46{
47 longjmp(env->jmp_env, 1);
48}
49#endif
e6e5906b 50#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
3475187d
FB
51#define reg_T2
52#endif
e4533c7a 53
fbf9eeb3
FB
54/* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57void cpu_resume_from_signal(CPUState *env1, void *puc)
58{
59#if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61#endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67#if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72#endif
73 longjmp(env->jmp_env, 1);
74}
75
8a40a180
FB
76
77static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80{
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
15388002 129 tb_invalidated_flag = 1;
8a40a180
FB
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
8a40a180
FB
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151}
152
153static inline TranslationBlock *tb_find_fast(void)
154{
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162#if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167#elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
40f137e1
PB
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
8a40a180
FB
174 cs_base = 0;
175 pc = env->regs[15];
176#elif defined(TARGET_SPARC)
177#ifdef TARGET_SPARC64
a80dde08
FB
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
8a40a180 181#else
a80dde08
FB
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184 | env->psrs;
8a40a180
FB
185#endif
186 cs_base = env->npc;
187 pc = env->pc;
188#elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193#elif defined(TARGET_MIPS)
56b19403 194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 195 cs_base = 0;
8a40a180 196 pc = env->PC;
e6e5906b
PB
197#elif defined(TARGET_M68K)
198 flags = env->fpcr & M68K_FPCR_PREC;
199 cs_base = 0;
200 pc = env->pc;
fdf9b3e8
FB
201#elif defined(TARGET_SH4)
202 flags = env->sr & (SR_MD | SR_RB);
203 cs_base = 0; /* XXXXX */
204 pc = env->pc;
8a40a180
FB
205#else
206#error unsupported CPU
207#endif
208 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210 tb->flags != flags, 0)) {
211 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
218 T0 = 0;
219 }
8a40a180
FB
220 }
221 return tb;
222}
223
224
7d13299d
FB
225/* main execution loop */
226
e4533c7a 227int cpu_exec(CPUState *env1)
7d13299d 228{
1057eaa7
PB
229#define DECLARE_HOST_REGS 1
230#include "hostregs_helper.h"
231#if defined(TARGET_SPARC)
3475187d
FB
232#if defined(reg_REGWPTR)
233 uint32_t *saved_regwptr;
234#endif
235#endif
fdbb4691 236#if defined(__sparc__) && !defined(HOST_SOLARIS)
b49d07ba
TS
237 int saved_i7;
238 target_ulong tmp_T0;
04369ff2 239#endif
8a40a180 240 int ret, interrupt_request;
7d13299d 241 void (*gen_func)(void);
8a40a180 242 TranslationBlock *tb;
c27004ec 243 uint8_t *tc_ptr;
8c6939c0 244
5a1e3cfc
FB
245#if defined(TARGET_I386)
246 /* handle exit of HALTED state */
247 if (env1->hflags & HF_HALTED_MASK) {
248 /* disable halt condition */
249 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250 (env1->eflags & IF_MASK)) {
251 env1->hflags &= ~HF_HALTED_MASK;
252 } else {
253 return EXCP_HALTED;
e80e1cc4
FB
254 }
255 }
256#elif defined(TARGET_PPC)
50443c98 257 if (env1->halted) {
e80e1cc4
FB
258 if (env1->msr[MSR_EE] &&
259 (env1->interrupt_request &
260 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
50443c98 261 env1->halted = 0;
e80e1cc4
FB
262 } else {
263 return EXCP_HALTED;
5a1e3cfc
FB
264 }
265 }
ba3c64fb
FB
266#elif defined(TARGET_SPARC)
267 if (env1->halted) {
268 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269 (env1->psret != 0)) {
270 env1->halted = 0;
271 } else {
272 return EXCP_HALTED;
273 }
274 }
9332f9da
FB
275#elif defined(TARGET_ARM)
276 if (env1->halted) {
277 /* An interrupt wakes the CPU even if the I and F CPSR bits are
278 set. */
279 if (env1->interrupt_request
280 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
281 env1->halted = 0;
282 } else {
283 return EXCP_HALTED;
284 }
285 }
6810e154
FB
286#elif defined(TARGET_MIPS)
287 if (env1->halted) {
288 if (env1->interrupt_request &
289 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
290 env1->halted = 0;
291 } else {
292 return EXCP_HALTED;
293 }
294 }
5a1e3cfc
FB
295#endif
296
6a00d601
FB
297 cpu_single_env = env1;
298
7d13299d 299 /* first we save global registers */
1057eaa7
PB
300#define SAVE_HOST_REGS 1
301#include "hostregs_helper.h"
c27004ec 302 env = env1;
fdbb4691 303#if defined(__sparc__) && !defined(HOST_SOLARIS)
e4533c7a
FB
304 /* we also save i7 because longjmp may not restore it */
305 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
306#endif
307
308#if defined(TARGET_I386)
0d1a29f9 309 env_to_regs();
9de5e440 310 /* put eflags in CPU temporary format */
fc2b4c48
FB
311 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 313 CC_OP = CC_OP_EFLAGS;
fc2b4c48 314 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 315#elif defined(TARGET_ARM)
93ac68bc 316#elif defined(TARGET_SPARC)
3475187d
FB
317#if defined(reg_REGWPTR)
318 saved_regwptr = REGWPTR;
319#endif
67867308 320#elif defined(TARGET_PPC)
e6e5906b
PB
321#elif defined(TARGET_M68K)
322 env->cc_op = CC_OP_FLAGS;
323 env->cc_dest = env->sr & 0xf;
324 env->cc_x = (env->sr >> 4) & 1;
6af0bf9c 325#elif defined(TARGET_MIPS)
fdf9b3e8
FB
326#elif defined(TARGET_SH4)
327 /* XXXXX */
e4533c7a
FB
328#else
329#error unsupported target CPU
330#endif
3fb2ded1 331 env->exception_index = -1;
9d27abd9 332
7d13299d 333 /* prepare setjmp context for exception handling */
3fb2ded1
FB
334 for(;;) {
335 if (setjmp(env->jmp_env) == 0) {
ee8b7021 336 env->current_tb = NULL;
3fb2ded1
FB
337 /* if an exception is pending, we execute it here */
338 if (env->exception_index >= 0) {
339 if (env->exception_index >= EXCP_INTERRUPT) {
340 /* exit request from the cpu execution loop */
341 ret = env->exception_index;
342 break;
343 } else if (env->user_mode_only) {
344 /* if user mode only, we simulate a fake exception
9f083493 345 which will be handled outside the cpu execution
3fb2ded1 346 loop */
83479e77 347#if defined(TARGET_I386)
3fb2ded1
FB
348 do_interrupt_user(env->exception_index,
349 env->exception_is_int,
350 env->error_code,
351 env->exception_next_eip);
83479e77 352#endif
3fb2ded1
FB
353 ret = env->exception_index;
354 break;
355 } else {
83479e77 356#if defined(TARGET_I386)
3fb2ded1
FB
357 /* simulate a real cpu exception. On i386, it can
358 trigger new exceptions, but we do not handle
359 double or triple faults yet. */
360 do_interrupt(env->exception_index,
361 env->exception_is_int,
362 env->error_code,
d05e66d2 363 env->exception_next_eip, 0);
ce09776b
FB
364#elif defined(TARGET_PPC)
365 do_interrupt(env);
6af0bf9c
FB
366#elif defined(TARGET_MIPS)
367 do_interrupt(env);
e95c8d51 368#elif defined(TARGET_SPARC)
1a0c3292 369 do_interrupt(env->exception_index);
b5ff1b31
FB
370#elif defined(TARGET_ARM)
371 do_interrupt(env);
fdf9b3e8
FB
372#elif defined(TARGET_SH4)
373 do_interrupt(env);
83479e77 374#endif
3fb2ded1
FB
375 }
376 env->exception_index = -1;
9df217a3
FB
377 }
378#ifdef USE_KQEMU
379 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
380 int ret;
381 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382 ret = kqemu_cpu_exec(env);
383 /* put eflags in CPU temporary format */
384 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385 DF = 1 - (2 * ((env->eflags >> 10) & 1));
386 CC_OP = CC_OP_EFLAGS;
387 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388 if (ret == 1) {
389 /* exception */
390 longjmp(env->jmp_env, 1);
391 } else if (ret == 2) {
392 /* softmmu execution needed */
393 } else {
394 if (env->interrupt_request != 0) {
395 /* hardware interrupt will be executed just after */
396 } else {
397 /* otherwise, we restart */
398 longjmp(env->jmp_env, 1);
399 }
400 }
3fb2ded1 401 }
9df217a3
FB
402#endif
403
3fb2ded1
FB
404 T0 = 0; /* force lookup of first TB */
405 for(;;) {
fdbb4691 406#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1
FB
407 /* g1 can be modified by some libc? functions */
408 tmp_T0 = T0;
8c6939c0 409#endif
68a79315 410 interrupt_request = env->interrupt_request;
2e255c6b 411 if (__builtin_expect(interrupt_request, 0)) {
68a79315 412#if defined(TARGET_I386)
3b21e03e
FB
413 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
414 !(env->hflags & HF_SMM_MASK)) {
415 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
416 do_smm_enter();
417#if defined(__sparc__) && !defined(HOST_SOLARIS)
418 tmp_T0 = 0;
419#else
420 T0 = 0;
421#endif
422 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
3f337316
FB
423 (env->eflags & IF_MASK) &&
424 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 425 int intno;
fbf9eeb3 426 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
a541f297 427 intno = cpu_get_pic_interrupt(env);
f193c797 428 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
429 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
430 }
d05e66d2 431 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
432 /* ensure that no TB jump will be modified as
433 the program flow was changed */
fdbb4691 434#if defined(__sparc__) && !defined(HOST_SOLARIS)
907a5b26
FB
435 tmp_T0 = 0;
436#else
437 T0 = 0;
438#endif
68a79315 439 }
ce09776b 440#elif defined(TARGET_PPC)
9fddaa0c
FB
441#if 0
442 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
443 cpu_ppc_reset(env);
444 }
445#endif
446 if (msr_ee != 0) {
8a40a180 447 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
9fddaa0c
FB
448 /* Raise it */
449 env->exception_index = EXCP_EXTERNAL;
450 env->error_code = 0;
ce09776b 451 do_interrupt(env);
8a40a180 452 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 453#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
454 tmp_T0 = 0;
455#else
456 T0 = 0;
457#endif
458 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
459 /* Raise it */
460 env->exception_index = EXCP_DECR;
461 env->error_code = 0;
462 do_interrupt(env);
9fddaa0c 463 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
fdbb4691 464#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
465 tmp_T0 = 0;
466#else
467 T0 = 0;
468#endif
469 }
ce09776b 470 }
6af0bf9c
FB
471#elif defined(TARGET_MIPS)
472 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
473 (env->CP0_Status & (1 << CP0St_IE)) &&
7ebab699 474 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
6af0bf9c
FB
475 !(env->hflags & MIPS_HFLAG_EXL) &&
476 !(env->hflags & MIPS_HFLAG_ERL) &&
477 !(env->hflags & MIPS_HFLAG_DM)) {
478 /* Raise it */
479 env->exception_index = EXCP_EXT_INTERRUPT;
480 env->error_code = 0;
481 do_interrupt(env);
fdbb4691 482#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
483 tmp_T0 = 0;
484#else
485 T0 = 0;
486#endif
6af0bf9c 487 }
e95c8d51 488#elif defined(TARGET_SPARC)
66321a11
FB
489 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
490 (env->psret != 0)) {
491 int pil = env->interrupt_index & 15;
492 int type = env->interrupt_index & 0xf0;
493
494 if (((type == TT_EXTINT) &&
495 (pil == 15 || pil > env->psrpil)) ||
496 type != TT_EXTINT) {
497 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
498 do_interrupt(env->interrupt_index);
499 env->interrupt_index = 0;
fdbb4691 500#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
501 tmp_T0 = 0;
502#else
503 T0 = 0;
504#endif
66321a11 505 }
e95c8d51
FB
506 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
507 //do_interrupt(0, 0, 0, 0, 0);
508 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
ba3c64fb 509 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
df52b000
FB
510 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
511 env->halted = 1;
512 env->exception_index = EXCP_HLT;
513 cpu_loop_exit();
ba3c64fb 514 }
b5ff1b31
FB
515#elif defined(TARGET_ARM)
516 if (interrupt_request & CPU_INTERRUPT_FIQ
517 && !(env->uncached_cpsr & CPSR_F)) {
518 env->exception_index = EXCP_FIQ;
519 do_interrupt(env);
520 }
521 if (interrupt_request & CPU_INTERRUPT_HARD
522 && !(env->uncached_cpsr & CPSR_I)) {
523 env->exception_index = EXCP_IRQ;
524 do_interrupt(env);
525 }
fdf9b3e8
FB
526#elif defined(TARGET_SH4)
527 /* XXXXX */
68a79315 528#endif
9d05095e
FB
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
b5ff1b31 531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
fdbb4691 535#if defined(__sparc__) && !defined(HOST_SOLARIS)
bf3e8bf1
FB
536 tmp_T0 = 0;
537#else
538 T0 = 0;
539#endif
540 }
68a79315
FB
541 if (interrupt_request & CPU_INTERRUPT_EXIT) {
542 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
543 env->exception_index = EXCP_INTERRUPT;
544 cpu_loop_exit();
545 }
3fb2ded1 546 }
7d13299d 547#ifdef DEBUG_EXEC
b5ff1b31 548 if ((loglevel & CPU_LOG_TB_CPU)) {
e4533c7a 549#if defined(TARGET_I386)
3fb2ded1 550 /* restore flags in standard format */
fc9f715d 551#ifdef reg_EAX
3fb2ded1 552 env->regs[R_EAX] = EAX;
fc9f715d
FB
553#endif
554#ifdef reg_EBX
3fb2ded1 555 env->regs[R_EBX] = EBX;
fc9f715d
FB
556#endif
557#ifdef reg_ECX
3fb2ded1 558 env->regs[R_ECX] = ECX;
fc9f715d
FB
559#endif
560#ifdef reg_EDX
3fb2ded1 561 env->regs[R_EDX] = EDX;
fc9f715d
FB
562#endif
563#ifdef reg_ESI
3fb2ded1 564 env->regs[R_ESI] = ESI;
fc9f715d
FB
565#endif
566#ifdef reg_EDI
3fb2ded1 567 env->regs[R_EDI] = EDI;
fc9f715d
FB
568#endif
569#ifdef reg_EBP
3fb2ded1 570 env->regs[R_EBP] = EBP;
fc9f715d
FB
571#endif
572#ifdef reg_ESP
3fb2ded1 573 env->regs[R_ESP] = ESP;
fc9f715d 574#endif
3fb2ded1 575 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 576 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 577 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 578#elif defined(TARGET_ARM)
7fe48483 579 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 580#elif defined(TARGET_SPARC)
3475187d
FB
581 REGWPTR = env->regbase + (env->cwp * 16);
582 env->regwptr = REGWPTR;
583 cpu_dump_state(env, logfile, fprintf, 0);
67867308 584#elif defined(TARGET_PPC)
7fe48483 585 cpu_dump_state(env, logfile, fprintf, 0);
e6e5906b
PB
586#elif defined(TARGET_M68K)
587 cpu_m68k_flush_flags(env, env->cc_op);
588 env->cc_op = CC_OP_FLAGS;
589 env->sr = (env->sr & 0xffe0)
590 | env->cc_dest | (env->cc_x << 4);
591 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
592#elif defined(TARGET_MIPS)
593 cpu_dump_state(env, logfile, fprintf, 0);
fdf9b3e8
FB
594#elif defined(TARGET_SH4)
595 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a
FB
596#else
597#error unsupported target CPU
598#endif
3fb2ded1 599 }
7d13299d 600#endif
8a40a180 601 tb = tb_find_fast();
9d27abd9 602#ifdef DEBUG_EXEC
c1135f61 603 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
604 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
605 (long)tb->tc_ptr, tb->pc,
606 lookup_symbol(tb->pc));
3fb2ded1 607 }
9d27abd9 608#endif
fdbb4691 609#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1 610 T0 = tmp_T0;
8c6939c0 611#endif
8a40a180
FB
612 /* see if we can patch the calling TB. When the TB
613 spans two pages, we cannot safely do a direct
614 jump. */
c27004ec 615 {
8a40a180 616 if (T0 != 0 &&
f32fc648
FB
617#if USE_KQEMU
618 (env->kqemu_enabled != 2) &&
619#endif
8a40a180 620 tb->page_addr[1] == -1
bf3e8bf1
FB
621#if defined(TARGET_I386) && defined(USE_CODE_COPY)
622 && (tb->cflags & CF_CODE_COPY) ==
623 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
624#endif
625 ) {
3fb2ded1 626 spin_lock(&tb_lock);
c27004ec 627 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
628#if defined(USE_CODE_COPY)
629 /* propagates the FP use info */
630 ((TranslationBlock *)(T0 & ~3))->cflags |=
631 (tb->cflags & CF_FP_USED);
632#endif
3fb2ded1
FB
633 spin_unlock(&tb_lock);
634 }
c27004ec 635 }
3fb2ded1 636 tc_ptr = tb->tc_ptr;
83479e77 637 env->current_tb = tb;
3fb2ded1
FB
638 /* execute the generated code */
639 gen_func = (void *)tc_ptr;
8c6939c0 640#if defined(__sparc__)
3fb2ded1
FB
641 __asm__ __volatile__("call %0\n\t"
642 "mov %%o7,%%i0"
643 : /* no outputs */
644 : "r" (gen_func)
fdbb4691
FB
645 : "i0", "i1", "i2", "i3", "i4", "i5",
646 "l0", "l1", "l2", "l3", "l4", "l5",
647 "l6", "l7");
8c6939c0 648#elif defined(__arm__)
3fb2ded1
FB
649 asm volatile ("mov pc, %0\n\t"
650 ".global exec_loop\n\t"
651 "exec_loop:\n\t"
652 : /* no outputs */
653 : "r" (gen_func)
654 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
655#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
656{
657 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
658 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
659 save_native_fp_state(env);
660 }
bf3e8bf1
FB
661 gen_func();
662 } else {
97eb5b14
FB
663 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
664 restore_native_fp_state(env);
665 }
bf3e8bf1
FB
666 /* we work with native eflags */
667 CC_SRC = cc_table[CC_OP].compute_all();
668 CC_OP = CC_OP_EFLAGS;
669 asm(".globl exec_loop\n"
670 "\n"
671 "debug1:\n"
672 " pushl %%ebp\n"
673 " fs movl %10, %9\n"
674 " fs movl %11, %%eax\n"
675 " andl $0x400, %%eax\n"
676 " fs orl %8, %%eax\n"
677 " pushl %%eax\n"
678 " popf\n"
679 " fs movl %%esp, %12\n"
680 " fs movl %0, %%eax\n"
681 " fs movl %1, %%ecx\n"
682 " fs movl %2, %%edx\n"
683 " fs movl %3, %%ebx\n"
684 " fs movl %4, %%esp\n"
685 " fs movl %5, %%ebp\n"
686 " fs movl %6, %%esi\n"
687 " fs movl %7, %%edi\n"
688 " fs jmp *%9\n"
689 "exec_loop:\n"
690 " fs movl %%esp, %4\n"
691 " fs movl %12, %%esp\n"
692 " fs movl %%eax, %0\n"
693 " fs movl %%ecx, %1\n"
694 " fs movl %%edx, %2\n"
695 " fs movl %%ebx, %3\n"
696 " fs movl %%ebp, %5\n"
697 " fs movl %%esi, %6\n"
698 " fs movl %%edi, %7\n"
699 " pushf\n"
700 " popl %%eax\n"
701 " movl %%eax, %%ecx\n"
702 " andl $0x400, %%ecx\n"
703 " shrl $9, %%ecx\n"
704 " andl $0x8d5, %%eax\n"
705 " fs movl %%eax, %8\n"
706 " movl $1, %%eax\n"
707 " subl %%ecx, %%eax\n"
708 " fs movl %%eax, %11\n"
709 " fs movl %9, %%ebx\n" /* get T0 value */
710 " popl %%ebp\n"
711 :
712 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
713 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
714 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
715 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
716 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
717 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
718 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
719 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
720 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
721 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
722 "a" (gen_func),
723 "m" (*(uint8_t *)offsetof(CPUState, df)),
724 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
725 : "%ecx", "%edx"
726 );
727 }
728}
b8076a74
FB
729#elif defined(__ia64)
730 struct fptr {
731 void *ip;
732 void *gp;
733 } fp;
734
735 fp.ip = tc_ptr;
736 fp.gp = code_gen_buffer + 2 * (1 << 20);
737 (*(void (*)(void)) &fp)();
ae228531 738#else
3fb2ded1 739 gen_func();
ae228531 740#endif
83479e77 741 env->current_tb = NULL;
4cbf74b6
FB
742 /* reset soft MMU for next block (it can currently
743 only be set by a memory fault) */
744#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
745 if (env->hflags & HF_SOFTMMU_MASK) {
746 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
747 /* do not allow linking to another block */
748 T0 = 0;
749 }
f32fc648
FB
750#endif
751#if defined(USE_KQEMU)
752#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
753 if (kqemu_is_ok(env) &&
754 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
755 cpu_loop_exit();
756 }
4cbf74b6 757#endif
3fb2ded1
FB
758 }
759 } else {
0d1a29f9 760 env_to_regs();
7d13299d 761 }
3fb2ded1
FB
762 } /* for(;;) */
763
7d13299d 764
e4533c7a 765#if defined(TARGET_I386)
97eb5b14
FB
766#if defined(USE_CODE_COPY)
767 if (env->native_fp_regs) {
768 save_native_fp_state(env);
769 }
770#endif
9de5e440 771 /* restore flags in standard format */
fc2b4c48 772 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
e4533c7a 773#elif defined(TARGET_ARM)
b7bcbe95 774 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 775#elif defined(TARGET_SPARC)
3475187d
FB
776#if defined(reg_REGWPTR)
777 REGWPTR = saved_regwptr;
778#endif
67867308 779#elif defined(TARGET_PPC)
e6e5906b
PB
780#elif defined(TARGET_M68K)
781 cpu_m68k_flush_flags(env, env->cc_op);
782 env->cc_op = CC_OP_FLAGS;
783 env->sr = (env->sr & 0xffe0)
784 | env->cc_dest | (env->cc_x << 4);
6af0bf9c 785#elif defined(TARGET_MIPS)
fdf9b3e8
FB
786#elif defined(TARGET_SH4)
787 /* XXXXX */
e4533c7a
FB
788#else
789#error unsupported target CPU
790#endif
1057eaa7
PB
791
792 /* restore global registers */
fdbb4691 793#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 794 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 795#endif
1057eaa7
PB
796#include "hostregs_helper.h"
797
6a00d601
FB
798 /* fail safe : never use cpu_single_env outside cpu_exec() */
799 cpu_single_env = NULL;
7d13299d
FB
800 return ret;
801}
6dbad63e 802
fbf9eeb3
FB
803/* must only be called from the generated code as an exception can be
804 generated */
805void tb_invalidate_page_range(target_ulong start, target_ulong end)
806{
dc5d0b3d
FB
807 /* XXX: cannot enable it yet because it yields to MMU exception
808 where NIP != read address on PowerPC */
809#if 0
fbf9eeb3
FB
810 target_ulong phys_addr;
811 phys_addr = get_phys_addr_code(env, start);
812 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 813#endif
fbf9eeb3
FB
814}
815
1a18c71b 816#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 817
6dbad63e
FB
818void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
819{
820 CPUX86State *saved_env;
821
822 saved_env = env;
823 env = s;
a412ac57 824 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 825 selector &= 0xffff;
2e255c6b 826 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 827 (selector << 4), 0xffff, 0);
a513fe19 828 } else {
b453b70b 829 load_seg(seg_reg, selector);
a513fe19 830 }
6dbad63e
FB
831 env = saved_env;
832}
9de5e440 833
d0a1ffc9
FB
834void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
835{
836 CPUX86State *saved_env;
837
838 saved_env = env;
839 env = s;
840
c27004ec 841 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
842
843 env = saved_env;
844}
845
846void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
847{
848 CPUX86State *saved_env;
849
850 saved_env = env;
851 env = s;
852
c27004ec 853 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
854
855 env = saved_env;
856}
857
e4533c7a
FB
858#endif /* TARGET_I386 */
859
67b915a5
FB
860#if !defined(CONFIG_SOFTMMU)
861
3fb2ded1
FB
862#if defined(TARGET_I386)
863
b56dad1c 864/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
865 the effective address of the memory exception. 'is_write' is 1 if a
866 write caused the exception and otherwise 0'. 'old_set' is the
867 signal set which should be restored */
2b413144 868static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
869 int is_write, sigset_t *old_set,
870 void *puc)
9de5e440 871{
a513fe19
FB
872 TranslationBlock *tb;
873 int ret;
68a79315 874
83479e77
FB
875 if (cpu_single_env)
876 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 877#if defined(DEBUG_SIGNAL)
bf3e8bf1
FB
878 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
879 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 880#endif
25eb4484 881 /* XXX: locking issue */
53a5960a 882 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
883 return 1;
884 }
fbf9eeb3 885
3fb2ded1 886 /* see if it is an MMU fault */
93a40ea9
FB
887 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
888 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
889 if (ret < 0)
890 return 0; /* not an MMU fault */
891 if (ret == 0)
892 return 1; /* the MMU fault was handled without causing real CPU fault */
893 /* now we have a real cpu fault */
a513fe19
FB
894 tb = tb_find_pc(pc);
895 if (tb) {
9de5e440
FB
896 /* the PC is inside the translated code. It means that we have
897 a virtual CPU fault */
bf3e8bf1 898 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 899 }
4cbf74b6 900 if (ret == 1) {
3fb2ded1 901#if 0
4cbf74b6
FB
902 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
903 env->eip, env->cr[2], env->error_code);
3fb2ded1 904#endif
4cbf74b6
FB
905 /* we restore the process signal mask as the sigreturn should
906 do it (XXX: use sigsetjmp) */
907 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 908 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
909 } else {
910 /* activate soft MMU for this block */
3f337316 911 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 912 cpu_resume_from_signal(env, puc);
4cbf74b6 913 }
3fb2ded1
FB
914 /* never comes here */
915 return 1;
916}
917
e4533c7a 918#elif defined(TARGET_ARM)
3fb2ded1 919static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
920 int is_write, sigset_t *old_set,
921 void *puc)
3fb2ded1 922{
68016c62
FB
923 TranslationBlock *tb;
924 int ret;
925
926 if (cpu_single_env)
927 env = cpu_single_env; /* XXX: find a correct solution for multithread */
928#if defined(DEBUG_SIGNAL)
929 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
930 pc, address, is_write, *(unsigned long *)old_set);
931#endif
9f0777ed 932 /* XXX: locking issue */
53a5960a 933 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
934 return 1;
935 }
68016c62
FB
936 /* see if it is an MMU fault */
937 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
938 if (ret < 0)
939 return 0; /* not an MMU fault */
940 if (ret == 0)
941 return 1; /* the MMU fault was handled without causing real CPU fault */
942 /* now we have a real cpu fault */
943 tb = tb_find_pc(pc);
944 if (tb) {
945 /* the PC is inside the translated code. It means that we have
946 a virtual CPU fault */
947 cpu_restore_state(tb, env, pc, puc);
948 }
949 /* we restore the process signal mask as the sigreturn should
950 do it (XXX: use sigsetjmp) */
951 sigprocmask(SIG_SETMASK, old_set, NULL);
952 cpu_loop_exit();
3fb2ded1 953}
93ac68bc
FB
954#elif defined(TARGET_SPARC)
955static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
956 int is_write, sigset_t *old_set,
957 void *puc)
93ac68bc 958{
68016c62
FB
959 TranslationBlock *tb;
960 int ret;
961
962 if (cpu_single_env)
963 env = cpu_single_env; /* XXX: find a correct solution for multithread */
964#if defined(DEBUG_SIGNAL)
965 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
966 pc, address, is_write, *(unsigned long *)old_set);
967#endif
b453b70b 968 /* XXX: locking issue */
53a5960a 969 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
970 return 1;
971 }
68016c62
FB
972 /* see if it is an MMU fault */
973 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
974 if (ret < 0)
975 return 0; /* not an MMU fault */
976 if (ret == 0)
977 return 1; /* the MMU fault was handled without causing real CPU fault */
978 /* now we have a real cpu fault */
979 tb = tb_find_pc(pc);
980 if (tb) {
981 /* the PC is inside the translated code. It means that we have
982 a virtual CPU fault */
983 cpu_restore_state(tb, env, pc, puc);
984 }
985 /* we restore the process signal mask as the sigreturn should
986 do it (XXX: use sigsetjmp) */
987 sigprocmask(SIG_SETMASK, old_set, NULL);
988 cpu_loop_exit();
93ac68bc 989}
67867308
FB
990#elif defined (TARGET_PPC)
991static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
992 int is_write, sigset_t *old_set,
993 void *puc)
67867308
FB
994{
995 TranslationBlock *tb;
ce09776b 996 int ret;
67867308 997
67867308
FB
998 if (cpu_single_env)
999 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308
FB
1000#if defined(DEBUG_SIGNAL)
1001 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1002 pc, address, is_write, *(unsigned long *)old_set);
1003#endif
1004 /* XXX: locking issue */
53a5960a 1005 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
1006 return 1;
1007 }
1008
ce09776b 1009 /* see if it is an MMU fault */
7f957d28 1010 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
1011 if (ret < 0)
1012 return 0; /* not an MMU fault */
1013 if (ret == 0)
1014 return 1; /* the MMU fault was handled without causing real CPU fault */
1015
67867308
FB
1016 /* now we have a real cpu fault */
1017 tb = tb_find_pc(pc);
1018 if (tb) {
1019 /* the PC is inside the translated code. It means that we have
1020 a virtual CPU fault */
bf3e8bf1 1021 cpu_restore_state(tb, env, pc, puc);
67867308 1022 }
ce09776b 1023 if (ret == 1) {
67867308 1024#if 0
ce09776b
FB
1025 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1026 env->nip, env->error_code, tb);
67867308
FB
1027#endif
1028 /* we restore the process signal mask as the sigreturn should
1029 do it (XXX: use sigsetjmp) */
bf3e8bf1 1030 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 1031 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
1032 } else {
1033 /* activate soft MMU for this block */
fbf9eeb3 1034 cpu_resume_from_signal(env, puc);
ce09776b 1035 }
67867308 1036 /* never comes here */
e6e5906b
PB
1037 return 1;
1038}
1039
1040#elif defined(TARGET_M68K)
1041static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042 int is_write, sigset_t *old_set,
1043 void *puc)
1044{
1045 TranslationBlock *tb;
1046 int ret;
1047
1048 if (cpu_single_env)
1049 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050#if defined(DEBUG_SIGNAL)
1051 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1052 pc, address, is_write, *(unsigned long *)old_set);
1053#endif
1054 /* XXX: locking issue */
1055 if (is_write && page_unprotect(address, pc, puc)) {
1056 return 1;
1057 }
1058 /* see if it is an MMU fault */
1059 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1060 if (ret < 0)
1061 return 0; /* not an MMU fault */
1062 if (ret == 0)
1063 return 1; /* the MMU fault was handled without causing real CPU fault */
1064 /* now we have a real cpu fault */
1065 tb = tb_find_pc(pc);
1066 if (tb) {
1067 /* the PC is inside the translated code. It means that we have
1068 a virtual CPU fault */
1069 cpu_restore_state(tb, env, pc, puc);
1070 }
1071 /* we restore the process signal mask as the sigreturn should
1072 do it (XXX: use sigsetjmp) */
1073 sigprocmask(SIG_SETMASK, old_set, NULL);
1074 cpu_loop_exit();
1075 /* never comes here */
67867308
FB
1076 return 1;
1077}
6af0bf9c
FB
1078
1079#elif defined (TARGET_MIPS)
1080static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1081 int is_write, sigset_t *old_set,
1082 void *puc)
1083{
1084 TranslationBlock *tb;
1085 int ret;
1086
1087 if (cpu_single_env)
1088 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1089#if defined(DEBUG_SIGNAL)
1090 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1091 pc, address, is_write, *(unsigned long *)old_set);
1092#endif
1093 /* XXX: locking issue */
53a5960a 1094 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1095 return 1;
1096 }
1097
1098 /* see if it is an MMU fault */
cc9442b9 1099 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1100 if (ret < 0)
1101 return 0; /* not an MMU fault */
1102 if (ret == 0)
1103 return 1; /* the MMU fault was handled without causing real CPU fault */
1104
1105 /* now we have a real cpu fault */
1106 tb = tb_find_pc(pc);
1107 if (tb) {
1108 /* the PC is inside the translated code. It means that we have
1109 a virtual CPU fault */
1110 cpu_restore_state(tb, env, pc, puc);
1111 }
1112 if (ret == 1) {
1113#if 0
1114 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1115 env->nip, env->error_code, tb);
1116#endif
1117 /* we restore the process signal mask as the sigreturn should
1118 do it (XXX: use sigsetjmp) */
1119 sigprocmask(SIG_SETMASK, old_set, NULL);
1120 do_raise_exception_err(env->exception_index, env->error_code);
1121 } else {
1122 /* activate soft MMU for this block */
1123 cpu_resume_from_signal(env, puc);
1124 }
1125 /* never comes here */
1126 return 1;
1127}
1128
fdf9b3e8
FB
1129#elif defined (TARGET_SH4)
1130static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1131 int is_write, sigset_t *old_set,
1132 void *puc)
1133{
1134 TranslationBlock *tb;
1135 int ret;
1136
1137 if (cpu_single_env)
1138 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1139#if defined(DEBUG_SIGNAL)
1140 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1141 pc, address, is_write, *(unsigned long *)old_set);
1142#endif
1143 /* XXX: locking issue */
1144 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145 return 1;
1146 }
1147
1148 /* see if it is an MMU fault */
1149 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1150 if (ret < 0)
1151 return 0; /* not an MMU fault */
1152 if (ret == 0)
1153 return 1; /* the MMU fault was handled without causing real CPU fault */
1154
1155 /* now we have a real cpu fault */
1156 tb = tb_find_pc(pc);
1157 if (tb) {
1158 /* the PC is inside the translated code. It means that we have
1159 a virtual CPU fault */
1160 cpu_restore_state(tb, env, pc, puc);
1161 }
fdf9b3e8
FB
1162#if 0
1163 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1164 env->nip, env->error_code, tb);
1165#endif
1166 /* we restore the process signal mask as the sigreturn should
1167 do it (XXX: use sigsetjmp) */
355fb23d
PB
1168 sigprocmask(SIG_SETMASK, old_set, NULL);
1169 cpu_loop_exit();
fdf9b3e8
FB
1170 /* never comes here */
1171 return 1;
1172}
e4533c7a
FB
1173#else
1174#error unsupported target CPU
1175#endif
9de5e440 1176
2b413144
FB
1177#if defined(__i386__)
1178
d8ecc0b9
FB
1179#if defined(__APPLE__)
1180# include <sys/ucontext.h>
1181
1182# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1183# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1184# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1185#else
1186# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1187# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1188# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1189#endif
1190
bf3e8bf1
FB
1191#if defined(USE_CODE_COPY)
1192static void cpu_send_trap(unsigned long pc, int trap,
1193 struct ucontext *uc)
1194{
1195 TranslationBlock *tb;
1196
1197 if (cpu_single_env)
1198 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1199 /* now we have a real cpu fault */
1200 tb = tb_find_pc(pc);
1201 if (tb) {
1202 /* the PC is inside the translated code. It means that we have
1203 a virtual CPU fault */
1204 cpu_restore_state(tb, env, pc, uc);
1205 }
1206 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1207 raise_exception_err(trap, env->error_code);
1208}
1209#endif
1210
5a7b542b 1211int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1212 void *puc)
9de5e440 1213{
5a7b542b 1214 siginfo_t *info = pinfo;
9de5e440
FB
1215 struct ucontext *uc = puc;
1216 unsigned long pc;
bf3e8bf1 1217 int trapno;
97eb5b14 1218
d691f669
FB
1219#ifndef REG_EIP
1220/* for glibc 2.1 */
fd6ce8f6
FB
1221#define REG_EIP EIP
1222#define REG_ERR ERR
1223#define REG_TRAPNO TRAPNO
d691f669 1224#endif
d8ecc0b9
FB
1225 pc = EIP_sig(uc);
1226 trapno = TRAP_sig(uc);
bf3e8bf1
FB
1227#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1228 if (trapno == 0x00 || trapno == 0x05) {
1229 /* send division by zero or bound exception */
1230 cpu_send_trap(pc, trapno, uc);
1231 return 1;
1232 } else
1233#endif
1234 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1235 trapno == 0xe ?
d8ecc0b9 1236 (ERROR_sig(uc) >> 1) & 1 : 0,
bf3e8bf1 1237 &uc->uc_sigmask, puc);
2b413144
FB
1238}
1239
bc51c5c9
FB
1240#elif defined(__x86_64__)
1241
5a7b542b 1242int cpu_signal_handler(int host_signum, void *pinfo,
bc51c5c9
FB
1243 void *puc)
1244{
5a7b542b 1245 siginfo_t *info = pinfo;
bc51c5c9
FB
1246 struct ucontext *uc = puc;
1247 unsigned long pc;
1248
1249 pc = uc->uc_mcontext.gregs[REG_RIP];
1250 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1251 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1252 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1253 &uc->uc_sigmask, puc);
1254}
1255
83fb7adf 1256#elif defined(__powerpc__)
2b413144 1257
83fb7adf
FB
1258/***********************************************************************
1259 * signal context platform-specific definitions
1260 * From Wine
1261 */
1262#ifdef linux
1263/* All Registers access - only for local access */
1264# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1265/* Gpr Registers access */
1266# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1267# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1268# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1269# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1270# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1271# define LR_sig(context) REG_sig(link, context) /* Link register */
1272# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1273/* Float Registers access */
1274# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1275# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1276/* Exception Registers access */
1277# define DAR_sig(context) REG_sig(dar, context)
1278# define DSISR_sig(context) REG_sig(dsisr, context)
1279# define TRAP_sig(context) REG_sig(trap, context)
1280#endif /* linux */
1281
1282#ifdef __APPLE__
1283# include <sys/ucontext.h>
1284typedef struct ucontext SIGCONTEXT;
1285/* All Registers access - only for local access */
1286# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1287# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1288# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1289# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1290/* Gpr Registers access */
1291# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1292# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1293# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1294# define CTR_sig(context) REG_sig(ctr, context)
1295# define XER_sig(context) REG_sig(xer, context) /* Link register */
1296# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1297# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1298/* Float Registers access */
1299# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1300# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1301/* Exception Registers access */
1302# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1303# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1304# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1305#endif /* __APPLE__ */
1306
5a7b542b 1307int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1308 void *puc)
2b413144 1309{
5a7b542b 1310 siginfo_t *info = pinfo;
25eb4484 1311 struct ucontext *uc = puc;
25eb4484 1312 unsigned long pc;
25eb4484
FB
1313 int is_write;
1314
83fb7adf 1315 pc = IAR_sig(uc);
25eb4484
FB
1316 is_write = 0;
1317#if 0
1318 /* ppc 4xx case */
83fb7adf 1319 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1320 is_write = 1;
1321#else
83fb7adf 1322 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1323 is_write = 1;
1324#endif
1325 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1326 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1327}
1328
2f87c607
FB
1329#elif defined(__alpha__)
1330
5a7b542b 1331int cpu_signal_handler(int host_signum, void *pinfo,
2f87c607
FB
1332 void *puc)
1333{
5a7b542b 1334 siginfo_t *info = pinfo;
2f87c607
FB
1335 struct ucontext *uc = puc;
1336 uint32_t *pc = uc->uc_mcontext.sc_pc;
1337 uint32_t insn = *pc;
1338 int is_write = 0;
1339
8c6939c0 1340 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1341 switch (insn >> 26) {
1342 case 0x0d: // stw
1343 case 0x0e: // stb
1344 case 0x0f: // stq_u
1345 case 0x24: // stf
1346 case 0x25: // stg
1347 case 0x26: // sts
1348 case 0x27: // stt
1349 case 0x2c: // stl
1350 case 0x2d: // stq
1351 case 0x2e: // stl_c
1352 case 0x2f: // stq_c
1353 is_write = 1;
1354 }
1355
1356 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1357 is_write, &uc->uc_sigmask, puc);
2f87c607 1358}
8c6939c0
FB
1359#elif defined(__sparc__)
1360
5a7b542b 1361int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1362 void *puc)
8c6939c0 1363{
5a7b542b 1364 siginfo_t *info = pinfo;
8c6939c0
FB
1365 uint32_t *regs = (uint32_t *)(info + 1);
1366 void *sigmask = (regs + 20);
1367 unsigned long pc;
1368 int is_write;
1369 uint32_t insn;
1370
1371 /* XXX: is there a standard glibc define ? */
1372 pc = regs[1];
1373 /* XXX: need kernel patch to get write flag faster */
1374 is_write = 0;
1375 insn = *(uint32_t *)pc;
1376 if ((insn >> 30) == 3) {
1377 switch((insn >> 19) & 0x3f) {
1378 case 0x05: // stb
1379 case 0x06: // sth
1380 case 0x04: // st
1381 case 0x07: // std
1382 case 0x24: // stf
1383 case 0x27: // stdf
1384 case 0x25: // stfsr
1385 is_write = 1;
1386 break;
1387 }
1388 }
1389 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1390 is_write, sigmask, NULL);
8c6939c0
FB
1391}
1392
1393#elif defined(__arm__)
1394
5a7b542b 1395int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1396 void *puc)
8c6939c0 1397{
5a7b542b 1398 siginfo_t *info = pinfo;
8c6939c0
FB
1399 struct ucontext *uc = puc;
1400 unsigned long pc;
1401 int is_write;
1402
1403 pc = uc->uc_mcontext.gregs[R15];
1404 /* XXX: compute is_write */
1405 is_write = 0;
1406 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1407 is_write,
f3a9676a 1408 &uc->uc_sigmask, puc);
8c6939c0
FB
1409}
1410
38e584a0
FB
1411#elif defined(__mc68000)
1412
5a7b542b 1413int cpu_signal_handler(int host_signum, void *pinfo,
38e584a0
FB
1414 void *puc)
1415{
5a7b542b 1416 siginfo_t *info = pinfo;
38e584a0
FB
1417 struct ucontext *uc = puc;
1418 unsigned long pc;
1419 int is_write;
1420
1421 pc = uc->uc_mcontext.gregs[16];
1422 /* XXX: compute is_write */
1423 is_write = 0;
1424 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1425 is_write,
bf3e8bf1 1426 &uc->uc_sigmask, puc);
38e584a0
FB
1427}
1428
b8076a74
FB
1429#elif defined(__ia64)
1430
1431#ifndef __ISR_VALID
1432 /* This ought to be in <bits/siginfo.h>... */
1433# define __ISR_VALID 1
b8076a74
FB
1434#endif
1435
5a7b542b 1436int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
b8076a74 1437{
5a7b542b 1438 siginfo_t *info = pinfo;
b8076a74
FB
1439 struct ucontext *uc = puc;
1440 unsigned long ip;
1441 int is_write = 0;
1442
1443 ip = uc->uc_mcontext.sc_ip;
1444 switch (host_signum) {
1445 case SIGILL:
1446 case SIGFPE:
1447 case SIGSEGV:
1448 case SIGBUS:
1449 case SIGTRAP:
fd4a43e4 1450 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1451 /* ISR.W (write-access) is bit 33: */
1452 is_write = (info->si_isr >> 33) & 1;
1453 break;
1454
1455 default:
1456 break;
1457 }
1458 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1459 is_write,
1460 &uc->uc_sigmask, puc);
1461}
1462
90cb9493
FB
1463#elif defined(__s390__)
1464
5a7b542b 1465int cpu_signal_handler(int host_signum, void *pinfo,
90cb9493
FB
1466 void *puc)
1467{
5a7b542b 1468 siginfo_t *info = pinfo;
90cb9493
FB
1469 struct ucontext *uc = puc;
1470 unsigned long pc;
1471 int is_write;
1472
1473 pc = uc->uc_mcontext.psw.addr;
1474 /* XXX: compute is_write */
1475 is_write = 0;
1476 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1477 is_write,
1478 &uc->uc_sigmask, puc);
1479}
1480
9de5e440 1481#else
2b413144 1482
3fb2ded1 1483#error host CPU specific signal handler needed
2b413144 1484
9de5e440 1485#endif
67b915a5
FB
1486
1487#endif /* !defined(CONFIG_SOFTMMU) */