]> git.proxmox.com Git - qemu.git/blame - cpu-exec.c
Some more regs_to_env/envs_to_regs cleanup.
[qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
e4533c7a
FB
43void cpu_loop_exit(void)
44{
bfed01fc
TS
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
47 regs_to_env();
e4533c7a
FB
48 longjmp(env->jmp_env, 1);
49}
bfed01fc 50
e6e5906b 51#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
3475187d
FB
52#define reg_T2
53#endif
e4533c7a 54
fbf9eeb3
FB
55/* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
57 */
58void cpu_resume_from_signal(CPUState *env1, void *puc)
59{
60#if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62#endif
63
64 env = env1;
65
66 /* XXX: restore cpu registers saved in host registers */
67
68#if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 }
73#endif
74 longjmp(env->jmp_env, 1);
75}
76
8a40a180
FB
77
78static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
81{
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
87
88 spin_lock(&tb_lock);
89
90 tb_invalidated_flag = 0;
91
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
117 }
118 }
119 ptb1 = &tb->phys_hash_next;
120 }
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
15388002 130 tb_invalidated_flag = 1;
8a40a180
FB
131 }
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
144 }
145 tb_link_phys(tb, phys_pc, phys_page2);
146
147 found:
8a40a180
FB
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
152}
153
154static inline TranslationBlock *tb_find_fast(void)
155{
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
159
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163#if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168#elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
40f137e1
PB
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
8a40a180
FB
175 cs_base = 0;
176 pc = env->regs[15];
177#elif defined(TARGET_SPARC)
178#ifdef TARGET_SPARC64
a80dde08
FB
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
8a40a180 182#else
a80dde08
FB
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
8a40a180
FB
186#endif
187 cs_base = env->npc;
188 pc = env->pc;
189#elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194#elif defined(TARGET_MIPS)
56b19403 195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 196 cs_base = 0;
8a40a180 197 pc = env->PC;
e6e5906b 198#elif defined(TARGET_M68K)
acf930aa
PB
199 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
200 | (env->sr & SR_S) /* Bit 13 */
201 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
e6e5906b
PB
202 cs_base = 0;
203 pc = env->pc;
fdf9b3e8
FB
204#elif defined(TARGET_SH4)
205 flags = env->sr & (SR_MD | SR_RB);
206 cs_base = 0; /* XXXXX */
207 pc = env->pc;
eddf68a6
JM
208#elif defined(TARGET_ALPHA)
209 flags = env->ps;
210 cs_base = 0;
211 pc = env->pc;
8a40a180
FB
212#else
213#error unsupported CPU
214#endif
215 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217 tb->flags != flags, 0)) {
218 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
225 T0 = 0;
226 }
8a40a180
FB
227 }
228 return tb;
229}
230
231
7d13299d
FB
232/* main execution loop */
233
e4533c7a 234int cpu_exec(CPUState *env1)
7d13299d 235{
1057eaa7
PB
236#define DECLARE_HOST_REGS 1
237#include "hostregs_helper.h"
238#if defined(TARGET_SPARC)
3475187d
FB
239#if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr;
241#endif
242#endif
fdbb4691 243#if defined(__sparc__) && !defined(HOST_SOLARIS)
b49d07ba
TS
244 int saved_i7;
245 target_ulong tmp_T0;
04369ff2 246#endif
8a40a180 247 int ret, interrupt_request;
7d13299d 248 void (*gen_func)(void);
8a40a180 249 TranslationBlock *tb;
c27004ec 250 uint8_t *tc_ptr;
8c6939c0 251
bfed01fc
TS
252 if (cpu_halted(env1) == EXCP_HALTED)
253 return EXCP_HALTED;
5a1e3cfc 254
6a00d601
FB
255 cpu_single_env = env1;
256
7d13299d 257 /* first we save global registers */
1057eaa7
PB
258#define SAVE_HOST_REGS 1
259#include "hostregs_helper.h"
c27004ec 260 env = env1;
fdbb4691 261#if defined(__sparc__) && !defined(HOST_SOLARIS)
e4533c7a
FB
262 /* we also save i7 because longjmp may not restore it */
263 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
264#endif
265
0d1a29f9 266 env_to_regs();
ecb644f4 267#if defined(TARGET_I386)
9de5e440 268 /* put eflags in CPU temporary format */
fc2b4c48
FB
269 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 271 CC_OP = CC_OP_EFLAGS;
fc2b4c48 272 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
93ac68bc 273#elif defined(TARGET_SPARC)
3475187d
FB
274#if defined(reg_REGWPTR)
275 saved_regwptr = REGWPTR;
276#endif
e6e5906b
PB
277#elif defined(TARGET_M68K)
278 env->cc_op = CC_OP_FLAGS;
279 env->cc_dest = env->sr & 0xf;
280 env->cc_x = (env->sr >> 4) & 1;
ecb644f4
TS
281#elif defined(TARGET_ALPHA)
282#elif defined(TARGET_ARM)
283#elif defined(TARGET_PPC)
6af0bf9c 284#elif defined(TARGET_MIPS)
fdf9b3e8
FB
285#elif defined(TARGET_SH4)
286 /* XXXXX */
e4533c7a
FB
287#else
288#error unsupported target CPU
289#endif
3fb2ded1 290 env->exception_index = -1;
9d27abd9 291
7d13299d 292 /* prepare setjmp context for exception handling */
3fb2ded1
FB
293 for(;;) {
294 if (setjmp(env->jmp_env) == 0) {
ee8b7021 295 env->current_tb = NULL;
3fb2ded1
FB
296 /* if an exception is pending, we execute it here */
297 if (env->exception_index >= 0) {
298 if (env->exception_index >= EXCP_INTERRUPT) {
299 /* exit request from the cpu execution loop */
300 ret = env->exception_index;
301 break;
302 } else if (env->user_mode_only) {
303 /* if user mode only, we simulate a fake exception
9f083493 304 which will be handled outside the cpu execution
3fb2ded1 305 loop */
83479e77 306#if defined(TARGET_I386)
3fb2ded1
FB
307 do_interrupt_user(env->exception_index,
308 env->exception_is_int,
309 env->error_code,
310 env->exception_next_eip);
83479e77 311#endif
3fb2ded1
FB
312 ret = env->exception_index;
313 break;
314 } else {
83479e77 315#if defined(TARGET_I386)
3fb2ded1
FB
316 /* simulate a real cpu exception. On i386, it can
317 trigger new exceptions, but we do not handle
318 double or triple faults yet. */
319 do_interrupt(env->exception_index,
320 env->exception_is_int,
321 env->error_code,
d05e66d2 322 env->exception_next_eip, 0);
678dde13
TS
323 /* successfully delivered */
324 env->old_exception = -1;
ce09776b
FB
325#elif defined(TARGET_PPC)
326 do_interrupt(env);
6af0bf9c
FB
327#elif defined(TARGET_MIPS)
328 do_interrupt(env);
e95c8d51 329#elif defined(TARGET_SPARC)
1a0c3292 330 do_interrupt(env->exception_index);
b5ff1b31
FB
331#elif defined(TARGET_ARM)
332 do_interrupt(env);
fdf9b3e8
FB
333#elif defined(TARGET_SH4)
334 do_interrupt(env);
eddf68a6
JM
335#elif defined(TARGET_ALPHA)
336 do_interrupt(env);
0633879f
PB
337#elif defined(TARGET_M68K)
338 do_interrupt(0);
83479e77 339#endif
3fb2ded1
FB
340 }
341 env->exception_index = -1;
9df217a3
FB
342 }
343#ifdef USE_KQEMU
344 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
345 int ret;
346 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
347 ret = kqemu_cpu_exec(env);
348 /* put eflags in CPU temporary format */
349 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
350 DF = 1 - (2 * ((env->eflags >> 10) & 1));
351 CC_OP = CC_OP_EFLAGS;
352 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
353 if (ret == 1) {
354 /* exception */
355 longjmp(env->jmp_env, 1);
356 } else if (ret == 2) {
357 /* softmmu execution needed */
358 } else {
359 if (env->interrupt_request != 0) {
360 /* hardware interrupt will be executed just after */
361 } else {
362 /* otherwise, we restart */
363 longjmp(env->jmp_env, 1);
364 }
365 }
3fb2ded1 366 }
9df217a3
FB
367#endif
368
3fb2ded1
FB
369 T0 = 0; /* force lookup of first TB */
370 for(;;) {
fdbb4691 371#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1
FB
372 /* g1 can be modified by some libc? functions */
373 tmp_T0 = T0;
8c6939c0 374#endif
68a79315 375 interrupt_request = env->interrupt_request;
2e255c6b 376 if (__builtin_expect(interrupt_request, 0)) {
6658ffb8
PB
377 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
378 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
379 env->exception_index = EXCP_DEBUG;
380 cpu_loop_exit();
381 }
a90b7318
AZ
382#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
383 defined(TARGET_PPC) || defined(TARGET_ALPHA)
384 if (interrupt_request & CPU_INTERRUPT_HALT) {
385 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
386 env->halted = 1;
387 env->exception_index = EXCP_HLT;
388 cpu_loop_exit();
389 }
390#endif
68a79315 391#if defined(TARGET_I386)
3b21e03e
FB
392 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
393 !(env->hflags & HF_SMM_MASK)) {
394 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
395 do_smm_enter();
396#if defined(__sparc__) && !defined(HOST_SOLARIS)
397 tmp_T0 = 0;
398#else
399 T0 = 0;
400#endif
401 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
3f337316
FB
402 (env->eflags & IF_MASK) &&
403 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 404 int intno;
fbf9eeb3 405 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
a541f297 406 intno = cpu_get_pic_interrupt(env);
f193c797 407 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
408 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
409 }
d05e66d2 410 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
411 /* ensure that no TB jump will be modified as
412 the program flow was changed */
fdbb4691 413#if defined(__sparc__) && !defined(HOST_SOLARIS)
907a5b26
FB
414 tmp_T0 = 0;
415#else
416 T0 = 0;
417#endif
68a79315 418 }
ce09776b 419#elif defined(TARGET_PPC)
9fddaa0c
FB
420#if 0
421 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
422 cpu_ppc_reset(env);
423 }
424#endif
47103572 425 if (interrupt_request & CPU_INTERRUPT_HARD) {
e9df014c
JM
426 ppc_hw_interrupt(env);
427 if (env->pending_interrupts == 0)
428 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 429#if defined(__sparc__) && !defined(HOST_SOLARIS)
e9df014c 430 tmp_T0 = 0;
8a40a180 431#else
e9df014c 432 T0 = 0;
8a40a180 433#endif
ce09776b 434 }
6af0bf9c
FB
435#elif defined(TARGET_MIPS)
436 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
24c7b0e3 437 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
6af0bf9c 438 (env->CP0_Status & (1 << CP0St_IE)) &&
24c7b0e3
TS
439 !(env->CP0_Status & (1 << CP0St_EXL)) &&
440 !(env->CP0_Status & (1 << CP0St_ERL)) &&
6af0bf9c
FB
441 !(env->hflags & MIPS_HFLAG_DM)) {
442 /* Raise it */
443 env->exception_index = EXCP_EXT_INTERRUPT;
444 env->error_code = 0;
445 do_interrupt(env);
fdbb4691 446#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
447 tmp_T0 = 0;
448#else
449 T0 = 0;
450#endif
6af0bf9c 451 }
e95c8d51 452#elif defined(TARGET_SPARC)
66321a11
FB
453 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
454 (env->psret != 0)) {
455 int pil = env->interrupt_index & 15;
456 int type = env->interrupt_index & 0xf0;
457
458 if (((type == TT_EXTINT) &&
459 (pil == 15 || pil > env->psrpil)) ||
460 type != TT_EXTINT) {
461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462 do_interrupt(env->interrupt_index);
463 env->interrupt_index = 0;
fdbb4691 464#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
465 tmp_T0 = 0;
466#else
467 T0 = 0;
468#endif
66321a11 469 }
e95c8d51
FB
470 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
471 //do_interrupt(0, 0, 0, 0, 0);
472 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
a90b7318 473 }
b5ff1b31
FB
474#elif defined(TARGET_ARM)
475 if (interrupt_request & CPU_INTERRUPT_FIQ
476 && !(env->uncached_cpsr & CPSR_F)) {
477 env->exception_index = EXCP_FIQ;
478 do_interrupt(env);
479 }
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && !(env->uncached_cpsr & CPSR_I)) {
482 env->exception_index = EXCP_IRQ;
483 do_interrupt(env);
484 }
fdf9b3e8
FB
485#elif defined(TARGET_SH4)
486 /* XXXXX */
eddf68a6
JM
487#elif defined(TARGET_ALPHA)
488 if (interrupt_request & CPU_INTERRUPT_HARD) {
489 do_interrupt(env);
490 }
0633879f
PB
491#elif defined(TARGET_M68K)
492 if (interrupt_request & CPU_INTERRUPT_HARD
493 && ((env->sr & SR_I) >> SR_I_SHIFT)
494 < env->pending_level) {
495 /* Real hardware gets the interrupt vector via an
496 IACK cycle at this point. Current emulated
497 hardware doesn't rely on this, so we
498 provide/save the vector when the interrupt is
499 first signalled. */
500 env->exception_index = env->pending_vector;
501 do_interrupt(1);
502 }
68a79315 503#endif
9d05095e
FB
504 /* Don't use the cached interupt_request value,
505 do_interrupt may have updated the EXITTB flag. */
b5ff1b31 506 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
507 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
508 /* ensure that no TB jump will be modified as
509 the program flow was changed */
fdbb4691 510#if defined(__sparc__) && !defined(HOST_SOLARIS)
bf3e8bf1
FB
511 tmp_T0 = 0;
512#else
513 T0 = 0;
514#endif
515 }
68a79315
FB
516 if (interrupt_request & CPU_INTERRUPT_EXIT) {
517 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
518 env->exception_index = EXCP_INTERRUPT;
519 cpu_loop_exit();
520 }
3fb2ded1 521 }
7d13299d 522#ifdef DEBUG_EXEC
b5ff1b31 523 if ((loglevel & CPU_LOG_TB_CPU)) {
3fb2ded1 524 /* restore flags in standard format */
ecb644f4
TS
525 regs_to_env();
526#if defined(TARGET_I386)
3fb2ded1 527 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 528 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 529 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 530#elif defined(TARGET_ARM)
7fe48483 531 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 532#elif defined(TARGET_SPARC)
3475187d
FB
533 REGWPTR = env->regbase + (env->cwp * 16);
534 env->regwptr = REGWPTR;
535 cpu_dump_state(env, logfile, fprintf, 0);
67867308 536#elif defined(TARGET_PPC)
7fe48483 537 cpu_dump_state(env, logfile, fprintf, 0);
e6e5906b
PB
538#elif defined(TARGET_M68K)
539 cpu_m68k_flush_flags(env, env->cc_op);
540 env->cc_op = CC_OP_FLAGS;
541 env->sr = (env->sr & 0xffe0)
542 | env->cc_dest | (env->cc_x << 4);
543 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
544#elif defined(TARGET_MIPS)
545 cpu_dump_state(env, logfile, fprintf, 0);
fdf9b3e8
FB
546#elif defined(TARGET_SH4)
547 cpu_dump_state(env, logfile, fprintf, 0);
eddf68a6
JM
548#elif defined(TARGET_ALPHA)
549 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a
FB
550#else
551#error unsupported target CPU
552#endif
3fb2ded1 553 }
7d13299d 554#endif
8a40a180 555 tb = tb_find_fast();
9d27abd9 556#ifdef DEBUG_EXEC
c1135f61 557 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
558 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
559 (long)tb->tc_ptr, tb->pc,
560 lookup_symbol(tb->pc));
3fb2ded1 561 }
9d27abd9 562#endif
fdbb4691 563#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1 564 T0 = tmp_T0;
8c6939c0 565#endif
8a40a180
FB
566 /* see if we can patch the calling TB. When the TB
567 spans two pages, we cannot safely do a direct
568 jump. */
c27004ec 569 {
8a40a180 570 if (T0 != 0 &&
f32fc648
FB
571#if USE_KQEMU
572 (env->kqemu_enabled != 2) &&
573#endif
8a40a180 574 tb->page_addr[1] == -1
bf3e8bf1
FB
575#if defined(TARGET_I386) && defined(USE_CODE_COPY)
576 && (tb->cflags & CF_CODE_COPY) ==
577 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
578#endif
579 ) {
3fb2ded1 580 spin_lock(&tb_lock);
c27004ec 581 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
582#if defined(USE_CODE_COPY)
583 /* propagates the FP use info */
584 ((TranslationBlock *)(T0 & ~3))->cflags |=
585 (tb->cflags & CF_FP_USED);
586#endif
3fb2ded1
FB
587 spin_unlock(&tb_lock);
588 }
c27004ec 589 }
3fb2ded1 590 tc_ptr = tb->tc_ptr;
83479e77 591 env->current_tb = tb;
3fb2ded1
FB
592 /* execute the generated code */
593 gen_func = (void *)tc_ptr;
8c6939c0 594#if defined(__sparc__)
3fb2ded1
FB
595 __asm__ __volatile__("call %0\n\t"
596 "mov %%o7,%%i0"
597 : /* no outputs */
598 : "r" (gen_func)
fdbb4691 599 : "i0", "i1", "i2", "i3", "i4", "i5",
faab7592 600 "o0", "o1", "o2", "o3", "o4", "o5",
fdbb4691
FB
601 "l0", "l1", "l2", "l3", "l4", "l5",
602 "l6", "l7");
8c6939c0 603#elif defined(__arm__)
3fb2ded1
FB
604 asm volatile ("mov pc, %0\n\t"
605 ".global exec_loop\n\t"
606 "exec_loop:\n\t"
607 : /* no outputs */
608 : "r" (gen_func)
609 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
610#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
611{
612 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
613 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
614 save_native_fp_state(env);
615 }
bf3e8bf1
FB
616 gen_func();
617 } else {
97eb5b14
FB
618 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
619 restore_native_fp_state(env);
620 }
bf3e8bf1
FB
621 /* we work with native eflags */
622 CC_SRC = cc_table[CC_OP].compute_all();
623 CC_OP = CC_OP_EFLAGS;
624 asm(".globl exec_loop\n"
625 "\n"
626 "debug1:\n"
627 " pushl %%ebp\n"
628 " fs movl %10, %9\n"
629 " fs movl %11, %%eax\n"
630 " andl $0x400, %%eax\n"
631 " fs orl %8, %%eax\n"
632 " pushl %%eax\n"
633 " popf\n"
634 " fs movl %%esp, %12\n"
635 " fs movl %0, %%eax\n"
636 " fs movl %1, %%ecx\n"
637 " fs movl %2, %%edx\n"
638 " fs movl %3, %%ebx\n"
639 " fs movl %4, %%esp\n"
640 " fs movl %5, %%ebp\n"
641 " fs movl %6, %%esi\n"
642 " fs movl %7, %%edi\n"
643 " fs jmp *%9\n"
644 "exec_loop:\n"
645 " fs movl %%esp, %4\n"
646 " fs movl %12, %%esp\n"
647 " fs movl %%eax, %0\n"
648 " fs movl %%ecx, %1\n"
649 " fs movl %%edx, %2\n"
650 " fs movl %%ebx, %3\n"
651 " fs movl %%ebp, %5\n"
652 " fs movl %%esi, %6\n"
653 " fs movl %%edi, %7\n"
654 " pushf\n"
655 " popl %%eax\n"
656 " movl %%eax, %%ecx\n"
657 " andl $0x400, %%ecx\n"
658 " shrl $9, %%ecx\n"
659 " andl $0x8d5, %%eax\n"
660 " fs movl %%eax, %8\n"
661 " movl $1, %%eax\n"
662 " subl %%ecx, %%eax\n"
663 " fs movl %%eax, %11\n"
664 " fs movl %9, %%ebx\n" /* get T0 value */
665 " popl %%ebp\n"
666 :
667 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
668 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
669 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
670 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
671 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
672 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
673 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
674 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
675 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
676 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
677 "a" (gen_func),
678 "m" (*(uint8_t *)offsetof(CPUState, df)),
679 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
680 : "%ecx", "%edx"
681 );
682 }
683}
b8076a74
FB
684#elif defined(__ia64)
685 struct fptr {
686 void *ip;
687 void *gp;
688 } fp;
689
690 fp.ip = tc_ptr;
691 fp.gp = code_gen_buffer + 2 * (1 << 20);
692 (*(void (*)(void)) &fp)();
ae228531 693#else
3fb2ded1 694 gen_func();
ae228531 695#endif
83479e77 696 env->current_tb = NULL;
4cbf74b6
FB
697 /* reset soft MMU for next block (it can currently
698 only be set by a memory fault) */
699#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
700 if (env->hflags & HF_SOFTMMU_MASK) {
701 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
702 /* do not allow linking to another block */
703 T0 = 0;
704 }
f32fc648
FB
705#endif
706#if defined(USE_KQEMU)
707#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
708 if (kqemu_is_ok(env) &&
709 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
710 cpu_loop_exit();
711 }
4cbf74b6 712#endif
3fb2ded1
FB
713 }
714 } else {
0d1a29f9 715 env_to_regs();
7d13299d 716 }
3fb2ded1
FB
717 } /* for(;;) */
718
7d13299d 719
e4533c7a 720#if defined(TARGET_I386)
97eb5b14
FB
721#if defined(USE_CODE_COPY)
722 if (env->native_fp_regs) {
723 save_native_fp_state(env);
724 }
725#endif
9de5e440 726 /* restore flags in standard format */
fc2b4c48 727 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
e4533c7a 728#elif defined(TARGET_ARM)
b7bcbe95 729 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 730#elif defined(TARGET_SPARC)
3475187d
FB
731#if defined(reg_REGWPTR)
732 REGWPTR = saved_regwptr;
733#endif
67867308 734#elif defined(TARGET_PPC)
e6e5906b
PB
735#elif defined(TARGET_M68K)
736 cpu_m68k_flush_flags(env, env->cc_op);
737 env->cc_op = CC_OP_FLAGS;
738 env->sr = (env->sr & 0xffe0)
739 | env->cc_dest | (env->cc_x << 4);
6af0bf9c 740#elif defined(TARGET_MIPS)
fdf9b3e8 741#elif defined(TARGET_SH4)
eddf68a6 742#elif defined(TARGET_ALPHA)
fdf9b3e8 743 /* XXXXX */
e4533c7a
FB
744#else
745#error unsupported target CPU
746#endif
1057eaa7
PB
747
748 /* restore global registers */
fdbb4691 749#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 750 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 751#endif
1057eaa7
PB
752#include "hostregs_helper.h"
753
6a00d601
FB
754 /* fail safe : never use cpu_single_env outside cpu_exec() */
755 cpu_single_env = NULL;
7d13299d
FB
756 return ret;
757}
6dbad63e 758
fbf9eeb3
FB
759/* must only be called from the generated code as an exception can be
760 generated */
761void tb_invalidate_page_range(target_ulong start, target_ulong end)
762{
dc5d0b3d
FB
763 /* XXX: cannot enable it yet because it yields to MMU exception
764 where NIP != read address on PowerPC */
765#if 0
fbf9eeb3
FB
766 target_ulong phys_addr;
767 phys_addr = get_phys_addr_code(env, start);
768 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 769#endif
fbf9eeb3
FB
770}
771
1a18c71b 772#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 773
6dbad63e
FB
774void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
775{
776 CPUX86State *saved_env;
777
778 saved_env = env;
779 env = s;
a412ac57 780 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 781 selector &= 0xffff;
2e255c6b 782 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 783 (selector << 4), 0xffff, 0);
a513fe19 784 } else {
b453b70b 785 load_seg(seg_reg, selector);
a513fe19 786 }
6dbad63e
FB
787 env = saved_env;
788}
9de5e440 789
d0a1ffc9
FB
790void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
791{
792 CPUX86State *saved_env;
793
794 saved_env = env;
795 env = s;
796
c27004ec 797 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
798
799 env = saved_env;
800}
801
802void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
803{
804 CPUX86State *saved_env;
805
806 saved_env = env;
807 env = s;
808
c27004ec 809 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
810
811 env = saved_env;
812}
813
e4533c7a
FB
814#endif /* TARGET_I386 */
815
67b915a5
FB
816#if !defined(CONFIG_SOFTMMU)
817
3fb2ded1
FB
818#if defined(TARGET_I386)
819
b56dad1c 820/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
821 the effective address of the memory exception. 'is_write' is 1 if a
822 write caused the exception and otherwise 0'. 'old_set' is the
823 signal set which should be restored */
2b413144 824static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
825 int is_write, sigset_t *old_set,
826 void *puc)
9de5e440 827{
a513fe19
FB
828 TranslationBlock *tb;
829 int ret;
68a79315 830
83479e77
FB
831 if (cpu_single_env)
832 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 833#if defined(DEBUG_SIGNAL)
bf3e8bf1
FB
834 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
835 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 836#endif
25eb4484 837 /* XXX: locking issue */
53a5960a 838 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
839 return 1;
840 }
fbf9eeb3 841
3fb2ded1 842 /* see if it is an MMU fault */
93a40ea9
FB
843 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
844 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
845 if (ret < 0)
846 return 0; /* not an MMU fault */
847 if (ret == 0)
848 return 1; /* the MMU fault was handled without causing real CPU fault */
849 /* now we have a real cpu fault */
a513fe19
FB
850 tb = tb_find_pc(pc);
851 if (tb) {
9de5e440
FB
852 /* the PC is inside the translated code. It means that we have
853 a virtual CPU fault */
bf3e8bf1 854 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 855 }
4cbf74b6 856 if (ret == 1) {
3fb2ded1 857#if 0
4cbf74b6
FB
858 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
859 env->eip, env->cr[2], env->error_code);
3fb2ded1 860#endif
4cbf74b6
FB
861 /* we restore the process signal mask as the sigreturn should
862 do it (XXX: use sigsetjmp) */
863 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 864 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
865 } else {
866 /* activate soft MMU for this block */
3f337316 867 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 868 cpu_resume_from_signal(env, puc);
4cbf74b6 869 }
3fb2ded1
FB
870 /* never comes here */
871 return 1;
872}
873
e4533c7a 874#elif defined(TARGET_ARM)
3fb2ded1 875static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
876 int is_write, sigset_t *old_set,
877 void *puc)
3fb2ded1 878{
68016c62
FB
879 TranslationBlock *tb;
880 int ret;
881
882 if (cpu_single_env)
883 env = cpu_single_env; /* XXX: find a correct solution for multithread */
884#if defined(DEBUG_SIGNAL)
885 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
886 pc, address, is_write, *(unsigned long *)old_set);
887#endif
9f0777ed 888 /* XXX: locking issue */
53a5960a 889 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
890 return 1;
891 }
68016c62
FB
892 /* see if it is an MMU fault */
893 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
894 if (ret < 0)
895 return 0; /* not an MMU fault */
896 if (ret == 0)
897 return 1; /* the MMU fault was handled without causing real CPU fault */
898 /* now we have a real cpu fault */
899 tb = tb_find_pc(pc);
900 if (tb) {
901 /* the PC is inside the translated code. It means that we have
902 a virtual CPU fault */
903 cpu_restore_state(tb, env, pc, puc);
904 }
905 /* we restore the process signal mask as the sigreturn should
906 do it (XXX: use sigsetjmp) */
907 sigprocmask(SIG_SETMASK, old_set, NULL);
908 cpu_loop_exit();
3fb2ded1 909}
93ac68bc
FB
910#elif defined(TARGET_SPARC)
911static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
912 int is_write, sigset_t *old_set,
913 void *puc)
93ac68bc 914{
68016c62
FB
915 TranslationBlock *tb;
916 int ret;
917
918 if (cpu_single_env)
919 env = cpu_single_env; /* XXX: find a correct solution for multithread */
920#if defined(DEBUG_SIGNAL)
921 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
922 pc, address, is_write, *(unsigned long *)old_set);
923#endif
b453b70b 924 /* XXX: locking issue */
53a5960a 925 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
926 return 1;
927 }
68016c62
FB
928 /* see if it is an MMU fault */
929 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
930 if (ret < 0)
931 return 0; /* not an MMU fault */
932 if (ret == 0)
933 return 1; /* the MMU fault was handled without causing real CPU fault */
934 /* now we have a real cpu fault */
935 tb = tb_find_pc(pc);
936 if (tb) {
937 /* the PC is inside the translated code. It means that we have
938 a virtual CPU fault */
939 cpu_restore_state(tb, env, pc, puc);
940 }
941 /* we restore the process signal mask as the sigreturn should
942 do it (XXX: use sigsetjmp) */
943 sigprocmask(SIG_SETMASK, old_set, NULL);
944 cpu_loop_exit();
93ac68bc 945}
67867308
FB
946#elif defined (TARGET_PPC)
947static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
948 int is_write, sigset_t *old_set,
949 void *puc)
67867308
FB
950{
951 TranslationBlock *tb;
ce09776b 952 int ret;
67867308 953
67867308
FB
954 if (cpu_single_env)
955 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308
FB
956#if defined(DEBUG_SIGNAL)
957 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
958 pc, address, is_write, *(unsigned long *)old_set);
959#endif
960 /* XXX: locking issue */
53a5960a 961 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
962 return 1;
963 }
964
ce09776b 965 /* see if it is an MMU fault */
7f957d28 966 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
967 if (ret < 0)
968 return 0; /* not an MMU fault */
969 if (ret == 0)
970 return 1; /* the MMU fault was handled without causing real CPU fault */
971
67867308
FB
972 /* now we have a real cpu fault */
973 tb = tb_find_pc(pc);
974 if (tb) {
975 /* the PC is inside the translated code. It means that we have
976 a virtual CPU fault */
bf3e8bf1 977 cpu_restore_state(tb, env, pc, puc);
67867308 978 }
ce09776b 979 if (ret == 1) {
67867308 980#if 0
ce09776b
FB
981 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
982 env->nip, env->error_code, tb);
67867308
FB
983#endif
984 /* we restore the process signal mask as the sigreturn should
985 do it (XXX: use sigsetjmp) */
bf3e8bf1 986 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 987 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
988 } else {
989 /* activate soft MMU for this block */
fbf9eeb3 990 cpu_resume_from_signal(env, puc);
ce09776b 991 }
67867308 992 /* never comes here */
e6e5906b
PB
993 return 1;
994}
995
996#elif defined(TARGET_M68K)
997static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
998 int is_write, sigset_t *old_set,
999 void *puc)
1000{
1001 TranslationBlock *tb;
1002 int ret;
1003
1004 if (cpu_single_env)
1005 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1006#if defined(DEBUG_SIGNAL)
1007 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1008 pc, address, is_write, *(unsigned long *)old_set);
1009#endif
1010 /* XXX: locking issue */
1011 if (is_write && page_unprotect(address, pc, puc)) {
1012 return 1;
1013 }
1014 /* see if it is an MMU fault */
1015 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1016 if (ret < 0)
1017 return 0; /* not an MMU fault */
1018 if (ret == 0)
1019 return 1; /* the MMU fault was handled without causing real CPU fault */
1020 /* now we have a real cpu fault */
1021 tb = tb_find_pc(pc);
1022 if (tb) {
1023 /* the PC is inside the translated code. It means that we have
1024 a virtual CPU fault */
1025 cpu_restore_state(tb, env, pc, puc);
1026 }
1027 /* we restore the process signal mask as the sigreturn should
1028 do it (XXX: use sigsetjmp) */
1029 sigprocmask(SIG_SETMASK, old_set, NULL);
1030 cpu_loop_exit();
1031 /* never comes here */
67867308
FB
1032 return 1;
1033}
6af0bf9c
FB
1034
1035#elif defined (TARGET_MIPS)
1036static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1037 int is_write, sigset_t *old_set,
1038 void *puc)
1039{
1040 TranslationBlock *tb;
1041 int ret;
1042
1043 if (cpu_single_env)
1044 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1045#if defined(DEBUG_SIGNAL)
1046 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1047 pc, address, is_write, *(unsigned long *)old_set);
1048#endif
1049 /* XXX: locking issue */
53a5960a 1050 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1051 return 1;
1052 }
1053
1054 /* see if it is an MMU fault */
cc9442b9 1055 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1056 if (ret < 0)
1057 return 0; /* not an MMU fault */
1058 if (ret == 0)
1059 return 1; /* the MMU fault was handled without causing real CPU fault */
1060
1061 /* now we have a real cpu fault */
1062 tb = tb_find_pc(pc);
1063 if (tb) {
1064 /* the PC is inside the translated code. It means that we have
1065 a virtual CPU fault */
1066 cpu_restore_state(tb, env, pc, puc);
1067 }
1068 if (ret == 1) {
1069#if 0
1eb5207b
TS
1070 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1071 env->PC, env->error_code, tb);
6af0bf9c
FB
1072#endif
1073 /* we restore the process signal mask as the sigreturn should
1074 do it (XXX: use sigsetjmp) */
1075 sigprocmask(SIG_SETMASK, old_set, NULL);
1076 do_raise_exception_err(env->exception_index, env->error_code);
1077 } else {
1078 /* activate soft MMU for this block */
1079 cpu_resume_from_signal(env, puc);
1080 }
1081 /* never comes here */
1082 return 1;
1083}
1084
fdf9b3e8
FB
1085#elif defined (TARGET_SH4)
1086static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1087 int is_write, sigset_t *old_set,
1088 void *puc)
1089{
1090 TranslationBlock *tb;
1091 int ret;
1092
1093 if (cpu_single_env)
1094 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1095#if defined(DEBUG_SIGNAL)
1096 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1097 pc, address, is_write, *(unsigned long *)old_set);
1098#endif
1099 /* XXX: locking issue */
1100 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1101 return 1;
1102 }
1103
1104 /* see if it is an MMU fault */
1105 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1106 if (ret < 0)
1107 return 0; /* not an MMU fault */
1108 if (ret == 0)
1109 return 1; /* the MMU fault was handled without causing real CPU fault */
1110
1111 /* now we have a real cpu fault */
eddf68a6
JM
1112 tb = tb_find_pc(pc);
1113 if (tb) {
1114 /* the PC is inside the translated code. It means that we have
1115 a virtual CPU fault */
1116 cpu_restore_state(tb, env, pc, puc);
1117 }
1118#if 0
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1121#endif
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1125 cpu_loop_exit();
1126 /* never comes here */
1127 return 1;
1128}
1129
1130#elif defined (TARGET_ALPHA)
1131static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1132 int is_write, sigset_t *old_set,
1133 void *puc)
1134{
1135 TranslationBlock *tb;
1136 int ret;
1137
1138 if (cpu_single_env)
1139 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1140#if defined(DEBUG_SIGNAL)
1141 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1142 pc, address, is_write, *(unsigned long *)old_set);
1143#endif
1144 /* XXX: locking issue */
1145 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1146 return 1;
1147 }
1148
1149 /* see if it is an MMU fault */
1150 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1151 if (ret < 0)
1152 return 0; /* not an MMU fault */
1153 if (ret == 0)
1154 return 1; /* the MMU fault was handled without causing real CPU fault */
1155
1156 /* now we have a real cpu fault */
fdf9b3e8
FB
1157 tb = tb_find_pc(pc);
1158 if (tb) {
1159 /* the PC is inside the translated code. It means that we have
1160 a virtual CPU fault */
1161 cpu_restore_state(tb, env, pc, puc);
1162 }
fdf9b3e8
FB
1163#if 0
1164 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1165 env->nip, env->error_code, tb);
1166#endif
1167 /* we restore the process signal mask as the sigreturn should
1168 do it (XXX: use sigsetjmp) */
355fb23d
PB
1169 sigprocmask(SIG_SETMASK, old_set, NULL);
1170 cpu_loop_exit();
fdf9b3e8
FB
1171 /* never comes here */
1172 return 1;
1173}
e4533c7a
FB
1174#else
1175#error unsupported target CPU
1176#endif
9de5e440 1177
2b413144
FB
1178#if defined(__i386__)
1179
d8ecc0b9
FB
1180#if defined(__APPLE__)
1181# include <sys/ucontext.h>
1182
1183# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1184# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1185# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1186#else
1187# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1188# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1189# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1190#endif
1191
bf3e8bf1
FB
1192#if defined(USE_CODE_COPY)
1193static void cpu_send_trap(unsigned long pc, int trap,
1194 struct ucontext *uc)
1195{
1196 TranslationBlock *tb;
1197
1198 if (cpu_single_env)
1199 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1200 /* now we have a real cpu fault */
1201 tb = tb_find_pc(pc);
1202 if (tb) {
1203 /* the PC is inside the translated code. It means that we have
1204 a virtual CPU fault */
1205 cpu_restore_state(tb, env, pc, uc);
1206 }
1207 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1208 raise_exception_err(trap, env->error_code);
1209}
1210#endif
1211
5a7b542b 1212int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1213 void *puc)
9de5e440 1214{
5a7b542b 1215 siginfo_t *info = pinfo;
9de5e440
FB
1216 struct ucontext *uc = puc;
1217 unsigned long pc;
bf3e8bf1 1218 int trapno;
97eb5b14 1219
d691f669
FB
1220#ifndef REG_EIP
1221/* for glibc 2.1 */
fd6ce8f6
FB
1222#define REG_EIP EIP
1223#define REG_ERR ERR
1224#define REG_TRAPNO TRAPNO
d691f669 1225#endif
d8ecc0b9
FB
1226 pc = EIP_sig(uc);
1227 trapno = TRAP_sig(uc);
bf3e8bf1
FB
1228#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1229 if (trapno == 0x00 || trapno == 0x05) {
1230 /* send division by zero or bound exception */
1231 cpu_send_trap(pc, trapno, uc);
1232 return 1;
1233 } else
1234#endif
1235 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1236 trapno == 0xe ?
d8ecc0b9 1237 (ERROR_sig(uc) >> 1) & 1 : 0,
bf3e8bf1 1238 &uc->uc_sigmask, puc);
2b413144
FB
1239}
1240
bc51c5c9
FB
1241#elif defined(__x86_64__)
1242
5a7b542b 1243int cpu_signal_handler(int host_signum, void *pinfo,
bc51c5c9
FB
1244 void *puc)
1245{
5a7b542b 1246 siginfo_t *info = pinfo;
bc51c5c9
FB
1247 struct ucontext *uc = puc;
1248 unsigned long pc;
1249
1250 pc = uc->uc_mcontext.gregs[REG_RIP];
1251 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1252 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1253 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1254 &uc->uc_sigmask, puc);
1255}
1256
83fb7adf 1257#elif defined(__powerpc__)
2b413144 1258
83fb7adf
FB
1259/***********************************************************************
1260 * signal context platform-specific definitions
1261 * From Wine
1262 */
1263#ifdef linux
1264/* All Registers access - only for local access */
1265# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1266/* Gpr Registers access */
1267# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1268# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1269# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1270# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1271# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1272# define LR_sig(context) REG_sig(link, context) /* Link register */
1273# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1274/* Float Registers access */
1275# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1276# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1277/* Exception Registers access */
1278# define DAR_sig(context) REG_sig(dar, context)
1279# define DSISR_sig(context) REG_sig(dsisr, context)
1280# define TRAP_sig(context) REG_sig(trap, context)
1281#endif /* linux */
1282
1283#ifdef __APPLE__
1284# include <sys/ucontext.h>
1285typedef struct ucontext SIGCONTEXT;
1286/* All Registers access - only for local access */
1287# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1288# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1289# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1290# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1291/* Gpr Registers access */
1292# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1293# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1294# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1295# define CTR_sig(context) REG_sig(ctr, context)
1296# define XER_sig(context) REG_sig(xer, context) /* Link register */
1297# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1298# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1299/* Float Registers access */
1300# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1301# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1302/* Exception Registers access */
1303# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1304# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1305# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1306#endif /* __APPLE__ */
1307
5a7b542b 1308int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1309 void *puc)
2b413144 1310{
5a7b542b 1311 siginfo_t *info = pinfo;
25eb4484 1312 struct ucontext *uc = puc;
25eb4484 1313 unsigned long pc;
25eb4484
FB
1314 int is_write;
1315
83fb7adf 1316 pc = IAR_sig(uc);
25eb4484
FB
1317 is_write = 0;
1318#if 0
1319 /* ppc 4xx case */
83fb7adf 1320 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1321 is_write = 1;
1322#else
83fb7adf 1323 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1324 is_write = 1;
1325#endif
1326 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1327 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1328}
1329
2f87c607
FB
1330#elif defined(__alpha__)
1331
5a7b542b 1332int cpu_signal_handler(int host_signum, void *pinfo,
2f87c607
FB
1333 void *puc)
1334{
5a7b542b 1335 siginfo_t *info = pinfo;
2f87c607
FB
1336 struct ucontext *uc = puc;
1337 uint32_t *pc = uc->uc_mcontext.sc_pc;
1338 uint32_t insn = *pc;
1339 int is_write = 0;
1340
8c6939c0 1341 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1342 switch (insn >> 26) {
1343 case 0x0d: // stw
1344 case 0x0e: // stb
1345 case 0x0f: // stq_u
1346 case 0x24: // stf
1347 case 0x25: // stg
1348 case 0x26: // sts
1349 case 0x27: // stt
1350 case 0x2c: // stl
1351 case 0x2d: // stq
1352 case 0x2e: // stl_c
1353 case 0x2f: // stq_c
1354 is_write = 1;
1355 }
1356
1357 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1358 is_write, &uc->uc_sigmask, puc);
2f87c607 1359}
8c6939c0
FB
1360#elif defined(__sparc__)
1361
5a7b542b 1362int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1363 void *puc)
8c6939c0 1364{
5a7b542b 1365 siginfo_t *info = pinfo;
8c6939c0
FB
1366 uint32_t *regs = (uint32_t *)(info + 1);
1367 void *sigmask = (regs + 20);
1368 unsigned long pc;
1369 int is_write;
1370 uint32_t insn;
1371
1372 /* XXX: is there a standard glibc define ? */
1373 pc = regs[1];
1374 /* XXX: need kernel patch to get write flag faster */
1375 is_write = 0;
1376 insn = *(uint32_t *)pc;
1377 if ((insn >> 30) == 3) {
1378 switch((insn >> 19) & 0x3f) {
1379 case 0x05: // stb
1380 case 0x06: // sth
1381 case 0x04: // st
1382 case 0x07: // std
1383 case 0x24: // stf
1384 case 0x27: // stdf
1385 case 0x25: // stfsr
1386 is_write = 1;
1387 break;
1388 }
1389 }
1390 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1391 is_write, sigmask, NULL);
8c6939c0
FB
1392}
1393
1394#elif defined(__arm__)
1395
5a7b542b 1396int cpu_signal_handler(int host_signum, void *pinfo,
e4533c7a 1397 void *puc)
8c6939c0 1398{
5a7b542b 1399 siginfo_t *info = pinfo;
8c6939c0
FB
1400 struct ucontext *uc = puc;
1401 unsigned long pc;
1402 int is_write;
1403
1404 pc = uc->uc_mcontext.gregs[R15];
1405 /* XXX: compute is_write */
1406 is_write = 0;
1407 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1408 is_write,
f3a9676a 1409 &uc->uc_sigmask, puc);
8c6939c0
FB
1410}
1411
38e584a0
FB
1412#elif defined(__mc68000)
1413
5a7b542b 1414int cpu_signal_handler(int host_signum, void *pinfo,
38e584a0
FB
1415 void *puc)
1416{
5a7b542b 1417 siginfo_t *info = pinfo;
38e584a0
FB
1418 struct ucontext *uc = puc;
1419 unsigned long pc;
1420 int is_write;
1421
1422 pc = uc->uc_mcontext.gregs[16];
1423 /* XXX: compute is_write */
1424 is_write = 0;
1425 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1426 is_write,
bf3e8bf1 1427 &uc->uc_sigmask, puc);
38e584a0
FB
1428}
1429
b8076a74
FB
1430#elif defined(__ia64)
1431
1432#ifndef __ISR_VALID
1433 /* This ought to be in <bits/siginfo.h>... */
1434# define __ISR_VALID 1
b8076a74
FB
1435#endif
1436
5a7b542b 1437int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
b8076a74 1438{
5a7b542b 1439 siginfo_t *info = pinfo;
b8076a74
FB
1440 struct ucontext *uc = puc;
1441 unsigned long ip;
1442 int is_write = 0;
1443
1444 ip = uc->uc_mcontext.sc_ip;
1445 switch (host_signum) {
1446 case SIGILL:
1447 case SIGFPE:
1448 case SIGSEGV:
1449 case SIGBUS:
1450 case SIGTRAP:
fd4a43e4 1451 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1452 /* ISR.W (write-access) is bit 33: */
1453 is_write = (info->si_isr >> 33) & 1;
1454 break;
1455
1456 default:
1457 break;
1458 }
1459 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1460 is_write,
1461 &uc->uc_sigmask, puc);
1462}
1463
90cb9493
FB
1464#elif defined(__s390__)
1465
5a7b542b 1466int cpu_signal_handler(int host_signum, void *pinfo,
90cb9493
FB
1467 void *puc)
1468{
5a7b542b 1469 siginfo_t *info = pinfo;
90cb9493
FB
1470 struct ucontext *uc = puc;
1471 unsigned long pc;
1472 int is_write;
1473
1474 pc = uc->uc_mcontext.psw.addr;
1475 /* XXX: compute is_write */
1476 is_write = 0;
1477 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
c4b89d18
TS
1478 is_write, &uc->uc_sigmask, puc);
1479}
1480
1481#elif defined(__mips__)
1482
9617efe8 1483int cpu_signal_handler(int host_signum, void *pinfo,
c4b89d18
TS
1484 void *puc)
1485{
9617efe8 1486 siginfo_t *info = pinfo;
c4b89d18
TS
1487 struct ucontext *uc = puc;
1488 greg_t pc = uc->uc_mcontext.pc;
1489 int is_write;
1490
1491 /* XXX: compute is_write */
1492 is_write = 0;
1493 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1494 is_write, &uc->uc_sigmask, puc);
90cb9493
FB
1495}
1496
9de5e440 1497#else
2b413144 1498
3fb2ded1 1499#error host CPU specific signal handler needed
2b413144 1500
9de5e440 1501#endif
67b915a5
FB
1502
1503#endif /* !defined(CONFIG_SOFTMMU) */