]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_gtt.c
Revert "drm/i915/bdw: Limit GTT to 2GB"
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
CommitLineData
76aaf220
DV
1/*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
0e46ce2e 25#include <linux/seq_file.h>
760285e7
DH
26#include <drm/drmP.h>
27#include <drm/i915_drm.h>
76aaf220
DV
28#include "i915_drv.h"
29#include "i915_trace.h"
30#include "intel_drv.h"
31
6670a5a5
BW
32#define GEN6_PPGTT_PD_ENTRIES 512
33#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
d31eb10e 34typedef uint64_t gen8_gtt_pte_t;
37aca44a 35typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
6670a5a5 36
26b1ff35
BW
37/* PPGTT stuff */
38#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
0d8ff15e 39#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
26b1ff35
BW
40
41#define GEN6_PDE_VALID (1 << 0)
42/* gen6+ has bit 11-4 for physical addr bit 39-32 */
43#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
44
45#define GEN6_PTE_VALID (1 << 0)
46#define GEN6_PTE_UNCACHED (1 << 1)
47#define HSW_PTE_UNCACHED (0)
48#define GEN6_PTE_CACHE_LLC (2 << 1)
350ec881 49#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
26b1ff35 50#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
0d8ff15e
BW
51#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
52
53/* Cacheability Control is a 4-bit value. The low three bits are stored in *
54 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
55 */
56#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
57 (((bits) & 0x8) << (11 - 3)))
87a6b688 58#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
0d8ff15e 59#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
4d15c145 60#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
c51e9701 61#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
651d794f 62#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
c51e9701 63#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
26b1ff35 64
459108b8 65#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
37aca44a 66#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
7ad47cf2
BW
67
68/* GEN8 legacy style addressis defined as a 3 level page table:
69 * 31:30 | 29:21 | 20:12 | 11:0
70 * PDPE | PDE | PTE | offset
71 * The difference as compared to normal x86 3 level page table is the PDPEs are
72 * programmed via register.
73 */
74#define GEN8_PDPE_SHIFT 30
75#define GEN8_PDPE_MASK 0x3
76#define GEN8_PDE_SHIFT 21
77#define GEN8_PDE_MASK 0x1ff
78#define GEN8_PTE_SHIFT 12
79#define GEN8_PTE_MASK 0x1ff
37aca44a 80
fbe5d36e
BW
81#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
82#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
83#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
84#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
85
6f65e29a
BW
86static void ppgtt_bind_vma(struct i915_vma *vma,
87 enum i915_cache_level cache_level,
88 u32 flags);
89static void ppgtt_unbind_vma(struct i915_vma *vma);
eeb9488e 90static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
6f65e29a 91
94ec8f61
BW
92static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
93 enum i915_cache_level level,
94 bool valid)
95{
96 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
97 pte |= addr;
fbe5d36e
BW
98 if (level != I915_CACHE_NONE)
99 pte |= PPAT_CACHED_INDEX;
100 else
101 pte |= PPAT_UNCACHED_INDEX;
94ec8f61
BW
102 return pte;
103}
104
b1fe6673
BW
105static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
106 dma_addr_t addr,
107 enum i915_cache_level level)
108{
109 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
110 pde |= addr;
111 if (level != I915_CACHE_NONE)
112 pde |= PPAT_CACHED_PDE_INDEX;
113 else
114 pde |= PPAT_UNCACHED_INDEX;
115 return pde;
116}
117
350ec881 118static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
b35b380e
BW
119 enum i915_cache_level level,
120 bool valid)
54d12527 121{
b35b380e 122 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
54d12527 123 pte |= GEN6_PTE_ADDR_ENCODE(addr);
e7210c3c
BW
124
125 switch (level) {
350ec881
CW
126 case I915_CACHE_L3_LLC:
127 case I915_CACHE_LLC:
128 pte |= GEN6_PTE_CACHE_LLC;
129 break;
130 case I915_CACHE_NONE:
131 pte |= GEN6_PTE_UNCACHED;
132 break;
133 default:
134 WARN_ON(1);
135 }
136
137 return pte;
138}
139
140static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
b35b380e
BW
141 enum i915_cache_level level,
142 bool valid)
350ec881 143{
b35b380e 144 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
350ec881
CW
145 pte |= GEN6_PTE_ADDR_ENCODE(addr);
146
147 switch (level) {
148 case I915_CACHE_L3_LLC:
149 pte |= GEN7_PTE_CACHE_L3_LLC;
e7210c3c
BW
150 break;
151 case I915_CACHE_LLC:
152 pte |= GEN6_PTE_CACHE_LLC;
153 break;
154 case I915_CACHE_NONE:
9119708c 155 pte |= GEN6_PTE_UNCACHED;
e7210c3c
BW
156 break;
157 default:
350ec881 158 WARN_ON(1);
e7210c3c
BW
159 }
160
54d12527
BW
161 return pte;
162}
163
93c34e70
KG
164#define BYT_PTE_WRITEABLE (1 << 1)
165#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
166
80a74f7f 167static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
b35b380e
BW
168 enum i915_cache_level level,
169 bool valid)
93c34e70 170{
b35b380e 171 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
93c34e70
KG
172 pte |= GEN6_PTE_ADDR_ENCODE(addr);
173
174 /* Mark the page as writeable. Other platforms don't have a
175 * setting for read-only/writable, so this matches that behavior.
176 */
177 pte |= BYT_PTE_WRITEABLE;
178
179 if (level != I915_CACHE_NONE)
180 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
181
182 return pte;
183}
184
80a74f7f 185static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
b35b380e
BW
186 enum i915_cache_level level,
187 bool valid)
9119708c 188{
b35b380e 189 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
0d8ff15e 190 pte |= HSW_PTE_ADDR_ENCODE(addr);
9119708c
KG
191
192 if (level != I915_CACHE_NONE)
87a6b688 193 pte |= HSW_WB_LLC_AGE3;
9119708c
KG
194
195 return pte;
196}
197
4d15c145 198static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
b35b380e
BW
199 enum i915_cache_level level,
200 bool valid)
4d15c145 201{
b35b380e 202 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4d15c145
BW
203 pte |= HSW_PTE_ADDR_ENCODE(addr);
204
651d794f
CW
205 switch (level) {
206 case I915_CACHE_NONE:
207 break;
208 case I915_CACHE_WT:
c51e9701 209 pte |= HSW_WT_ELLC_LLC_AGE3;
651d794f
CW
210 break;
211 default:
c51e9701 212 pte |= HSW_WB_ELLC_LLC_AGE3;
651d794f
CW
213 break;
214 }
4d15c145
BW
215
216 return pte;
217}
218
94e409c1
BW
219/* Broadwell Page Directory Pointer Descriptors */
220static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
e178f705 221 uint64_t val, bool synchronous)
94e409c1 222{
e178f705 223 struct drm_i915_private *dev_priv = ring->dev->dev_private;
94e409c1
BW
224 int ret;
225
226 BUG_ON(entry >= 4);
227
e178f705
BW
228 if (synchronous) {
229 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
230 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
231 return 0;
232 }
233
94e409c1
BW
234 ret = intel_ring_begin(ring, 6);
235 if (ret)
236 return ret;
237
238 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
239 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
240 intel_ring_emit(ring, (u32)(val >> 32));
241 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
242 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
243 intel_ring_emit(ring, (u32)(val));
244 intel_ring_advance(ring);
245
246 return 0;
247}
248
eeb9488e
BW
249static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
250 struct intel_ring_buffer *ring,
251 bool synchronous)
94e409c1 252{
eeb9488e 253 int i, ret;
94e409c1
BW
254
255 /* bit of a hack to find the actual last used pd */
256 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
257
94e409c1
BW
258 for (i = used_pd - 1; i >= 0; i--) {
259 dma_addr_t addr = ppgtt->pd_dma_addr[i];
eeb9488e
BW
260 ret = gen8_write_pdp(ring, i, addr, synchronous);
261 if (ret)
262 return ret;
94e409c1 263 }
d595bd4b 264
eeb9488e 265 return 0;
94e409c1
BW
266}
267
459108b8 268static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
782f1495
BW
269 uint64_t start,
270 uint64_t length,
459108b8
BW
271 bool use_scratch)
272{
273 struct i915_hw_ppgtt *ppgtt =
274 container_of(vm, struct i915_hw_ppgtt, base);
275 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
7ad47cf2
BW
276 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
277 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
278 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
782f1495 279 unsigned num_entries = length >> PAGE_SHIFT;
459108b8
BW
280 unsigned last_pte, i;
281
282 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
283 I915_CACHE_LLC, use_scratch);
284
285 while (num_entries) {
7ad47cf2 286 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
459108b8 287
7ad47cf2 288 last_pte = pte + num_entries;
459108b8
BW
289 if (last_pte > GEN8_PTES_PER_PAGE)
290 last_pte = GEN8_PTES_PER_PAGE;
291
292 pt_vaddr = kmap_atomic(page_table);
293
7ad47cf2 294 for (i = pte; i < last_pte; i++) {
459108b8 295 pt_vaddr[i] = scratch_pte;
7ad47cf2
BW
296 num_entries--;
297 }
459108b8
BW
298
299 kunmap_atomic(pt_vaddr);
300
7ad47cf2
BW
301 pte = 0;
302 if (++pde == GEN8_PDES_PER_PAGE) {
303 pdpe++;
304 pde = 0;
305 }
459108b8
BW
306 }
307}
308
9df15b49
BW
309static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
310 struct sg_table *pages,
782f1495 311 uint64_t start,
9df15b49
BW
312 enum i915_cache_level cache_level)
313{
314 struct i915_hw_ppgtt *ppgtt =
315 container_of(vm, struct i915_hw_ppgtt, base);
316 gen8_gtt_pte_t *pt_vaddr;
7ad47cf2
BW
317 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
318 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
319 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
9df15b49
BW
320 struct sg_page_iter sg_iter;
321
6f1cc993 322 pt_vaddr = NULL;
7ad47cf2 323
9df15b49 324 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
7ad47cf2
BW
325 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
326 break;
327
6f1cc993 328 if (pt_vaddr == NULL)
7ad47cf2 329 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
9df15b49 330
7ad47cf2 331 pt_vaddr[pte] =
6f1cc993
CW
332 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
333 cache_level, true);
7ad47cf2 334 if (++pte == GEN8_PTES_PER_PAGE) {
9df15b49 335 kunmap_atomic(pt_vaddr);
6f1cc993 336 pt_vaddr = NULL;
7ad47cf2
BW
337 if (++pde == GEN8_PDES_PER_PAGE) {
338 pdpe++;
339 pde = 0;
340 }
341 pte = 0;
9df15b49
BW
342 }
343 }
6f1cc993
CW
344 if (pt_vaddr)
345 kunmap_atomic(pt_vaddr);
9df15b49
BW
346}
347
7ad47cf2
BW
348static void gen8_free_page_tables(struct page **pt_pages)
349{
350 int i;
351
352 if (pt_pages == NULL)
353 return;
354
355 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
356 if (pt_pages[i])
357 __free_pages(pt_pages[i], 0);
358}
359
360static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
b45a6715
BW
361{
362 int i;
363
7ad47cf2
BW
364 for (i = 0; i < ppgtt->num_pd_pages; i++) {
365 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
366 kfree(ppgtt->gen8_pt_pages[i]);
b45a6715 367 kfree(ppgtt->gen8_pt_dma_addr[i]);
7ad47cf2 368 }
b45a6715 369
b45a6715
BW
370 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
371}
372
373static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
374{
f3a964b9 375 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
b45a6715
BW
376 int i, j;
377
378 for (i = 0; i < ppgtt->num_pd_pages; i++) {
379 /* TODO: In the future we'll support sparse mappings, so this
380 * will have to change. */
381 if (!ppgtt->pd_dma_addr[i])
382 continue;
383
f3a964b9
BW
384 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
385 PCI_DMA_BIDIRECTIONAL);
b45a6715
BW
386
387 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
388 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
389 if (addr)
f3a964b9
BW
390 pci_unmap_page(hwdev, addr, PAGE_SIZE,
391 PCI_DMA_BIDIRECTIONAL);
b45a6715
BW
392 }
393 }
394}
395
37aca44a
BW
396static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
397{
398 struct i915_hw_ppgtt *ppgtt =
399 container_of(vm, struct i915_hw_ppgtt, base);
37aca44a 400
7e0d96bc 401 list_del(&vm->global_link);
686e1f6f
BW
402 drm_mm_takedown(&vm->mm);
403
b45a6715
BW
404 gen8_ppgtt_unmap_pages(ppgtt);
405 gen8_ppgtt_free(ppgtt);
37aca44a
BW
406}
407
7ad47cf2
BW
408static struct page **__gen8_alloc_page_tables(void)
409{
410 struct page **pt_pages;
411 int i;
412
413 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
414 if (!pt_pages)
415 return ERR_PTR(-ENOMEM);
416
417 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
418 pt_pages[i] = alloc_page(GFP_KERNEL);
419 if (!pt_pages[i])
420 goto bail;
421 }
422
423 return pt_pages;
424
425bail:
426 gen8_free_page_tables(pt_pages);
427 kfree(pt_pages);
428 return ERR_PTR(-ENOMEM);
429}
430
bf2b4ed2
BW
431static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
432 const int max_pdp)
433{
7ad47cf2 434 struct page **pt_pages[GEN8_LEGACY_PDPS];
bf2b4ed2 435 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
7ad47cf2 436 int i, ret;
bf2b4ed2 437
7ad47cf2
BW
438 for (i = 0; i < max_pdp; i++) {
439 pt_pages[i] = __gen8_alloc_page_tables();
440 if (IS_ERR(pt_pages[i])) {
441 ret = PTR_ERR(pt_pages[i]);
442 goto unwind_out;
443 }
444 }
445
446 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
447 * "atomic" - for cleanup purposes.
448 */
449 for (i = 0; i < max_pdp; i++)
450 ppgtt->gen8_pt_pages[i] = pt_pages[i];
bf2b4ed2 451
bf2b4ed2
BW
452 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
453
454 return 0;
7ad47cf2
BW
455
456unwind_out:
457 while (i--) {
458 gen8_free_page_tables(pt_pages[i]);
459 kfree(pt_pages[i]);
460 }
461
462 return ret;
bf2b4ed2
BW
463}
464
465static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
466{
467 int i;
468
469 for (i = 0; i < ppgtt->num_pd_pages; i++) {
470 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
471 sizeof(dma_addr_t),
472 GFP_KERNEL);
473 if (!ppgtt->gen8_pt_dma_addr[i])
474 return -ENOMEM;
475 }
476
477 return 0;
478}
479
480static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
481 const int max_pdp)
482{
483 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
484 if (!ppgtt->pd_pages)
485 return -ENOMEM;
486
487 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
488 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
489
490 return 0;
491}
492
493static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
494 const int max_pdp)
495{
496 int ret;
497
498 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
499 if (ret)
500 return ret;
501
502 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
503 if (ret) {
504 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
505 return ret;
506 }
507
508 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
509
510 ret = gen8_ppgtt_allocate_dma(ppgtt);
511 if (ret)
512 gen8_ppgtt_free(ppgtt);
513
514 return ret;
515}
516
517static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
518 const int pd)
519{
520 dma_addr_t pd_addr;
521 int ret;
522
523 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
524 &ppgtt->pd_pages[pd], 0,
525 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
526
527 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
528 if (ret)
529 return ret;
530
531 ppgtt->pd_dma_addr[pd] = pd_addr;
532
533 return 0;
534}
535
536static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
537 const int pd,
538 const int pt)
539{
540 dma_addr_t pt_addr;
541 struct page *p;
542 int ret;
543
7ad47cf2 544 p = ppgtt->gen8_pt_pages[pd][pt];
bf2b4ed2
BW
545 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
546 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
547 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
548 if (ret)
549 return ret;
550
551 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
552
553 return 0;
554}
555
37aca44a 556/**
f3a964b9
BW
557 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
558 * with a net effect resembling a 2-level page table in normal x86 terms. Each
559 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
560 * space.
37aca44a 561 *
f3a964b9
BW
562 * FIXME: split allocation into smaller pieces. For now we only ever do this
563 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
37aca44a 564 * TODO: Do something with the size parameter
f3a964b9 565 */
37aca44a
BW
566static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
567{
37aca44a 568 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
bf2b4ed2 569 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
f3a964b9 570 int i, j, ret;
37aca44a
BW
571
572 if (size % (1<<30))
573 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
574
bf2b4ed2
BW
575 /* 1. Do all our allocations for page directories and page tables. */
576 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
577 if (ret)
578 return ret;
f3a964b9 579
37aca44a 580 /*
bf2b4ed2 581 * 2. Create DMA mappings for the page directories and page tables.
37aca44a
BW
582 */
583 for (i = 0; i < max_pdp; i++) {
bf2b4ed2 584 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
f3a964b9
BW
585 if (ret)
586 goto bail;
37aca44a 587
37aca44a 588 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
bf2b4ed2 589 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
f3a964b9
BW
590 if (ret)
591 goto bail;
37aca44a
BW
592 }
593 }
594
f3a964b9
BW
595 /*
596 * 3. Map all the page directory entires to point to the page tables
597 * we've allocated.
598 *
599 * For now, the PPGTT helper functions all require that the PDEs are
b1fe6673 600 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
f3a964b9
BW
601 * will never need to touch the PDEs again.
602 */
b1fe6673
BW
603 for (i = 0; i < max_pdp; i++) {
604 gen8_ppgtt_pde_t *pd_vaddr;
605 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
606 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
607 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
608 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
609 I915_CACHE_LLC);
610 }
611 kunmap_atomic(pd_vaddr);
612 }
613
f3a964b9
BW
614 ppgtt->enable = gen8_ppgtt_enable;
615 ppgtt->switch_mm = gen8_mm_switch;
616 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
617 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
618 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
619 ppgtt->base.start = 0;
620 ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
621
459108b8 622 ppgtt->base.clear_range(&ppgtt->base, 0,
782f1495 623 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE,
459108b8
BW
624 true);
625
37aca44a
BW
626 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
627 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
628 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
629 ppgtt->num_pt_pages,
bf2b4ed2 630 (ppgtt->num_pt_pages - min_pt_pages) +
37aca44a 631 size % (1<<30));
28cf5415 632 return 0;
37aca44a 633
f3a964b9
BW
634bail:
635 gen8_ppgtt_unmap_pages(ppgtt);
636 gen8_ppgtt_free(ppgtt);
37aca44a
BW
637 return ret;
638}
639
87d60b63
BW
640static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
641{
642 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
643 struct i915_address_space *vm = &ppgtt->base;
644 gen6_gtt_pte_t __iomem *pd_addr;
645 gen6_gtt_pte_t scratch_pte;
646 uint32_t pd_entry;
647 int pte, pde;
648
649 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
650
651 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
652 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
653
654 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
655 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
656 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
657 u32 expected;
658 gen6_gtt_pte_t *pt_vaddr;
659 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
660 pd_entry = readl(pd_addr + pde);
661 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
662
663 if (pd_entry != expected)
664 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
665 pde,
666 pd_entry,
667 expected);
668 seq_printf(m, "\tPDE: %x\n", pd_entry);
669
670 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
671 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
672 unsigned long va =
673 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
674 (pte * PAGE_SIZE);
675 int i;
676 bool found = false;
677 for (i = 0; i < 4; i++)
678 if (pt_vaddr[pte + i] != scratch_pte)
679 found = true;
680 if (!found)
681 continue;
682
683 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
684 for (i = 0; i < 4; i++) {
685 if (pt_vaddr[pte + i] != scratch_pte)
686 seq_printf(m, " %08x", pt_vaddr[pte + i]);
687 else
688 seq_puts(m, " SCRATCH ");
689 }
690 seq_puts(m, "\n");
691 }
692 kunmap_atomic(pt_vaddr);
693 }
694}
695
3e302542 696static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
6197349b 697{
853ba5d2 698 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
6197349b
BW
699 gen6_gtt_pte_t __iomem *pd_addr;
700 uint32_t pd_entry;
701 int i;
702
0a732870 703 WARN_ON(ppgtt->pd_offset & 0x3f);
6197349b
BW
704 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
705 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
706 for (i = 0; i < ppgtt->num_pd_entries; i++) {
707 dma_addr_t pt_addr;
708
709 pt_addr = ppgtt->pt_dma_addr[i];
710 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
711 pd_entry |= GEN6_PDE_VALID;
712
713 writel(pd_entry, pd_addr + i);
714 }
715 readl(pd_addr);
3e302542
BW
716}
717
b4a74e3a 718static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
3e302542 719{
b4a74e3a
BW
720 BUG_ON(ppgtt->pd_offset & 0x3f);
721
722 return (ppgtt->pd_offset / 64) << 16;
723}
724
90252e5c
BW
725static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
726 struct intel_ring_buffer *ring,
727 bool synchronous)
728{
729 struct drm_device *dev = ppgtt->base.dev;
730 struct drm_i915_private *dev_priv = dev->dev_private;
731 int ret;
732
733 /* If we're in reset, we can assume the GPU is sufficiently idle to
734 * manually frob these bits. Ideally we could use the ring functions,
735 * except our error handling makes it quite difficult (can't use
736 * intel_ring_begin, ring->flush, or intel_ring_advance)
737 *
738 * FIXME: We should try not to special case reset
739 */
740 if (synchronous ||
741 i915_reset_in_progress(&dev_priv->gpu_error)) {
742 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
743 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
744 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
745 POSTING_READ(RING_PP_DIR_BASE(ring));
746 return 0;
747 }
748
749 /* NB: TLBs must be flushed and invalidated before a switch */
750 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
751 if (ret)
752 return ret;
753
754 ret = intel_ring_begin(ring, 6);
755 if (ret)
756 return ret;
757
758 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
759 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
760 intel_ring_emit(ring, PP_DIR_DCLV_2G);
761 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
762 intel_ring_emit(ring, get_pd_offset(ppgtt));
763 intel_ring_emit(ring, MI_NOOP);
764 intel_ring_advance(ring);
765
766 return 0;
767}
768
48a10389
BW
769static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
770 struct intel_ring_buffer *ring,
771 bool synchronous)
772{
773 struct drm_device *dev = ppgtt->base.dev;
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 int ret;
776
777 /* If we're in reset, we can assume the GPU is sufficiently idle to
778 * manually frob these bits. Ideally we could use the ring functions,
779 * except our error handling makes it quite difficult (can't use
780 * intel_ring_begin, ring->flush, or intel_ring_advance)
781 *
782 * FIXME: We should try not to special case reset
783 */
784 if (synchronous ||
785 i915_reset_in_progress(&dev_priv->gpu_error)) {
786 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
787 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
788 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
789 POSTING_READ(RING_PP_DIR_BASE(ring));
790 return 0;
791 }
792
793 /* NB: TLBs must be flushed and invalidated before a switch */
794 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
795 if (ret)
796 return ret;
797
798 ret = intel_ring_begin(ring, 6);
799 if (ret)
800 return ret;
801
802 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
803 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
804 intel_ring_emit(ring, PP_DIR_DCLV_2G);
805 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
806 intel_ring_emit(ring, get_pd_offset(ppgtt));
807 intel_ring_emit(ring, MI_NOOP);
808 intel_ring_advance(ring);
809
90252e5c
BW
810 /* XXX: RCS is the only one to auto invalidate the TLBs? */
811 if (ring->id != RCS) {
812 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
813 if (ret)
814 return ret;
815 }
816
48a10389
BW
817 return 0;
818}
819
eeb9488e
BW
820static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
821 struct intel_ring_buffer *ring,
822 bool synchronous)
823{
824 struct drm_device *dev = ppgtt->base.dev;
825 struct drm_i915_private *dev_priv = dev->dev_private;
826
48a10389
BW
827 if (!synchronous)
828 return 0;
829
eeb9488e
BW
830 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
831 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
832
833 POSTING_READ(RING_PP_DIR_DCLV(ring));
834
835 return 0;
836}
837
838static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
839{
840 struct drm_device *dev = ppgtt->base.dev;
841 struct drm_i915_private *dev_priv = dev->dev_private;
3e302542 842 struct intel_ring_buffer *ring;
eeb9488e 843 int j, ret;
3e302542 844
eeb9488e
BW
845 for_each_ring(ring, dev_priv, j) {
846 I915_WRITE(RING_MODE_GEN7(ring),
847 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3e302542 848
d2ff7192
BW
849 /* We promise to do a switch later with FULL PPGTT. If this is
850 * aliasing, this is the one and only switch we'll do */
851 if (USES_FULL_PPGTT(dev))
852 continue;
6197349b 853
eeb9488e
BW
854 ret = ppgtt->switch_mm(ppgtt, ring, true);
855 if (ret)
856 goto err_out;
857 }
6197349b 858
eeb9488e 859 return 0;
6197349b 860
eeb9488e
BW
861err_out:
862 for_each_ring(ring, dev_priv, j)
863 I915_WRITE(RING_MODE_GEN7(ring),
864 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
865 return ret;
866}
6197349b 867
b4a74e3a 868static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
3e302542 869{
a3d67d23 870 struct drm_device *dev = ppgtt->base.dev;
3e302542 871 drm_i915_private_t *dev_priv = dev->dev_private;
3e302542 872 struct intel_ring_buffer *ring;
b4a74e3a 873 uint32_t ecochk, ecobits;
3e302542 874 int i;
6197349b 875
b4a74e3a
BW
876 ecobits = I915_READ(GAC_ECO_BITS);
877 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
a65c2fcd 878
b4a74e3a
BW
879 ecochk = I915_READ(GAM_ECOCHK);
880 if (IS_HASWELL(dev)) {
881 ecochk |= ECOCHK_PPGTT_WB_HSW;
882 } else {
883 ecochk |= ECOCHK_PPGTT_LLC_IVB;
884 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
885 }
886 I915_WRITE(GAM_ECOCHK, ecochk);
a65c2fcd 887
b4a74e3a 888 for_each_ring(ring, dev_priv, i) {
eeb9488e 889 int ret;
6197349b 890 /* GFX_MODE is per-ring on gen7+ */
b4a74e3a
BW
891 I915_WRITE(RING_MODE_GEN7(ring),
892 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
d2ff7192
BW
893
894 /* We promise to do a switch later with FULL PPGTT. If this is
895 * aliasing, this is the one and only switch we'll do */
896 if (USES_FULL_PPGTT(dev))
897 continue;
898
eeb9488e
BW
899 ret = ppgtt->switch_mm(ppgtt, ring, true);
900 if (ret)
901 return ret;
6197349b
BW
902 }
903
b4a74e3a
BW
904 return 0;
905}
6197349b 906
b4a74e3a
BW
907static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
908{
909 struct drm_device *dev = ppgtt->base.dev;
910 drm_i915_private_t *dev_priv = dev->dev_private;
911 struct intel_ring_buffer *ring;
912 uint32_t ecochk, gab_ctl, ecobits;
913 int i;
a65c2fcd 914
b4a74e3a
BW
915 ecobits = I915_READ(GAC_ECO_BITS);
916 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
917 ECOBITS_PPGTT_CACHE64B);
6197349b 918
b4a74e3a
BW
919 gab_ctl = I915_READ(GAB_CTL);
920 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
921
922 ecochk = I915_READ(GAM_ECOCHK);
923 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
924
925 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
6197349b 926
b4a74e3a 927 for_each_ring(ring, dev_priv, i) {
eeb9488e
BW
928 int ret = ppgtt->switch_mm(ppgtt, ring, true);
929 if (ret)
930 return ret;
6197349b 931 }
b4a74e3a 932
b7c36d25 933 return 0;
6197349b
BW
934}
935
1d2a314c 936/* PPGTT support for Sandybdrige/Gen6 and later */
853ba5d2 937static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
782f1495
BW
938 uint64_t start,
939 uint64_t length,
828c7908 940 bool use_scratch)
1d2a314c 941{
853ba5d2
BW
942 struct i915_hw_ppgtt *ppgtt =
943 container_of(vm, struct i915_hw_ppgtt, base);
e7c2b58b 944 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
782f1495
BW
945 unsigned first_entry = start >> PAGE_SHIFT;
946 unsigned num_entries = length >> PAGE_SHIFT;
a15326a5 947 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
7bddb01f
DV
948 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
949 unsigned last_pte, i;
1d2a314c 950
b35b380e 951 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
1d2a314c 952
7bddb01f
DV
953 while (num_entries) {
954 last_pte = first_pte + num_entries;
955 if (last_pte > I915_PPGTT_PT_ENTRIES)
956 last_pte = I915_PPGTT_PT_ENTRIES;
957
a15326a5 958 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1d2a314c 959
7bddb01f
DV
960 for (i = first_pte; i < last_pte; i++)
961 pt_vaddr[i] = scratch_pte;
1d2a314c
DV
962
963 kunmap_atomic(pt_vaddr);
1d2a314c 964
7bddb01f
DV
965 num_entries -= last_pte - first_pte;
966 first_pte = 0;
a15326a5 967 act_pt++;
7bddb01f 968 }
1d2a314c
DV
969}
970
853ba5d2 971static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
def886c3 972 struct sg_table *pages,
782f1495 973 uint64_t start,
def886c3
DV
974 enum i915_cache_level cache_level)
975{
853ba5d2
BW
976 struct i915_hw_ppgtt *ppgtt =
977 container_of(vm, struct i915_hw_ppgtt, base);
e7c2b58b 978 gen6_gtt_pte_t *pt_vaddr;
782f1495 979 unsigned first_entry = start >> PAGE_SHIFT;
a15326a5 980 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
6e995e23
ID
981 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
982 struct sg_page_iter sg_iter;
983
cc79714f 984 pt_vaddr = NULL;
6e995e23 985 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
cc79714f
CW
986 if (pt_vaddr == NULL)
987 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
6e995e23 988
cc79714f
CW
989 pt_vaddr[act_pte] =
990 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
991 cache_level, true);
6e995e23
ID
992 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
993 kunmap_atomic(pt_vaddr);
cc79714f 994 pt_vaddr = NULL;
a15326a5 995 act_pt++;
6e995e23 996 act_pte = 0;
def886c3 997 }
def886c3 998 }
cc79714f
CW
999 if (pt_vaddr)
1000 kunmap_atomic(pt_vaddr);
def886c3
DV
1001}
1002
853ba5d2 1003static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1d2a314c 1004{
853ba5d2
BW
1005 struct i915_hw_ppgtt *ppgtt =
1006 container_of(vm, struct i915_hw_ppgtt, base);
3440d265
DV
1007 int i;
1008
7e0d96bc 1009 list_del(&vm->global_link);
93bd8649 1010 drm_mm_takedown(&ppgtt->base.mm);
c8d4c0d6 1011 drm_mm_remove_node(&ppgtt->node);
93bd8649 1012
3440d265
DV
1013 if (ppgtt->pt_dma_addr) {
1014 for (i = 0; i < ppgtt->num_pd_entries; i++)
853ba5d2 1015 pci_unmap_page(ppgtt->base.dev->pdev,
3440d265
DV
1016 ppgtt->pt_dma_addr[i],
1017 4096, PCI_DMA_BIDIRECTIONAL);
1018 }
1019
1020 kfree(ppgtt->pt_dma_addr);
1021 for (i = 0; i < ppgtt->num_pd_entries; i++)
1022 __free_page(ppgtt->pt_pages[i]);
1023 kfree(ppgtt->pt_pages);
3440d265
DV
1024}
1025
1026static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1027{
c8d4c0d6
BW
1028#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1029#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
853ba5d2 1030 struct drm_device *dev = ppgtt->base.dev;
1d2a314c 1031 struct drm_i915_private *dev_priv = dev->dev_private;
e3cc1995 1032 bool retried = false;
c8d4c0d6 1033 int i, ret;
1d2a314c 1034
c8d4c0d6
BW
1035 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1036 * allocator works in address space sizes, so it's multiplied by page
1037 * size. We allocate at the top of the GTT to avoid fragmentation.
1038 */
1039 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
e3cc1995 1040alloc:
c8d4c0d6
BW
1041 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1042 &ppgtt->node, GEN6_PD_SIZE,
1043 GEN6_PD_ALIGN, 0,
1044 0, dev_priv->gtt.base.total,
1045 DRM_MM_SEARCH_DEFAULT);
e3cc1995
BW
1046 if (ret == -ENOSPC && !retried) {
1047 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1048 GEN6_PD_SIZE, GEN6_PD_ALIGN,
d47c3ea2 1049 I915_CACHE_NONE, 0);
e3cc1995
BW
1050 if (ret)
1051 return ret;
1052
1053 retried = true;
1054 goto alloc;
1055 }
c8d4c0d6
BW
1056
1057 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1058 DRM_DEBUG("Forced to use aperture for PDEs\n");
1d2a314c 1059
08c45263 1060 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
6670a5a5 1061 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
48a10389 1062 if (IS_GEN6(dev)) {
b4a74e3a 1063 ppgtt->enable = gen6_ppgtt_enable;
48a10389 1064 ppgtt->switch_mm = gen6_mm_switch;
90252e5c
BW
1065 } else if (IS_HASWELL(dev)) {
1066 ppgtt->enable = gen7_ppgtt_enable;
1067 ppgtt->switch_mm = hsw_mm_switch;
48a10389 1068 } else if (IS_GEN7(dev)) {
b4a74e3a 1069 ppgtt->enable = gen7_ppgtt_enable;
48a10389
BW
1070 ppgtt->switch_mm = gen7_mm_switch;
1071 } else
b4a74e3a 1072 BUG();
853ba5d2
BW
1073 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1074 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1075 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1076 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
686e1f6f
BW
1077 ppgtt->base.start = 0;
1078 ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
a1e22653 1079 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1d2a314c 1080 GFP_KERNEL);
c8d4c0d6
BW
1081 if (!ppgtt->pt_pages) {
1082 drm_mm_remove_node(&ppgtt->node);
3440d265 1083 return -ENOMEM;
c8d4c0d6 1084 }
1d2a314c
DV
1085
1086 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1087 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1088 if (!ppgtt->pt_pages[i])
1089 goto err_pt_alloc;
1090 }
1091
a1e22653 1092 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
8d2e6308
BW
1093 GFP_KERNEL);
1094 if (!ppgtt->pt_dma_addr)
1095 goto err_pt_alloc;
1d2a314c 1096
8d2e6308
BW
1097 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1098 dma_addr_t pt_addr;
211c568b 1099
8d2e6308
BW
1100 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1101 PCI_DMA_BIDIRECTIONAL);
1d2a314c 1102
8d2e6308
BW
1103 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1104 ret = -EIO;
1105 goto err_pd_pin;
1d2a314c 1106
211c568b 1107 }
8d2e6308 1108 ppgtt->pt_dma_addr[i] = pt_addr;
1d2a314c 1109 }
1d2a314c 1110
782f1495 1111 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
87d60b63 1112 ppgtt->debug_dump = gen6_dump_ppgtt;
1d2a314c 1113
c8d4c0d6
BW
1114 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1115 ppgtt->node.size >> 20,
1116 ppgtt->node.start / PAGE_SIZE);
1117 ppgtt->pd_offset =
1118 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1d2a314c 1119
1d2a314c
DV
1120 return 0;
1121
1122err_pd_pin:
1123 if (ppgtt->pt_dma_addr) {
1124 for (i--; i >= 0; i--)
1125 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
1126 4096, PCI_DMA_BIDIRECTIONAL);
1127 }
1128err_pt_alloc:
1129 kfree(ppgtt->pt_dma_addr);
1130 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1131 if (ppgtt->pt_pages[i])
1132 __free_page(ppgtt->pt_pages[i]);
1133 }
1134 kfree(ppgtt->pt_pages);
c8d4c0d6 1135 drm_mm_remove_node(&ppgtt->node);
3440d265
DV
1136
1137 return ret;
1138}
1139
246cbfb5 1140int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
3440d265
DV
1141{
1142 struct drm_i915_private *dev_priv = dev->dev_private;
d6660add 1143 int ret = 0;
3440d265 1144
853ba5d2 1145 ppgtt->base.dev = dev;
3440d265 1146
3ed124b2
BW
1147 if (INTEL_INFO(dev)->gen < 8)
1148 ret = gen6_ppgtt_init(ppgtt);
8fe6bd23 1149 else if (IS_GEN8(dev))
37aca44a 1150 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
3ed124b2
BW
1151 else
1152 BUG();
1153
c7c48dfd 1154 if (!ret) {
7e0d96bc 1155 struct drm_i915_private *dev_priv = dev->dev_private;
c7c48dfd 1156 kref_init(&ppgtt->ref);
93bd8649
BW
1157 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1158 ppgtt->base.total);
7e0d96bc
BW
1159 i915_init_vm(dev_priv, &ppgtt->base);
1160 if (INTEL_INFO(dev)->gen < 8) {
9f273d48 1161 gen6_write_pdes(ppgtt);
7e0d96bc
BW
1162 DRM_DEBUG("Adding PPGTT at offset %x\n",
1163 ppgtt->pd_offset << 10);
1164 }
93bd8649 1165 }
1d2a314c
DV
1166
1167 return ret;
1168}
1169
7e0d96bc 1170static void
6f65e29a
BW
1171ppgtt_bind_vma(struct i915_vma *vma,
1172 enum i915_cache_level cache_level,
1173 u32 flags)
1d2a314c 1174{
6f65e29a 1175 WARN_ON(flags);
1d2a314c 1176
782f1495
BW
1177 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1178 cache_level);
1d2a314c
DV
1179}
1180
7e0d96bc 1181static void ppgtt_unbind_vma(struct i915_vma *vma)
7bddb01f 1182{
6f65e29a 1183 vma->vm->clear_range(vma->vm,
782f1495
BW
1184 vma->node.start,
1185 vma->obj->base.size,
6f65e29a 1186 true);
7bddb01f
DV
1187}
1188
a81cc00c
BW
1189extern int intel_iommu_gfx_mapped;
1190/* Certain Gen5 chipsets require require idling the GPU before
1191 * unmapping anything from the GTT when VT-d is enabled.
1192 */
1193static inline bool needs_idle_maps(struct drm_device *dev)
1194{
1195#ifdef CONFIG_INTEL_IOMMU
1196 /* Query intel_iommu to see if we need the workaround. Presumably that
1197 * was loaded first.
1198 */
1199 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1200 return true;
1201#endif
1202 return false;
1203}
1204
5c042287
BW
1205static bool do_idling(struct drm_i915_private *dev_priv)
1206{
1207 bool ret = dev_priv->mm.interruptible;
1208
a81cc00c 1209 if (unlikely(dev_priv->gtt.do_idle_maps)) {
5c042287 1210 dev_priv->mm.interruptible = false;
b2da9fe5 1211 if (i915_gpu_idle(dev_priv->dev)) {
5c042287
BW
1212 DRM_ERROR("Couldn't idle GPU\n");
1213 /* Wait a bit, in hopes it avoids the hang */
1214 udelay(10);
1215 }
1216 }
1217
1218 return ret;
1219}
1220
1221static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1222{
a81cc00c 1223 if (unlikely(dev_priv->gtt.do_idle_maps))
5c042287
BW
1224 dev_priv->mm.interruptible = interruptible;
1225}
1226
828c7908
BW
1227void i915_check_and_clear_faults(struct drm_device *dev)
1228{
1229 struct drm_i915_private *dev_priv = dev->dev_private;
1230 struct intel_ring_buffer *ring;
1231 int i;
1232
1233 if (INTEL_INFO(dev)->gen < 6)
1234 return;
1235
1236 for_each_ring(ring, dev_priv, i) {
1237 u32 fault_reg;
1238 fault_reg = I915_READ(RING_FAULT_REG(ring));
1239 if (fault_reg & RING_FAULT_VALID) {
1240 DRM_DEBUG_DRIVER("Unexpected fault\n"
1241 "\tAddr: 0x%08lx\\n"
1242 "\tAddress space: %s\n"
1243 "\tSource ID: %d\n"
1244 "\tType: %d\n",
1245 fault_reg & PAGE_MASK,
1246 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1247 RING_FAULT_SRCID(fault_reg),
1248 RING_FAULT_FAULT_TYPE(fault_reg));
1249 I915_WRITE(RING_FAULT_REG(ring),
1250 fault_reg & ~RING_FAULT_VALID);
1251 }
1252 }
1253 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1254}
1255
1256void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1257{
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259
1260 /* Don't bother messing with faults pre GEN6 as we have little
1261 * documentation supporting that it's a good idea.
1262 */
1263 if (INTEL_INFO(dev)->gen < 6)
1264 return;
1265
1266 i915_check_and_clear_faults(dev);
1267
1268 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
782f1495
BW
1269 dev_priv->gtt.base.start,
1270 dev_priv->gtt.base.total,
828c7908
BW
1271 false);
1272}
1273
76aaf220
DV
1274void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1275{
1276 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1277 struct drm_i915_gem_object *obj;
80da2161 1278 struct i915_address_space *vm;
76aaf220 1279
828c7908
BW
1280 i915_check_and_clear_faults(dev);
1281
bee4a186 1282 /* First fill our portion of the GTT with scratch pages */
853ba5d2 1283 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
782f1495
BW
1284 dev_priv->gtt.base.start,
1285 dev_priv->gtt.base.total,
828c7908 1286 true);
bee4a186 1287
35c20a60 1288 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
6f65e29a
BW
1289 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1290 &dev_priv->gtt.base);
1291 if (!vma)
1292 continue;
1293
2c22569b 1294 i915_gem_clflush_object(obj, obj->pin_display);
6f65e29a
BW
1295 /* The bind_vma code tries to be smart about tracking mappings.
1296 * Unfortunately above, we've just wiped out the mappings
1297 * without telling our object about it. So we need to fake it.
1298 */
1299 obj->has_global_gtt_mapping = 0;
1300 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
76aaf220
DV
1301 }
1302
80da2161
BW
1303
1304 if (INTEL_INFO(dev)->gen >= 8)
1305 return;
1306
1307 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1308 /* TODO: Perhaps it shouldn't be gen6 specific */
1309 if (i915_is_ggtt(vm)) {
1310 if (dev_priv->mm.aliasing_ppgtt)
1311 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1312 continue;
1313 }
1314
1315 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
76aaf220
DV
1316 }
1317
e76e9aeb 1318 i915_gem_chipset_flush(dev);
76aaf220 1319}
7c2e6fdf 1320
74163907 1321int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
7c2e6fdf 1322{
9da3da66 1323 if (obj->has_dma_mapping)
74163907 1324 return 0;
9da3da66
CW
1325
1326 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1327 obj->pages->sgl, obj->pages->nents,
1328 PCI_DMA_BIDIRECTIONAL))
1329 return -ENOSPC;
1330
1331 return 0;
7c2e6fdf
DV
1332}
1333
94ec8f61
BW
1334static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1335{
1336#ifdef writeq
1337 writeq(pte, addr);
1338#else
1339 iowrite32((u32)pte, addr);
1340 iowrite32(pte >> 32, addr + 4);
1341#endif
1342}
1343
1344static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1345 struct sg_table *st,
782f1495 1346 uint64_t start,
94ec8f61
BW
1347 enum i915_cache_level level)
1348{
1349 struct drm_i915_private *dev_priv = vm->dev->dev_private;
782f1495 1350 unsigned first_entry = start >> PAGE_SHIFT;
94ec8f61
BW
1351 gen8_gtt_pte_t __iomem *gtt_entries =
1352 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1353 int i = 0;
1354 struct sg_page_iter sg_iter;
1355 dma_addr_t addr;
1356
1357 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1358 addr = sg_dma_address(sg_iter.sg) +
1359 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1360 gen8_set_pte(&gtt_entries[i],
1361 gen8_pte_encode(addr, level, true));
1362 i++;
1363 }
1364
1365 /*
1366 * XXX: This serves as a posting read to make sure that the PTE has
1367 * actually been updated. There is some concern that even though
1368 * registers and PTEs are within the same BAR that they are potentially
1369 * of NUMA access patterns. Therefore, even with the way we assume
1370 * hardware should work, we must keep this posting read for paranoia.
1371 */
1372 if (i != 0)
1373 WARN_ON(readq(&gtt_entries[i-1])
1374 != gen8_pte_encode(addr, level, true));
1375
94ec8f61
BW
1376 /* This next bit makes the above posting read even more important. We
1377 * want to flush the TLBs only after we're certain all the PTE updates
1378 * have finished.
1379 */
1380 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1381 POSTING_READ(GFX_FLSH_CNTL_GEN6);
94ec8f61
BW
1382}
1383
e76e9aeb
BW
1384/*
1385 * Binds an object into the global gtt with the specified cache level. The object
1386 * will be accessible to the GPU via commands whose operands reference offsets
1387 * within the global GTT as well as accessible by the GPU through the GMADR
1388 * mapped BAR (dev_priv->mm.gtt->gtt).
1389 */
853ba5d2 1390static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
7faf1ab2 1391 struct sg_table *st,
782f1495 1392 uint64_t start,
7faf1ab2 1393 enum i915_cache_level level)
e76e9aeb 1394{
853ba5d2 1395 struct drm_i915_private *dev_priv = vm->dev->dev_private;
782f1495 1396 unsigned first_entry = start >> PAGE_SHIFT;
e7c2b58b
BW
1397 gen6_gtt_pte_t __iomem *gtt_entries =
1398 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
6e995e23
ID
1399 int i = 0;
1400 struct sg_page_iter sg_iter;
e76e9aeb
BW
1401 dma_addr_t addr;
1402
6e995e23 1403 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2db76d7c 1404 addr = sg_page_iter_dma_address(&sg_iter);
b35b380e 1405 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
6e995e23 1406 i++;
e76e9aeb
BW
1407 }
1408
e76e9aeb
BW
1409 /* XXX: This serves as a posting read to make sure that the PTE has
1410 * actually been updated. There is some concern that even though
1411 * registers and PTEs are within the same BAR that they are potentially
1412 * of NUMA access patterns. Therefore, even with the way we assume
1413 * hardware should work, we must keep this posting read for paranoia.
1414 */
1415 if (i != 0)
853ba5d2 1416 WARN_ON(readl(&gtt_entries[i-1]) !=
b35b380e 1417 vm->pte_encode(addr, level, true));
0f9b91c7
BW
1418
1419 /* This next bit makes the above posting read even more important. We
1420 * want to flush the TLBs only after we're certain all the PTE updates
1421 * have finished.
1422 */
1423 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1424 POSTING_READ(GFX_FLSH_CNTL_GEN6);
e76e9aeb
BW
1425}
1426
94ec8f61 1427static void gen8_ggtt_clear_range(struct i915_address_space *vm,
782f1495
BW
1428 uint64_t start,
1429 uint64_t length,
94ec8f61
BW
1430 bool use_scratch)
1431{
1432 struct drm_i915_private *dev_priv = vm->dev->dev_private;
782f1495
BW
1433 unsigned first_entry = start >> PAGE_SHIFT;
1434 unsigned num_entries = length >> PAGE_SHIFT;
94ec8f61
BW
1435 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1436 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1437 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1438 int i;
1439
1440 if (WARN(num_entries > max_entries,
1441 "First entry = %d; Num entries = %d (max=%d)\n",
1442 first_entry, num_entries, max_entries))
1443 num_entries = max_entries;
1444
1445 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1446 I915_CACHE_LLC,
1447 use_scratch);
1448 for (i = 0; i < num_entries; i++)
1449 gen8_set_pte(&gtt_base[i], scratch_pte);
1450 readl(gtt_base);
1451}
1452
853ba5d2 1453static void gen6_ggtt_clear_range(struct i915_address_space *vm,
782f1495
BW
1454 uint64_t start,
1455 uint64_t length,
828c7908 1456 bool use_scratch)
7faf1ab2 1457{
853ba5d2 1458 struct drm_i915_private *dev_priv = vm->dev->dev_private;
782f1495
BW
1459 unsigned first_entry = start >> PAGE_SHIFT;
1460 unsigned num_entries = length >> PAGE_SHIFT;
e7c2b58b
BW
1461 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1462 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
a54c0c27 1463 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
7faf1ab2
DV
1464 int i;
1465
1466 if (WARN(num_entries > max_entries,
1467 "First entry = %d; Num entries = %d (max=%d)\n",
1468 first_entry, num_entries, max_entries))
1469 num_entries = max_entries;
1470
828c7908
BW
1471 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1472
7faf1ab2
DV
1473 for (i = 0; i < num_entries; i++)
1474 iowrite32(scratch_pte, &gtt_base[i]);
1475 readl(gtt_base);
1476}
1477
6f65e29a
BW
1478
1479static void i915_ggtt_bind_vma(struct i915_vma *vma,
1480 enum i915_cache_level cache_level,
1481 u32 unused)
7faf1ab2 1482{
6f65e29a 1483 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
7faf1ab2
DV
1484 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1485 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1486
6f65e29a
BW
1487 BUG_ON(!i915_is_ggtt(vma->vm));
1488 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1489 vma->obj->has_global_gtt_mapping = 1;
7faf1ab2
DV
1490}
1491
853ba5d2 1492static void i915_ggtt_clear_range(struct i915_address_space *vm,
782f1495
BW
1493 uint64_t start,
1494 uint64_t length,
828c7908 1495 bool unused)
7faf1ab2 1496{
782f1495
BW
1497 unsigned first_entry = start >> PAGE_SHIFT;
1498 unsigned num_entries = length >> PAGE_SHIFT;
7faf1ab2
DV
1499 intel_gtt_clear_range(first_entry, num_entries);
1500}
1501
6f65e29a
BW
1502static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1503{
1504 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1505 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
7faf1ab2 1506
6f65e29a
BW
1507 BUG_ON(!i915_is_ggtt(vma->vm));
1508 vma->obj->has_global_gtt_mapping = 0;
1509 intel_gtt_clear_range(first, size);
1510}
7faf1ab2 1511
6f65e29a
BW
1512static void ggtt_bind_vma(struct i915_vma *vma,
1513 enum i915_cache_level cache_level,
1514 u32 flags)
d5bd1449 1515{
6f65e29a 1516 struct drm_device *dev = vma->vm->dev;
7faf1ab2 1517 struct drm_i915_private *dev_priv = dev->dev_private;
6f65e29a 1518 struct drm_i915_gem_object *obj = vma->obj;
7faf1ab2 1519
6f65e29a
BW
1520 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1521 * or we have a global mapping already but the cacheability flags have
1522 * changed, set the global PTEs.
1523 *
1524 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1525 * instead if none of the above hold true.
1526 *
1527 * NB: A global mapping should only be needed for special regions like
1528 * "gtt mappable", SNB errata, or if specified via special execbuf
1529 * flags. At all other times, the GPU will use the aliasing PPGTT.
1530 */
1531 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1532 if (!obj->has_global_gtt_mapping ||
1533 (cache_level != obj->cache_level)) {
782f1495
BW
1534 vma->vm->insert_entries(vma->vm, obj->pages,
1535 vma->node.start,
6f65e29a
BW
1536 cache_level);
1537 obj->has_global_gtt_mapping = 1;
1538 }
1539 }
d5bd1449 1540
6f65e29a
BW
1541 if (dev_priv->mm.aliasing_ppgtt &&
1542 (!obj->has_aliasing_ppgtt_mapping ||
1543 (cache_level != obj->cache_level))) {
1544 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1545 appgtt->base.insert_entries(&appgtt->base,
782f1495
BW
1546 vma->obj->pages,
1547 vma->node.start,
1548 cache_level);
6f65e29a
BW
1549 vma->obj->has_aliasing_ppgtt_mapping = 1;
1550 }
d5bd1449
CW
1551}
1552
6f65e29a 1553static void ggtt_unbind_vma(struct i915_vma *vma)
74163907 1554{
6f65e29a 1555 struct drm_device *dev = vma->vm->dev;
7faf1ab2 1556 struct drm_i915_private *dev_priv = dev->dev_private;
6f65e29a 1557 struct drm_i915_gem_object *obj = vma->obj;
6f65e29a
BW
1558
1559 if (obj->has_global_gtt_mapping) {
782f1495
BW
1560 vma->vm->clear_range(vma->vm,
1561 vma->node.start,
1562 obj->base.size,
6f65e29a
BW
1563 true);
1564 obj->has_global_gtt_mapping = 0;
1565 }
74898d7e 1566
6f65e29a
BW
1567 if (obj->has_aliasing_ppgtt_mapping) {
1568 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1569 appgtt->base.clear_range(&appgtt->base,
782f1495
BW
1570 vma->node.start,
1571 obj->base.size,
6f65e29a
BW
1572 true);
1573 obj->has_aliasing_ppgtt_mapping = 0;
1574 }
74163907
DV
1575}
1576
1577void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
7c2e6fdf 1578{
5c042287
BW
1579 struct drm_device *dev = obj->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 bool interruptible;
1582
1583 interruptible = do_idling(dev_priv);
1584
9da3da66
CW
1585 if (!obj->has_dma_mapping)
1586 dma_unmap_sg(&dev->pdev->dev,
1587 obj->pages->sgl, obj->pages->nents,
1588 PCI_DMA_BIDIRECTIONAL);
5c042287
BW
1589
1590 undo_idling(dev_priv, interruptible);
7c2e6fdf 1591}
644ec02b 1592
42d6ab48
CW
1593static void i915_gtt_color_adjust(struct drm_mm_node *node,
1594 unsigned long color,
1595 unsigned long *start,
1596 unsigned long *end)
1597{
1598 if (node->color != color)
1599 *start += 4096;
1600
1601 if (!list_empty(&node->node_list)) {
1602 node = list_entry(node->node_list.next,
1603 struct drm_mm_node,
1604 node_list);
1605 if (node->allocated && node->color != color)
1606 *end -= 4096;
1607 }
1608}
fbe5d36e 1609
d7e5008f
BW
1610void i915_gem_setup_global_gtt(struct drm_device *dev,
1611 unsigned long start,
1612 unsigned long mappable_end,
1613 unsigned long end)
644ec02b 1614{
e78891ca
BW
1615 /* Let GEM Manage all of the aperture.
1616 *
1617 * However, leave one page at the end still bound to the scratch page.
1618 * There are a number of places where the hardware apparently prefetches
1619 * past the end of the object, and we've seen multiple hangs with the
1620 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1621 * aperture. One page should be enough to keep any prefetching inside
1622 * of the aperture.
1623 */
40d74980
BW
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
ed2f3452
CW
1626 struct drm_mm_node *entry;
1627 struct drm_i915_gem_object *obj;
1628 unsigned long hole_start, hole_end;
644ec02b 1629
35451cb6
BW
1630 BUG_ON(mappable_end > end);
1631
ed2f3452 1632 /* Subtract the guard page ... */
40d74980 1633 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
42d6ab48 1634 if (!HAS_LLC(dev))
93bd8649 1635 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
644ec02b 1636
ed2f3452 1637 /* Mark any preallocated objects as occupied */
35c20a60 1638 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
40d74980 1639 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
b3a070cc 1640 int ret;
edd41a87 1641 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
c6cfb325
BW
1642 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1643
1644 WARN_ON(i915_gem_obj_ggtt_bound(obj));
40d74980 1645 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
c6cfb325 1646 if (ret)
b3a070cc 1647 DRM_DEBUG_KMS("Reservation failed\n");
ed2f3452
CW
1648 obj->has_global_gtt_mapping = 1;
1649 }
1650
853ba5d2
BW
1651 dev_priv->gtt.base.start = start;
1652 dev_priv->gtt.base.total = end - start;
644ec02b 1653
ed2f3452 1654 /* Clear any non-preallocated blocks */
40d74980 1655 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
ed2f3452
CW
1656 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1657 hole_start, hole_end);
782f1495
BW
1658 ggtt_vm->clear_range(ggtt_vm, hole_start,
1659 hole_end - hole_start, true);
ed2f3452
CW
1660 }
1661
1662 /* And finally clear the reserved guard page */
782f1495 1663 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
e76e9aeb
BW
1664}
1665
d7e5008f
BW
1666void i915_gem_init_global_gtt(struct drm_device *dev)
1667{
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 unsigned long gtt_size, mappable_size;
d7e5008f 1670
853ba5d2 1671 gtt_size = dev_priv->gtt.base.total;
93d18799 1672 mappable_size = dev_priv->gtt.mappable_end;
d7e5008f 1673
e78891ca 1674 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
e76e9aeb
BW
1675}
1676
1677static int setup_scratch_page(struct drm_device *dev)
1678{
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 struct page *page;
1681 dma_addr_t dma_addr;
1682
1683 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1684 if (page == NULL)
1685 return -ENOMEM;
1686 get_page(page);
1687 set_pages_uc(page, 1);
1688
1689#ifdef CONFIG_INTEL_IOMMU
1690 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1691 PCI_DMA_BIDIRECTIONAL);
1692 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1693 return -EINVAL;
1694#else
1695 dma_addr = page_to_phys(page);
1696#endif
853ba5d2
BW
1697 dev_priv->gtt.base.scratch.page = page;
1698 dev_priv->gtt.base.scratch.addr = dma_addr;
e76e9aeb
BW
1699
1700 return 0;
1701}
1702
1703static void teardown_scratch_page(struct drm_device *dev)
1704{
1705 struct drm_i915_private *dev_priv = dev->dev_private;
853ba5d2
BW
1706 struct page *page = dev_priv->gtt.base.scratch.page;
1707
1708 set_pages_wb(page, 1);
1709 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
e76e9aeb 1710 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
853ba5d2
BW
1711 put_page(page);
1712 __free_page(page);
e76e9aeb
BW
1713}
1714
1715static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1716{
1717 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1718 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1719 return snb_gmch_ctl << 20;
1720}
1721
9459d252
BW
1722static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1723{
1724 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1725 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1726 if (bdw_gmch_ctl)
1727 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1728 return bdw_gmch_ctl << 20;
1729}
1730
baa09f5f 1731static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
e76e9aeb
BW
1732{
1733 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1734 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1735 return snb_gmch_ctl << 25; /* 32 MB units */
1736}
1737
9459d252
BW
1738static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1739{
1740 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1741 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1742 return bdw_gmch_ctl << 25; /* 32 MB units */
1743}
1744
63340133
BW
1745static int ggtt_probe_common(struct drm_device *dev,
1746 size_t gtt_size)
1747{
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 phys_addr_t gtt_bus_addr;
1750 int ret;
1751
1752 /* For Modern GENs the PTEs and register space are split in the BAR */
1753 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1754 (pci_resource_len(dev->pdev, 0) / 2);
1755
1756 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1757 if (!dev_priv->gtt.gsm) {
1758 DRM_ERROR("Failed to map the gtt page table\n");
1759 return -ENOMEM;
1760 }
1761
1762 ret = setup_scratch_page(dev);
1763 if (ret) {
1764 DRM_ERROR("Scratch setup failed\n");
1765 /* iounmap will also get called at remove, but meh */
1766 iounmap(dev_priv->gtt.gsm);
1767 }
1768
1769 return ret;
1770}
1771
fbe5d36e
BW
1772/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1773 * bits. When using advanced contexts each context stores its own PAT, but
1774 * writing this data shouldn't be harmful even in those cases. */
1775static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1776{
1777#define GEN8_PPAT_UC (0<<0)
1778#define GEN8_PPAT_WC (1<<0)
1779#define GEN8_PPAT_WT (2<<0)
1780#define GEN8_PPAT_WB (3<<0)
1781#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1782/* FIXME(BDW): Bspec is completely confused about cache control bits. */
1783#define GEN8_PPAT_LLC (1<<2)
1784#define GEN8_PPAT_LLCELLC (2<<2)
1785#define GEN8_PPAT_LLCeLLC (3<<2)
1786#define GEN8_PPAT_AGE(x) (x<<4)
1787#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1788 uint64_t pat;
1789
1790 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1791 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1792 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1793 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1794 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1795 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1796 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1797 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1798
1799 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1800 * write would work. */
1801 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1802 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1803}
1804
63340133
BW
1805static int gen8_gmch_probe(struct drm_device *dev,
1806 size_t *gtt_total,
1807 size_t *stolen,
1808 phys_addr_t *mappable_base,
1809 unsigned long *mappable_end)
1810{
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 unsigned int gtt_size;
1813 u16 snb_gmch_ctl;
1814 int ret;
1815
1816 /* TODO: We're not aware of mappable constraints on gen8 yet */
1817 *mappable_base = pci_resource_start(dev->pdev, 2);
1818 *mappable_end = pci_resource_len(dev->pdev, 2);
1819
1820 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1821 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1822
1823 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1824
1825 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1826
1827 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
d31eb10e 1828 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
63340133 1829
fbe5d36e
BW
1830 gen8_setup_private_ppat(dev_priv);
1831
63340133
BW
1832 ret = ggtt_probe_common(dev, gtt_size);
1833
94ec8f61
BW
1834 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1835 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
63340133
BW
1836
1837 return ret;
1838}
1839
baa09f5f
BW
1840static int gen6_gmch_probe(struct drm_device *dev,
1841 size_t *gtt_total,
41907ddc
BW
1842 size_t *stolen,
1843 phys_addr_t *mappable_base,
1844 unsigned long *mappable_end)
e76e9aeb
BW
1845{
1846 struct drm_i915_private *dev_priv = dev->dev_private;
baa09f5f 1847 unsigned int gtt_size;
e76e9aeb 1848 u16 snb_gmch_ctl;
e76e9aeb
BW
1849 int ret;
1850
41907ddc
BW
1851 *mappable_base = pci_resource_start(dev->pdev, 2);
1852 *mappable_end = pci_resource_len(dev->pdev, 2);
1853
baa09f5f
BW
1854 /* 64/512MB is the current min/max we actually know of, but this is just
1855 * a coarse sanity check.
e76e9aeb 1856 */
41907ddc 1857 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
baa09f5f
BW
1858 DRM_ERROR("Unknown GMADR size (%lx)\n",
1859 dev_priv->gtt.mappable_end);
1860 return -ENXIO;
e76e9aeb
BW
1861 }
1862
e76e9aeb
BW
1863 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1864 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
e76e9aeb 1865 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
e76e9aeb 1866
c4ae25ec 1867 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
a93e4161 1868
63340133
BW
1869 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1870 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
e76e9aeb 1871
63340133 1872 ret = ggtt_probe_common(dev, gtt_size);
e76e9aeb 1873
853ba5d2
BW
1874 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1875 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
7faf1ab2 1876
e76e9aeb
BW
1877 return ret;
1878}
1879
853ba5d2 1880static void gen6_gmch_remove(struct i915_address_space *vm)
e76e9aeb 1881{
853ba5d2
BW
1882
1883 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
5ed16782
BW
1884
1885 drm_mm_takedown(&vm->mm);
853ba5d2
BW
1886 iounmap(gtt->gsm);
1887 teardown_scratch_page(vm->dev);
644ec02b 1888}
baa09f5f
BW
1889
1890static int i915_gmch_probe(struct drm_device *dev,
1891 size_t *gtt_total,
41907ddc
BW
1892 size_t *stolen,
1893 phys_addr_t *mappable_base,
1894 unsigned long *mappable_end)
baa09f5f
BW
1895{
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 int ret;
1898
baa09f5f
BW
1899 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1900 if (!ret) {
1901 DRM_ERROR("failed to set up gmch\n");
1902 return -EIO;
1903 }
1904
41907ddc 1905 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
baa09f5f
BW
1906
1907 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
853ba5d2 1908 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
baa09f5f 1909
c0a7f818
CW
1910 if (unlikely(dev_priv->gtt.do_idle_maps))
1911 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1912
baa09f5f
BW
1913 return 0;
1914}
1915
853ba5d2 1916static void i915_gmch_remove(struct i915_address_space *vm)
baa09f5f
BW
1917{
1918 intel_gmch_remove();
1919}
1920
1921int i915_gem_gtt_init(struct drm_device *dev)
1922{
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 struct i915_gtt *gtt = &dev_priv->gtt;
baa09f5f
BW
1925 int ret;
1926
baa09f5f 1927 if (INTEL_INFO(dev)->gen <= 5) {
b2f21b4d 1928 gtt->gtt_probe = i915_gmch_probe;
853ba5d2 1929 gtt->base.cleanup = i915_gmch_remove;
63340133 1930 } else if (INTEL_INFO(dev)->gen < 8) {
b2f21b4d 1931 gtt->gtt_probe = gen6_gmch_probe;
853ba5d2 1932 gtt->base.cleanup = gen6_gmch_remove;
4d15c145 1933 if (IS_HASWELL(dev) && dev_priv->ellc_size)
853ba5d2 1934 gtt->base.pte_encode = iris_pte_encode;
4d15c145 1935 else if (IS_HASWELL(dev))
853ba5d2 1936 gtt->base.pte_encode = hsw_pte_encode;
b2f21b4d 1937 else if (IS_VALLEYVIEW(dev))
853ba5d2 1938 gtt->base.pte_encode = byt_pte_encode;
350ec881
CW
1939 else if (INTEL_INFO(dev)->gen >= 7)
1940 gtt->base.pte_encode = ivb_pte_encode;
b2f21b4d 1941 else
350ec881 1942 gtt->base.pte_encode = snb_pte_encode;
63340133
BW
1943 } else {
1944 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1945 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
baa09f5f
BW
1946 }
1947
853ba5d2 1948 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
b2f21b4d 1949 &gtt->mappable_base, &gtt->mappable_end);
a54c0c27 1950 if (ret)
baa09f5f 1951 return ret;
baa09f5f 1952
853ba5d2
BW
1953 gtt->base.dev = dev;
1954
baa09f5f 1955 /* GMADR is the PCI mmio aperture into the global GTT. */
853ba5d2
BW
1956 DRM_INFO("Memory usable by graphics device = %zdM\n",
1957 gtt->base.total >> 20);
b2f21b4d
BW
1958 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1959 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
baa09f5f
BW
1960
1961 return 0;
1962}
6f65e29a
BW
1963
1964static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1965 struct i915_address_space *vm)
1966{
1967 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1968 if (vma == NULL)
1969 return ERR_PTR(-ENOMEM);
1970
1971 INIT_LIST_HEAD(&vma->vma_link);
1972 INIT_LIST_HEAD(&vma->mm_list);
1973 INIT_LIST_HEAD(&vma->exec_list);
1974 vma->vm = vm;
1975 vma->obj = obj;
1976
1977 switch (INTEL_INFO(vm->dev)->gen) {
1978 case 8:
1979 case 7:
1980 case 6:
7e0d96bc
BW
1981 if (i915_is_ggtt(vm)) {
1982 vma->unbind_vma = ggtt_unbind_vma;
1983 vma->bind_vma = ggtt_bind_vma;
1984 } else {
1985 vma->unbind_vma = ppgtt_unbind_vma;
1986 vma->bind_vma = ppgtt_bind_vma;
1987 }
6f65e29a
BW
1988 break;
1989 case 5:
1990 case 4:
1991 case 3:
1992 case 2:
1993 BUG_ON(!i915_is_ggtt(vm));
1994 vma->unbind_vma = i915_ggtt_unbind_vma;
1995 vma->bind_vma = i915_ggtt_bind_vma;
1996 break;
1997 default:
1998 BUG();
1999 }
2000
2001 /* Keep GGTT vmas first to make debug easier */
2002 if (i915_is_ggtt(vm))
2003 list_add(&vma->vma_link, &obj->vma_list);
2004 else
2005 list_add_tail(&vma->vma_link, &obj->vma_list);
2006
2007 return vma;
2008}
2009
2010struct i915_vma *
2011i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2012 struct i915_address_space *vm)
2013{
2014 struct i915_vma *vma;
2015
2016 vma = i915_gem_obj_to_vma(obj, vm);
2017 if (!vma)
2018 vma = __i915_gem_vma_create(obj, vm);
2019
2020 return vma;
2021}