]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_userptr.c
Merge tag 'for-linus-20190118' of git://git.kernel.dk/linux-block
[mirror_ubuntu-disco-kernel.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
CommitLineData
5cc9ed4b
CW
1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b588c92b
ML
25#include <drm/drmP.h>
26#include <drm/i915_drm.h>
5cc9ed4b
CW
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30#include <linux/mmu_context.h>
31#include <linux/mmu_notifier.h>
32#include <linux/mempolicy.h>
33#include <linux/swap.h>
6e84f315 34#include <linux/sched/mm.h>
5cc9ed4b 35
ad46cb53
CW
36struct i915_mm_struct {
37 struct mm_struct *mm;
f470b190 38 struct drm_i915_private *i915;
ad46cb53
CW
39 struct i915_mmu_notifier *mn;
40 struct hlist_node node;
41 struct kref kref;
42 struct work_struct work;
43};
44
5cc9ed4b
CW
45#if defined(CONFIG_MMU_NOTIFIER)
46#include <linux/interval_tree.h>
47
48struct i915_mmu_notifier {
49 spinlock_t lock;
50 struct hlist_node node;
51 struct mmu_notifier mn;
f808c13f 52 struct rb_root_cached objects;
393afc2c 53 struct workqueue_struct *wq;
5cc9ed4b
CW
54};
55
56struct i915_mmu_object {
ad46cb53 57 struct i915_mmu_notifier *mn;
768e159f 58 struct drm_i915_gem_object *obj;
5cc9ed4b 59 struct interval_tree_node it;
ec8b0dd5 60 struct list_head link;
380996aa 61 struct work_struct work;
768e159f 62 bool attached;
5cc9ed4b
CW
63};
64
768e159f 65static void cancel_userptr(struct work_struct *work)
ec8b0dd5 66{
380996aa
CW
67 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 struct drm_i915_gem_object *obj = mo->obj;
15c344f4
CW
69 struct work_struct *active;
70
71 /* Cancel any active worker and force us to re-evaluate gup */
72 mutex_lock(&obj->mm.lock);
73 active = fetch_and_zero(&obj->userptr.work);
74 mutex_unlock(&obj->mm.lock);
75 if (active)
76 goto out;
ec8b0dd5 77
e95433c7 78 i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
8a3b3d57 79
15c344f4 80 mutex_lock(&obj->base.dev->struct_mutex);
ec8b0dd5 81
03ac84f1
CW
82 /* We are inside a kthread context and can't be interrupted */
83 if (i915_gem_object_unbind(obj) == 0)
548625ee 84 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 85 WARN_ONCE(i915_gem_object_has_pages(obj),
bd3d2252 86 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
03ac84f1 87 obj->bind_count,
1233e2db 88 atomic_read(&obj->mm.pages_pin_count),
bd3d2252 89 obj->pin_global);
ec8b0dd5 90
15c344f4
CW
91 mutex_unlock(&obj->base.dev->struct_mutex);
92
93out:
f8c417cd 94 i915_gem_object_put(obj);
ec8b0dd5
CW
95}
96
768e159f 97static void add_object(struct i915_mmu_object *mo)
ec8b0dd5 98{
768e159f
CW
99 if (mo->attached)
100 return;
ec8b0dd5 101
768e159f
CW
102 interval_tree_insert(&mo->it, &mo->mn->objects);
103 mo->attached = true;
104}
105
106static void del_object(struct i915_mmu_object *mo)
107{
108 if (!mo->attached)
109 return;
110
111 interval_tree_remove(&mo->it, &mo->mn->objects);
112 mo->attached = false;
ec8b0dd5
CW
113}
114
93065ac7 115static int i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
5d6527a7 116 const struct mmu_notifier_range *range)
5cc9ed4b 117{
380996aa
CW
118 struct i915_mmu_notifier *mn =
119 container_of(_mn, struct i915_mmu_notifier, mn);
120 struct i915_mmu_object *mo;
768e159f
CW
121 struct interval_tree_node *it;
122 LIST_HEAD(cancelled);
5d6527a7 123 unsigned long end;
768e159f 124
f808c13f 125 if (RB_EMPTY_ROOT(&mn->objects.rb_root))
93065ac7 126 return 0;
380996aa
CW
127
128 /* interval ranges are inclusive, but invalidate range is exclusive */
5d6527a7 129 end = range->end - 1;
380996aa
CW
130
131 spin_lock(&mn->lock);
5d6527a7 132 it = interval_tree_iter_first(&mn->objects, range->start, end);
768e159f 133 while (it) {
5d6527a7 134 if (!range->blockable) {
93065ac7
MH
135 spin_unlock(&mn->lock);
136 return -EAGAIN;
137 }
768e159f
CW
138 /* The mmu_object is released late when destroying the
139 * GEM object so it is entirely possible to gain a
140 * reference on an object in the process of being freed
141 * since our serialisation is via the spinlock and not
142 * the struct_mutex - and consequently use it after it
143 * is freed and then double free it. To prevent that
144 * use-after-free we only acquire a reference on the
145 * object if it is not in the process of being destroyed.
146 */
147 mo = container_of(it, struct i915_mmu_object, it);
148 if (kref_get_unless_zero(&mo->obj->base.refcount))
393afc2c 149 queue_work(mn->wq, &mo->work);
5cc9ed4b 150
768e159f 151 list_add(&mo->link, &cancelled);
5d6527a7 152 it = interval_tree_iter_next(it, range->start, end);
5cc9ed4b 153 }
768e159f
CW
154 list_for_each_entry(mo, &cancelled, link)
155 del_object(mo);
380996aa 156 spin_unlock(&mn->lock);
393afc2c 157
d151e9ce
CW
158 if (!list_empty(&cancelled))
159 flush_workqueue(mn->wq);
93065ac7
MH
160
161 return 0;
5cc9ed4b
CW
162}
163
164static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
165 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
166};
167
168static struct i915_mmu_notifier *
ad46cb53 169i915_mmu_notifier_create(struct mm_struct *mm)
5cc9ed4b 170{
ad46cb53 171 struct i915_mmu_notifier *mn;
5cc9ed4b 172
ad46cb53
CW
173 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
174 if (mn == NULL)
5cc9ed4b
CW
175 return ERR_PTR(-ENOMEM);
176
ad46cb53
CW
177 spin_lock_init(&mn->lock);
178 mn->mn.ops = &i915_gem_userptr_notifier;
f808c13f 179 mn->objects = RB_ROOT_CACHED;
457db89b
CW
180 mn->wq = alloc_workqueue("i915-userptr-release",
181 WQ_UNBOUND | WQ_MEM_RECLAIM,
182 0);
393afc2c
CW
183 if (mn->wq == NULL) {
184 kfree(mn);
185 return ERR_PTR(-ENOMEM);
186 }
ad46cb53 187
ad46cb53 188 return mn;
5cc9ed4b
CW
189}
190
5cc9ed4b
CW
191static void
192i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
193{
ad46cb53 194 struct i915_mmu_object *mo;
5cc9ed4b 195
ad46cb53
CW
196 mo = obj->userptr.mmu_object;
197 if (mo == NULL)
5cc9ed4b
CW
198 return;
199
768e159f
CW
200 spin_lock(&mo->mn->lock);
201 del_object(mo);
202 spin_unlock(&mo->mn->lock);
ad46cb53
CW
203 kfree(mo);
204
205 obj->userptr.mmu_object = NULL;
206}
207
208static struct i915_mmu_notifier *
209i915_mmu_notifier_find(struct i915_mm_struct *mm)
210{
7741b547
DV
211 struct i915_mmu_notifier *mn;
212 int err = 0;
e9681366
CW
213
214 mn = mm->mn;
215 if (mn)
216 return mn;
217
7741b547
DV
218 mn = i915_mmu_notifier_create(mm->mm);
219 if (IS_ERR(mn))
220 err = PTR_ERR(mn);
221
e9681366 222 down_write(&mm->mm->mmap_sem);
f470b190 223 mutex_lock(&mm->i915->mm_lock);
7741b547
DV
224 if (mm->mn == NULL && !err) {
225 /* Protected by mmap_sem (write-lock) */
226 err = __mmu_notifier_register(&mn->mn, mm->mm);
227 if (!err) {
228 /* Protected by mm_lock */
229 mm->mn = fetch_and_zero(&mn);
230 }
cb8d50df
TU
231 } else if (mm->mn) {
232 /*
233 * Someone else raced and successfully installed the mmu
234 * notifier, we can cancel our own errors.
235 */
7741b547 236 err = 0;
ad46cb53 237 }
f470b190 238 mutex_unlock(&mm->i915->mm_lock);
e9681366
CW
239 up_write(&mm->mm->mmap_sem);
240
cb8d50df 241 if (mn && !IS_ERR(mn)) {
7741b547
DV
242 destroy_workqueue(mn->wq);
243 kfree(mn);
244 }
245
246 return err ? ERR_PTR(err) : mm->mn;
5cc9ed4b
CW
247}
248
249static int
250i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
251 unsigned flags)
252{
ad46cb53
CW
253 struct i915_mmu_notifier *mn;
254 struct i915_mmu_object *mo;
5cc9ed4b
CW
255
256 if (flags & I915_USERPTR_UNSYNCHRONIZED)
257 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
258
ad46cb53
CW
259 if (WARN_ON(obj->userptr.mm == NULL))
260 return -EINVAL;
5cc9ed4b 261
ad46cb53
CW
262 mn = i915_mmu_notifier_find(obj->userptr.mm);
263 if (IS_ERR(mn))
264 return PTR_ERR(mn);
5cc9ed4b 265
ad46cb53
CW
266 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
267 if (mo == NULL)
268 return -ENOMEM;
5cc9ed4b 269
ad46cb53 270 mo->mn = mn;
ad46cb53 271 mo->obj = obj;
768e159f
CW
272 mo->it.start = obj->userptr.ptr;
273 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
274 INIT_WORK(&mo->work, cancel_userptr);
ad46cb53
CW
275
276 obj->userptr.mmu_object = mo;
5cc9ed4b 277 return 0;
ad46cb53
CW
278}
279
280static void
281i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
282 struct mm_struct *mm)
283{
284 if (mn == NULL)
285 return;
5cc9ed4b 286
ad46cb53 287 mmu_notifier_unregister(&mn->mn, mm);
393afc2c 288 destroy_workqueue(mn->wq);
5cc9ed4b 289 kfree(mn);
5cc9ed4b
CW
290}
291
292#else
293
294static void
295i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
296{
297}
298
299static int
300i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
301 unsigned flags)
302{
303 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
304 return -ENODEV;
305
306 if (!capable(CAP_SYS_ADMIN))
307 return -EPERM;
308
309 return 0;
310}
ad46cb53
CW
311
312static void
313i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
314 struct mm_struct *mm)
315{
316}
317
5cc9ed4b
CW
318#endif
319
ad46cb53
CW
320static struct i915_mm_struct *
321__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
322{
323 struct i915_mm_struct *mm;
324
325 /* Protected by dev_priv->mm_lock */
326 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
327 if (mm->mm == real)
328 return mm;
329
330 return NULL;
331}
332
333static int
334i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
335{
336 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
337 struct i915_mm_struct *mm;
338 int ret = 0;
339
340 /* During release of the GEM object we hold the struct_mutex. This
341 * precludes us from calling mmput() at that time as that may be
342 * the last reference and so call exit_mmap(). exit_mmap() will
343 * attempt to reap the vma, and if we were holding a GTT mmap
344 * would then call drm_gem_vm_close() and attempt to reacquire
345 * the struct mutex. So in order to avoid that recursion, we have
346 * to defer releasing the mm reference until after we drop the
347 * struct_mutex, i.e. we need to schedule a worker to do the clean
348 * up.
349 */
350 mutex_lock(&dev_priv->mm_lock);
351 mm = __i915_mm_struct_find(dev_priv, current->mm);
352 if (mm == NULL) {
353 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
354 if (mm == NULL) {
355 ret = -ENOMEM;
356 goto out;
357 }
358
359 kref_init(&mm->kref);
f470b190 360 mm->i915 = to_i915(obj->base.dev);
ad46cb53
CW
361
362 mm->mm = current->mm;
f1f10076 363 mmgrab(current->mm);
ad46cb53
CW
364
365 mm->mn = NULL;
366
367 /* Protected by dev_priv->mm_lock */
368 hash_add(dev_priv->mm_structs,
369 &mm->node, (unsigned long)mm->mm);
370 } else
371 kref_get(&mm->kref);
372
373 obj->userptr.mm = mm;
374out:
375 mutex_unlock(&dev_priv->mm_lock);
376 return ret;
377}
378
379static void
380__i915_mm_struct_free__worker(struct work_struct *work)
381{
382 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
383 i915_mmu_notifier_free(mm->mn, mm->mm);
384 mmdrop(mm->mm);
385 kfree(mm);
386}
387
388static void
389__i915_mm_struct_free(struct kref *kref)
390{
391 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
392
393 /* Protected by dev_priv->mm_lock */
394 hash_del(&mm->node);
f470b190 395 mutex_unlock(&mm->i915->mm_lock);
ad46cb53
CW
396
397 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
8a2421bd 398 queue_work(mm->i915->mm.userptr_wq, &mm->work);
ad46cb53
CW
399}
400
401static void
402i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
403{
404 if (obj->userptr.mm == NULL)
405 return;
406
407 kref_put_mutex(&obj->userptr.mm->kref,
408 __i915_mm_struct_free,
409 &to_i915(obj->base.dev)->mm_lock);
410 obj->userptr.mm = NULL;
411}
412
5cc9ed4b
CW
413struct get_pages_work {
414 struct work_struct work;
415 struct drm_i915_gem_object *obj;
416 struct task_struct *task;
417};
418
03ac84f1 419static struct sg_table *
5602452e
TU
420__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
421 struct page **pvec, int num_pages)
e2273302 422{
5602452e
TU
423 unsigned int max_segment = i915_sg_segment_size();
424 struct sg_table *st;
84e8978e 425 unsigned int sg_page_sizes;
e2273302
ID
426 int ret;
427
5602452e
TU
428 st = kmalloc(sizeof(*st), GFP_KERNEL);
429 if (!st)
430 return ERR_PTR(-ENOMEM);
431
432alloc_table:
433 ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
434 0, num_pages << PAGE_SHIFT,
435 max_segment,
436 GFP_KERNEL);
437 if (ret) {
438 kfree(st);
03ac84f1 439 return ERR_PTR(ret);
5602452e 440 }
e2273302 441
5602452e 442 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302 443 if (ret) {
5602452e
TU
444 sg_free_table(st);
445
446 if (max_segment > PAGE_SIZE) {
447 max_segment = PAGE_SIZE;
448 goto alloc_table;
449 }
450
451 kfree(st);
03ac84f1 452 return ERR_PTR(ret);
e2273302
ID
453 }
454
84e8978e 455 sg_page_sizes = i915_sg_page_sizes(st->sgl);
a5c08166 456
84e8978e 457 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee 458
5602452e 459 return st;
e2273302
ID
460}
461
380996aa 462static int
e4b946bf
CW
463__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
464 bool value)
465{
380996aa
CW
466 int ret = 0;
467
e4b946bf
CW
468 /* During mm_invalidate_range we need to cancel any userptr that
469 * overlaps the range being invalidated. Doing so requires the
470 * struct_mutex, and that risks recursion. In order to cause
471 * recursion, the user must alias the userptr address space with
472 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
473 * to invalidate that mmaping, mm_invalidate_range is called with
474 * the userptr address *and* the struct_mutex held. To prevent that
475 * we set a flag under the i915_mmu_notifier spinlock to indicate
476 * whether this object is valid.
477 */
478#if defined(CONFIG_MMU_NOTIFIER)
479 if (obj->userptr.mmu_object == NULL)
380996aa 480 return 0;
e4b946bf
CW
481
482 spin_lock(&obj->userptr.mmu_object->mn->lock);
380996aa
CW
483 /* In order to serialise get_pages with an outstanding
484 * cancel_userptr, we must drop the struct_mutex and try again.
485 */
768e159f
CW
486 if (!value)
487 del_object(obj->userptr.mmu_object);
488 else if (!work_pending(&obj->userptr.mmu_object->work))
489 add_object(obj->userptr.mmu_object);
380996aa
CW
490 else
491 ret = -EAGAIN;
e4b946bf
CW
492 spin_unlock(&obj->userptr.mmu_object->mn->lock);
493#endif
380996aa
CW
494
495 return ret;
e4b946bf
CW
496}
497
5cc9ed4b
CW
498static void
499__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
500{
501 struct get_pages_work *work = container_of(_work, typeof(*work), work);
502 struct drm_i915_gem_object *obj = work->obj;
68d6c840 503 const int npages = obj->base.size >> PAGE_SHIFT;
5cc9ed4b
CW
504 struct page **pvec;
505 int pinned, ret;
506
507 ret = -ENOMEM;
508 pinned = 0;
509
0ee931c4 510 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
5cc9ed4b 511 if (pvec != NULL) {
ad46cb53 512 struct mm_struct *mm = obj->userptr.mm->mm;
9beae1ea
LS
513 unsigned int flags = 0;
514
0b100760 515 if (!i915_gem_object_is_readonly(obj))
9beae1ea 516 flags |= FOLL_WRITE;
5cc9ed4b 517
40313f0c 518 ret = -EFAULT;
388f7934 519 if (mmget_not_zero(mm)) {
40313f0c
CW
520 down_read(&mm->mmap_sem);
521 while (pinned < npages) {
522 ret = get_user_pages_remote
523 (work->task, mm,
524 obj->userptr.ptr + pinned * PAGE_SIZE,
525 npages - pinned,
9beae1ea 526 flags,
5b56d49f 527 pvec + pinned, NULL, NULL);
40313f0c
CW
528 if (ret < 0)
529 break;
530
531 pinned += ret;
532 }
533 up_read(&mm->mmap_sem);
534 mmput(mm);
5cc9ed4b 535 }
5cc9ed4b
CW
536 }
537
1233e2db 538 mutex_lock(&obj->mm.lock);
68d6c840 539 if (obj->userptr.work == &work->work) {
03ac84f1
CW
540 struct sg_table *pages = ERR_PTR(ret);
541
68d6c840 542 if (pinned == npages) {
5602452e
TU
543 pages = __i915_gem_userptr_alloc_pages(obj, pvec,
544 npages);
03ac84f1 545 if (!IS_ERR(pages)) {
68d6c840 546 pinned = 0;
03ac84f1 547 pages = NULL;
68d6c840 548 }
5cc9ed4b 549 }
03ac84f1
CW
550
551 obj->userptr.work = ERR_CAST(pages);
42953b3c
CW
552 if (IS_ERR(pages))
553 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b 554 }
1233e2db 555 mutex_unlock(&obj->mm.lock);
5cc9ed4b 556
c6f92f9f 557 release_pages(pvec, pinned);
2098105e 558 kvfree(pvec);
5cc9ed4b 559
f0cd5182 560 i915_gem_object_put(obj);
5cc9ed4b
CW
561 put_task_struct(work->task);
562 kfree(work);
563}
564
03ac84f1 565static struct sg_table *
1c8782dd 566__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
e4b946bf
CW
567{
568 struct get_pages_work *work;
569
570 /* Spawn a worker so that we can acquire the
571 * user pages without holding our mutex. Access
572 * to the user pages requires mmap_sem, and we have
573 * a strict lock ordering of mmap_sem, struct_mutex -
574 * we already hold struct_mutex here and so cannot
575 * call gup without encountering a lock inversion.
576 *
577 * Userspace will keep on repeating the operation
578 * (thanks to EAGAIN) until either we hit the fast
579 * path or the worker completes. If the worker is
580 * cancelled or superseded, the task is still run
581 * but the results ignored. (This leads to
582 * complications that we may have a stray object
583 * refcount that we need to be wary of when
584 * checking for existing objects during creation.)
585 * If the worker encounters an error, it reports
586 * that error back to this function through
587 * obj->userptr.work = ERR_PTR.
588 */
e4b946bf
CW
589 work = kmalloc(sizeof(*work), GFP_KERNEL);
590 if (work == NULL)
03ac84f1 591 return ERR_PTR(-ENOMEM);
e4b946bf
CW
592
593 obj->userptr.work = &work->work;
e4b946bf 594
25dc556a 595 work->obj = i915_gem_object_get(obj);
e4b946bf
CW
596
597 work->task = current;
598 get_task_struct(work->task);
599
600 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
8a2421bd 601 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
e4b946bf 602
03ac84f1 603 return ERR_PTR(-EAGAIN);
e4b946bf
CW
604}
605
b91b09ee 606static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
5cc9ed4b
CW
607{
608 const int num_pages = obj->base.size >> PAGE_SHIFT;
1c8782dd 609 struct mm_struct *mm = obj->userptr.mm->mm;
5cc9ed4b 610 struct page **pvec;
03ac84f1 611 struct sg_table *pages;
e4b946bf 612 bool active;
1c8782dd 613 int pinned;
5cc9ed4b
CW
614
615 /* If userspace should engineer that these pages are replaced in
616 * the vma between us binding this page into the GTT and completion
617 * of rendering... Their loss. If they change the mapping of their
618 * pages they need to create a new bo to point to the new vma.
619 *
620 * However, that still leaves open the possibility of the vma
621 * being copied upon fork. Which falls under the same userspace
622 * synchronisation issue as a regular bo, except that this time
623 * the process may not be expecting that a particular piece of
624 * memory is tied to the GPU.
625 *
626 * Fortunately, we can hook into the mmu_notifier in order to
627 * discard the page references prior to anything nasty happening
628 * to the vma (discard or cloning) which should prevent the more
629 * egregious cases from causing harm.
630 */
364c8172
CW
631
632 if (obj->userptr.work) {
e4b946bf 633 /* active flag should still be held for the pending work */
364c8172 634 if (IS_ERR(obj->userptr.work))
b91b09ee 635 return PTR_ERR(obj->userptr.work);
364c8172 636 else
b91b09ee 637 return -EAGAIN;
364c8172 638 }
e4b946bf 639
5cc9ed4b
CW
640 pvec = NULL;
641 pinned = 0;
5cc9ed4b 642
15c344f4 643 if (mm == current->mm) {
2098105e 644 pvec = kvmalloc_array(num_pages, sizeof(struct page *),
0ee931c4 645 GFP_KERNEL |
1c8782dd
CW
646 __GFP_NORETRY |
647 __GFP_NOWARN);
648 if (pvec) /* defer to worker if malloc fails */
649 pinned = __get_user_pages_fast(obj->userptr.ptr,
650 num_pages,
0b100760 651 !i915_gem_object_is_readonly(obj),
1c8782dd 652 pvec);
5cc9ed4b 653 }
e4b946bf
CW
654
655 active = false;
1c8782dd
CW
656 if (pinned < 0) {
657 pages = ERR_PTR(pinned);
658 pinned = 0;
659 } else if (pinned < num_pages) {
660 pages = __i915_gem_userptr_get_pages_schedule(obj);
661 active = pages == ERR_PTR(-EAGAIN);
662 } else {
5602452e 663 pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
1c8782dd 664 active = !IS_ERR(pages);
5cc9ed4b 665 }
1c8782dd
CW
666 if (active)
667 __i915_gem_userptr_set_active(obj, true);
1c8782dd
CW
668
669 if (IS_ERR(pages))
c6f92f9f 670 release_pages(pvec, pinned);
2098105e 671 kvfree(pvec);
1c8782dd 672
b91b09ee 673 return PTR_ERR_OR_ZERO(pages);
5cc9ed4b
CW
674}
675
676static void
03ac84f1
CW
677i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
678 struct sg_table *pages)
5cc9ed4b 679{
85d1225e
DG
680 struct sgt_iter sgt_iter;
681 struct page *page;
5cc9ed4b
CW
682
683 BUG_ON(obj->userptr.work != NULL);
e4b946bf 684 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b 685
a4f5ea64
CW
686 if (obj->mm.madv != I915_MADV_WILLNEED)
687 obj->mm.dirty = false;
5cc9ed4b 688
03ac84f1 689 i915_gem_gtt_finish_pages(obj, pages);
e2273302 690
03ac84f1 691 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 692 if (obj->mm.dirty)
5cc9ed4b
CW
693 set_page_dirty(page);
694
695 mark_page_accessed(page);
09cbfeaf 696 put_page(page);
5cc9ed4b 697 }
a4f5ea64 698 obj->mm.dirty = false;
5cc9ed4b 699
03ac84f1
CW
700 sg_free_table(pages);
701 kfree(pages);
5cc9ed4b
CW
702}
703
704static void
705i915_gem_userptr_release(struct drm_i915_gem_object *obj)
706{
707 i915_gem_userptr_release__mmu_notifier(obj);
ad46cb53 708 i915_gem_userptr_release__mm_struct(obj);
5cc9ed4b
CW
709}
710
711static int
712i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
713{
ad46cb53 714 if (obj->userptr.mmu_object)
5cc9ed4b
CW
715 return 0;
716
717 return i915_gem_userptr_init__mmu_notifier(obj, 0);
718}
719
720static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
3599a91c
TU
721 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
722 I915_GEM_OBJECT_IS_SHRINKABLE,
5cc9ed4b
CW
723 .get_pages = i915_gem_userptr_get_pages,
724 .put_pages = i915_gem_userptr_put_pages,
de472664 725 .dmabuf_export = i915_gem_userptr_dmabuf_export,
5cc9ed4b
CW
726 .release = i915_gem_userptr_release,
727};
728
a5a5ae2a 729/*
5cc9ed4b
CW
730 * Creates a new mm object that wraps some normal memory from the process
731 * context - user memory.
732 *
733 * We impose several restrictions upon the memory being mapped
734 * into the GPU.
735 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
ec8b0dd5 736 * 2. It must be normal system memory, not a pointer into another map of IO
5cc9ed4b 737 * space (e.g. it must not be a GTT mmapping of another object).
ec8b0dd5 738 * 3. We only allow a bo as large as we could in theory map into the GTT,
5cc9ed4b 739 * that is we limit the size to the total size of the GTT.
ec8b0dd5 740 * 4. The bo is marked as being snoopable. The backing pages are left
5cc9ed4b
CW
741 * accessible directly by the CPU, but reads and writes by the GPU may
742 * incur the cost of a snoop (unless you have an LLC architecture).
743 *
744 * Synchronisation between multiple users and the GPU is left to userspace
745 * through the normal set-domain-ioctl. The kernel will enforce that the
746 * GPU relinquishes the VMA before it is returned back to the system
747 * i.e. upon free(), munmap() or process termination. However, the userspace
748 * malloc() library may not immediately relinquish the VMA after free() and
749 * instead reuse it whilst the GPU is still reading and writing to the VMA.
750 * Caveat emptor.
751 *
752 * Also note, that the object created here is not currently a "first class"
753 * object, in that several ioctls are banned. These are the CPU access
754 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
cc917ab4
CW
755 * direct access via your pointer rather than use those ioctls. Another
756 * restriction is that we do not allow userptr surfaces to be pinned to the
757 * hardware and so we reject any attempt to create a framebuffer out of a
758 * userptr.
5cc9ed4b
CW
759 *
760 * If you think this is a good interface to use to pass GPU memory between
761 * drivers, please use dma-buf instead. In fact, wherever possible use
762 * dma-buf instead.
763 */
764int
a5a5ae2a
CW
765i915_gem_userptr_ioctl(struct drm_device *dev,
766 void *data,
767 struct drm_file *file)
5cc9ed4b 768{
0031fb96 769 struct drm_i915_private *dev_priv = to_i915(dev);
5cc9ed4b
CW
770 struct drm_i915_gem_userptr *args = data;
771 struct drm_i915_gem_object *obj;
772 int ret;
773 u32 handle;
774
0031fb96 775 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
ca377809
TU
776 /* We cannot support coherent userptr objects on hw without
777 * LLC and broken snooping.
778 */
779 return -ENODEV;
780 }
781
5cc9ed4b
CW
782 if (args->flags & ~(I915_USERPTR_READ_ONLY |
783 I915_USERPTR_UNSYNCHRONIZED))
784 return -EINVAL;
785
c11c7bfd
MA
786 if (!args->user_size)
787 return -EINVAL;
788
5cc9ed4b
CW
789 if (offset_in_page(args->user_ptr | args->user_size))
790 return -EINVAL;
791
96d4f267 792 if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
5cc9ed4b
CW
793 return -EFAULT;
794
795 if (args->flags & I915_USERPTR_READ_ONLY) {
0b100760
CW
796 struct i915_hw_ppgtt *ppgtt;
797
798 /*
799 * On almost all of the older hw, we cannot tell the GPU that
800 * a page is readonly.
5cc9ed4b 801 */
0b100760
CW
802 ppgtt = dev_priv->kernel_context->ppgtt;
803 if (!ppgtt || !ppgtt->vm.has_read_only)
804 return -ENODEV;
5cc9ed4b
CW
805 }
806
187685cb 807 obj = i915_gem_object_alloc(dev_priv);
5cc9ed4b
CW
808 if (obj == NULL)
809 return -ENOMEM;
810
811 drm_gem_private_object_init(dev, &obj->base, args->user_size);
812 i915_gem_object_init(obj, &i915_gem_userptr_ops);
c0a51fd0
CK
813 obj->read_domains = I915_GEM_DOMAIN_CPU;
814 obj->write_domain = I915_GEM_DOMAIN_CPU;
b8f55be6 815 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
5cc9ed4b
CW
816
817 obj->userptr.ptr = args->user_ptr;
0b100760
CW
818 if (args->flags & I915_USERPTR_READ_ONLY)
819 i915_gem_object_set_readonly(obj);
5cc9ed4b
CW
820
821 /* And keep a pointer to the current->mm for resolving the user pages
822 * at binding. This means that we need to hook into the mmu_notifier
823 * in order to detect if the mmu is destroyed.
824 */
ad46cb53
CW
825 ret = i915_gem_userptr_init__mm_struct(obj);
826 if (ret == 0)
5cc9ed4b
CW
827 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
828 if (ret == 0)
829 ret = drm_gem_handle_create(file, &obj->base, &handle);
830
831 /* drop reference from allocate - handle holds it now */
f0cd5182 832 i915_gem_object_put(obj);
5cc9ed4b
CW
833 if (ret)
834 return ret;
835
836 args->handle = handle;
837 return 0;
838}
839
8a2421bd 840int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
5cc9ed4b 841{
ad46cb53
CW
842 mutex_init(&dev_priv->mm_lock);
843 hash_init(dev_priv->mm_structs);
8a2421bd
CW
844
845 dev_priv->mm.userptr_wq =
21cc6431 846 alloc_workqueue("i915-userptr-acquire",
457db89b 847 WQ_HIGHPRI | WQ_UNBOUND,
21cc6431 848 0);
8a2421bd
CW
849 if (!dev_priv->mm.userptr_wq)
850 return -ENOMEM;
851
852 return 0;
853}
854
855void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
856{
857 destroy_workqueue(dev_priv->mm.userptr_wq);
5cc9ed4b 858}