]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: enable/disable backlight for eDP
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
d4906093
ML
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
79e53945 91
a4fc5ed6
KP
92static bool
93intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
5eb08b69 96static bool
f2b115e6 97intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
a4fc5ed6 100
a0c4da24
JB
101static bool
102intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
021357ac
CW
106static inline u32 /* units of 100MHz */
107intel_fdi_link_freq(struct drm_device *dev)
108{
8b99e68c
CW
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
021357ac
CW
114}
115
e4b36699 116static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
d4906093 127 .find_pll = intel_find_best_PLL,
e4b36699
KP
128};
129
130static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
d4906093 141 .find_pll = intel_find_best_PLL,
e4b36699 142};
273e27ca 143
e4b36699 144static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
d4906093 155 .find_pll = intel_find_best_PLL,
e4b36699
KP
156};
157
158static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
d4906093 169 .find_pll = intel_find_best_PLL,
e4b36699
KP
170};
171
273e27ca 172
e4b36699 173static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
044c7c41 185 },
d4906093 186 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
187};
188
189static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
d4906093 200 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
201};
202
203static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
044c7c41 214 },
d4906093 215 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
216};
217
218static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
044c7c41 229 },
d4906093 230 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
273e27ca 243 .p2_slow = 10, .p2_fast = 10 },
0206e353 244 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
245};
246
f2b115e6 247static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 250 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
273e27ca 253 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
6115707b 260 .find_pll = intel_find_best_PLL,
e4b36699
KP
261};
262
f2b115e6 263static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
6115707b 274 .find_pll = intel_find_best_PLL,
e4b36699
KP
275};
276
273e27ca
EA
277/* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
b91ad0ec 282static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
4547668a 293 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
294};
295
b91ad0ec 296static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
307 .find_pll = intel_g4x_find_best_PLL,
308};
309
310static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
321 .find_pll = intel_g4x_find_best_PLL,
322};
323
273e27ca 324/* LVDS 100mhz refclk limits. */
b91ad0ec 325static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
0206e353 333 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
336 .find_pll = intel_g4x_find_best_PLL,
337};
338
339static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
0206e353 347 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
350 .find_pll = intel_g4x_find_best_PLL,
351};
352
353static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
273e27ca 363 .p2_slow = 10, .p2_fast = 10 },
0206e353 364 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
365};
366
a0c4da24
JB
367static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379};
380
381static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
17dc9257 383 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393};
394
395static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
396 .dot = { .min = 25000, .max = 270000 },
397 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 398 .n = { .min = 1, .max = 7 },
74a4dd2e 399 .m = { .min = 22, .max = 450 },
a0c4da24
JB
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407};
408
57f350b6
JB
409u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410{
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432}
433
a0c4da24
JB
434static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436{
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454}
455
57f350b6
JB
456static void vlv_init_dpio(struct drm_device *dev)
457{
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465}
466
618563e3
DV
467static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468{
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471}
472
473static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483};
484
b0354385
TI
485static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487{
488 unsigned int val;
489
121d527a
TI
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
618563e3
DV
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
b0354385
TI
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
14d94a3d 506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511}
512
1b894b59
CW
513static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
2c07245f 515{
b91ad0ec
ZW
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 518 const intel_limit_t *limit;
b91ad0ec
ZW
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 522 /* LVDS dual channel */
1b894b59 523 if (refclk == 100000)
b91ad0ec
ZW
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
1b894b59 528 if (refclk == 100000)
b91ad0ec
ZW
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
2c07245f 536 else
b91ad0ec 537 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
538
539 return limit;
540}
541
044c7c41
ML
542static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543{
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 549 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 550 /* LVDS with dual channel */
e4b36699 551 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
552 else
553 /* LVDS with dual channel */
e4b36699 554 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 557 limit = &intel_limits_g4x_hdmi;
044c7c41 558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 559 limit = &intel_limits_g4x_sdvo;
0206e353 560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 561 limit = &intel_limits_g4x_display_port;
044c7c41 562 } else /* The option is for other outputs */
e4b36699 563 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
564
565 return limit;
566}
567
1b894b59 568static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
569{
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
bad720ff 573 if (HAS_PCH_SPLIT(dev))
1b894b59 574 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 575 else if (IS_G4X(dev)) {
044c7c41 576 limit = intel_g4x_limit(crtc);
f2b115e6 577 } else if (IS_PINEVIEW(dev)) {
2177832f 578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 579 limit = &intel_limits_pineview_lvds;
2177832f 580 else
f2b115e6 581 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 596 limit = &intel_limits_i8xx_lvds;
79e53945 597 else
e4b36699 598 limit = &intel_limits_i8xx_dvo;
79e53945
JB
599 }
600 return limit;
601}
602
f2b115e6
AJ
603/* m1 is reserved as 0 in Pineview, n is a ring counter */
604static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 605{
2177832f
SL
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610}
611
612static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613{
f2b115e6
AJ
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
2177832f
SL
616 return;
617 }
79e53945
JB
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622}
623
79e53945
JB
624/**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
4ef69c7a 627bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 628{
4ef69c7a 629 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
630 struct intel_encoder *encoder;
631
6c2b7c12
DV
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
4ef69c7a
CW
634 return true;
635
636 return false;
79e53945
JB
637}
638
7c04d1d9 639#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
640/**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
1b894b59
CW
645static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
79e53945 648{
79e53945 649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 650 INTELPllInvalid("p1 out of range\n");
79e53945 651 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 652 INTELPllInvalid("p out of range\n");
79e53945 653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 654 INTELPllInvalid("m2 out of range\n");
79e53945 655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 656 INTELPllInvalid("m1 out of range\n");
f2b115e6 657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 658 INTELPllInvalid("m1 <= m2\n");
79e53945 659 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 660 INTELPllInvalid("m out of range\n");
79e53945 661 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 662 INTELPllInvalid("n out of range\n");
79e53945 663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 664 INTELPllInvalid("vco out of range\n");
79e53945
JB
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 669 INTELPllInvalid("dot out of range\n");
79e53945
JB
670
671 return true;
672}
673
d4906093
ML
674static bool
675intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
d4906093 678
79e53945
JB
679{
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
79e53945
JB
683 int err = target;
684
bc5e5718 685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 686 (I915_READ(LVDS)) != 0) {
79e53945
JB
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
b0354385 693 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
0206e353 704 memset(best_clock, 0, sizeof(*best_clock));
79e53945 705
42158660
ZY
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
717 int this_err;
718
2177832f 719 intel_clock(dev, refclk, &clock);
1b894b59
CW
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
79e53945 722 continue;
cec2f356
SP
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
79e53945
JB
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738}
739
d4906093
ML
740static bool
741intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
d4906093
ML
744{
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
6ba770dc
AJ
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
755 int lvds_reg;
756
c619eed4 757 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
f77f13e2 775 /* based on hardware requirement, prefer smaller n to precision */
d4906093 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 777 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
2177832f 786 intel_clock(dev, refclk, &clock);
1b894b59
CW
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
d4906093 789 continue;
cec2f356
SP
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
1b894b59
CW
793
794 this_err = abs(clock.dot - target);
d4906093
ML
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
2c07245f
ZW
805 return found;
806}
807
5eb08b69 808static bool
f2b115e6 809intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
5eb08b69
ZW
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
4547668a 815
5eb08b69
ZW
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832}
833
a4fc5ed6
KP
834/* DisplayPort has only two frequencies, 162MHz and 270MHz */
835static bool
836intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
a4fc5ed6 839{
5eddb70b
CW
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
a4fc5ed6 860}
a0c4da24
JB
861static bool
862intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865{
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
af447bd3 872 flag = 0;
a0c4da24
JB
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928}
a4fc5ed6 929
a928d536
PZ
930static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931{
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939}
940
9d0498a2
JB
941/**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 950{
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 952 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 953
a928d536
PZ
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
300387c0
CW
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
9d0498a2 975 /* Wait for vblank interrupt bit to set */
481b6af3
CW
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
9d0498a2
JB
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980}
981
ab7ad7f6
KP
982/*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
ab7ad7f6
KP
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
58e10eb9 997 *
9d0498a2 998 */
58e10eb9 999void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1000{
1001 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 1004 int reg = PIPECONF(pipe);
ab7ad7f6
KP
1005
1006 /* Wait for the Pipe State to go off */
58e10eb9
CW
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
284637d9 1009 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1010 } else {
837ba00f 1011 u32 last_line, line_mask;
58e10eb9 1012 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
837ba00f
PZ
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
ab7ad7f6
KP
1020 /* Wait for the display line to settle */
1021 do {
837ba00f 1022 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1023 mdelay(5);
837ba00f 1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
284637d9 1027 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1028 }
79e53945
JB
1029}
1030
b24e7179
JB
1031static const char *state_string(bool enabled)
1032{
1033 return enabled ? "on" : "off";
1034}
1035
1036/* Only for pre-ILK configs */
1037static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039{
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050}
1051#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
040484af
JB
1054/* For ILK+ */
1055static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
040484af 1059{
040484af
JB
1060 u32 val;
1061 bool cur_state;
1062
9d82aa17
ED
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
92b27b08
CW
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1070 return;
ee7b9f93 1071
92b27b08
CW
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
d3ccbe86 1095 }
040484af 1096}
92b27b08
CW
1097#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1099
1100static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102{
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
bf507ef7
ED
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
040484af
JB
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126{
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
59c859d6
ED
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
040484af
JB
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142}
1143#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148{
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
bf507ef7
ED
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
040484af
JB
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163}
1164
1165static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167{
1168 int reg;
1169 u32 val;
1170
59c859d6
ED
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
040484af
JB
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178}
1179
ea0760cf
JB
1180static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182{
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
0de3b485 1186 bool locked = true;
ea0760cf
JB
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1206 pipe_name(pipe));
ea0760cf
JB
1207}
1208
b840d907
JB
1209void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
b24e7179
JB
1211{
1212 int reg;
1213 u32 val;
63d7bbe9 1214 bool cur_state;
b24e7179 1215
8e636784
DV
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
b24e7179
JB
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
63d7bbe9
JB
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1225 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1226}
1227
931872fc
CW
1228static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
b24e7179
JB
1230{
1231 int reg;
1232 u32 val;
931872fc 1233 bool cur_state;
b24e7179
JB
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
931872fc
CW
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1241}
1242
931872fc
CW
1243#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
b24e7179
JB
1246static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248{
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
19ec1358 1253 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
19ec1358 1260 return;
28c05794 1261 }
19ec1358 1262
b24e7179
JB
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
b24e7179
JB
1272 }
1273}
1274
92f2584a
JB
1275static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276{
1277 u32 val;
1278 bool enabled;
1279
9d82aa17
ED
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
92f2584a
JB
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289}
1290
1291static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293{
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
92f2584a
JB
1304}
1305
4e634389
KP
1306static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1308{
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322}
1323
1519b995
KP
1324static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326{
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338}
1339
1340static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342{
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354}
1355
1356static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358{
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369}
1370
291906f1 1371static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1372 enum pipe pipe, int reg, u32 port_sel)
291906f1 1373{
47a05eca 1374 u32 val = I915_READ(reg);
4e634389 1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1377 reg, pipe_name(pipe));
de9a35ab 1378
75c5da27
DV
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
de9a35ab 1381 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1382}
1383
1384static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386{
47a05eca 1387 u32 val = I915_READ(reg);
e9a851ed 1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1390 reg, pipe_name(pipe));
de9a35ab 1391
75c5da27
DV
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1394 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1395}
1396
1397static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
291906f1 1402
f0575e92
KP
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
e9a851ed 1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1411 pipe_name(pipe));
291906f1
JB
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
e9a851ed 1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1417 pipe_name(pipe));
291906f1
JB
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422}
1423
63d7bbe9
JB
1424/**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
7434a255
TR
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1436 */
a37b9b34 1437static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1438{
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
a0c4da24 1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463}
1464
1465/**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475{
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491}
1492
a416edef
ED
1493/* SBI access */
1494static void
1495intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496{
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522}
1523
1524static u32
1525intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526{
1527 unsigned long flags;
39fb50f6 1528 u32 value = 0;
a416edef
ED
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
39fb50f6 1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554}
1555
92f2584a
JB
1556/**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
ee7b9f93 1564static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1565{
ee7b9f93 1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1567 struct intel_pch_pll *pll;
92f2584a
JB
1568 int reg;
1569 u32 val;
1570
48da64a8 1571 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1572 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
ee7b9f93
JB
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
92f2584a
JB
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
ee7b9f93 1587 if (pll->active++ && pll->on) {
92b27b08 1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
92f2584a
JB
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
ee7b9f93
JB
1600
1601 pll->on = true;
92f2584a
JB
1602}
1603
ee7b9f93 1604static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1605{
ee7b9f93
JB
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1608 int reg;
ee7b9f93 1609 u32 val;
4c609cb8 1610
92f2584a
JB
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1613 if (pll == NULL)
1614 return;
92f2584a 1615
48da64a8
CW
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
7a419866 1618
ee7b9f93
JB
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
7a419866 1622
48da64a8 1623 if (WARN_ON(pll->active == 0)) {
92b27b08 1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1625 return;
1626 }
1627
ee7b9f93 1628 if (--pll->active) {
92b27b08 1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1630 return;
ee7b9f93
JB
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1637
ee7b9f93 1638 reg = pll->pll_reg;
92f2584a
JB
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
ee7b9f93
JB
1644
1645 pll->on = false;
92f2584a
JB
1646}
1647
040484af
JB
1648static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650{
1651 int reg;
5f7f726d 1652 u32 val, pipeconf_val;
7c26e5c6 1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
040484af
JB
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
59c859d6
ED
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
040484af
JB
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
5f7f726d 1673 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
5f7f726d 1681 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1682 }
5f7f726d
PZ
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
5f7f726d
PZ
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
040484af
JB
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697}
1698
1699static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701{
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
291906f1
JB
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
040484af
JB
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1719}
1720
b24e7179 1721/**
309cfea8 1722 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
040484af 1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
040484af
JB
1735static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
b24e7179
JB
1737{
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
b24e7179
JB
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
00d70b15
CW
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764}
1765
1766/**
309cfea8 1767 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780{
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
00d70b15
CW
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801}
1802
d74362c9
KP
1803/*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
6f1d69b0 1807void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1808 enum plane plane)
1809{
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812}
1813
b24e7179
JB
1814/**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824{
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
00d70b15
CW
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1837 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839}
1840
b24e7179
JB
1841/**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851{
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
00d70b15
CW
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863}
1864
127bd2ac 1865int
48b956c5 1866intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1867 struct drm_i915_gem_object *obj,
919926ae 1868 struct intel_ring_buffer *pipelined)
6b95a207 1869{
ce453d81 1870 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1871 u32 alignment;
1872 int ret;
1873
05394f39 1874 switch (obj->tiling_mode) {
6b95a207 1875 case I915_TILING_NONE:
534843da
CW
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
a6c45cf0 1878 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
6b95a207
KH
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
ce453d81 1895 dev_priv->mm.interruptible = false;
2da3b9b9 1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1897 if (ret)
ce453d81 1898 goto err_interruptible;
6b95a207
KH
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
06d98131 1905 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1906 if (ret)
1907 goto err_unpin;
1690e1eb 1908
9a5a53b3 1909 i915_gem_object_pin_fence(obj);
6b95a207 1910
ce453d81 1911 dev_priv->mm.interruptible = true;
6b95a207 1912 return 0;
48b956c5
CW
1913
1914err_unpin:
1915 i915_gem_object_unpin(obj);
ce453d81
CW
1916err_interruptible:
1917 dev_priv->mm.interruptible = true;
48b956c5 1918 return ret;
6b95a207
KH
1919}
1920
1690e1eb
CW
1921void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922{
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925}
1926
c2c75131
DV
1927/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932{
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565 1951 int plane = intel_crtc->plane;
e506a0c6 1952 unsigned long linear_offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
e506a0c6 1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2000
c2c75131
DV
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
e506a0c6 2008 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2009 }
e506a0c6
DV
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2014 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2019 } else
e506a0c6 2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2021 POSTING_READ(reg);
81255565 2022
17638cd6
JB
2023 return 0;
2024}
2025
2026static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028{
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
e506a0c6 2035 unsigned long linear_offset;
17638cd6
JB
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
27f8227b 2042 case 2:
17638cd6
JB
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
e506a0c6 2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2096
e506a0c6
DV
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2104 POSTING_READ(reg);
2105
2106 return 0;
2107}
2108
2109/* Assume fb object is pinned & idle & fenced and just update base pointers */
2110static int
2111intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113{
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2116
6b8e6ed0
CW
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
3dec0095 2119 intel_increase_pllclock(crtc);
81255565 2120
6b8e6ed0 2121 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2122}
2123
14667a4b
CW
2124static int
2125intel_finish_fb(struct drm_framebuffer *old_fb)
2126{
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149}
2150
5c3b82e2 2151static int
3c4fdcfb 2152intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2153 struct drm_framebuffer *fb)
79e53945
JB
2154{
2155 struct drm_device *dev = crtc->dev;
6b8e6ed0 2156 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2159 struct drm_framebuffer *old_fb;
5c3b82e2 2160 int ret;
79e53945
JB
2161
2162 /* no fb bound */
94352cf9 2163 if (!fb) {
a5071c2f 2164 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2165 return 0;
2166 }
2167
5826eca5
ED
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
5c3b82e2 2172 return -EINVAL;
79e53945
JB
2173 }
2174
5c3b82e2 2175 mutex_lock(&dev->struct_mutex);
265db958 2176 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2177 to_intel_framebuffer(fb)->obj,
919926ae 2178 NULL);
5c3b82e2
CW
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
a5071c2f 2181 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2182 return ret;
2183 }
79e53945 2184
94352cf9
DV
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
265db958 2187
94352cf9 2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2189 if (ret) {
94352cf9 2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2191 mutex_unlock(&dev->struct_mutex);
a5071c2f 2192 DRM_ERROR("failed to update base address\n");
4e6cfefc 2193 return ret;
79e53945 2194 }
3c4fdcfb 2195
94352cf9
DV
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
6c4c86f5
DV
2198 crtc->x = x;
2199 crtc->y = y;
94352cf9 2200
b7f1de28
CW
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2204 }
652c393a 2205
6b8e6ed0 2206 intel_update_fbc(dev);
5c3b82e2 2207 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2208
2209 if (!dev->primary->master)
5c3b82e2 2210 return 0;
79e53945
JB
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
5c3b82e2 2214 return 0;
79e53945 2215
265db958 2216 if (intel_crtc->pipe) {
79e53945
JB
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
79e53945 2222 }
5c3b82e2
CW
2223
2224 return 0;
79e53945
JB
2225}
2226
5eddb70b 2227static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2228{
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
28c97730 2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
5eddb70b 2260 POSTING_READ(DP_A);
32f9d658
ZW
2261 udelay(500);
2262}
2263
5e84e1a4
ZW
2264static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265{
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
61e499bf 2275 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2281 }
5e84e1a4
ZW
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
357555c0
JB
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2303}
2304
291427f5
JB
2305static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306{
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315}
2316
8db9d77b
ZW
2317/* The FDI link training functions for ILK/Ibexpeak. */
2318static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
0fc932b8 2324 int plane = intel_crtc->plane;
5eddb70b 2325 u32 reg, temp, tries;
8db9d77b 2326
0fc932b8
JB
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
e1a44743
AJ
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
5eddb70b
CW
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
e1a44743
AJ
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
e1a44743
AJ
2339 udelay(150);
2340
8db9d77b 2341 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
77ffb597
AJ
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2349
5eddb70b
CW
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
8db9d77b
ZW
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
8db9d77b
ZW
2357 udelay(150);
2358
5b2adf89 2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
5b2adf89 2365
5eddb70b 2366 reg = FDI_RX_IIR(pipe);
e1a44743 2367 for (tries = 0; tries < 5; tries++) {
5eddb70b 2368 temp = I915_READ(reg);
8db9d77b
ZW
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2374 break;
2375 }
8db9d77b 2376 }
e1a44743 2377 if (tries == 5)
5eddb70b 2378 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2379
2380 /* Train 2 */
5eddb70b
CW
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
8db9d77b
ZW
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2385 I915_WRITE(reg, temp);
8db9d77b 2386
5eddb70b
CW
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
8db9d77b
ZW
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2391 I915_WRITE(reg, temp);
8db9d77b 2392
5eddb70b
CW
2393 POSTING_READ(reg);
2394 udelay(150);
8db9d77b 2395
5eddb70b 2396 reg = FDI_RX_IIR(pipe);
e1a44743 2397 for (tries = 0; tries < 5; tries++) {
5eddb70b 2398 temp = I915_READ(reg);
8db9d77b
ZW
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
8db9d77b 2406 }
e1a44743 2407 if (tries == 5)
5eddb70b 2408 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2411
8db9d77b
ZW
2412}
2413
0206e353 2414static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419};
2420
2421/* The FDI link training functions for SNB/Cougarpoint. */
2422static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423{
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
fa37d39e 2428 u32 reg, temp, i, retry;
8db9d77b 2429
e1a44743
AJ
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
5eddb70b
CW
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
e1a44743
AJ
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
e1a44743
AJ
2439 udelay(150);
2440
8db9d77b 2441 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
77ffb597
AJ
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2452
5eddb70b
CW
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
5eddb70b
CW
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
8db9d77b
ZW
2465 udelay(150);
2466
291427f5
JB
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
0206e353 2470 for (i = 0; i < 4; i++) {
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
8db9d77b
ZW
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
8db9d77b
ZW
2478 udelay(500);
2479
fa37d39e
SP
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
8db9d77b 2490 }
fa37d39e
SP
2491 if (retry < 5)
2492 break;
8db9d77b
ZW
2493 }
2494 if (i == 4)
5eddb70b 2495 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2496
2497 /* Train 2 */
5eddb70b
CW
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
5eddb70b 2507 I915_WRITE(reg, temp);
8db9d77b 2508
5eddb70b
CW
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
8db9d77b
ZW
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
5eddb70b
CW
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
8db9d77b
ZW
2521 udelay(150);
2522
0206e353 2523 for (i = 0; i < 4; i++) {
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
8db9d77b
ZW
2531 udelay(500);
2532
fa37d39e
SP
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
8db9d77b 2543 }
fa37d39e
SP
2544 if (retry < 5)
2545 break;
8db9d77b
ZW
2546 }
2547 if (i == 4)
5eddb70b 2548 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551}
2552
357555c0
JB
2553/* Manual link training for Ivy Bridge A0 parts */
2554static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555{
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2582 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2590 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
291427f5
JB
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
0206e353 2599 for (i = 0; i < 4; i++) {
357555c0
JB
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
0206e353 2641 for (i = 0; i < 4; i++) {
357555c0
JB
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665}
2666
88cefb6c 2667static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2668{
88cefb6c 2669 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2670 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2671 int pipe = intel_crtc->pipe;
5eddb70b 2672 u32 reg, temp;
79e53945 2673
c64e311e 2674 /* Write the TU size bits so error detection works */
5eddb70b
CW
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2677
c98e9dcf 2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
c98e9dcf
JB
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
c98e9dcf
JB
2694 udelay(200);
2695
bf507ef7
ED
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2704
bf507ef7
ED
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
6be4a607 2708 }
0e23b99d
JB
2709}
2710
88cefb6c
DV
2711static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712{
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
291427f5
JB
2740static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741{
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750}
0fc932b8
JB
2751static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752{
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2782 }
0fc932b8
JB
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807}
2808
5bb61643
CW
2809static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2810{
2811 struct drm_device *dev = crtc->dev;
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 unsigned long flags;
2814 bool pending;
2815
2816 if (atomic_read(&dev_priv->mm.wedged))
2817 return false;
2818
2819 spin_lock_irqsave(&dev->event_lock, flags);
2820 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2821 spin_unlock_irqrestore(&dev->event_lock, flags);
2822
2823 return pending;
2824}
2825
e6c3a2a6
CW
2826static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827{
0f91128d 2828 struct drm_device *dev = crtc->dev;
5bb61643 2829 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2830
2831 if (crtc->fb == NULL)
2832 return;
2833
5bb61643
CW
2834 wait_event(dev_priv->pending_flip_queue,
2835 !intel_crtc_has_pending_flip(crtc));
2836
0f91128d
CW
2837 mutex_lock(&dev->struct_mutex);
2838 intel_finish_fb(crtc->fb);
2839 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2840}
2841
040484af
JB
2842static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2843{
2844 struct drm_device *dev = crtc->dev;
228d3e36 2845 struct intel_encoder *intel_encoder;
040484af
JB
2846
2847 /*
2848 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2849 * must be driven by its own crtc; no sharing is possible.
2850 */
228d3e36 2851 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
040484af 2852
6ee8bab0
ED
2853 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2854 * CPU handles all others */
2855 if (IS_HASWELL(dev)) {
2856 /* It is still unclear how this will work on PPT, so throw up a warning */
2857 WARN_ON(!HAS_PCH_LPT(dev));
2858
228d3e36 2859 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
6ee8bab0
ED
2860 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2861 return true;
2862 } else {
2863 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
228d3e36 2864 intel_encoder->type);
6ee8bab0
ED
2865 return false;
2866 }
2867 }
2868
228d3e36 2869 switch (intel_encoder->type) {
040484af 2870 case INTEL_OUTPUT_EDP:
228d3e36 2871 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2872 return false;
2873 continue;
2874 }
2875 }
2876
2877 return true;
2878}
2879
e615efe4
ED
2880/* Program iCLKIP clock to the desired frequency */
2881static void lpt_program_iclkip(struct drm_crtc *crtc)
2882{
2883 struct drm_device *dev = crtc->dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2886 u32 temp;
2887
2888 /* It is necessary to ungate the pixclk gate prior to programming
2889 * the divisors, and gate it back when it is done.
2890 */
2891 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2892
2893 /* Disable SSCCTL */
2894 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2895 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2896 SBI_SSCCTL_DISABLE);
2897
2898 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2899 if (crtc->mode.clock == 20000) {
2900 auxdiv = 1;
2901 divsel = 0x41;
2902 phaseinc = 0x20;
2903 } else {
2904 /* The iCLK virtual clock root frequency is in MHz,
2905 * but the crtc->mode.clock in in KHz. To get the divisors,
2906 * it is necessary to divide one by another, so we
2907 * convert the virtual clock precision to KHz here for higher
2908 * precision.
2909 */
2910 u32 iclk_virtual_root_freq = 172800 * 1000;
2911 u32 iclk_pi_range = 64;
2912 u32 desired_divisor, msb_divisor_value, pi_value;
2913
2914 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2915 msb_divisor_value = desired_divisor / iclk_pi_range;
2916 pi_value = desired_divisor % iclk_pi_range;
2917
2918 auxdiv = 0;
2919 divsel = msb_divisor_value - 2;
2920 phaseinc = pi_value;
2921 }
2922
2923 /* This should not happen with any sane values */
2924 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2925 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2926 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2927 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2928
2929 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2930 crtc->mode.clock,
2931 auxdiv,
2932 divsel,
2933 phasedir,
2934 phaseinc);
2935
2936 /* Program SSCDIVINTPHASE6 */
2937 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2938 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2939 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2940 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2941 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2942 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2943 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2944
2945 intel_sbi_write(dev_priv,
2946 SBI_SSCDIVINTPHASE6,
2947 temp);
2948
2949 /* Program SSCAUXDIV */
2950 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2951 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2952 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2953 intel_sbi_write(dev_priv,
2954 SBI_SSCAUXDIV6,
2955 temp);
2956
2957
2958 /* Enable modulator and associated divider */
2959 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2960 temp &= ~SBI_SSCCTL_DISABLE;
2961 intel_sbi_write(dev_priv,
2962 SBI_SSCCTL6,
2963 temp);
2964
2965 /* Wait for initialization time */
2966 udelay(24);
2967
2968 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2969}
2970
f67a559d
JB
2971/*
2972 * Enable PCH resources required for PCH ports:
2973 * - PCH PLLs
2974 * - FDI training & RX/TX
2975 * - update transcoder timings
2976 * - DP transcoding bits
2977 * - transcoder
2978 */
2979static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2980{
2981 struct drm_device *dev = crtc->dev;
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2984 int pipe = intel_crtc->pipe;
ee7b9f93 2985 u32 reg, temp;
2c07245f 2986
e7e164db
CW
2987 assert_transcoder_disabled(dev_priv, pipe);
2988
c98e9dcf 2989 /* For PCH output, training FDI link */
674cf967 2990 dev_priv->display.fdi_link_train(crtc);
2c07245f 2991
6f13b7b5
CW
2992 intel_enable_pch_pll(intel_crtc);
2993
e615efe4
ED
2994 if (HAS_PCH_LPT(dev)) {
2995 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2996 lpt_program_iclkip(crtc);
2997 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 2998 u32 sel;
4b645f14 2999
c98e9dcf 3000 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3001 switch (pipe) {
3002 default:
3003 case 0:
3004 temp |= TRANSA_DPLL_ENABLE;
3005 sel = TRANSA_DPLLB_SEL;
3006 break;
3007 case 1:
3008 temp |= TRANSB_DPLL_ENABLE;
3009 sel = TRANSB_DPLLB_SEL;
3010 break;
3011 case 2:
3012 temp |= TRANSC_DPLL_ENABLE;
3013 sel = TRANSC_DPLLB_SEL;
3014 break;
d64311ab 3015 }
ee7b9f93
JB
3016 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3017 temp |= sel;
3018 else
3019 temp &= ~sel;
c98e9dcf 3020 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3021 }
5eddb70b 3022
d9b6cb56
JB
3023 /* set transcoder timing, panel must allow it */
3024 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3025 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3026 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3027 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3028
5eddb70b
CW
3029 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3030 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3031 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3032 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3033
f57e1e3a
ED
3034 if (!IS_HASWELL(dev))
3035 intel_fdi_normal_train(crtc);
5e84e1a4 3036
c98e9dcf
JB
3037 /* For PCH DP, enable TRANS_DP_CTL */
3038 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3039 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3040 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3041 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3042 reg = TRANS_DP_CTL(pipe);
3043 temp = I915_READ(reg);
3044 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3045 TRANS_DP_SYNC_MASK |
3046 TRANS_DP_BPC_MASK);
5eddb70b
CW
3047 temp |= (TRANS_DP_OUTPUT_ENABLE |
3048 TRANS_DP_ENH_FRAMING);
9325c9f0 3049 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3050
3051 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3052 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3053 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3054 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3055
3056 switch (intel_trans_dp_port_sel(crtc)) {
3057 case PCH_DP_B:
5eddb70b 3058 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3059 break;
3060 case PCH_DP_C:
5eddb70b 3061 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3062 break;
3063 case PCH_DP_D:
5eddb70b 3064 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3065 break;
3066 default:
3067 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 3068 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 3069 break;
32f9d658 3070 }
2c07245f 3071
5eddb70b 3072 I915_WRITE(reg, temp);
6be4a607 3073 }
b52eb4dc 3074
040484af 3075 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3076}
3077
ee7b9f93
JB
3078static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3079{
3080 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3081
3082 if (pll == NULL)
3083 return;
3084
3085 if (pll->refcount == 0) {
3086 WARN(1, "bad PCH PLL refcount\n");
3087 return;
3088 }
3089
3090 --pll->refcount;
3091 intel_crtc->pch_pll = NULL;
3092}
3093
3094static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3095{
3096 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3097 struct intel_pch_pll *pll;
3098 int i;
3099
3100 pll = intel_crtc->pch_pll;
3101 if (pll) {
3102 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3103 intel_crtc->base.base.id, pll->pll_reg);
3104 goto prepare;
3105 }
3106
98b6bd99
DV
3107 if (HAS_PCH_IBX(dev_priv->dev)) {
3108 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3109 i = intel_crtc->pipe;
3110 pll = &dev_priv->pch_plls[i];
3111
3112 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3113 intel_crtc->base.base.id, pll->pll_reg);
3114
3115 goto found;
3116 }
3117
ee7b9f93
JB
3118 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3119 pll = &dev_priv->pch_plls[i];
3120
3121 /* Only want to check enabled timings first */
3122 if (pll->refcount == 0)
3123 continue;
3124
3125 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3126 fp == I915_READ(pll->fp0_reg)) {
3127 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3128 intel_crtc->base.base.id,
3129 pll->pll_reg, pll->refcount, pll->active);
3130
3131 goto found;
3132 }
3133 }
3134
3135 /* Ok no matching timings, maybe there's a free one? */
3136 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3137 pll = &dev_priv->pch_plls[i];
3138 if (pll->refcount == 0) {
3139 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3140 intel_crtc->base.base.id, pll->pll_reg);
3141 goto found;
3142 }
3143 }
3144
3145 return NULL;
3146
3147found:
3148 intel_crtc->pch_pll = pll;
3149 pll->refcount++;
3150 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3151prepare: /* separate function? */
3152 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3153
e04c7350
CW
3154 /* Wait for the clocks to stabilize before rewriting the regs */
3155 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3156 POSTING_READ(pll->pll_reg);
3157 udelay(150);
e04c7350
CW
3158
3159 I915_WRITE(pll->fp0_reg, fp);
3160 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3161 pll->on = false;
3162 return pll;
3163}
3164
d4270e57
JB
3165void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3166{
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3169 u32 temp;
3170
3171 temp = I915_READ(dslreg);
3172 udelay(500);
3173 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3174 /* Without this, mode sets may fail silently on FDI */
3175 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3176 udelay(250);
3177 I915_WRITE(tc2reg, 0);
3178 if (wait_for(I915_READ(dslreg) != temp, 5))
3179 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3180 }
3181}
3182
f67a559d
JB
3183static void ironlake_crtc_enable(struct drm_crtc *crtc)
3184{
3185 struct drm_device *dev = crtc->dev;
3186 struct drm_i915_private *dev_priv = dev->dev_private;
3187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3188 struct intel_encoder *encoder;
f67a559d
JB
3189 int pipe = intel_crtc->pipe;
3190 int plane = intel_crtc->plane;
3191 u32 temp;
3192 bool is_pch_port;
3193
08a48469
DV
3194 WARN_ON(!crtc->enabled);
3195
f67a559d
JB
3196 if (intel_crtc->active)
3197 return;
3198
3199 intel_crtc->active = true;
3200 intel_update_watermarks(dev);
3201
3202 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3203 temp = I915_READ(PCH_LVDS);
3204 if ((temp & LVDS_PORT_EN) == 0)
3205 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3206 }
3207
3208 is_pch_port = intel_crtc_driving_pch(crtc);
3209
46b6f814 3210 if (is_pch_port) {
88cefb6c 3211 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3212 } else {
3213 assert_fdi_tx_disabled(dev_priv, pipe);
3214 assert_fdi_rx_disabled(dev_priv, pipe);
3215 }
f67a559d 3216
bf49ec8c
DV
3217 for_each_encoder_on_crtc(dev, crtc, encoder)
3218 if (encoder->pre_enable)
3219 encoder->pre_enable(encoder);
3220
fc914639
PZ
3221 if (IS_HASWELL(dev))
3222 intel_ddi_enable_pipe_clock(intel_crtc);
3223
f67a559d
JB
3224 /* Enable panel fitting for LVDS */
3225 if (dev_priv->pch_pf_size &&
3226 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3227 /* Force use of hard-coded filter coefficients
3228 * as some pre-programmed values are broken,
3229 * e.g. x201.
3230 */
9db4a9c7
JB
3231 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3232 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3233 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3234 }
3235
9c54c0dd
JB
3236 /*
3237 * On ILK+ LUT must be loaded before the pipe is running but with
3238 * clocks enabled
3239 */
3240 intel_crtc_load_lut(crtc);
3241
dae84799
PZ
3242 if (IS_HASWELL(dev)) {
3243 intel_ddi_set_pipe_settings(crtc);
8d9ddbcb 3244 intel_ddi_enable_pipe_func(crtc);
dae84799 3245 }
8d9ddbcb 3246
f67a559d
JB
3247 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3248 intel_enable_plane(dev_priv, plane, pipe);
3249
3250 if (is_pch_port)
3251 ironlake_pch_enable(crtc);
c98e9dcf 3252
d1ebd816 3253 mutex_lock(&dev->struct_mutex);
bed4a673 3254 intel_update_fbc(dev);
d1ebd816
BW
3255 mutex_unlock(&dev->struct_mutex);
3256
6b383a7f 3257 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3258
fa5c73b1
DV
3259 for_each_encoder_on_crtc(dev, crtc, encoder)
3260 encoder->enable(encoder);
61b77ddd
DV
3261
3262 if (HAS_PCH_CPT(dev))
3263 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3264
3265 /*
3266 * There seems to be a race in PCH platform hw (at least on some
3267 * outputs) where an enabled pipe still completes any pageflip right
3268 * away (as if the pipe is off) instead of waiting for vblank. As soon
3269 * as the first vblank happend, everything works as expected. Hence just
3270 * wait for one vblank before returning to avoid strange things
3271 * happening.
3272 */
3273 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3274}
3275
3276static void ironlake_crtc_disable(struct drm_crtc *crtc)
3277{
3278 struct drm_device *dev = crtc->dev;
3279 struct drm_i915_private *dev_priv = dev->dev_private;
3280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3281 struct intel_encoder *encoder;
6be4a607
JB
3282 int pipe = intel_crtc->pipe;
3283 int plane = intel_crtc->plane;
5eddb70b 3284 u32 reg, temp;
b52eb4dc 3285
ef9c3aee 3286
f7abfe8b
CW
3287 if (!intel_crtc->active)
3288 return;
3289
ea9d758d
DV
3290 for_each_encoder_on_crtc(dev, crtc, encoder)
3291 encoder->disable(encoder);
3292
e6c3a2a6 3293 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3294 drm_vblank_off(dev, pipe);
6b383a7f 3295 intel_crtc_update_cursor(crtc, false);
5eddb70b 3296
b24e7179 3297 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3298
973d04f9
CW
3299 if (dev_priv->cfb_plane == plane)
3300 intel_disable_fbc(dev);
2c07245f 3301
b24e7179 3302 intel_disable_pipe(dev_priv, pipe);
32f9d658 3303
8d9ddbcb
PZ
3304 if (IS_HASWELL(dev))
3305 intel_ddi_disable_pipe_func(dev_priv, pipe);
3306
6be4a607 3307 /* Disable PF */
9db4a9c7
JB
3308 I915_WRITE(PF_CTL(pipe), 0);
3309 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3310
fc914639
PZ
3311 if (IS_HASWELL(dev))
3312 intel_ddi_disable_pipe_clock(intel_crtc);
3313
bf49ec8c
DV
3314 for_each_encoder_on_crtc(dev, crtc, encoder)
3315 if (encoder->post_disable)
3316 encoder->post_disable(encoder);
3317
0fc932b8 3318 ironlake_fdi_disable(crtc);
2c07245f 3319
040484af 3320 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3321
6be4a607
JB
3322 if (HAS_PCH_CPT(dev)) {
3323 /* disable TRANS_DP_CTL */
5eddb70b
CW
3324 reg = TRANS_DP_CTL(pipe);
3325 temp = I915_READ(reg);
3326 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3327 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3328 I915_WRITE(reg, temp);
6be4a607
JB
3329
3330 /* disable DPLL_SEL */
3331 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3332 switch (pipe) {
3333 case 0:
d64311ab 3334 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3335 break;
3336 case 1:
6be4a607 3337 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3338 break;
3339 case 2:
4b645f14 3340 /* C shares PLL A or B */
d64311ab 3341 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3342 break;
3343 default:
3344 BUG(); /* wtf */
3345 }
6be4a607 3346 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3347 }
e3421a18 3348
6be4a607 3349 /* disable PCH DPLL */
ee7b9f93 3350 intel_disable_pch_pll(intel_crtc);
8db9d77b 3351
88cefb6c 3352 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3353
f7abfe8b 3354 intel_crtc->active = false;
6b383a7f 3355 intel_update_watermarks(dev);
d1ebd816
BW
3356
3357 mutex_lock(&dev->struct_mutex);
6b383a7f 3358 intel_update_fbc(dev);
d1ebd816 3359 mutex_unlock(&dev->struct_mutex);
6be4a607 3360}
1b3c7a47 3361
ee7b9f93
JB
3362static void ironlake_crtc_off(struct drm_crtc *crtc)
3363{
3364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365 intel_put_pch_pll(intel_crtc);
3366}
3367
6441ab5f
PZ
3368static void haswell_crtc_off(struct drm_crtc *crtc)
3369{
3370 intel_ddi_put_crtc_pll(crtc);
3371}
3372
02e792fb
DV
3373static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3374{
02e792fb 3375 if (!enable && intel_crtc->overlay) {
23f09ce3 3376 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3377 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3378
23f09ce3 3379 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3380 dev_priv->mm.interruptible = false;
3381 (void) intel_overlay_switch_off(intel_crtc->overlay);
3382 dev_priv->mm.interruptible = true;
23f09ce3 3383 mutex_unlock(&dev->struct_mutex);
02e792fb 3384 }
02e792fb 3385
5dcdbcb0
CW
3386 /* Let userspace switch the overlay on again. In most cases userspace
3387 * has to recompute where to put it anyway.
3388 */
02e792fb
DV
3389}
3390
0b8765c6 3391static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3392{
3393 struct drm_device *dev = crtc->dev;
79e53945
JB
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3396 struct intel_encoder *encoder;
79e53945 3397 int pipe = intel_crtc->pipe;
80824003 3398 int plane = intel_crtc->plane;
79e53945 3399
08a48469
DV
3400 WARN_ON(!crtc->enabled);
3401
f7abfe8b
CW
3402 if (intel_crtc->active)
3403 return;
3404
3405 intel_crtc->active = true;
6b383a7f
CW
3406 intel_update_watermarks(dev);
3407
63d7bbe9 3408 intel_enable_pll(dev_priv, pipe);
040484af 3409 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3410 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3411
0b8765c6 3412 intel_crtc_load_lut(crtc);
bed4a673 3413 intel_update_fbc(dev);
79e53945 3414
0b8765c6
JB
3415 /* Give the overlay scaler a chance to enable if it's on this pipe */
3416 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3417 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3418
fa5c73b1
DV
3419 for_each_encoder_on_crtc(dev, crtc, encoder)
3420 encoder->enable(encoder);
0b8765c6 3421}
79e53945 3422
0b8765c6
JB
3423static void i9xx_crtc_disable(struct drm_crtc *crtc)
3424{
3425 struct drm_device *dev = crtc->dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3428 struct intel_encoder *encoder;
0b8765c6
JB
3429 int pipe = intel_crtc->pipe;
3430 int plane = intel_crtc->plane;
b690e96c 3431
ef9c3aee 3432
f7abfe8b
CW
3433 if (!intel_crtc->active)
3434 return;
3435
ea9d758d
DV
3436 for_each_encoder_on_crtc(dev, crtc, encoder)
3437 encoder->disable(encoder);
3438
0b8765c6 3439 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3440 intel_crtc_wait_for_pending_flips(crtc);
3441 drm_vblank_off(dev, pipe);
0b8765c6 3442 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3443 intel_crtc_update_cursor(crtc, false);
0b8765c6 3444
973d04f9
CW
3445 if (dev_priv->cfb_plane == plane)
3446 intel_disable_fbc(dev);
79e53945 3447
b24e7179 3448 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3449 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3450 intel_disable_pll(dev_priv, pipe);
0b8765c6 3451
f7abfe8b 3452 intel_crtc->active = false;
6b383a7f
CW
3453 intel_update_fbc(dev);
3454 intel_update_watermarks(dev);
0b8765c6
JB
3455}
3456
ee7b9f93
JB
3457static void i9xx_crtc_off(struct drm_crtc *crtc)
3458{
3459}
3460
976f8a20
DV
3461static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3462 bool enabled)
2c07245f
ZW
3463{
3464 struct drm_device *dev = crtc->dev;
3465 struct drm_i915_master_private *master_priv;
3466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3467 int pipe = intel_crtc->pipe;
79e53945
JB
3468
3469 if (!dev->primary->master)
3470 return;
3471
3472 master_priv = dev->primary->master->driver_priv;
3473 if (!master_priv->sarea_priv)
3474 return;
3475
79e53945
JB
3476 switch (pipe) {
3477 case 0:
3478 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3479 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3480 break;
3481 case 1:
3482 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3483 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3484 break;
3485 default:
9db4a9c7 3486 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3487 break;
3488 }
79e53945
JB
3489}
3490
976f8a20
DV
3491/**
3492 * Sets the power management mode of the pipe and plane.
3493 */
3494void intel_crtc_update_dpms(struct drm_crtc *crtc)
3495{
3496 struct drm_device *dev = crtc->dev;
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct intel_encoder *intel_encoder;
3499 bool enable = false;
3500
3501 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3502 enable |= intel_encoder->connectors_active;
3503
3504 if (enable)
3505 dev_priv->display.crtc_enable(crtc);
3506 else
3507 dev_priv->display.crtc_disable(crtc);
3508
3509 intel_crtc_update_sarea(crtc, enable);
3510}
3511
3512static void intel_crtc_noop(struct drm_crtc *crtc)
3513{
3514}
3515
cdd59983
CW
3516static void intel_crtc_disable(struct drm_crtc *crtc)
3517{
cdd59983 3518 struct drm_device *dev = crtc->dev;
976f8a20 3519 struct drm_connector *connector;
ee7b9f93 3520 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3521
976f8a20
DV
3522 /* crtc should still be enabled when we disable it. */
3523 WARN_ON(!crtc->enabled);
3524
3525 dev_priv->display.crtc_disable(crtc);
3526 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3527 dev_priv->display.off(crtc);
3528
931872fc
CW
3529 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3530 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3531
3532 if (crtc->fb) {
3533 mutex_lock(&dev->struct_mutex);
1690e1eb 3534 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3535 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3536 crtc->fb = NULL;
3537 }
3538
3539 /* Update computed state. */
3540 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3541 if (!connector->encoder || !connector->encoder->crtc)
3542 continue;
3543
3544 if (connector->encoder->crtc != crtc)
3545 continue;
3546
3547 connector->dpms = DRM_MODE_DPMS_OFF;
3548 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3549 }
3550}
3551
a261b246 3552void intel_modeset_disable(struct drm_device *dev)
79e53945 3553{
a261b246
DV
3554 struct drm_crtc *crtc;
3555
3556 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3557 if (crtc->enabled)
3558 intel_crtc_disable(crtc);
3559 }
79e53945
JB
3560}
3561
1f703855 3562void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3563{
7e7d76c3
JB
3564}
3565
ea5b213a 3566void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3567{
4ef69c7a 3568 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3569
ea5b213a
CW
3570 drm_encoder_cleanup(encoder);
3571 kfree(intel_encoder);
7e7d76c3
JB
3572}
3573
5ab432ef
DV
3574/* Simple dpms helper for encodres with just one connector, no cloning and only
3575 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3576 * state of the entire output pipe. */
3577void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3578{
5ab432ef
DV
3579 if (mode == DRM_MODE_DPMS_ON) {
3580 encoder->connectors_active = true;
3581
b2cabb0e 3582 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3583 } else {
3584 encoder->connectors_active = false;
3585
b2cabb0e 3586 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3587 }
79e53945
JB
3588}
3589
0a91ca29
DV
3590/* Cross check the actual hw state with our own modeset state tracking (and it's
3591 * internal consistency). */
b980514c 3592static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3593{
0a91ca29
DV
3594 if (connector->get_hw_state(connector)) {
3595 struct intel_encoder *encoder = connector->encoder;
3596 struct drm_crtc *crtc;
3597 bool encoder_enabled;
3598 enum pipe pipe;
3599
3600 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3601 connector->base.base.id,
3602 drm_get_connector_name(&connector->base));
3603
3604 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3605 "wrong connector dpms state\n");
3606 WARN(connector->base.encoder != &encoder->base,
3607 "active connector not linked to encoder\n");
3608 WARN(!encoder->connectors_active,
3609 "encoder->connectors_active not set\n");
3610
3611 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3612 WARN(!encoder_enabled, "encoder not enabled\n");
3613 if (WARN_ON(!encoder->base.crtc))
3614 return;
3615
3616 crtc = encoder->base.crtc;
3617
3618 WARN(!crtc->enabled, "crtc not enabled\n");
3619 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3620 WARN(pipe != to_intel_crtc(crtc)->pipe,
3621 "encoder active on the wrong pipe\n");
3622 }
79e53945
JB
3623}
3624
5ab432ef
DV
3625/* Even simpler default implementation, if there's really no special case to
3626 * consider. */
3627void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3628{
5ab432ef 3629 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3630
5ab432ef
DV
3631 /* All the simple cases only support two dpms states. */
3632 if (mode != DRM_MODE_DPMS_ON)
3633 mode = DRM_MODE_DPMS_OFF;
d4270e57 3634
5ab432ef
DV
3635 if (mode == connector->dpms)
3636 return;
3637
3638 connector->dpms = mode;
3639
3640 /* Only need to change hw state when actually enabled */
3641 if (encoder->base.crtc)
3642 intel_encoder_dpms(encoder, mode);
3643 else
8af6cf88 3644 WARN_ON(encoder->connectors_active != false);
0a91ca29 3645
b980514c 3646 intel_modeset_check_state(connector->dev);
79e53945
JB
3647}
3648
f0947c37
DV
3649/* Simple connector->get_hw_state implementation for encoders that support only
3650 * one connector and no cloning and hence the encoder state determines the state
3651 * of the connector. */
3652bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3653{
24929352 3654 enum pipe pipe = 0;
f0947c37 3655 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3656
f0947c37 3657 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3658}
3659
79e53945 3660static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3661 const struct drm_display_mode *mode,
79e53945
JB
3662 struct drm_display_mode *adjusted_mode)
3663{
2c07245f 3664 struct drm_device *dev = crtc->dev;
89749350 3665
bad720ff 3666 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3667 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3668 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3669 return false;
2c07245f 3670 }
89749350 3671
f9bef081
DV
3672 /* All interlaced capable intel hw wants timings in frames. Note though
3673 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3674 * timings, so we need to be careful not to clobber these.*/
3675 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3676 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3677
44f46b42
CW
3678 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3679 * with a hsync front porch of 0.
3680 */
3681 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3682 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3683 return false;
3684
79e53945
JB
3685 return true;
3686}
3687
25eb05fc
JB
3688static int valleyview_get_display_clock_speed(struct drm_device *dev)
3689{
3690 return 400000; /* FIXME */
3691}
3692
e70236a8
JB
3693static int i945_get_display_clock_speed(struct drm_device *dev)
3694{
3695 return 400000;
3696}
79e53945 3697
e70236a8 3698static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3699{
e70236a8
JB
3700 return 333000;
3701}
79e53945 3702
e70236a8
JB
3703static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3704{
3705 return 200000;
3706}
79e53945 3707
e70236a8
JB
3708static int i915gm_get_display_clock_speed(struct drm_device *dev)
3709{
3710 u16 gcfgc = 0;
79e53945 3711
e70236a8
JB
3712 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3713
3714 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3715 return 133000;
3716 else {
3717 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3718 case GC_DISPLAY_CLOCK_333_MHZ:
3719 return 333000;
3720 default:
3721 case GC_DISPLAY_CLOCK_190_200_MHZ:
3722 return 190000;
79e53945 3723 }
e70236a8
JB
3724 }
3725}
3726
3727static int i865_get_display_clock_speed(struct drm_device *dev)
3728{
3729 return 266000;
3730}
3731
3732static int i855_get_display_clock_speed(struct drm_device *dev)
3733{
3734 u16 hpllcc = 0;
3735 /* Assume that the hardware is in the high speed state. This
3736 * should be the default.
3737 */
3738 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3739 case GC_CLOCK_133_200:
3740 case GC_CLOCK_100_200:
3741 return 200000;
3742 case GC_CLOCK_166_250:
3743 return 250000;
3744 case GC_CLOCK_100_133:
79e53945 3745 return 133000;
e70236a8 3746 }
79e53945 3747
e70236a8
JB
3748 /* Shouldn't happen */
3749 return 0;
3750}
79e53945 3751
e70236a8
JB
3752static int i830_get_display_clock_speed(struct drm_device *dev)
3753{
3754 return 133000;
79e53945
JB
3755}
3756
2c07245f
ZW
3757struct fdi_m_n {
3758 u32 tu;
3759 u32 gmch_m;
3760 u32 gmch_n;
3761 u32 link_m;
3762 u32 link_n;
3763};
3764
3765static void
3766fdi_reduce_ratio(u32 *num, u32 *den)
3767{
3768 while (*num > 0xffffff || *den > 0xffffff) {
3769 *num >>= 1;
3770 *den >>= 1;
3771 }
3772}
3773
2c07245f 3774static void
f2b115e6
AJ
3775ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3776 int link_clock, struct fdi_m_n *m_n)
2c07245f 3777{
2c07245f
ZW
3778 m_n->tu = 64; /* default size */
3779
22ed1113
CW
3780 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3781 m_n->gmch_m = bits_per_pixel * pixel_clock;
3782 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3783 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3784
22ed1113
CW
3785 m_n->link_m = pixel_clock;
3786 m_n->link_n = link_clock;
2c07245f
ZW
3787 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3788}
3789
a7615030
CW
3790static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3791{
72bbe58c
KP
3792 if (i915_panel_use_ssc >= 0)
3793 return i915_panel_use_ssc != 0;
3794 return dev_priv->lvds_use_ssc
435793df 3795 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3796}
3797
5a354204
JB
3798/**
3799 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3800 * @crtc: CRTC structure
3b5c78a3 3801 * @mode: requested mode
5a354204
JB
3802 *
3803 * A pipe may be connected to one or more outputs. Based on the depth of the
3804 * attached framebuffer, choose a good color depth to use on the pipe.
3805 *
3806 * If possible, match the pipe depth to the fb depth. In some cases, this
3807 * isn't ideal, because the connected output supports a lesser or restricted
3808 * set of depths. Resolve that here:
3809 * LVDS typically supports only 6bpc, so clamp down in that case
3810 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3811 * Displays may support a restricted set as well, check EDID and clamp as
3812 * appropriate.
3b5c78a3 3813 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3814 *
3815 * RETURNS:
3816 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3817 * true if they don't match).
3818 */
3819static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3820 struct drm_framebuffer *fb,
3b5c78a3
AJ
3821 unsigned int *pipe_bpp,
3822 struct drm_display_mode *mode)
5a354204
JB
3823{
3824 struct drm_device *dev = crtc->dev;
3825 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3826 struct drm_connector *connector;
6c2b7c12 3827 struct intel_encoder *intel_encoder;
5a354204
JB
3828 unsigned int display_bpc = UINT_MAX, bpc;
3829
3830 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3831 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3832
3833 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3834 unsigned int lvds_bpc;
3835
3836 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3837 LVDS_A3_POWER_UP)
3838 lvds_bpc = 8;
3839 else
3840 lvds_bpc = 6;
3841
3842 if (lvds_bpc < display_bpc) {
82820490 3843 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
3844 display_bpc = lvds_bpc;
3845 }
3846 continue;
3847 }
3848
5a354204
JB
3849 /* Not one of the known troublemakers, check the EDID */
3850 list_for_each_entry(connector, &dev->mode_config.connector_list,
3851 head) {
6c2b7c12 3852 if (connector->encoder != &intel_encoder->base)
5a354204
JB
3853 continue;
3854
62ac41a6
JB
3855 /* Don't use an invalid EDID bpc value */
3856 if (connector->display_info.bpc &&
3857 connector->display_info.bpc < display_bpc) {
82820490 3858 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
3859 display_bpc = connector->display_info.bpc;
3860 }
3861 }
3862
3863 /*
3864 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3865 * through, clamp it down. (Note: >12bpc will be caught below.)
3866 */
3867 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3868 if (display_bpc > 8 && display_bpc < 12) {
82820490 3869 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
3870 display_bpc = 12;
3871 } else {
82820490 3872 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
3873 display_bpc = 8;
3874 }
3875 }
3876 }
3877
3b5c78a3
AJ
3878 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3879 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3880 display_bpc = 6;
3881 }
3882
5a354204
JB
3883 /*
3884 * We could just drive the pipe at the highest bpc all the time and
3885 * enable dithering as needed, but that costs bandwidth. So choose
3886 * the minimum value that expresses the full color range of the fb but
3887 * also stays within the max display bpc discovered above.
3888 */
3889
94352cf9 3890 switch (fb->depth) {
5a354204
JB
3891 case 8:
3892 bpc = 8; /* since we go through a colormap */
3893 break;
3894 case 15:
3895 case 16:
3896 bpc = 6; /* min is 18bpp */
3897 break;
3898 case 24:
578393cd 3899 bpc = 8;
5a354204
JB
3900 break;
3901 case 30:
578393cd 3902 bpc = 10;
5a354204
JB
3903 break;
3904 case 48:
578393cd 3905 bpc = 12;
5a354204
JB
3906 break;
3907 default:
3908 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3909 bpc = min((unsigned int)8, display_bpc);
3910 break;
3911 }
3912
578393cd
KP
3913 display_bpc = min(display_bpc, bpc);
3914
82820490
AJ
3915 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3916 bpc, display_bpc);
5a354204 3917
578393cd 3918 *pipe_bpp = display_bpc * 3;
5a354204
JB
3919
3920 return display_bpc != bpc;
3921}
3922
a0c4da24
JB
3923static int vlv_get_refclk(struct drm_crtc *crtc)
3924{
3925 struct drm_device *dev = crtc->dev;
3926 struct drm_i915_private *dev_priv = dev->dev_private;
3927 int refclk = 27000; /* for DP & HDMI */
3928
3929 return 100000; /* only one validated so far */
3930
3931 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3932 refclk = 96000;
3933 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3934 if (intel_panel_use_ssc(dev_priv))
3935 refclk = 100000;
3936 else
3937 refclk = 96000;
3938 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3939 refclk = 100000;
3940 }
3941
3942 return refclk;
3943}
3944
c65d77d8
JB
3945static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3946{
3947 struct drm_device *dev = crtc->dev;
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 int refclk;
3950
a0c4da24
JB
3951 if (IS_VALLEYVIEW(dev)) {
3952 refclk = vlv_get_refclk(crtc);
3953 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
3954 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3955 refclk = dev_priv->lvds_ssc_freq * 1000;
3956 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3957 refclk / 1000);
3958 } else if (!IS_GEN2(dev)) {
3959 refclk = 96000;
3960 } else {
3961 refclk = 48000;
3962 }
3963
3964 return refclk;
3965}
3966
3967static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3968 intel_clock_t *clock)
3969{
3970 /* SDVO TV has fixed PLL values depend on its clock range,
3971 this mirrors vbios setting. */
3972 if (adjusted_mode->clock >= 100000
3973 && adjusted_mode->clock < 140500) {
3974 clock->p1 = 2;
3975 clock->p2 = 10;
3976 clock->n = 3;
3977 clock->m1 = 16;
3978 clock->m2 = 8;
3979 } else if (adjusted_mode->clock >= 140500
3980 && adjusted_mode->clock <= 200000) {
3981 clock->p1 = 1;
3982 clock->p2 = 10;
3983 clock->n = 6;
3984 clock->m1 = 12;
3985 clock->m2 = 8;
3986 }
3987}
3988
a7516a05
JB
3989static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3990 intel_clock_t *clock,
3991 intel_clock_t *reduced_clock)
3992{
3993 struct drm_device *dev = crtc->dev;
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3996 int pipe = intel_crtc->pipe;
3997 u32 fp, fp2 = 0;
3998
3999 if (IS_PINEVIEW(dev)) {
4000 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4001 if (reduced_clock)
4002 fp2 = (1 << reduced_clock->n) << 16 |
4003 reduced_clock->m1 << 8 | reduced_clock->m2;
4004 } else {
4005 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4006 if (reduced_clock)
4007 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4008 reduced_clock->m2;
4009 }
4010
4011 I915_WRITE(FP0(pipe), fp);
4012
4013 intel_crtc->lowfreq_avail = false;
4014 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4015 reduced_clock && i915_powersave) {
4016 I915_WRITE(FP1(pipe), fp2);
4017 intel_crtc->lowfreq_avail = true;
4018 } else {
4019 I915_WRITE(FP1(pipe), fp);
4020 }
4021}
4022
93e537a1
DV
4023static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4024 struct drm_display_mode *adjusted_mode)
4025{
4026 struct drm_device *dev = crtc->dev;
4027 struct drm_i915_private *dev_priv = dev->dev_private;
4028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4029 int pipe = intel_crtc->pipe;
284d5df5 4030 u32 temp;
93e537a1
DV
4031
4032 temp = I915_READ(LVDS);
4033 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4034 if (pipe == 1) {
4035 temp |= LVDS_PIPEB_SELECT;
4036 } else {
4037 temp &= ~LVDS_PIPEB_SELECT;
4038 }
4039 /* set the corresponsding LVDS_BORDER bit */
4040 temp |= dev_priv->lvds_border_bits;
4041 /* Set the B0-B3 data pairs corresponding to whether we're going to
4042 * set the DPLLs for dual-channel mode or not.
4043 */
4044 if (clock->p2 == 7)
4045 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4046 else
4047 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4048
4049 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4050 * appropriately here, but we need to look more thoroughly into how
4051 * panels behave in the two modes.
4052 */
4053 /* set the dithering flag on LVDS as needed */
4054 if (INTEL_INFO(dev)->gen >= 4) {
4055 if (dev_priv->lvds_dither)
4056 temp |= LVDS_ENABLE_DITHER;
4057 else
4058 temp &= ~LVDS_ENABLE_DITHER;
4059 }
284d5df5 4060 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4061 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4062 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4063 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4064 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4065 I915_WRITE(LVDS, temp);
4066}
4067
a0c4da24
JB
4068static void vlv_update_pll(struct drm_crtc *crtc,
4069 struct drm_display_mode *mode,
4070 struct drm_display_mode *adjusted_mode,
4071 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4072 int num_connectors)
a0c4da24
JB
4073{
4074 struct drm_device *dev = crtc->dev;
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4077 int pipe = intel_crtc->pipe;
4078 u32 dpll, mdiv, pdiv;
4079 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4080 bool is_sdvo;
4081 u32 temp;
4082
4083 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4084 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4085
2a8f64ca
VP
4086 dpll = DPLL_VGA_MODE_DIS;
4087 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4088 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4089 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4090
4091 I915_WRITE(DPLL(pipe), dpll);
4092 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4093
4094 bestn = clock->n;
4095 bestm1 = clock->m1;
4096 bestm2 = clock->m2;
4097 bestp1 = clock->p1;
4098 bestp2 = clock->p2;
4099
2a8f64ca
VP
4100 /*
4101 * In Valleyview PLL and program lane counter registers are exposed
4102 * through DPIO interface
4103 */
a0c4da24
JB
4104 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4105 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4106 mdiv |= ((bestn << DPIO_N_SHIFT));
4107 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4108 mdiv |= (1 << DPIO_K_SHIFT);
4109 mdiv |= DPIO_ENABLE_CALIBRATION;
4110 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4111
4112 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4113
2a8f64ca 4114 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4115 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4116 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4117 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4118 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4119
2a8f64ca 4120 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4121
4122 dpll |= DPLL_VCO_ENABLE;
4123 I915_WRITE(DPLL(pipe), dpll);
4124 POSTING_READ(DPLL(pipe));
4125 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4126 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4127
2a8f64ca
VP
4128 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4129
4130 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4131 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4132
4133 I915_WRITE(DPLL(pipe), dpll);
4134
4135 /* Wait for the clocks to stabilize. */
4136 POSTING_READ(DPLL(pipe));
4137 udelay(150);
a0c4da24 4138
2a8f64ca
VP
4139 temp = 0;
4140 if (is_sdvo) {
4141 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4142 if (temp > 1)
4143 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4144 else
4145 temp = 0;
a0c4da24 4146 }
2a8f64ca
VP
4147 I915_WRITE(DPLL_MD(pipe), temp);
4148 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4149
2a8f64ca
VP
4150 /* Now program lane control registers */
4151 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4152 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4153 {
4154 temp = 0x1000C4;
4155 if(pipe == 1)
4156 temp |= (1 << 21);
4157 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4158 }
4159 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4160 {
4161 temp = 0x1000C4;
4162 if(pipe == 1)
4163 temp |= (1 << 21);
4164 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4165 }
a0c4da24
JB
4166}
4167
eb1cbe48
DV
4168static void i9xx_update_pll(struct drm_crtc *crtc,
4169 struct drm_display_mode *mode,
4170 struct drm_display_mode *adjusted_mode,
4171 intel_clock_t *clock, intel_clock_t *reduced_clock,
4172 int num_connectors)
4173{
4174 struct drm_device *dev = crtc->dev;
4175 struct drm_i915_private *dev_priv = dev->dev_private;
4176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4177 int pipe = intel_crtc->pipe;
4178 u32 dpll;
4179 bool is_sdvo;
4180
2a8f64ca
VP
4181 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4182
eb1cbe48
DV
4183 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4184 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4185
4186 dpll = DPLL_VGA_MODE_DIS;
4187
4188 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4189 dpll |= DPLLB_MODE_LVDS;
4190 else
4191 dpll |= DPLLB_MODE_DAC_SERIAL;
4192 if (is_sdvo) {
4193 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4194 if (pixel_multiplier > 1) {
4195 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4196 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4197 }
4198 dpll |= DPLL_DVO_HIGH_SPEED;
4199 }
4200 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4201 dpll |= DPLL_DVO_HIGH_SPEED;
4202
4203 /* compute bitmask from p1 value */
4204 if (IS_PINEVIEW(dev))
4205 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4206 else {
4207 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4208 if (IS_G4X(dev) && reduced_clock)
4209 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4210 }
4211 switch (clock->p2) {
4212 case 5:
4213 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4214 break;
4215 case 7:
4216 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4217 break;
4218 case 10:
4219 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4220 break;
4221 case 14:
4222 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4223 break;
4224 }
4225 if (INTEL_INFO(dev)->gen >= 4)
4226 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4227
4228 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4229 dpll |= PLL_REF_INPUT_TVCLKINBC;
4230 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4231 /* XXX: just matching BIOS for now */
4232 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4233 dpll |= 3;
4234 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4235 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4236 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4237 else
4238 dpll |= PLL_REF_INPUT_DREFCLK;
4239
4240 dpll |= DPLL_VCO_ENABLE;
4241 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4242 POSTING_READ(DPLL(pipe));
4243 udelay(150);
4244
4245 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4246 * This is an exception to the general rule that mode_set doesn't turn
4247 * things on.
4248 */
4249 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4250 intel_update_lvds(crtc, clock, adjusted_mode);
4251
4252 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4253 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4254
4255 I915_WRITE(DPLL(pipe), dpll);
4256
4257 /* Wait for the clocks to stabilize. */
4258 POSTING_READ(DPLL(pipe));
4259 udelay(150);
4260
4261 if (INTEL_INFO(dev)->gen >= 4) {
4262 u32 temp = 0;
4263 if (is_sdvo) {
4264 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4265 if (temp > 1)
4266 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4267 else
4268 temp = 0;
4269 }
4270 I915_WRITE(DPLL_MD(pipe), temp);
4271 } else {
4272 /* The pixel multiplier can only be updated once the
4273 * DPLL is enabled and the clocks are stable.
4274 *
4275 * So write it again.
4276 */
4277 I915_WRITE(DPLL(pipe), dpll);
4278 }
4279}
4280
4281static void i8xx_update_pll(struct drm_crtc *crtc,
4282 struct drm_display_mode *adjusted_mode,
2a8f64ca 4283 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4284 int num_connectors)
4285{
4286 struct drm_device *dev = crtc->dev;
4287 struct drm_i915_private *dev_priv = dev->dev_private;
4288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4289 int pipe = intel_crtc->pipe;
4290 u32 dpll;
4291
2a8f64ca
VP
4292 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4293
eb1cbe48
DV
4294 dpll = DPLL_VGA_MODE_DIS;
4295
4296 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4297 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4298 } else {
4299 if (clock->p1 == 2)
4300 dpll |= PLL_P1_DIVIDE_BY_TWO;
4301 else
4302 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4303 if (clock->p2 == 4)
4304 dpll |= PLL_P2_DIVIDE_BY_4;
4305 }
4306
4307 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4308 /* XXX: just matching BIOS for now */
4309 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4310 dpll |= 3;
4311 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4312 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4313 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4314 else
4315 dpll |= PLL_REF_INPUT_DREFCLK;
4316
4317 dpll |= DPLL_VCO_ENABLE;
4318 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4319 POSTING_READ(DPLL(pipe));
4320 udelay(150);
4321
eb1cbe48
DV
4322 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4323 * This is an exception to the general rule that mode_set doesn't turn
4324 * things on.
4325 */
4326 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4327 intel_update_lvds(crtc, clock, adjusted_mode);
4328
5b5896e4
DV
4329 I915_WRITE(DPLL(pipe), dpll);
4330
4331 /* Wait for the clocks to stabilize. */
4332 POSTING_READ(DPLL(pipe));
4333 udelay(150);
4334
eb1cbe48
DV
4335 /* The pixel multiplier can only be updated once the
4336 * DPLL is enabled and the clocks are stable.
4337 *
4338 * So write it again.
4339 */
4340 I915_WRITE(DPLL(pipe), dpll);
4341}
4342
b0e77b9c
PZ
4343static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4344 struct drm_display_mode *mode,
4345 struct drm_display_mode *adjusted_mode)
4346{
4347 struct drm_device *dev = intel_crtc->base.dev;
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349 enum pipe pipe = intel_crtc->pipe;
4350 uint32_t vsyncshift;
4351
4352 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4353 /* the chip adds 2 halflines automatically */
4354 adjusted_mode->crtc_vtotal -= 1;
4355 adjusted_mode->crtc_vblank_end -= 1;
4356 vsyncshift = adjusted_mode->crtc_hsync_start
4357 - adjusted_mode->crtc_htotal / 2;
4358 } else {
4359 vsyncshift = 0;
4360 }
4361
4362 if (INTEL_INFO(dev)->gen > 3)
4363 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4364
4365 I915_WRITE(HTOTAL(pipe),
4366 (adjusted_mode->crtc_hdisplay - 1) |
4367 ((adjusted_mode->crtc_htotal - 1) << 16));
4368 I915_WRITE(HBLANK(pipe),
4369 (adjusted_mode->crtc_hblank_start - 1) |
4370 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4371 I915_WRITE(HSYNC(pipe),
4372 (adjusted_mode->crtc_hsync_start - 1) |
4373 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4374
4375 I915_WRITE(VTOTAL(pipe),
4376 (adjusted_mode->crtc_vdisplay - 1) |
4377 ((adjusted_mode->crtc_vtotal - 1) << 16));
4378 I915_WRITE(VBLANK(pipe),
4379 (adjusted_mode->crtc_vblank_start - 1) |
4380 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4381 I915_WRITE(VSYNC(pipe),
4382 (adjusted_mode->crtc_vsync_start - 1) |
4383 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4384
4385 /* pipesrc controls the size that is scaled from, which should
4386 * always be the user's requested size.
4387 */
4388 I915_WRITE(PIPESRC(pipe),
4389 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4390}
4391
f564048e
EA
4392static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4393 struct drm_display_mode *mode,
4394 struct drm_display_mode *adjusted_mode,
4395 int x, int y,
94352cf9 4396 struct drm_framebuffer *fb)
79e53945
JB
4397{
4398 struct drm_device *dev = crtc->dev;
4399 struct drm_i915_private *dev_priv = dev->dev_private;
4400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4401 int pipe = intel_crtc->pipe;
80824003 4402 int plane = intel_crtc->plane;
c751ce4f 4403 int refclk, num_connectors = 0;
652c393a 4404 intel_clock_t clock, reduced_clock;
b0e77b9c 4405 u32 dspcntr, pipeconf;
eb1cbe48
DV
4406 bool ok, has_reduced_clock = false, is_sdvo = false;
4407 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4408 struct intel_encoder *encoder;
d4906093 4409 const intel_limit_t *limit;
5c3b82e2 4410 int ret;
79e53945 4411
6c2b7c12 4412 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4413 switch (encoder->type) {
79e53945
JB
4414 case INTEL_OUTPUT_LVDS:
4415 is_lvds = true;
4416 break;
4417 case INTEL_OUTPUT_SDVO:
7d57382e 4418 case INTEL_OUTPUT_HDMI:
79e53945 4419 is_sdvo = true;
5eddb70b 4420 if (encoder->needs_tv_clock)
e2f0ba97 4421 is_tv = true;
79e53945 4422 break;
79e53945
JB
4423 case INTEL_OUTPUT_TVOUT:
4424 is_tv = true;
4425 break;
a4fc5ed6
KP
4426 case INTEL_OUTPUT_DISPLAYPORT:
4427 is_dp = true;
4428 break;
79e53945 4429 }
43565a06 4430
c751ce4f 4431 num_connectors++;
79e53945
JB
4432 }
4433
c65d77d8 4434 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4435
d4906093
ML
4436 /*
4437 * Returns a set of divisors for the desired target clock with the given
4438 * refclk, or FALSE. The returned values represent the clock equation:
4439 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4440 */
1b894b59 4441 limit = intel_limit(crtc, refclk);
cec2f356
SP
4442 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4443 &clock);
79e53945
JB
4444 if (!ok) {
4445 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4446 return -EINVAL;
79e53945
JB
4447 }
4448
cda4b7d3 4449 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4450 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4451
ddc9003c 4452 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4453 /*
4454 * Ensure we match the reduced clock's P to the target clock.
4455 * If the clocks don't match, we can't switch the display clock
4456 * by using the FP0/FP1. In such case we will disable the LVDS
4457 * downclock feature.
4458 */
ddc9003c 4459 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4460 dev_priv->lvds_downclock,
4461 refclk,
cec2f356 4462 &clock,
5eddb70b 4463 &reduced_clock);
7026d4ac
ZW
4464 }
4465
c65d77d8
JB
4466 if (is_sdvo && is_tv)
4467 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4468
eb1cbe48 4469 if (IS_GEN2(dev))
2a8f64ca
VP
4470 i8xx_update_pll(crtc, adjusted_mode, &clock,
4471 has_reduced_clock ? &reduced_clock : NULL,
4472 num_connectors);
a0c4da24 4473 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4474 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4475 has_reduced_clock ? &reduced_clock : NULL,
4476 num_connectors);
79e53945 4477 else
eb1cbe48
DV
4478 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4479 has_reduced_clock ? &reduced_clock : NULL,
4480 num_connectors);
79e53945
JB
4481
4482 /* setup pipeconf */
5eddb70b 4483 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4484
4485 /* Set up the display plane register */
4486 dspcntr = DISPPLANE_GAMMA_ENABLE;
4487
929c77fb
EA
4488 if (pipe == 0)
4489 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4490 else
4491 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4492
a6c45cf0 4493 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4494 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4495 * core speed.
4496 *
4497 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4498 * pipe == 0 check?
4499 */
e70236a8
JB
4500 if (mode->clock >
4501 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4502 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4503 else
5eddb70b 4504 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4505 }
4506
3b5c78a3
AJ
4507 /* default to 8bpc */
4508 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4509 if (is_dp) {
0c96c65b 4510 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4511 pipeconf |= PIPECONF_BPP_6 |
4512 PIPECONF_DITHER_EN |
4513 PIPECONF_DITHER_TYPE_SP;
4514 }
4515 }
4516
19c03924
GB
4517 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4518 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4519 pipeconf |= PIPECONF_BPP_6 |
4520 PIPECONF_ENABLE |
4521 I965_PIPECONF_ACTIVE;
4522 }
4523 }
4524
28c97730 4525 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4526 drm_mode_debug_printmodeline(mode);
4527
a7516a05
JB
4528 if (HAS_PIPE_CXSR(dev)) {
4529 if (intel_crtc->lowfreq_avail) {
28c97730 4530 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4531 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4532 } else {
28c97730 4533 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4534 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4535 }
4536 }
4537
617cf884 4538 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4539 if (!IS_GEN2(dev) &&
b0e77b9c 4540 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4541 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4542 else
617cf884 4543 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4544
b0e77b9c 4545 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4546
4547 /* pipesrc and dspsize control the size that is scaled from,
4548 * which should always be the user's requested size.
79e53945 4549 */
929c77fb
EA
4550 I915_WRITE(DSPSIZE(plane),
4551 ((mode->vdisplay - 1) << 16) |
4552 (mode->hdisplay - 1));
4553 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4554
f564048e
EA
4555 I915_WRITE(PIPECONF(pipe), pipeconf);
4556 POSTING_READ(PIPECONF(pipe));
929c77fb 4557 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4558
4559 intel_wait_for_vblank(dev, pipe);
4560
f564048e
EA
4561 I915_WRITE(DSPCNTR(plane), dspcntr);
4562 POSTING_READ(DSPCNTR(plane));
4563
94352cf9 4564 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4565
4566 intel_update_watermarks(dev);
4567
f564048e
EA
4568 return ret;
4569}
4570
9fb526db
KP
4571/*
4572 * Initialize reference clocks when the driver loads
4573 */
4574void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4575{
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4578 struct intel_encoder *encoder;
13d83a67
JB
4579 u32 temp;
4580 bool has_lvds = false;
199e5d79
KP
4581 bool has_cpu_edp = false;
4582 bool has_pch_edp = false;
4583 bool has_panel = false;
99eb6a01
KP
4584 bool has_ck505 = false;
4585 bool can_ssc = false;
13d83a67
JB
4586
4587 /* We need to take the global config into account */
199e5d79
KP
4588 list_for_each_entry(encoder, &mode_config->encoder_list,
4589 base.head) {
4590 switch (encoder->type) {
4591 case INTEL_OUTPUT_LVDS:
4592 has_panel = true;
4593 has_lvds = true;
4594 break;
4595 case INTEL_OUTPUT_EDP:
4596 has_panel = true;
4597 if (intel_encoder_is_pch_edp(&encoder->base))
4598 has_pch_edp = true;
4599 else
4600 has_cpu_edp = true;
4601 break;
13d83a67
JB
4602 }
4603 }
4604
99eb6a01
KP
4605 if (HAS_PCH_IBX(dev)) {
4606 has_ck505 = dev_priv->display_clock_mode;
4607 can_ssc = has_ck505;
4608 } else {
4609 has_ck505 = false;
4610 can_ssc = true;
4611 }
4612
4613 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4614 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4615 has_ck505);
13d83a67
JB
4616
4617 /* Ironlake: try to setup display ref clock before DPLL
4618 * enabling. This is only under driver's control after
4619 * PCH B stepping, previous chipset stepping should be
4620 * ignoring this setting.
4621 */
4622 temp = I915_READ(PCH_DREF_CONTROL);
4623 /* Always enable nonspread source */
4624 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4625
99eb6a01
KP
4626 if (has_ck505)
4627 temp |= DREF_NONSPREAD_CK505_ENABLE;
4628 else
4629 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4630
199e5d79
KP
4631 if (has_panel) {
4632 temp &= ~DREF_SSC_SOURCE_MASK;
4633 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4634
199e5d79 4635 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4636 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4637 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4638 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4639 } else
4640 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4641
4642 /* Get SSC going before enabling the outputs */
4643 I915_WRITE(PCH_DREF_CONTROL, temp);
4644 POSTING_READ(PCH_DREF_CONTROL);
4645 udelay(200);
4646
13d83a67
JB
4647 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4648
4649 /* Enable CPU source on CPU attached eDP */
199e5d79 4650 if (has_cpu_edp) {
99eb6a01 4651 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4652 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4653 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4654 }
13d83a67
JB
4655 else
4656 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4657 } else
4658 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4659
4660 I915_WRITE(PCH_DREF_CONTROL, temp);
4661 POSTING_READ(PCH_DREF_CONTROL);
4662 udelay(200);
4663 } else {
4664 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4665
4666 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4667
4668 /* Turn off CPU output */
4669 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4670
4671 I915_WRITE(PCH_DREF_CONTROL, temp);
4672 POSTING_READ(PCH_DREF_CONTROL);
4673 udelay(200);
4674
4675 /* Turn off the SSC source */
4676 temp &= ~DREF_SSC_SOURCE_MASK;
4677 temp |= DREF_SSC_SOURCE_DISABLE;
4678
4679 /* Turn off SSC1 */
4680 temp &= ~ DREF_SSC1_ENABLE;
4681
13d83a67
JB
4682 I915_WRITE(PCH_DREF_CONTROL, temp);
4683 POSTING_READ(PCH_DREF_CONTROL);
4684 udelay(200);
4685 }
4686}
4687
d9d444cb
JB
4688static int ironlake_get_refclk(struct drm_crtc *crtc)
4689{
4690 struct drm_device *dev = crtc->dev;
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692 struct intel_encoder *encoder;
d9d444cb
JB
4693 struct intel_encoder *edp_encoder = NULL;
4694 int num_connectors = 0;
4695 bool is_lvds = false;
4696
6c2b7c12 4697 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4698 switch (encoder->type) {
4699 case INTEL_OUTPUT_LVDS:
4700 is_lvds = true;
4701 break;
4702 case INTEL_OUTPUT_EDP:
4703 edp_encoder = encoder;
4704 break;
4705 }
4706 num_connectors++;
4707 }
4708
4709 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4710 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4711 dev_priv->lvds_ssc_freq);
4712 return dev_priv->lvds_ssc_freq * 1000;
4713 }
4714
4715 return 120000;
4716}
4717
c8203565
PZ
4718static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4719 struct drm_display_mode *adjusted_mode,
4720 bool dither)
4721{
4722 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4724 int pipe = intel_crtc->pipe;
4725 uint32_t val;
4726
4727 val = I915_READ(PIPECONF(pipe));
4728
4729 val &= ~PIPE_BPC_MASK;
4730 switch (intel_crtc->bpp) {
4731 case 18:
4732 val |= PIPE_6BPC;
4733 break;
4734 case 24:
4735 val |= PIPE_8BPC;
4736 break;
4737 case 30:
4738 val |= PIPE_10BPC;
4739 break;
4740 case 36:
4741 val |= PIPE_12BPC;
4742 break;
4743 default:
cc769b62
PZ
4744 /* Case prevented by intel_choose_pipe_bpp_dither. */
4745 BUG();
c8203565
PZ
4746 }
4747
4748 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4749 if (dither)
4750 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4751
4752 val &= ~PIPECONF_INTERLACE_MASK;
4753 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4754 val |= PIPECONF_INTERLACED_ILK;
4755 else
4756 val |= PIPECONF_PROGRESSIVE;
4757
4758 I915_WRITE(PIPECONF(pipe), val);
4759 POSTING_READ(PIPECONF(pipe));
4760}
4761
ee2b0b38
PZ
4762static void haswell_set_pipeconf(struct drm_crtc *crtc,
4763 struct drm_display_mode *adjusted_mode,
4764 bool dither)
4765{
4766 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4768 int pipe = intel_crtc->pipe;
4769 uint32_t val;
4770
4771 val = I915_READ(PIPECONF(pipe));
4772
4773 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4774 if (dither)
4775 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4776
4777 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4778 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4779 val |= PIPECONF_INTERLACED_ILK;
4780 else
4781 val |= PIPECONF_PROGRESSIVE;
4782
4783 I915_WRITE(PIPECONF(pipe), val);
4784 POSTING_READ(PIPECONF(pipe));
4785}
4786
6591c6e4
PZ
4787static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4788 struct drm_display_mode *adjusted_mode,
4789 intel_clock_t *clock,
4790 bool *has_reduced_clock,
4791 intel_clock_t *reduced_clock)
4792{
4793 struct drm_device *dev = crtc->dev;
4794 struct drm_i915_private *dev_priv = dev->dev_private;
4795 struct intel_encoder *intel_encoder;
4796 int refclk;
4797 const intel_limit_t *limit;
4798 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4799
4800 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4801 switch (intel_encoder->type) {
4802 case INTEL_OUTPUT_LVDS:
4803 is_lvds = true;
4804 break;
4805 case INTEL_OUTPUT_SDVO:
4806 case INTEL_OUTPUT_HDMI:
4807 is_sdvo = true;
4808 if (intel_encoder->needs_tv_clock)
4809 is_tv = true;
4810 break;
4811 case INTEL_OUTPUT_TVOUT:
4812 is_tv = true;
4813 break;
4814 }
4815 }
4816
4817 refclk = ironlake_get_refclk(crtc);
4818
4819 /*
4820 * Returns a set of divisors for the desired target clock with the given
4821 * refclk, or FALSE. The returned values represent the clock equation:
4822 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4823 */
4824 limit = intel_limit(crtc, refclk);
4825 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4826 clock);
4827 if (!ret)
4828 return false;
4829
4830 if (is_lvds && dev_priv->lvds_downclock_avail) {
4831 /*
4832 * Ensure we match the reduced clock's P to the target clock.
4833 * If the clocks don't match, we can't switch the display clock
4834 * by using the FP0/FP1. In such case we will disable the LVDS
4835 * downclock feature.
4836 */
4837 *has_reduced_clock = limit->find_pll(limit, crtc,
4838 dev_priv->lvds_downclock,
4839 refclk,
4840 clock,
4841 reduced_clock);
4842 }
4843
4844 if (is_sdvo && is_tv)
4845 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4846
4847 return true;
4848}
4849
f48d8f23
PZ
4850static void ironlake_set_m_n(struct drm_crtc *crtc,
4851 struct drm_display_mode *mode,
4852 struct drm_display_mode *adjusted_mode)
4853{
4854 struct drm_device *dev = crtc->dev;
4855 struct drm_i915_private *dev_priv = dev->dev_private;
4856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4857 enum pipe pipe = intel_crtc->pipe;
4858 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
4859 struct fdi_m_n m_n = {0};
4860 int target_clock, pixel_multiplier, lane, link_bw;
4861 bool is_dp = false, is_cpu_edp = false;
4862
4863 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4864 switch (intel_encoder->type) {
4865 case INTEL_OUTPUT_DISPLAYPORT:
4866 is_dp = true;
4867 break;
4868 case INTEL_OUTPUT_EDP:
4869 is_dp = true;
4870 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
4871 is_cpu_edp = true;
4872 edp_encoder = intel_encoder;
4873 break;
4874 }
4875 }
4876
4877 /* FDI link */
4878 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4879 lane = 0;
4880 /* CPU eDP doesn't require FDI link, so just set DP M/N
4881 according to current link config */
4882 if (is_cpu_edp) {
4883 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4884 } else {
4885 /* FDI is a binary signal running at ~2.7GHz, encoding
4886 * each output octet as 10 bits. The actual frequency
4887 * is stored as a divider into a 100MHz clock, and the
4888 * mode pixel clock is stored in units of 1KHz.
4889 * Hence the bw of each lane in terms of the mode signal
4890 * is:
4891 */
4892 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4893 }
4894
4895 /* [e]DP over FDI requires target mode clock instead of link clock. */
4896 if (edp_encoder)
4897 target_clock = intel_edp_target_clock(edp_encoder, mode);
4898 else if (is_dp)
4899 target_clock = mode->clock;
4900 else
4901 target_clock = adjusted_mode->clock;
4902
4903 if (!lane) {
4904 /*
4905 * Account for spread spectrum to avoid
4906 * oversubscribing the link. Max center spread
4907 * is 2.5%; use 5% for safety's sake.
4908 */
4909 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4910 lane = bps / (link_bw * 8) + 1;
4911 }
4912
4913 intel_crtc->fdi_lanes = lane;
4914
4915 if (pixel_multiplier > 1)
4916 link_bw *= pixel_multiplier;
4917 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4918 &m_n);
4919
4920 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4921 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4922 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4923 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4924}
4925
de13a2e3
PZ
4926static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4927 struct drm_display_mode *adjusted_mode,
4928 intel_clock_t *clock, u32 fp)
79e53945 4929{
de13a2e3 4930 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
4931 struct drm_device *dev = crtc->dev;
4932 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
4933 struct intel_encoder *intel_encoder;
4934 uint32_t dpll;
4935 int factor, pixel_multiplier, num_connectors = 0;
4936 bool is_lvds = false, is_sdvo = false, is_tv = false;
4937 bool is_dp = false, is_cpu_edp = false;
79e53945 4938
de13a2e3
PZ
4939 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4940 switch (intel_encoder->type) {
79e53945
JB
4941 case INTEL_OUTPUT_LVDS:
4942 is_lvds = true;
4943 break;
4944 case INTEL_OUTPUT_SDVO:
7d57382e 4945 case INTEL_OUTPUT_HDMI:
79e53945 4946 is_sdvo = true;
de13a2e3 4947 if (intel_encoder->needs_tv_clock)
e2f0ba97 4948 is_tv = true;
79e53945 4949 break;
79e53945
JB
4950 case INTEL_OUTPUT_TVOUT:
4951 is_tv = true;
4952 break;
a4fc5ed6
KP
4953 case INTEL_OUTPUT_DISPLAYPORT:
4954 is_dp = true;
4955 break;
32f9d658 4956 case INTEL_OUTPUT_EDP:
e3aef172 4957 is_dp = true;
de13a2e3 4958 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 4959 is_cpu_edp = true;
32f9d658 4960 break;
79e53945 4961 }
43565a06 4962
c751ce4f 4963 num_connectors++;
79e53945
JB
4964 }
4965
c1858123 4966 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
4967 factor = 21;
4968 if (is_lvds) {
4969 if ((intel_panel_use_ssc(dev_priv) &&
4970 dev_priv->lvds_ssc_freq == 100) ||
4971 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4972 factor = 25;
4973 } else if (is_sdvo && is_tv)
4974 factor = 20;
c1858123 4975
de13a2e3 4976 if (clock->m < factor * clock->n)
8febb297 4977 fp |= FP_CB_TUNE;
2c07245f 4978
5eddb70b 4979 dpll = 0;
2c07245f 4980
a07d6787
EA
4981 if (is_lvds)
4982 dpll |= DPLLB_MODE_LVDS;
4983 else
4984 dpll |= DPLLB_MODE_DAC_SERIAL;
4985 if (is_sdvo) {
de13a2e3 4986 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
4987 if (pixel_multiplier > 1) {
4988 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 4989 }
a07d6787
EA
4990 dpll |= DPLL_DVO_HIGH_SPEED;
4991 }
e3aef172 4992 if (is_dp && !is_cpu_edp)
a07d6787 4993 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4994
a07d6787 4995 /* compute bitmask from p1 value */
de13a2e3 4996 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 4997 /* also FPA1 */
de13a2e3 4998 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 4999
de13a2e3 5000 switch (clock->p2) {
a07d6787
EA
5001 case 5:
5002 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5003 break;
5004 case 7:
5005 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5006 break;
5007 case 10:
5008 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5009 break;
5010 case 14:
5011 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5012 break;
79e53945
JB
5013 }
5014
43565a06
KH
5015 if (is_sdvo && is_tv)
5016 dpll |= PLL_REF_INPUT_TVCLKINBC;
5017 else if (is_tv)
79e53945 5018 /* XXX: just matching BIOS for now */
43565a06 5019 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5020 dpll |= 3;
a7615030 5021 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5022 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5023 else
5024 dpll |= PLL_REF_INPUT_DREFCLK;
5025
de13a2e3
PZ
5026 return dpll;
5027}
5028
5029static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5030 struct drm_display_mode *mode,
5031 struct drm_display_mode *adjusted_mode,
5032 int x, int y,
5033 struct drm_framebuffer *fb)
5034{
5035 struct drm_device *dev = crtc->dev;
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5038 int pipe = intel_crtc->pipe;
5039 int plane = intel_crtc->plane;
5040 int num_connectors = 0;
5041 intel_clock_t clock, reduced_clock;
5042 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5043 bool ok, has_reduced_clock = false;
5044 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5045 struct intel_encoder *encoder;
5046 u32 temp;
5047 int ret;
5048 bool dither;
de13a2e3
PZ
5049
5050 for_each_encoder_on_crtc(dev, crtc, encoder) {
5051 switch (encoder->type) {
5052 case INTEL_OUTPUT_LVDS:
5053 is_lvds = true;
5054 break;
de13a2e3
PZ
5055 case INTEL_OUTPUT_DISPLAYPORT:
5056 is_dp = true;
5057 break;
5058 case INTEL_OUTPUT_EDP:
5059 is_dp = true;
e2f12b07 5060 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5061 is_cpu_edp = true;
5062 break;
5063 }
5064
5065 num_connectors++;
5066 }
5067
5dc5298b
PZ
5068 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5069 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5070
de13a2e3
PZ
5071 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5072 &has_reduced_clock, &reduced_clock);
5073 if (!ok) {
5074 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5075 return -EINVAL;
5076 }
5077
5078 /* Ensure that the cursor is valid for the new mode before changing... */
5079 intel_crtc_update_cursor(crtc, true);
5080
5081 /* determine panel color depth */
5082 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5083 if (is_lvds && dev_priv->lvds_dither)
5084 dither = true;
5085
5086 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5087 if (has_reduced_clock)
5088 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5089 reduced_clock.m2;
5090
5091 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5092
f7cb34d4 5093 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5094 drm_mode_debug_printmodeline(mode);
5095
5dc5298b
PZ
5096 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5097 if (!is_cpu_edp) {
ee7b9f93 5098 struct intel_pch_pll *pll;
4b645f14 5099
ee7b9f93
JB
5100 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5101 if (pll == NULL) {
5102 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5103 pipe);
4b645f14
JB
5104 return -EINVAL;
5105 }
ee7b9f93
JB
5106 } else
5107 intel_put_pch_pll(intel_crtc);
79e53945
JB
5108
5109 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5110 * This is an exception to the general rule that mode_set doesn't turn
5111 * things on.
5112 */
5113 if (is_lvds) {
fae14981 5114 temp = I915_READ(PCH_LVDS);
5eddb70b 5115 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5116 if (HAS_PCH_CPT(dev)) {
5117 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5118 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5119 } else {
5120 if (pipe == 1)
5121 temp |= LVDS_PIPEB_SELECT;
5122 else
5123 temp &= ~LVDS_PIPEB_SELECT;
5124 }
4b645f14 5125
a3e17eb8 5126 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5127 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5128 /* Set the B0-B3 data pairs corresponding to whether we're going to
5129 * set the DPLLs for dual-channel mode or not.
5130 */
5131 if (clock.p2 == 7)
5eddb70b 5132 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5133 else
5eddb70b 5134 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5135
5136 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5137 * appropriately here, but we need to look more thoroughly into how
5138 * panels behave in the two modes.
5139 */
284d5df5 5140 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5141 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5142 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5143 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5144 temp |= LVDS_VSYNC_POLARITY;
fae14981 5145 I915_WRITE(PCH_LVDS, temp);
79e53945 5146 }
434ed097 5147
e3aef172 5148 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5149 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5150 } else {
8db9d77b 5151 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5152 I915_WRITE(TRANSDATA_M1(pipe), 0);
5153 I915_WRITE(TRANSDATA_N1(pipe), 0);
5154 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5155 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5156 }
79e53945 5157
ee7b9f93
JB
5158 if (intel_crtc->pch_pll) {
5159 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5160
32f9d658 5161 /* Wait for the clocks to stabilize. */
ee7b9f93 5162 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5163 udelay(150);
5164
8febb297
EA
5165 /* The pixel multiplier can only be updated once the
5166 * DPLL is enabled and the clocks are stable.
5167 *
5168 * So write it again.
5169 */
ee7b9f93 5170 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5171 }
79e53945 5172
5eddb70b 5173 intel_crtc->lowfreq_avail = false;
ee7b9f93 5174 if (intel_crtc->pch_pll) {
4b645f14 5175 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5176 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5177 intel_crtc->lowfreq_avail = true;
4b645f14 5178 } else {
ee7b9f93 5179 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5180 }
5181 }
5182
b0e77b9c 5183 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5184
f48d8f23 5185 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5186
e3aef172 5187 if (is_cpu_edp)
8febb297 5188 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5189
c8203565 5190 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5191
9d0498a2 5192 intel_wait_for_vblank(dev, pipe);
79e53945 5193
a1f9e77e
PZ
5194 /* Set up the display plane register */
5195 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5196 POSTING_READ(DSPCNTR(plane));
79e53945 5197
94352cf9 5198 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5199
5200 intel_update_watermarks(dev);
5201
1f8eeabf
ED
5202 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5203
1f803ee5 5204 return ret;
79e53945
JB
5205}
5206
09b4ddf9
PZ
5207static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5208 struct drm_display_mode *mode,
5209 struct drm_display_mode *adjusted_mode,
5210 int x, int y,
5211 struct drm_framebuffer *fb)
5212{
5213 struct drm_device *dev = crtc->dev;
5214 struct drm_i915_private *dev_priv = dev->dev_private;
5215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5216 int pipe = intel_crtc->pipe;
5217 int plane = intel_crtc->plane;
5218 int num_connectors = 0;
5219 intel_clock_t clock, reduced_clock;
5dc5298b 5220 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5221 bool ok, has_reduced_clock = false;
5222 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5223 struct intel_encoder *encoder;
5224 u32 temp;
5225 int ret;
5226 bool dither;
5227
5228 for_each_encoder_on_crtc(dev, crtc, encoder) {
5229 switch (encoder->type) {
5230 case INTEL_OUTPUT_LVDS:
5231 is_lvds = true;
5232 break;
5233 case INTEL_OUTPUT_DISPLAYPORT:
5234 is_dp = true;
5235 break;
5236 case INTEL_OUTPUT_EDP:
5237 is_dp = true;
5238 if (!intel_encoder_is_pch_edp(&encoder->base))
5239 is_cpu_edp = true;
5240 break;
5241 }
5242
5243 num_connectors++;
5244 }
5245
5dc5298b
PZ
5246 /* We are not sure yet this won't happen. */
5247 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5248 INTEL_PCH_TYPE(dev));
5249
5250 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5251 num_connectors, pipe_name(pipe));
5252
1ce42920
PZ
5253 WARN_ON(I915_READ(PIPECONF(pipe)) &
5254 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5255
5256 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5257
6441ab5f
PZ
5258 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5259 return -EINVAL;
5260
5dc5298b
PZ
5261 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5262 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5263 &has_reduced_clock,
5264 &reduced_clock);
5265 if (!ok) {
5266 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5267 return -EINVAL;
5268 }
09b4ddf9
PZ
5269 }
5270
5271 /* Ensure that the cursor is valid for the new mode before changing... */
5272 intel_crtc_update_cursor(crtc, true);
5273
5274 /* determine panel color depth */
5275 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, mode);
5276 if (is_lvds && dev_priv->lvds_dither)
5277 dither = true;
5278
09b4ddf9
PZ
5279 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5280 drm_mode_debug_printmodeline(mode);
5281
5dc5298b
PZ
5282 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5283 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5284 if (has_reduced_clock)
5285 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5286 reduced_clock.m2;
5287
5288 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5289 fp);
5290
5291 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5292 * own on pre-Haswell/LPT generation */
5293 if (!is_cpu_edp) {
5294 struct intel_pch_pll *pll;
5295
5296 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5297 if (pll == NULL) {
5298 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5299 pipe);
5300 return -EINVAL;
5301 }
5302 } else
5303 intel_put_pch_pll(intel_crtc);
09b4ddf9 5304
5dc5298b
PZ
5305 /* The LVDS pin pair needs to be on before the DPLLs are
5306 * enabled. This is an exception to the general rule that
5307 * mode_set doesn't turn things on.
5308 */
5309 if (is_lvds) {
5310 temp = I915_READ(PCH_LVDS);
5311 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5312 if (HAS_PCH_CPT(dev)) {
5313 temp &= ~PORT_TRANS_SEL_MASK;
5314 temp |= PORT_TRANS_SEL_CPT(pipe);
5315 } else {
5316 if (pipe == 1)
5317 temp |= LVDS_PIPEB_SELECT;
5318 else
5319 temp &= ~LVDS_PIPEB_SELECT;
5320 }
09b4ddf9 5321
5dc5298b
PZ
5322 /* set the corresponsding LVDS_BORDER bit */
5323 temp |= dev_priv->lvds_border_bits;
5324 /* Set the B0-B3 data pairs corresponding to whether
5325 * we're going to set the DPLLs for dual-channel mode or
5326 * not.
5327 */
5328 if (clock.p2 == 7)
5329 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5330 else
5dc5298b
PZ
5331 temp &= ~(LVDS_B0B3_POWER_UP |
5332 LVDS_CLKB_POWER_UP);
5333
5334 /* It would be nice to set 24 vs 18-bit mode
5335 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5336 * look more thoroughly into how panels behave in the
5337 * two modes.
5338 */
5339 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5340 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5341 temp |= LVDS_HSYNC_POLARITY;
5342 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5343 temp |= LVDS_VSYNC_POLARITY;
5344 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5345 }
09b4ddf9
PZ
5346 }
5347
5348 if (is_dp && !is_cpu_edp) {
5349 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5350 } else {
5dc5298b
PZ
5351 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5352 /* For non-DP output, clear any trans DP clock recovery
5353 * setting.*/
5354 I915_WRITE(TRANSDATA_M1(pipe), 0);
5355 I915_WRITE(TRANSDATA_N1(pipe), 0);
5356 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5357 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5358 }
09b4ddf9
PZ
5359 }
5360
5361 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5362 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5363 if (intel_crtc->pch_pll) {
5364 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5365
5366 /* Wait for the clocks to stabilize. */
5367 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5368 udelay(150);
5369
5370 /* The pixel multiplier can only be updated once the
5371 * DPLL is enabled and the clocks are stable.
5372 *
5373 * So write it again.
5374 */
5375 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5376 }
5377
5378 if (intel_crtc->pch_pll) {
5379 if (is_lvds && has_reduced_clock && i915_powersave) {
5380 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5381 intel_crtc->lowfreq_avail = true;
5382 } else {
5383 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5384 }
09b4ddf9
PZ
5385 }
5386 }
5387
5388 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5389
1eb8dfec
PZ
5390 if (!is_dp || is_cpu_edp)
5391 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5392
5dc5298b
PZ
5393 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5394 if (is_cpu_edp)
5395 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5396
ee2b0b38 5397 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5398
09b4ddf9
PZ
5399 /* Set up the display plane register */
5400 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5401 POSTING_READ(DSPCNTR(plane));
5402
5403 ret = intel_pipe_set_base(crtc, x, y, fb);
5404
5405 intel_update_watermarks(dev);
5406
5407 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5408
5409 return ret;
5410}
5411
f564048e
EA
5412static int intel_crtc_mode_set(struct drm_crtc *crtc,
5413 struct drm_display_mode *mode,
5414 struct drm_display_mode *adjusted_mode,
5415 int x, int y,
94352cf9 5416 struct drm_framebuffer *fb)
f564048e
EA
5417{
5418 struct drm_device *dev = crtc->dev;
5419 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421 int pipe = intel_crtc->pipe;
f564048e
EA
5422 int ret;
5423
0b701d27 5424 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5425
f564048e 5426 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5427 x, y, fb);
79e53945 5428 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5429
1f803ee5 5430 return ret;
79e53945
JB
5431}
5432
3a9627f4
WF
5433static bool intel_eld_uptodate(struct drm_connector *connector,
5434 int reg_eldv, uint32_t bits_eldv,
5435 int reg_elda, uint32_t bits_elda,
5436 int reg_edid)
5437{
5438 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5439 uint8_t *eld = connector->eld;
5440 uint32_t i;
5441
5442 i = I915_READ(reg_eldv);
5443 i &= bits_eldv;
5444
5445 if (!eld[0])
5446 return !i;
5447
5448 if (!i)
5449 return false;
5450
5451 i = I915_READ(reg_elda);
5452 i &= ~bits_elda;
5453 I915_WRITE(reg_elda, i);
5454
5455 for (i = 0; i < eld[2]; i++)
5456 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5457 return false;
5458
5459 return true;
5460}
5461
e0dac65e
WF
5462static void g4x_write_eld(struct drm_connector *connector,
5463 struct drm_crtc *crtc)
5464{
5465 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5466 uint8_t *eld = connector->eld;
5467 uint32_t eldv;
5468 uint32_t len;
5469 uint32_t i;
5470
5471 i = I915_READ(G4X_AUD_VID_DID);
5472
5473 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5474 eldv = G4X_ELDV_DEVCL_DEVBLC;
5475 else
5476 eldv = G4X_ELDV_DEVCTG;
5477
3a9627f4
WF
5478 if (intel_eld_uptodate(connector,
5479 G4X_AUD_CNTL_ST, eldv,
5480 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5481 G4X_HDMIW_HDMIEDID))
5482 return;
5483
e0dac65e
WF
5484 i = I915_READ(G4X_AUD_CNTL_ST);
5485 i &= ~(eldv | G4X_ELD_ADDR);
5486 len = (i >> 9) & 0x1f; /* ELD buffer size */
5487 I915_WRITE(G4X_AUD_CNTL_ST, i);
5488
5489 if (!eld[0])
5490 return;
5491
5492 len = min_t(uint8_t, eld[2], len);
5493 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5494 for (i = 0; i < len; i++)
5495 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5496
5497 i = I915_READ(G4X_AUD_CNTL_ST);
5498 i |= eldv;
5499 I915_WRITE(G4X_AUD_CNTL_ST, i);
5500}
5501
83358c85
WX
5502static void haswell_write_eld(struct drm_connector *connector,
5503 struct drm_crtc *crtc)
5504{
5505 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5506 uint8_t *eld = connector->eld;
5507 struct drm_device *dev = crtc->dev;
5508 uint32_t eldv;
5509 uint32_t i;
5510 int len;
5511 int pipe = to_intel_crtc(crtc)->pipe;
5512 int tmp;
5513
5514 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5515 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5516 int aud_config = HSW_AUD_CFG(pipe);
5517 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5518
5519
5520 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5521
5522 /* Audio output enable */
5523 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5524 tmp = I915_READ(aud_cntrl_st2);
5525 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5526 I915_WRITE(aud_cntrl_st2, tmp);
5527
5528 /* Wait for 1 vertical blank */
5529 intel_wait_for_vblank(dev, pipe);
5530
5531 /* Set ELD valid state */
5532 tmp = I915_READ(aud_cntrl_st2);
5533 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5534 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5535 I915_WRITE(aud_cntrl_st2, tmp);
5536 tmp = I915_READ(aud_cntrl_st2);
5537 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5538
5539 /* Enable HDMI mode */
5540 tmp = I915_READ(aud_config);
5541 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5542 /* clear N_programing_enable and N_value_index */
5543 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5544 I915_WRITE(aud_config, tmp);
5545
5546 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5547
5548 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5549
5550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5551 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5552 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5553 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5554 } else
5555 I915_WRITE(aud_config, 0);
5556
5557 if (intel_eld_uptodate(connector,
5558 aud_cntrl_st2, eldv,
5559 aud_cntl_st, IBX_ELD_ADDRESS,
5560 hdmiw_hdmiedid))
5561 return;
5562
5563 i = I915_READ(aud_cntrl_st2);
5564 i &= ~eldv;
5565 I915_WRITE(aud_cntrl_st2, i);
5566
5567 if (!eld[0])
5568 return;
5569
5570 i = I915_READ(aud_cntl_st);
5571 i &= ~IBX_ELD_ADDRESS;
5572 I915_WRITE(aud_cntl_st, i);
5573 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5574 DRM_DEBUG_DRIVER("port num:%d\n", i);
5575
5576 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5577 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5578 for (i = 0; i < len; i++)
5579 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5580
5581 i = I915_READ(aud_cntrl_st2);
5582 i |= eldv;
5583 I915_WRITE(aud_cntrl_st2, i);
5584
5585}
5586
e0dac65e
WF
5587static void ironlake_write_eld(struct drm_connector *connector,
5588 struct drm_crtc *crtc)
5589{
5590 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5591 uint8_t *eld = connector->eld;
5592 uint32_t eldv;
5593 uint32_t i;
5594 int len;
5595 int hdmiw_hdmiedid;
b6daa025 5596 int aud_config;
e0dac65e
WF
5597 int aud_cntl_st;
5598 int aud_cntrl_st2;
9b138a83 5599 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5600
b3f33cbf 5601 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5602 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5603 aud_config = IBX_AUD_CFG(pipe);
5604 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5605 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5606 } else {
9b138a83
WX
5607 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5608 aud_config = CPT_AUD_CFG(pipe);
5609 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5610 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5611 }
5612
9b138a83 5613 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5614
5615 i = I915_READ(aud_cntl_st);
9b138a83 5616 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5617 if (!i) {
5618 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5619 /* operate blindly on all ports */
1202b4c6
WF
5620 eldv = IBX_ELD_VALIDB;
5621 eldv |= IBX_ELD_VALIDB << 4;
5622 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5623 } else {
5624 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5625 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5626 }
5627
3a9627f4
WF
5628 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5629 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5630 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5631 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5632 } else
5633 I915_WRITE(aud_config, 0);
e0dac65e 5634
3a9627f4
WF
5635 if (intel_eld_uptodate(connector,
5636 aud_cntrl_st2, eldv,
5637 aud_cntl_st, IBX_ELD_ADDRESS,
5638 hdmiw_hdmiedid))
5639 return;
5640
e0dac65e
WF
5641 i = I915_READ(aud_cntrl_st2);
5642 i &= ~eldv;
5643 I915_WRITE(aud_cntrl_st2, i);
5644
5645 if (!eld[0])
5646 return;
5647
e0dac65e 5648 i = I915_READ(aud_cntl_st);
1202b4c6 5649 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5650 I915_WRITE(aud_cntl_st, i);
5651
5652 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5653 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5654 for (i = 0; i < len; i++)
5655 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5656
5657 i = I915_READ(aud_cntrl_st2);
5658 i |= eldv;
5659 I915_WRITE(aud_cntrl_st2, i);
5660}
5661
5662void intel_write_eld(struct drm_encoder *encoder,
5663 struct drm_display_mode *mode)
5664{
5665 struct drm_crtc *crtc = encoder->crtc;
5666 struct drm_connector *connector;
5667 struct drm_device *dev = encoder->dev;
5668 struct drm_i915_private *dev_priv = dev->dev_private;
5669
5670 connector = drm_select_eld(encoder, mode);
5671 if (!connector)
5672 return;
5673
5674 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5675 connector->base.id,
5676 drm_get_connector_name(connector),
5677 connector->encoder->base.id,
5678 drm_get_encoder_name(connector->encoder));
5679
5680 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5681
5682 if (dev_priv->display.write_eld)
5683 dev_priv->display.write_eld(connector, crtc);
5684}
5685
79e53945
JB
5686/** Loads the palette/gamma unit for the CRTC with the prepared values */
5687void intel_crtc_load_lut(struct drm_crtc *crtc)
5688{
5689 struct drm_device *dev = crtc->dev;
5690 struct drm_i915_private *dev_priv = dev->dev_private;
5691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5692 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5693 int i;
5694
5695 /* The clocks have to be on to load the palette. */
aed3f09d 5696 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5697 return;
5698
f2b115e6 5699 /* use legacy palette for Ironlake */
bad720ff 5700 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5701 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5702
79e53945
JB
5703 for (i = 0; i < 256; i++) {
5704 I915_WRITE(palreg + 4 * i,
5705 (intel_crtc->lut_r[i] << 16) |
5706 (intel_crtc->lut_g[i] << 8) |
5707 intel_crtc->lut_b[i]);
5708 }
5709}
5710
560b85bb
CW
5711static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5712{
5713 struct drm_device *dev = crtc->dev;
5714 struct drm_i915_private *dev_priv = dev->dev_private;
5715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5716 bool visible = base != 0;
5717 u32 cntl;
5718
5719 if (intel_crtc->cursor_visible == visible)
5720 return;
5721
9db4a9c7 5722 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5723 if (visible) {
5724 /* On these chipsets we can only modify the base whilst
5725 * the cursor is disabled.
5726 */
9db4a9c7 5727 I915_WRITE(_CURABASE, base);
560b85bb
CW
5728
5729 cntl &= ~(CURSOR_FORMAT_MASK);
5730 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5731 cntl |= CURSOR_ENABLE |
5732 CURSOR_GAMMA_ENABLE |
5733 CURSOR_FORMAT_ARGB;
5734 } else
5735 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5736 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5737
5738 intel_crtc->cursor_visible = visible;
5739}
5740
5741static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5742{
5743 struct drm_device *dev = crtc->dev;
5744 struct drm_i915_private *dev_priv = dev->dev_private;
5745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5746 int pipe = intel_crtc->pipe;
5747 bool visible = base != 0;
5748
5749 if (intel_crtc->cursor_visible != visible) {
548f245b 5750 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5751 if (base) {
5752 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5753 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5754 cntl |= pipe << 28; /* Connect to correct pipe */
5755 } else {
5756 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5757 cntl |= CURSOR_MODE_DISABLE;
5758 }
9db4a9c7 5759 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5760
5761 intel_crtc->cursor_visible = visible;
5762 }
5763 /* and commit changes on next vblank */
9db4a9c7 5764 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5765}
5766
65a21cd6
JB
5767static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5768{
5769 struct drm_device *dev = crtc->dev;
5770 struct drm_i915_private *dev_priv = dev->dev_private;
5771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5772 int pipe = intel_crtc->pipe;
5773 bool visible = base != 0;
5774
5775 if (intel_crtc->cursor_visible != visible) {
5776 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5777 if (base) {
5778 cntl &= ~CURSOR_MODE;
5779 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5780 } else {
5781 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5782 cntl |= CURSOR_MODE_DISABLE;
5783 }
5784 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5785
5786 intel_crtc->cursor_visible = visible;
5787 }
5788 /* and commit changes on next vblank */
5789 I915_WRITE(CURBASE_IVB(pipe), base);
5790}
5791
cda4b7d3 5792/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5793static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5794 bool on)
cda4b7d3
CW
5795{
5796 struct drm_device *dev = crtc->dev;
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799 int pipe = intel_crtc->pipe;
5800 int x = intel_crtc->cursor_x;
5801 int y = intel_crtc->cursor_y;
560b85bb 5802 u32 base, pos;
cda4b7d3
CW
5803 bool visible;
5804
5805 pos = 0;
5806
6b383a7f 5807 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5808 base = intel_crtc->cursor_addr;
5809 if (x > (int) crtc->fb->width)
5810 base = 0;
5811
5812 if (y > (int) crtc->fb->height)
5813 base = 0;
5814 } else
5815 base = 0;
5816
5817 if (x < 0) {
5818 if (x + intel_crtc->cursor_width < 0)
5819 base = 0;
5820
5821 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5822 x = -x;
5823 }
5824 pos |= x << CURSOR_X_SHIFT;
5825
5826 if (y < 0) {
5827 if (y + intel_crtc->cursor_height < 0)
5828 base = 0;
5829
5830 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5831 y = -y;
5832 }
5833 pos |= y << CURSOR_Y_SHIFT;
5834
5835 visible = base != 0;
560b85bb 5836 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5837 return;
5838
0cd83aa9 5839 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
5840 I915_WRITE(CURPOS_IVB(pipe), pos);
5841 ivb_update_cursor(crtc, base);
5842 } else {
5843 I915_WRITE(CURPOS(pipe), pos);
5844 if (IS_845G(dev) || IS_I865G(dev))
5845 i845_update_cursor(crtc, base);
5846 else
5847 i9xx_update_cursor(crtc, base);
5848 }
cda4b7d3
CW
5849}
5850
79e53945 5851static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5852 struct drm_file *file,
79e53945
JB
5853 uint32_t handle,
5854 uint32_t width, uint32_t height)
5855{
5856 struct drm_device *dev = crtc->dev;
5857 struct drm_i915_private *dev_priv = dev->dev_private;
5858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5859 struct drm_i915_gem_object *obj;
cda4b7d3 5860 uint32_t addr;
3f8bc370 5861 int ret;
79e53945 5862
79e53945
JB
5863 /* if we want to turn off the cursor ignore width and height */
5864 if (!handle) {
28c97730 5865 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5866 addr = 0;
05394f39 5867 obj = NULL;
5004417d 5868 mutex_lock(&dev->struct_mutex);
3f8bc370 5869 goto finish;
79e53945
JB
5870 }
5871
5872 /* Currently we only support 64x64 cursors */
5873 if (width != 64 || height != 64) {
5874 DRM_ERROR("we currently only support 64x64 cursors\n");
5875 return -EINVAL;
5876 }
5877
05394f39 5878 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5879 if (&obj->base == NULL)
79e53945
JB
5880 return -ENOENT;
5881
05394f39 5882 if (obj->base.size < width * height * 4) {
79e53945 5883 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5884 ret = -ENOMEM;
5885 goto fail;
79e53945
JB
5886 }
5887
71acb5eb 5888 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5889 mutex_lock(&dev->struct_mutex);
b295d1b6 5890 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5891 if (obj->tiling_mode) {
5892 DRM_ERROR("cursor cannot be tiled\n");
5893 ret = -EINVAL;
5894 goto fail_locked;
5895 }
5896
2da3b9b9 5897 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5898 if (ret) {
5899 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5900 goto fail_locked;
e7b526bb
CW
5901 }
5902
d9e86c0e
CW
5903 ret = i915_gem_object_put_fence(obj);
5904 if (ret) {
2da3b9b9 5905 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5906 goto fail_unpin;
5907 }
5908
05394f39 5909 addr = obj->gtt_offset;
71acb5eb 5910 } else {
6eeefaf3 5911 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5912 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5913 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5914 align);
71acb5eb
DA
5915 if (ret) {
5916 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5917 goto fail_locked;
71acb5eb 5918 }
05394f39 5919 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5920 }
5921
a6c45cf0 5922 if (IS_GEN2(dev))
14b60391
JB
5923 I915_WRITE(CURSIZE, (height << 12) | width);
5924
3f8bc370 5925 finish:
3f8bc370 5926 if (intel_crtc->cursor_bo) {
b295d1b6 5927 if (dev_priv->info->cursor_needs_physical) {
05394f39 5928 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5929 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5930 } else
5931 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5932 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5933 }
80824003 5934
7f9872e0 5935 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5936
5937 intel_crtc->cursor_addr = addr;
05394f39 5938 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5939 intel_crtc->cursor_width = width;
5940 intel_crtc->cursor_height = height;
5941
6b383a7f 5942 intel_crtc_update_cursor(crtc, true);
3f8bc370 5943
79e53945 5944 return 0;
e7b526bb 5945fail_unpin:
05394f39 5946 i915_gem_object_unpin(obj);
7f9872e0 5947fail_locked:
34b8686e 5948 mutex_unlock(&dev->struct_mutex);
bc9025bd 5949fail:
05394f39 5950 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5951 return ret;
79e53945
JB
5952}
5953
5954static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5955{
79e53945 5956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5957
cda4b7d3
CW
5958 intel_crtc->cursor_x = x;
5959 intel_crtc->cursor_y = y;
652c393a 5960
6b383a7f 5961 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5962
5963 return 0;
5964}
5965
5966/** Sets the color ramps on behalf of RandR */
5967void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5968 u16 blue, int regno)
5969{
5970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5971
5972 intel_crtc->lut_r[regno] = red >> 8;
5973 intel_crtc->lut_g[regno] = green >> 8;
5974 intel_crtc->lut_b[regno] = blue >> 8;
5975}
5976
b8c00ac5
DA
5977void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5978 u16 *blue, int regno)
5979{
5980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5981
5982 *red = intel_crtc->lut_r[regno] << 8;
5983 *green = intel_crtc->lut_g[regno] << 8;
5984 *blue = intel_crtc->lut_b[regno] << 8;
5985}
5986
79e53945 5987static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5988 u16 *blue, uint32_t start, uint32_t size)
79e53945 5989{
7203425a 5990 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5991 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5992
7203425a 5993 for (i = start; i < end; i++) {
79e53945
JB
5994 intel_crtc->lut_r[i] = red[i] >> 8;
5995 intel_crtc->lut_g[i] = green[i] >> 8;
5996 intel_crtc->lut_b[i] = blue[i] >> 8;
5997 }
5998
5999 intel_crtc_load_lut(crtc);
6000}
6001
6002/**
6003 * Get a pipe with a simple mode set on it for doing load-based monitor
6004 * detection.
6005 *
6006 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6007 * its requirements. The pipe will be connected to no other encoders.
79e53945 6008 *
c751ce4f 6009 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6010 * configured for it. In the future, it could choose to temporarily disable
6011 * some outputs to free up a pipe for its use.
6012 *
6013 * \return crtc, or NULL if no pipes are available.
6014 */
6015
6016/* VESA 640x480x72Hz mode to set on the pipe */
6017static struct drm_display_mode load_detect_mode = {
6018 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6019 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6020};
6021
d2dff872
CW
6022static struct drm_framebuffer *
6023intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6024 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6025 struct drm_i915_gem_object *obj)
6026{
6027 struct intel_framebuffer *intel_fb;
6028 int ret;
6029
6030 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6031 if (!intel_fb) {
6032 drm_gem_object_unreference_unlocked(&obj->base);
6033 return ERR_PTR(-ENOMEM);
6034 }
6035
6036 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6037 if (ret) {
6038 drm_gem_object_unreference_unlocked(&obj->base);
6039 kfree(intel_fb);
6040 return ERR_PTR(ret);
6041 }
6042
6043 return &intel_fb->base;
6044}
6045
6046static u32
6047intel_framebuffer_pitch_for_width(int width, int bpp)
6048{
6049 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6050 return ALIGN(pitch, 64);
6051}
6052
6053static u32
6054intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6055{
6056 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6057 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6058}
6059
6060static struct drm_framebuffer *
6061intel_framebuffer_create_for_mode(struct drm_device *dev,
6062 struct drm_display_mode *mode,
6063 int depth, int bpp)
6064{
6065 struct drm_i915_gem_object *obj;
308e5bcb 6066 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6067
6068 obj = i915_gem_alloc_object(dev,
6069 intel_framebuffer_size_for_mode(mode, bpp));
6070 if (obj == NULL)
6071 return ERR_PTR(-ENOMEM);
6072
6073 mode_cmd.width = mode->hdisplay;
6074 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6075 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6076 bpp);
5ca0c34a 6077 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6078
6079 return intel_framebuffer_create(dev, &mode_cmd, obj);
6080}
6081
6082static struct drm_framebuffer *
6083mode_fits_in_fbdev(struct drm_device *dev,
6084 struct drm_display_mode *mode)
6085{
6086 struct drm_i915_private *dev_priv = dev->dev_private;
6087 struct drm_i915_gem_object *obj;
6088 struct drm_framebuffer *fb;
6089
6090 if (dev_priv->fbdev == NULL)
6091 return NULL;
6092
6093 obj = dev_priv->fbdev->ifb.obj;
6094 if (obj == NULL)
6095 return NULL;
6096
6097 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6098 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6099 fb->bits_per_pixel))
d2dff872
CW
6100 return NULL;
6101
01f2c773 6102 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6103 return NULL;
6104
6105 return fb;
6106}
6107
d2434ab7 6108bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6109 struct drm_display_mode *mode,
8261b191 6110 struct intel_load_detect_pipe *old)
79e53945
JB
6111{
6112 struct intel_crtc *intel_crtc;
d2434ab7
DV
6113 struct intel_encoder *intel_encoder =
6114 intel_attached_encoder(connector);
79e53945 6115 struct drm_crtc *possible_crtc;
4ef69c7a 6116 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6117 struct drm_crtc *crtc = NULL;
6118 struct drm_device *dev = encoder->dev;
94352cf9 6119 struct drm_framebuffer *fb;
79e53945
JB
6120 int i = -1;
6121
d2dff872
CW
6122 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6123 connector->base.id, drm_get_connector_name(connector),
6124 encoder->base.id, drm_get_encoder_name(encoder));
6125
79e53945
JB
6126 /*
6127 * Algorithm gets a little messy:
7a5e4805 6128 *
79e53945
JB
6129 * - if the connector already has an assigned crtc, use it (but make
6130 * sure it's on first)
7a5e4805 6131 *
79e53945
JB
6132 * - try to find the first unused crtc that can drive this connector,
6133 * and use that if we find one
79e53945
JB
6134 */
6135
6136 /* See if we already have a CRTC for this connector */
6137 if (encoder->crtc) {
6138 crtc = encoder->crtc;
8261b191 6139
24218aac 6140 old->dpms_mode = connector->dpms;
8261b191
CW
6141 old->load_detect_temp = false;
6142
6143 /* Make sure the crtc and connector are running */
24218aac
DV
6144 if (connector->dpms != DRM_MODE_DPMS_ON)
6145 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6146
7173188d 6147 return true;
79e53945
JB
6148 }
6149
6150 /* Find an unused one (if possible) */
6151 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6152 i++;
6153 if (!(encoder->possible_crtcs & (1 << i)))
6154 continue;
6155 if (!possible_crtc->enabled) {
6156 crtc = possible_crtc;
6157 break;
6158 }
79e53945
JB
6159 }
6160
6161 /*
6162 * If we didn't find an unused CRTC, don't use any.
6163 */
6164 if (!crtc) {
7173188d
CW
6165 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6166 return false;
79e53945
JB
6167 }
6168
fc303101
DV
6169 intel_encoder->new_crtc = to_intel_crtc(crtc);
6170 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6171
6172 intel_crtc = to_intel_crtc(crtc);
24218aac 6173 old->dpms_mode = connector->dpms;
8261b191 6174 old->load_detect_temp = true;
d2dff872 6175 old->release_fb = NULL;
79e53945 6176
6492711d
CW
6177 if (!mode)
6178 mode = &load_detect_mode;
79e53945 6179
d2dff872
CW
6180 /* We need a framebuffer large enough to accommodate all accesses
6181 * that the plane may generate whilst we perform load detection.
6182 * We can not rely on the fbcon either being present (we get called
6183 * during its initialisation to detect all boot displays, or it may
6184 * not even exist) or that it is large enough to satisfy the
6185 * requested mode.
6186 */
94352cf9
DV
6187 fb = mode_fits_in_fbdev(dev, mode);
6188 if (fb == NULL) {
d2dff872 6189 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6190 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6191 old->release_fb = fb;
d2dff872
CW
6192 } else
6193 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6194 if (IS_ERR(fb)) {
d2dff872 6195 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 6196 goto fail;
79e53945 6197 }
79e53945 6198
94352cf9 6199 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6200 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6201 if (old->release_fb)
6202 old->release_fb->funcs->destroy(old->release_fb);
24218aac 6203 goto fail;
79e53945 6204 }
7173188d 6205
79e53945 6206 /* let the connector get through one full cycle before testing */
9d0498a2 6207 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6208
7173188d 6209 return true;
24218aac
DV
6210fail:
6211 connector->encoder = NULL;
6212 encoder->crtc = NULL;
24218aac 6213 return false;
79e53945
JB
6214}
6215
d2434ab7 6216void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6217 struct intel_load_detect_pipe *old)
79e53945 6218{
d2434ab7
DV
6219 struct intel_encoder *intel_encoder =
6220 intel_attached_encoder(connector);
4ef69c7a 6221 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6222
d2dff872
CW
6223 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6224 connector->base.id, drm_get_connector_name(connector),
6225 encoder->base.id, drm_get_encoder_name(encoder));
6226
8261b191 6227 if (old->load_detect_temp) {
fc303101
DV
6228 struct drm_crtc *crtc = encoder->crtc;
6229
6230 to_intel_connector(connector)->new_encoder = NULL;
6231 intel_encoder->new_crtc = NULL;
6232 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6233
6234 if (old->release_fb)
6235 old->release_fb->funcs->destroy(old->release_fb);
6236
0622a53c 6237 return;
79e53945
JB
6238 }
6239
c751ce4f 6240 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6241 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6242 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6243}
6244
6245/* Returns the clock of the currently programmed mode of the given pipe. */
6246static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6247{
6248 struct drm_i915_private *dev_priv = dev->dev_private;
6249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250 int pipe = intel_crtc->pipe;
548f245b 6251 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6252 u32 fp;
6253 intel_clock_t clock;
6254
6255 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6256 fp = I915_READ(FP0(pipe));
79e53945 6257 else
39adb7a5 6258 fp = I915_READ(FP1(pipe));
79e53945
JB
6259
6260 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6261 if (IS_PINEVIEW(dev)) {
6262 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6263 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6264 } else {
6265 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6266 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6267 }
6268
a6c45cf0 6269 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6270 if (IS_PINEVIEW(dev))
6271 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6272 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6273 else
6274 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6275 DPLL_FPA01_P1_POST_DIV_SHIFT);
6276
6277 switch (dpll & DPLL_MODE_MASK) {
6278 case DPLLB_MODE_DAC_SERIAL:
6279 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6280 5 : 10;
6281 break;
6282 case DPLLB_MODE_LVDS:
6283 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6284 7 : 14;
6285 break;
6286 default:
28c97730 6287 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6288 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6289 return 0;
6290 }
6291
6292 /* XXX: Handle the 100Mhz refclk */
2177832f 6293 intel_clock(dev, 96000, &clock);
79e53945
JB
6294 } else {
6295 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6296
6297 if (is_lvds) {
6298 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6299 DPLL_FPA01_P1_POST_DIV_SHIFT);
6300 clock.p2 = 14;
6301
6302 if ((dpll & PLL_REF_INPUT_MASK) ==
6303 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6304 /* XXX: might not be 66MHz */
2177832f 6305 intel_clock(dev, 66000, &clock);
79e53945 6306 } else
2177832f 6307 intel_clock(dev, 48000, &clock);
79e53945
JB
6308 } else {
6309 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6310 clock.p1 = 2;
6311 else {
6312 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6313 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6314 }
6315 if (dpll & PLL_P2_DIVIDE_BY_4)
6316 clock.p2 = 4;
6317 else
6318 clock.p2 = 2;
6319
2177832f 6320 intel_clock(dev, 48000, &clock);
79e53945
JB
6321 }
6322 }
6323
6324 /* XXX: It would be nice to validate the clocks, but we can't reuse
6325 * i830PllIsValid() because it relies on the xf86_config connector
6326 * configuration being accurate, which it isn't necessarily.
6327 */
6328
6329 return clock.dot;
6330}
6331
6332/** Returns the currently programmed mode of the given pipe. */
6333struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6334 struct drm_crtc *crtc)
6335{
548f245b 6336 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6338 int pipe = intel_crtc->pipe;
6339 struct drm_display_mode *mode;
548f245b
JB
6340 int htot = I915_READ(HTOTAL(pipe));
6341 int hsync = I915_READ(HSYNC(pipe));
6342 int vtot = I915_READ(VTOTAL(pipe));
6343 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6344
6345 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6346 if (!mode)
6347 return NULL;
6348
6349 mode->clock = intel_crtc_clock_get(dev, crtc);
6350 mode->hdisplay = (htot & 0xffff) + 1;
6351 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6352 mode->hsync_start = (hsync & 0xffff) + 1;
6353 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6354 mode->vdisplay = (vtot & 0xffff) + 1;
6355 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6356 mode->vsync_start = (vsync & 0xffff) + 1;
6357 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6358
6359 drm_mode_set_name(mode);
79e53945
JB
6360
6361 return mode;
6362}
6363
3dec0095 6364static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6365{
6366 struct drm_device *dev = crtc->dev;
6367 drm_i915_private_t *dev_priv = dev->dev_private;
6368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6369 int pipe = intel_crtc->pipe;
dbdc6479
JB
6370 int dpll_reg = DPLL(pipe);
6371 int dpll;
652c393a 6372
bad720ff 6373 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6374 return;
6375
6376 if (!dev_priv->lvds_downclock_avail)
6377 return;
6378
dbdc6479 6379 dpll = I915_READ(dpll_reg);
652c393a 6380 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6381 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6382
8ac5a6d5 6383 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6384
6385 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6386 I915_WRITE(dpll_reg, dpll);
9d0498a2 6387 intel_wait_for_vblank(dev, pipe);
dbdc6479 6388
652c393a
JB
6389 dpll = I915_READ(dpll_reg);
6390 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6391 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6392 }
652c393a
JB
6393}
6394
6395static void intel_decrease_pllclock(struct drm_crtc *crtc)
6396{
6397 struct drm_device *dev = crtc->dev;
6398 drm_i915_private_t *dev_priv = dev->dev_private;
6399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6400
bad720ff 6401 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6402 return;
6403
6404 if (!dev_priv->lvds_downclock_avail)
6405 return;
6406
6407 /*
6408 * Since this is called by a timer, we should never get here in
6409 * the manual case.
6410 */
6411 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6412 int pipe = intel_crtc->pipe;
6413 int dpll_reg = DPLL(pipe);
6414 int dpll;
f6e5b160 6415
44d98a61 6416 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6417
8ac5a6d5 6418 assert_panel_unlocked(dev_priv, pipe);
652c393a 6419
dc257cf1 6420 dpll = I915_READ(dpll_reg);
652c393a
JB
6421 dpll |= DISPLAY_RATE_SELECT_FPA1;
6422 I915_WRITE(dpll_reg, dpll);
9d0498a2 6423 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6424 dpll = I915_READ(dpll_reg);
6425 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6426 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6427 }
6428
6429}
6430
f047e395
CW
6431void intel_mark_busy(struct drm_device *dev)
6432{
f047e395
CW
6433 i915_update_gfx_val(dev->dev_private);
6434}
6435
6436void intel_mark_idle(struct drm_device *dev)
652c393a 6437{
f047e395
CW
6438}
6439
6440void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6441{
6442 struct drm_device *dev = obj->base.dev;
652c393a 6443 struct drm_crtc *crtc;
652c393a
JB
6444
6445 if (!i915_powersave)
6446 return;
6447
652c393a 6448 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6449 if (!crtc->fb)
6450 continue;
6451
f047e395
CW
6452 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6453 intel_increase_pllclock(crtc);
652c393a 6454 }
652c393a
JB
6455}
6456
f047e395 6457void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6458{
f047e395
CW
6459 struct drm_device *dev = obj->base.dev;
6460 struct drm_crtc *crtc;
652c393a 6461
f047e395 6462 if (!i915_powersave)
acb87dfb
CW
6463 return;
6464
652c393a
JB
6465 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6466 if (!crtc->fb)
6467 continue;
6468
f047e395
CW
6469 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6470 intel_decrease_pllclock(crtc);
652c393a
JB
6471 }
6472}
6473
79e53945
JB
6474static void intel_crtc_destroy(struct drm_crtc *crtc)
6475{
6476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6477 struct drm_device *dev = crtc->dev;
6478 struct intel_unpin_work *work;
6479 unsigned long flags;
6480
6481 spin_lock_irqsave(&dev->event_lock, flags);
6482 work = intel_crtc->unpin_work;
6483 intel_crtc->unpin_work = NULL;
6484 spin_unlock_irqrestore(&dev->event_lock, flags);
6485
6486 if (work) {
6487 cancel_work_sync(&work->work);
6488 kfree(work);
6489 }
79e53945
JB
6490
6491 drm_crtc_cleanup(crtc);
67e77c5a 6492
79e53945
JB
6493 kfree(intel_crtc);
6494}
6495
6b95a207
KH
6496static void intel_unpin_work_fn(struct work_struct *__work)
6497{
6498 struct intel_unpin_work *work =
6499 container_of(__work, struct intel_unpin_work, work);
6500
6501 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6502 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6503 drm_gem_object_unreference(&work->pending_flip_obj->base);
6504 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6505
7782de3b 6506 intel_update_fbc(work->dev);
6b95a207
KH
6507 mutex_unlock(&work->dev->struct_mutex);
6508 kfree(work);
6509}
6510
1afe3e9d 6511static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6512 struct drm_crtc *crtc)
6b95a207
KH
6513{
6514 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6516 struct intel_unpin_work *work;
05394f39 6517 struct drm_i915_gem_object *obj;
6b95a207 6518 struct drm_pending_vblank_event *e;
95cb1b02 6519 struct timeval tvbl;
6b95a207
KH
6520 unsigned long flags;
6521
6522 /* Ignore early vblank irqs */
6523 if (intel_crtc == NULL)
6524 return;
6525
6526 spin_lock_irqsave(&dev->event_lock, flags);
6527 work = intel_crtc->unpin_work;
6528 if (work == NULL || !work->pending) {
6529 spin_unlock_irqrestore(&dev->event_lock, flags);
6530 return;
6531 }
6532
6533 intel_crtc->unpin_work = NULL;
6b95a207
KH
6534
6535 if (work->event) {
6536 e = work->event;
49b14a5c 6537 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6538
49b14a5c
MK
6539 e->event.tv_sec = tvbl.tv_sec;
6540 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6541
6b95a207
KH
6542 list_add_tail(&e->base.link,
6543 &e->base.file_priv->event_list);
6544 wake_up_interruptible(&e->base.file_priv->event_wait);
6545 }
6546
0af7e4df
MK
6547 drm_vblank_put(dev, intel_crtc->pipe);
6548
6b95a207
KH
6549 spin_unlock_irqrestore(&dev->event_lock, flags);
6550
05394f39 6551 obj = work->old_fb_obj;
d9e86c0e 6552
e59f2bac 6553 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6554 &obj->pending_flip.counter);
d9e86c0e 6555
5bb61643 6556 wake_up(&dev_priv->pending_flip_queue);
6b95a207 6557 schedule_work(&work->work);
e5510fac
JB
6558
6559 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6560}
6561
1afe3e9d
JB
6562void intel_finish_page_flip(struct drm_device *dev, int pipe)
6563{
6564 drm_i915_private_t *dev_priv = dev->dev_private;
6565 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6566
49b14a5c 6567 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6568}
6569
6570void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6571{
6572 drm_i915_private_t *dev_priv = dev->dev_private;
6573 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6574
49b14a5c 6575 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6576}
6577
6b95a207
KH
6578void intel_prepare_page_flip(struct drm_device *dev, int plane)
6579{
6580 drm_i915_private_t *dev_priv = dev->dev_private;
6581 struct intel_crtc *intel_crtc =
6582 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6583 unsigned long flags;
6584
6585 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6586 if (intel_crtc->unpin_work) {
4e5359cd
SF
6587 if ((++intel_crtc->unpin_work->pending) > 1)
6588 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6589 } else {
6590 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6591 }
6b95a207
KH
6592 spin_unlock_irqrestore(&dev->event_lock, flags);
6593}
6594
8c9f3aaf
JB
6595static int intel_gen2_queue_flip(struct drm_device *dev,
6596 struct drm_crtc *crtc,
6597 struct drm_framebuffer *fb,
6598 struct drm_i915_gem_object *obj)
6599{
6600 struct drm_i915_private *dev_priv = dev->dev_private;
6601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6602 u32 flip_mask;
6d90c952 6603 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6604 int ret;
6605
6d90c952 6606 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6607 if (ret)
83d4092b 6608 goto err;
8c9f3aaf 6609
6d90c952 6610 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6611 if (ret)
83d4092b 6612 goto err_unpin;
8c9f3aaf
JB
6613
6614 /* Can't queue multiple flips, so wait for the previous
6615 * one to finish before executing the next.
6616 */
6617 if (intel_crtc->plane)
6618 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6619 else
6620 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6621 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6622 intel_ring_emit(ring, MI_NOOP);
6623 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6624 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6625 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6626 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6627 intel_ring_emit(ring, 0); /* aux display base address, unused */
6628 intel_ring_advance(ring);
83d4092b
CW
6629 return 0;
6630
6631err_unpin:
6632 intel_unpin_fb_obj(obj);
6633err:
8c9f3aaf
JB
6634 return ret;
6635}
6636
6637static int intel_gen3_queue_flip(struct drm_device *dev,
6638 struct drm_crtc *crtc,
6639 struct drm_framebuffer *fb,
6640 struct drm_i915_gem_object *obj)
6641{
6642 struct drm_i915_private *dev_priv = dev->dev_private;
6643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6644 u32 flip_mask;
6d90c952 6645 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6646 int ret;
6647
6d90c952 6648 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6649 if (ret)
83d4092b 6650 goto err;
8c9f3aaf 6651
6d90c952 6652 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6653 if (ret)
83d4092b 6654 goto err_unpin;
8c9f3aaf
JB
6655
6656 if (intel_crtc->plane)
6657 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6658 else
6659 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6660 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6661 intel_ring_emit(ring, MI_NOOP);
6662 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6663 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6664 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6665 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6666 intel_ring_emit(ring, MI_NOOP);
6667
6668 intel_ring_advance(ring);
83d4092b
CW
6669 return 0;
6670
6671err_unpin:
6672 intel_unpin_fb_obj(obj);
6673err:
8c9f3aaf
JB
6674 return ret;
6675}
6676
6677static int intel_gen4_queue_flip(struct drm_device *dev,
6678 struct drm_crtc *crtc,
6679 struct drm_framebuffer *fb,
6680 struct drm_i915_gem_object *obj)
6681{
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6684 uint32_t pf, pipesrc;
6d90c952 6685 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6686 int ret;
6687
6d90c952 6688 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6689 if (ret)
83d4092b 6690 goto err;
8c9f3aaf 6691
6d90c952 6692 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6693 if (ret)
83d4092b 6694 goto err_unpin;
8c9f3aaf
JB
6695
6696 /* i965+ uses the linear or tiled offsets from the
6697 * Display Registers (which do not change across a page-flip)
6698 * so we need only reprogram the base address.
6699 */
6d90c952
DV
6700 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6701 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6702 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6703 intel_ring_emit(ring,
6704 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6705 obj->tiling_mode);
8c9f3aaf
JB
6706
6707 /* XXX Enabling the panel-fitter across page-flip is so far
6708 * untested on non-native modes, so ignore it for now.
6709 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6710 */
6711 pf = 0;
6712 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6713 intel_ring_emit(ring, pf | pipesrc);
6714 intel_ring_advance(ring);
83d4092b
CW
6715 return 0;
6716
6717err_unpin:
6718 intel_unpin_fb_obj(obj);
6719err:
8c9f3aaf
JB
6720 return ret;
6721}
6722
6723static int intel_gen6_queue_flip(struct drm_device *dev,
6724 struct drm_crtc *crtc,
6725 struct drm_framebuffer *fb,
6726 struct drm_i915_gem_object *obj)
6727{
6728 struct drm_i915_private *dev_priv = dev->dev_private;
6729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6730 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6731 uint32_t pf, pipesrc;
6732 int ret;
6733
6d90c952 6734 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6735 if (ret)
83d4092b 6736 goto err;
8c9f3aaf 6737
6d90c952 6738 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6739 if (ret)
83d4092b 6740 goto err_unpin;
8c9f3aaf 6741
6d90c952
DV
6742 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6743 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6744 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6745 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6746
dc257cf1
DV
6747 /* Contrary to the suggestions in the documentation,
6748 * "Enable Panel Fitter" does not seem to be required when page
6749 * flipping with a non-native mode, and worse causes a normal
6750 * modeset to fail.
6751 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6752 */
6753 pf = 0;
8c9f3aaf 6754 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6755 intel_ring_emit(ring, pf | pipesrc);
6756 intel_ring_advance(ring);
83d4092b
CW
6757 return 0;
6758
6759err_unpin:
6760 intel_unpin_fb_obj(obj);
6761err:
8c9f3aaf
JB
6762 return ret;
6763}
6764
7c9017e5
JB
6765/*
6766 * On gen7 we currently use the blit ring because (in early silicon at least)
6767 * the render ring doesn't give us interrpts for page flip completion, which
6768 * means clients will hang after the first flip is queued. Fortunately the
6769 * blit ring generates interrupts properly, so use it instead.
6770 */
6771static int intel_gen7_queue_flip(struct drm_device *dev,
6772 struct drm_crtc *crtc,
6773 struct drm_framebuffer *fb,
6774 struct drm_i915_gem_object *obj)
6775{
6776 struct drm_i915_private *dev_priv = dev->dev_private;
6777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6778 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6779 uint32_t plane_bit = 0;
7c9017e5
JB
6780 int ret;
6781
6782 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6783 if (ret)
83d4092b 6784 goto err;
7c9017e5 6785
cb05d8de
DV
6786 switch(intel_crtc->plane) {
6787 case PLANE_A:
6788 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6789 break;
6790 case PLANE_B:
6791 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6792 break;
6793 case PLANE_C:
6794 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6795 break;
6796 default:
6797 WARN_ONCE(1, "unknown plane in flip command\n");
6798 ret = -ENODEV;
ab3951eb 6799 goto err_unpin;
cb05d8de
DV
6800 }
6801
7c9017e5
JB
6802 ret = intel_ring_begin(ring, 4);
6803 if (ret)
83d4092b 6804 goto err_unpin;
7c9017e5 6805
cb05d8de 6806 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6807 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6808 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6809 intel_ring_emit(ring, (MI_NOOP));
6810 intel_ring_advance(ring);
83d4092b
CW
6811 return 0;
6812
6813err_unpin:
6814 intel_unpin_fb_obj(obj);
6815err:
7c9017e5
JB
6816 return ret;
6817}
6818
8c9f3aaf
JB
6819static int intel_default_queue_flip(struct drm_device *dev,
6820 struct drm_crtc *crtc,
6821 struct drm_framebuffer *fb,
6822 struct drm_i915_gem_object *obj)
6823{
6824 return -ENODEV;
6825}
6826
6b95a207
KH
6827static int intel_crtc_page_flip(struct drm_crtc *crtc,
6828 struct drm_framebuffer *fb,
6829 struct drm_pending_vblank_event *event)
6830{
6831 struct drm_device *dev = crtc->dev;
6832 struct drm_i915_private *dev_priv = dev->dev_private;
6833 struct intel_framebuffer *intel_fb;
05394f39 6834 struct drm_i915_gem_object *obj;
6b95a207
KH
6835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6836 struct intel_unpin_work *work;
8c9f3aaf 6837 unsigned long flags;
52e68630 6838 int ret;
6b95a207 6839
e6a595d2
VS
6840 /* Can't change pixel format via MI display flips. */
6841 if (fb->pixel_format != crtc->fb->pixel_format)
6842 return -EINVAL;
6843
6844 /*
6845 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6846 * Note that pitch changes could also affect these register.
6847 */
6848 if (INTEL_INFO(dev)->gen > 3 &&
6849 (fb->offsets[0] != crtc->fb->offsets[0] ||
6850 fb->pitches[0] != crtc->fb->pitches[0]))
6851 return -EINVAL;
6852
6b95a207
KH
6853 work = kzalloc(sizeof *work, GFP_KERNEL);
6854 if (work == NULL)
6855 return -ENOMEM;
6856
6b95a207
KH
6857 work->event = event;
6858 work->dev = crtc->dev;
6859 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6860 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6861 INIT_WORK(&work->work, intel_unpin_work_fn);
6862
7317c75e
JB
6863 ret = drm_vblank_get(dev, intel_crtc->pipe);
6864 if (ret)
6865 goto free_work;
6866
6b95a207
KH
6867 /* We borrow the event spin lock for protecting unpin_work */
6868 spin_lock_irqsave(&dev->event_lock, flags);
6869 if (intel_crtc->unpin_work) {
6870 spin_unlock_irqrestore(&dev->event_lock, flags);
6871 kfree(work);
7317c75e 6872 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
6873
6874 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6875 return -EBUSY;
6876 }
6877 intel_crtc->unpin_work = work;
6878 spin_unlock_irqrestore(&dev->event_lock, flags);
6879
6880 intel_fb = to_intel_framebuffer(fb);
6881 obj = intel_fb->obj;
6882
79158103
CW
6883 ret = i915_mutex_lock_interruptible(dev);
6884 if (ret)
6885 goto cleanup;
6b95a207 6886
75dfca80 6887 /* Reference the objects for the scheduled work. */
05394f39
CW
6888 drm_gem_object_reference(&work->old_fb_obj->base);
6889 drm_gem_object_reference(&obj->base);
6b95a207
KH
6890
6891 crtc->fb = fb;
96b099fd 6892
e1f99ce6 6893 work->pending_flip_obj = obj;
e1f99ce6 6894
4e5359cd
SF
6895 work->enable_stall_check = true;
6896
e1f99ce6
CW
6897 /* Block clients from rendering to the new back buffer until
6898 * the flip occurs and the object is no longer visible.
6899 */
05394f39 6900 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6901
8c9f3aaf
JB
6902 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6903 if (ret)
6904 goto cleanup_pending;
6b95a207 6905
7782de3b 6906 intel_disable_fbc(dev);
f047e395 6907 intel_mark_fb_busy(obj);
6b95a207
KH
6908 mutex_unlock(&dev->struct_mutex);
6909
e5510fac
JB
6910 trace_i915_flip_request(intel_crtc->plane, obj);
6911
6b95a207 6912 return 0;
96b099fd 6913
8c9f3aaf
JB
6914cleanup_pending:
6915 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
6916 drm_gem_object_unreference(&work->old_fb_obj->base);
6917 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6918 mutex_unlock(&dev->struct_mutex);
6919
79158103 6920cleanup:
96b099fd
CW
6921 spin_lock_irqsave(&dev->event_lock, flags);
6922 intel_crtc->unpin_work = NULL;
6923 spin_unlock_irqrestore(&dev->event_lock, flags);
6924
7317c75e
JB
6925 drm_vblank_put(dev, intel_crtc->pipe);
6926free_work:
96b099fd
CW
6927 kfree(work);
6928
6929 return ret;
6b95a207
KH
6930}
6931
f6e5b160 6932static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
6933 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6934 .load_lut = intel_crtc_load_lut,
976f8a20 6935 .disable = intel_crtc_noop,
f6e5b160
CW
6936};
6937
6ed0f796 6938bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 6939{
6ed0f796
DV
6940 struct intel_encoder *other_encoder;
6941 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 6942
6ed0f796
DV
6943 if (WARN_ON(!crtc))
6944 return false;
6945
6946 list_for_each_entry(other_encoder,
6947 &crtc->dev->mode_config.encoder_list,
6948 base.head) {
6949
6950 if (&other_encoder->new_crtc->base != crtc ||
6951 encoder == other_encoder)
6952 continue;
6953 else
6954 return true;
f47166d2
CW
6955 }
6956
6ed0f796
DV
6957 return false;
6958}
47f1c6c9 6959
50f56119
DV
6960static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6961 struct drm_crtc *crtc)
6962{
6963 struct drm_device *dev;
6964 struct drm_crtc *tmp;
6965 int crtc_mask = 1;
47f1c6c9 6966
50f56119 6967 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 6968
50f56119 6969 dev = crtc->dev;
47f1c6c9 6970
50f56119
DV
6971 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6972 if (tmp == crtc)
6973 break;
6974 crtc_mask <<= 1;
6975 }
47f1c6c9 6976
50f56119
DV
6977 if (encoder->possible_crtcs & crtc_mask)
6978 return true;
6979 return false;
47f1c6c9 6980}
79e53945 6981
9a935856
DV
6982/**
6983 * intel_modeset_update_staged_output_state
6984 *
6985 * Updates the staged output configuration state, e.g. after we've read out the
6986 * current hw state.
6987 */
6988static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 6989{
9a935856
DV
6990 struct intel_encoder *encoder;
6991 struct intel_connector *connector;
f6e5b160 6992
9a935856
DV
6993 list_for_each_entry(connector, &dev->mode_config.connector_list,
6994 base.head) {
6995 connector->new_encoder =
6996 to_intel_encoder(connector->base.encoder);
6997 }
f6e5b160 6998
9a935856
DV
6999 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7000 base.head) {
7001 encoder->new_crtc =
7002 to_intel_crtc(encoder->base.crtc);
7003 }
f6e5b160
CW
7004}
7005
9a935856
DV
7006/**
7007 * intel_modeset_commit_output_state
7008 *
7009 * This function copies the stage display pipe configuration to the real one.
7010 */
7011static void intel_modeset_commit_output_state(struct drm_device *dev)
7012{
7013 struct intel_encoder *encoder;
7014 struct intel_connector *connector;
f6e5b160 7015
9a935856
DV
7016 list_for_each_entry(connector, &dev->mode_config.connector_list,
7017 base.head) {
7018 connector->base.encoder = &connector->new_encoder->base;
7019 }
f6e5b160 7020
9a935856
DV
7021 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7022 base.head) {
7023 encoder->base.crtc = &encoder->new_crtc->base;
7024 }
7025}
7026
7758a113
DV
7027static struct drm_display_mode *
7028intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7029 struct drm_display_mode *mode)
ee7b9f93 7030{
7758a113
DV
7031 struct drm_device *dev = crtc->dev;
7032 struct drm_display_mode *adjusted_mode;
7033 struct drm_encoder_helper_funcs *encoder_funcs;
7034 struct intel_encoder *encoder;
ee7b9f93 7035
7758a113
DV
7036 adjusted_mode = drm_mode_duplicate(dev, mode);
7037 if (!adjusted_mode)
7038 return ERR_PTR(-ENOMEM);
7039
7040 /* Pass our mode to the connectors and the CRTC to give them a chance to
7041 * adjust it according to limitations or connector properties, and also
7042 * a chance to reject the mode entirely.
7043 */
7044 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7045 base.head) {
7046
7047 if (&encoder->new_crtc->base != crtc)
7048 continue;
7049 encoder_funcs = encoder->base.helper_private;
7050 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7051 adjusted_mode))) {
7052 DRM_DEBUG_KMS("Encoder fixup failed\n");
7053 goto fail;
7054 }
ee7b9f93
JB
7055 }
7056
7758a113
DV
7057 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7058 DRM_DEBUG_KMS("CRTC fixup failed\n");
7059 goto fail;
ee7b9f93 7060 }
7758a113
DV
7061 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7062
7063 return adjusted_mode;
7064fail:
7065 drm_mode_destroy(dev, adjusted_mode);
7066 return ERR_PTR(-EINVAL);
ee7b9f93
JB
7067}
7068
e2e1ed41
DV
7069/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7070 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7071static void
7072intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7073 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7074{
7075 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7076 struct drm_device *dev = crtc->dev;
7077 struct intel_encoder *encoder;
7078 struct intel_connector *connector;
7079 struct drm_crtc *tmp_crtc;
79e53945 7080
e2e1ed41 7081 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7082
e2e1ed41
DV
7083 /* Check which crtcs have changed outputs connected to them, these need
7084 * to be part of the prepare_pipes mask. We don't (yet) support global
7085 * modeset across multiple crtcs, so modeset_pipes will only have one
7086 * bit set at most. */
7087 list_for_each_entry(connector, &dev->mode_config.connector_list,
7088 base.head) {
7089 if (connector->base.encoder == &connector->new_encoder->base)
7090 continue;
79e53945 7091
e2e1ed41
DV
7092 if (connector->base.encoder) {
7093 tmp_crtc = connector->base.encoder->crtc;
7094
7095 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7096 }
7097
7098 if (connector->new_encoder)
7099 *prepare_pipes |=
7100 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7101 }
7102
e2e1ed41
DV
7103 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7104 base.head) {
7105 if (encoder->base.crtc == &encoder->new_crtc->base)
7106 continue;
7107
7108 if (encoder->base.crtc) {
7109 tmp_crtc = encoder->base.crtc;
7110
7111 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7112 }
7113
7114 if (encoder->new_crtc)
7115 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7116 }
7117
e2e1ed41
DV
7118 /* Check for any pipes that will be fully disabled ... */
7119 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7120 base.head) {
7121 bool used = false;
22fd0fab 7122
e2e1ed41
DV
7123 /* Don't try to disable disabled crtcs. */
7124 if (!intel_crtc->base.enabled)
7125 continue;
7e7d76c3 7126
e2e1ed41
DV
7127 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7128 base.head) {
7129 if (encoder->new_crtc == intel_crtc)
7130 used = true;
7131 }
7132
7133 if (!used)
7134 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7135 }
7136
e2e1ed41
DV
7137
7138 /* set_mode is also used to update properties on life display pipes. */
7139 intel_crtc = to_intel_crtc(crtc);
7140 if (crtc->enabled)
7141 *prepare_pipes |= 1 << intel_crtc->pipe;
7142
7143 /* We only support modeset on one single crtc, hence we need to do that
7144 * only for the passed in crtc iff we change anything else than just
7145 * disable crtcs.
7146 *
7147 * This is actually not true, to be fully compatible with the old crtc
7148 * helper we automatically disable _any_ output (i.e. doesn't need to be
7149 * connected to the crtc we're modesetting on) if it's disconnected.
7150 * Which is a rather nutty api (since changed the output configuration
7151 * without userspace's explicit request can lead to confusion), but
7152 * alas. Hence we currently need to modeset on all pipes we prepare. */
7153 if (*prepare_pipes)
7154 *modeset_pipes = *prepare_pipes;
7155
7156 /* ... and mask these out. */
7157 *modeset_pipes &= ~(*disable_pipes);
7158 *prepare_pipes &= ~(*disable_pipes);
7159}
7160
ea9d758d
DV
7161static bool intel_crtc_in_use(struct drm_crtc *crtc)
7162{
7163 struct drm_encoder *encoder;
7164 struct drm_device *dev = crtc->dev;
7165
7166 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7167 if (encoder->crtc == crtc)
7168 return true;
7169
7170 return false;
7171}
7172
7173static void
7174intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7175{
7176 struct intel_encoder *intel_encoder;
7177 struct intel_crtc *intel_crtc;
7178 struct drm_connector *connector;
7179
7180 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7181 base.head) {
7182 if (!intel_encoder->base.crtc)
7183 continue;
7184
7185 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7186
7187 if (prepare_pipes & (1 << intel_crtc->pipe))
7188 intel_encoder->connectors_active = false;
7189 }
7190
7191 intel_modeset_commit_output_state(dev);
7192
7193 /* Update computed state. */
7194 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7195 base.head) {
7196 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7197 }
7198
7199 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7200 if (!connector->encoder || !connector->encoder->crtc)
7201 continue;
7202
7203 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7204
7205 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7206 struct drm_property *dpms_property =
7207 dev->mode_config.dpms_property;
7208
ea9d758d 7209 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7210 drm_connector_property_set_value(connector,
7211 dpms_property,
7212 DRM_MODE_DPMS_ON);
ea9d758d
DV
7213
7214 intel_encoder = to_intel_encoder(connector->encoder);
7215 intel_encoder->connectors_active = true;
7216 }
7217 }
7218
7219}
7220
25c5b266
DV
7221#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7222 list_for_each_entry((intel_crtc), \
7223 &(dev)->mode_config.crtc_list, \
7224 base.head) \
7225 if (mask & (1 <<(intel_crtc)->pipe)) \
7226
b980514c 7227void
8af6cf88
DV
7228intel_modeset_check_state(struct drm_device *dev)
7229{
7230 struct intel_crtc *crtc;
7231 struct intel_encoder *encoder;
7232 struct intel_connector *connector;
7233
7234 list_for_each_entry(connector, &dev->mode_config.connector_list,
7235 base.head) {
7236 /* This also checks the encoder/connector hw state with the
7237 * ->get_hw_state callbacks. */
7238 intel_connector_check_state(connector);
7239
7240 WARN(&connector->new_encoder->base != connector->base.encoder,
7241 "connector's staged encoder doesn't match current encoder\n");
7242 }
7243
7244 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7245 base.head) {
7246 bool enabled = false;
7247 bool active = false;
7248 enum pipe pipe, tracked_pipe;
7249
7250 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7251 encoder->base.base.id,
7252 drm_get_encoder_name(&encoder->base));
7253
7254 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7255 "encoder's stage crtc doesn't match current crtc\n");
7256 WARN(encoder->connectors_active && !encoder->base.crtc,
7257 "encoder's active_connectors set, but no crtc\n");
7258
7259 list_for_each_entry(connector, &dev->mode_config.connector_list,
7260 base.head) {
7261 if (connector->base.encoder != &encoder->base)
7262 continue;
7263 enabled = true;
7264 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7265 active = true;
7266 }
7267 WARN(!!encoder->base.crtc != enabled,
7268 "encoder's enabled state mismatch "
7269 "(expected %i, found %i)\n",
7270 !!encoder->base.crtc, enabled);
7271 WARN(active && !encoder->base.crtc,
7272 "active encoder with no crtc\n");
7273
7274 WARN(encoder->connectors_active != active,
7275 "encoder's computed active state doesn't match tracked active state "
7276 "(expected %i, found %i)\n", active, encoder->connectors_active);
7277
7278 active = encoder->get_hw_state(encoder, &pipe);
7279 WARN(active != encoder->connectors_active,
7280 "encoder's hw state doesn't match sw tracking "
7281 "(expected %i, found %i)\n",
7282 encoder->connectors_active, active);
7283
7284 if (!encoder->base.crtc)
7285 continue;
7286
7287 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7288 WARN(active && pipe != tracked_pipe,
7289 "active encoder's pipe doesn't match"
7290 "(expected %i, found %i)\n",
7291 tracked_pipe, pipe);
7292
7293 }
7294
7295 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7296 base.head) {
7297 bool enabled = false;
7298 bool active = false;
7299
7300 DRM_DEBUG_KMS("[CRTC:%d]\n",
7301 crtc->base.base.id);
7302
7303 WARN(crtc->active && !crtc->base.enabled,
7304 "active crtc, but not enabled in sw tracking\n");
7305
7306 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7307 base.head) {
7308 if (encoder->base.crtc != &crtc->base)
7309 continue;
7310 enabled = true;
7311 if (encoder->connectors_active)
7312 active = true;
7313 }
7314 WARN(active != crtc->active,
7315 "crtc's computed active state doesn't match tracked active state "
7316 "(expected %i, found %i)\n", active, crtc->active);
7317 WARN(enabled != crtc->base.enabled,
7318 "crtc's computed enabled state doesn't match tracked enabled state "
7319 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7320
7321 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7322 }
7323}
7324
a6778b3c
DV
7325bool intel_set_mode(struct drm_crtc *crtc,
7326 struct drm_display_mode *mode,
94352cf9 7327 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7328{
7329 struct drm_device *dev = crtc->dev;
dbf2b54e 7330 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7331 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 7332 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 7333 struct drm_encoder *encoder;
25c5b266
DV
7334 struct intel_crtc *intel_crtc;
7335 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7336 bool ret = true;
7337
e2e1ed41 7338 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7339 &prepare_pipes, &disable_pipes);
7340
7341 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7342 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7343
976f8a20
DV
7344 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7345 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7346
a6778b3c
DV
7347 saved_hwmode = crtc->hwmode;
7348 saved_mode = crtc->mode;
a6778b3c 7349
25c5b266
DV
7350 /* Hack: Because we don't (yet) support global modeset on multiple
7351 * crtcs, we don't keep track of the new mode for more than one crtc.
7352 * Hence simply check whether any bit is set in modeset_pipes in all the
7353 * pieces of code that are not yet converted to deal with mutliple crtcs
7354 * changing their mode at the same time. */
7355 adjusted_mode = NULL;
7356 if (modeset_pipes) {
7357 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7358 if (IS_ERR(adjusted_mode)) {
7359 return false;
7360 }
25c5b266 7361 }
a6778b3c 7362
ea9d758d
DV
7363 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7364 if (intel_crtc->base.enabled)
7365 dev_priv->display.crtc_disable(&intel_crtc->base);
7366 }
a6778b3c 7367
6c4c86f5
DV
7368 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7369 * to set it here already despite that we pass it down the callchain.
7370 */
7371 if (modeset_pipes)
25c5b266 7372 crtc->mode = *mode;
7758a113 7373
ea9d758d
DV
7374 /* Only after disabling all output pipelines that will be changed can we
7375 * update the the output configuration. */
7376 intel_modeset_update_state(dev, prepare_pipes);
7377
a6778b3c
DV
7378 /* Set up the DPLL and any encoders state that needs to adjust or depend
7379 * on the DPLL.
7380 */
25c5b266
DV
7381 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7382 ret = !intel_crtc_mode_set(&intel_crtc->base,
7383 mode, adjusted_mode,
7384 x, y, fb);
7385 if (!ret)
7386 goto done;
a6778b3c 7387
25c5b266 7388 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7389
25c5b266
DV
7390 if (encoder->crtc != &intel_crtc->base)
7391 continue;
a6778b3c 7392
25c5b266
DV
7393 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7394 encoder->base.id, drm_get_encoder_name(encoder),
7395 mode->base.id, mode->name);
7396 encoder_funcs = encoder->helper_private;
7397 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7398 }
a6778b3c
DV
7399 }
7400
7401 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7402 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7403 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7404
25c5b266
DV
7405 if (modeset_pipes) {
7406 /* Store real post-adjustment hardware mode. */
7407 crtc->hwmode = *adjusted_mode;
a6778b3c 7408
25c5b266
DV
7409 /* Calculate and store various constants which
7410 * are later needed by vblank and swap-completion
7411 * timestamping. They are derived from true hwmode.
7412 */
7413 drm_calc_timestamping_constants(crtc);
7414 }
a6778b3c
DV
7415
7416 /* FIXME: add subpixel order */
7417done:
7418 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7419 if (!ret && crtc->enabled) {
a6778b3c
DV
7420 crtc->hwmode = saved_hwmode;
7421 crtc->mode = saved_mode;
8af6cf88
DV
7422 } else {
7423 intel_modeset_check_state(dev);
a6778b3c
DV
7424 }
7425
7426 return ret;
7427}
7428
25c5b266
DV
7429#undef for_each_intel_crtc_masked
7430
d9e55608
DV
7431static void intel_set_config_free(struct intel_set_config *config)
7432{
7433 if (!config)
7434 return;
7435
1aa4b628
DV
7436 kfree(config->save_connector_encoders);
7437 kfree(config->save_encoder_crtcs);
d9e55608
DV
7438 kfree(config);
7439}
7440
85f9eb71
DV
7441static int intel_set_config_save_state(struct drm_device *dev,
7442 struct intel_set_config *config)
7443{
85f9eb71
DV
7444 struct drm_encoder *encoder;
7445 struct drm_connector *connector;
7446 int count;
7447
1aa4b628
DV
7448 config->save_encoder_crtcs =
7449 kcalloc(dev->mode_config.num_encoder,
7450 sizeof(struct drm_crtc *), GFP_KERNEL);
7451 if (!config->save_encoder_crtcs)
85f9eb71
DV
7452 return -ENOMEM;
7453
1aa4b628
DV
7454 config->save_connector_encoders =
7455 kcalloc(dev->mode_config.num_connector,
7456 sizeof(struct drm_encoder *), GFP_KERNEL);
7457 if (!config->save_connector_encoders)
85f9eb71
DV
7458 return -ENOMEM;
7459
7460 /* Copy data. Note that driver private data is not affected.
7461 * Should anything bad happen only the expected state is
7462 * restored, not the drivers personal bookkeeping.
7463 */
85f9eb71
DV
7464 count = 0;
7465 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7466 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7467 }
7468
7469 count = 0;
7470 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7471 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7472 }
7473
7474 return 0;
7475}
7476
7477static void intel_set_config_restore_state(struct drm_device *dev,
7478 struct intel_set_config *config)
7479{
9a935856
DV
7480 struct intel_encoder *encoder;
7481 struct intel_connector *connector;
85f9eb71
DV
7482 int count;
7483
85f9eb71 7484 count = 0;
9a935856
DV
7485 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7486 encoder->new_crtc =
7487 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7488 }
7489
7490 count = 0;
9a935856
DV
7491 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7492 connector->new_encoder =
7493 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7494 }
7495}
7496
5e2b584e
DV
7497static void
7498intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7499 struct intel_set_config *config)
7500{
7501
7502 /* We should be able to check here if the fb has the same properties
7503 * and then just flip_or_move it */
7504 if (set->crtc->fb != set->fb) {
7505 /* If we have no fb then treat it as a full mode set */
7506 if (set->crtc->fb == NULL) {
7507 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7508 config->mode_changed = true;
7509 } else if (set->fb == NULL) {
7510 config->mode_changed = true;
7511 } else if (set->fb->depth != set->crtc->fb->depth) {
7512 config->mode_changed = true;
7513 } else if (set->fb->bits_per_pixel !=
7514 set->crtc->fb->bits_per_pixel) {
7515 config->mode_changed = true;
7516 } else
7517 config->fb_changed = true;
7518 }
7519
835c5873 7520 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7521 config->fb_changed = true;
7522
7523 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7524 DRM_DEBUG_KMS("modes are different, full mode set\n");
7525 drm_mode_debug_printmodeline(&set->crtc->mode);
7526 drm_mode_debug_printmodeline(set->mode);
7527 config->mode_changed = true;
7528 }
7529}
7530
2e431051 7531static int
9a935856
DV
7532intel_modeset_stage_output_state(struct drm_device *dev,
7533 struct drm_mode_set *set,
7534 struct intel_set_config *config)
50f56119 7535{
85f9eb71 7536 struct drm_crtc *new_crtc;
9a935856
DV
7537 struct intel_connector *connector;
7538 struct intel_encoder *encoder;
2e431051 7539 int count, ro;
50f56119 7540
9a935856
DV
7541 /* The upper layers ensure that we either disabl a crtc or have a list
7542 * of connectors. For paranoia, double-check this. */
7543 WARN_ON(!set->fb && (set->num_connectors != 0));
7544 WARN_ON(set->fb && (set->num_connectors == 0));
7545
50f56119 7546 count = 0;
9a935856
DV
7547 list_for_each_entry(connector, &dev->mode_config.connector_list,
7548 base.head) {
7549 /* Otherwise traverse passed in connector list and get encoders
7550 * for them. */
50f56119 7551 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7552 if (set->connectors[ro] == &connector->base) {
7553 connector->new_encoder = connector->encoder;
50f56119
DV
7554 break;
7555 }
7556 }
7557
9a935856
DV
7558 /* If we disable the crtc, disable all its connectors. Also, if
7559 * the connector is on the changing crtc but not on the new
7560 * connector list, disable it. */
7561 if ((!set->fb || ro == set->num_connectors) &&
7562 connector->base.encoder &&
7563 connector->base.encoder->crtc == set->crtc) {
7564 connector->new_encoder = NULL;
7565
7566 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7567 connector->base.base.id,
7568 drm_get_connector_name(&connector->base));
7569 }
7570
7571
7572 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7573 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7574 config->mode_changed = true;
50f56119 7575 }
9a935856
DV
7576
7577 /* Disable all disconnected encoders. */
7578 if (connector->base.status == connector_status_disconnected)
7579 connector->new_encoder = NULL;
50f56119 7580 }
9a935856 7581 /* connector->new_encoder is now updated for all connectors. */
50f56119 7582
9a935856 7583 /* Update crtc of enabled connectors. */
50f56119 7584 count = 0;
9a935856
DV
7585 list_for_each_entry(connector, &dev->mode_config.connector_list,
7586 base.head) {
7587 if (!connector->new_encoder)
50f56119
DV
7588 continue;
7589
9a935856 7590 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7591
7592 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7593 if (set->connectors[ro] == &connector->base)
50f56119
DV
7594 new_crtc = set->crtc;
7595 }
7596
7597 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7598 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7599 new_crtc)) {
5e2b584e 7600 return -EINVAL;
50f56119 7601 }
9a935856
DV
7602 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7603
7604 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7605 connector->base.base.id,
7606 drm_get_connector_name(&connector->base),
7607 new_crtc->base.id);
7608 }
7609
7610 /* Check for any encoders that needs to be disabled. */
7611 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7612 base.head) {
7613 list_for_each_entry(connector,
7614 &dev->mode_config.connector_list,
7615 base.head) {
7616 if (connector->new_encoder == encoder) {
7617 WARN_ON(!connector->new_encoder->new_crtc);
7618
7619 goto next_encoder;
7620 }
7621 }
7622 encoder->new_crtc = NULL;
7623next_encoder:
7624 /* Only now check for crtc changes so we don't miss encoders
7625 * that will be disabled. */
7626 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7627 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7628 config->mode_changed = true;
50f56119
DV
7629 }
7630 }
9a935856 7631 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7632
2e431051
DV
7633 return 0;
7634}
7635
7636static int intel_crtc_set_config(struct drm_mode_set *set)
7637{
7638 struct drm_device *dev;
2e431051
DV
7639 struct drm_mode_set save_set;
7640 struct intel_set_config *config;
7641 int ret;
2e431051 7642
8d3e375e
DV
7643 BUG_ON(!set);
7644 BUG_ON(!set->crtc);
7645 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7646
7647 if (!set->mode)
7648 set->fb = NULL;
7649
431e50f7
DV
7650 /* The fb helper likes to play gross jokes with ->mode_set_config.
7651 * Unfortunately the crtc helper doesn't do much at all for this case,
7652 * so we have to cope with this madness until the fb helper is fixed up. */
7653 if (set->fb && set->num_connectors == 0)
7654 return 0;
7655
2e431051
DV
7656 if (set->fb) {
7657 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7658 set->crtc->base.id, set->fb->base.id,
7659 (int)set->num_connectors, set->x, set->y);
7660 } else {
7661 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7662 }
7663
7664 dev = set->crtc->dev;
7665
7666 ret = -ENOMEM;
7667 config = kzalloc(sizeof(*config), GFP_KERNEL);
7668 if (!config)
7669 goto out_config;
7670
7671 ret = intel_set_config_save_state(dev, config);
7672 if (ret)
7673 goto out_config;
7674
7675 save_set.crtc = set->crtc;
7676 save_set.mode = &set->crtc->mode;
7677 save_set.x = set->crtc->x;
7678 save_set.y = set->crtc->y;
7679 save_set.fb = set->crtc->fb;
7680
7681 /* Compute whether we need a full modeset, only an fb base update or no
7682 * change at all. In the future we might also check whether only the
7683 * mode changed, e.g. for LVDS where we only change the panel fitter in
7684 * such cases. */
7685 intel_set_config_compute_mode_changes(set, config);
7686
9a935856 7687 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7688 if (ret)
7689 goto fail;
7690
5e2b584e 7691 if (config->mode_changed) {
87f1faa6 7692 if (set->mode) {
50f56119
DV
7693 DRM_DEBUG_KMS("attempting to set mode from"
7694 " userspace\n");
7695 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7696 }
7697
7698 if (!intel_set_mode(set->crtc, set->mode,
7699 set->x, set->y, set->fb)) {
7700 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7701 set->crtc->base.id);
7702 ret = -EINVAL;
7703 goto fail;
7704 }
5e2b584e 7705 } else if (config->fb_changed) {
4f660f49 7706 ret = intel_pipe_set_base(set->crtc,
94352cf9 7707 set->x, set->y, set->fb);
50f56119
DV
7708 }
7709
d9e55608
DV
7710 intel_set_config_free(config);
7711
50f56119
DV
7712 return 0;
7713
7714fail:
85f9eb71 7715 intel_set_config_restore_state(dev, config);
50f56119
DV
7716
7717 /* Try to restore the config */
5e2b584e 7718 if (config->mode_changed &&
a6778b3c
DV
7719 !intel_set_mode(save_set.crtc, save_set.mode,
7720 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7721 DRM_ERROR("failed to restore config after modeset failure\n");
7722
d9e55608
DV
7723out_config:
7724 intel_set_config_free(config);
50f56119
DV
7725 return ret;
7726}
7727
f6e5b160 7728static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7729 .cursor_set = intel_crtc_cursor_set,
7730 .cursor_move = intel_crtc_cursor_move,
7731 .gamma_set = intel_crtc_gamma_set,
50f56119 7732 .set_config = intel_crtc_set_config,
f6e5b160
CW
7733 .destroy = intel_crtc_destroy,
7734 .page_flip = intel_crtc_page_flip,
7735};
7736
79f689aa
PZ
7737static void intel_cpu_pll_init(struct drm_device *dev)
7738{
7739 if (IS_HASWELL(dev))
7740 intel_ddi_pll_init(dev);
7741}
7742
ee7b9f93
JB
7743static void intel_pch_pll_init(struct drm_device *dev)
7744{
7745 drm_i915_private_t *dev_priv = dev->dev_private;
7746 int i;
7747
7748 if (dev_priv->num_pch_pll == 0) {
7749 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7750 return;
7751 }
7752
7753 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7754 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7755 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7756 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7757 }
7758}
7759
b358d0a6 7760static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7761{
22fd0fab 7762 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7763 struct intel_crtc *intel_crtc;
7764 int i;
7765
7766 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7767 if (intel_crtc == NULL)
7768 return;
7769
7770 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7771
7772 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7773 for (i = 0; i < 256; i++) {
7774 intel_crtc->lut_r[i] = i;
7775 intel_crtc->lut_g[i] = i;
7776 intel_crtc->lut_b[i] = i;
7777 }
7778
80824003
JB
7779 /* Swap pipes & planes for FBC on pre-965 */
7780 intel_crtc->pipe = pipe;
7781 intel_crtc->plane = pipe;
e2e767ab 7782 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7783 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7784 intel_crtc->plane = !pipe;
80824003
JB
7785 }
7786
22fd0fab
JB
7787 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7788 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7789 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7790 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7791
5a354204 7792 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7793
79e53945 7794 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7795}
7796
08d7b3d1 7797int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7798 struct drm_file *file)
08d7b3d1 7799{
08d7b3d1 7800 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7801 struct drm_mode_object *drmmode_obj;
7802 struct intel_crtc *crtc;
08d7b3d1 7803
1cff8f6b
DV
7804 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7805 return -ENODEV;
08d7b3d1 7806
c05422d5
DV
7807 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7808 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7809
c05422d5 7810 if (!drmmode_obj) {
08d7b3d1
CW
7811 DRM_ERROR("no such CRTC id\n");
7812 return -EINVAL;
7813 }
7814
c05422d5
DV
7815 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7816 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7817
c05422d5 7818 return 0;
08d7b3d1
CW
7819}
7820
66a9278e 7821static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7822{
66a9278e
DV
7823 struct drm_device *dev = encoder->base.dev;
7824 struct intel_encoder *source_encoder;
79e53945 7825 int index_mask = 0;
79e53945
JB
7826 int entry = 0;
7827
66a9278e
DV
7828 list_for_each_entry(source_encoder,
7829 &dev->mode_config.encoder_list, base.head) {
7830
7831 if (encoder == source_encoder)
79e53945 7832 index_mask |= (1 << entry);
66a9278e
DV
7833
7834 /* Intel hw has only one MUX where enocoders could be cloned. */
7835 if (encoder->cloneable && source_encoder->cloneable)
7836 index_mask |= (1 << entry);
7837
79e53945
JB
7838 entry++;
7839 }
4ef69c7a 7840
79e53945
JB
7841 return index_mask;
7842}
7843
4d302442
CW
7844static bool has_edp_a(struct drm_device *dev)
7845{
7846 struct drm_i915_private *dev_priv = dev->dev_private;
7847
7848 if (!IS_MOBILE(dev))
7849 return false;
7850
7851 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7852 return false;
7853
7854 if (IS_GEN5(dev) &&
7855 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7856 return false;
7857
7858 return true;
7859}
7860
79e53945
JB
7861static void intel_setup_outputs(struct drm_device *dev)
7862{
725e30ad 7863 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7864 struct intel_encoder *encoder;
cb0953d7 7865 bool dpd_is_edp = false;
f3cfcba6 7866 bool has_lvds;
79e53945 7867
f3cfcba6 7868 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
7869 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7870 /* disable the panel fitter on everything but LVDS */
7871 I915_WRITE(PFIT_CONTROL, 0);
7872 }
79e53945 7873
bad720ff 7874 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7875 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7876
4d302442 7877 if (has_edp_a(dev))
ab9d7c30 7878 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 7879
cb0953d7 7880 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7881 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
7882 }
7883
7884 intel_crt_init(dev);
7885
0e72a5b5
ED
7886 if (IS_HASWELL(dev)) {
7887 int found;
7888
7889 /* Haswell uses DDI functions to detect digital outputs */
7890 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7891 /* DDI A only supports eDP */
7892 if (found)
7893 intel_ddi_init(dev, PORT_A);
7894
7895 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7896 * register */
7897 found = I915_READ(SFUSE_STRAP);
7898
7899 if (found & SFUSE_STRAP_DDIB_DETECTED)
7900 intel_ddi_init(dev, PORT_B);
7901 if (found & SFUSE_STRAP_DDIC_DETECTED)
7902 intel_ddi_init(dev, PORT_C);
7903 if (found & SFUSE_STRAP_DDID_DETECTED)
7904 intel_ddi_init(dev, PORT_D);
7905 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
7906 int found;
7907
30ad48b7 7908 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 7909 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 7910 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 7911 if (!found)
08d644ad 7912 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 7913 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 7914 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
7915 }
7916
7917 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 7918 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 7919
b708a1d5 7920 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 7921 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 7922
5eb08b69 7923 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 7924 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 7925
cb0953d7 7926 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7927 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
7928 } else if (IS_VALLEYVIEW(dev)) {
7929 int found;
7930
19c03924
GB
7931 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
7932 if (I915_READ(DP_C) & DP_DETECTED)
7933 intel_dp_init(dev, DP_C, PORT_C);
7934
4a87d65d
JB
7935 if (I915_READ(SDVOB) & PORT_DETECTED) {
7936 /* SDVOB multiplex with HDMIB */
7937 found = intel_sdvo_init(dev, SDVOB, true);
7938 if (!found)
08d644ad 7939 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 7940 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 7941 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
7942 }
7943
7944 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 7945 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 7946
103a196f 7947 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7948 bool found = false;
7d57382e 7949
725e30ad 7950 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7951 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 7952 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
7953 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7954 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 7955 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 7956 }
27185ae1 7957
b01f2c3a
JB
7958 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7959 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 7960 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 7961 }
725e30ad 7962 }
13520b05
KH
7963
7964 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7965
b01f2c3a
JB
7966 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7967 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 7968 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 7969 }
27185ae1
ML
7970
7971 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7972
b01f2c3a
JB
7973 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7974 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 7975 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
7976 }
7977 if (SUPPORTS_INTEGRATED_DP(dev)) {
7978 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 7979 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 7980 }
725e30ad 7981 }
27185ae1 7982
b01f2c3a
JB
7983 if (SUPPORTS_INTEGRATED_DP(dev) &&
7984 (I915_READ(DP_D) & DP_DETECTED)) {
7985 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 7986 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 7987 }
bad720ff 7988 } else if (IS_GEN2(dev))
79e53945
JB
7989 intel_dvo_init(dev);
7990
103a196f 7991 if (SUPPORTS_TV(dev))
79e53945
JB
7992 intel_tv_init(dev);
7993
4ef69c7a
CW
7994 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7995 encoder->base.possible_crtcs = encoder->crtc_mask;
7996 encoder->base.possible_clones =
66a9278e 7997 intel_encoder_clones(encoder);
79e53945 7998 }
47356eb6 7999
40579abe 8000 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8001 ironlake_init_pch_refclk(dev);
79e53945
JB
8002}
8003
8004static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8005{
8006 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8007
8008 drm_framebuffer_cleanup(fb);
05394f39 8009 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8010
8011 kfree(intel_fb);
8012}
8013
8014static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8015 struct drm_file *file,
79e53945
JB
8016 unsigned int *handle)
8017{
8018 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8019 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8020
05394f39 8021 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8022}
8023
8024static const struct drm_framebuffer_funcs intel_fb_funcs = {
8025 .destroy = intel_user_framebuffer_destroy,
8026 .create_handle = intel_user_framebuffer_create_handle,
8027};
8028
38651674
DA
8029int intel_framebuffer_init(struct drm_device *dev,
8030 struct intel_framebuffer *intel_fb,
308e5bcb 8031 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8032 struct drm_i915_gem_object *obj)
79e53945 8033{
79e53945
JB
8034 int ret;
8035
05394f39 8036 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8037 return -EINVAL;
8038
308e5bcb 8039 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8040 return -EINVAL;
8041
308e5bcb 8042 switch (mode_cmd->pixel_format) {
04b3924d
VS
8043 case DRM_FORMAT_RGB332:
8044 case DRM_FORMAT_RGB565:
8045 case DRM_FORMAT_XRGB8888:
b250da79 8046 case DRM_FORMAT_XBGR8888:
04b3924d
VS
8047 case DRM_FORMAT_ARGB8888:
8048 case DRM_FORMAT_XRGB2101010:
8049 case DRM_FORMAT_ARGB2101010:
308e5bcb 8050 /* RGB formats are common across chipsets */
b5626747 8051 break;
04b3924d
VS
8052 case DRM_FORMAT_YUYV:
8053 case DRM_FORMAT_UYVY:
8054 case DRM_FORMAT_YVYU:
8055 case DRM_FORMAT_VYUY:
57cd6508
CW
8056 break;
8057 default:
aca25848
ED
8058 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8059 mode_cmd->pixel_format);
57cd6508
CW
8060 return -EINVAL;
8061 }
8062
79e53945
JB
8063 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8064 if (ret) {
8065 DRM_ERROR("framebuffer init failed %d\n", ret);
8066 return ret;
8067 }
8068
8069 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8070 intel_fb->obj = obj;
79e53945
JB
8071 return 0;
8072}
8073
79e53945
JB
8074static struct drm_framebuffer *
8075intel_user_framebuffer_create(struct drm_device *dev,
8076 struct drm_file *filp,
308e5bcb 8077 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8078{
05394f39 8079 struct drm_i915_gem_object *obj;
79e53945 8080
308e5bcb
JB
8081 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8082 mode_cmd->handles[0]));
c8725226 8083 if (&obj->base == NULL)
cce13ff7 8084 return ERR_PTR(-ENOENT);
79e53945 8085
d2dff872 8086 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8087}
8088
79e53945 8089static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8090 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8091 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8092};
8093
e70236a8
JB
8094/* Set up chip specific display functions */
8095static void intel_init_display(struct drm_device *dev)
8096{
8097 struct drm_i915_private *dev_priv = dev->dev_private;
8098
8099 /* We always want a DPMS function */
09b4ddf9
PZ
8100 if (IS_HASWELL(dev)) {
8101 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8102 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8103 dev_priv->display.crtc_disable = ironlake_crtc_disable;
6441ab5f 8104 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8105 dev_priv->display.update_plane = ironlake_update_plane;
8106 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8107 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8108 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8109 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8110 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8111 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8112 } else {
f564048e 8113 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8114 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8115 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8116 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8117 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8118 }
e70236a8 8119
e70236a8 8120 /* Returns the core display clock speed */
25eb05fc
JB
8121 if (IS_VALLEYVIEW(dev))
8122 dev_priv->display.get_display_clock_speed =
8123 valleyview_get_display_clock_speed;
8124 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8125 dev_priv->display.get_display_clock_speed =
8126 i945_get_display_clock_speed;
8127 else if (IS_I915G(dev))
8128 dev_priv->display.get_display_clock_speed =
8129 i915_get_display_clock_speed;
f2b115e6 8130 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8131 dev_priv->display.get_display_clock_speed =
8132 i9xx_misc_get_display_clock_speed;
8133 else if (IS_I915GM(dev))
8134 dev_priv->display.get_display_clock_speed =
8135 i915gm_get_display_clock_speed;
8136 else if (IS_I865G(dev))
8137 dev_priv->display.get_display_clock_speed =
8138 i865_get_display_clock_speed;
f0f8a9ce 8139 else if (IS_I85X(dev))
e70236a8
JB
8140 dev_priv->display.get_display_clock_speed =
8141 i855_get_display_clock_speed;
8142 else /* 852, 830 */
8143 dev_priv->display.get_display_clock_speed =
8144 i830_get_display_clock_speed;
8145
7f8a8569 8146 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8147 if (IS_GEN5(dev)) {
674cf967 8148 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8149 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8150 } else if (IS_GEN6(dev)) {
674cf967 8151 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8152 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8153 } else if (IS_IVYBRIDGE(dev)) {
8154 /* FIXME: detect B0+ stepping and use auto training */
8155 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8156 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
8157 } else if (IS_HASWELL(dev)) {
8158 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8159 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8160 } else
8161 dev_priv->display.update_wm = NULL;
6067aaea 8162 } else if (IS_G4X(dev)) {
e0dac65e 8163 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8164 }
8c9f3aaf
JB
8165
8166 /* Default just returns -ENODEV to indicate unsupported */
8167 dev_priv->display.queue_flip = intel_default_queue_flip;
8168
8169 switch (INTEL_INFO(dev)->gen) {
8170 case 2:
8171 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8172 break;
8173
8174 case 3:
8175 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8176 break;
8177
8178 case 4:
8179 case 5:
8180 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8181 break;
8182
8183 case 6:
8184 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8185 break;
7c9017e5
JB
8186 case 7:
8187 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8188 break;
8c9f3aaf 8189 }
e70236a8
JB
8190}
8191
b690e96c
JB
8192/*
8193 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8194 * resume, or other times. This quirk makes sure that's the case for
8195 * affected systems.
8196 */
0206e353 8197static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8198{
8199 struct drm_i915_private *dev_priv = dev->dev_private;
8200
8201 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8202 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8203}
8204
435793df
KP
8205/*
8206 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8207 */
8208static void quirk_ssc_force_disable(struct drm_device *dev)
8209{
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8212 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8213}
8214
4dca20ef 8215/*
5a15ab5b
CE
8216 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8217 * brightness value
4dca20ef
CE
8218 */
8219static void quirk_invert_brightness(struct drm_device *dev)
8220{
8221 struct drm_i915_private *dev_priv = dev->dev_private;
8222 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8223 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8224}
8225
b690e96c
JB
8226struct intel_quirk {
8227 int device;
8228 int subsystem_vendor;
8229 int subsystem_device;
8230 void (*hook)(struct drm_device *dev);
8231};
8232
c43b5634 8233static struct intel_quirk intel_quirks[] = {
b690e96c 8234 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8235 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8236
b690e96c
JB
8237 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8238 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8239
b690e96c
JB
8240 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8241 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8242
ccd0d36e 8243 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8244 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8245 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8246
8247 /* Lenovo U160 cannot use SSC on LVDS */
8248 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8249
8250 /* Sony Vaio Y cannot use SSC on LVDS */
8251 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8252
8253 /* Acer Aspire 5734Z must invert backlight brightness */
8254 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8255};
8256
8257static void intel_init_quirks(struct drm_device *dev)
8258{
8259 struct pci_dev *d = dev->pdev;
8260 int i;
8261
8262 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8263 struct intel_quirk *q = &intel_quirks[i];
8264
8265 if (d->device == q->device &&
8266 (d->subsystem_vendor == q->subsystem_vendor ||
8267 q->subsystem_vendor == PCI_ANY_ID) &&
8268 (d->subsystem_device == q->subsystem_device ||
8269 q->subsystem_device == PCI_ANY_ID))
8270 q->hook(dev);
8271 }
8272}
8273
9cce37f4
JB
8274/* Disable the VGA plane that we never use */
8275static void i915_disable_vga(struct drm_device *dev)
8276{
8277 struct drm_i915_private *dev_priv = dev->dev_private;
8278 u8 sr1;
8279 u32 vga_reg;
8280
8281 if (HAS_PCH_SPLIT(dev))
8282 vga_reg = CPU_VGACNTRL;
8283 else
8284 vga_reg = VGACNTRL;
8285
8286 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8287 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8288 sr1 = inb(VGA_SR_DATA);
8289 outb(sr1 | 1<<5, VGA_SR_DATA);
8290 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8291 udelay(300);
8292
8293 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8294 POSTING_READ(vga_reg);
8295}
8296
f817586c
DV
8297void intel_modeset_init_hw(struct drm_device *dev)
8298{
0232e927
ED
8299 /* We attempt to init the necessary power wells early in the initialization
8300 * time, so the subsystems that expect power to be enabled can work.
8301 */
8302 intel_init_power_wells(dev);
8303
a8f78b58
ED
8304 intel_prepare_ddi(dev);
8305
f817586c
DV
8306 intel_init_clock_gating(dev);
8307
79f5b2c7 8308 mutex_lock(&dev->struct_mutex);
8090c6b9 8309 intel_enable_gt_powersave(dev);
79f5b2c7 8310 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8311}
8312
79e53945
JB
8313void intel_modeset_init(struct drm_device *dev)
8314{
652c393a 8315 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8316 int i, ret;
79e53945
JB
8317
8318 drm_mode_config_init(dev);
8319
8320 dev->mode_config.min_width = 0;
8321 dev->mode_config.min_height = 0;
8322
019d96cb
DA
8323 dev->mode_config.preferred_depth = 24;
8324 dev->mode_config.prefer_shadow = 1;
8325
e6ecefaa 8326 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8327
b690e96c
JB
8328 intel_init_quirks(dev);
8329
1fa61106
ED
8330 intel_init_pm(dev);
8331
e70236a8
JB
8332 intel_init_display(dev);
8333
a6c45cf0
CW
8334 if (IS_GEN2(dev)) {
8335 dev->mode_config.max_width = 2048;
8336 dev->mode_config.max_height = 2048;
8337 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8338 dev->mode_config.max_width = 4096;
8339 dev->mode_config.max_height = 4096;
79e53945 8340 } else {
a6c45cf0
CW
8341 dev->mode_config.max_width = 8192;
8342 dev->mode_config.max_height = 8192;
79e53945 8343 }
dd2757f8 8344 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8345
28c97730 8346 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8347 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8348
a3524f1b 8349 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8350 intel_crtc_init(dev, i);
00c2064b
JB
8351 ret = intel_plane_init(dev, i);
8352 if (ret)
8353 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8354 }
8355
79f689aa 8356 intel_cpu_pll_init(dev);
ee7b9f93
JB
8357 intel_pch_pll_init(dev);
8358
9cce37f4
JB
8359 /* Just disable it once at startup */
8360 i915_disable_vga(dev);
79e53945 8361 intel_setup_outputs(dev);
2c7111db
CW
8362}
8363
24929352
DV
8364static void
8365intel_connector_break_all_links(struct intel_connector *connector)
8366{
8367 connector->base.dpms = DRM_MODE_DPMS_OFF;
8368 connector->base.encoder = NULL;
8369 connector->encoder->connectors_active = false;
8370 connector->encoder->base.crtc = NULL;
8371}
8372
7fad798e
DV
8373static void intel_enable_pipe_a(struct drm_device *dev)
8374{
8375 struct intel_connector *connector;
8376 struct drm_connector *crt = NULL;
8377 struct intel_load_detect_pipe load_detect_temp;
8378
8379 /* We can't just switch on the pipe A, we need to set things up with a
8380 * proper mode and output configuration. As a gross hack, enable pipe A
8381 * by enabling the load detect pipe once. */
8382 list_for_each_entry(connector,
8383 &dev->mode_config.connector_list,
8384 base.head) {
8385 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8386 crt = &connector->base;
8387 break;
8388 }
8389 }
8390
8391 if (!crt)
8392 return;
8393
8394 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8395 intel_release_load_detect_pipe(crt, &load_detect_temp);
8396
8397
8398}
8399
fa555837
DV
8400static bool
8401intel_check_plane_mapping(struct intel_crtc *crtc)
8402{
8403 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8404 u32 reg, val;
8405
8406 if (dev_priv->num_pipe == 1)
8407 return true;
8408
8409 reg = DSPCNTR(!crtc->plane);
8410 val = I915_READ(reg);
8411
8412 if ((val & DISPLAY_PLANE_ENABLE) &&
8413 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8414 return false;
8415
8416 return true;
8417}
8418
24929352
DV
8419static void intel_sanitize_crtc(struct intel_crtc *crtc)
8420{
8421 struct drm_device *dev = crtc->base.dev;
8422 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8423 u32 reg;
24929352 8424
24929352
DV
8425 /* Clear any frame start delays used for debugging left by the BIOS */
8426 reg = PIPECONF(crtc->pipe);
8427 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8428
8429 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8430 * disable the crtc (and hence change the state) if it is wrong. Note
8431 * that gen4+ has a fixed plane -> pipe mapping. */
8432 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8433 struct intel_connector *connector;
8434 bool plane;
8435
24929352
DV
8436 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8437 crtc->base.base.id);
8438
8439 /* Pipe has the wrong plane attached and the plane is active.
8440 * Temporarily change the plane mapping and disable everything
8441 * ... */
8442 plane = crtc->plane;
8443 crtc->plane = !plane;
8444 dev_priv->display.crtc_disable(&crtc->base);
8445 crtc->plane = plane;
8446
8447 /* ... and break all links. */
8448 list_for_each_entry(connector, &dev->mode_config.connector_list,
8449 base.head) {
8450 if (connector->encoder->base.crtc != &crtc->base)
8451 continue;
8452
8453 intel_connector_break_all_links(connector);
8454 }
8455
8456 WARN_ON(crtc->active);
8457 crtc->base.enabled = false;
8458 }
24929352 8459
7fad798e
DV
8460 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8461 crtc->pipe == PIPE_A && !crtc->active) {
8462 /* BIOS forgot to enable pipe A, this mostly happens after
8463 * resume. Force-enable the pipe to fix this, the update_dpms
8464 * call below we restore the pipe to the right state, but leave
8465 * the required bits on. */
8466 intel_enable_pipe_a(dev);
8467 }
8468
24929352
DV
8469 /* Adjust the state of the output pipe according to whether we
8470 * have active connectors/encoders. */
8471 intel_crtc_update_dpms(&crtc->base);
8472
8473 if (crtc->active != crtc->base.enabled) {
8474 struct intel_encoder *encoder;
8475
8476 /* This can happen either due to bugs in the get_hw_state
8477 * functions or because the pipe is force-enabled due to the
8478 * pipe A quirk. */
8479 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8480 crtc->base.base.id,
8481 crtc->base.enabled ? "enabled" : "disabled",
8482 crtc->active ? "enabled" : "disabled");
8483
8484 crtc->base.enabled = crtc->active;
8485
8486 /* Because we only establish the connector -> encoder ->
8487 * crtc links if something is active, this means the
8488 * crtc is now deactivated. Break the links. connector
8489 * -> encoder links are only establish when things are
8490 * actually up, hence no need to break them. */
8491 WARN_ON(crtc->active);
8492
8493 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8494 WARN_ON(encoder->connectors_active);
8495 encoder->base.crtc = NULL;
8496 }
8497 }
8498}
8499
8500static void intel_sanitize_encoder(struct intel_encoder *encoder)
8501{
8502 struct intel_connector *connector;
8503 struct drm_device *dev = encoder->base.dev;
8504
8505 /* We need to check both for a crtc link (meaning that the
8506 * encoder is active and trying to read from a pipe) and the
8507 * pipe itself being active. */
8508 bool has_active_crtc = encoder->base.crtc &&
8509 to_intel_crtc(encoder->base.crtc)->active;
8510
8511 if (encoder->connectors_active && !has_active_crtc) {
8512 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8513 encoder->base.base.id,
8514 drm_get_encoder_name(&encoder->base));
8515
8516 /* Connector is active, but has no active pipe. This is
8517 * fallout from our resume register restoring. Disable
8518 * the encoder manually again. */
8519 if (encoder->base.crtc) {
8520 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8521 encoder->base.base.id,
8522 drm_get_encoder_name(&encoder->base));
8523 encoder->disable(encoder);
8524 }
8525
8526 /* Inconsistent output/port/pipe state happens presumably due to
8527 * a bug in one of the get_hw_state functions. Or someplace else
8528 * in our code, like the register restore mess on resume. Clamp
8529 * things to off as a safer default. */
8530 list_for_each_entry(connector,
8531 &dev->mode_config.connector_list,
8532 base.head) {
8533 if (connector->encoder != encoder)
8534 continue;
8535
8536 intel_connector_break_all_links(connector);
8537 }
8538 }
8539 /* Enabled encoders without active connectors will be fixed in
8540 * the crtc fixup. */
8541}
8542
8543/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8544 * and i915 state tracking structures. */
8545void intel_modeset_setup_hw_state(struct drm_device *dev)
8546{
8547 struct drm_i915_private *dev_priv = dev->dev_private;
8548 enum pipe pipe;
8549 u32 tmp;
8550 struct intel_crtc *crtc;
8551 struct intel_encoder *encoder;
8552 struct intel_connector *connector;
8553
8554 for_each_pipe(pipe) {
8555 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8556
8557 tmp = I915_READ(PIPECONF(pipe));
8558 if (tmp & PIPECONF_ENABLE)
8559 crtc->active = true;
8560 else
8561 crtc->active = false;
8562
8563 crtc->base.enabled = crtc->active;
8564
8565 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8566 crtc->base.base.id,
8567 crtc->active ? "enabled" : "disabled");
8568 }
8569
6441ab5f
PZ
8570 if (IS_HASWELL(dev))
8571 intel_ddi_setup_hw_pll_state(dev);
8572
24929352
DV
8573 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8574 base.head) {
8575 pipe = 0;
8576
8577 if (encoder->get_hw_state(encoder, &pipe)) {
8578 encoder->base.crtc =
8579 dev_priv->pipe_to_crtc_mapping[pipe];
8580 } else {
8581 encoder->base.crtc = NULL;
8582 }
8583
8584 encoder->connectors_active = false;
8585 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8586 encoder->base.base.id,
8587 drm_get_encoder_name(&encoder->base),
8588 encoder->base.crtc ? "enabled" : "disabled",
8589 pipe);
8590 }
8591
8592 list_for_each_entry(connector, &dev->mode_config.connector_list,
8593 base.head) {
8594 if (connector->get_hw_state(connector)) {
8595 connector->base.dpms = DRM_MODE_DPMS_ON;
8596 connector->encoder->connectors_active = true;
8597 connector->base.encoder = &connector->encoder->base;
8598 } else {
8599 connector->base.dpms = DRM_MODE_DPMS_OFF;
8600 connector->base.encoder = NULL;
8601 }
8602 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8603 connector->base.base.id,
8604 drm_get_connector_name(&connector->base),
8605 connector->base.encoder ? "enabled" : "disabled");
8606 }
8607
8608 /* HW state is read out, now we need to sanitize this mess. */
8609 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8610 base.head) {
8611 intel_sanitize_encoder(encoder);
8612 }
8613
8614 for_each_pipe(pipe) {
8615 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8616 intel_sanitize_crtc(crtc);
8617 }
9a935856
DV
8618
8619 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8620
8621 intel_modeset_check_state(dev);
2e938892
DV
8622
8623 drm_mode_config_reset(dev);
24929352
DV
8624}
8625
2c7111db
CW
8626void intel_modeset_gem_init(struct drm_device *dev)
8627{
1833b134 8628 intel_modeset_init_hw(dev);
02e792fb
DV
8629
8630 intel_setup_overlay(dev);
24929352
DV
8631
8632 intel_modeset_setup_hw_state(dev);
79e53945
JB
8633}
8634
8635void intel_modeset_cleanup(struct drm_device *dev)
8636{
652c393a
JB
8637 struct drm_i915_private *dev_priv = dev->dev_private;
8638 struct drm_crtc *crtc;
8639 struct intel_crtc *intel_crtc;
8640
f87ea761 8641 drm_kms_helper_poll_fini(dev);
652c393a
JB
8642 mutex_lock(&dev->struct_mutex);
8643
723bfd70
JB
8644 intel_unregister_dsm_handler();
8645
8646
652c393a
JB
8647 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8648 /* Skip inactive CRTCs */
8649 if (!crtc->fb)
8650 continue;
8651
8652 intel_crtc = to_intel_crtc(crtc);
3dec0095 8653 intel_increase_pllclock(crtc);
652c393a
JB
8654 }
8655
973d04f9 8656 intel_disable_fbc(dev);
e70236a8 8657
8090c6b9 8658 intel_disable_gt_powersave(dev);
0cdab21f 8659
930ebb46
DV
8660 ironlake_teardown_rc6(dev);
8661
57f350b6
JB
8662 if (IS_VALLEYVIEW(dev))
8663 vlv_init_dpio(dev);
8664
69341a5e
KH
8665 mutex_unlock(&dev->struct_mutex);
8666
6c0d9350
DV
8667 /* Disable the irq before mode object teardown, for the irq might
8668 * enqueue unpin/hotplug work. */
8669 drm_irq_uninstall(dev);
8670 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8671 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8672
1630fe75
CW
8673 /* flush any delayed tasks or pending work */
8674 flush_scheduled_work();
8675
79e53945
JB
8676 drm_mode_config_cleanup(dev);
8677}
8678
f1c79df3
ZW
8679/*
8680 * Return which encoder is currently attached for connector.
8681 */
df0e9248 8682struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8683{
df0e9248
CW
8684 return &intel_attached_encoder(connector)->base;
8685}
f1c79df3 8686
df0e9248
CW
8687void intel_connector_attach_encoder(struct intel_connector *connector,
8688 struct intel_encoder *encoder)
8689{
8690 connector->encoder = encoder;
8691 drm_mode_connector_attach_encoder(&connector->base,
8692 &encoder->base);
79e53945 8693}
28d52043
DA
8694
8695/*
8696 * set vga decode state - true == enable VGA decode
8697 */
8698int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8699{
8700 struct drm_i915_private *dev_priv = dev->dev_private;
8701 u16 gmch_ctrl;
8702
8703 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8704 if (state)
8705 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8706 else
8707 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8708 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8709 return 0;
8710}
c4a1d9e4
CW
8711
8712#ifdef CONFIG_DEBUG_FS
8713#include <linux/seq_file.h>
8714
8715struct intel_display_error_state {
8716 struct intel_cursor_error_state {
8717 u32 control;
8718 u32 position;
8719 u32 base;
8720 u32 size;
52331309 8721 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8722
8723 struct intel_pipe_error_state {
8724 u32 conf;
8725 u32 source;
8726
8727 u32 htotal;
8728 u32 hblank;
8729 u32 hsync;
8730 u32 vtotal;
8731 u32 vblank;
8732 u32 vsync;
52331309 8733 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8734
8735 struct intel_plane_error_state {
8736 u32 control;
8737 u32 stride;
8738 u32 size;
8739 u32 pos;
8740 u32 addr;
8741 u32 surface;
8742 u32 tile_offset;
52331309 8743 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8744};
8745
8746struct intel_display_error_state *
8747intel_display_capture_error_state(struct drm_device *dev)
8748{
0206e353 8749 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8750 struct intel_display_error_state *error;
8751 int i;
8752
8753 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8754 if (error == NULL)
8755 return NULL;
8756
52331309 8757 for_each_pipe(i) {
c4a1d9e4
CW
8758 error->cursor[i].control = I915_READ(CURCNTR(i));
8759 error->cursor[i].position = I915_READ(CURPOS(i));
8760 error->cursor[i].base = I915_READ(CURBASE(i));
8761
8762 error->plane[i].control = I915_READ(DSPCNTR(i));
8763 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8764 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8765 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8766 error->plane[i].addr = I915_READ(DSPADDR(i));
8767 if (INTEL_INFO(dev)->gen >= 4) {
8768 error->plane[i].surface = I915_READ(DSPSURF(i));
8769 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8770 }
8771
8772 error->pipe[i].conf = I915_READ(PIPECONF(i));
8773 error->pipe[i].source = I915_READ(PIPESRC(i));
8774 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8775 error->pipe[i].hblank = I915_READ(HBLANK(i));
8776 error->pipe[i].hsync = I915_READ(HSYNC(i));
8777 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8778 error->pipe[i].vblank = I915_READ(VBLANK(i));
8779 error->pipe[i].vsync = I915_READ(VSYNC(i));
8780 }
8781
8782 return error;
8783}
8784
8785void
8786intel_display_print_error_state(struct seq_file *m,
8787 struct drm_device *dev,
8788 struct intel_display_error_state *error)
8789{
52331309 8790 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8791 int i;
8792
52331309
DL
8793 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8794 for_each_pipe(i) {
c4a1d9e4
CW
8795 seq_printf(m, "Pipe [%d]:\n", i);
8796 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8797 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8798 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8799 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8800 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8801 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8802 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8803 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8804
8805 seq_printf(m, "Plane [%d]:\n", i);
8806 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8807 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8808 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8809 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8810 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8811 if (INTEL_INFO(dev)->gen >= 4) {
8812 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8813 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8814 }
8815
8816 seq_printf(m, "Cursor [%d]:\n", i);
8817 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8818 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8819 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8820 }
8821}
8822#endif