]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/doc: integrate drm_crtc.c kerneldoc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
0206e353 44bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 45static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
47
48typedef struct {
0206e353
AJ
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
79e53945
JB
58} intel_clock_t;
59
60typedef struct {
0206e353 61 int min, max;
79e53945
JB
62} intel_range_t;
63
64typedef struct {
0206e353
AJ
65 int dot_limit;
66 int p2_slow, p2_fast;
79e53945
JB
67} intel_p2_t;
68
69#define INTEL_P2_NUM 2
d4906093
ML
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
0206e353
AJ
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 75 int, int, intel_clock_t *, intel_clock_t *);
d4906093 76};
79e53945 77
2377b741
JB
78/* FDI */
79#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
d2acd215
DV
81int
82intel_pch_rawclk(struct drm_device *dev)
83{
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89}
90
d4906093
ML
91static bool
92intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
d4906093
ML
95static bool
96intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
79e53945 99
a4fc5ed6
KP
100static bool
101intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
5eb08b69 104static bool
f2b115e6 105intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
a4fc5ed6 108
a0c4da24
JB
109static bool
110intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
021357ac
CW
114static inline u32 /* units of 100MHz */
115intel_fdi_link_freq(struct drm_device *dev)
116{
8b99e68c
CW
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
021357ac
CW
122}
123
e4b36699 124static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
d4906093 135 .find_pll = intel_find_best_PLL,
e4b36699
KP
136};
137
138static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
d4906093 149 .find_pll = intel_find_best_PLL,
e4b36699 150};
273e27ca 151
e4b36699 152static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
d4906093 163 .find_pll = intel_find_best_PLL,
e4b36699
KP
164};
165
166static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
d4906093 177 .find_pll = intel_find_best_PLL,
e4b36699
KP
178};
179
273e27ca 180
e4b36699 181static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
044c7c41 193 },
d4906093 194 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
d4906093 208 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
209};
210
211static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
044c7c41 222 },
d4906093 223 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
044c7c41 237 },
d4906093 238 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
273e27ca 251 .p2_slow = 10, .p2_fast = 10 },
0206e353 252 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 258 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
273e27ca 261 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
6115707b 268 .find_pll = intel_find_best_PLL,
e4b36699
KP
269};
270
f2b115e6 271static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
6115707b 282 .find_pll = intel_find_best_PLL,
e4b36699
KP
283};
284
273e27ca
EA
285/* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
b91ad0ec 290static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
4547668a 301 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
302};
303
b91ad0ec 304static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
315 .find_pll = intel_g4x_find_best_PLL,
316};
317
318static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
329 .find_pll = intel_g4x_find_best_PLL,
330};
331
273e27ca 332/* LVDS 100mhz refclk limits. */
b91ad0ec 333static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
0206e353 341 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
344 .find_pll = intel_g4x_find_best_PLL,
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358 .find_pll = intel_g4x_find_best_PLL,
359};
360
361static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
273e27ca 371 .p2_slow = 10, .p2_fast = 10 },
0206e353 372 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
373};
374
a0c4da24
JB
375static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387};
388
389static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
17dc9257 391 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401};
402
403static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 406 .n = { .min = 1, .max = 7 },
74a4dd2e 407 .m = { .min = 22, .max = 450 },
a0c4da24
JB
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415};
416
57f350b6
JB
417u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418{
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440}
441
a0c4da24
JB
442static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462}
463
57f350b6
JB
464static void vlv_init_dpio(struct drm_device *dev)
465{
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473}
474
618563e3
DV
475static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476{
477 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478 return 1;
479}
480
481static const struct dmi_system_id intel_dual_link_lvds[] = {
482 {
483 .callback = intel_dual_link_lvds_callback,
484 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485 .matches = {
486 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488 },
489 },
490 { } /* terminating entry */
491};
492
b0354385
TI
493static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494 unsigned int reg)
495{
496 unsigned int val;
497
121d527a
TI
498 /* use the module option value if specified */
499 if (i915_lvds_channel_mode > 0)
500 return i915_lvds_channel_mode == 2;
501
618563e3
DV
502 if (dmi_check_system(intel_dual_link_lvds))
503 return true;
504
b0354385
TI
505 if (dev_priv->lvds_val)
506 val = dev_priv->lvds_val;
507 else {
508 /* BIOS should set the proper LVDS register value at boot, but
509 * in reality, it doesn't set the value when the lid is closed;
510 * we need to check "the value to be set" in VBT when LVDS
511 * register is uninitialized.
512 */
513 val = I915_READ(reg);
14d94a3d 514 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
515 val = dev_priv->bios_lvds_val;
516 dev_priv->lvds_val = val;
517 }
518 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519}
520
1b894b59
CW
521static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522 int refclk)
2c07245f 523{
b91ad0ec
ZW
524 struct drm_device *dev = crtc->dev;
525 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 526 const intel_limit_t *limit;
b91ad0ec
ZW
527
528 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 529 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 530 /* LVDS dual channel */
1b894b59 531 if (refclk == 100000)
b91ad0ec
ZW
532 limit = &intel_limits_ironlake_dual_lvds_100m;
533 else
534 limit = &intel_limits_ironlake_dual_lvds;
535 } else {
1b894b59 536 if (refclk == 100000)
b91ad0ec
ZW
537 limit = &intel_limits_ironlake_single_lvds_100m;
538 else
539 limit = &intel_limits_ironlake_single_lvds;
540 }
541 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
547dc041 542 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4547668a 543 limit = &intel_limits_ironlake_display_port;
2c07245f 544 else
b91ad0ec 545 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
546
547 return limit;
548}
549
044c7c41
ML
550static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551{
552 struct drm_device *dev = crtc->dev;
553 struct drm_i915_private *dev_priv = dev->dev_private;
554 const intel_limit_t *limit;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 557 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 558 /* LVDS with dual channel */
e4b36699 559 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
560 else
561 /* LVDS with dual channel */
e4b36699 562 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
563 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 565 limit = &intel_limits_g4x_hdmi;
044c7c41 566 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 567 limit = &intel_limits_g4x_sdvo;
0206e353 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 569 limit = &intel_limits_g4x_display_port;
044c7c41 570 } else /* The option is for other outputs */
e4b36699 571 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
572
573 return limit;
574}
575
1b894b59 576static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
577{
578 struct drm_device *dev = crtc->dev;
579 const intel_limit_t *limit;
580
bad720ff 581 if (HAS_PCH_SPLIT(dev))
1b894b59 582 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 583 else if (IS_G4X(dev)) {
044c7c41 584 limit = intel_g4x_limit(crtc);
f2b115e6 585 } else if (IS_PINEVIEW(dev)) {
2177832f 586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 587 limit = &intel_limits_pineview_lvds;
2177832f 588 else
f2b115e6 589 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
590 } else if (IS_VALLEYVIEW(dev)) {
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592 limit = &intel_limits_vlv_dac;
593 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594 limit = &intel_limits_vlv_hdmi;
595 else
596 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
597 } else if (!IS_GEN2(dev)) {
598 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599 limit = &intel_limits_i9xx_lvds;
600 else
601 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
602 } else {
603 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 604 limit = &intel_limits_i8xx_lvds;
79e53945 605 else
e4b36699 606 limit = &intel_limits_i8xx_dvo;
79e53945
JB
607 }
608 return limit;
609}
610
f2b115e6
AJ
611/* m1 is reserved as 0 in Pineview, n is a ring counter */
612static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 613{
2177832f
SL
614 clock->m = clock->m2 + 2;
615 clock->p = clock->p1 * clock->p2;
616 clock->vco = refclk * clock->m / clock->n;
617 clock->dot = clock->vco / clock->p;
618}
619
620static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621{
f2b115e6
AJ
622 if (IS_PINEVIEW(dev)) {
623 pineview_clock(refclk, clock);
2177832f
SL
624 return;
625 }
79e53945
JB
626 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627 clock->p = clock->p1 * clock->p2;
628 clock->vco = refclk * clock->m / (clock->n + 2);
629 clock->dot = clock->vco / clock->p;
630}
631
79e53945
JB
632/**
633 * Returns whether any output on the specified pipe is of the specified type
634 */
4ef69c7a 635bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 636{
4ef69c7a 637 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
638 struct intel_encoder *encoder;
639
6c2b7c12
DV
640 for_each_encoder_on_crtc(dev, crtc, encoder)
641 if (encoder->type == type)
4ef69c7a
CW
642 return true;
643
644 return false;
79e53945
JB
645}
646
7c04d1d9 647#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
648/**
649 * Returns whether the given set of divisors are valid for a given refclk with
650 * the given connectors.
651 */
652
1b894b59
CW
653static bool intel_PLL_is_valid(struct drm_device *dev,
654 const intel_limit_t *limit,
655 const intel_clock_t *clock)
79e53945 656{
79e53945 657 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 658 INTELPllInvalid("p1 out of range\n");
79e53945 659 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 660 INTELPllInvalid("p out of range\n");
79e53945 661 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 662 INTELPllInvalid("m2 out of range\n");
79e53945 663 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 664 INTELPllInvalid("m1 out of range\n");
f2b115e6 665 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 666 INTELPllInvalid("m1 <= m2\n");
79e53945 667 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 668 INTELPllInvalid("m out of range\n");
79e53945 669 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 670 INTELPllInvalid("n out of range\n");
79e53945 671 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 672 INTELPllInvalid("vco out of range\n");
79e53945
JB
673 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674 * connector, etc., rather than just a single range.
675 */
676 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 677 INTELPllInvalid("dot out of range\n");
79e53945
JB
678
679 return true;
680}
681
d4906093
ML
682static bool
683intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
d4906093 686
79e53945
JB
687{
688 struct drm_device *dev = crtc->dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 intel_clock_t clock;
79e53945
JB
691 int err = target;
692
bc5e5718 693 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 694 (I915_READ(LVDS)) != 0) {
79e53945
JB
695 /*
696 * For LVDS, if the panel is on, just rely on its current
697 * settings for dual-channel. We haven't figured out how to
698 * reliably set up different single/dual channel state, if we
699 * even can.
700 */
b0354385 701 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
0206e353 712 memset(best_clock, 0, sizeof(*best_clock));
79e53945 713
42158660
ZY
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
718 /* m1 is always 0 in Pineview */
719 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
720 break;
721 for (clock.n = limit->n.min;
722 clock.n <= limit->n.max; clock.n++) {
723 for (clock.p1 = limit->p1.min;
724 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
725 int this_err;
726
2177832f 727 intel_clock(dev, refclk, &clock);
1b894b59
CW
728 if (!intel_PLL_is_valid(dev, limit,
729 &clock))
79e53945 730 continue;
cec2f356
SP
731 if (match_clock &&
732 clock.p != match_clock->p)
733 continue;
79e53945
JB
734
735 this_err = abs(clock.dot - target);
736 if (this_err < err) {
737 *best_clock = clock;
738 err = this_err;
739 }
740 }
741 }
742 }
743 }
744
745 return (err != target);
746}
747
d4906093
ML
748static bool
749intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
750 int target, int refclk, intel_clock_t *match_clock,
751 intel_clock_t *best_clock)
d4906093
ML
752{
753 struct drm_device *dev = crtc->dev;
754 struct drm_i915_private *dev_priv = dev->dev_private;
755 intel_clock_t clock;
756 int max_n;
757 bool found;
6ba770dc
AJ
758 /* approximately equals target * 0.00585 */
759 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
760 found = false;
761
762 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
763 int lvds_reg;
764
c619eed4 765 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
766 lvds_reg = PCH_LVDS;
767 else
768 lvds_reg = LVDS;
769 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
770 LVDS_CLKB_POWER_UP)
771 clock.p2 = limit->p2.p2_fast;
772 else
773 clock.p2 = limit->p2.p2_slow;
774 } else {
775 if (target < limit->p2.dot_limit)
776 clock.p2 = limit->p2.p2_slow;
777 else
778 clock.p2 = limit->p2.p2_fast;
779 }
780
781 memset(best_clock, 0, sizeof(*best_clock));
782 max_n = limit->n.max;
f77f13e2 783 /* based on hardware requirement, prefer smaller n to precision */
d4906093 784 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 785 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
786 for (clock.m1 = limit->m1.max;
787 clock.m1 >= limit->m1.min; clock.m1--) {
788 for (clock.m2 = limit->m2.max;
789 clock.m2 >= limit->m2.min; clock.m2--) {
790 for (clock.p1 = limit->p1.max;
791 clock.p1 >= limit->p1.min; clock.p1--) {
792 int this_err;
793
2177832f 794 intel_clock(dev, refclk, &clock);
1b894b59
CW
795 if (!intel_PLL_is_valid(dev, limit,
796 &clock))
d4906093 797 continue;
cec2f356
SP
798 if (match_clock &&
799 clock.p != match_clock->p)
800 continue;
1b894b59
CW
801
802 this_err = abs(clock.dot - target);
d4906093
ML
803 if (this_err < err_most) {
804 *best_clock = clock;
805 err_most = this_err;
806 max_n = clock.n;
807 found = true;
808 }
809 }
810 }
811 }
812 }
2c07245f
ZW
813 return found;
814}
815
5eb08b69 816static bool
f2b115e6 817intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
5eb08b69
ZW
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
4547668a 823
5eb08b69
ZW
824 if (target < 200000) {
825 clock.n = 1;
826 clock.p1 = 2;
827 clock.p2 = 10;
828 clock.m1 = 12;
829 clock.m2 = 9;
830 } else {
831 clock.n = 2;
832 clock.p1 = 1;
833 clock.p2 = 10;
834 clock.m1 = 14;
835 clock.m2 = 8;
836 }
837 intel_clock(dev, refclk, &clock);
838 memcpy(best_clock, &clock, sizeof(intel_clock_t));
839 return true;
840}
841
a4fc5ed6
KP
842/* DisplayPort has only two frequencies, 162MHz and 270MHz */
843static bool
844intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
845 int target, int refclk, intel_clock_t *match_clock,
846 intel_clock_t *best_clock)
a4fc5ed6 847{
5eddb70b
CW
848 intel_clock_t clock;
849 if (target < 200000) {
850 clock.p1 = 2;
851 clock.p2 = 10;
852 clock.n = 2;
853 clock.m1 = 23;
854 clock.m2 = 8;
855 } else {
856 clock.p1 = 1;
857 clock.p2 = 10;
858 clock.n = 1;
859 clock.m1 = 14;
860 clock.m2 = 2;
861 }
862 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863 clock.p = (clock.p1 * clock.p2);
864 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865 clock.vco = 0;
866 memcpy(best_clock, &clock, sizeof(intel_clock_t));
867 return true;
a4fc5ed6 868}
a0c4da24
JB
869static bool
870intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *match_clock,
872 intel_clock_t *best_clock)
873{
874 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875 u32 m, n, fastclk;
876 u32 updrate, minupdate, fracbits, p;
877 unsigned long bestppm, ppm, absppm;
878 int dotclk, flag;
879
af447bd3 880 flag = 0;
a0c4da24
JB
881 dotclk = target * 1000;
882 bestppm = 1000000;
883 ppm = absppm = 0;
884 fastclk = dotclk / (2*100);
885 updrate = 0;
886 minupdate = 19200;
887 fracbits = 1;
888 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889 bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891 /* based on hardware requirement, prefer smaller n to precision */
892 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893 updrate = refclk / n;
894 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896 if (p2 > 10)
897 p2 = p2 - 1;
898 p = p1 * p2;
899 /* based on hardware requirement, prefer bigger m1,m2 values */
900 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901 m2 = (((2*(fastclk * p * n / m1 )) +
902 refclk) / (2*refclk));
903 m = m1 * m2;
904 vco = updrate * m;
905 if (vco >= limit->vco.min && vco < limit->vco.max) {
906 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907 absppm = (ppm > 0) ? ppm : (-ppm);
908 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909 bestppm = 0;
910 flag = 1;
911 }
912 if (absppm < bestppm - 10) {
913 bestppm = absppm;
914 flag = 1;
915 }
916 if (flag) {
917 bestn = n;
918 bestm1 = m1;
919 bestm2 = m2;
920 bestp1 = p1;
921 bestp2 = p2;
922 flag = 0;
923 }
924 }
925 }
926 }
927 }
928 }
929 best_clock->n = bestn;
930 best_clock->m1 = bestm1;
931 best_clock->m2 = bestm2;
932 best_clock->p1 = bestp1;
933 best_clock->p2 = bestp2;
934
935 return true;
936}
a4fc5ed6 937
a5c961d1
PZ
938enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939 enum pipe pipe)
940{
941 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944 return intel_crtc->cpu_transcoder;
945}
946
a928d536
PZ
947static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948{
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 frame, frame_reg = PIPEFRAME(pipe);
951
952 frame = I915_READ(frame_reg);
953
954 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955 DRM_DEBUG_KMS("vblank wait timed out\n");
956}
957
9d0498a2
JB
958/**
959 * intel_wait_for_vblank - wait for vblank on a given pipe
960 * @dev: drm device
961 * @pipe: pipe to wait for
962 *
963 * Wait for vblank to occur on a given pipe. Needed for various bits of
964 * mode setting code.
965 */
966void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 967{
9d0498a2 968 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 969 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 970
a928d536
PZ
971 if (INTEL_INFO(dev)->gen >= 5) {
972 ironlake_wait_for_vblank(dev, pipe);
973 return;
974 }
975
300387c0
CW
976 /* Clear existing vblank status. Note this will clear any other
977 * sticky status fields as well.
978 *
979 * This races with i915_driver_irq_handler() with the result
980 * that either function could miss a vblank event. Here it is not
981 * fatal, as we will either wait upon the next vblank interrupt or
982 * timeout. Generally speaking intel_wait_for_vblank() is only
983 * called during modeset at which time the GPU should be idle and
984 * should *not* be performing page flips and thus not waiting on
985 * vblanks...
986 * Currently, the result of us stealing a vblank from the irq
987 * handler is that a single frame will be skipped during swapbuffers.
988 */
989 I915_WRITE(pipestat_reg,
990 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
9d0498a2 992 /* Wait for vblank interrupt bit to set */
481b6af3
CW
993 if (wait_for(I915_READ(pipestat_reg) &
994 PIPE_VBLANK_INTERRUPT_STATUS,
995 50))
9d0498a2
JB
996 DRM_DEBUG_KMS("vblank wait timed out\n");
997}
998
ab7ad7f6
KP
999/*
1000 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1001 * @dev: drm device
1002 * @pipe: pipe to wait for
1003 *
1004 * After disabling a pipe, we can't wait for vblank in the usual way,
1005 * spinning on the vblank interrupt status bit, since we won't actually
1006 * see an interrupt when the pipe is disabled.
1007 *
ab7ad7f6
KP
1008 * On Gen4 and above:
1009 * wait for the pipe register state bit to turn off
1010 *
1011 * Otherwise:
1012 * wait for the display line value to settle (it usually
1013 * ends up stopping at the start of the next frame).
58e10eb9 1014 *
9d0498a2 1015 */
58e10eb9 1016void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1017{
1018 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1019 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020 pipe);
ab7ad7f6
KP
1021
1022 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1023 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1024
1025 /* Wait for the Pipe State to go off */
58e10eb9
CW
1026 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027 100))
284637d9 1028 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1029 } else {
837ba00f 1030 u32 last_line, line_mask;
58e10eb9 1031 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
837ba00f
PZ
1034 if (IS_GEN2(dev))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
ab7ad7f6
KP
1039 /* Wait for the display line to settle */
1040 do {
837ba00f 1041 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1042 mdelay(5);
837ba00f 1043 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1044 time_after(timeout, jiffies));
1045 if (time_after(jiffies, timeout))
284637d9 1046 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1047 }
79e53945
JB
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
1056static void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
1070#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
040484af
JB
1073/* For ILK+ */
1074static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1075 struct intel_pch_pll *pll,
1076 struct intel_crtc *crtc,
1077 bool state)
040484af 1078{
040484af
JB
1079 u32 val;
1080 bool cur_state;
1081
9d82aa17
ED
1082 if (HAS_PCH_LPT(dev_priv->dev)) {
1083 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084 return;
1085 }
1086
92b27b08
CW
1087 if (WARN (!pll,
1088 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1089 return;
ee7b9f93 1090
92b27b08
CW
1091 val = I915_READ(pll->pll_reg);
1092 cur_state = !!(val & DPLL_VCO_ENABLE);
1093 WARN(cur_state != state,
1094 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095 pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097 /* Make sure the selected PLL is correctly attached to the transcoder */
1098 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1099 u32 pch_dpll;
1100
1101 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1102 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104 "PLL[%d] not attached to this transcoder %d: %08x\n",
1105 cur_state, crtc->pipe, pch_dpll)) {
1106 cur_state = !!(val >> (4*crtc->pipe + 3));
1107 WARN(cur_state != state,
1108 "PLL[%d] not %s on this transcoder %d: %08x\n",
1109 pll->pll_reg == _PCH_DPLL_B,
1110 state_string(state),
1111 crtc->pipe,
1112 val);
1113 }
d3ccbe86 1114 }
040484af 1115}
92b27b08
CW
1116#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1118
1119static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121{
1122 int reg;
1123 u32 val;
1124 bool cur_state;
ad80a810
PZ
1125 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126 pipe);
040484af 1127
bf507ef7
ED
1128 if (IS_HASWELL(dev_priv->dev)) {
1129 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1130 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1131 val = I915_READ(reg);
ad80a810 1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1133 } else {
1134 reg = FDI_TX_CTL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
040484af
JB
1138 WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
1148 int reg;
1149 u32 val;
1150 bool cur_state;
1151
d63fa0dc
PZ
1152 reg = FDI_RX_CTL(pipe);
1153 val = I915_READ(reg);
1154 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1155 WARN(cur_state != state,
1156 "FDI RX state assertion failure (expected %s, current %s)\n",
1157 state_string(state), state_string(cur_state));
1158}
1159#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1160#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161
1162static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1163 enum pipe pipe)
1164{
1165 int reg;
1166 u32 val;
1167
1168 /* ILK FDI PLL is always enabled */
1169 if (dev_priv->info->gen == 5)
1170 return;
1171
bf507ef7
ED
1172 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1173 if (IS_HASWELL(dev_priv->dev))
1174 return;
1175
040484af
JB
1176 reg = FDI_TX_CTL(pipe);
1177 val = I915_READ(reg);
1178 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1179}
1180
1181static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1182 enum pipe pipe)
1183{
1184 int reg;
1185 u32 val;
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
b840d907
JB
1221void assert_pipe(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
b24e7179
JB
1223{
1224 int reg;
1225 u32 val;
63d7bbe9 1226 bool cur_state;
702e7a56
PZ
1227 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1228 pipe);
b24e7179 1229
8e636784
DV
1230 /* if we need the pipe A quirk it must be always on */
1231 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1232 state = true;
1233
702e7a56 1234 reg = PIPECONF(cpu_transcoder);
b24e7179 1235 val = I915_READ(reg);
63d7bbe9
JB
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 WARN(cur_state != state,
1238 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1239 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1240}
1241
931872fc
CW
1242static void assert_plane(struct drm_i915_private *dev_priv,
1243 enum plane plane, bool state)
b24e7179
JB
1244{
1245 int reg;
1246 u32 val;
931872fc 1247 bool cur_state;
b24e7179
JB
1248
1249 reg = DSPCNTR(plane);
1250 val = I915_READ(reg);
931872fc
CW
1251 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1252 WARN(cur_state != state,
1253 "plane %c assertion failure (expected %s, current %s)\n",
1254 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1255}
1256
931872fc
CW
1257#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1258#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1259
b24e7179
JB
1260static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262{
1263 int reg, i;
1264 u32 val;
1265 int cur_pipe;
1266
19ec1358 1267 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1268 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1269 reg = DSPCNTR(pipe);
1270 val = I915_READ(reg);
1271 WARN((val & DISPLAY_PLANE_ENABLE),
1272 "plane %c assertion failure, should be disabled but not\n",
1273 plane_name(pipe));
19ec1358 1274 return;
28c05794 1275 }
19ec1358 1276
b24e7179
JB
1277 /* Need to check both planes against the pipe */
1278 for (i = 0; i < 2; i++) {
1279 reg = DSPCNTR(i);
1280 val = I915_READ(reg);
1281 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1282 DISPPLANE_SEL_PIPE_SHIFT;
1283 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1284 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1285 plane_name(i), pipe_name(pipe));
b24e7179
JB
1286 }
1287}
1288
92f2584a
JB
1289static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1290{
1291 u32 val;
1292 bool enabled;
1293
9d82aa17
ED
1294 if (HAS_PCH_LPT(dev_priv->dev)) {
1295 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1296 return;
1297 }
1298
92f2584a
JB
1299 val = I915_READ(PCH_DREF_CONTROL);
1300 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1301 DREF_SUPERSPREAD_SOURCE_MASK));
1302 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1303}
1304
1305static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1306 enum pipe pipe)
1307{
1308 int reg;
1309 u32 val;
1310 bool enabled;
1311
1312 reg = TRANSCONF(pipe);
1313 val = I915_READ(reg);
1314 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1315 WARN(enabled,
1316 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1317 pipe_name(pipe));
92f2584a
JB
1318}
1319
4e634389
KP
1320static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1322{
1323 if ((val & DP_PORT_EN) == 0)
1324 return false;
1325
1326 if (HAS_PCH_CPT(dev_priv->dev)) {
1327 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1328 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1329 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1330 return false;
1331 } else {
1332 if ((val & DP_PIPE_MASK) != (pipe << 30))
1333 return false;
1334 }
1335 return true;
1336}
1337
1519b995
KP
1338static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe, u32 val)
1340{
1341 if ((val & PORT_ENABLE) == 0)
1342 return false;
1343
1344 if (HAS_PCH_CPT(dev_priv->dev)) {
1345 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1346 return false;
1347 } else {
1348 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1349 return false;
1350 }
1351 return true;
1352}
1353
1354static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe, u32 val)
1356{
1357 if ((val & LVDS_PORT_EN) == 0)
1358 return false;
1359
1360 if (HAS_PCH_CPT(dev_priv->dev)) {
1361 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362 return false;
1363 } else {
1364 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1365 return false;
1366 }
1367 return true;
1368}
1369
1370static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, u32 val)
1372{
1373 if ((val & ADPA_DAC_ENABLE) == 0)
1374 return false;
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377 return false;
1378 } else {
1379 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1380 return false;
1381 }
1382 return true;
1383}
1384
291906f1 1385static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1386 enum pipe pipe, int reg, u32 port_sel)
291906f1 1387{
47a05eca 1388 u32 val = I915_READ(reg);
4e634389 1389 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1390 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1391 reg, pipe_name(pipe));
de9a35ab 1392
75c5da27
DV
1393 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1394 && (val & DP_PIPEB_SELECT),
de9a35ab 1395 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1396}
1397
1398static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1399 enum pipe pipe, int reg)
1400{
47a05eca 1401 u32 val = I915_READ(reg);
b70ad586 1402 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1403 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1404 reg, pipe_name(pipe));
de9a35ab 1405
75c5da27
DV
1406 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1407 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1408 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1409}
1410
1411static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413{
1414 int reg;
1415 u32 val;
291906f1 1416
f0575e92
KP
1417 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1418 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1419 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1420
1421 reg = PCH_ADPA;
1422 val = I915_READ(reg);
b70ad586 1423 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1424 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1425 pipe_name(pipe));
291906f1
JB
1426
1427 reg = PCH_LVDS;
1428 val = I915_READ(reg);
b70ad586 1429 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1430 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1431 pipe_name(pipe));
291906f1
JB
1432
1433 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1434 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1435 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1436}
1437
63d7bbe9
JB
1438/**
1439 * intel_enable_pll - enable a PLL
1440 * @dev_priv: i915 private structure
1441 * @pipe: pipe PLL to enable
1442 *
1443 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1444 * make sure the PLL reg is writable first though, since the panel write
1445 * protect mechanism may be enabled.
1446 *
1447 * Note! This is for pre-ILK only.
7434a255
TR
1448 *
1449 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9
JB
1450 */
1451static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1452{
1453 int reg;
1454 u32 val;
1455
1456 /* No really, not for ILK+ */
a0c4da24 1457 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1458
1459 /* PLL is protected by panel, make sure we can write it */
1460 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1461 assert_panel_unlocked(dev_priv, pipe);
1462
1463 reg = DPLL(pipe);
1464 val = I915_READ(reg);
1465 val |= DPLL_VCO_ENABLE;
1466
1467 /* We do this three times for luck */
1468 I915_WRITE(reg, val);
1469 POSTING_READ(reg);
1470 udelay(150); /* wait for warmup */
1471 I915_WRITE(reg, val);
1472 POSTING_READ(reg);
1473 udelay(150); /* wait for warmup */
1474 I915_WRITE(reg, val);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477}
1478
1479/**
1480 * intel_disable_pll - disable a PLL
1481 * @dev_priv: i915 private structure
1482 * @pipe: pipe PLL to disable
1483 *
1484 * Disable the PLL for @pipe, making sure the pipe is off first.
1485 *
1486 * Note! This is for pre-ILK only.
1487 */
1488static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1489{
1490 int reg;
1491 u32 val;
1492
1493 /* Don't disable pipe A or pipe A PLLs if needed */
1494 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495 return;
1496
1497 /* Make sure the pipe isn't still relying on us */
1498 assert_pipe_disabled(dev_priv, pipe);
1499
1500 reg = DPLL(pipe);
1501 val = I915_READ(reg);
1502 val &= ~DPLL_VCO_ENABLE;
1503 I915_WRITE(reg, val);
1504 POSTING_READ(reg);
1505}
1506
a416edef
ED
1507/* SBI access */
1508static void
988d6ee8
PZ
1509intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1510 enum intel_sbi_destination destination)
a416edef
ED
1511{
1512 unsigned long flags;
988d6ee8 1513 u32 tmp;
a416edef
ED
1514
1515 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
988d6ee8 1516 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
a416edef
ED
1517 DRM_ERROR("timeout waiting for SBI to become ready\n");
1518 goto out_unlock;
1519 }
1520
988d6ee8
PZ
1521 I915_WRITE(SBI_ADDR, (reg << 16));
1522 I915_WRITE(SBI_DATA, value);
1523
1524 if (destination == SBI_ICLK)
1525 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1526 else
1527 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1528 I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
a416edef 1529
39fb50f6 1530 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1531 100)) {
1532 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1533 goto out_unlock;
1534 }
1535
1536out_unlock:
1537 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1538}
1539
1540static u32
988d6ee8
PZ
1541intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542 enum intel_sbi_destination destination)
a416edef
ED
1543{
1544 unsigned long flags;
39fb50f6 1545 u32 value = 0;
a416edef
ED
1546
1547 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
988d6ee8 1548 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
a416edef
ED
1549 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550 goto out_unlock;
1551 }
1552
988d6ee8
PZ
1553 I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555 if (destination == SBI_ICLK)
1556 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557 else
1558 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559 I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
a416edef 1560
39fb50f6 1561 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1562 100)) {
1563 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564 goto out_unlock;
1565 }
1566
1567 value = I915_READ(SBI_DATA);
1568
1569out_unlock:
1570 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1571 return value;
1572}
1573
92f2584a 1574/**
b6b4e185 1575 * ironlake_enable_pch_pll - enable PCH PLL
92f2584a
JB
1576 * @dev_priv: i915 private structure
1577 * @pipe: pipe PLL to enable
1578 *
1579 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1580 * drives the transcoder clock.
1581 */
b6b4e185 1582static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1583{
ee7b9f93 1584 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1585 struct intel_pch_pll *pll;
92f2584a
JB
1586 int reg;
1587 u32 val;
1588
48da64a8 1589 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1590 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1591 pll = intel_crtc->pch_pll;
1592 if (pll == NULL)
1593 return;
1594
1595 if (WARN_ON(pll->refcount == 0))
1596 return;
ee7b9f93
JB
1597
1598 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1599 pll->pll_reg, pll->active, pll->on,
1600 intel_crtc->base.base.id);
92f2584a
JB
1601
1602 /* PCH refclock must be enabled first */
1603 assert_pch_refclk_enabled(dev_priv);
1604
ee7b9f93 1605 if (pll->active++ && pll->on) {
92b27b08 1606 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1607 return;
1608 }
1609
1610 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1611
1612 reg = pll->pll_reg;
92f2584a
JB
1613 val = I915_READ(reg);
1614 val |= DPLL_VCO_ENABLE;
1615 I915_WRITE(reg, val);
1616 POSTING_READ(reg);
1617 udelay(200);
ee7b9f93
JB
1618
1619 pll->on = true;
92f2584a
JB
1620}
1621
ee7b9f93 1622static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1623{
ee7b9f93
JB
1624 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1625 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1626 int reg;
ee7b9f93 1627 u32 val;
4c609cb8 1628
92f2584a
JB
1629 /* PCH only available on ILK+ */
1630 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1631 if (pll == NULL)
1632 return;
92f2584a 1633
48da64a8
CW
1634 if (WARN_ON(pll->refcount == 0))
1635 return;
7a419866 1636
ee7b9f93
JB
1637 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1638 pll->pll_reg, pll->active, pll->on,
1639 intel_crtc->base.base.id);
7a419866 1640
48da64a8 1641 if (WARN_ON(pll->active == 0)) {
92b27b08 1642 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1643 return;
1644 }
1645
ee7b9f93 1646 if (--pll->active) {
92b27b08 1647 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1648 return;
ee7b9f93
JB
1649 }
1650
1651 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1652
1653 /* Make sure transcoder isn't still depending on us */
1654 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1655
ee7b9f93 1656 reg = pll->pll_reg;
92f2584a
JB
1657 val = I915_READ(reg);
1658 val &= ~DPLL_VCO_ENABLE;
1659 I915_WRITE(reg, val);
1660 POSTING_READ(reg);
1661 udelay(200);
ee7b9f93
JB
1662
1663 pll->on = false;
92f2584a
JB
1664}
1665
b8a4f404
PZ
1666static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1667 enum pipe pipe)
040484af 1668{
23670b32 1669 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1670 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
23670b32 1671 uint32_t reg, val, pipeconf_val;
040484af
JB
1672
1673 /* PCH only available on ILK+ */
1674 BUG_ON(dev_priv->info->gen < 5);
1675
1676 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1677 assert_pch_pll_enabled(dev_priv,
1678 to_intel_crtc(crtc)->pch_pll,
1679 to_intel_crtc(crtc));
040484af
JB
1680
1681 /* FDI must be feeding us bits for PCH ports */
1682 assert_fdi_tx_enabled(dev_priv, pipe);
1683 assert_fdi_rx_enabled(dev_priv, pipe);
1684
23670b32
DV
1685 if (HAS_PCH_CPT(dev)) {
1686 /* Workaround: Set the timing override bit before enabling the
1687 * pch transcoder. */
1688 reg = TRANS_CHICKEN2(pipe);
1689 val = I915_READ(reg);
1690 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1691 I915_WRITE(reg, val);
59c859d6 1692 }
23670b32 1693
040484af
JB
1694 reg = TRANSCONF(pipe);
1695 val = I915_READ(reg);
5f7f726d 1696 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1697
1698 if (HAS_PCH_IBX(dev_priv->dev)) {
1699 /*
1700 * make the BPC in transcoder be consistent with
1701 * that in pipeconf reg.
1702 */
1703 val &= ~PIPE_BPC_MASK;
5f7f726d 1704 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1705 }
5f7f726d
PZ
1706
1707 val &= ~TRANS_INTERLACE_MASK;
1708 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1709 if (HAS_PCH_IBX(dev_priv->dev) &&
1710 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1711 val |= TRANS_LEGACY_INTERLACED_ILK;
1712 else
1713 val |= TRANS_INTERLACED;
5f7f726d
PZ
1714 else
1715 val |= TRANS_PROGRESSIVE;
1716
040484af
JB
1717 I915_WRITE(reg, val | TRANS_ENABLE);
1718 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1719 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1720}
1721
8fb033d7 1722static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1723 enum transcoder cpu_transcoder)
040484af 1724{
8fb033d7 1725 u32 val, pipeconf_val;
8fb033d7
PZ
1726
1727 /* PCH only available on ILK+ */
1728 BUG_ON(dev_priv->info->gen < 5);
1729
8fb033d7 1730 /* FDI must be feeding us bits for PCH ports */
937bb610
PZ
1731 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1732 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1733
223a6fdf
PZ
1734 /* Workaround: set timing override bit. */
1735 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1736 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1737 I915_WRITE(_TRANSA_CHICKEN2, val);
1738
25f3ef11 1739 val = TRANS_ENABLE;
937bb610 1740 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1741
9a76b1c6
PZ
1742 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1743 PIPECONF_INTERLACED_ILK)
a35f2679 1744 val |= TRANS_INTERLACED;
8fb033d7
PZ
1745 else
1746 val |= TRANS_PROGRESSIVE;
1747
25f3ef11 1748 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
937bb610
PZ
1749 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1750 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1751}
1752
b8a4f404
PZ
1753static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1754 enum pipe pipe)
040484af 1755{
23670b32
DV
1756 struct drm_device *dev = dev_priv->dev;
1757 uint32_t reg, val;
040484af
JB
1758
1759 /* FDI relies on the transcoder */
1760 assert_fdi_tx_disabled(dev_priv, pipe);
1761 assert_fdi_rx_disabled(dev_priv, pipe);
1762
291906f1
JB
1763 /* Ports must be off as well */
1764 assert_pch_ports_disabled(dev_priv, pipe);
1765
040484af
JB
1766 reg = TRANSCONF(pipe);
1767 val = I915_READ(reg);
1768 val &= ~TRANS_ENABLE;
1769 I915_WRITE(reg, val);
1770 /* wait for PCH transcoder off, transcoder state */
1771 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1772 DRM_ERROR("failed to disable transcoder %d\n", pipe);
23670b32
DV
1773
1774 if (!HAS_PCH_IBX(dev)) {
1775 /* Workaround: Clear the timing override chicken bit again. */
1776 reg = TRANS_CHICKEN2(pipe);
1777 val = I915_READ(reg);
1778 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1779 I915_WRITE(reg, val);
1780 }
040484af
JB
1781}
1782
ab4d966c 1783static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1784{
8fb033d7
PZ
1785 u32 val;
1786
8a52fd9f 1787 val = I915_READ(_TRANSACONF);
8fb033d7 1788 val &= ~TRANS_ENABLE;
8a52fd9f 1789 I915_WRITE(_TRANSACONF, val);
8fb033d7 1790 /* wait for PCH transcoder off, transcoder state */
8a52fd9f
PZ
1791 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1792 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1793
1794 /* Workaround: clear timing override bit. */
1795 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1796 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1797 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1798}
1799
b24e7179 1800/**
309cfea8 1801 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1802 * @dev_priv: i915 private structure
1803 * @pipe: pipe to enable
040484af 1804 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1805 *
1806 * Enable @pipe, making sure that various hardware specific requirements
1807 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1808 *
1809 * @pipe should be %PIPE_A or %PIPE_B.
1810 *
1811 * Will wait until the pipe is actually running (i.e. first vblank) before
1812 * returning.
1813 */
040484af
JB
1814static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1815 bool pch_port)
b24e7179 1816{
702e7a56
PZ
1817 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1818 pipe);
cc391bbb 1819 enum transcoder pch_transcoder;
b24e7179
JB
1820 int reg;
1821 u32 val;
1822
cc391bbb
PZ
1823 if (IS_HASWELL(dev_priv->dev))
1824 pch_transcoder = TRANSCODER_A;
1825 else
1826 pch_transcoder = pipe;
1827
b24e7179
JB
1828 /*
1829 * A pipe without a PLL won't actually be able to drive bits from
1830 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1831 * need the check.
1832 */
1833 if (!HAS_PCH_SPLIT(dev_priv->dev))
1834 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1835 else {
1836 if (pch_port) {
1837 /* if driving the PCH, we need FDI enabled */
cc391bbb
PZ
1838 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1839 assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
040484af
JB
1840 }
1841 /* FIXME: assert CPU port conditions for SNB+ */
1842 }
b24e7179 1843
702e7a56 1844 reg = PIPECONF(cpu_transcoder);
b24e7179 1845 val = I915_READ(reg);
00d70b15
CW
1846 if (val & PIPECONF_ENABLE)
1847 return;
1848
1849 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1850 intel_wait_for_vblank(dev_priv->dev, pipe);
1851}
1852
1853/**
309cfea8 1854 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1855 * @dev_priv: i915 private structure
1856 * @pipe: pipe to disable
1857 *
1858 * Disable @pipe, making sure that various hardware specific requirements
1859 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1860 *
1861 * @pipe should be %PIPE_A or %PIPE_B.
1862 *
1863 * Will wait until the pipe has shut down before returning.
1864 */
1865static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
1867{
702e7a56
PZ
1868 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1869 pipe);
b24e7179
JB
1870 int reg;
1871 u32 val;
1872
1873 /*
1874 * Make sure planes won't keep trying to pump pixels to us,
1875 * or we might hang the display.
1876 */
1877 assert_planes_disabled(dev_priv, pipe);
1878
1879 /* Don't disable pipe A or pipe A PLLs if needed */
1880 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1881 return;
1882
702e7a56 1883 reg = PIPECONF(cpu_transcoder);
b24e7179 1884 val = I915_READ(reg);
00d70b15
CW
1885 if ((val & PIPECONF_ENABLE) == 0)
1886 return;
1887
1888 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1889 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1890}
1891
d74362c9
KP
1892/*
1893 * Plane regs are double buffered, going from enabled->disabled needs a
1894 * trigger in order to latch. The display address reg provides this.
1895 */
6f1d69b0 1896void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1897 enum plane plane)
1898{
14f86147
DL
1899 if (dev_priv->info->gen >= 4)
1900 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1901 else
1902 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1903}
1904
b24e7179
JB
1905/**
1906 * intel_enable_plane - enable a display plane on a given pipe
1907 * @dev_priv: i915 private structure
1908 * @plane: plane to enable
1909 * @pipe: pipe being fed
1910 *
1911 * Enable @plane on @pipe, making sure that @pipe is running first.
1912 */
1913static void intel_enable_plane(struct drm_i915_private *dev_priv,
1914 enum plane plane, enum pipe pipe)
1915{
1916 int reg;
1917 u32 val;
1918
1919 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1920 assert_pipe_enabled(dev_priv, pipe);
1921
1922 reg = DSPCNTR(plane);
1923 val = I915_READ(reg);
00d70b15
CW
1924 if (val & DISPLAY_PLANE_ENABLE)
1925 return;
1926
1927 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1928 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1929 intel_wait_for_vblank(dev_priv->dev, pipe);
1930}
1931
b24e7179
JB
1932/**
1933 * intel_disable_plane - disable a display plane
1934 * @dev_priv: i915 private structure
1935 * @plane: plane to disable
1936 * @pipe: pipe consuming the data
1937 *
1938 * Disable @plane; should be an independent operation.
1939 */
1940static void intel_disable_plane(struct drm_i915_private *dev_priv,
1941 enum plane plane, enum pipe pipe)
1942{
1943 int reg;
1944 u32 val;
1945
1946 reg = DSPCNTR(plane);
1947 val = I915_READ(reg);
00d70b15
CW
1948 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1949 return;
1950
1951 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1952 intel_flush_display_plane(dev_priv, plane);
1953 intel_wait_for_vblank(dev_priv->dev, pipe);
1954}
1955
127bd2ac 1956int
48b956c5 1957intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1958 struct drm_i915_gem_object *obj,
919926ae 1959 struct intel_ring_buffer *pipelined)
6b95a207 1960{
ce453d81 1961 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1962 u32 alignment;
1963 int ret;
1964
05394f39 1965 switch (obj->tiling_mode) {
6b95a207 1966 case I915_TILING_NONE:
534843da
CW
1967 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1968 alignment = 128 * 1024;
a6c45cf0 1969 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1970 alignment = 4 * 1024;
1971 else
1972 alignment = 64 * 1024;
6b95a207
KH
1973 break;
1974 case I915_TILING_X:
1975 /* pin() will align the object as required by fence */
1976 alignment = 0;
1977 break;
1978 case I915_TILING_Y:
1979 /* FIXME: Is this true? */
1980 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1981 return -EINVAL;
1982 default:
1983 BUG();
1984 }
1985
ce453d81 1986 dev_priv->mm.interruptible = false;
2da3b9b9 1987 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1988 if (ret)
ce453d81 1989 goto err_interruptible;
6b95a207
KH
1990
1991 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1992 * fence, whereas 965+ only requires a fence if using
1993 * framebuffer compression. For simplicity, we always install
1994 * a fence as the cost is not that onerous.
1995 */
06d98131 1996 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1997 if (ret)
1998 goto err_unpin;
1690e1eb 1999
9a5a53b3 2000 i915_gem_object_pin_fence(obj);
6b95a207 2001
ce453d81 2002 dev_priv->mm.interruptible = true;
6b95a207 2003 return 0;
48b956c5
CW
2004
2005err_unpin:
2006 i915_gem_object_unpin(obj);
ce453d81
CW
2007err_interruptible:
2008 dev_priv->mm.interruptible = true;
48b956c5 2009 return ret;
6b95a207
KH
2010}
2011
1690e1eb
CW
2012void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2013{
2014 i915_gem_object_unpin_fence(obj);
2015 i915_gem_object_unpin(obj);
2016}
2017
c2c75131
DV
2018/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2019 * is assumed to be a power-of-two. */
5a35e99e
DL
2020unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2021 unsigned int bpp,
2022 unsigned int pitch)
c2c75131
DV
2023{
2024 int tile_rows, tiles;
2025
2026 tile_rows = *y / 8;
2027 *y %= 8;
2028 tiles = *x / (512/bpp);
2029 *x %= 512/bpp;
2030
2031 return tile_rows * pitch * 8 + tiles * 4096;
2032}
2033
17638cd6
JB
2034static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2035 int x, int y)
81255565
JB
2036{
2037 struct drm_device *dev = crtc->dev;
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2040 struct intel_framebuffer *intel_fb;
05394f39 2041 struct drm_i915_gem_object *obj;
81255565 2042 int plane = intel_crtc->plane;
e506a0c6 2043 unsigned long linear_offset;
81255565 2044 u32 dspcntr;
5eddb70b 2045 u32 reg;
81255565
JB
2046
2047 switch (plane) {
2048 case 0:
2049 case 1:
2050 break;
2051 default:
2052 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2053 return -EINVAL;
2054 }
2055
2056 intel_fb = to_intel_framebuffer(fb);
2057 obj = intel_fb->obj;
81255565 2058
5eddb70b
CW
2059 reg = DSPCNTR(plane);
2060 dspcntr = I915_READ(reg);
81255565
JB
2061 /* Mask out pixel format bits in case we change it */
2062 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2063 switch (fb->pixel_format) {
2064 case DRM_FORMAT_C8:
81255565
JB
2065 dspcntr |= DISPPLANE_8BPP;
2066 break;
57779d06
VS
2067 case DRM_FORMAT_XRGB1555:
2068 case DRM_FORMAT_ARGB1555:
2069 dspcntr |= DISPPLANE_BGRX555;
81255565 2070 break;
57779d06
VS
2071 case DRM_FORMAT_RGB565:
2072 dspcntr |= DISPPLANE_BGRX565;
2073 break;
2074 case DRM_FORMAT_XRGB8888:
2075 case DRM_FORMAT_ARGB8888:
2076 dspcntr |= DISPPLANE_BGRX888;
2077 break;
2078 case DRM_FORMAT_XBGR8888:
2079 case DRM_FORMAT_ABGR8888:
2080 dspcntr |= DISPPLANE_RGBX888;
2081 break;
2082 case DRM_FORMAT_XRGB2101010:
2083 case DRM_FORMAT_ARGB2101010:
2084 dspcntr |= DISPPLANE_BGRX101010;
2085 break;
2086 case DRM_FORMAT_XBGR2101010:
2087 case DRM_FORMAT_ABGR2101010:
2088 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2089 break;
2090 default:
57779d06 2091 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2092 return -EINVAL;
2093 }
57779d06 2094
a6c45cf0 2095 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2096 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2097 dspcntr |= DISPPLANE_TILED;
2098 else
2099 dspcntr &= ~DISPPLANE_TILED;
2100 }
2101
5eddb70b 2102 I915_WRITE(reg, dspcntr);
81255565 2103
e506a0c6 2104 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2105
c2c75131
DV
2106 if (INTEL_INFO(dev)->gen >= 4) {
2107 intel_crtc->dspaddr_offset =
5a35e99e
DL
2108 intel_gen4_compute_offset_xtiled(&x, &y,
2109 fb->bits_per_pixel / 8,
2110 fb->pitches[0]);
c2c75131
DV
2111 linear_offset -= intel_crtc->dspaddr_offset;
2112 } else {
e506a0c6 2113 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2114 }
e506a0c6
DV
2115
2116 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2117 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2118 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2119 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2120 I915_MODIFY_DISPBASE(DSPSURF(plane),
2121 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2122 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2123 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2124 } else
e506a0c6 2125 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2126 POSTING_READ(reg);
81255565 2127
17638cd6
JB
2128 return 0;
2129}
2130
2131static int ironlake_update_plane(struct drm_crtc *crtc,
2132 struct drm_framebuffer *fb, int x, int y)
2133{
2134 struct drm_device *dev = crtc->dev;
2135 struct drm_i915_private *dev_priv = dev->dev_private;
2136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137 struct intel_framebuffer *intel_fb;
2138 struct drm_i915_gem_object *obj;
2139 int plane = intel_crtc->plane;
e506a0c6 2140 unsigned long linear_offset;
17638cd6
JB
2141 u32 dspcntr;
2142 u32 reg;
2143
2144 switch (plane) {
2145 case 0:
2146 case 1:
27f8227b 2147 case 2:
17638cd6
JB
2148 break;
2149 default:
2150 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2151 return -EINVAL;
2152 }
2153
2154 intel_fb = to_intel_framebuffer(fb);
2155 obj = intel_fb->obj;
2156
2157 reg = DSPCNTR(plane);
2158 dspcntr = I915_READ(reg);
2159 /* Mask out pixel format bits in case we change it */
2160 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2161 switch (fb->pixel_format) {
2162 case DRM_FORMAT_C8:
17638cd6
JB
2163 dspcntr |= DISPPLANE_8BPP;
2164 break;
57779d06
VS
2165 case DRM_FORMAT_RGB565:
2166 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2167 break;
57779d06
VS
2168 case DRM_FORMAT_XRGB8888:
2169 case DRM_FORMAT_ARGB8888:
2170 dspcntr |= DISPPLANE_BGRX888;
2171 break;
2172 case DRM_FORMAT_XBGR8888:
2173 case DRM_FORMAT_ABGR8888:
2174 dspcntr |= DISPPLANE_RGBX888;
2175 break;
2176 case DRM_FORMAT_XRGB2101010:
2177 case DRM_FORMAT_ARGB2101010:
2178 dspcntr |= DISPPLANE_BGRX101010;
2179 break;
2180 case DRM_FORMAT_XBGR2101010:
2181 case DRM_FORMAT_ABGR2101010:
2182 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2183 break;
2184 default:
57779d06 2185 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2186 return -EINVAL;
2187 }
2188
2189 if (obj->tiling_mode != I915_TILING_NONE)
2190 dspcntr |= DISPPLANE_TILED;
2191 else
2192 dspcntr &= ~DISPPLANE_TILED;
2193
2194 /* must disable */
2195 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2196
2197 I915_WRITE(reg, dspcntr);
2198
e506a0c6 2199 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2200 intel_crtc->dspaddr_offset =
5a35e99e
DL
2201 intel_gen4_compute_offset_xtiled(&x, &y,
2202 fb->bits_per_pixel / 8,
2203 fb->pitches[0]);
c2c75131 2204 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2205
e506a0c6
DV
2206 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2207 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2208 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2209 I915_MODIFY_DISPBASE(DSPSURF(plane),
2210 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2211 if (IS_HASWELL(dev)) {
2212 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2213 } else {
2214 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2215 I915_WRITE(DSPLINOFF(plane), linear_offset);
2216 }
17638cd6
JB
2217 POSTING_READ(reg);
2218
2219 return 0;
2220}
2221
2222/* Assume fb object is pinned & idle & fenced and just update base pointers */
2223static int
2224intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2225 int x, int y, enum mode_set_atomic state)
2226{
2227 struct drm_device *dev = crtc->dev;
2228 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2229
6b8e6ed0
CW
2230 if (dev_priv->display.disable_fbc)
2231 dev_priv->display.disable_fbc(dev);
3dec0095 2232 intel_increase_pllclock(crtc);
81255565 2233
6b8e6ed0 2234 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2235}
2236
14667a4b
CW
2237static int
2238intel_finish_fb(struct drm_framebuffer *old_fb)
2239{
2240 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2241 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242 bool was_interruptible = dev_priv->mm.interruptible;
2243 int ret;
2244
2245 wait_event(dev_priv->pending_flip_queue,
2246 atomic_read(&dev_priv->mm.wedged) ||
2247 atomic_read(&obj->pending_flip) == 0);
2248
2249 /* Big Hammer, we also need to ensure that any pending
2250 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2251 * current scanout is retired before unpinning the old
2252 * framebuffer.
2253 *
2254 * This should only fail upon a hung GPU, in which case we
2255 * can safely continue.
2256 */
2257 dev_priv->mm.interruptible = false;
2258 ret = i915_gem_object_finish_gpu(obj);
2259 dev_priv->mm.interruptible = was_interruptible;
2260
2261 return ret;
2262}
2263
198598d0
VS
2264static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2265{
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_master_private *master_priv;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269
2270 if (!dev->primary->master)
2271 return;
2272
2273 master_priv = dev->primary->master->driver_priv;
2274 if (!master_priv->sarea_priv)
2275 return;
2276
2277 switch (intel_crtc->pipe) {
2278 case 0:
2279 master_priv->sarea_priv->pipeA_x = x;
2280 master_priv->sarea_priv->pipeA_y = y;
2281 break;
2282 case 1:
2283 master_priv->sarea_priv->pipeB_x = x;
2284 master_priv->sarea_priv->pipeB_y = y;
2285 break;
2286 default:
2287 break;
2288 }
2289}
2290
5c3b82e2 2291static int
3c4fdcfb 2292intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2293 struct drm_framebuffer *fb)
79e53945
JB
2294{
2295 struct drm_device *dev = crtc->dev;
6b8e6ed0 2296 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2298 struct drm_framebuffer *old_fb;
5c3b82e2 2299 int ret;
79e53945
JB
2300
2301 /* no fb bound */
94352cf9 2302 if (!fb) {
a5071c2f 2303 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2304 return 0;
2305 }
2306
5826eca5
ED
2307 if(intel_crtc->plane > dev_priv->num_pipe) {
2308 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2309 intel_crtc->plane,
2310 dev_priv->num_pipe);
5c3b82e2 2311 return -EINVAL;
79e53945
JB
2312 }
2313
5c3b82e2 2314 mutex_lock(&dev->struct_mutex);
265db958 2315 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2316 to_intel_framebuffer(fb)->obj,
919926ae 2317 NULL);
5c3b82e2
CW
2318 if (ret != 0) {
2319 mutex_unlock(&dev->struct_mutex);
a5071c2f 2320 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2321 return ret;
2322 }
79e53945 2323
94352cf9
DV
2324 if (crtc->fb)
2325 intel_finish_fb(crtc->fb);
265db958 2326
94352cf9 2327 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2328 if (ret) {
94352cf9 2329 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2330 mutex_unlock(&dev->struct_mutex);
a5071c2f 2331 DRM_ERROR("failed to update base address\n");
4e6cfefc 2332 return ret;
79e53945 2333 }
3c4fdcfb 2334
94352cf9
DV
2335 old_fb = crtc->fb;
2336 crtc->fb = fb;
6c4c86f5
DV
2337 crtc->x = x;
2338 crtc->y = y;
94352cf9 2339
b7f1de28
CW
2340 if (old_fb) {
2341 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2342 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2343 }
652c393a 2344
6b8e6ed0 2345 intel_update_fbc(dev);
5c3b82e2 2346 mutex_unlock(&dev->struct_mutex);
79e53945 2347
198598d0 2348 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2349
2350 return 0;
79e53945
JB
2351}
2352
5eddb70b 2353static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2354{
2355 struct drm_device *dev = crtc->dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357 u32 dpa_ctl;
2358
28c97730 2359 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2360 dpa_ctl = I915_READ(DP_A);
2361 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2362
2363 if (clock < 200000) {
2364 u32 temp;
2365 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2366 /* workaround for 160Mhz:
2367 1) program 0x4600c bits 15:0 = 0x8124
2368 2) program 0x46010 bit 0 = 1
2369 3) program 0x46034 bit 24 = 1
2370 4) program 0x64000 bit 14 = 1
2371 */
2372 temp = I915_READ(0x4600c);
2373 temp &= 0xffff0000;
2374 I915_WRITE(0x4600c, temp | 0x8124);
2375
2376 temp = I915_READ(0x46010);
2377 I915_WRITE(0x46010, temp | 1);
2378
2379 temp = I915_READ(0x46034);
2380 I915_WRITE(0x46034, temp | (1 << 24));
2381 } else {
2382 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2383 }
2384 I915_WRITE(DP_A, dpa_ctl);
2385
5eddb70b 2386 POSTING_READ(DP_A);
32f9d658
ZW
2387 udelay(500);
2388}
2389
5e84e1a4
ZW
2390static void intel_fdi_normal_train(struct drm_crtc *crtc)
2391{
2392 struct drm_device *dev = crtc->dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2395 int pipe = intel_crtc->pipe;
2396 u32 reg, temp;
2397
2398 /* enable normal train */
2399 reg = FDI_TX_CTL(pipe);
2400 temp = I915_READ(reg);
61e499bf 2401 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2402 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2403 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2404 } else {
2405 temp &= ~FDI_LINK_TRAIN_NONE;
2406 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2407 }
5e84e1a4
ZW
2408 I915_WRITE(reg, temp);
2409
2410 reg = FDI_RX_CTL(pipe);
2411 temp = I915_READ(reg);
2412 if (HAS_PCH_CPT(dev)) {
2413 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2414 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2415 } else {
2416 temp &= ~FDI_LINK_TRAIN_NONE;
2417 temp |= FDI_LINK_TRAIN_NONE;
2418 }
2419 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2420
2421 /* wait one idle pattern time */
2422 POSTING_READ(reg);
2423 udelay(1000);
357555c0
JB
2424
2425 /* IVB wants error correction enabled */
2426 if (IS_IVYBRIDGE(dev))
2427 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2428 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2429}
2430
01a415fd
DV
2431static void ivb_modeset_global_resources(struct drm_device *dev)
2432{
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 struct intel_crtc *pipe_B_crtc =
2435 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2436 struct intel_crtc *pipe_C_crtc =
2437 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2438 uint32_t temp;
2439
2440 /* When everything is off disable fdi C so that we could enable fdi B
2441 * with all lanes. XXX: This misses the case where a pipe is not using
2442 * any pch resources and so doesn't need any fdi lanes. */
2443 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2444 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2445 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2446
2447 temp = I915_READ(SOUTH_CHICKEN1);
2448 temp &= ~FDI_BC_BIFURCATION_SELECT;
2449 DRM_DEBUG_KMS("disabling fdi C rx\n");
2450 I915_WRITE(SOUTH_CHICKEN1, temp);
2451 }
2452}
2453
8db9d77b
ZW
2454/* The FDI link training functions for ILK/Ibexpeak. */
2455static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2456{
2457 struct drm_device *dev = crtc->dev;
2458 struct drm_i915_private *dev_priv = dev->dev_private;
2459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2460 int pipe = intel_crtc->pipe;
0fc932b8 2461 int plane = intel_crtc->plane;
5eddb70b 2462 u32 reg, temp, tries;
8db9d77b 2463
0fc932b8
JB
2464 /* FDI needs bits from pipe & plane first */
2465 assert_pipe_enabled(dev_priv, pipe);
2466 assert_plane_enabled(dev_priv, plane);
2467
e1a44743
AJ
2468 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469 for train result */
5eddb70b
CW
2470 reg = FDI_RX_IMR(pipe);
2471 temp = I915_READ(reg);
e1a44743
AJ
2472 temp &= ~FDI_RX_SYMBOL_LOCK;
2473 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2474 I915_WRITE(reg, temp);
2475 I915_READ(reg);
e1a44743
AJ
2476 udelay(150);
2477
8db9d77b 2478 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2479 reg = FDI_TX_CTL(pipe);
2480 temp = I915_READ(reg);
77ffb597
AJ
2481 temp &= ~(7 << 19);
2482 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2483 temp &= ~FDI_LINK_TRAIN_NONE;
2484 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2485 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2486
5eddb70b
CW
2487 reg = FDI_RX_CTL(pipe);
2488 temp = I915_READ(reg);
8db9d77b
ZW
2489 temp &= ~FDI_LINK_TRAIN_NONE;
2490 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2491 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493 POSTING_READ(reg);
8db9d77b
ZW
2494 udelay(150);
2495
5b2adf89 2496 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2497 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2498 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2499 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2500
5eddb70b 2501 reg = FDI_RX_IIR(pipe);
e1a44743 2502 for (tries = 0; tries < 5; tries++) {
5eddb70b 2503 temp = I915_READ(reg);
8db9d77b
ZW
2504 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2505
2506 if ((temp & FDI_RX_BIT_LOCK)) {
2507 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2508 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2509 break;
2510 }
8db9d77b 2511 }
e1a44743 2512 if (tries == 5)
5eddb70b 2513 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2514
2515 /* Train 2 */
5eddb70b
CW
2516 reg = FDI_TX_CTL(pipe);
2517 temp = I915_READ(reg);
8db9d77b
ZW
2518 temp &= ~FDI_LINK_TRAIN_NONE;
2519 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2520 I915_WRITE(reg, temp);
8db9d77b 2521
5eddb70b
CW
2522 reg = FDI_RX_CTL(pipe);
2523 temp = I915_READ(reg);
8db9d77b
ZW
2524 temp &= ~FDI_LINK_TRAIN_NONE;
2525 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2526 I915_WRITE(reg, temp);
8db9d77b 2527
5eddb70b
CW
2528 POSTING_READ(reg);
2529 udelay(150);
8db9d77b 2530
5eddb70b 2531 reg = FDI_RX_IIR(pipe);
e1a44743 2532 for (tries = 0; tries < 5; tries++) {
5eddb70b 2533 temp = I915_READ(reg);
8db9d77b
ZW
2534 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2535
2536 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2537 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2538 DRM_DEBUG_KMS("FDI train 2 done.\n");
2539 break;
2540 }
8db9d77b 2541 }
e1a44743 2542 if (tries == 5)
5eddb70b 2543 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2544
2545 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2546
8db9d77b
ZW
2547}
2548
0206e353 2549static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2550 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2551 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2552 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2553 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2554};
2555
2556/* The FDI link training functions for SNB/Cougarpoint. */
2557static void gen6_fdi_link_train(struct drm_crtc *crtc)
2558{
2559 struct drm_device *dev = crtc->dev;
2560 struct drm_i915_private *dev_priv = dev->dev_private;
2561 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2562 int pipe = intel_crtc->pipe;
fa37d39e 2563 u32 reg, temp, i, retry;
8db9d77b 2564
e1a44743
AJ
2565 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2566 for train result */
5eddb70b
CW
2567 reg = FDI_RX_IMR(pipe);
2568 temp = I915_READ(reg);
e1a44743
AJ
2569 temp &= ~FDI_RX_SYMBOL_LOCK;
2570 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2571 I915_WRITE(reg, temp);
2572
2573 POSTING_READ(reg);
e1a44743
AJ
2574 udelay(150);
2575
8db9d77b 2576 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2577 reg = FDI_TX_CTL(pipe);
2578 temp = I915_READ(reg);
77ffb597
AJ
2579 temp &= ~(7 << 19);
2580 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2581 temp &= ~FDI_LINK_TRAIN_NONE;
2582 temp |= FDI_LINK_TRAIN_PATTERN_1;
2583 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2584 /* SNB-B */
2585 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2586 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2587
d74cf324
DV
2588 I915_WRITE(FDI_RX_MISC(pipe),
2589 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2590
5eddb70b
CW
2591 reg = FDI_RX_CTL(pipe);
2592 temp = I915_READ(reg);
8db9d77b
ZW
2593 if (HAS_PCH_CPT(dev)) {
2594 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2595 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2596 } else {
2597 temp &= ~FDI_LINK_TRAIN_NONE;
2598 temp |= FDI_LINK_TRAIN_PATTERN_1;
2599 }
5eddb70b
CW
2600 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2601
2602 POSTING_READ(reg);
8db9d77b
ZW
2603 udelay(150);
2604
0206e353 2605 for (i = 0; i < 4; i++) {
5eddb70b
CW
2606 reg = FDI_TX_CTL(pipe);
2607 temp = I915_READ(reg);
8db9d77b
ZW
2608 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2609 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
8db9d77b
ZW
2613 udelay(500);
2614
fa37d39e
SP
2615 for (retry = 0; retry < 5; retry++) {
2616 reg = FDI_RX_IIR(pipe);
2617 temp = I915_READ(reg);
2618 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619 if (temp & FDI_RX_BIT_LOCK) {
2620 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2621 DRM_DEBUG_KMS("FDI train 1 done.\n");
2622 break;
2623 }
2624 udelay(50);
8db9d77b 2625 }
fa37d39e
SP
2626 if (retry < 5)
2627 break;
8db9d77b
ZW
2628 }
2629 if (i == 4)
5eddb70b 2630 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2631
2632 /* Train 2 */
5eddb70b
CW
2633 reg = FDI_TX_CTL(pipe);
2634 temp = I915_READ(reg);
8db9d77b
ZW
2635 temp &= ~FDI_LINK_TRAIN_NONE;
2636 temp |= FDI_LINK_TRAIN_PATTERN_2;
2637 if (IS_GEN6(dev)) {
2638 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639 /* SNB-B */
2640 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2641 }
5eddb70b 2642 I915_WRITE(reg, temp);
8db9d77b 2643
5eddb70b
CW
2644 reg = FDI_RX_CTL(pipe);
2645 temp = I915_READ(reg);
8db9d77b
ZW
2646 if (HAS_PCH_CPT(dev)) {
2647 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2648 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2649 } else {
2650 temp &= ~FDI_LINK_TRAIN_NONE;
2651 temp |= FDI_LINK_TRAIN_PATTERN_2;
2652 }
5eddb70b
CW
2653 I915_WRITE(reg, temp);
2654
2655 POSTING_READ(reg);
8db9d77b
ZW
2656 udelay(150);
2657
0206e353 2658 for (i = 0; i < 4; i++) {
5eddb70b
CW
2659 reg = FDI_TX_CTL(pipe);
2660 temp = I915_READ(reg);
8db9d77b
ZW
2661 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2663 I915_WRITE(reg, temp);
2664
2665 POSTING_READ(reg);
8db9d77b
ZW
2666 udelay(500);
2667
fa37d39e
SP
2668 for (retry = 0; retry < 5; retry++) {
2669 reg = FDI_RX_IIR(pipe);
2670 temp = I915_READ(reg);
2671 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2672 if (temp & FDI_RX_SYMBOL_LOCK) {
2673 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2674 DRM_DEBUG_KMS("FDI train 2 done.\n");
2675 break;
2676 }
2677 udelay(50);
8db9d77b 2678 }
fa37d39e
SP
2679 if (retry < 5)
2680 break;
8db9d77b
ZW
2681 }
2682 if (i == 4)
5eddb70b 2683 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2684
2685 DRM_DEBUG_KMS("FDI train done.\n");
2686}
2687
357555c0
JB
2688/* Manual link training for Ivy Bridge A0 parts */
2689static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2690{
2691 struct drm_device *dev = crtc->dev;
2692 struct drm_i915_private *dev_priv = dev->dev_private;
2693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2694 int pipe = intel_crtc->pipe;
2695 u32 reg, temp, i;
2696
2697 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2698 for train result */
2699 reg = FDI_RX_IMR(pipe);
2700 temp = I915_READ(reg);
2701 temp &= ~FDI_RX_SYMBOL_LOCK;
2702 temp &= ~FDI_RX_BIT_LOCK;
2703 I915_WRITE(reg, temp);
2704
2705 POSTING_READ(reg);
2706 udelay(150);
2707
01a415fd
DV
2708 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2709 I915_READ(FDI_RX_IIR(pipe)));
2710
357555c0
JB
2711 /* enable CPU FDI TX and PCH FDI RX */
2712 reg = FDI_TX_CTL(pipe);
2713 temp = I915_READ(reg);
2714 temp &= ~(7 << 19);
2715 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2716 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2717 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2718 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2720 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2721 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2722
d74cf324
DV
2723 I915_WRITE(FDI_RX_MISC(pipe),
2724 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2725
357555c0
JB
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 temp &= ~FDI_LINK_TRAIN_AUTO;
2729 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2730 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2731 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2732 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2733
2734 POSTING_READ(reg);
2735 udelay(150);
2736
0206e353 2737 for (i = 0; i < 4; i++) {
357555c0
JB
2738 reg = FDI_TX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2741 temp |= snb_b_fdi_train_param[i];
2742 I915_WRITE(reg, temp);
2743
2744 POSTING_READ(reg);
2745 udelay(500);
2746
2747 reg = FDI_RX_IIR(pipe);
2748 temp = I915_READ(reg);
2749 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2750
2751 if (temp & FDI_RX_BIT_LOCK ||
2752 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2753 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2754 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2755 break;
2756 }
2757 }
2758 if (i == 4)
2759 DRM_ERROR("FDI train 1 fail!\n");
2760
2761 /* Train 2 */
2762 reg = FDI_TX_CTL(pipe);
2763 temp = I915_READ(reg);
2764 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2765 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2766 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2767 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2768 I915_WRITE(reg, temp);
2769
2770 reg = FDI_RX_CTL(pipe);
2771 temp = I915_READ(reg);
2772 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2773 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2774 I915_WRITE(reg, temp);
2775
2776 POSTING_READ(reg);
2777 udelay(150);
2778
0206e353 2779 for (i = 0; i < 4; i++) {
357555c0
JB
2780 reg = FDI_TX_CTL(pipe);
2781 temp = I915_READ(reg);
2782 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2783 temp |= snb_b_fdi_train_param[i];
2784 I915_WRITE(reg, temp);
2785
2786 POSTING_READ(reg);
2787 udelay(500);
2788
2789 reg = FDI_RX_IIR(pipe);
2790 temp = I915_READ(reg);
2791 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2792
2793 if (temp & FDI_RX_SYMBOL_LOCK) {
2794 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2795 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2796 break;
2797 }
2798 }
2799 if (i == 4)
2800 DRM_ERROR("FDI train 2 fail!\n");
2801
2802 DRM_DEBUG_KMS("FDI train done.\n");
2803}
2804
88cefb6c 2805static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2806{
88cefb6c 2807 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2808 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2809 int pipe = intel_crtc->pipe;
5eddb70b 2810 u32 reg, temp;
79e53945 2811
c64e311e 2812
c98e9dcf 2813 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2814 reg = FDI_RX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2817 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2818 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2819 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2820
2821 POSTING_READ(reg);
c98e9dcf
JB
2822 udelay(200);
2823
2824 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2825 temp = I915_READ(reg);
2826 I915_WRITE(reg, temp | FDI_PCDCLK);
2827
2828 POSTING_READ(reg);
c98e9dcf
JB
2829 udelay(200);
2830
bf507ef7
ED
2831 /* On Haswell, the PLL configuration for ports and pipes is handled
2832 * separately, as part of DDI setup */
2833 if (!IS_HASWELL(dev)) {
2834 /* Enable CPU FDI TX PLL, always on for Ironlake */
2835 reg = FDI_TX_CTL(pipe);
2836 temp = I915_READ(reg);
2837 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2838 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2839
bf507ef7
ED
2840 POSTING_READ(reg);
2841 udelay(100);
2842 }
6be4a607 2843 }
0e23b99d
JB
2844}
2845
88cefb6c
DV
2846static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847{
2848 struct drm_device *dev = intel_crtc->base.dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 int pipe = intel_crtc->pipe;
2851 u32 reg, temp;
2852
2853 /* Switch from PCDclk to Rawclk */
2854 reg = FDI_RX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858 /* Disable CPU FDI TX PLL */
2859 reg = FDI_TX_CTL(pipe);
2860 temp = I915_READ(reg);
2861 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863 POSTING_READ(reg);
2864 udelay(100);
2865
2866 reg = FDI_RX_CTL(pipe);
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870 /* Wait for the clocks to turn off. */
2871 POSTING_READ(reg);
2872 udelay(100);
2873}
2874
0fc932b8
JB
2875static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876{
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 int pipe = intel_crtc->pipe;
2881 u32 reg, temp;
2882
2883 /* disable CPU FDI tx and PCH FDI rx */
2884 reg = FDI_TX_CTL(pipe);
2885 temp = I915_READ(reg);
2886 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887 POSTING_READ(reg);
2888
2889 reg = FDI_RX_CTL(pipe);
2890 temp = I915_READ(reg);
2891 temp &= ~(0x7 << 16);
2892 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2893 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895 POSTING_READ(reg);
2896 udelay(100);
2897
2898 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2899 if (HAS_PCH_IBX(dev)) {
2900 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
6f06ce18 2901 }
0fc932b8
JB
2902
2903 /* still set train pattern 1 */
2904 reg = FDI_TX_CTL(pipe);
2905 temp = I915_READ(reg);
2906 temp &= ~FDI_LINK_TRAIN_NONE;
2907 temp |= FDI_LINK_TRAIN_PATTERN_1;
2908 I915_WRITE(reg, temp);
2909
2910 reg = FDI_RX_CTL(pipe);
2911 temp = I915_READ(reg);
2912 if (HAS_PCH_CPT(dev)) {
2913 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915 } else {
2916 temp &= ~FDI_LINK_TRAIN_NONE;
2917 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918 }
2919 /* BPC in FDI rx is consistent with that in PIPECONF */
2920 temp &= ~(0x07 << 16);
2921 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2922 I915_WRITE(reg, temp);
2923
2924 POSTING_READ(reg);
2925 udelay(100);
2926}
2927
5bb61643
CW
2928static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929{
2930 struct drm_device *dev = crtc->dev;
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 unsigned long flags;
2933 bool pending;
2934
2935 if (atomic_read(&dev_priv->mm.wedged))
2936 return false;
2937
2938 spin_lock_irqsave(&dev->event_lock, flags);
2939 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2940 spin_unlock_irqrestore(&dev->event_lock, flags);
2941
2942 return pending;
2943}
2944
e6c3a2a6
CW
2945static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2946{
0f91128d 2947 struct drm_device *dev = crtc->dev;
5bb61643 2948 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2949
2950 if (crtc->fb == NULL)
2951 return;
2952
5bb61643
CW
2953 wait_event(dev_priv->pending_flip_queue,
2954 !intel_crtc_has_pending_flip(crtc));
2955
0f91128d
CW
2956 mutex_lock(&dev->struct_mutex);
2957 intel_finish_fb(crtc->fb);
2958 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2959}
2960
fc316cbe 2961static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2962{
2963 struct drm_device *dev = crtc->dev;
228d3e36 2964 struct intel_encoder *intel_encoder;
040484af
JB
2965
2966 /*
2967 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2968 * must be driven by its own crtc; no sharing is possible.
2969 */
228d3e36 2970 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2971 switch (intel_encoder->type) {
040484af 2972 case INTEL_OUTPUT_EDP:
228d3e36 2973 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2974 return false;
2975 continue;
2976 }
2977 }
2978
2979 return true;
2980}
2981
fc316cbe
PZ
2982static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2983{
2984 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2985}
2986
e615efe4
ED
2987/* Program iCLKIP clock to the desired frequency */
2988static void lpt_program_iclkip(struct drm_crtc *crtc)
2989{
2990 struct drm_device *dev = crtc->dev;
2991 struct drm_i915_private *dev_priv = dev->dev_private;
2992 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2993 u32 temp;
2994
2995 /* It is necessary to ungate the pixclk gate prior to programming
2996 * the divisors, and gate it back when it is done.
2997 */
2998 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2999
3000 /* Disable SSCCTL */
3001 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3002 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3003 SBI_SSCCTL_DISABLE,
3004 SBI_ICLK);
e615efe4
ED
3005
3006 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3007 if (crtc->mode.clock == 20000) {
3008 auxdiv = 1;
3009 divsel = 0x41;
3010 phaseinc = 0x20;
3011 } else {
3012 /* The iCLK virtual clock root frequency is in MHz,
3013 * but the crtc->mode.clock in in KHz. To get the divisors,
3014 * it is necessary to divide one by another, so we
3015 * convert the virtual clock precision to KHz here for higher
3016 * precision.
3017 */
3018 u32 iclk_virtual_root_freq = 172800 * 1000;
3019 u32 iclk_pi_range = 64;
3020 u32 desired_divisor, msb_divisor_value, pi_value;
3021
3022 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3023 msb_divisor_value = desired_divisor / iclk_pi_range;
3024 pi_value = desired_divisor % iclk_pi_range;
3025
3026 auxdiv = 0;
3027 divsel = msb_divisor_value - 2;
3028 phaseinc = pi_value;
3029 }
3030
3031 /* This should not happen with any sane values */
3032 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3033 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3034 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3035 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3036
3037 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3038 crtc->mode.clock,
3039 auxdiv,
3040 divsel,
3041 phasedir,
3042 phaseinc);
3043
3044 /* Program SSCDIVINTPHASE6 */
988d6ee8 3045 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3046 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3047 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3048 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3049 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3050 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3051 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3052 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3053
3054 /* Program SSCAUXDIV */
988d6ee8 3055 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3056 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3057 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3058 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3059
3060 /* Enable modulator and associated divider */
988d6ee8 3061 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3062 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3063 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3064
3065 /* Wait for initialization time */
3066 udelay(24);
3067
3068 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3069}
3070
f67a559d
JB
3071/*
3072 * Enable PCH resources required for PCH ports:
3073 * - PCH PLLs
3074 * - FDI training & RX/TX
3075 * - update transcoder timings
3076 * - DP transcoding bits
3077 * - transcoder
3078 */
3079static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3080{
3081 struct drm_device *dev = crtc->dev;
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084 int pipe = intel_crtc->pipe;
ee7b9f93 3085 u32 reg, temp;
2c07245f 3086
e7e164db
CW
3087 assert_transcoder_disabled(dev_priv, pipe);
3088
cd986abb
DV
3089 /* Write the TU size bits before fdi link training, so that error
3090 * detection works. */
3091 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3092 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3093
c98e9dcf 3094 /* For PCH output, training FDI link */
674cf967 3095 dev_priv->display.fdi_link_train(crtc);
2c07245f 3096
572deb37
DV
3097 /* XXX: pch pll's can be enabled any time before we enable the PCH
3098 * transcoder, and we actually should do this to not upset any PCH
3099 * transcoder that already use the clock when we share it.
3100 *
3101 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3102 * unconditionally resets the pll - we need that to have the right LVDS
3103 * enable sequence. */
b6b4e185 3104 ironlake_enable_pch_pll(intel_crtc);
6f13b7b5 3105
303b81e0 3106 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3107 u32 sel;
4b645f14 3108
c98e9dcf 3109 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3110 switch (pipe) {
3111 default:
3112 case 0:
3113 temp |= TRANSA_DPLL_ENABLE;
3114 sel = TRANSA_DPLLB_SEL;
3115 break;
3116 case 1:
3117 temp |= TRANSB_DPLL_ENABLE;
3118 sel = TRANSB_DPLLB_SEL;
3119 break;
3120 case 2:
3121 temp |= TRANSC_DPLL_ENABLE;
3122 sel = TRANSC_DPLLB_SEL;
3123 break;
d64311ab 3124 }
ee7b9f93
JB
3125 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3126 temp |= sel;
3127 else
3128 temp &= ~sel;
c98e9dcf 3129 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3130 }
5eddb70b 3131
d9b6cb56
JB
3132 /* set transcoder timing, panel must allow it */
3133 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3134 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3135 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3136 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3137
5eddb70b
CW
3138 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3139 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3140 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3141 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3142
303b81e0 3143 intel_fdi_normal_train(crtc);
5e84e1a4 3144
c98e9dcf
JB
3145 /* For PCH DP, enable TRANS_DP_CTL */
3146 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3147 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3148 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3149 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3150 reg = TRANS_DP_CTL(pipe);
3151 temp = I915_READ(reg);
3152 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3153 TRANS_DP_SYNC_MASK |
3154 TRANS_DP_BPC_MASK);
5eddb70b
CW
3155 temp |= (TRANS_DP_OUTPUT_ENABLE |
3156 TRANS_DP_ENH_FRAMING);
9325c9f0 3157 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3158
3159 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3160 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3161 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3162 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3163
3164 switch (intel_trans_dp_port_sel(crtc)) {
3165 case PCH_DP_B:
5eddb70b 3166 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3167 break;
3168 case PCH_DP_C:
5eddb70b 3169 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3170 break;
3171 case PCH_DP_D:
5eddb70b 3172 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3173 break;
3174 default:
e95d41e1 3175 BUG();
32f9d658 3176 }
2c07245f 3177
5eddb70b 3178 I915_WRITE(reg, temp);
6be4a607 3179 }
b52eb4dc 3180
b8a4f404 3181 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3182}
3183
1507e5bd
PZ
3184static void lpt_pch_enable(struct drm_crtc *crtc)
3185{
3186 struct drm_device *dev = crtc->dev;
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
daed2dbb 3189 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
1507e5bd 3190
daed2dbb 3191 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3192
8c52b5e8 3193 lpt_program_iclkip(crtc);
1507e5bd 3194
0540e488 3195 /* Set transcoder timing. */
daed2dbb
PZ
3196 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3197 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3198 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
1507e5bd 3199
daed2dbb
PZ
3200 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3201 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3202 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3203 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
1507e5bd 3204
937bb610 3205 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3206}
3207
ee7b9f93
JB
3208static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3209{
3210 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3211
3212 if (pll == NULL)
3213 return;
3214
3215 if (pll->refcount == 0) {
3216 WARN(1, "bad PCH PLL refcount\n");
3217 return;
3218 }
3219
3220 --pll->refcount;
3221 intel_crtc->pch_pll = NULL;
3222}
3223
3224static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3225{
3226 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3227 struct intel_pch_pll *pll;
3228 int i;
3229
3230 pll = intel_crtc->pch_pll;
3231 if (pll) {
3232 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3233 intel_crtc->base.base.id, pll->pll_reg);
3234 goto prepare;
3235 }
3236
98b6bd99
DV
3237 if (HAS_PCH_IBX(dev_priv->dev)) {
3238 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3239 i = intel_crtc->pipe;
3240 pll = &dev_priv->pch_plls[i];
3241
3242 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3243 intel_crtc->base.base.id, pll->pll_reg);
3244
3245 goto found;
3246 }
3247
ee7b9f93
JB
3248 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3249 pll = &dev_priv->pch_plls[i];
3250
3251 /* Only want to check enabled timings first */
3252 if (pll->refcount == 0)
3253 continue;
3254
3255 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3256 fp == I915_READ(pll->fp0_reg)) {
3257 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3258 intel_crtc->base.base.id,
3259 pll->pll_reg, pll->refcount, pll->active);
3260
3261 goto found;
3262 }
3263 }
3264
3265 /* Ok no matching timings, maybe there's a free one? */
3266 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3267 pll = &dev_priv->pch_plls[i];
3268 if (pll->refcount == 0) {
3269 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3270 intel_crtc->base.base.id, pll->pll_reg);
3271 goto found;
3272 }
3273 }
3274
3275 return NULL;
3276
3277found:
3278 intel_crtc->pch_pll = pll;
3279 pll->refcount++;
3280 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3281prepare: /* separate function? */
3282 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3283
e04c7350
CW
3284 /* Wait for the clocks to stabilize before rewriting the regs */
3285 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3286 POSTING_READ(pll->pll_reg);
3287 udelay(150);
e04c7350
CW
3288
3289 I915_WRITE(pll->fp0_reg, fp);
3290 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3291 pll->on = false;
3292 return pll;
3293}
3294
d4270e57
JB
3295void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3296{
3297 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3298 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3299 u32 temp;
3300
3301 temp = I915_READ(dslreg);
3302 udelay(500);
3303 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57
JB
3304 if (wait_for(I915_READ(dslreg) != temp, 5))
3305 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3306 }
3307}
3308
f67a559d
JB
3309static void ironlake_crtc_enable(struct drm_crtc *crtc)
3310{
3311 struct drm_device *dev = crtc->dev;
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3314 struct intel_encoder *encoder;
f67a559d
JB
3315 int pipe = intel_crtc->pipe;
3316 int plane = intel_crtc->plane;
3317 u32 temp;
3318 bool is_pch_port;
3319
08a48469
DV
3320 WARN_ON(!crtc->enabled);
3321
f67a559d
JB
3322 if (intel_crtc->active)
3323 return;
3324
3325 intel_crtc->active = true;
3326 intel_update_watermarks(dev);
3327
3328 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3329 temp = I915_READ(PCH_LVDS);
3330 if ((temp & LVDS_PORT_EN) == 0)
3331 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3332 }
3333
fc316cbe 3334 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3335
46b6f814 3336 if (is_pch_port) {
fff367c7
DV
3337 /* Note: FDI PLL enabling _must_ be done before we enable the
3338 * cpu pipes, hence this is separate from all the other fdi/pch
3339 * enabling. */
88cefb6c 3340 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3341 } else {
3342 assert_fdi_tx_disabled(dev_priv, pipe);
3343 assert_fdi_rx_disabled(dev_priv, pipe);
3344 }
f67a559d 3345
bf49ec8c
DV
3346 for_each_encoder_on_crtc(dev, crtc, encoder)
3347 if (encoder->pre_enable)
3348 encoder->pre_enable(encoder);
f67a559d
JB
3349
3350 /* Enable panel fitting for LVDS */
3351 if (dev_priv->pch_pf_size &&
547dc041
JN
3352 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3353 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
f67a559d
JB
3354 /* Force use of hard-coded filter coefficients
3355 * as some pre-programmed values are broken,
3356 * e.g. x201.
3357 */
13888d78
PZ
3358 if (IS_IVYBRIDGE(dev))
3359 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3360 PF_PIPE_SEL_IVB(pipe));
3361 else
3362 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
9db4a9c7
JB
3363 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3364 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3365 }
3366
9c54c0dd
JB
3367 /*
3368 * On ILK+ LUT must be loaded before the pipe is running but with
3369 * clocks enabled
3370 */
3371 intel_crtc_load_lut(crtc);
3372
f67a559d
JB
3373 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3374 intel_enable_plane(dev_priv, plane, pipe);
3375
3376 if (is_pch_port)
3377 ironlake_pch_enable(crtc);
c98e9dcf 3378
d1ebd816 3379 mutex_lock(&dev->struct_mutex);
bed4a673 3380 intel_update_fbc(dev);
d1ebd816
BW
3381 mutex_unlock(&dev->struct_mutex);
3382
6b383a7f 3383 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3384
fa5c73b1
DV
3385 for_each_encoder_on_crtc(dev, crtc, encoder)
3386 encoder->enable(encoder);
61b77ddd
DV
3387
3388 if (HAS_PCH_CPT(dev))
3389 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3390
3391 /*
3392 * There seems to be a race in PCH platform hw (at least on some
3393 * outputs) where an enabled pipe still completes any pageflip right
3394 * away (as if the pipe is off) instead of waiting for vblank. As soon
3395 * as the first vblank happend, everything works as expected. Hence just
3396 * wait for one vblank before returning to avoid strange things
3397 * happening.
3398 */
3399 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3400}
3401
4f771f10
PZ
3402static void haswell_crtc_enable(struct drm_crtc *crtc)
3403{
3404 struct drm_device *dev = crtc->dev;
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407 struct intel_encoder *encoder;
3408 int pipe = intel_crtc->pipe;
3409 int plane = intel_crtc->plane;
4f771f10
PZ
3410 bool is_pch_port;
3411
3412 WARN_ON(!crtc->enabled);
3413
3414 if (intel_crtc->active)
3415 return;
3416
3417 intel_crtc->active = true;
3418 intel_update_watermarks(dev);
3419
fc316cbe 3420 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3421
83616634 3422 if (is_pch_port)
04945641 3423 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
3424
3425 for_each_encoder_on_crtc(dev, crtc, encoder)
3426 if (encoder->pre_enable)
3427 encoder->pre_enable(encoder);
3428
1f544388 3429 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3430
1f544388 3431 /* Enable panel fitting for eDP */
547dc041
JN
3432 if (dev_priv->pch_pf_size &&
3433 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4f771f10
PZ
3434 /* Force use of hard-coded filter coefficients
3435 * as some pre-programmed values are broken,
3436 * e.g. x201.
3437 */
54075a7d
PZ
3438 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3439 PF_PIPE_SEL_IVB(pipe));
4f771f10
PZ
3440 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3441 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3442 }
3443
3444 /*
3445 * On ILK+ LUT must be loaded before the pipe is running but with
3446 * clocks enabled
3447 */
3448 intel_crtc_load_lut(crtc);
3449
1f544388
PZ
3450 intel_ddi_set_pipe_settings(crtc);
3451 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3452
3453 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3454 intel_enable_plane(dev_priv, plane, pipe);
3455
3456 if (is_pch_port)
1507e5bd 3457 lpt_pch_enable(crtc);
4f771f10
PZ
3458
3459 mutex_lock(&dev->struct_mutex);
3460 intel_update_fbc(dev);
3461 mutex_unlock(&dev->struct_mutex);
3462
3463 intel_crtc_update_cursor(crtc, true);
3464
3465 for_each_encoder_on_crtc(dev, crtc, encoder)
3466 encoder->enable(encoder);
3467
4f771f10
PZ
3468 /*
3469 * There seems to be a race in PCH platform hw (at least on some
3470 * outputs) where an enabled pipe still completes any pageflip right
3471 * away (as if the pipe is off) instead of waiting for vblank. As soon
3472 * as the first vblank happend, everything works as expected. Hence just
3473 * wait for one vblank before returning to avoid strange things
3474 * happening.
3475 */
3476 intel_wait_for_vblank(dev, intel_crtc->pipe);
3477}
3478
6be4a607
JB
3479static void ironlake_crtc_disable(struct drm_crtc *crtc)
3480{
3481 struct drm_device *dev = crtc->dev;
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3484 struct intel_encoder *encoder;
6be4a607
JB
3485 int pipe = intel_crtc->pipe;
3486 int plane = intel_crtc->plane;
5eddb70b 3487 u32 reg, temp;
b52eb4dc 3488
ef9c3aee 3489
f7abfe8b
CW
3490 if (!intel_crtc->active)
3491 return;
3492
ea9d758d
DV
3493 for_each_encoder_on_crtc(dev, crtc, encoder)
3494 encoder->disable(encoder);
3495
e6c3a2a6 3496 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3497 drm_vblank_off(dev, pipe);
6b383a7f 3498 intel_crtc_update_cursor(crtc, false);
5eddb70b 3499
b24e7179 3500 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3501
973d04f9
CW
3502 if (dev_priv->cfb_plane == plane)
3503 intel_disable_fbc(dev);
2c07245f 3504
b24e7179 3505 intel_disable_pipe(dev_priv, pipe);
32f9d658 3506
6be4a607 3507 /* Disable PF */
9db4a9c7
JB
3508 I915_WRITE(PF_CTL(pipe), 0);
3509 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3510
bf49ec8c
DV
3511 for_each_encoder_on_crtc(dev, crtc, encoder)
3512 if (encoder->post_disable)
3513 encoder->post_disable(encoder);
2c07245f 3514
0fc932b8 3515 ironlake_fdi_disable(crtc);
249c0e64 3516
b8a4f404 3517 ironlake_disable_pch_transcoder(dev_priv, pipe);
913d8d11 3518
6be4a607
JB
3519 if (HAS_PCH_CPT(dev)) {
3520 /* disable TRANS_DP_CTL */
5eddb70b
CW
3521 reg = TRANS_DP_CTL(pipe);
3522 temp = I915_READ(reg);
3523 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3524 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3525 I915_WRITE(reg, temp);
6be4a607
JB
3526
3527 /* disable DPLL_SEL */
3528 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3529 switch (pipe) {
3530 case 0:
d64311ab 3531 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3532 break;
3533 case 1:
6be4a607 3534 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3535 break;
3536 case 2:
4b645f14 3537 /* C shares PLL A or B */
d64311ab 3538 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3539 break;
3540 default:
3541 BUG(); /* wtf */
3542 }
6be4a607 3543 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3544 }
e3421a18 3545
6be4a607 3546 /* disable PCH DPLL */
ee7b9f93 3547 intel_disable_pch_pll(intel_crtc);
8db9d77b 3548
88cefb6c 3549 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3550
f7abfe8b 3551 intel_crtc->active = false;
6b383a7f 3552 intel_update_watermarks(dev);
d1ebd816
BW
3553
3554 mutex_lock(&dev->struct_mutex);
6b383a7f 3555 intel_update_fbc(dev);
d1ebd816 3556 mutex_unlock(&dev->struct_mutex);
6be4a607 3557}
1b3c7a47 3558
4f771f10 3559static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 3560{
4f771f10
PZ
3561 struct drm_device *dev = crtc->dev;
3562 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 3563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
3564 struct intel_encoder *encoder;
3565 int pipe = intel_crtc->pipe;
3566 int plane = intel_crtc->plane;
ad80a810 3567 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3568 bool is_pch_port;
ee7b9f93 3569
4f771f10
PZ
3570 if (!intel_crtc->active)
3571 return;
3572
83616634
PZ
3573 is_pch_port = haswell_crtc_driving_pch(crtc);
3574
4f771f10
PZ
3575 for_each_encoder_on_crtc(dev, crtc, encoder)
3576 encoder->disable(encoder);
3577
3578 intel_crtc_wait_for_pending_flips(crtc);
3579 drm_vblank_off(dev, pipe);
3580 intel_crtc_update_cursor(crtc, false);
3581
3582 intel_disable_plane(dev_priv, plane, pipe);
3583
3584 if (dev_priv->cfb_plane == plane)
3585 intel_disable_fbc(dev);
3586
3587 intel_disable_pipe(dev_priv, pipe);
3588
ad80a810 3589 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3590
3591 /* Disable PF */
3592 I915_WRITE(PF_CTL(pipe), 0);
3593 I915_WRITE(PF_WIN_SZ(pipe), 0);
3594
1f544388 3595 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3596
3597 for_each_encoder_on_crtc(dev, crtc, encoder)
3598 if (encoder->post_disable)
3599 encoder->post_disable(encoder);
3600
83616634 3601 if (is_pch_port) {
ab4d966c 3602 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 3603 intel_ddi_fdi_disable(crtc);
83616634 3604 }
4f771f10
PZ
3605
3606 intel_crtc->active = false;
3607 intel_update_watermarks(dev);
3608
3609 mutex_lock(&dev->struct_mutex);
3610 intel_update_fbc(dev);
3611 mutex_unlock(&dev->struct_mutex);
3612}
3613
ee7b9f93
JB
3614static void ironlake_crtc_off(struct drm_crtc *crtc)
3615{
3616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617 intel_put_pch_pll(intel_crtc);
3618}
3619
6441ab5f
PZ
3620static void haswell_crtc_off(struct drm_crtc *crtc)
3621{
a5c961d1
PZ
3622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623
3624 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3625 * start using it. */
3626 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3627
6441ab5f
PZ
3628 intel_ddi_put_crtc_pll(crtc);
3629}
3630
02e792fb
DV
3631static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3632{
02e792fb 3633 if (!enable && intel_crtc->overlay) {
23f09ce3 3634 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3635 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3636
23f09ce3 3637 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3638 dev_priv->mm.interruptible = false;
3639 (void) intel_overlay_switch_off(intel_crtc->overlay);
3640 dev_priv->mm.interruptible = true;
23f09ce3 3641 mutex_unlock(&dev->struct_mutex);
02e792fb 3642 }
02e792fb 3643
5dcdbcb0
CW
3644 /* Let userspace switch the overlay on again. In most cases userspace
3645 * has to recompute where to put it anyway.
3646 */
02e792fb
DV
3647}
3648
0b8765c6 3649static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3650{
3651 struct drm_device *dev = crtc->dev;
79e53945
JB
3652 struct drm_i915_private *dev_priv = dev->dev_private;
3653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3654 struct intel_encoder *encoder;
79e53945 3655 int pipe = intel_crtc->pipe;
80824003 3656 int plane = intel_crtc->plane;
79e53945 3657
08a48469
DV
3658 WARN_ON(!crtc->enabled);
3659
f7abfe8b
CW
3660 if (intel_crtc->active)
3661 return;
3662
3663 intel_crtc->active = true;
6b383a7f
CW
3664 intel_update_watermarks(dev);
3665
63d7bbe9 3666 intel_enable_pll(dev_priv, pipe);
040484af 3667 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3668 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3669
0b8765c6 3670 intel_crtc_load_lut(crtc);
bed4a673 3671 intel_update_fbc(dev);
79e53945 3672
0b8765c6
JB
3673 /* Give the overlay scaler a chance to enable if it's on this pipe */
3674 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3675 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3676
fa5c73b1
DV
3677 for_each_encoder_on_crtc(dev, crtc, encoder)
3678 encoder->enable(encoder);
0b8765c6 3679}
79e53945 3680
0b8765c6
JB
3681static void i9xx_crtc_disable(struct drm_crtc *crtc)
3682{
3683 struct drm_device *dev = crtc->dev;
3684 struct drm_i915_private *dev_priv = dev->dev_private;
3685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3686 struct intel_encoder *encoder;
0b8765c6
JB
3687 int pipe = intel_crtc->pipe;
3688 int plane = intel_crtc->plane;
b690e96c 3689
ef9c3aee 3690
f7abfe8b
CW
3691 if (!intel_crtc->active)
3692 return;
3693
ea9d758d
DV
3694 for_each_encoder_on_crtc(dev, crtc, encoder)
3695 encoder->disable(encoder);
3696
0b8765c6 3697 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3698 intel_crtc_wait_for_pending_flips(crtc);
3699 drm_vblank_off(dev, pipe);
0b8765c6 3700 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3701 intel_crtc_update_cursor(crtc, false);
0b8765c6 3702
973d04f9
CW
3703 if (dev_priv->cfb_plane == plane)
3704 intel_disable_fbc(dev);
79e53945 3705
b24e7179 3706 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3707 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3708 intel_disable_pll(dev_priv, pipe);
0b8765c6 3709
f7abfe8b 3710 intel_crtc->active = false;
6b383a7f
CW
3711 intel_update_fbc(dev);
3712 intel_update_watermarks(dev);
0b8765c6
JB
3713}
3714
ee7b9f93
JB
3715static void i9xx_crtc_off(struct drm_crtc *crtc)
3716{
3717}
3718
976f8a20
DV
3719static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3720 bool enabled)
2c07245f
ZW
3721{
3722 struct drm_device *dev = crtc->dev;
3723 struct drm_i915_master_private *master_priv;
3724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725 int pipe = intel_crtc->pipe;
79e53945
JB
3726
3727 if (!dev->primary->master)
3728 return;
3729
3730 master_priv = dev->primary->master->driver_priv;
3731 if (!master_priv->sarea_priv)
3732 return;
3733
79e53945
JB
3734 switch (pipe) {
3735 case 0:
3736 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3737 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3738 break;
3739 case 1:
3740 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3741 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3742 break;
3743 default:
9db4a9c7 3744 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3745 break;
3746 }
79e53945
JB
3747}
3748
976f8a20
DV
3749/**
3750 * Sets the power management mode of the pipe and plane.
3751 */
3752void intel_crtc_update_dpms(struct drm_crtc *crtc)
3753{
3754 struct drm_device *dev = crtc->dev;
3755 struct drm_i915_private *dev_priv = dev->dev_private;
3756 struct intel_encoder *intel_encoder;
3757 bool enable = false;
3758
3759 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3760 enable |= intel_encoder->connectors_active;
3761
3762 if (enable)
3763 dev_priv->display.crtc_enable(crtc);
3764 else
3765 dev_priv->display.crtc_disable(crtc);
3766
3767 intel_crtc_update_sarea(crtc, enable);
3768}
3769
3770static void intel_crtc_noop(struct drm_crtc *crtc)
3771{
3772}
3773
cdd59983
CW
3774static void intel_crtc_disable(struct drm_crtc *crtc)
3775{
cdd59983 3776 struct drm_device *dev = crtc->dev;
976f8a20 3777 struct drm_connector *connector;
ee7b9f93 3778 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3779
976f8a20
DV
3780 /* crtc should still be enabled when we disable it. */
3781 WARN_ON(!crtc->enabled);
3782
3783 dev_priv->display.crtc_disable(crtc);
3784 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3785 dev_priv->display.off(crtc);
3786
931872fc
CW
3787 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3788 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3789
3790 if (crtc->fb) {
3791 mutex_lock(&dev->struct_mutex);
1690e1eb 3792 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3793 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3794 crtc->fb = NULL;
3795 }
3796
3797 /* Update computed state. */
3798 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3799 if (!connector->encoder || !connector->encoder->crtc)
3800 continue;
3801
3802 if (connector->encoder->crtc != crtc)
3803 continue;
3804
3805 connector->dpms = DRM_MODE_DPMS_OFF;
3806 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3807 }
3808}
3809
a261b246 3810void intel_modeset_disable(struct drm_device *dev)
79e53945 3811{
a261b246
DV
3812 struct drm_crtc *crtc;
3813
3814 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3815 if (crtc->enabled)
3816 intel_crtc_disable(crtc);
3817 }
79e53945
JB
3818}
3819
1f703855 3820void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3821{
7e7d76c3
JB
3822}
3823
ea5b213a 3824void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3825{
4ef69c7a 3826 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3827
ea5b213a
CW
3828 drm_encoder_cleanup(encoder);
3829 kfree(intel_encoder);
7e7d76c3
JB
3830}
3831
5ab432ef
DV
3832/* Simple dpms helper for encodres with just one connector, no cloning and only
3833 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3834 * state of the entire output pipe. */
3835void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3836{
5ab432ef
DV
3837 if (mode == DRM_MODE_DPMS_ON) {
3838 encoder->connectors_active = true;
3839
b2cabb0e 3840 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3841 } else {
3842 encoder->connectors_active = false;
3843
b2cabb0e 3844 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3845 }
79e53945
JB
3846}
3847
0a91ca29
DV
3848/* Cross check the actual hw state with our own modeset state tracking (and it's
3849 * internal consistency). */
b980514c 3850static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3851{
0a91ca29
DV
3852 if (connector->get_hw_state(connector)) {
3853 struct intel_encoder *encoder = connector->encoder;
3854 struct drm_crtc *crtc;
3855 bool encoder_enabled;
3856 enum pipe pipe;
3857
3858 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3859 connector->base.base.id,
3860 drm_get_connector_name(&connector->base));
3861
3862 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3863 "wrong connector dpms state\n");
3864 WARN(connector->base.encoder != &encoder->base,
3865 "active connector not linked to encoder\n");
3866 WARN(!encoder->connectors_active,
3867 "encoder->connectors_active not set\n");
3868
3869 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3870 WARN(!encoder_enabled, "encoder not enabled\n");
3871 if (WARN_ON(!encoder->base.crtc))
3872 return;
3873
3874 crtc = encoder->base.crtc;
3875
3876 WARN(!crtc->enabled, "crtc not enabled\n");
3877 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3878 WARN(pipe != to_intel_crtc(crtc)->pipe,
3879 "encoder active on the wrong pipe\n");
3880 }
79e53945
JB
3881}
3882
5ab432ef
DV
3883/* Even simpler default implementation, if there's really no special case to
3884 * consider. */
3885void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3886{
5ab432ef 3887 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3888
5ab432ef
DV
3889 /* All the simple cases only support two dpms states. */
3890 if (mode != DRM_MODE_DPMS_ON)
3891 mode = DRM_MODE_DPMS_OFF;
d4270e57 3892
5ab432ef
DV
3893 if (mode == connector->dpms)
3894 return;
3895
3896 connector->dpms = mode;
3897
3898 /* Only need to change hw state when actually enabled */
3899 if (encoder->base.crtc)
3900 intel_encoder_dpms(encoder, mode);
3901 else
8af6cf88 3902 WARN_ON(encoder->connectors_active != false);
0a91ca29 3903
b980514c 3904 intel_modeset_check_state(connector->dev);
79e53945
JB
3905}
3906
f0947c37
DV
3907/* Simple connector->get_hw_state implementation for encoders that support only
3908 * one connector and no cloning and hence the encoder state determines the state
3909 * of the connector. */
3910bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3911{
24929352 3912 enum pipe pipe = 0;
f0947c37 3913 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3914
f0947c37 3915 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3916}
3917
79e53945 3918static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3919 const struct drm_display_mode *mode,
79e53945
JB
3920 struct drm_display_mode *adjusted_mode)
3921{
2c07245f 3922 struct drm_device *dev = crtc->dev;
89749350 3923
bad720ff 3924 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3925 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3926 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3927 return false;
2c07245f 3928 }
89749350 3929
f9bef081
DV
3930 /* All interlaced capable intel hw wants timings in frames. Note though
3931 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3932 * timings, so we need to be careful not to clobber these.*/
3933 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3934 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3935
44f46b42
CW
3936 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3937 * with a hsync front porch of 0.
3938 */
3939 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3940 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3941 return false;
3942
79e53945
JB
3943 return true;
3944}
3945
25eb05fc
JB
3946static int valleyview_get_display_clock_speed(struct drm_device *dev)
3947{
3948 return 400000; /* FIXME */
3949}
3950
e70236a8
JB
3951static int i945_get_display_clock_speed(struct drm_device *dev)
3952{
3953 return 400000;
3954}
79e53945 3955
e70236a8 3956static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3957{
e70236a8
JB
3958 return 333000;
3959}
79e53945 3960
e70236a8
JB
3961static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3962{
3963 return 200000;
3964}
79e53945 3965
e70236a8
JB
3966static int i915gm_get_display_clock_speed(struct drm_device *dev)
3967{
3968 u16 gcfgc = 0;
79e53945 3969
e70236a8
JB
3970 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3971
3972 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3973 return 133000;
3974 else {
3975 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3976 case GC_DISPLAY_CLOCK_333_MHZ:
3977 return 333000;
3978 default:
3979 case GC_DISPLAY_CLOCK_190_200_MHZ:
3980 return 190000;
79e53945 3981 }
e70236a8
JB
3982 }
3983}
3984
3985static int i865_get_display_clock_speed(struct drm_device *dev)
3986{
3987 return 266000;
3988}
3989
3990static int i855_get_display_clock_speed(struct drm_device *dev)
3991{
3992 u16 hpllcc = 0;
3993 /* Assume that the hardware is in the high speed state. This
3994 * should be the default.
3995 */
3996 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3997 case GC_CLOCK_133_200:
3998 case GC_CLOCK_100_200:
3999 return 200000;
4000 case GC_CLOCK_166_250:
4001 return 250000;
4002 case GC_CLOCK_100_133:
79e53945 4003 return 133000;
e70236a8 4004 }
79e53945 4005
e70236a8
JB
4006 /* Shouldn't happen */
4007 return 0;
4008}
79e53945 4009
e70236a8
JB
4010static int i830_get_display_clock_speed(struct drm_device *dev)
4011{
4012 return 133000;
79e53945
JB
4013}
4014
2c07245f
ZW
4015struct fdi_m_n {
4016 u32 tu;
4017 u32 gmch_m;
4018 u32 gmch_n;
4019 u32 link_m;
4020 u32 link_n;
4021};
4022
4023static void
4024fdi_reduce_ratio(u32 *num, u32 *den)
4025{
4026 while (*num > 0xffffff || *den > 0xffffff) {
4027 *num >>= 1;
4028 *den >>= 1;
4029 }
4030}
4031
2c07245f 4032static void
f2b115e6
AJ
4033ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4034 int link_clock, struct fdi_m_n *m_n)
2c07245f 4035{
2c07245f
ZW
4036 m_n->tu = 64; /* default size */
4037
22ed1113
CW
4038 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4039 m_n->gmch_m = bits_per_pixel * pixel_clock;
4040 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4041 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4042
22ed1113
CW
4043 m_n->link_m = pixel_clock;
4044 m_n->link_n = link_clock;
2c07245f
ZW
4045 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4046}
4047
a7615030
CW
4048static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4049{
72bbe58c
KP
4050 if (i915_panel_use_ssc >= 0)
4051 return i915_panel_use_ssc != 0;
4052 return dev_priv->lvds_use_ssc
435793df 4053 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4054}
4055
5a354204
JB
4056/**
4057 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4058 * @crtc: CRTC structure
3b5c78a3 4059 * @mode: requested mode
5a354204
JB
4060 *
4061 * A pipe may be connected to one or more outputs. Based on the depth of the
4062 * attached framebuffer, choose a good color depth to use on the pipe.
4063 *
4064 * If possible, match the pipe depth to the fb depth. In some cases, this
4065 * isn't ideal, because the connected output supports a lesser or restricted
4066 * set of depths. Resolve that here:
4067 * LVDS typically supports only 6bpc, so clamp down in that case
4068 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4069 * Displays may support a restricted set as well, check EDID and clamp as
4070 * appropriate.
3b5c78a3 4071 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4072 *
4073 * RETURNS:
4074 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4075 * true if they don't match).
4076 */
4077static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4078 struct drm_framebuffer *fb,
3b5c78a3
AJ
4079 unsigned int *pipe_bpp,
4080 struct drm_display_mode *mode)
5a354204
JB
4081{
4082 struct drm_device *dev = crtc->dev;
4083 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4084 struct drm_connector *connector;
6c2b7c12 4085 struct intel_encoder *intel_encoder;
5a354204
JB
4086 unsigned int display_bpc = UINT_MAX, bpc;
4087
4088 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4089 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4090
4091 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4092 unsigned int lvds_bpc;
4093
4094 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4095 LVDS_A3_POWER_UP)
4096 lvds_bpc = 8;
4097 else
4098 lvds_bpc = 6;
4099
4100 if (lvds_bpc < display_bpc) {
82820490 4101 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4102 display_bpc = lvds_bpc;
4103 }
4104 continue;
4105 }
4106
5a354204
JB
4107 /* Not one of the known troublemakers, check the EDID */
4108 list_for_each_entry(connector, &dev->mode_config.connector_list,
4109 head) {
6c2b7c12 4110 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4111 continue;
4112
62ac41a6
JB
4113 /* Don't use an invalid EDID bpc value */
4114 if (connector->display_info.bpc &&
4115 connector->display_info.bpc < display_bpc) {
82820490 4116 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4117 display_bpc = connector->display_info.bpc;
4118 }
4119 }
4120
2f4f649a
JN
4121 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4122 /* Use VBT settings if we have an eDP panel */
4123 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4124
9a30a61f 4125 if (edp_bpc && edp_bpc < display_bpc) {
2f4f649a
JN
4126 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4127 display_bpc = edp_bpc;
4128 }
4129 continue;
4130 }
4131
5a354204
JB
4132 /*
4133 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4134 * through, clamp it down. (Note: >12bpc will be caught below.)
4135 */
4136 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4137 if (display_bpc > 8 && display_bpc < 12) {
82820490 4138 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4139 display_bpc = 12;
4140 } else {
82820490 4141 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4142 display_bpc = 8;
4143 }
4144 }
4145 }
4146
3b5c78a3
AJ
4147 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4148 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4149 display_bpc = 6;
4150 }
4151
5a354204
JB
4152 /*
4153 * We could just drive the pipe at the highest bpc all the time and
4154 * enable dithering as needed, but that costs bandwidth. So choose
4155 * the minimum value that expresses the full color range of the fb but
4156 * also stays within the max display bpc discovered above.
4157 */
4158
94352cf9 4159 switch (fb->depth) {
5a354204
JB
4160 case 8:
4161 bpc = 8; /* since we go through a colormap */
4162 break;
4163 case 15:
4164 case 16:
4165 bpc = 6; /* min is 18bpp */
4166 break;
4167 case 24:
578393cd 4168 bpc = 8;
5a354204
JB
4169 break;
4170 case 30:
578393cd 4171 bpc = 10;
5a354204
JB
4172 break;
4173 case 48:
578393cd 4174 bpc = 12;
5a354204
JB
4175 break;
4176 default:
4177 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4178 bpc = min((unsigned int)8, display_bpc);
4179 break;
4180 }
4181
578393cd
KP
4182 display_bpc = min(display_bpc, bpc);
4183
82820490
AJ
4184 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4185 bpc, display_bpc);
5a354204 4186
578393cd 4187 *pipe_bpp = display_bpc * 3;
5a354204
JB
4188
4189 return display_bpc != bpc;
4190}
4191
a0c4da24
JB
4192static int vlv_get_refclk(struct drm_crtc *crtc)
4193{
4194 struct drm_device *dev = crtc->dev;
4195 struct drm_i915_private *dev_priv = dev->dev_private;
4196 int refclk = 27000; /* for DP & HDMI */
4197
4198 return 100000; /* only one validated so far */
4199
4200 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4201 refclk = 96000;
4202 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4203 if (intel_panel_use_ssc(dev_priv))
4204 refclk = 100000;
4205 else
4206 refclk = 96000;
4207 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4208 refclk = 100000;
4209 }
4210
4211 return refclk;
4212}
4213
c65d77d8
JB
4214static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4215{
4216 struct drm_device *dev = crtc->dev;
4217 struct drm_i915_private *dev_priv = dev->dev_private;
4218 int refclk;
4219
a0c4da24
JB
4220 if (IS_VALLEYVIEW(dev)) {
4221 refclk = vlv_get_refclk(crtc);
4222 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4223 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4224 refclk = dev_priv->lvds_ssc_freq * 1000;
4225 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4226 refclk / 1000);
4227 } else if (!IS_GEN2(dev)) {
4228 refclk = 96000;
4229 } else {
4230 refclk = 48000;
4231 }
4232
4233 return refclk;
4234}
4235
4236static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4237 intel_clock_t *clock)
4238{
4239 /* SDVO TV has fixed PLL values depend on its clock range,
4240 this mirrors vbios setting. */
4241 if (adjusted_mode->clock >= 100000
4242 && adjusted_mode->clock < 140500) {
4243 clock->p1 = 2;
4244 clock->p2 = 10;
4245 clock->n = 3;
4246 clock->m1 = 16;
4247 clock->m2 = 8;
4248 } else if (adjusted_mode->clock >= 140500
4249 && adjusted_mode->clock <= 200000) {
4250 clock->p1 = 1;
4251 clock->p2 = 10;
4252 clock->n = 6;
4253 clock->m1 = 12;
4254 clock->m2 = 8;
4255 }
4256}
4257
a7516a05
JB
4258static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4259 intel_clock_t *clock,
4260 intel_clock_t *reduced_clock)
4261{
4262 struct drm_device *dev = crtc->dev;
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265 int pipe = intel_crtc->pipe;
4266 u32 fp, fp2 = 0;
4267
4268 if (IS_PINEVIEW(dev)) {
4269 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4270 if (reduced_clock)
4271 fp2 = (1 << reduced_clock->n) << 16 |
4272 reduced_clock->m1 << 8 | reduced_clock->m2;
4273 } else {
4274 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4275 if (reduced_clock)
4276 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4277 reduced_clock->m2;
4278 }
4279
4280 I915_WRITE(FP0(pipe), fp);
4281
4282 intel_crtc->lowfreq_avail = false;
4283 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4284 reduced_clock && i915_powersave) {
4285 I915_WRITE(FP1(pipe), fp2);
4286 intel_crtc->lowfreq_avail = true;
4287 } else {
4288 I915_WRITE(FP1(pipe), fp);
4289 }
4290}
4291
93e537a1
DV
4292static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4293 struct drm_display_mode *adjusted_mode)
4294{
4295 struct drm_device *dev = crtc->dev;
4296 struct drm_i915_private *dev_priv = dev->dev_private;
4297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4298 int pipe = intel_crtc->pipe;
284d5df5 4299 u32 temp;
93e537a1
DV
4300
4301 temp = I915_READ(LVDS);
4302 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4303 if (pipe == 1) {
4304 temp |= LVDS_PIPEB_SELECT;
4305 } else {
4306 temp &= ~LVDS_PIPEB_SELECT;
4307 }
4308 /* set the corresponsding LVDS_BORDER bit */
4309 temp |= dev_priv->lvds_border_bits;
4310 /* Set the B0-B3 data pairs corresponding to whether we're going to
4311 * set the DPLLs for dual-channel mode or not.
4312 */
4313 if (clock->p2 == 7)
4314 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4315 else
4316 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4317
4318 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4319 * appropriately here, but we need to look more thoroughly into how
4320 * panels behave in the two modes.
4321 */
4322 /* set the dithering flag on LVDS as needed */
4323 if (INTEL_INFO(dev)->gen >= 4) {
4324 if (dev_priv->lvds_dither)
4325 temp |= LVDS_ENABLE_DITHER;
4326 else
4327 temp &= ~LVDS_ENABLE_DITHER;
4328 }
284d5df5 4329 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4330 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4331 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4332 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4333 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4334 I915_WRITE(LVDS, temp);
4335}
4336
a0c4da24
JB
4337static void vlv_update_pll(struct drm_crtc *crtc,
4338 struct drm_display_mode *mode,
4339 struct drm_display_mode *adjusted_mode,
4340 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4341 int num_connectors)
a0c4da24
JB
4342{
4343 struct drm_device *dev = crtc->dev;
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4346 int pipe = intel_crtc->pipe;
4347 u32 dpll, mdiv, pdiv;
4348 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4349 bool is_sdvo;
4350 u32 temp;
a0c4da24 4351
2a8f64ca
VP
4352 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4353 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4354
2a8f64ca
VP
4355 dpll = DPLL_VGA_MODE_DIS;
4356 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4357 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4358 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4359
4360 I915_WRITE(DPLL(pipe), dpll);
4361 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4362
4363 bestn = clock->n;
4364 bestm1 = clock->m1;
4365 bestm2 = clock->m2;
4366 bestp1 = clock->p1;
4367 bestp2 = clock->p2;
4368
2a8f64ca
VP
4369 /*
4370 * In Valleyview PLL and program lane counter registers are exposed
4371 * through DPIO interface
4372 */
a0c4da24
JB
4373 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4374 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4375 mdiv |= ((bestn << DPIO_N_SHIFT));
4376 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4377 mdiv |= (1 << DPIO_K_SHIFT);
4378 mdiv |= DPIO_ENABLE_CALIBRATION;
4379 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4380
4381 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4382
2a8f64ca 4383 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4384 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4385 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4386 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4387 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4388
2a8f64ca 4389 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4390
4391 dpll |= DPLL_VCO_ENABLE;
4392 I915_WRITE(DPLL(pipe), dpll);
4393 POSTING_READ(DPLL(pipe));
4394 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4395 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4396
2a8f64ca
VP
4397 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4398
4399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4400 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4401
4402 I915_WRITE(DPLL(pipe), dpll);
4403
4404 /* Wait for the clocks to stabilize. */
4405 POSTING_READ(DPLL(pipe));
4406 udelay(150);
a0c4da24 4407
2a8f64ca
VP
4408 temp = 0;
4409 if (is_sdvo) {
4410 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4411 if (temp > 1)
4412 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4413 else
4414 temp = 0;
a0c4da24 4415 }
2a8f64ca
VP
4416 I915_WRITE(DPLL_MD(pipe), temp);
4417 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4418
2a8f64ca
VP
4419 /* Now program lane control registers */
4420 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4421 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4422 {
4423 temp = 0x1000C4;
4424 if(pipe == 1)
4425 temp |= (1 << 21);
4426 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4427 }
4428 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4429 {
4430 temp = 0x1000C4;
4431 if(pipe == 1)
4432 temp |= (1 << 21);
4433 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4434 }
a0c4da24
JB
4435}
4436
eb1cbe48
DV
4437static void i9xx_update_pll(struct drm_crtc *crtc,
4438 struct drm_display_mode *mode,
4439 struct drm_display_mode *adjusted_mode,
4440 intel_clock_t *clock, intel_clock_t *reduced_clock,
4441 int num_connectors)
4442{
4443 struct drm_device *dev = crtc->dev;
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4446 int pipe = intel_crtc->pipe;
4447 u32 dpll;
4448 bool is_sdvo;
4449
2a8f64ca
VP
4450 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4451
eb1cbe48
DV
4452 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4453 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4454
4455 dpll = DPLL_VGA_MODE_DIS;
4456
4457 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4458 dpll |= DPLLB_MODE_LVDS;
4459 else
4460 dpll |= DPLLB_MODE_DAC_SERIAL;
4461 if (is_sdvo) {
4462 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4463 if (pixel_multiplier > 1) {
4464 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4465 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4466 }
4467 dpll |= DPLL_DVO_HIGH_SPEED;
4468 }
4469 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4470 dpll |= DPLL_DVO_HIGH_SPEED;
4471
4472 /* compute bitmask from p1 value */
4473 if (IS_PINEVIEW(dev))
4474 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4475 else {
4476 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4477 if (IS_G4X(dev) && reduced_clock)
4478 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4479 }
4480 switch (clock->p2) {
4481 case 5:
4482 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4483 break;
4484 case 7:
4485 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4486 break;
4487 case 10:
4488 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4489 break;
4490 case 14:
4491 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4492 break;
4493 }
4494 if (INTEL_INFO(dev)->gen >= 4)
4495 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4496
4497 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4498 dpll |= PLL_REF_INPUT_TVCLKINBC;
4499 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4500 /* XXX: just matching BIOS for now */
4501 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4502 dpll |= 3;
4503 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4504 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4505 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4506 else
4507 dpll |= PLL_REF_INPUT_DREFCLK;
4508
4509 dpll |= DPLL_VCO_ENABLE;
4510 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4511 POSTING_READ(DPLL(pipe));
4512 udelay(150);
4513
4514 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4515 * This is an exception to the general rule that mode_set doesn't turn
4516 * things on.
4517 */
4518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4519 intel_update_lvds(crtc, clock, adjusted_mode);
4520
4521 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4522 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4523
4524 I915_WRITE(DPLL(pipe), dpll);
4525
4526 /* Wait for the clocks to stabilize. */
4527 POSTING_READ(DPLL(pipe));
4528 udelay(150);
4529
4530 if (INTEL_INFO(dev)->gen >= 4) {
4531 u32 temp = 0;
4532 if (is_sdvo) {
4533 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4534 if (temp > 1)
4535 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4536 else
4537 temp = 0;
4538 }
4539 I915_WRITE(DPLL_MD(pipe), temp);
4540 } else {
4541 /* The pixel multiplier can only be updated once the
4542 * DPLL is enabled and the clocks are stable.
4543 *
4544 * So write it again.
4545 */
4546 I915_WRITE(DPLL(pipe), dpll);
4547 }
4548}
4549
4550static void i8xx_update_pll(struct drm_crtc *crtc,
4551 struct drm_display_mode *adjusted_mode,
2a8f64ca 4552 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4553 int num_connectors)
4554{
4555 struct drm_device *dev = crtc->dev;
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4558 int pipe = intel_crtc->pipe;
4559 u32 dpll;
4560
2a8f64ca
VP
4561 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4562
eb1cbe48
DV
4563 dpll = DPLL_VGA_MODE_DIS;
4564
4565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4566 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4567 } else {
4568 if (clock->p1 == 2)
4569 dpll |= PLL_P1_DIVIDE_BY_TWO;
4570 else
4571 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4572 if (clock->p2 == 4)
4573 dpll |= PLL_P2_DIVIDE_BY_4;
4574 }
4575
4576 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4577 /* XXX: just matching BIOS for now */
4578 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4579 dpll |= 3;
4580 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4581 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4582 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4583 else
4584 dpll |= PLL_REF_INPUT_DREFCLK;
4585
4586 dpll |= DPLL_VCO_ENABLE;
4587 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4588 POSTING_READ(DPLL(pipe));
4589 udelay(150);
4590
eb1cbe48
DV
4591 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4592 * This is an exception to the general rule that mode_set doesn't turn
4593 * things on.
4594 */
4595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4596 intel_update_lvds(crtc, clock, adjusted_mode);
4597
5b5896e4
DV
4598 I915_WRITE(DPLL(pipe), dpll);
4599
4600 /* Wait for the clocks to stabilize. */
4601 POSTING_READ(DPLL(pipe));
4602 udelay(150);
4603
eb1cbe48
DV
4604 /* The pixel multiplier can only be updated once the
4605 * DPLL is enabled and the clocks are stable.
4606 *
4607 * So write it again.
4608 */
4609 I915_WRITE(DPLL(pipe), dpll);
4610}
4611
b0e77b9c
PZ
4612static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4613 struct drm_display_mode *mode,
4614 struct drm_display_mode *adjusted_mode)
4615{
4616 struct drm_device *dev = intel_crtc->base.dev;
4617 struct drm_i915_private *dev_priv = dev->dev_private;
4618 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4619 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4620 uint32_t vsyncshift;
4621
4622 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4623 /* the chip adds 2 halflines automatically */
4624 adjusted_mode->crtc_vtotal -= 1;
4625 adjusted_mode->crtc_vblank_end -= 1;
4626 vsyncshift = adjusted_mode->crtc_hsync_start
4627 - adjusted_mode->crtc_htotal / 2;
4628 } else {
4629 vsyncshift = 0;
4630 }
4631
4632 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4633 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4634
fe2b8f9d 4635 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4636 (adjusted_mode->crtc_hdisplay - 1) |
4637 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4638 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4639 (adjusted_mode->crtc_hblank_start - 1) |
4640 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4641 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4642 (adjusted_mode->crtc_hsync_start - 1) |
4643 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4644
fe2b8f9d 4645 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4646 (adjusted_mode->crtc_vdisplay - 1) |
4647 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4648 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4649 (adjusted_mode->crtc_vblank_start - 1) |
4650 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4651 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4652 (adjusted_mode->crtc_vsync_start - 1) |
4653 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4654
b5e508d4
PZ
4655 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4656 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4657 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4658 * bits. */
4659 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4660 (pipe == PIPE_B || pipe == PIPE_C))
4661 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4662
b0e77b9c
PZ
4663 /* pipesrc controls the size that is scaled from, which should
4664 * always be the user's requested size.
4665 */
4666 I915_WRITE(PIPESRC(pipe),
4667 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4668}
4669
f564048e
EA
4670static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4671 struct drm_display_mode *mode,
4672 struct drm_display_mode *adjusted_mode,
4673 int x, int y,
94352cf9 4674 struct drm_framebuffer *fb)
79e53945
JB
4675{
4676 struct drm_device *dev = crtc->dev;
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679 int pipe = intel_crtc->pipe;
80824003 4680 int plane = intel_crtc->plane;
c751ce4f 4681 int refclk, num_connectors = 0;
652c393a 4682 intel_clock_t clock, reduced_clock;
b0e77b9c 4683 u32 dspcntr, pipeconf;
eb1cbe48
DV
4684 bool ok, has_reduced_clock = false, is_sdvo = false;
4685 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4686 struct intel_encoder *encoder;
d4906093 4687 const intel_limit_t *limit;
5c3b82e2 4688 int ret;
79e53945 4689
6c2b7c12 4690 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4691 switch (encoder->type) {
79e53945
JB
4692 case INTEL_OUTPUT_LVDS:
4693 is_lvds = true;
4694 break;
4695 case INTEL_OUTPUT_SDVO:
7d57382e 4696 case INTEL_OUTPUT_HDMI:
79e53945 4697 is_sdvo = true;
5eddb70b 4698 if (encoder->needs_tv_clock)
e2f0ba97 4699 is_tv = true;
79e53945 4700 break;
79e53945
JB
4701 case INTEL_OUTPUT_TVOUT:
4702 is_tv = true;
4703 break;
a4fc5ed6
KP
4704 case INTEL_OUTPUT_DISPLAYPORT:
4705 is_dp = true;
4706 break;
79e53945 4707 }
43565a06 4708
c751ce4f 4709 num_connectors++;
79e53945
JB
4710 }
4711
c65d77d8 4712 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4713
d4906093
ML
4714 /*
4715 * Returns a set of divisors for the desired target clock with the given
4716 * refclk, or FALSE. The returned values represent the clock equation:
4717 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4718 */
1b894b59 4719 limit = intel_limit(crtc, refclk);
cec2f356
SP
4720 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4721 &clock);
79e53945
JB
4722 if (!ok) {
4723 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4724 return -EINVAL;
79e53945
JB
4725 }
4726
cda4b7d3 4727 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4728 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4729
ddc9003c 4730 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4731 /*
4732 * Ensure we match the reduced clock's P to the target clock.
4733 * If the clocks don't match, we can't switch the display clock
4734 * by using the FP0/FP1. In such case we will disable the LVDS
4735 * downclock feature.
4736 */
ddc9003c 4737 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4738 dev_priv->lvds_downclock,
4739 refclk,
cec2f356 4740 &clock,
5eddb70b 4741 &reduced_clock);
7026d4ac
ZW
4742 }
4743
c65d77d8
JB
4744 if (is_sdvo && is_tv)
4745 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4746
eb1cbe48 4747 if (IS_GEN2(dev))
2a8f64ca
VP
4748 i8xx_update_pll(crtc, adjusted_mode, &clock,
4749 has_reduced_clock ? &reduced_clock : NULL,
4750 num_connectors);
a0c4da24 4751 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4752 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4753 has_reduced_clock ? &reduced_clock : NULL,
4754 num_connectors);
79e53945 4755 else
eb1cbe48
DV
4756 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4757 has_reduced_clock ? &reduced_clock : NULL,
4758 num_connectors);
79e53945
JB
4759
4760 /* setup pipeconf */
5eddb70b 4761 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4762
4763 /* Set up the display plane register */
4764 dspcntr = DISPPLANE_GAMMA_ENABLE;
4765
929c77fb
EA
4766 if (pipe == 0)
4767 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4768 else
4769 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4770
a6c45cf0 4771 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4772 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4773 * core speed.
4774 *
4775 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4776 * pipe == 0 check?
4777 */
e70236a8
JB
4778 if (mode->clock >
4779 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4780 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4781 else
5eddb70b 4782 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4783 }
4784
3b5c78a3
AJ
4785 /* default to 8bpc */
4786 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4787 if (is_dp) {
0c96c65b 4788 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4789 pipeconf |= PIPECONF_BPP_6 |
4790 PIPECONF_DITHER_EN |
4791 PIPECONF_DITHER_TYPE_SP;
4792 }
4793 }
4794
19c03924
GB
4795 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4796 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4797 pipeconf |= PIPECONF_BPP_6 |
4798 PIPECONF_ENABLE |
4799 I965_PIPECONF_ACTIVE;
4800 }
4801 }
4802
28c97730 4803 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4804 drm_mode_debug_printmodeline(mode);
4805
a7516a05
JB
4806 if (HAS_PIPE_CXSR(dev)) {
4807 if (intel_crtc->lowfreq_avail) {
28c97730 4808 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4809 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4810 } else {
28c97730 4811 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4812 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4813 }
4814 }
4815
617cf884 4816 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4817 if (!IS_GEN2(dev) &&
b0e77b9c 4818 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4819 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4820 else
617cf884 4821 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4822
b0e77b9c 4823 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4824
4825 /* pipesrc and dspsize control the size that is scaled from,
4826 * which should always be the user's requested size.
79e53945 4827 */
929c77fb
EA
4828 I915_WRITE(DSPSIZE(plane),
4829 ((mode->vdisplay - 1) << 16) |
4830 (mode->hdisplay - 1));
4831 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4832
f564048e
EA
4833 I915_WRITE(PIPECONF(pipe), pipeconf);
4834 POSTING_READ(PIPECONF(pipe));
929c77fb 4835 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4836
4837 intel_wait_for_vblank(dev, pipe);
4838
f564048e
EA
4839 I915_WRITE(DSPCNTR(plane), dspcntr);
4840 POSTING_READ(DSPCNTR(plane));
4841
94352cf9 4842 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4843
4844 intel_update_watermarks(dev);
4845
f564048e
EA
4846 return ret;
4847}
4848
dde86e2d 4849static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4850{
4851 struct drm_i915_private *dev_priv = dev->dev_private;
4852 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4853 struct intel_encoder *encoder;
13d83a67
JB
4854 u32 temp;
4855 bool has_lvds = false;
199e5d79
KP
4856 bool has_cpu_edp = false;
4857 bool has_pch_edp = false;
4858 bool has_panel = false;
99eb6a01
KP
4859 bool has_ck505 = false;
4860 bool can_ssc = false;
13d83a67
JB
4861
4862 /* We need to take the global config into account */
199e5d79
KP
4863 list_for_each_entry(encoder, &mode_config->encoder_list,
4864 base.head) {
4865 switch (encoder->type) {
4866 case INTEL_OUTPUT_LVDS:
4867 has_panel = true;
4868 has_lvds = true;
4869 break;
4870 case INTEL_OUTPUT_EDP:
4871 has_panel = true;
4872 if (intel_encoder_is_pch_edp(&encoder->base))
4873 has_pch_edp = true;
4874 else
4875 has_cpu_edp = true;
4876 break;
13d83a67
JB
4877 }
4878 }
4879
99eb6a01
KP
4880 if (HAS_PCH_IBX(dev)) {
4881 has_ck505 = dev_priv->display_clock_mode;
4882 can_ssc = has_ck505;
4883 } else {
4884 has_ck505 = false;
4885 can_ssc = true;
4886 }
4887
4888 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4889 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4890 has_ck505);
13d83a67
JB
4891
4892 /* Ironlake: try to setup display ref clock before DPLL
4893 * enabling. This is only under driver's control after
4894 * PCH B stepping, previous chipset stepping should be
4895 * ignoring this setting.
4896 */
4897 temp = I915_READ(PCH_DREF_CONTROL);
4898 /* Always enable nonspread source */
4899 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4900
99eb6a01
KP
4901 if (has_ck505)
4902 temp |= DREF_NONSPREAD_CK505_ENABLE;
4903 else
4904 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4905
199e5d79
KP
4906 if (has_panel) {
4907 temp &= ~DREF_SSC_SOURCE_MASK;
4908 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4909
199e5d79 4910 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4911 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4912 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4913 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4914 } else
4915 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4916
4917 /* Get SSC going before enabling the outputs */
4918 I915_WRITE(PCH_DREF_CONTROL, temp);
4919 POSTING_READ(PCH_DREF_CONTROL);
4920 udelay(200);
4921
13d83a67
JB
4922 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4923
4924 /* Enable CPU source on CPU attached eDP */
199e5d79 4925 if (has_cpu_edp) {
99eb6a01 4926 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4927 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4928 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4929 }
13d83a67
JB
4930 else
4931 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4932 } else
4933 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4934
4935 I915_WRITE(PCH_DREF_CONTROL, temp);
4936 POSTING_READ(PCH_DREF_CONTROL);
4937 udelay(200);
4938 } else {
4939 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4940
4941 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4942
4943 /* Turn off CPU output */
4944 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4945
4946 I915_WRITE(PCH_DREF_CONTROL, temp);
4947 POSTING_READ(PCH_DREF_CONTROL);
4948 udelay(200);
4949
4950 /* Turn off the SSC source */
4951 temp &= ~DREF_SSC_SOURCE_MASK;
4952 temp |= DREF_SSC_SOURCE_DISABLE;
4953
4954 /* Turn off SSC1 */
4955 temp &= ~ DREF_SSC1_ENABLE;
4956
13d83a67
JB
4957 I915_WRITE(PCH_DREF_CONTROL, temp);
4958 POSTING_READ(PCH_DREF_CONTROL);
4959 udelay(200);
4960 }
4961}
4962
dde86e2d
PZ
4963/* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4964static void lpt_init_pch_refclk(struct drm_device *dev)
4965{
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 struct drm_mode_config *mode_config = &dev->mode_config;
4968 struct intel_encoder *encoder;
4969 bool has_vga = false;
4970 bool is_sdv = false;
4971 u32 tmp;
4972
4973 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4974 switch (encoder->type) {
4975 case INTEL_OUTPUT_ANALOG:
4976 has_vga = true;
4977 break;
4978 }
4979 }
4980
4981 if (!has_vga)
4982 return;
4983
4984 /* XXX: Rip out SDV support once Haswell ships for real. */
4985 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4986 is_sdv = true;
4987
4988 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4989 tmp &= ~SBI_SSCCTL_DISABLE;
4990 tmp |= SBI_SSCCTL_PATHALT;
4991 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4992
4993 udelay(24);
4994
4995 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4996 tmp &= ~SBI_SSCCTL_PATHALT;
4997 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4998
4999 if (!is_sdv) {
5000 tmp = I915_READ(SOUTH_CHICKEN2);
5001 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5002 I915_WRITE(SOUTH_CHICKEN2, tmp);
5003
5004 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5005 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5006 DRM_ERROR("FDI mPHY reset assert timeout\n");
5007
5008 tmp = I915_READ(SOUTH_CHICKEN2);
5009 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5010 I915_WRITE(SOUTH_CHICKEN2, tmp);
5011
5012 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5013 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5014 100))
5015 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5016 }
5017
5018 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5019 tmp &= ~(0xFF << 24);
5020 tmp |= (0x12 << 24);
5021 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5022
5023 if (!is_sdv) {
5024 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5025 tmp &= ~(0x3 << 6);
5026 tmp |= (1 << 6) | (1 << 0);
5027 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5028 }
5029
5030 if (is_sdv) {
5031 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5032 tmp |= 0x7FFF;
5033 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5034 }
5035
5036 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5037 tmp |= (1 << 11);
5038 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5039
5040 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5041 tmp |= (1 << 11);
5042 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5043
5044 if (is_sdv) {
5045 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5046 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5047 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5048
5049 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5050 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5051 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5052
5053 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5054 tmp |= (0x3F << 8);
5055 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5056
5057 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5058 tmp |= (0x3F << 8);
5059 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5060 }
5061
5062 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5063 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5064 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5065
5066 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5067 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5068 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5069
5070 if (!is_sdv) {
5071 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5072 tmp &= ~(7 << 13);
5073 tmp |= (5 << 13);
5074 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5075
5076 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5077 tmp &= ~(7 << 13);
5078 tmp |= (5 << 13);
5079 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5080 }
5081
5082 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5083 tmp &= ~0xFF;
5084 tmp |= 0x1C;
5085 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5086
5087 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5088 tmp &= ~0xFF;
5089 tmp |= 0x1C;
5090 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5091
5092 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5093 tmp &= ~(0xFF << 16);
5094 tmp |= (0x1C << 16);
5095 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5096
5097 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5098 tmp &= ~(0xFF << 16);
5099 tmp |= (0x1C << 16);
5100 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5101
5102 if (!is_sdv) {
5103 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5104 tmp |= (1 << 27);
5105 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5106
5107 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5108 tmp |= (1 << 27);
5109 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5110
5111 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5112 tmp &= ~(0xF << 28);
5113 tmp |= (4 << 28);
5114 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5115
5116 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5117 tmp &= ~(0xF << 28);
5118 tmp |= (4 << 28);
5119 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5120 }
5121
5122 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5123 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5124 tmp |= SBI_DBUFF0_ENABLE;
5125 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5126}
5127
5128/*
5129 * Initialize reference clocks when the driver loads
5130 */
5131void intel_init_pch_refclk(struct drm_device *dev)
5132{
5133 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5134 ironlake_init_pch_refclk(dev);
5135 else if (HAS_PCH_LPT(dev))
5136 lpt_init_pch_refclk(dev);
5137}
5138
d9d444cb
JB
5139static int ironlake_get_refclk(struct drm_crtc *crtc)
5140{
5141 struct drm_device *dev = crtc->dev;
5142 struct drm_i915_private *dev_priv = dev->dev_private;
5143 struct intel_encoder *encoder;
d9d444cb
JB
5144 struct intel_encoder *edp_encoder = NULL;
5145 int num_connectors = 0;
5146 bool is_lvds = false;
5147
6c2b7c12 5148 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
5149 switch (encoder->type) {
5150 case INTEL_OUTPUT_LVDS:
5151 is_lvds = true;
5152 break;
5153 case INTEL_OUTPUT_EDP:
5154 edp_encoder = encoder;
5155 break;
5156 }
5157 num_connectors++;
5158 }
5159
5160 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5161 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5162 dev_priv->lvds_ssc_freq);
5163 return dev_priv->lvds_ssc_freq * 1000;
5164 }
5165
5166 return 120000;
5167}
5168
c8203565 5169static void ironlake_set_pipeconf(struct drm_crtc *crtc,
f564048e 5170 struct drm_display_mode *adjusted_mode,
c8203565 5171 bool dither)
79e53945 5172{
c8203565 5173 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
5174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175 int pipe = intel_crtc->pipe;
c8203565
PZ
5176 uint32_t val;
5177
5178 val = I915_READ(PIPECONF(pipe));
5179
5180 val &= ~PIPE_BPC_MASK;
5181 switch (intel_crtc->bpp) {
5182 case 18:
5183 val |= PIPE_6BPC;
5184 break;
5185 case 24:
5186 val |= PIPE_8BPC;
5187 break;
5188 case 30:
5189 val |= PIPE_10BPC;
5190 break;
5191 case 36:
5192 val |= PIPE_12BPC;
5193 break;
5194 default:
cc769b62
PZ
5195 /* Case prevented by intel_choose_pipe_bpp_dither. */
5196 BUG();
c8203565
PZ
5197 }
5198
5199 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5200 if (dither)
5201 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5202
5203 val &= ~PIPECONF_INTERLACE_MASK;
5204 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5205 val |= PIPECONF_INTERLACED_ILK;
5206 else
5207 val |= PIPECONF_PROGRESSIVE;
5208
5209 I915_WRITE(PIPECONF(pipe), val);
5210 POSTING_READ(PIPECONF(pipe));
5211}
5212
ee2b0b38
PZ
5213static void haswell_set_pipeconf(struct drm_crtc *crtc,
5214 struct drm_display_mode *adjusted_mode,
5215 bool dither)
5216{
5217 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5219 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5220 uint32_t val;
5221
702e7a56 5222 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5223
5224 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5225 if (dither)
5226 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5227
5228 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5229 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5230 val |= PIPECONF_INTERLACED_ILK;
5231 else
5232 val |= PIPECONF_PROGRESSIVE;
5233
702e7a56
PZ
5234 I915_WRITE(PIPECONF(cpu_transcoder), val);
5235 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5236}
5237
6591c6e4
PZ
5238static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5239 struct drm_display_mode *adjusted_mode,
5240 intel_clock_t *clock,
5241 bool *has_reduced_clock,
5242 intel_clock_t *reduced_clock)
5243{
5244 struct drm_device *dev = crtc->dev;
5245 struct drm_i915_private *dev_priv = dev->dev_private;
5246 struct intel_encoder *intel_encoder;
5247 int refclk;
d4906093 5248 const intel_limit_t *limit;
6591c6e4 5249 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
79e53945 5250
6591c6e4
PZ
5251 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5252 switch (intel_encoder->type) {
79e53945
JB
5253 case INTEL_OUTPUT_LVDS:
5254 is_lvds = true;
5255 break;
5256 case INTEL_OUTPUT_SDVO:
7d57382e 5257 case INTEL_OUTPUT_HDMI:
79e53945 5258 is_sdvo = true;
6591c6e4 5259 if (intel_encoder->needs_tv_clock)
e2f0ba97 5260 is_tv = true;
79e53945 5261 break;
79e53945
JB
5262 case INTEL_OUTPUT_TVOUT:
5263 is_tv = true;
5264 break;
79e53945
JB
5265 }
5266 }
5267
d9d444cb 5268 refclk = ironlake_get_refclk(crtc);
79e53945 5269
d4906093
ML
5270 /*
5271 * Returns a set of divisors for the desired target clock with the given
5272 * refclk, or FALSE. The returned values represent the clock equation:
5273 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5274 */
1b894b59 5275 limit = intel_limit(crtc, refclk);
6591c6e4
PZ
5276 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5277 clock);
5278 if (!ret)
5279 return false;
cda4b7d3 5280
ddc9003c 5281 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5282 /*
5283 * Ensure we match the reduced clock's P to the target clock.
5284 * If the clocks don't match, we can't switch the display clock
5285 * by using the FP0/FP1. In such case we will disable the LVDS
5286 * downclock feature.
5287 */
6591c6e4
PZ
5288 *has_reduced_clock = limit->find_pll(limit, crtc,
5289 dev_priv->lvds_downclock,
5290 refclk,
5291 clock,
5292 reduced_clock);
652c393a 5293 }
61e9653f
DV
5294
5295 if (is_sdvo && is_tv)
6591c6e4
PZ
5296 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5297
5298 return true;
5299}
5300
01a415fd
DV
5301static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5302{
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304 uint32_t temp;
5305
5306 temp = I915_READ(SOUTH_CHICKEN1);
5307 if (temp & FDI_BC_BIFURCATION_SELECT)
5308 return;
5309
5310 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5311 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5312
5313 temp |= FDI_BC_BIFURCATION_SELECT;
5314 DRM_DEBUG_KMS("enabling fdi C rx\n");
5315 I915_WRITE(SOUTH_CHICKEN1, temp);
5316 POSTING_READ(SOUTH_CHICKEN1);
5317}
5318
5319static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5320{
5321 struct drm_device *dev = intel_crtc->base.dev;
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323 struct intel_crtc *pipe_B_crtc =
5324 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5325
5326 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5327 intel_crtc->pipe, intel_crtc->fdi_lanes);
5328 if (intel_crtc->fdi_lanes > 4) {
5329 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5330 intel_crtc->pipe, intel_crtc->fdi_lanes);
5331 /* Clamp lanes to avoid programming the hw with bogus values. */
5332 intel_crtc->fdi_lanes = 4;
5333
5334 return false;
5335 }
5336
5337 if (dev_priv->num_pipe == 2)
5338 return true;
5339
5340 switch (intel_crtc->pipe) {
5341 case PIPE_A:
5342 return true;
5343 case PIPE_B:
5344 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5345 intel_crtc->fdi_lanes > 2) {
5346 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5347 intel_crtc->pipe, intel_crtc->fdi_lanes);
5348 /* Clamp lanes to avoid programming the hw with bogus values. */
5349 intel_crtc->fdi_lanes = 2;
5350
5351 return false;
5352 }
5353
5354 if (intel_crtc->fdi_lanes > 2)
5355 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5356 else
5357 cpt_enable_fdi_bc_bifurcation(dev);
5358
5359 return true;
5360 case PIPE_C:
5361 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5362 if (intel_crtc->fdi_lanes > 2) {
5363 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5364 intel_crtc->pipe, intel_crtc->fdi_lanes);
5365 /* Clamp lanes to avoid programming the hw with bogus values. */
5366 intel_crtc->fdi_lanes = 2;
5367
5368 return false;
5369 }
5370 } else {
5371 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5372 return false;
5373 }
5374
5375 cpt_enable_fdi_bc_bifurcation(dev);
5376
5377 return true;
5378 default:
5379 BUG();
5380 }
5381}
5382
d4b1931c
PZ
5383int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5384{
5385 /*
5386 * Account for spread spectrum to avoid
5387 * oversubscribing the link. Max center spread
5388 * is 2.5%; use 5% for safety's sake.
5389 */
5390 u32 bps = target_clock * bpp * 21 / 20;
5391 return bps / (link_bw * 8) + 1;
5392}
5393
f48d8f23
PZ
5394static void ironlake_set_m_n(struct drm_crtc *crtc,
5395 struct drm_display_mode *mode,
5396 struct drm_display_mode *adjusted_mode)
79e53945
JB
5397{
5398 struct drm_device *dev = crtc->dev;
5399 struct drm_i915_private *dev_priv = dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5401 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23 5402 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
2c07245f 5403 struct fdi_m_n m_n = {0};
f48d8f23
PZ
5404 int target_clock, pixel_multiplier, lane, link_bw;
5405 bool is_dp = false, is_cpu_edp = false;
79e53945 5406
f48d8f23
PZ
5407 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5408 switch (intel_encoder->type) {
a4fc5ed6
KP
5409 case INTEL_OUTPUT_DISPLAYPORT:
5410 is_dp = true;
5411 break;
32f9d658 5412 case INTEL_OUTPUT_EDP:
e3aef172 5413 is_dp = true;
f48d8f23 5414 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5415 is_cpu_edp = true;
f48d8f23 5416 edp_encoder = intel_encoder;
32f9d658 5417 break;
79e53945 5418 }
79e53945 5419 }
61e9653f 5420
2c07245f 5421 /* FDI link */
8febb297
EA
5422 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5423 lane = 0;
5424 /* CPU eDP doesn't require FDI link, so just set DP M/N
5425 according to current link config */
e3aef172 5426 if (is_cpu_edp) {
e3aef172 5427 intel_edp_link_config(edp_encoder, &lane, &link_bw);
8febb297 5428 } else {
8febb297
EA
5429 /* FDI is a binary signal running at ~2.7GHz, encoding
5430 * each output octet as 10 bits. The actual frequency
5431 * is stored as a divider into a 100MHz clock, and the
5432 * mode pixel clock is stored in units of 1KHz.
5433 * Hence the bw of each lane in terms of the mode signal
5434 * is:
5435 */
5436 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5437 }
58a27471 5438
94bf2ced
DV
5439 /* [e]DP over FDI requires target mode clock instead of link clock. */
5440 if (edp_encoder)
5441 target_clock = intel_edp_target_clock(edp_encoder, mode);
5442 else if (is_dp)
5443 target_clock = mode->clock;
5444 else
5445 target_clock = adjusted_mode->clock;
5446
d4b1931c
PZ
5447 if (!lane)
5448 lane = ironlake_get_lanes_required(target_clock, link_bw,
5449 intel_crtc->bpp);
2c07245f 5450
8febb297
EA
5451 intel_crtc->fdi_lanes = lane;
5452
5453 if (pixel_multiplier > 1)
5454 link_bw *= pixel_multiplier;
5a354204
JB
5455 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5456 &m_n);
8febb297 5457
afe2fcf5
PZ
5458 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5459 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5460 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5461 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5462}
5463
de13a2e3
PZ
5464static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5465 struct drm_display_mode *adjusted_mode,
5466 intel_clock_t *clock, u32 fp)
79e53945 5467{
de13a2e3 5468 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5469 struct drm_device *dev = crtc->dev;
5470 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5471 struct intel_encoder *intel_encoder;
5472 uint32_t dpll;
5473 int factor, pixel_multiplier, num_connectors = 0;
5474 bool is_lvds = false, is_sdvo = false, is_tv = false;
5475 bool is_dp = false, is_cpu_edp = false;
79e53945 5476
de13a2e3
PZ
5477 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5478 switch (intel_encoder->type) {
79e53945
JB
5479 case INTEL_OUTPUT_LVDS:
5480 is_lvds = true;
5481 break;
5482 case INTEL_OUTPUT_SDVO:
7d57382e 5483 case INTEL_OUTPUT_HDMI:
79e53945 5484 is_sdvo = true;
de13a2e3 5485 if (intel_encoder->needs_tv_clock)
e2f0ba97 5486 is_tv = true;
79e53945 5487 break;
79e53945
JB
5488 case INTEL_OUTPUT_TVOUT:
5489 is_tv = true;
5490 break;
a4fc5ed6
KP
5491 case INTEL_OUTPUT_DISPLAYPORT:
5492 is_dp = true;
5493 break;
32f9d658 5494 case INTEL_OUTPUT_EDP:
e3aef172 5495 is_dp = true;
de13a2e3 5496 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5497 is_cpu_edp = true;
32f9d658 5498 break;
79e53945 5499 }
43565a06 5500
c751ce4f 5501 num_connectors++;
79e53945 5502 }
79e53945 5503
c1858123 5504 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5505 factor = 21;
5506 if (is_lvds) {
5507 if ((intel_panel_use_ssc(dev_priv) &&
5508 dev_priv->lvds_ssc_freq == 100) ||
5509 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5510 factor = 25;
5511 } else if (is_sdvo && is_tv)
5512 factor = 20;
c1858123 5513
de13a2e3 5514 if (clock->m < factor * clock->n)
8febb297 5515 fp |= FP_CB_TUNE;
2c07245f 5516
5eddb70b 5517 dpll = 0;
2c07245f 5518
a07d6787
EA
5519 if (is_lvds)
5520 dpll |= DPLLB_MODE_LVDS;
5521 else
5522 dpll |= DPLLB_MODE_DAC_SERIAL;
5523 if (is_sdvo) {
de13a2e3 5524 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5525 if (pixel_multiplier > 1) {
5526 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5527 }
a07d6787
EA
5528 dpll |= DPLL_DVO_HIGH_SPEED;
5529 }
e3aef172 5530 if (is_dp && !is_cpu_edp)
a07d6787 5531 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5532
a07d6787 5533 /* compute bitmask from p1 value */
de13a2e3 5534 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5535 /* also FPA1 */
de13a2e3 5536 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5537
de13a2e3 5538 switch (clock->p2) {
a07d6787
EA
5539 case 5:
5540 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5541 break;
5542 case 7:
5543 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5544 break;
5545 case 10:
5546 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5547 break;
5548 case 14:
5549 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5550 break;
79e53945
JB
5551 }
5552
43565a06
KH
5553 if (is_sdvo && is_tv)
5554 dpll |= PLL_REF_INPUT_TVCLKINBC;
5555 else if (is_tv)
79e53945 5556 /* XXX: just matching BIOS for now */
43565a06 5557 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5558 dpll |= 3;
a7615030 5559 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5560 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5561 else
5562 dpll |= PLL_REF_INPUT_DREFCLK;
5563
de13a2e3
PZ
5564 return dpll;
5565}
5566
5567static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5568 struct drm_display_mode *mode,
5569 struct drm_display_mode *adjusted_mode,
5570 int x, int y,
5571 struct drm_framebuffer *fb)
5572{
5573 struct drm_device *dev = crtc->dev;
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576 int pipe = intel_crtc->pipe;
5577 int plane = intel_crtc->plane;
5578 int num_connectors = 0;
5579 intel_clock_t clock, reduced_clock;
5580 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5581 bool ok, has_reduced_clock = false;
5582 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5583 struct intel_encoder *encoder;
5584 u32 temp;
5585 int ret;
01a415fd 5586 bool dither, fdi_config_ok;
de13a2e3
PZ
5587
5588 for_each_encoder_on_crtc(dev, crtc, encoder) {
5589 switch (encoder->type) {
5590 case INTEL_OUTPUT_LVDS:
5591 is_lvds = true;
5592 break;
de13a2e3
PZ
5593 case INTEL_OUTPUT_DISPLAYPORT:
5594 is_dp = true;
5595 break;
5596 case INTEL_OUTPUT_EDP:
5597 is_dp = true;
e2f12b07 5598 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5599 is_cpu_edp = true;
5600 break;
5601 }
5602
5603 num_connectors++;
a07d6787 5604 }
79e53945 5605
5dc5298b
PZ
5606 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5607 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 5608
de13a2e3
PZ
5609 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5610 &has_reduced_clock, &reduced_clock);
5611 if (!ok) {
5612 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5613 return -EINVAL;
79e53945
JB
5614 }
5615
de13a2e3
PZ
5616 /* Ensure that the cursor is valid for the new mode before changing... */
5617 intel_crtc_update_cursor(crtc, true);
5618
5619 /* determine panel color depth */
c8241969
JN
5620 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5621 adjusted_mode);
de13a2e3
PZ
5622 if (is_lvds && dev_priv->lvds_dither)
5623 dither = true;
5624
5625 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5626 if (has_reduced_clock)
5627 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5628 reduced_clock.m2;
5629
5630 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
79e53945 5631
f7cb34d4 5632 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5633 drm_mode_debug_printmodeline(mode);
5634
5dc5298b
PZ
5635 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5636 if (!is_cpu_edp) {
ee7b9f93 5637 struct intel_pch_pll *pll;
4b645f14 5638
ee7b9f93
JB
5639 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5640 if (pll == NULL) {
5641 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5642 pipe);
4b645f14
JB
5643 return -EINVAL;
5644 }
ee7b9f93
JB
5645 } else
5646 intel_put_pch_pll(intel_crtc);
79e53945
JB
5647
5648 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5649 * This is an exception to the general rule that mode_set doesn't turn
5650 * things on.
5651 */
5652 if (is_lvds) {
fae14981 5653 temp = I915_READ(PCH_LVDS);
5eddb70b 5654 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5655 if (HAS_PCH_CPT(dev)) {
5656 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5657 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5658 } else {
5659 if (pipe == 1)
5660 temp |= LVDS_PIPEB_SELECT;
5661 else
5662 temp &= ~LVDS_PIPEB_SELECT;
5663 }
4b645f14 5664
a3e17eb8 5665 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5666 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5667 /* Set the B0-B3 data pairs corresponding to whether we're going to
5668 * set the DPLLs for dual-channel mode or not.
5669 */
5670 if (clock.p2 == 7)
5eddb70b 5671 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5672 else
5eddb70b 5673 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5674
5675 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5676 * appropriately here, but we need to look more thoroughly into how
5677 * panels behave in the two modes.
5678 */
284d5df5 5679 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5680 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5681 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5682 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5683 temp |= LVDS_VSYNC_POLARITY;
fae14981 5684 I915_WRITE(PCH_LVDS, temp);
79e53945 5685 }
434ed097 5686
e3aef172 5687 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5688 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5689 } else {
8db9d77b 5690 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5691 I915_WRITE(TRANSDATA_M1(pipe), 0);
5692 I915_WRITE(TRANSDATA_N1(pipe), 0);
5693 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5694 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5695 }
79e53945 5696
ee7b9f93
JB
5697 if (intel_crtc->pch_pll) {
5698 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5699
32f9d658 5700 /* Wait for the clocks to stabilize. */
ee7b9f93 5701 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5702 udelay(150);
5703
8febb297
EA
5704 /* The pixel multiplier can only be updated once the
5705 * DPLL is enabled and the clocks are stable.
5706 *
5707 * So write it again.
5708 */
ee7b9f93 5709 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5710 }
79e53945 5711
5eddb70b 5712 intel_crtc->lowfreq_avail = false;
ee7b9f93 5713 if (intel_crtc->pch_pll) {
4b645f14 5714 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5715 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5716 intel_crtc->lowfreq_avail = true;
4b645f14 5717 } else {
ee7b9f93 5718 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5719 }
5720 }
5721
b0e77b9c 5722 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b 5723
01a415fd
DV
5724 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5725 * ironlake_check_fdi_lanes. */
f48d8f23 5726 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5727
01a415fd 5728 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
2c07245f 5729
e3aef172 5730 if (is_cpu_edp)
8febb297 5731 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5732
c8203565 5733 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5734
9d0498a2 5735 intel_wait_for_vblank(dev, pipe);
79e53945 5736
a1f9e77e
PZ
5737 /* Set up the display plane register */
5738 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5739 POSTING_READ(DSPCNTR(plane));
79e53945 5740
94352cf9 5741 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5742
5743 intel_update_watermarks(dev);
5744
1f8eeabf
ED
5745 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5746
01a415fd 5747 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5748}
5749
09b4ddf9
PZ
5750static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5751 struct drm_display_mode *mode,
5752 struct drm_display_mode *adjusted_mode,
5753 int x, int y,
5754 struct drm_framebuffer *fb)
5755{
5756 struct drm_device *dev = crtc->dev;
5757 struct drm_i915_private *dev_priv = dev->dev_private;
5758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 int pipe = intel_crtc->pipe;
5760 int plane = intel_crtc->plane;
5761 int num_connectors = 0;
5762 intel_clock_t clock, reduced_clock;
5dc5298b 5763 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5764 bool ok, has_reduced_clock = false;
5765 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5766 struct intel_encoder *encoder;
5767 u32 temp;
5768 int ret;
5769 bool dither;
5770
5771 for_each_encoder_on_crtc(dev, crtc, encoder) {
5772 switch (encoder->type) {
5773 case INTEL_OUTPUT_LVDS:
5774 is_lvds = true;
5775 break;
5776 case INTEL_OUTPUT_DISPLAYPORT:
5777 is_dp = true;
5778 break;
5779 case INTEL_OUTPUT_EDP:
5780 is_dp = true;
5781 if (!intel_encoder_is_pch_edp(&encoder->base))
5782 is_cpu_edp = true;
5783 break;
5784 }
5785
5786 num_connectors++;
5787 }
5788
a5c961d1
PZ
5789 if (is_cpu_edp)
5790 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5791 else
5792 intel_crtc->cpu_transcoder = pipe;
5793
5dc5298b
PZ
5794 /* We are not sure yet this won't happen. */
5795 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5796 INTEL_PCH_TYPE(dev));
5797
5798 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5799 num_connectors, pipe_name(pipe));
5800
702e7a56 5801 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5802 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5803
5804 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5805
6441ab5f
PZ
5806 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5807 return -EINVAL;
5808
5dc5298b
PZ
5809 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5810 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5811 &has_reduced_clock,
5812 &reduced_clock);
5813 if (!ok) {
5814 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5815 return -EINVAL;
5816 }
09b4ddf9
PZ
5817 }
5818
5819 /* Ensure that the cursor is valid for the new mode before changing... */
5820 intel_crtc_update_cursor(crtc, true);
5821
5822 /* determine panel color depth */
c8241969
JN
5823 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5824 adjusted_mode);
09b4ddf9
PZ
5825 if (is_lvds && dev_priv->lvds_dither)
5826 dither = true;
5827
09b4ddf9
PZ
5828 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5829 drm_mode_debug_printmodeline(mode);
5830
5dc5298b
PZ
5831 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5832 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5833 if (has_reduced_clock)
5834 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5835 reduced_clock.m2;
5836
5837 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5838 fp);
5839
5840 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5841 * own on pre-Haswell/LPT generation */
5842 if (!is_cpu_edp) {
5843 struct intel_pch_pll *pll;
5844
5845 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5846 if (pll == NULL) {
5847 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5848 pipe);
5849 return -EINVAL;
5850 }
5851 } else
5852 intel_put_pch_pll(intel_crtc);
09b4ddf9 5853
5dc5298b
PZ
5854 /* The LVDS pin pair needs to be on before the DPLLs are
5855 * enabled. This is an exception to the general rule that
5856 * mode_set doesn't turn things on.
5857 */
5858 if (is_lvds) {
5859 temp = I915_READ(PCH_LVDS);
5860 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5861 if (HAS_PCH_CPT(dev)) {
5862 temp &= ~PORT_TRANS_SEL_MASK;
5863 temp |= PORT_TRANS_SEL_CPT(pipe);
5864 } else {
5865 if (pipe == 1)
5866 temp |= LVDS_PIPEB_SELECT;
5867 else
5868 temp &= ~LVDS_PIPEB_SELECT;
5869 }
09b4ddf9 5870
5dc5298b
PZ
5871 /* set the corresponsding LVDS_BORDER bit */
5872 temp |= dev_priv->lvds_border_bits;
5873 /* Set the B0-B3 data pairs corresponding to whether
5874 * we're going to set the DPLLs for dual-channel mode or
5875 * not.
5876 */
5877 if (clock.p2 == 7)
5878 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5879 else
5dc5298b
PZ
5880 temp &= ~(LVDS_B0B3_POWER_UP |
5881 LVDS_CLKB_POWER_UP);
5882
5883 /* It would be nice to set 24 vs 18-bit mode
5884 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5885 * look more thoroughly into how panels behave in the
5886 * two modes.
5887 */
5888 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5889 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5890 temp |= LVDS_HSYNC_POLARITY;
5891 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5892 temp |= LVDS_VSYNC_POLARITY;
5893 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5894 }
09b4ddf9
PZ
5895 }
5896
5897 if (is_dp && !is_cpu_edp) {
5898 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5899 } else {
5dc5298b
PZ
5900 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5901 /* For non-DP output, clear any trans DP clock recovery
5902 * setting.*/
5903 I915_WRITE(TRANSDATA_M1(pipe), 0);
5904 I915_WRITE(TRANSDATA_N1(pipe), 0);
5905 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5906 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5907 }
09b4ddf9
PZ
5908 }
5909
5910 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5911 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5912 if (intel_crtc->pch_pll) {
5913 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5914
5915 /* Wait for the clocks to stabilize. */
5916 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5917 udelay(150);
5918
5919 /* The pixel multiplier can only be updated once the
5920 * DPLL is enabled and the clocks are stable.
5921 *
5922 * So write it again.
5923 */
5924 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5925 }
5926
5927 if (intel_crtc->pch_pll) {
5928 if (is_lvds && has_reduced_clock && i915_powersave) {
5929 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5930 intel_crtc->lowfreq_avail = true;
5931 } else {
5932 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5933 }
09b4ddf9
PZ
5934 }
5935 }
5936
5937 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5938
1eb8dfec
PZ
5939 if (!is_dp || is_cpu_edp)
5940 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5941
5dc5298b
PZ
5942 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5943 if (is_cpu_edp)
5944 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5945
ee2b0b38 5946 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5947
09b4ddf9
PZ
5948 /* Set up the display plane register */
5949 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5950 POSTING_READ(DSPCNTR(plane));
5951
5952 ret = intel_pipe_set_base(crtc, x, y, fb);
5953
5954 intel_update_watermarks(dev);
5955
5956 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5957
1f803ee5 5958 return ret;
79e53945
JB
5959}
5960
f564048e
EA
5961static int intel_crtc_mode_set(struct drm_crtc *crtc,
5962 struct drm_display_mode *mode,
5963 struct drm_display_mode *adjusted_mode,
5964 int x, int y,
94352cf9 5965 struct drm_framebuffer *fb)
f564048e
EA
5966{
5967 struct drm_device *dev = crtc->dev;
5968 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5969 struct drm_encoder_helper_funcs *encoder_funcs;
5970 struct intel_encoder *encoder;
0b701d27
EA
5971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5972 int pipe = intel_crtc->pipe;
f564048e
EA
5973 int ret;
5974
0b701d27 5975 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5976
f564048e 5977 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5978 x, y, fb);
79e53945 5979 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5980
9256aa19
DV
5981 if (ret != 0)
5982 return ret;
5983
5984 for_each_encoder_on_crtc(dev, crtc, encoder) {
5985 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5986 encoder->base.base.id,
5987 drm_get_encoder_name(&encoder->base),
5988 mode->base.id, mode->name);
5989 encoder_funcs = encoder->base.helper_private;
5990 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5991 }
5992
5993 return 0;
79e53945
JB
5994}
5995
3a9627f4
WF
5996static bool intel_eld_uptodate(struct drm_connector *connector,
5997 int reg_eldv, uint32_t bits_eldv,
5998 int reg_elda, uint32_t bits_elda,
5999 int reg_edid)
6000{
6001 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6002 uint8_t *eld = connector->eld;
6003 uint32_t i;
6004
6005 i = I915_READ(reg_eldv);
6006 i &= bits_eldv;
6007
6008 if (!eld[0])
6009 return !i;
6010
6011 if (!i)
6012 return false;
6013
6014 i = I915_READ(reg_elda);
6015 i &= ~bits_elda;
6016 I915_WRITE(reg_elda, i);
6017
6018 for (i = 0; i < eld[2]; i++)
6019 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6020 return false;
6021
6022 return true;
6023}
6024
e0dac65e
WF
6025static void g4x_write_eld(struct drm_connector *connector,
6026 struct drm_crtc *crtc)
6027{
6028 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6029 uint8_t *eld = connector->eld;
6030 uint32_t eldv;
6031 uint32_t len;
6032 uint32_t i;
6033
6034 i = I915_READ(G4X_AUD_VID_DID);
6035
6036 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6037 eldv = G4X_ELDV_DEVCL_DEVBLC;
6038 else
6039 eldv = G4X_ELDV_DEVCTG;
6040
3a9627f4
WF
6041 if (intel_eld_uptodate(connector,
6042 G4X_AUD_CNTL_ST, eldv,
6043 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6044 G4X_HDMIW_HDMIEDID))
6045 return;
6046
e0dac65e
WF
6047 i = I915_READ(G4X_AUD_CNTL_ST);
6048 i &= ~(eldv | G4X_ELD_ADDR);
6049 len = (i >> 9) & 0x1f; /* ELD buffer size */
6050 I915_WRITE(G4X_AUD_CNTL_ST, i);
6051
6052 if (!eld[0])
6053 return;
6054
6055 len = min_t(uint8_t, eld[2], len);
6056 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6057 for (i = 0; i < len; i++)
6058 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6059
6060 i = I915_READ(G4X_AUD_CNTL_ST);
6061 i |= eldv;
6062 I915_WRITE(G4X_AUD_CNTL_ST, i);
6063}
6064
83358c85
WX
6065static void haswell_write_eld(struct drm_connector *connector,
6066 struct drm_crtc *crtc)
6067{
6068 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6069 uint8_t *eld = connector->eld;
6070 struct drm_device *dev = crtc->dev;
6071 uint32_t eldv;
6072 uint32_t i;
6073 int len;
6074 int pipe = to_intel_crtc(crtc)->pipe;
6075 int tmp;
6076
6077 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6078 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6079 int aud_config = HSW_AUD_CFG(pipe);
6080 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6081
6082
6083 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6084
6085 /* Audio output enable */
6086 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6087 tmp = I915_READ(aud_cntrl_st2);
6088 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6089 I915_WRITE(aud_cntrl_st2, tmp);
6090
6091 /* Wait for 1 vertical blank */
6092 intel_wait_for_vblank(dev, pipe);
6093
6094 /* Set ELD valid state */
6095 tmp = I915_READ(aud_cntrl_st2);
6096 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6097 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6098 I915_WRITE(aud_cntrl_st2, tmp);
6099 tmp = I915_READ(aud_cntrl_st2);
6100 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6101
6102 /* Enable HDMI mode */
6103 tmp = I915_READ(aud_config);
6104 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6105 /* clear N_programing_enable and N_value_index */
6106 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6107 I915_WRITE(aud_config, tmp);
6108
6109 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6110
6111 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6112
6113 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6114 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6115 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6116 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6117 } else
6118 I915_WRITE(aud_config, 0);
6119
6120 if (intel_eld_uptodate(connector,
6121 aud_cntrl_st2, eldv,
6122 aud_cntl_st, IBX_ELD_ADDRESS,
6123 hdmiw_hdmiedid))
6124 return;
6125
6126 i = I915_READ(aud_cntrl_st2);
6127 i &= ~eldv;
6128 I915_WRITE(aud_cntrl_st2, i);
6129
6130 if (!eld[0])
6131 return;
6132
6133 i = I915_READ(aud_cntl_st);
6134 i &= ~IBX_ELD_ADDRESS;
6135 I915_WRITE(aud_cntl_st, i);
6136 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6137 DRM_DEBUG_DRIVER("port num:%d\n", i);
6138
6139 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6140 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6141 for (i = 0; i < len; i++)
6142 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6143
6144 i = I915_READ(aud_cntrl_st2);
6145 i |= eldv;
6146 I915_WRITE(aud_cntrl_st2, i);
6147
6148}
6149
e0dac65e
WF
6150static void ironlake_write_eld(struct drm_connector *connector,
6151 struct drm_crtc *crtc)
6152{
6153 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6154 uint8_t *eld = connector->eld;
6155 uint32_t eldv;
6156 uint32_t i;
6157 int len;
6158 int hdmiw_hdmiedid;
b6daa025 6159 int aud_config;
e0dac65e
WF
6160 int aud_cntl_st;
6161 int aud_cntrl_st2;
9b138a83 6162 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 6163
b3f33cbf 6164 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
6165 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6166 aud_config = IBX_AUD_CFG(pipe);
6167 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 6168 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6169 } else {
9b138a83
WX
6170 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6171 aud_config = CPT_AUD_CFG(pipe);
6172 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 6173 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6174 }
6175
9b138a83 6176 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
6177
6178 i = I915_READ(aud_cntl_st);
9b138a83 6179 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
6180 if (!i) {
6181 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6182 /* operate blindly on all ports */
1202b4c6
WF
6183 eldv = IBX_ELD_VALIDB;
6184 eldv |= IBX_ELD_VALIDB << 4;
6185 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6186 } else {
6187 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6188 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6189 }
6190
3a9627f4
WF
6191 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6192 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6193 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
6194 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6195 } else
6196 I915_WRITE(aud_config, 0);
e0dac65e 6197
3a9627f4
WF
6198 if (intel_eld_uptodate(connector,
6199 aud_cntrl_st2, eldv,
6200 aud_cntl_st, IBX_ELD_ADDRESS,
6201 hdmiw_hdmiedid))
6202 return;
6203
e0dac65e
WF
6204 i = I915_READ(aud_cntrl_st2);
6205 i &= ~eldv;
6206 I915_WRITE(aud_cntrl_st2, i);
6207
6208 if (!eld[0])
6209 return;
6210
e0dac65e 6211 i = I915_READ(aud_cntl_st);
1202b4c6 6212 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6213 I915_WRITE(aud_cntl_st, i);
6214
6215 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6216 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6217 for (i = 0; i < len; i++)
6218 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6219
6220 i = I915_READ(aud_cntrl_st2);
6221 i |= eldv;
6222 I915_WRITE(aud_cntrl_st2, i);
6223}
6224
6225void intel_write_eld(struct drm_encoder *encoder,
6226 struct drm_display_mode *mode)
6227{
6228 struct drm_crtc *crtc = encoder->crtc;
6229 struct drm_connector *connector;
6230 struct drm_device *dev = encoder->dev;
6231 struct drm_i915_private *dev_priv = dev->dev_private;
6232
6233 connector = drm_select_eld(encoder, mode);
6234 if (!connector)
6235 return;
6236
6237 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6238 connector->base.id,
6239 drm_get_connector_name(connector),
6240 connector->encoder->base.id,
6241 drm_get_encoder_name(connector->encoder));
6242
6243 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6244
6245 if (dev_priv->display.write_eld)
6246 dev_priv->display.write_eld(connector, crtc);
6247}
6248
79e53945
JB
6249/** Loads the palette/gamma unit for the CRTC with the prepared values */
6250void intel_crtc_load_lut(struct drm_crtc *crtc)
6251{
6252 struct drm_device *dev = crtc->dev;
6253 struct drm_i915_private *dev_priv = dev->dev_private;
6254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6255 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6256 int i;
6257
6258 /* The clocks have to be on to load the palette. */
aed3f09d 6259 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6260 return;
6261
f2b115e6 6262 /* use legacy palette for Ironlake */
bad720ff 6263 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6264 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6265
79e53945
JB
6266 for (i = 0; i < 256; i++) {
6267 I915_WRITE(palreg + 4 * i,
6268 (intel_crtc->lut_r[i] << 16) |
6269 (intel_crtc->lut_g[i] << 8) |
6270 intel_crtc->lut_b[i]);
6271 }
6272}
6273
560b85bb
CW
6274static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6275{
6276 struct drm_device *dev = crtc->dev;
6277 struct drm_i915_private *dev_priv = dev->dev_private;
6278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6279 bool visible = base != 0;
6280 u32 cntl;
6281
6282 if (intel_crtc->cursor_visible == visible)
6283 return;
6284
9db4a9c7 6285 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6286 if (visible) {
6287 /* On these chipsets we can only modify the base whilst
6288 * the cursor is disabled.
6289 */
9db4a9c7 6290 I915_WRITE(_CURABASE, base);
560b85bb
CW
6291
6292 cntl &= ~(CURSOR_FORMAT_MASK);
6293 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6294 cntl |= CURSOR_ENABLE |
6295 CURSOR_GAMMA_ENABLE |
6296 CURSOR_FORMAT_ARGB;
6297 } else
6298 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6299 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6300
6301 intel_crtc->cursor_visible = visible;
6302}
6303
6304static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6305{
6306 struct drm_device *dev = crtc->dev;
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309 int pipe = intel_crtc->pipe;
6310 bool visible = base != 0;
6311
6312 if (intel_crtc->cursor_visible != visible) {
548f245b 6313 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6314 if (base) {
6315 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6316 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6317 cntl |= pipe << 28; /* Connect to correct pipe */
6318 } else {
6319 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6320 cntl |= CURSOR_MODE_DISABLE;
6321 }
9db4a9c7 6322 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6323
6324 intel_crtc->cursor_visible = visible;
6325 }
6326 /* and commit changes on next vblank */
9db4a9c7 6327 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6328}
6329
65a21cd6
JB
6330static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6331{
6332 struct drm_device *dev = crtc->dev;
6333 struct drm_i915_private *dev_priv = dev->dev_private;
6334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6335 int pipe = intel_crtc->pipe;
6336 bool visible = base != 0;
6337
6338 if (intel_crtc->cursor_visible != visible) {
6339 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6340 if (base) {
6341 cntl &= ~CURSOR_MODE;
6342 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6343 } else {
6344 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6345 cntl |= CURSOR_MODE_DISABLE;
6346 }
6347 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6348
6349 intel_crtc->cursor_visible = visible;
6350 }
6351 /* and commit changes on next vblank */
6352 I915_WRITE(CURBASE_IVB(pipe), base);
6353}
6354
cda4b7d3 6355/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6356static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6357 bool on)
cda4b7d3
CW
6358{
6359 struct drm_device *dev = crtc->dev;
6360 struct drm_i915_private *dev_priv = dev->dev_private;
6361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6362 int pipe = intel_crtc->pipe;
6363 int x = intel_crtc->cursor_x;
6364 int y = intel_crtc->cursor_y;
560b85bb 6365 u32 base, pos;
cda4b7d3
CW
6366 bool visible;
6367
6368 pos = 0;
6369
6b383a7f 6370 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6371 base = intel_crtc->cursor_addr;
6372 if (x > (int) crtc->fb->width)
6373 base = 0;
6374
6375 if (y > (int) crtc->fb->height)
6376 base = 0;
6377 } else
6378 base = 0;
6379
6380 if (x < 0) {
6381 if (x + intel_crtc->cursor_width < 0)
6382 base = 0;
6383
6384 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6385 x = -x;
6386 }
6387 pos |= x << CURSOR_X_SHIFT;
6388
6389 if (y < 0) {
6390 if (y + intel_crtc->cursor_height < 0)
6391 base = 0;
6392
6393 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6394 y = -y;
6395 }
6396 pos |= y << CURSOR_Y_SHIFT;
6397
6398 visible = base != 0;
560b85bb 6399 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6400 return;
6401
0cd83aa9 6402 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6403 I915_WRITE(CURPOS_IVB(pipe), pos);
6404 ivb_update_cursor(crtc, base);
6405 } else {
6406 I915_WRITE(CURPOS(pipe), pos);
6407 if (IS_845G(dev) || IS_I865G(dev))
6408 i845_update_cursor(crtc, base);
6409 else
6410 i9xx_update_cursor(crtc, base);
6411 }
cda4b7d3
CW
6412}
6413
79e53945 6414static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6415 struct drm_file *file,
79e53945
JB
6416 uint32_t handle,
6417 uint32_t width, uint32_t height)
6418{
6419 struct drm_device *dev = crtc->dev;
6420 struct drm_i915_private *dev_priv = dev->dev_private;
6421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6422 struct drm_i915_gem_object *obj;
cda4b7d3 6423 uint32_t addr;
3f8bc370 6424 int ret;
79e53945 6425
79e53945
JB
6426 /* if we want to turn off the cursor ignore width and height */
6427 if (!handle) {
28c97730 6428 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6429 addr = 0;
05394f39 6430 obj = NULL;
5004417d 6431 mutex_lock(&dev->struct_mutex);
3f8bc370 6432 goto finish;
79e53945
JB
6433 }
6434
6435 /* Currently we only support 64x64 cursors */
6436 if (width != 64 || height != 64) {
6437 DRM_ERROR("we currently only support 64x64 cursors\n");
6438 return -EINVAL;
6439 }
6440
05394f39 6441 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6442 if (&obj->base == NULL)
79e53945
JB
6443 return -ENOENT;
6444
05394f39 6445 if (obj->base.size < width * height * 4) {
79e53945 6446 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6447 ret = -ENOMEM;
6448 goto fail;
79e53945
JB
6449 }
6450
71acb5eb 6451 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6452 mutex_lock(&dev->struct_mutex);
b295d1b6 6453 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6454 if (obj->tiling_mode) {
6455 DRM_ERROR("cursor cannot be tiled\n");
6456 ret = -EINVAL;
6457 goto fail_locked;
6458 }
6459
2da3b9b9 6460 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6461 if (ret) {
6462 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6463 goto fail_locked;
e7b526bb
CW
6464 }
6465
d9e86c0e
CW
6466 ret = i915_gem_object_put_fence(obj);
6467 if (ret) {
2da3b9b9 6468 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6469 goto fail_unpin;
6470 }
6471
05394f39 6472 addr = obj->gtt_offset;
71acb5eb 6473 } else {
6eeefaf3 6474 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6475 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6476 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6477 align);
71acb5eb
DA
6478 if (ret) {
6479 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6480 goto fail_locked;
71acb5eb 6481 }
05394f39 6482 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6483 }
6484
a6c45cf0 6485 if (IS_GEN2(dev))
14b60391
JB
6486 I915_WRITE(CURSIZE, (height << 12) | width);
6487
3f8bc370 6488 finish:
3f8bc370 6489 if (intel_crtc->cursor_bo) {
b295d1b6 6490 if (dev_priv->info->cursor_needs_physical) {
05394f39 6491 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6492 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6493 } else
6494 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6495 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6496 }
80824003 6497
7f9872e0 6498 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6499
6500 intel_crtc->cursor_addr = addr;
05394f39 6501 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6502 intel_crtc->cursor_width = width;
6503 intel_crtc->cursor_height = height;
6504
6b383a7f 6505 intel_crtc_update_cursor(crtc, true);
3f8bc370 6506
79e53945 6507 return 0;
e7b526bb 6508fail_unpin:
05394f39 6509 i915_gem_object_unpin(obj);
7f9872e0 6510fail_locked:
34b8686e 6511 mutex_unlock(&dev->struct_mutex);
bc9025bd 6512fail:
05394f39 6513 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6514 return ret;
79e53945
JB
6515}
6516
6517static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6518{
79e53945 6519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6520
cda4b7d3
CW
6521 intel_crtc->cursor_x = x;
6522 intel_crtc->cursor_y = y;
652c393a 6523
6b383a7f 6524 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6525
6526 return 0;
6527}
6528
6529/** Sets the color ramps on behalf of RandR */
6530void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6531 u16 blue, int regno)
6532{
6533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6534
6535 intel_crtc->lut_r[regno] = red >> 8;
6536 intel_crtc->lut_g[regno] = green >> 8;
6537 intel_crtc->lut_b[regno] = blue >> 8;
6538}
6539
b8c00ac5
DA
6540void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6541 u16 *blue, int regno)
6542{
6543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6544
6545 *red = intel_crtc->lut_r[regno] << 8;
6546 *green = intel_crtc->lut_g[regno] << 8;
6547 *blue = intel_crtc->lut_b[regno] << 8;
6548}
6549
79e53945 6550static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6551 u16 *blue, uint32_t start, uint32_t size)
79e53945 6552{
7203425a 6553 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6555
7203425a 6556 for (i = start; i < end; i++) {
79e53945
JB
6557 intel_crtc->lut_r[i] = red[i] >> 8;
6558 intel_crtc->lut_g[i] = green[i] >> 8;
6559 intel_crtc->lut_b[i] = blue[i] >> 8;
6560 }
6561
6562 intel_crtc_load_lut(crtc);
6563}
6564
6565/**
6566 * Get a pipe with a simple mode set on it for doing load-based monitor
6567 * detection.
6568 *
6569 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6570 * its requirements. The pipe will be connected to no other encoders.
79e53945 6571 *
c751ce4f 6572 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6573 * configured for it. In the future, it could choose to temporarily disable
6574 * some outputs to free up a pipe for its use.
6575 *
6576 * \return crtc, or NULL if no pipes are available.
6577 */
6578
6579/* VESA 640x480x72Hz mode to set on the pipe */
6580static struct drm_display_mode load_detect_mode = {
6581 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6582 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6583};
6584
d2dff872
CW
6585static struct drm_framebuffer *
6586intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6587 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6588 struct drm_i915_gem_object *obj)
6589{
6590 struct intel_framebuffer *intel_fb;
6591 int ret;
6592
6593 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6594 if (!intel_fb) {
6595 drm_gem_object_unreference_unlocked(&obj->base);
6596 return ERR_PTR(-ENOMEM);
6597 }
6598
6599 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6600 if (ret) {
6601 drm_gem_object_unreference_unlocked(&obj->base);
6602 kfree(intel_fb);
6603 return ERR_PTR(ret);
6604 }
6605
6606 return &intel_fb->base;
6607}
6608
6609static u32
6610intel_framebuffer_pitch_for_width(int width, int bpp)
6611{
6612 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6613 return ALIGN(pitch, 64);
6614}
6615
6616static u32
6617intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6618{
6619 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6620 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6621}
6622
6623static struct drm_framebuffer *
6624intel_framebuffer_create_for_mode(struct drm_device *dev,
6625 struct drm_display_mode *mode,
6626 int depth, int bpp)
6627{
6628 struct drm_i915_gem_object *obj;
0fed39bd 6629 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
6630
6631 obj = i915_gem_alloc_object(dev,
6632 intel_framebuffer_size_for_mode(mode, bpp));
6633 if (obj == NULL)
6634 return ERR_PTR(-ENOMEM);
6635
6636 mode_cmd.width = mode->hdisplay;
6637 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6638 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6639 bpp);
5ca0c34a 6640 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6641
6642 return intel_framebuffer_create(dev, &mode_cmd, obj);
6643}
6644
6645static struct drm_framebuffer *
6646mode_fits_in_fbdev(struct drm_device *dev,
6647 struct drm_display_mode *mode)
6648{
6649 struct drm_i915_private *dev_priv = dev->dev_private;
6650 struct drm_i915_gem_object *obj;
6651 struct drm_framebuffer *fb;
6652
6653 if (dev_priv->fbdev == NULL)
6654 return NULL;
6655
6656 obj = dev_priv->fbdev->ifb.obj;
6657 if (obj == NULL)
6658 return NULL;
6659
6660 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6661 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6662 fb->bits_per_pixel))
d2dff872
CW
6663 return NULL;
6664
01f2c773 6665 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6666 return NULL;
6667
6668 return fb;
6669}
6670
d2434ab7 6671bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6672 struct drm_display_mode *mode,
8261b191 6673 struct intel_load_detect_pipe *old)
79e53945
JB
6674{
6675 struct intel_crtc *intel_crtc;
d2434ab7
DV
6676 struct intel_encoder *intel_encoder =
6677 intel_attached_encoder(connector);
79e53945 6678 struct drm_crtc *possible_crtc;
4ef69c7a 6679 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6680 struct drm_crtc *crtc = NULL;
6681 struct drm_device *dev = encoder->dev;
94352cf9 6682 struct drm_framebuffer *fb;
79e53945
JB
6683 int i = -1;
6684
d2dff872
CW
6685 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6686 connector->base.id, drm_get_connector_name(connector),
6687 encoder->base.id, drm_get_encoder_name(encoder));
6688
79e53945
JB
6689 /*
6690 * Algorithm gets a little messy:
7a5e4805 6691 *
79e53945
JB
6692 * - if the connector already has an assigned crtc, use it (but make
6693 * sure it's on first)
7a5e4805 6694 *
79e53945
JB
6695 * - try to find the first unused crtc that can drive this connector,
6696 * and use that if we find one
79e53945
JB
6697 */
6698
6699 /* See if we already have a CRTC for this connector */
6700 if (encoder->crtc) {
6701 crtc = encoder->crtc;
8261b191 6702
24218aac 6703 old->dpms_mode = connector->dpms;
8261b191
CW
6704 old->load_detect_temp = false;
6705
6706 /* Make sure the crtc and connector are running */
24218aac
DV
6707 if (connector->dpms != DRM_MODE_DPMS_ON)
6708 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6709
7173188d 6710 return true;
79e53945
JB
6711 }
6712
6713 /* Find an unused one (if possible) */
6714 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6715 i++;
6716 if (!(encoder->possible_crtcs & (1 << i)))
6717 continue;
6718 if (!possible_crtc->enabled) {
6719 crtc = possible_crtc;
6720 break;
6721 }
79e53945
JB
6722 }
6723
6724 /*
6725 * If we didn't find an unused CRTC, don't use any.
6726 */
6727 if (!crtc) {
7173188d
CW
6728 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6729 return false;
79e53945
JB
6730 }
6731
fc303101
DV
6732 intel_encoder->new_crtc = to_intel_crtc(crtc);
6733 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6734
6735 intel_crtc = to_intel_crtc(crtc);
24218aac 6736 old->dpms_mode = connector->dpms;
8261b191 6737 old->load_detect_temp = true;
d2dff872 6738 old->release_fb = NULL;
79e53945 6739
6492711d
CW
6740 if (!mode)
6741 mode = &load_detect_mode;
79e53945 6742
d2dff872
CW
6743 /* We need a framebuffer large enough to accommodate all accesses
6744 * that the plane may generate whilst we perform load detection.
6745 * We can not rely on the fbcon either being present (we get called
6746 * during its initialisation to detect all boot displays, or it may
6747 * not even exist) or that it is large enough to satisfy the
6748 * requested mode.
6749 */
94352cf9
DV
6750 fb = mode_fits_in_fbdev(dev, mode);
6751 if (fb == NULL) {
d2dff872 6752 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6753 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6754 old->release_fb = fb;
d2dff872
CW
6755 } else
6756 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6757 if (IS_ERR(fb)) {
d2dff872 6758 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
0e8b3d3e 6759 return false;
79e53945 6760 }
79e53945 6761
94352cf9 6762 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6763 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6764 if (old->release_fb)
6765 old->release_fb->funcs->destroy(old->release_fb);
0e8b3d3e 6766 return false;
79e53945 6767 }
7173188d 6768
79e53945 6769 /* let the connector get through one full cycle before testing */
9d0498a2 6770 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 6771 return true;
79e53945
JB
6772}
6773
d2434ab7 6774void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6775 struct intel_load_detect_pipe *old)
79e53945 6776{
d2434ab7
DV
6777 struct intel_encoder *intel_encoder =
6778 intel_attached_encoder(connector);
4ef69c7a 6779 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6780
d2dff872
CW
6781 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6782 connector->base.id, drm_get_connector_name(connector),
6783 encoder->base.id, drm_get_encoder_name(encoder));
6784
8261b191 6785 if (old->load_detect_temp) {
fc303101
DV
6786 struct drm_crtc *crtc = encoder->crtc;
6787
6788 to_intel_connector(connector)->new_encoder = NULL;
6789 intel_encoder->new_crtc = NULL;
6790 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6791
6792 if (old->release_fb)
6793 old->release_fb->funcs->destroy(old->release_fb);
6794
0622a53c 6795 return;
79e53945
JB
6796 }
6797
c751ce4f 6798 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6799 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6800 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6801}
6802
6803/* Returns the clock of the currently programmed mode of the given pipe. */
6804static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6805{
6806 struct drm_i915_private *dev_priv = dev->dev_private;
6807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808 int pipe = intel_crtc->pipe;
548f245b 6809 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6810 u32 fp;
6811 intel_clock_t clock;
6812
6813 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6814 fp = I915_READ(FP0(pipe));
79e53945 6815 else
39adb7a5 6816 fp = I915_READ(FP1(pipe));
79e53945
JB
6817
6818 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6819 if (IS_PINEVIEW(dev)) {
6820 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6821 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6822 } else {
6823 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6824 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6825 }
6826
a6c45cf0 6827 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6828 if (IS_PINEVIEW(dev))
6829 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6830 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6831 else
6832 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6833 DPLL_FPA01_P1_POST_DIV_SHIFT);
6834
6835 switch (dpll & DPLL_MODE_MASK) {
6836 case DPLLB_MODE_DAC_SERIAL:
6837 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6838 5 : 10;
6839 break;
6840 case DPLLB_MODE_LVDS:
6841 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6842 7 : 14;
6843 break;
6844 default:
28c97730 6845 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6846 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6847 return 0;
6848 }
6849
6850 /* XXX: Handle the 100Mhz refclk */
2177832f 6851 intel_clock(dev, 96000, &clock);
79e53945
JB
6852 } else {
6853 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6854
6855 if (is_lvds) {
6856 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6857 DPLL_FPA01_P1_POST_DIV_SHIFT);
6858 clock.p2 = 14;
6859
6860 if ((dpll & PLL_REF_INPUT_MASK) ==
6861 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6862 /* XXX: might not be 66MHz */
2177832f 6863 intel_clock(dev, 66000, &clock);
79e53945 6864 } else
2177832f 6865 intel_clock(dev, 48000, &clock);
79e53945
JB
6866 } else {
6867 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6868 clock.p1 = 2;
6869 else {
6870 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6871 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6872 }
6873 if (dpll & PLL_P2_DIVIDE_BY_4)
6874 clock.p2 = 4;
6875 else
6876 clock.p2 = 2;
6877
2177832f 6878 intel_clock(dev, 48000, &clock);
79e53945
JB
6879 }
6880 }
6881
6882 /* XXX: It would be nice to validate the clocks, but we can't reuse
6883 * i830PllIsValid() because it relies on the xf86_config connector
6884 * configuration being accurate, which it isn't necessarily.
6885 */
6886
6887 return clock.dot;
6888}
6889
6890/** Returns the currently programmed mode of the given pipe. */
6891struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6892 struct drm_crtc *crtc)
6893{
548f245b 6894 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6896 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6897 struct drm_display_mode *mode;
fe2b8f9d
PZ
6898 int htot = I915_READ(HTOTAL(cpu_transcoder));
6899 int hsync = I915_READ(HSYNC(cpu_transcoder));
6900 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6901 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6902
6903 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6904 if (!mode)
6905 return NULL;
6906
6907 mode->clock = intel_crtc_clock_get(dev, crtc);
6908 mode->hdisplay = (htot & 0xffff) + 1;
6909 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6910 mode->hsync_start = (hsync & 0xffff) + 1;
6911 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6912 mode->vdisplay = (vtot & 0xffff) + 1;
6913 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6914 mode->vsync_start = (vsync & 0xffff) + 1;
6915 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6916
6917 drm_mode_set_name(mode);
79e53945
JB
6918
6919 return mode;
6920}
6921
3dec0095 6922static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6923{
6924 struct drm_device *dev = crtc->dev;
6925 drm_i915_private_t *dev_priv = dev->dev_private;
6926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6927 int pipe = intel_crtc->pipe;
dbdc6479
JB
6928 int dpll_reg = DPLL(pipe);
6929 int dpll;
652c393a 6930
bad720ff 6931 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6932 return;
6933
6934 if (!dev_priv->lvds_downclock_avail)
6935 return;
6936
dbdc6479 6937 dpll = I915_READ(dpll_reg);
652c393a 6938 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6939 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6940
8ac5a6d5 6941 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6942
6943 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6944 I915_WRITE(dpll_reg, dpll);
9d0498a2 6945 intel_wait_for_vblank(dev, pipe);
dbdc6479 6946
652c393a
JB
6947 dpll = I915_READ(dpll_reg);
6948 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6949 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6950 }
652c393a
JB
6951}
6952
6953static void intel_decrease_pllclock(struct drm_crtc *crtc)
6954{
6955 struct drm_device *dev = crtc->dev;
6956 drm_i915_private_t *dev_priv = dev->dev_private;
6957 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6958
bad720ff 6959 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6960 return;
6961
6962 if (!dev_priv->lvds_downclock_avail)
6963 return;
6964
6965 /*
6966 * Since this is called by a timer, we should never get here in
6967 * the manual case.
6968 */
6969 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6970 int pipe = intel_crtc->pipe;
6971 int dpll_reg = DPLL(pipe);
6972 int dpll;
f6e5b160 6973
44d98a61 6974 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6975
8ac5a6d5 6976 assert_panel_unlocked(dev_priv, pipe);
652c393a 6977
dc257cf1 6978 dpll = I915_READ(dpll_reg);
652c393a
JB
6979 dpll |= DISPLAY_RATE_SELECT_FPA1;
6980 I915_WRITE(dpll_reg, dpll);
9d0498a2 6981 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6982 dpll = I915_READ(dpll_reg);
6983 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6984 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6985 }
6986
6987}
6988
f047e395
CW
6989void intel_mark_busy(struct drm_device *dev)
6990{
f047e395
CW
6991 i915_update_gfx_val(dev->dev_private);
6992}
6993
6994void intel_mark_idle(struct drm_device *dev)
652c393a 6995{
f047e395
CW
6996}
6997
6998void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6999{
7000 struct drm_device *dev = obj->base.dev;
652c393a 7001 struct drm_crtc *crtc;
652c393a
JB
7002
7003 if (!i915_powersave)
7004 return;
7005
652c393a 7006 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
7007 if (!crtc->fb)
7008 continue;
7009
f047e395
CW
7010 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7011 intel_increase_pllclock(crtc);
652c393a 7012 }
652c393a
JB
7013}
7014
f047e395 7015void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 7016{
f047e395
CW
7017 struct drm_device *dev = obj->base.dev;
7018 struct drm_crtc *crtc;
652c393a 7019
f047e395 7020 if (!i915_powersave)
acb87dfb
CW
7021 return;
7022
652c393a
JB
7023 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7024 if (!crtc->fb)
7025 continue;
7026
f047e395
CW
7027 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7028 intel_decrease_pllclock(crtc);
652c393a
JB
7029 }
7030}
7031
79e53945
JB
7032static void intel_crtc_destroy(struct drm_crtc *crtc)
7033{
7034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
7035 struct drm_device *dev = crtc->dev;
7036 struct intel_unpin_work *work;
7037 unsigned long flags;
7038
7039 spin_lock_irqsave(&dev->event_lock, flags);
7040 work = intel_crtc->unpin_work;
7041 intel_crtc->unpin_work = NULL;
7042 spin_unlock_irqrestore(&dev->event_lock, flags);
7043
7044 if (work) {
7045 cancel_work_sync(&work->work);
7046 kfree(work);
7047 }
79e53945
JB
7048
7049 drm_crtc_cleanup(crtc);
67e77c5a 7050
79e53945
JB
7051 kfree(intel_crtc);
7052}
7053
6b95a207
KH
7054static void intel_unpin_work_fn(struct work_struct *__work)
7055{
7056 struct intel_unpin_work *work =
7057 container_of(__work, struct intel_unpin_work, work);
b4a98e57 7058 struct drm_device *dev = work->crtc->dev;
6b95a207 7059
b4a98e57 7060 mutex_lock(&dev->struct_mutex);
1690e1eb 7061 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
7062 drm_gem_object_unreference(&work->pending_flip_obj->base);
7063 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 7064
b4a98e57
CW
7065 intel_update_fbc(dev);
7066 mutex_unlock(&dev->struct_mutex);
7067
7068 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7069 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7070
6b95a207
KH
7071 kfree(work);
7072}
7073
1afe3e9d 7074static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 7075 struct drm_crtc *crtc)
6b95a207
KH
7076{
7077 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
7078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7079 struct intel_unpin_work *work;
05394f39 7080 struct drm_i915_gem_object *obj;
6b95a207
KH
7081 unsigned long flags;
7082
7083 /* Ignore early vblank irqs */
7084 if (intel_crtc == NULL)
7085 return;
7086
7087 spin_lock_irqsave(&dev->event_lock, flags);
7088 work = intel_crtc->unpin_work;
e7d841ca
CW
7089
7090 /* Ensure we don't miss a work->pending update ... */
7091 smp_rmb();
7092
7093 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
7094 spin_unlock_irqrestore(&dev->event_lock, flags);
7095 return;
7096 }
7097
e7d841ca
CW
7098 /* and that the unpin work is consistent wrt ->pending. */
7099 smp_rmb();
7100
6b95a207 7101 intel_crtc->unpin_work = NULL;
6b95a207 7102
45a066eb
RC
7103 if (work->event)
7104 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 7105
0af7e4df
MK
7106 drm_vblank_put(dev, intel_crtc->pipe);
7107
6b95a207
KH
7108 spin_unlock_irqrestore(&dev->event_lock, flags);
7109
05394f39 7110 obj = work->old_fb_obj;
d9e86c0e 7111
e59f2bac 7112 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 7113 &obj->pending_flip.counter);
5bb61643 7114 wake_up(&dev_priv->pending_flip_queue);
b4a98e57
CW
7115
7116 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
7117
7118 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
7119}
7120
1afe3e9d
JB
7121void intel_finish_page_flip(struct drm_device *dev, int pipe)
7122{
7123 drm_i915_private_t *dev_priv = dev->dev_private;
7124 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7125
49b14a5c 7126 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7127}
7128
7129void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7130{
7131 drm_i915_private_t *dev_priv = dev->dev_private;
7132 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7133
49b14a5c 7134 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7135}
7136
6b95a207
KH
7137void intel_prepare_page_flip(struct drm_device *dev, int plane)
7138{
7139 drm_i915_private_t *dev_priv = dev->dev_private;
7140 struct intel_crtc *intel_crtc =
7141 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7142 unsigned long flags;
7143
e7d841ca
CW
7144 /* NB: An MMIO update of the plane base pointer will also
7145 * generate a page-flip completion irq, i.e. every modeset
7146 * is also accompanied by a spurious intel_prepare_page_flip().
7147 */
6b95a207 7148 spin_lock_irqsave(&dev->event_lock, flags);
e7d841ca
CW
7149 if (intel_crtc->unpin_work)
7150 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
7151 spin_unlock_irqrestore(&dev->event_lock, flags);
7152}
7153
e7d841ca
CW
7154inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7155{
7156 /* Ensure that the work item is consistent when activating it ... */
7157 smp_wmb();
7158 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7159 /* and that it is marked active as soon as the irq could fire. */
7160 smp_wmb();
7161}
7162
8c9f3aaf
JB
7163static int intel_gen2_queue_flip(struct drm_device *dev,
7164 struct drm_crtc *crtc,
7165 struct drm_framebuffer *fb,
7166 struct drm_i915_gem_object *obj)
7167{
7168 struct drm_i915_private *dev_priv = dev->dev_private;
7169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7170 u32 flip_mask;
6d90c952 7171 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7172 int ret;
7173
6d90c952 7174 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7175 if (ret)
83d4092b 7176 goto err;
8c9f3aaf 7177
6d90c952 7178 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7179 if (ret)
83d4092b 7180 goto err_unpin;
8c9f3aaf
JB
7181
7182 /* Can't queue multiple flips, so wait for the previous
7183 * one to finish before executing the next.
7184 */
7185 if (intel_crtc->plane)
7186 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7187 else
7188 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7189 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7190 intel_ring_emit(ring, MI_NOOP);
7191 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7192 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7193 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7194 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952 7195 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
7196
7197 intel_mark_page_flip_active(intel_crtc);
6d90c952 7198 intel_ring_advance(ring);
83d4092b
CW
7199 return 0;
7200
7201err_unpin:
7202 intel_unpin_fb_obj(obj);
7203err:
8c9f3aaf
JB
7204 return ret;
7205}
7206
7207static int intel_gen3_queue_flip(struct drm_device *dev,
7208 struct drm_crtc *crtc,
7209 struct drm_framebuffer *fb,
7210 struct drm_i915_gem_object *obj)
7211{
7212 struct drm_i915_private *dev_priv = dev->dev_private;
7213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7214 u32 flip_mask;
6d90c952 7215 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7216 int ret;
7217
6d90c952 7218 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7219 if (ret)
83d4092b 7220 goto err;
8c9f3aaf 7221
6d90c952 7222 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7223 if (ret)
83d4092b 7224 goto err_unpin;
8c9f3aaf
JB
7225
7226 if (intel_crtc->plane)
7227 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7228 else
7229 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7230 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7231 intel_ring_emit(ring, MI_NOOP);
7232 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7233 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7234 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7235 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7236 intel_ring_emit(ring, MI_NOOP);
7237
e7d841ca 7238 intel_mark_page_flip_active(intel_crtc);
6d90c952 7239 intel_ring_advance(ring);
83d4092b
CW
7240 return 0;
7241
7242err_unpin:
7243 intel_unpin_fb_obj(obj);
7244err:
8c9f3aaf
JB
7245 return ret;
7246}
7247
7248static int intel_gen4_queue_flip(struct drm_device *dev,
7249 struct drm_crtc *crtc,
7250 struct drm_framebuffer *fb,
7251 struct drm_i915_gem_object *obj)
7252{
7253 struct drm_i915_private *dev_priv = dev->dev_private;
7254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7255 uint32_t pf, pipesrc;
6d90c952 7256 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7257 int ret;
7258
6d90c952 7259 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7260 if (ret)
83d4092b 7261 goto err;
8c9f3aaf 7262
6d90c952 7263 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7264 if (ret)
83d4092b 7265 goto err_unpin;
8c9f3aaf
JB
7266
7267 /* i965+ uses the linear or tiled offsets from the
7268 * Display Registers (which do not change across a page-flip)
7269 * so we need only reprogram the base address.
7270 */
6d90c952
DV
7271 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7272 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7273 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7274 intel_ring_emit(ring,
7275 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7276 obj->tiling_mode);
8c9f3aaf
JB
7277
7278 /* XXX Enabling the panel-fitter across page-flip is so far
7279 * untested on non-native modes, so ignore it for now.
7280 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7281 */
7282 pf = 0;
7283 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 7284 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
7285
7286 intel_mark_page_flip_active(intel_crtc);
6d90c952 7287 intel_ring_advance(ring);
83d4092b
CW
7288 return 0;
7289
7290err_unpin:
7291 intel_unpin_fb_obj(obj);
7292err:
8c9f3aaf
JB
7293 return ret;
7294}
7295
7296static int intel_gen6_queue_flip(struct drm_device *dev,
7297 struct drm_crtc *crtc,
7298 struct drm_framebuffer *fb,
7299 struct drm_i915_gem_object *obj)
7300{
7301 struct drm_i915_private *dev_priv = dev->dev_private;
7302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7303 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7304 uint32_t pf, pipesrc;
7305 int ret;
7306
6d90c952 7307 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7308 if (ret)
83d4092b 7309 goto err;
8c9f3aaf 7310
6d90c952 7311 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7312 if (ret)
83d4092b 7313 goto err_unpin;
8c9f3aaf 7314
6d90c952
DV
7315 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7316 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7317 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7318 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7319
dc257cf1
DV
7320 /* Contrary to the suggestions in the documentation,
7321 * "Enable Panel Fitter" does not seem to be required when page
7322 * flipping with a non-native mode, and worse causes a normal
7323 * modeset to fail.
7324 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7325 */
7326 pf = 0;
8c9f3aaf 7327 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 7328 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
7329
7330 intel_mark_page_flip_active(intel_crtc);
6d90c952 7331 intel_ring_advance(ring);
83d4092b
CW
7332 return 0;
7333
7334err_unpin:
7335 intel_unpin_fb_obj(obj);
7336err:
8c9f3aaf
JB
7337 return ret;
7338}
7339
7c9017e5
JB
7340/*
7341 * On gen7 we currently use the blit ring because (in early silicon at least)
7342 * the render ring doesn't give us interrpts for page flip completion, which
7343 * means clients will hang after the first flip is queued. Fortunately the
7344 * blit ring generates interrupts properly, so use it instead.
7345 */
7346static int intel_gen7_queue_flip(struct drm_device *dev,
7347 struct drm_crtc *crtc,
7348 struct drm_framebuffer *fb,
7349 struct drm_i915_gem_object *obj)
7350{
7351 struct drm_i915_private *dev_priv = dev->dev_private;
7352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7353 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7354 uint32_t plane_bit = 0;
7c9017e5
JB
7355 int ret;
7356
7357 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7358 if (ret)
83d4092b 7359 goto err;
7c9017e5 7360
cb05d8de
DV
7361 switch(intel_crtc->plane) {
7362 case PLANE_A:
7363 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7364 break;
7365 case PLANE_B:
7366 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7367 break;
7368 case PLANE_C:
7369 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7370 break;
7371 default:
7372 WARN_ONCE(1, "unknown plane in flip command\n");
7373 ret = -ENODEV;
ab3951eb 7374 goto err_unpin;
cb05d8de
DV
7375 }
7376
7c9017e5
JB
7377 ret = intel_ring_begin(ring, 4);
7378 if (ret)
83d4092b 7379 goto err_unpin;
7c9017e5 7380
cb05d8de 7381 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7382 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7383 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5 7384 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
7385
7386 intel_mark_page_flip_active(intel_crtc);
7c9017e5 7387 intel_ring_advance(ring);
83d4092b
CW
7388 return 0;
7389
7390err_unpin:
7391 intel_unpin_fb_obj(obj);
7392err:
7c9017e5
JB
7393 return ret;
7394}
7395
8c9f3aaf
JB
7396static int intel_default_queue_flip(struct drm_device *dev,
7397 struct drm_crtc *crtc,
7398 struct drm_framebuffer *fb,
7399 struct drm_i915_gem_object *obj)
7400{
7401 return -ENODEV;
7402}
7403
6b95a207
KH
7404static int intel_crtc_page_flip(struct drm_crtc *crtc,
7405 struct drm_framebuffer *fb,
7406 struct drm_pending_vblank_event *event)
7407{
7408 struct drm_device *dev = crtc->dev;
7409 struct drm_i915_private *dev_priv = dev->dev_private;
7410 struct intel_framebuffer *intel_fb;
05394f39 7411 struct drm_i915_gem_object *obj;
6b95a207
KH
7412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7413 struct intel_unpin_work *work;
8c9f3aaf 7414 unsigned long flags;
52e68630 7415 int ret;
6b95a207 7416
e6a595d2
VS
7417 /* Can't change pixel format via MI display flips. */
7418 if (fb->pixel_format != crtc->fb->pixel_format)
7419 return -EINVAL;
7420
7421 /*
7422 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7423 * Note that pitch changes could also affect these register.
7424 */
7425 if (INTEL_INFO(dev)->gen > 3 &&
7426 (fb->offsets[0] != crtc->fb->offsets[0] ||
7427 fb->pitches[0] != crtc->fb->pitches[0]))
7428 return -EINVAL;
7429
6b95a207
KH
7430 work = kzalloc(sizeof *work, GFP_KERNEL);
7431 if (work == NULL)
7432 return -ENOMEM;
7433
6b95a207 7434 work->event = event;
b4a98e57 7435 work->crtc = crtc;
6b95a207 7436 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7437 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7438 INIT_WORK(&work->work, intel_unpin_work_fn);
7439
7317c75e
JB
7440 ret = drm_vblank_get(dev, intel_crtc->pipe);
7441 if (ret)
7442 goto free_work;
7443
6b95a207
KH
7444 /* We borrow the event spin lock for protecting unpin_work */
7445 spin_lock_irqsave(&dev->event_lock, flags);
7446 if (intel_crtc->unpin_work) {
7447 spin_unlock_irqrestore(&dev->event_lock, flags);
7448 kfree(work);
7317c75e 7449 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7450
7451 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7452 return -EBUSY;
7453 }
7454 intel_crtc->unpin_work = work;
7455 spin_unlock_irqrestore(&dev->event_lock, flags);
7456
7457 intel_fb = to_intel_framebuffer(fb);
7458 obj = intel_fb->obj;
7459
b4a98e57
CW
7460 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7461 flush_workqueue(dev_priv->wq);
7462
79158103
CW
7463 ret = i915_mutex_lock_interruptible(dev);
7464 if (ret)
7465 goto cleanup;
6b95a207 7466
75dfca80 7467 /* Reference the objects for the scheduled work. */
05394f39
CW
7468 drm_gem_object_reference(&work->old_fb_obj->base);
7469 drm_gem_object_reference(&obj->base);
6b95a207
KH
7470
7471 crtc->fb = fb;
96b099fd 7472
e1f99ce6 7473 work->pending_flip_obj = obj;
e1f99ce6 7474
4e5359cd
SF
7475 work->enable_stall_check = true;
7476
e1f99ce6
CW
7477 /* Block clients from rendering to the new back buffer until
7478 * the flip occurs and the object is no longer visible.
7479 */
05394f39 7480 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
b4a98e57 7481 atomic_inc(&intel_crtc->unpin_work_count);
e1f99ce6 7482
8c9f3aaf
JB
7483 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7484 if (ret)
7485 goto cleanup_pending;
6b95a207 7486
7782de3b 7487 intel_disable_fbc(dev);
f047e395 7488 intel_mark_fb_busy(obj);
6b95a207
KH
7489 mutex_unlock(&dev->struct_mutex);
7490
e5510fac
JB
7491 trace_i915_flip_request(intel_crtc->plane, obj);
7492
6b95a207 7493 return 0;
96b099fd 7494
8c9f3aaf 7495cleanup_pending:
b4a98e57 7496 atomic_dec(&intel_crtc->unpin_work_count);
8c9f3aaf 7497 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7498 drm_gem_object_unreference(&work->old_fb_obj->base);
7499 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7500 mutex_unlock(&dev->struct_mutex);
7501
79158103 7502cleanup:
96b099fd
CW
7503 spin_lock_irqsave(&dev->event_lock, flags);
7504 intel_crtc->unpin_work = NULL;
7505 spin_unlock_irqrestore(&dev->event_lock, flags);
7506
7317c75e
JB
7507 drm_vblank_put(dev, intel_crtc->pipe);
7508free_work:
96b099fd
CW
7509 kfree(work);
7510
7511 return ret;
6b95a207
KH
7512}
7513
f6e5b160 7514static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7515 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7516 .load_lut = intel_crtc_load_lut,
976f8a20 7517 .disable = intel_crtc_noop,
f6e5b160
CW
7518};
7519
6ed0f796 7520bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7521{
6ed0f796
DV
7522 struct intel_encoder *other_encoder;
7523 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7524
6ed0f796
DV
7525 if (WARN_ON(!crtc))
7526 return false;
7527
7528 list_for_each_entry(other_encoder,
7529 &crtc->dev->mode_config.encoder_list,
7530 base.head) {
7531
7532 if (&other_encoder->new_crtc->base != crtc ||
7533 encoder == other_encoder)
7534 continue;
7535 else
7536 return true;
f47166d2
CW
7537 }
7538
6ed0f796
DV
7539 return false;
7540}
47f1c6c9 7541
50f56119
DV
7542static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7543 struct drm_crtc *crtc)
7544{
7545 struct drm_device *dev;
7546 struct drm_crtc *tmp;
7547 int crtc_mask = 1;
47f1c6c9 7548
50f56119 7549 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7550
50f56119 7551 dev = crtc->dev;
47f1c6c9 7552
50f56119
DV
7553 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7554 if (tmp == crtc)
7555 break;
7556 crtc_mask <<= 1;
7557 }
47f1c6c9 7558
50f56119
DV
7559 if (encoder->possible_crtcs & crtc_mask)
7560 return true;
7561 return false;
47f1c6c9 7562}
79e53945 7563
9a935856
DV
7564/**
7565 * intel_modeset_update_staged_output_state
7566 *
7567 * Updates the staged output configuration state, e.g. after we've read out the
7568 * current hw state.
7569 */
7570static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7571{
9a935856
DV
7572 struct intel_encoder *encoder;
7573 struct intel_connector *connector;
f6e5b160 7574
9a935856
DV
7575 list_for_each_entry(connector, &dev->mode_config.connector_list,
7576 base.head) {
7577 connector->new_encoder =
7578 to_intel_encoder(connector->base.encoder);
7579 }
f6e5b160 7580
9a935856
DV
7581 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7582 base.head) {
7583 encoder->new_crtc =
7584 to_intel_crtc(encoder->base.crtc);
7585 }
f6e5b160
CW
7586}
7587
9a935856
DV
7588/**
7589 * intel_modeset_commit_output_state
7590 *
7591 * This function copies the stage display pipe configuration to the real one.
7592 */
7593static void intel_modeset_commit_output_state(struct drm_device *dev)
7594{
7595 struct intel_encoder *encoder;
7596 struct intel_connector *connector;
f6e5b160 7597
9a935856
DV
7598 list_for_each_entry(connector, &dev->mode_config.connector_list,
7599 base.head) {
7600 connector->base.encoder = &connector->new_encoder->base;
7601 }
f6e5b160 7602
9a935856
DV
7603 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7604 base.head) {
7605 encoder->base.crtc = &encoder->new_crtc->base;
7606 }
7607}
7608
7758a113
DV
7609static struct drm_display_mode *
7610intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7611 struct drm_display_mode *mode)
ee7b9f93 7612{
7758a113
DV
7613 struct drm_device *dev = crtc->dev;
7614 struct drm_display_mode *adjusted_mode;
7615 struct drm_encoder_helper_funcs *encoder_funcs;
7616 struct intel_encoder *encoder;
ee7b9f93 7617
7758a113
DV
7618 adjusted_mode = drm_mode_duplicate(dev, mode);
7619 if (!adjusted_mode)
7620 return ERR_PTR(-ENOMEM);
7621
7622 /* Pass our mode to the connectors and the CRTC to give them a chance to
7623 * adjust it according to limitations or connector properties, and also
7624 * a chance to reject the mode entirely.
47f1c6c9 7625 */
7758a113
DV
7626 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7627 base.head) {
47f1c6c9 7628
7758a113
DV
7629 if (&encoder->new_crtc->base != crtc)
7630 continue;
7631 encoder_funcs = encoder->base.helper_private;
7632 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7633 adjusted_mode))) {
7634 DRM_DEBUG_KMS("Encoder fixup failed\n");
7635 goto fail;
7636 }
ee7b9f93 7637 }
47f1c6c9 7638
7758a113
DV
7639 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7640 DRM_DEBUG_KMS("CRTC fixup failed\n");
7641 goto fail;
ee7b9f93 7642 }
7758a113 7643 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
47f1c6c9 7644
7758a113
DV
7645 return adjusted_mode;
7646fail:
7647 drm_mode_destroy(dev, adjusted_mode);
7648 return ERR_PTR(-EINVAL);
ee7b9f93 7649}
47f1c6c9 7650
e2e1ed41
DV
7651/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7652 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7653static void
7654intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7655 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7656{
7657 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7658 struct drm_device *dev = crtc->dev;
7659 struct intel_encoder *encoder;
7660 struct intel_connector *connector;
7661 struct drm_crtc *tmp_crtc;
79e53945 7662
e2e1ed41 7663 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7664
e2e1ed41
DV
7665 /* Check which crtcs have changed outputs connected to them, these need
7666 * to be part of the prepare_pipes mask. We don't (yet) support global
7667 * modeset across multiple crtcs, so modeset_pipes will only have one
7668 * bit set at most. */
7669 list_for_each_entry(connector, &dev->mode_config.connector_list,
7670 base.head) {
7671 if (connector->base.encoder == &connector->new_encoder->base)
7672 continue;
79e53945 7673
e2e1ed41
DV
7674 if (connector->base.encoder) {
7675 tmp_crtc = connector->base.encoder->crtc;
7676
7677 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7678 }
7679
7680 if (connector->new_encoder)
7681 *prepare_pipes |=
7682 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7683 }
7684
e2e1ed41
DV
7685 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7686 base.head) {
7687 if (encoder->base.crtc == &encoder->new_crtc->base)
7688 continue;
7689
7690 if (encoder->base.crtc) {
7691 tmp_crtc = encoder->base.crtc;
7692
7693 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7694 }
7695
7696 if (encoder->new_crtc)
7697 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7698 }
7699
e2e1ed41
DV
7700 /* Check for any pipes that will be fully disabled ... */
7701 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7702 base.head) {
7703 bool used = false;
22fd0fab 7704
e2e1ed41
DV
7705 /* Don't try to disable disabled crtcs. */
7706 if (!intel_crtc->base.enabled)
7707 continue;
7e7d76c3 7708
e2e1ed41
DV
7709 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7710 base.head) {
7711 if (encoder->new_crtc == intel_crtc)
7712 used = true;
7713 }
7714
7715 if (!used)
7716 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7717 }
7718
e2e1ed41
DV
7719
7720 /* set_mode is also used to update properties on life display pipes. */
7721 intel_crtc = to_intel_crtc(crtc);
7722 if (crtc->enabled)
7723 *prepare_pipes |= 1 << intel_crtc->pipe;
7724
7725 /* We only support modeset on one single crtc, hence we need to do that
7726 * only for the passed in crtc iff we change anything else than just
7727 * disable crtcs.
7728 *
7729 * This is actually not true, to be fully compatible with the old crtc
7730 * helper we automatically disable _any_ output (i.e. doesn't need to be
7731 * connected to the crtc we're modesetting on) if it's disconnected.
7732 * Which is a rather nutty api (since changed the output configuration
7733 * without userspace's explicit request can lead to confusion), but
7734 * alas. Hence we currently need to modeset on all pipes we prepare. */
7735 if (*prepare_pipes)
7736 *modeset_pipes = *prepare_pipes;
7737
7738 /* ... and mask these out. */
7739 *modeset_pipes &= ~(*disable_pipes);
7740 *prepare_pipes &= ~(*disable_pipes);
47f1c6c9 7741}
79e53945 7742
ea9d758d 7743static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 7744{
ea9d758d 7745 struct drm_encoder *encoder;
f6e5b160 7746 struct drm_device *dev = crtc->dev;
f6e5b160 7747
ea9d758d
DV
7748 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7749 if (encoder->crtc == crtc)
7750 return true;
7751
7752 return false;
7753}
7754
7755static void
7756intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7757{
7758 struct intel_encoder *intel_encoder;
7759 struct intel_crtc *intel_crtc;
7760 struct drm_connector *connector;
7761
7762 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7763 base.head) {
7764 if (!intel_encoder->base.crtc)
7765 continue;
7766
7767 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7768
7769 if (prepare_pipes & (1 << intel_crtc->pipe))
7770 intel_encoder->connectors_active = false;
7771 }
7772
7773 intel_modeset_commit_output_state(dev);
7774
7775 /* Update computed state. */
7776 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7777 base.head) {
7778 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7779 }
7780
7781 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7782 if (!connector->encoder || !connector->encoder->crtc)
7783 continue;
7784
7785 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7786
7787 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7788 struct drm_property *dpms_property =
7789 dev->mode_config.dpms_property;
7790
ea9d758d 7791 connector->dpms = DRM_MODE_DPMS_ON;
662595df 7792 drm_object_property_set_value(&connector->base,
68d34720
DV
7793 dpms_property,
7794 DRM_MODE_DPMS_ON);
ea9d758d
DV
7795
7796 intel_encoder = to_intel_encoder(connector->encoder);
7797 intel_encoder->connectors_active = true;
7798 }
7799 }
7800
7801}
7802
25c5b266
DV
7803#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7804 list_for_each_entry((intel_crtc), \
7805 &(dev)->mode_config.crtc_list, \
7806 base.head) \
7807 if (mask & (1 <<(intel_crtc)->pipe)) \
7808
b980514c 7809void
8af6cf88
DV
7810intel_modeset_check_state(struct drm_device *dev)
7811{
7812 struct intel_crtc *crtc;
7813 struct intel_encoder *encoder;
7814 struct intel_connector *connector;
7815
7816 list_for_each_entry(connector, &dev->mode_config.connector_list,
7817 base.head) {
7818 /* This also checks the encoder/connector hw state with the
7819 * ->get_hw_state callbacks. */
7820 intel_connector_check_state(connector);
7821
7822 WARN(&connector->new_encoder->base != connector->base.encoder,
7823 "connector's staged encoder doesn't match current encoder\n");
7824 }
7825
7826 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7827 base.head) {
7828 bool enabled = false;
7829 bool active = false;
7830 enum pipe pipe, tracked_pipe;
7831
7832 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7833 encoder->base.base.id,
7834 drm_get_encoder_name(&encoder->base));
7835
7836 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7837 "encoder's stage crtc doesn't match current crtc\n");
7838 WARN(encoder->connectors_active && !encoder->base.crtc,
7839 "encoder's active_connectors set, but no crtc\n");
7840
7841 list_for_each_entry(connector, &dev->mode_config.connector_list,
7842 base.head) {
7843 if (connector->base.encoder != &encoder->base)
7844 continue;
7845 enabled = true;
7846 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7847 active = true;
7848 }
7849 WARN(!!encoder->base.crtc != enabled,
7850 "encoder's enabled state mismatch "
7851 "(expected %i, found %i)\n",
7852 !!encoder->base.crtc, enabled);
7853 WARN(active && !encoder->base.crtc,
7854 "active encoder with no crtc\n");
7855
7856 WARN(encoder->connectors_active != active,
7857 "encoder's computed active state doesn't match tracked active state "
7858 "(expected %i, found %i)\n", active, encoder->connectors_active);
7859
7860 active = encoder->get_hw_state(encoder, &pipe);
7861 WARN(active != encoder->connectors_active,
7862 "encoder's hw state doesn't match sw tracking "
7863 "(expected %i, found %i)\n",
7864 encoder->connectors_active, active);
7865
7866 if (!encoder->base.crtc)
7867 continue;
7868
7869 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7870 WARN(active && pipe != tracked_pipe,
7871 "active encoder's pipe doesn't match"
7872 "(expected %i, found %i)\n",
7873 tracked_pipe, pipe);
7874
7875 }
7876
7877 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7878 base.head) {
7879 bool enabled = false;
7880 bool active = false;
7881
7882 DRM_DEBUG_KMS("[CRTC:%d]\n",
7883 crtc->base.base.id);
7884
7885 WARN(crtc->active && !crtc->base.enabled,
7886 "active crtc, but not enabled in sw tracking\n");
7887
7888 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7889 base.head) {
7890 if (encoder->base.crtc != &crtc->base)
7891 continue;
7892 enabled = true;
7893 if (encoder->connectors_active)
7894 active = true;
7895 }
7896 WARN(active != crtc->active,
7897 "crtc's computed active state doesn't match tracked active state "
7898 "(expected %i, found %i)\n", active, crtc->active);
7899 WARN(enabled != crtc->base.enabled,
7900 "crtc's computed enabled state doesn't match tracked enabled state "
7901 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7902
7903 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7904 }
7905}
7906
a6778b3c
DV
7907bool intel_set_mode(struct drm_crtc *crtc,
7908 struct drm_display_mode *mode,
94352cf9 7909 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7910{
7911 struct drm_device *dev = crtc->dev;
dbf2b54e 7912 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7913 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7914 struct intel_crtc *intel_crtc;
7915 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7916 bool ret = true;
7917
e2e1ed41 7918 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7919 &prepare_pipes, &disable_pipes);
7920
7921 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7922 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7923
976f8a20
DV
7924 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7925 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7926
a6778b3c
DV
7927 saved_hwmode = crtc->hwmode;
7928 saved_mode = crtc->mode;
a6778b3c 7929
25c5b266
DV
7930 /* Hack: Because we don't (yet) support global modeset on multiple
7931 * crtcs, we don't keep track of the new mode for more than one crtc.
7932 * Hence simply check whether any bit is set in modeset_pipes in all the
7933 * pieces of code that are not yet converted to deal with mutliple crtcs
7934 * changing their mode at the same time. */
7935 adjusted_mode = NULL;
7936 if (modeset_pipes) {
7937 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7938 if (IS_ERR(adjusted_mode)) {
7939 return false;
7940 }
25c5b266 7941 }
a6778b3c 7942
ea9d758d
DV
7943 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7944 if (intel_crtc->base.enabled)
7945 dev_priv->display.crtc_disable(&intel_crtc->base);
7946 }
a6778b3c 7947
6c4c86f5
DV
7948 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7949 * to set it here already despite that we pass it down the callchain.
f6e5b160 7950 */
6c4c86f5 7951 if (modeset_pipes)
25c5b266 7952 crtc->mode = *mode;
7758a113 7953
ea9d758d
DV
7954 /* Only after disabling all output pipelines that will be changed can we
7955 * update the the output configuration. */
7956 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 7957
47fab737
DV
7958 if (dev_priv->display.modeset_global_resources)
7959 dev_priv->display.modeset_global_resources(dev);
7960
a6778b3c
DV
7961 /* Set up the DPLL and any encoders state that needs to adjust or depend
7962 * on the DPLL.
f6e5b160 7963 */
25c5b266
DV
7964 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7965 ret = !intel_crtc_mode_set(&intel_crtc->base,
7966 mode, adjusted_mode,
7967 x, y, fb);
7968 if (!ret)
7969 goto done;
a6778b3c
DV
7970 }
7971
7972 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7973 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7974 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7975
25c5b266
DV
7976 if (modeset_pipes) {
7977 /* Store real post-adjustment hardware mode. */
7978 crtc->hwmode = *adjusted_mode;
a6778b3c 7979
25c5b266
DV
7980 /* Calculate and store various constants which
7981 * are later needed by vblank and swap-completion
7982 * timestamping. They are derived from true hwmode.
7983 */
7984 drm_calc_timestamping_constants(crtc);
7985 }
a6778b3c
DV
7986
7987 /* FIXME: add subpixel order */
7988done:
7989 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7990 if (!ret && crtc->enabled) {
a6778b3c
DV
7991 crtc->hwmode = saved_hwmode;
7992 crtc->mode = saved_mode;
8af6cf88
DV
7993 } else {
7994 intel_modeset_check_state(dev);
a6778b3c
DV
7995 }
7996
7997 return ret;
f6e5b160
CW
7998}
7999
25c5b266
DV
8000#undef for_each_intel_crtc_masked
8001
d9e55608
DV
8002static void intel_set_config_free(struct intel_set_config *config)
8003{
8004 if (!config)
8005 return;
8006
1aa4b628
DV
8007 kfree(config->save_connector_encoders);
8008 kfree(config->save_encoder_crtcs);
d9e55608
DV
8009 kfree(config);
8010}
8011
85f9eb71
DV
8012static int intel_set_config_save_state(struct drm_device *dev,
8013 struct intel_set_config *config)
8014{
85f9eb71
DV
8015 struct drm_encoder *encoder;
8016 struct drm_connector *connector;
8017 int count;
8018
1aa4b628
DV
8019 config->save_encoder_crtcs =
8020 kcalloc(dev->mode_config.num_encoder,
8021 sizeof(struct drm_crtc *), GFP_KERNEL);
8022 if (!config->save_encoder_crtcs)
85f9eb71
DV
8023 return -ENOMEM;
8024
1aa4b628
DV
8025 config->save_connector_encoders =
8026 kcalloc(dev->mode_config.num_connector,
8027 sizeof(struct drm_encoder *), GFP_KERNEL);
8028 if (!config->save_connector_encoders)
85f9eb71
DV
8029 return -ENOMEM;
8030
8031 /* Copy data. Note that driver private data is not affected.
8032 * Should anything bad happen only the expected state is
8033 * restored, not the drivers personal bookkeeping.
8034 */
85f9eb71
DV
8035 count = 0;
8036 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 8037 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
8038 }
8039
8040 count = 0;
8041 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 8042 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
8043 }
8044
8045 return 0;
8046}
8047
8048static void intel_set_config_restore_state(struct drm_device *dev,
8049 struct intel_set_config *config)
8050{
9a935856
DV
8051 struct intel_encoder *encoder;
8052 struct intel_connector *connector;
85f9eb71
DV
8053 int count;
8054
85f9eb71 8055 count = 0;
9a935856
DV
8056 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8057 encoder->new_crtc =
8058 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
8059 }
8060
8061 count = 0;
9a935856
DV
8062 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8063 connector->new_encoder =
8064 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
8065 }
8066}
8067
5e2b584e
DV
8068static void
8069intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8070 struct intel_set_config *config)
8071{
8072
8073 /* We should be able to check here if the fb has the same properties
8074 * and then just flip_or_move it */
8075 if (set->crtc->fb != set->fb) {
8076 /* If we have no fb then treat it as a full mode set */
8077 if (set->crtc->fb == NULL) {
8078 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8079 config->mode_changed = true;
8080 } else if (set->fb == NULL) {
8081 config->mode_changed = true;
8082 } else if (set->fb->depth != set->crtc->fb->depth) {
8083 config->mode_changed = true;
8084 } else if (set->fb->bits_per_pixel !=
8085 set->crtc->fb->bits_per_pixel) {
8086 config->mode_changed = true;
8087 } else
8088 config->fb_changed = true;
8089 }
8090
835c5873 8091 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
8092 config->fb_changed = true;
8093
8094 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8095 DRM_DEBUG_KMS("modes are different, full mode set\n");
8096 drm_mode_debug_printmodeline(&set->crtc->mode);
8097 drm_mode_debug_printmodeline(set->mode);
8098 config->mode_changed = true;
8099 }
8100}
8101
2e431051 8102static int
9a935856
DV
8103intel_modeset_stage_output_state(struct drm_device *dev,
8104 struct drm_mode_set *set,
8105 struct intel_set_config *config)
50f56119 8106{
85f9eb71 8107 struct drm_crtc *new_crtc;
9a935856
DV
8108 struct intel_connector *connector;
8109 struct intel_encoder *encoder;
2e431051 8110 int count, ro;
50f56119 8111
9a935856
DV
8112 /* The upper layers ensure that we either disabl a crtc or have a list
8113 * of connectors. For paranoia, double-check this. */
8114 WARN_ON(!set->fb && (set->num_connectors != 0));
8115 WARN_ON(set->fb && (set->num_connectors == 0));
8116
50f56119 8117 count = 0;
9a935856
DV
8118 list_for_each_entry(connector, &dev->mode_config.connector_list,
8119 base.head) {
8120 /* Otherwise traverse passed in connector list and get encoders
8121 * for them. */
50f56119 8122 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
8123 if (set->connectors[ro] == &connector->base) {
8124 connector->new_encoder = connector->encoder;
50f56119
DV
8125 break;
8126 }
8127 }
8128
9a935856
DV
8129 /* If we disable the crtc, disable all its connectors. Also, if
8130 * the connector is on the changing crtc but not on the new
8131 * connector list, disable it. */
8132 if ((!set->fb || ro == set->num_connectors) &&
8133 connector->base.encoder &&
8134 connector->base.encoder->crtc == set->crtc) {
8135 connector->new_encoder = NULL;
8136
8137 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8138 connector->base.base.id,
8139 drm_get_connector_name(&connector->base));
8140 }
8141
8142
8143 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 8144 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 8145 config->mode_changed = true;
50f56119
DV
8146 }
8147 }
9a935856 8148 /* connector->new_encoder is now updated for all connectors. */
50f56119 8149
9a935856 8150 /* Update crtc of enabled connectors. */
50f56119 8151 count = 0;
9a935856
DV
8152 list_for_each_entry(connector, &dev->mode_config.connector_list,
8153 base.head) {
8154 if (!connector->new_encoder)
50f56119
DV
8155 continue;
8156
9a935856 8157 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
8158
8159 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 8160 if (set->connectors[ro] == &connector->base)
50f56119
DV
8161 new_crtc = set->crtc;
8162 }
8163
8164 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
8165 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8166 new_crtc)) {
5e2b584e 8167 return -EINVAL;
50f56119 8168 }
9a935856
DV
8169 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8170
8171 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8172 connector->base.base.id,
8173 drm_get_connector_name(&connector->base),
8174 new_crtc->base.id);
8175 }
8176
8177 /* Check for any encoders that needs to be disabled. */
8178 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8179 base.head) {
8180 list_for_each_entry(connector,
8181 &dev->mode_config.connector_list,
8182 base.head) {
8183 if (connector->new_encoder == encoder) {
8184 WARN_ON(!connector->new_encoder->new_crtc);
8185
8186 goto next_encoder;
8187 }
8188 }
8189 encoder->new_crtc = NULL;
8190next_encoder:
8191 /* Only now check for crtc changes so we don't miss encoders
8192 * that will be disabled. */
8193 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 8194 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 8195 config->mode_changed = true;
50f56119
DV
8196 }
8197 }
9a935856 8198 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 8199
2e431051
DV
8200 return 0;
8201}
8202
8203static int intel_crtc_set_config(struct drm_mode_set *set)
8204{
8205 struct drm_device *dev;
2e431051
DV
8206 struct drm_mode_set save_set;
8207 struct intel_set_config *config;
8208 int ret;
2e431051 8209
8d3e375e
DV
8210 BUG_ON(!set);
8211 BUG_ON(!set->crtc);
8212 BUG_ON(!set->crtc->helper_private);
2e431051
DV
8213
8214 if (!set->mode)
8215 set->fb = NULL;
8216
431e50f7
DV
8217 /* The fb helper likes to play gross jokes with ->mode_set_config.
8218 * Unfortunately the crtc helper doesn't do much at all for this case,
8219 * so we have to cope with this madness until the fb helper is fixed up. */
8220 if (set->fb && set->num_connectors == 0)
8221 return 0;
8222
2e431051
DV
8223 if (set->fb) {
8224 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8225 set->crtc->base.id, set->fb->base.id,
8226 (int)set->num_connectors, set->x, set->y);
8227 } else {
8228 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8229 }
8230
8231 dev = set->crtc->dev;
8232
8233 ret = -ENOMEM;
8234 config = kzalloc(sizeof(*config), GFP_KERNEL);
8235 if (!config)
8236 goto out_config;
8237
8238 ret = intel_set_config_save_state(dev, config);
8239 if (ret)
8240 goto out_config;
8241
8242 save_set.crtc = set->crtc;
8243 save_set.mode = &set->crtc->mode;
8244 save_set.x = set->crtc->x;
8245 save_set.y = set->crtc->y;
8246 save_set.fb = set->crtc->fb;
8247
8248 /* Compute whether we need a full modeset, only an fb base update or no
8249 * change at all. In the future we might also check whether only the
8250 * mode changed, e.g. for LVDS where we only change the panel fitter in
8251 * such cases. */
8252 intel_set_config_compute_mode_changes(set, config);
8253
9a935856 8254 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8255 if (ret)
8256 goto fail;
8257
5e2b584e 8258 if (config->mode_changed) {
87f1faa6 8259 if (set->mode) {
50f56119
DV
8260 DRM_DEBUG_KMS("attempting to set mode from"
8261 " userspace\n");
8262 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8263 }
8264
8265 if (!intel_set_mode(set->crtc, set->mode,
8266 set->x, set->y, set->fb)) {
8267 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8268 set->crtc->base.id);
8269 ret = -EINVAL;
8270 goto fail;
8271 }
5e2b584e 8272 } else if (config->fb_changed) {
4f660f49 8273 ret = intel_pipe_set_base(set->crtc,
94352cf9 8274 set->x, set->y, set->fb);
50f56119
DV
8275 }
8276
d9e55608
DV
8277 intel_set_config_free(config);
8278
50f56119
DV
8279 return 0;
8280
8281fail:
85f9eb71 8282 intel_set_config_restore_state(dev, config);
50f56119
DV
8283
8284 /* Try to restore the config */
5e2b584e 8285 if (config->mode_changed &&
a6778b3c
DV
8286 !intel_set_mode(save_set.crtc, save_set.mode,
8287 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8288 DRM_ERROR("failed to restore config after modeset failure\n");
8289
d9e55608
DV
8290out_config:
8291 intel_set_config_free(config);
50f56119
DV
8292 return ret;
8293}
f6e5b160
CW
8294
8295static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8296 .cursor_set = intel_crtc_cursor_set,
8297 .cursor_move = intel_crtc_cursor_move,
8298 .gamma_set = intel_crtc_gamma_set,
50f56119 8299 .set_config = intel_crtc_set_config,
f6e5b160
CW
8300 .destroy = intel_crtc_destroy,
8301 .page_flip = intel_crtc_page_flip,
8302};
8303
79f689aa
PZ
8304static void intel_cpu_pll_init(struct drm_device *dev)
8305{
8306 if (IS_HASWELL(dev))
8307 intel_ddi_pll_init(dev);
8308}
8309
ee7b9f93
JB
8310static void intel_pch_pll_init(struct drm_device *dev)
8311{
8312 drm_i915_private_t *dev_priv = dev->dev_private;
8313 int i;
8314
8315 if (dev_priv->num_pch_pll == 0) {
8316 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8317 return;
8318 }
8319
8320 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8321 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8322 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8323 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8324 }
8325}
8326
b358d0a6 8327static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8328{
22fd0fab 8329 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8330 struct intel_crtc *intel_crtc;
8331 int i;
8332
8333 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8334 if (intel_crtc == NULL)
8335 return;
8336
8337 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8338
8339 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8340 for (i = 0; i < 256; i++) {
8341 intel_crtc->lut_r[i] = i;
8342 intel_crtc->lut_g[i] = i;
8343 intel_crtc->lut_b[i] = i;
8344 }
8345
80824003
JB
8346 /* Swap pipes & planes for FBC on pre-965 */
8347 intel_crtc->pipe = pipe;
8348 intel_crtc->plane = pipe;
a5c961d1 8349 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8350 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8351 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8352 intel_crtc->plane = !pipe;
80824003
JB
8353 }
8354
22fd0fab
JB
8355 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8356 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8357 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8358 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8359
5a354204 8360 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8361
79e53945 8362 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8363}
8364
08d7b3d1 8365int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8366 struct drm_file *file)
08d7b3d1 8367{
08d7b3d1 8368 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8369 struct drm_mode_object *drmmode_obj;
8370 struct intel_crtc *crtc;
08d7b3d1 8371
1cff8f6b
DV
8372 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8373 return -ENODEV;
08d7b3d1 8374
c05422d5
DV
8375 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8376 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8377
c05422d5 8378 if (!drmmode_obj) {
08d7b3d1
CW
8379 DRM_ERROR("no such CRTC id\n");
8380 return -EINVAL;
8381 }
8382
c05422d5
DV
8383 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8384 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8385
c05422d5 8386 return 0;
08d7b3d1
CW
8387}
8388
66a9278e 8389static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8390{
66a9278e
DV
8391 struct drm_device *dev = encoder->base.dev;
8392 struct intel_encoder *source_encoder;
79e53945 8393 int index_mask = 0;
79e53945
JB
8394 int entry = 0;
8395
66a9278e
DV
8396 list_for_each_entry(source_encoder,
8397 &dev->mode_config.encoder_list, base.head) {
8398
8399 if (encoder == source_encoder)
79e53945 8400 index_mask |= (1 << entry);
66a9278e
DV
8401
8402 /* Intel hw has only one MUX where enocoders could be cloned. */
8403 if (encoder->cloneable && source_encoder->cloneable)
8404 index_mask |= (1 << entry);
8405
79e53945
JB
8406 entry++;
8407 }
4ef69c7a 8408
79e53945
JB
8409 return index_mask;
8410}
8411
4d302442
CW
8412static bool has_edp_a(struct drm_device *dev)
8413{
8414 struct drm_i915_private *dev_priv = dev->dev_private;
8415
8416 if (!IS_MOBILE(dev))
8417 return false;
8418
8419 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8420 return false;
8421
8422 if (IS_GEN5(dev) &&
8423 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8424 return false;
8425
8426 return true;
8427}
8428
79e53945
JB
8429static void intel_setup_outputs(struct drm_device *dev)
8430{
725e30ad 8431 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8432 struct intel_encoder *encoder;
cb0953d7 8433 bool dpd_is_edp = false;
f3cfcba6 8434 bool has_lvds;
79e53945 8435
f3cfcba6 8436 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8437 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8438 /* disable the panel fitter on everything but LVDS */
8439 I915_WRITE(PFIT_CONTROL, 0);
8440 }
79e53945 8441
79935fca
PZ
8442 if (!(IS_HASWELL(dev) &&
8443 (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8444 intel_crt_init(dev);
cb0953d7 8445
0e72a5b5
ED
8446 if (IS_HASWELL(dev)) {
8447 int found;
8448
8449 /* Haswell uses DDI functions to detect digital outputs */
8450 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8451 /* DDI A only supports eDP */
8452 if (found)
8453 intel_ddi_init(dev, PORT_A);
8454
8455 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8456 * register */
8457 found = I915_READ(SFUSE_STRAP);
8458
8459 if (found & SFUSE_STRAP_DDIB_DETECTED)
8460 intel_ddi_init(dev, PORT_B);
8461 if (found & SFUSE_STRAP_DDIC_DETECTED)
8462 intel_ddi_init(dev, PORT_C);
8463 if (found & SFUSE_STRAP_DDID_DETECTED)
8464 intel_ddi_init(dev, PORT_D);
8465 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8466 int found;
270b3042
DV
8467 dpd_is_edp = intel_dpd_is_edp(dev);
8468
8469 if (has_edp_a(dev))
8470 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 8471
30ad48b7 8472 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8473 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8474 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8475 if (!found)
08d644ad 8476 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8477 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8478 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8479 }
8480
8481 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8482 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8483
b708a1d5 8484 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8485 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8486
5eb08b69 8487 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8488 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8489
270b3042 8490 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 8491 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8492 } else if (IS_VALLEYVIEW(dev)) {
8493 int found;
8494
19c03924
GB
8495 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8496 if (I915_READ(DP_C) & DP_DETECTED)
8497 intel_dp_init(dev, DP_C, PORT_C);
8498
4a87d65d
JB
8499 if (I915_READ(SDVOB) & PORT_DETECTED) {
8500 /* SDVOB multiplex with HDMIB */
8501 found = intel_sdvo_init(dev, SDVOB, true);
8502 if (!found)
08d644ad 8503 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8504 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8505 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8506 }
8507
8508 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8509 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8510
103a196f 8511 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8512 bool found = false;
7d57382e 8513
725e30ad 8514 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8515 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8516 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8517 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8518 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8519 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8520 }
27185ae1 8521
b01f2c3a
JB
8522 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8523 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8524 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8525 }
725e30ad 8526 }
13520b05
KH
8527
8528 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8529
b01f2c3a
JB
8530 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8531 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8532 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8533 }
27185ae1
ML
8534
8535 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8536
b01f2c3a
JB
8537 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8538 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8539 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8540 }
8541 if (SUPPORTS_INTEGRATED_DP(dev)) {
8542 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8543 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8544 }
725e30ad 8545 }
27185ae1 8546
b01f2c3a
JB
8547 if (SUPPORTS_INTEGRATED_DP(dev) &&
8548 (I915_READ(DP_D) & DP_DETECTED)) {
8549 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8550 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8551 }
bad720ff 8552 } else if (IS_GEN2(dev))
79e53945
JB
8553 intel_dvo_init(dev);
8554
103a196f 8555 if (SUPPORTS_TV(dev))
79e53945
JB
8556 intel_tv_init(dev);
8557
4ef69c7a
CW
8558 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8559 encoder->base.possible_crtcs = encoder->crtc_mask;
8560 encoder->base.possible_clones =
66a9278e 8561 intel_encoder_clones(encoder);
79e53945 8562 }
47356eb6 8563
dde86e2d 8564 intel_init_pch_refclk(dev);
270b3042
DV
8565
8566 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
8567}
8568
8569static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8570{
8571 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8572
8573 drm_framebuffer_cleanup(fb);
05394f39 8574 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8575
8576 kfree(intel_fb);
8577}
8578
8579static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8580 struct drm_file *file,
79e53945
JB
8581 unsigned int *handle)
8582{
8583 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8584 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8585
05394f39 8586 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8587}
8588
8589static const struct drm_framebuffer_funcs intel_fb_funcs = {
8590 .destroy = intel_user_framebuffer_destroy,
8591 .create_handle = intel_user_framebuffer_create_handle,
8592};
8593
38651674
DA
8594int intel_framebuffer_init(struct drm_device *dev,
8595 struct intel_framebuffer *intel_fb,
308e5bcb 8596 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8597 struct drm_i915_gem_object *obj)
79e53945 8598{
79e53945
JB
8599 int ret;
8600
c16ed4be
CW
8601 if (obj->tiling_mode == I915_TILING_Y) {
8602 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 8603 return -EINVAL;
c16ed4be 8604 }
57cd6508 8605
c16ed4be
CW
8606 if (mode_cmd->pitches[0] & 63) {
8607 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8608 mode_cmd->pitches[0]);
57cd6508 8609 return -EINVAL;
c16ed4be 8610 }
57cd6508 8611
5d7bd705 8612 /* FIXME <= Gen4 stride limits are bit unclear */
c16ed4be
CW
8613 if (mode_cmd->pitches[0] > 32768) {
8614 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8615 mode_cmd->pitches[0]);
5d7bd705 8616 return -EINVAL;
c16ed4be 8617 }
5d7bd705
VS
8618
8619 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
8620 mode_cmd->pitches[0] != obj->stride) {
8621 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8622 mode_cmd->pitches[0], obj->stride);
5d7bd705 8623 return -EINVAL;
c16ed4be 8624 }
5d7bd705 8625
57779d06 8626 /* Reject formats not supported by any plane early. */
308e5bcb 8627 switch (mode_cmd->pixel_format) {
57779d06 8628 case DRM_FORMAT_C8:
04b3924d
VS
8629 case DRM_FORMAT_RGB565:
8630 case DRM_FORMAT_XRGB8888:
8631 case DRM_FORMAT_ARGB8888:
57779d06
VS
8632 break;
8633 case DRM_FORMAT_XRGB1555:
8634 case DRM_FORMAT_ARGB1555:
c16ed4be
CW
8635 if (INTEL_INFO(dev)->gen > 3) {
8636 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
57779d06 8637 return -EINVAL;
c16ed4be 8638 }
57779d06
VS
8639 break;
8640 case DRM_FORMAT_XBGR8888:
8641 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8642 case DRM_FORMAT_XRGB2101010:
8643 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8644 case DRM_FORMAT_XBGR2101010:
8645 case DRM_FORMAT_ABGR2101010:
c16ed4be
CW
8646 if (INTEL_INFO(dev)->gen < 4) {
8647 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
57779d06 8648 return -EINVAL;
c16ed4be 8649 }
b5626747 8650 break;
04b3924d
VS
8651 case DRM_FORMAT_YUYV:
8652 case DRM_FORMAT_UYVY:
8653 case DRM_FORMAT_YVYU:
8654 case DRM_FORMAT_VYUY:
c16ed4be
CW
8655 if (INTEL_INFO(dev)->gen < 5) {
8656 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
57779d06 8657 return -EINVAL;
c16ed4be 8658 }
57cd6508
CW
8659 break;
8660 default:
c16ed4be 8661 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8662 return -EINVAL;
8663 }
8664
90f9a336
VS
8665 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8666 if (mode_cmd->offsets[0] != 0)
8667 return -EINVAL;
8668
79e53945
JB
8669 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8670 if (ret) {
8671 DRM_ERROR("framebuffer init failed %d\n", ret);
8672 return ret;
8673 }
8674
8675 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8676 intel_fb->obj = obj;
79e53945
JB
8677 return 0;
8678}
8679
79e53945
JB
8680static struct drm_framebuffer *
8681intel_user_framebuffer_create(struct drm_device *dev,
8682 struct drm_file *filp,
308e5bcb 8683 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8684{
05394f39 8685 struct drm_i915_gem_object *obj;
79e53945 8686
308e5bcb
JB
8687 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8688 mode_cmd->handles[0]));
c8725226 8689 if (&obj->base == NULL)
cce13ff7 8690 return ERR_PTR(-ENOENT);
79e53945 8691
d2dff872 8692 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8693}
8694
79e53945 8695static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8696 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8697 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8698};
8699
e70236a8
JB
8700/* Set up chip specific display functions */
8701static void intel_init_display(struct drm_device *dev)
8702{
8703 struct drm_i915_private *dev_priv = dev->dev_private;
8704
8705 /* We always want a DPMS function */
09b4ddf9
PZ
8706 if (IS_HASWELL(dev)) {
8707 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8708 dev_priv->display.crtc_enable = haswell_crtc_enable;
8709 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8710 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8711 dev_priv->display.update_plane = ironlake_update_plane;
8712 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8713 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8714 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8715 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8716 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8717 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8718 } else {
f564048e 8719 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8720 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8721 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8722 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8723 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8724 }
e70236a8 8725
e70236a8 8726 /* Returns the core display clock speed */
25eb05fc
JB
8727 if (IS_VALLEYVIEW(dev))
8728 dev_priv->display.get_display_clock_speed =
8729 valleyview_get_display_clock_speed;
8730 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8731 dev_priv->display.get_display_clock_speed =
8732 i945_get_display_clock_speed;
8733 else if (IS_I915G(dev))
8734 dev_priv->display.get_display_clock_speed =
8735 i915_get_display_clock_speed;
f2b115e6 8736 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8737 dev_priv->display.get_display_clock_speed =
8738 i9xx_misc_get_display_clock_speed;
8739 else if (IS_I915GM(dev))
8740 dev_priv->display.get_display_clock_speed =
8741 i915gm_get_display_clock_speed;
8742 else if (IS_I865G(dev))
8743 dev_priv->display.get_display_clock_speed =
8744 i865_get_display_clock_speed;
f0f8a9ce 8745 else if (IS_I85X(dev))
e70236a8
JB
8746 dev_priv->display.get_display_clock_speed =
8747 i855_get_display_clock_speed;
8748 else /* 852, 830 */
8749 dev_priv->display.get_display_clock_speed =
8750 i830_get_display_clock_speed;
8751
7f8a8569 8752 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8753 if (IS_GEN5(dev)) {
674cf967 8754 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8755 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8756 } else if (IS_GEN6(dev)) {
674cf967 8757 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8758 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8759 } else if (IS_IVYBRIDGE(dev)) {
8760 /* FIXME: detect B0+ stepping and use auto training */
8761 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8762 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8763 dev_priv->display.modeset_global_resources =
8764 ivb_modeset_global_resources;
c82e4d26
ED
8765 } else if (IS_HASWELL(dev)) {
8766 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8767 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8768 } else
8769 dev_priv->display.update_wm = NULL;
6067aaea 8770 } else if (IS_G4X(dev)) {
e0dac65e 8771 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8772 }
8c9f3aaf
JB
8773
8774 /* Default just returns -ENODEV to indicate unsupported */
8775 dev_priv->display.queue_flip = intel_default_queue_flip;
8776
8777 switch (INTEL_INFO(dev)->gen) {
8778 case 2:
8779 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8780 break;
8781
8782 case 3:
8783 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8784 break;
8785
8786 case 4:
8787 case 5:
8788 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8789 break;
8790
8791 case 6:
8792 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8793 break;
7c9017e5
JB
8794 case 7:
8795 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8796 break;
8c9f3aaf 8797 }
e70236a8
JB
8798}
8799
b690e96c
JB
8800/*
8801 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8802 * resume, or other times. This quirk makes sure that's the case for
8803 * affected systems.
8804 */
0206e353 8805static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8806{
8807 struct drm_i915_private *dev_priv = dev->dev_private;
8808
8809 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8810 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8811}
8812
435793df
KP
8813/*
8814 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8815 */
8816static void quirk_ssc_force_disable(struct drm_device *dev)
8817{
8818 struct drm_i915_private *dev_priv = dev->dev_private;
8819 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8820 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8821}
8822
4dca20ef 8823/*
5a15ab5b
CE
8824 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8825 * brightness value
4dca20ef
CE
8826 */
8827static void quirk_invert_brightness(struct drm_device *dev)
8828{
8829 struct drm_i915_private *dev_priv = dev->dev_private;
8830 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8831 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8832}
8833
b690e96c
JB
8834struct intel_quirk {
8835 int device;
8836 int subsystem_vendor;
8837 int subsystem_device;
8838 void (*hook)(struct drm_device *dev);
8839};
8840
5f85f176
EE
8841/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8842struct intel_dmi_quirk {
8843 void (*hook)(struct drm_device *dev);
8844 const struct dmi_system_id (*dmi_id_list)[];
8845};
8846
8847static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8848{
8849 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8850 return 1;
8851}
8852
8853static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8854 {
8855 .dmi_id_list = &(const struct dmi_system_id[]) {
8856 {
8857 .callback = intel_dmi_reverse_brightness,
8858 .ident = "NCR Corporation",
8859 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8860 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8861 },
8862 },
8863 { } /* terminating entry */
8864 },
8865 .hook = quirk_invert_brightness,
8866 },
8867};
8868
c43b5634 8869static struct intel_quirk intel_quirks[] = {
b690e96c 8870 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8871 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8872
b690e96c
JB
8873 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8874 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8875
b690e96c
JB
8876 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8877 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8878
ccd0d36e 8879 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8880 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8881 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8882
8883 /* Lenovo U160 cannot use SSC on LVDS */
8884 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8885
8886 /* Sony Vaio Y cannot use SSC on LVDS */
8887 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8888
8889 /* Acer Aspire 5734Z must invert backlight brightness */
8890 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8891};
8892
8893static void intel_init_quirks(struct drm_device *dev)
8894{
8895 struct pci_dev *d = dev->pdev;
8896 int i;
8897
8898 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8899 struct intel_quirk *q = &intel_quirks[i];
8900
8901 if (d->device == q->device &&
8902 (d->subsystem_vendor == q->subsystem_vendor ||
8903 q->subsystem_vendor == PCI_ANY_ID) &&
8904 (d->subsystem_device == q->subsystem_device ||
8905 q->subsystem_device == PCI_ANY_ID))
8906 q->hook(dev);
8907 }
5f85f176
EE
8908 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8909 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8910 intel_dmi_quirks[i].hook(dev);
8911 }
b690e96c
JB
8912}
8913
9cce37f4
JB
8914/* Disable the VGA plane that we never use */
8915static void i915_disable_vga(struct drm_device *dev)
8916{
8917 struct drm_i915_private *dev_priv = dev->dev_private;
8918 u8 sr1;
8919 u32 vga_reg;
8920
8921 if (HAS_PCH_SPLIT(dev))
8922 vga_reg = CPU_VGACNTRL;
8923 else
8924 vga_reg = VGACNTRL;
8925
8926 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8927 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8928 sr1 = inb(VGA_SR_DATA);
8929 outb(sr1 | 1<<5, VGA_SR_DATA);
8930 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8931 udelay(300);
8932
8933 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8934 POSTING_READ(vga_reg);
8935}
8936
f817586c
DV
8937void intel_modeset_init_hw(struct drm_device *dev)
8938{
0232e927
ED
8939 /* We attempt to init the necessary power wells early in the initialization
8940 * time, so the subsystems that expect power to be enabled can work.
8941 */
8942 intel_init_power_wells(dev);
8943
a8f78b58
ED
8944 intel_prepare_ddi(dev);
8945
f817586c
DV
8946 intel_init_clock_gating(dev);
8947
79f5b2c7 8948 mutex_lock(&dev->struct_mutex);
8090c6b9 8949 intel_enable_gt_powersave(dev);
79f5b2c7 8950 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8951}
8952
79e53945
JB
8953void intel_modeset_init(struct drm_device *dev)
8954{
652c393a 8955 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8956 int i, ret;
79e53945
JB
8957
8958 drm_mode_config_init(dev);
8959
8960 dev->mode_config.min_width = 0;
8961 dev->mode_config.min_height = 0;
8962
019d96cb
DA
8963 dev->mode_config.preferred_depth = 24;
8964 dev->mode_config.prefer_shadow = 1;
8965
e6ecefaa 8966 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8967
b690e96c
JB
8968 intel_init_quirks(dev);
8969
1fa61106
ED
8970 intel_init_pm(dev);
8971
e70236a8
JB
8972 intel_init_display(dev);
8973
a6c45cf0
CW
8974 if (IS_GEN2(dev)) {
8975 dev->mode_config.max_width = 2048;
8976 dev->mode_config.max_height = 2048;
8977 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8978 dev->mode_config.max_width = 4096;
8979 dev->mode_config.max_height = 4096;
79e53945 8980 } else {
a6c45cf0
CW
8981 dev->mode_config.max_width = 8192;
8982 dev->mode_config.max_height = 8192;
79e53945 8983 }
dd2757f8 8984 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8985
28c97730 8986 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8987 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8988
a3524f1b 8989 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8990 intel_crtc_init(dev, i);
00c2064b
JB
8991 ret = intel_plane_init(dev, i);
8992 if (ret)
8993 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8994 }
8995
79f689aa 8996 intel_cpu_pll_init(dev);
ee7b9f93
JB
8997 intel_pch_pll_init(dev);
8998
9cce37f4
JB
8999 /* Just disable it once at startup */
9000 i915_disable_vga(dev);
79e53945 9001 intel_setup_outputs(dev);
2c7111db
CW
9002}
9003
24929352
DV
9004static void
9005intel_connector_break_all_links(struct intel_connector *connector)
9006{
9007 connector->base.dpms = DRM_MODE_DPMS_OFF;
9008 connector->base.encoder = NULL;
9009 connector->encoder->connectors_active = false;
9010 connector->encoder->base.crtc = NULL;
9011}
9012
7fad798e
DV
9013static void intel_enable_pipe_a(struct drm_device *dev)
9014{
9015 struct intel_connector *connector;
9016 struct drm_connector *crt = NULL;
9017 struct intel_load_detect_pipe load_detect_temp;
9018
9019 /* We can't just switch on the pipe A, we need to set things up with a
9020 * proper mode and output configuration. As a gross hack, enable pipe A
9021 * by enabling the load detect pipe once. */
9022 list_for_each_entry(connector,
9023 &dev->mode_config.connector_list,
9024 base.head) {
9025 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9026 crt = &connector->base;
9027 break;
9028 }
9029 }
9030
9031 if (!crt)
9032 return;
9033
9034 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9035 intel_release_load_detect_pipe(crt, &load_detect_temp);
9036
652c393a 9037
7fad798e
DV
9038}
9039
fa555837
DV
9040static bool
9041intel_check_plane_mapping(struct intel_crtc *crtc)
9042{
9043 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
9044 u32 reg, val;
9045
9046 if (dev_priv->num_pipe == 1)
9047 return true;
9048
9049 reg = DSPCNTR(!crtc->plane);
9050 val = I915_READ(reg);
9051
9052 if ((val & DISPLAY_PLANE_ENABLE) &&
9053 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9054 return false;
9055
9056 return true;
9057}
9058
24929352
DV
9059static void intel_sanitize_crtc(struct intel_crtc *crtc)
9060{
9061 struct drm_device *dev = crtc->base.dev;
9062 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 9063 u32 reg;
24929352 9064
24929352 9065 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 9066 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
9067 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9068
9069 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
9070 * disable the crtc (and hence change the state) if it is wrong. Note
9071 * that gen4+ has a fixed plane -> pipe mapping. */
9072 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
9073 struct intel_connector *connector;
9074 bool plane;
9075
24929352
DV
9076 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9077 crtc->base.base.id);
9078
9079 /* Pipe has the wrong plane attached and the plane is active.
9080 * Temporarily change the plane mapping and disable everything
9081 * ... */
9082 plane = crtc->plane;
9083 crtc->plane = !plane;
9084 dev_priv->display.crtc_disable(&crtc->base);
9085 crtc->plane = plane;
9086
9087 /* ... and break all links. */
9088 list_for_each_entry(connector, &dev->mode_config.connector_list,
9089 base.head) {
9090 if (connector->encoder->base.crtc != &crtc->base)
9091 continue;
9092
9093 intel_connector_break_all_links(connector);
9094 }
9095
9096 WARN_ON(crtc->active);
9097 crtc->base.enabled = false;
9098 }
24929352 9099
7fad798e
DV
9100 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9101 crtc->pipe == PIPE_A && !crtc->active) {
9102 /* BIOS forgot to enable pipe A, this mostly happens after
9103 * resume. Force-enable the pipe to fix this, the update_dpms
9104 * call below we restore the pipe to the right state, but leave
9105 * the required bits on. */
9106 intel_enable_pipe_a(dev);
9107 }
9108
24929352
DV
9109 /* Adjust the state of the output pipe according to whether we
9110 * have active connectors/encoders. */
9111 intel_crtc_update_dpms(&crtc->base);
9112
9113 if (crtc->active != crtc->base.enabled) {
9114 struct intel_encoder *encoder;
9115
9116 /* This can happen either due to bugs in the get_hw_state
9117 * functions or because the pipe is force-enabled due to the
9118 * pipe A quirk. */
9119 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9120 crtc->base.base.id,
9121 crtc->base.enabled ? "enabled" : "disabled",
9122 crtc->active ? "enabled" : "disabled");
9123
9124 crtc->base.enabled = crtc->active;
9125
9126 /* Because we only establish the connector -> encoder ->
9127 * crtc links if something is active, this means the
9128 * crtc is now deactivated. Break the links. connector
9129 * -> encoder links are only establish when things are
9130 * actually up, hence no need to break them. */
9131 WARN_ON(crtc->active);
9132
9133 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9134 WARN_ON(encoder->connectors_active);
9135 encoder->base.crtc = NULL;
9136 }
9137 }
9138}
9139
9140static void intel_sanitize_encoder(struct intel_encoder *encoder)
9141{
9142 struct intel_connector *connector;
9143 struct drm_device *dev = encoder->base.dev;
9144
9145 /* We need to check both for a crtc link (meaning that the
9146 * encoder is active and trying to read from a pipe) and the
9147 * pipe itself being active. */
9148 bool has_active_crtc = encoder->base.crtc &&
9149 to_intel_crtc(encoder->base.crtc)->active;
9150
9151 if (encoder->connectors_active && !has_active_crtc) {
9152 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9153 encoder->base.base.id,
9154 drm_get_encoder_name(&encoder->base));
9155
9156 /* Connector is active, but has no active pipe. This is
9157 * fallout from our resume register restoring. Disable
9158 * the encoder manually again. */
9159 if (encoder->base.crtc) {
9160 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9161 encoder->base.base.id,
9162 drm_get_encoder_name(&encoder->base));
9163 encoder->disable(encoder);
9164 }
9165
9166 /* Inconsistent output/port/pipe state happens presumably due to
9167 * a bug in one of the get_hw_state functions. Or someplace else
9168 * in our code, like the register restore mess on resume. Clamp
9169 * things to off as a safer default. */
9170 list_for_each_entry(connector,
9171 &dev->mode_config.connector_list,
9172 base.head) {
9173 if (connector->encoder != encoder)
9174 continue;
9175
9176 intel_connector_break_all_links(connector);
9177 }
9178 }
9179 /* Enabled encoders without active connectors will be fixed in
9180 * the crtc fixup. */
9181}
9182
0fde901f
KM
9183static void i915_redisable_vga(struct drm_device *dev)
9184{
9185 struct drm_i915_private *dev_priv = dev->dev_private;
9186 u32 vga_reg;
9187
9188 if (HAS_PCH_SPLIT(dev))
9189 vga_reg = CPU_VGACNTRL;
9190 else
9191 vga_reg = VGACNTRL;
9192
9193 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9194 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9195 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9196 POSTING_READ(vga_reg);
9197 }
9198}
9199
24929352
DV
9200/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9201 * and i915 state tracking structures. */
45e2b5f6
DV
9202void intel_modeset_setup_hw_state(struct drm_device *dev,
9203 bool force_restore)
24929352
DV
9204{
9205 struct drm_i915_private *dev_priv = dev->dev_private;
9206 enum pipe pipe;
9207 u32 tmp;
9208 struct intel_crtc *crtc;
9209 struct intel_encoder *encoder;
9210 struct intel_connector *connector;
9211
e28d54cb
PZ
9212 if (IS_HASWELL(dev)) {
9213 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9214
9215 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9216 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9217 case TRANS_DDI_EDP_INPUT_A_ON:
9218 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9219 pipe = PIPE_A;
9220 break;
9221 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9222 pipe = PIPE_B;
9223 break;
9224 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9225 pipe = PIPE_C;
9226 break;
9227 }
9228
9229 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9230 crtc->cpu_transcoder = TRANSCODER_EDP;
9231
9232 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9233 pipe_name(pipe));
9234 }
9235 }
9236
24929352
DV
9237 for_each_pipe(pipe) {
9238 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9239
702e7a56 9240 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
9241 if (tmp & PIPECONF_ENABLE)
9242 crtc->active = true;
9243 else
9244 crtc->active = false;
9245
9246 crtc->base.enabled = crtc->active;
9247
9248 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9249 crtc->base.base.id,
9250 crtc->active ? "enabled" : "disabled");
9251 }
9252
6441ab5f
PZ
9253 if (IS_HASWELL(dev))
9254 intel_ddi_setup_hw_pll_state(dev);
9255
24929352
DV
9256 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9257 base.head) {
9258 pipe = 0;
9259
9260 if (encoder->get_hw_state(encoder, &pipe)) {
9261 encoder->base.crtc =
9262 dev_priv->pipe_to_crtc_mapping[pipe];
9263 } else {
9264 encoder->base.crtc = NULL;
9265 }
9266
9267 encoder->connectors_active = false;
9268 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9269 encoder->base.base.id,
9270 drm_get_encoder_name(&encoder->base),
9271 encoder->base.crtc ? "enabled" : "disabled",
9272 pipe);
9273 }
9274
9275 list_for_each_entry(connector, &dev->mode_config.connector_list,
9276 base.head) {
9277 if (connector->get_hw_state(connector)) {
9278 connector->base.dpms = DRM_MODE_DPMS_ON;
9279 connector->encoder->connectors_active = true;
9280 connector->base.encoder = &connector->encoder->base;
9281 } else {
9282 connector->base.dpms = DRM_MODE_DPMS_OFF;
9283 connector->base.encoder = NULL;
9284 }
9285 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9286 connector->base.base.id,
9287 drm_get_connector_name(&connector->base),
9288 connector->base.encoder ? "enabled" : "disabled");
9289 }
9290
9291 /* HW state is read out, now we need to sanitize this mess. */
9292 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9293 base.head) {
9294 intel_sanitize_encoder(encoder);
9295 }
9296
9297 for_each_pipe(pipe) {
9298 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9299 intel_sanitize_crtc(crtc);
9300 }
9a935856 9301
45e2b5f6
DV
9302 if (force_restore) {
9303 for_each_pipe(pipe) {
9304 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9305 intel_set_mode(&crtc->base, &crtc->base.mode,
9306 crtc->base.x, crtc->base.y, crtc->base.fb);
9307 }
0fde901f
KM
9308
9309 i915_redisable_vga(dev);
45e2b5f6
DV
9310 } else {
9311 intel_modeset_update_staged_output_state(dev);
9312 }
8af6cf88
DV
9313
9314 intel_modeset_check_state(dev);
2e938892
DV
9315
9316 drm_mode_config_reset(dev);
2c7111db
CW
9317}
9318
9319void intel_modeset_gem_init(struct drm_device *dev)
9320{
1833b134 9321 intel_modeset_init_hw(dev);
02e792fb
DV
9322
9323 intel_setup_overlay(dev);
24929352 9324
45e2b5f6 9325 intel_modeset_setup_hw_state(dev, false);
79e53945
JB
9326}
9327
9328void intel_modeset_cleanup(struct drm_device *dev)
9329{
652c393a
JB
9330 struct drm_i915_private *dev_priv = dev->dev_private;
9331 struct drm_crtc *crtc;
9332 struct intel_crtc *intel_crtc;
9333
f87ea761 9334 drm_kms_helper_poll_fini(dev);
652c393a
JB
9335 mutex_lock(&dev->struct_mutex);
9336
723bfd70
JB
9337 intel_unregister_dsm_handler();
9338
9339
652c393a
JB
9340 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9341 /* Skip inactive CRTCs */
9342 if (!crtc->fb)
9343 continue;
9344
9345 intel_crtc = to_intel_crtc(crtc);
3dec0095 9346 intel_increase_pllclock(crtc);
652c393a
JB
9347 }
9348
973d04f9 9349 intel_disable_fbc(dev);
e70236a8 9350
8090c6b9 9351 intel_disable_gt_powersave(dev);
0cdab21f 9352
930ebb46
DV
9353 ironlake_teardown_rc6(dev);
9354
57f350b6
JB
9355 if (IS_VALLEYVIEW(dev))
9356 vlv_init_dpio(dev);
9357
69341a5e
KH
9358 mutex_unlock(&dev->struct_mutex);
9359
6c0d9350
DV
9360 /* Disable the irq before mode object teardown, for the irq might
9361 * enqueue unpin/hotplug work. */
9362 drm_irq_uninstall(dev);
9363 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9364 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9365
1630fe75
CW
9366 /* flush any delayed tasks or pending work */
9367 flush_scheduled_work();
9368
79e53945
JB
9369 drm_mode_config_cleanup(dev);
9370}
9371
f1c79df3
ZW
9372/*
9373 * Return which encoder is currently attached for connector.
9374 */
df0e9248 9375struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9376{
df0e9248
CW
9377 return &intel_attached_encoder(connector)->base;
9378}
f1c79df3 9379
df0e9248
CW
9380void intel_connector_attach_encoder(struct intel_connector *connector,
9381 struct intel_encoder *encoder)
9382{
9383 connector->encoder = encoder;
9384 drm_mode_connector_attach_encoder(&connector->base,
9385 &encoder->base);
79e53945 9386}
28d52043
DA
9387
9388/*
9389 * set vga decode state - true == enable VGA decode
9390 */
9391int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9392{
9393 struct drm_i915_private *dev_priv = dev->dev_private;
9394 u16 gmch_ctrl;
9395
9396 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9397 if (state)
9398 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9399 else
9400 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9401 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9402 return 0;
9403}
c4a1d9e4
CW
9404
9405#ifdef CONFIG_DEBUG_FS
9406#include <linux/seq_file.h>
9407
9408struct intel_display_error_state {
9409 struct intel_cursor_error_state {
9410 u32 control;
9411 u32 position;
9412 u32 base;
9413 u32 size;
52331309 9414 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9415
9416 struct intel_pipe_error_state {
9417 u32 conf;
9418 u32 source;
9419
9420 u32 htotal;
9421 u32 hblank;
9422 u32 hsync;
9423 u32 vtotal;
9424 u32 vblank;
9425 u32 vsync;
52331309 9426 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9427
9428 struct intel_plane_error_state {
9429 u32 control;
9430 u32 stride;
9431 u32 size;
9432 u32 pos;
9433 u32 addr;
9434 u32 surface;
9435 u32 tile_offset;
52331309 9436 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9437};
9438
9439struct intel_display_error_state *
9440intel_display_capture_error_state(struct drm_device *dev)
9441{
0206e353 9442 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9443 struct intel_display_error_state *error;
702e7a56 9444 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9445 int i;
9446
9447 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9448 if (error == NULL)
9449 return NULL;
9450
52331309 9451 for_each_pipe(i) {
702e7a56
PZ
9452 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9453
c4a1d9e4
CW
9454 error->cursor[i].control = I915_READ(CURCNTR(i));
9455 error->cursor[i].position = I915_READ(CURPOS(i));
9456 error->cursor[i].base = I915_READ(CURBASE(i));
9457
9458 error->plane[i].control = I915_READ(DSPCNTR(i));
9459 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9460 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9461 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9462 error->plane[i].addr = I915_READ(DSPADDR(i));
9463 if (INTEL_INFO(dev)->gen >= 4) {
9464 error->plane[i].surface = I915_READ(DSPSURF(i));
9465 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9466 }
9467
702e7a56 9468 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9469 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9470 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9471 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9472 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9473 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9474 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9475 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9476 }
9477
9478 return error;
9479}
9480
9481void
9482intel_display_print_error_state(struct seq_file *m,
9483 struct drm_device *dev,
9484 struct intel_display_error_state *error)
9485{
52331309 9486 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9487 int i;
9488
52331309
DL
9489 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9490 for_each_pipe(i) {
c4a1d9e4
CW
9491 seq_printf(m, "Pipe [%d]:\n", i);
9492 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9493 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9494 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9495 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9496 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9497 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9498 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9499 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9500
9501 seq_printf(m, "Plane [%d]:\n", i);
9502 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9503 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9504 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9505 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9506 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9507 if (INTEL_INFO(dev)->gen >= 4) {
9508 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9509 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9510 }
9511
9512 seq_printf(m, "Cursor [%d]:\n", i);
9513 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9514 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9515 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9516 }
9517}
9518#endif