]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
d rm/i915: freeze display before the interrupts and GT
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414{
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
1b894b59
CW
425static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
2c07245f 427{
b91ad0ec 428 struct drm_device *dev = crtc->dev;
2c07245f 429 const intel_limit_t *limit;
b91ad0ec
ZW
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 432 if (intel_is_dual_link_lvds(dev)) {
1b894b59 433 if (refclk == 100000)
b91ad0ec
ZW
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
1b894b59 438 if (refclk == 100000)
b91ad0ec
ZW
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
c6bb3538 443 } else
b91ad0ec 444 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
445
446 return limit;
447}
448
044c7c41
ML
449static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450{
451 struct drm_device *dev = crtc->dev;
044c7c41
ML
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 455 if (intel_is_dual_link_lvds(dev))
e4b36699 456 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 457 else
e4b36699 458 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 461 limit = &intel_limits_g4x_hdmi;
044c7c41 462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 463 limit = &intel_limits_g4x_sdvo;
044c7c41 464 } else /* The option is for other outputs */
e4b36699 465 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
466
467 return limit;
468}
469
1b894b59 470static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
471{
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
bad720ff 475 if (HAS_PCH_SPLIT(dev))
1b894b59 476 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 477 else if (IS_G4X(dev)) {
044c7c41 478 limit = intel_g4x_limit(crtc);
f2b115e6 479 } else if (IS_PINEVIEW(dev)) {
2177832f 480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 481 limit = &intel_limits_pineview_lvds;
2177832f 482 else
f2b115e6 483 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
a0c4da24 486 } else if (IS_VALLEYVIEW(dev)) {
dc730512 487 limit = &intel_limits_vlv;
a6c45cf0
CW
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 495 limit = &intel_limits_i8xx_lvds;
5d536e28 496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 497 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
498 else
499 limit = &intel_limits_i8xx_dac;
79e53945
JB
500 }
501 return limit;
502}
503
f2b115e6
AJ
504/* m1 is reserved as 0 in Pineview, n is a ring counter */
505static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 506{
2177832f
SL
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
fb03ac01
VS
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
513}
514
7429e9d4
DV
515static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516{
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518}
519
ac58c3f0 520static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 521{
7429e9d4 522 clock->m = i9xx_dpll_compute_m(clock);
79e53945 523 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
fb03ac01
VS
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
528}
529
ef9348c8
CML
530static void chv_clock(int refclk, intel_clock_t *clock)
531{
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539}
540
7c04d1d9 541#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
542/**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
1b894b59
CW
547static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
79e53945 550{
f01b7962
VS
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
79e53945 553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 554 INTELPllInvalid("p1 out of range\n");
79e53945 555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 556 INTELPllInvalid("m2 out of range\n");
79e53945 557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 558 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
79e53945 571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 572 INTELPllInvalid("vco out of range\n");
79e53945
JB
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 577 INTELPllInvalid("dot out of range\n");
79e53945
JB
578
579 return true;
580}
581
d4906093 582static bool
ee9300bb 583i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
79e53945
JB
586{
587 struct drm_device *dev = crtc->dev;
79e53945 588 intel_clock_t clock;
79e53945
JB
589 int err = target;
590
a210b028 591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 592 /*
a210b028
DV
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
79e53945 596 */
1974cad0 597 if (intel_is_dual_link_lvds(dev))
79e53945
JB
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
0206e353 608 memset(best_clock, 0, sizeof(*best_clock));
79e53945 609
42158660
ZY
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 614 if (clock.m2 >= clock.m1)
42158660
ZY
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
620 int this_err;
621
ac58c3f0
DV
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641}
642
643static bool
ee9300bb
DV
644pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
79e53945
JB
647{
648 struct drm_device *dev = crtc->dev;
79e53945 649 intel_clock_t clock;
79e53945
JB
650 int err = target;
651
a210b028 652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 653 /*
a210b028
DV
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
79e53945 657 */
1974cad0 658 if (intel_is_dual_link_lvds(dev))
79e53945
JB
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
0206e353 669 memset(best_clock, 0, sizeof(*best_clock));
79e53945 670
42158660
ZY
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
679 int this_err;
680
ac58c3f0 681 pineview_clock(refclk, &clock);
1b894b59
CW
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
79e53945 684 continue;
cec2f356
SP
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
79e53945
JB
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700}
701
d4906093 702static bool
ee9300bb
DV
703g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
d4906093
ML
706{
707 struct drm_device *dev = crtc->dev;
d4906093
ML
708 intel_clock_t clock;
709 int max_n;
710 bool found;
6ba770dc
AJ
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 716 if (intel_is_dual_link_lvds(dev))
d4906093
ML
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
f77f13e2 729 /* based on hardware requirement, prefer smaller n to precision */
d4906093 730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 731 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
ac58c3f0 740 i9xx_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
d4906093 743 continue;
1b894b59
CW
744
745 this_err = abs(clock.dot - target);
d4906093
ML
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
2c07245f
ZW
756 return found;
757}
758
a0c4da24 759static bool
ee9300bb
DV
760vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
a0c4da24 763{
f01b7962 764 struct drm_device *dev = crtc->dev;
6b4bf1c4 765 intel_clock_t clock;
69e4f900 766 unsigned int bestppm = 1000000;
27e639bf
VS
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 769 bool found = false;
a0c4da24 770
6b4bf1c4
VS
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
774
775 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 780 clock.p = clock.p1 * clock.p2;
a0c4da24 781 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
783 unsigned int ppm, diff;
784
6b4bf1c4
VS
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
43b0ac53 789
f01b7962
VS
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
43b0ac53
VS
792 continue;
793
6b4bf1c4
VS
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 798 bestppm = 0;
6b4bf1c4 799 *best_clock = clock;
49e497ef 800 found = true;
43b0ac53 801 }
6b4bf1c4 802
c686122c 803 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 804 bestppm = ppm;
6b4bf1c4 805 *best_clock = clock;
49e497ef 806 found = true;
a0c4da24
JB
807 }
808 }
809 }
810 }
811 }
a0c4da24 812
49e497ef 813 return found;
a0c4da24 814}
a4fc5ed6 815
ef9348c8
CML
816static bool
817chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866}
867
20ddf665
VS
868bool intel_crtc_active(struct drm_crtc *crtc)
869{
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
241bfc38 875 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
876 * as Haswell has gained clock readout/fastboot support.
877 *
66e514c1 878 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
879 * properly reconstruct framebuffers.
880 */
f4510a27 881 return intel_crtc->active && crtc->primary->fb &&
241bfc38 882 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
883}
884
a5c961d1
PZ
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
3b117c8f 891 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
892}
893
57e22f4a 894static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 902 WARN(1, "vblank wait timed out\n");
a928d536
PZ
903}
904
9d0498a2
JB
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 914{
9d0498a2 915 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 916 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 917
57e22f4a
VS
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
920 return;
921 }
922
300387c0
CW
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
9d0498a2 939 /* Wait for vblank interrupt bit to set */
481b6af3
CW
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
9d0498a2
JB
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
fbf49ea2
VS
946static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947{
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963}
964
ab7ad7f6
KP
965/*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
ab7ad7f6
KP
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
58e10eb9 980 *
9d0498a2 981 */
58e10eb9 982void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
983{
984 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
ab7ad7f6
KP
987
988 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 989 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
990
991 /* Wait for the Pipe State to go off */
58e10eb9
CW
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
284637d9 994 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 995 } else {
ab7ad7f6 996 /* Wait for the display line to settle */
fbf49ea2 997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 998 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 999 }
79e53945
JB
1000}
1001
b0ea7d37
DL
1002/*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011{
1012 u32 bit;
1013
c36346e3 1014 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1015 switch (port->port) {
c36346e3
DL
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
eba905b2 1029 switch (port->port) {
c36346e3
DL
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
b0ea7d37
DL
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045}
1046
b24e7179
JB
1047static const char *state_string(bool enabled)
1048{
1049 return enabled ? "on" : "off";
1050}
1051
1052/* Only for pre-ILK configs */
55607e8a
DV
1053void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
b24e7179
JB
1055{
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066}
b24e7179 1067
23538ef1
JN
1068/* XXX: the dsi pll is shared between MIPI DSI ports */
1069static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070{
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082}
1083#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
55607e8a 1086struct intel_shared_dpll *
e2b78267
DV
1087intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088{
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
a43f6e0f 1091 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1092 return NULL;
1093
a43f6e0f 1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1095}
1096
040484af 1097/* For ILK+ */
55607e8a
DV
1098void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
040484af 1101{
040484af 1102 bool cur_state;
5358901f 1103 struct intel_dpll_hw_state hw_state;
040484af 1104
92b27b08 1105 if (WARN (!pll,
46edb027 1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1107 return;
ee7b9f93 1108
5358901f 1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1110 WARN(cur_state != state,
5358901f
DV
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
040484af 1113}
040484af
JB
1114
1115static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117{
1118 int reg;
1119 u32 val;
1120 bool cur_state;
ad80a810
PZ
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
040484af 1123
affa9354
PZ
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
ad80a810 1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1127 val = I915_READ(reg);
ad80a810 1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
040484af
JB
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137}
1138#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143{
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
d63fa0dc
PZ
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154}
1155#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160{
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
3d13ef2e 1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1166 return;
1167
bf507ef7 1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1169 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1170 return;
1171
040484af
JB
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af
JB
1179{
1180 int reg;
1181 u32 val;
55607e8a 1182 bool cur_state;
040484af
JB
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
55607e8a
DV
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
040484af
JB
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
93ce0ba6
JN
1221static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223{
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
d9d82081 1227 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1229 else
5efb3e28 1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235}
1236#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
b840d907
JB
1239void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
b24e7179
JB
1241{
1242 int reg;
1243 u32 val;
63d7bbe9 1244 bool cur_state;
702e7a56
PZ
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
b24e7179 1247
8e636784
DV
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
da7e29bd 1252 if (!intel_display_power_enabled(dev_priv,
b97186f0 1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
63d7bbe9
JB
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1263 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1264}
1265
931872fc
CW
1266static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
b24e7179
JB
1268{
1269 int reg;
1270 u32 val;
931872fc 1271 bool cur_state;
b24e7179
JB
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
931872fc
CW
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1279}
1280
931872fc
CW
1281#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
b24e7179
JB
1284static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286{
653e1026 1287 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
653e1026
VS
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
83f26f16 1296 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
19ec1358 1299 return;
28c05794 1300 }
19ec1358 1301
b24e7179 1302 /* Need to check both planes against the pipe */
08e2a7de 1303 for_each_pipe(i) {
b24e7179
JB
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
b24e7179
JB
1311 }
1312}
1313
19332d7a
JB
1314static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316{
20674eef 1317 struct drm_device *dev = dev_priv->dev;
1fe47785 1318 int reg, sprite;
19332d7a
JB
1319 u32 val;
1320
20674eef 1321 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
20674eef 1324 val = I915_READ(reg);
83f26f16 1325 WARN(val & SP_ENABLE,
20674eef 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1327 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
19332d7a 1331 val = I915_READ(reg);
83f26f16 1332 WARN(val & SPRITE_ENABLE,
06da8da2 1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
19332d7a 1337 val = I915_READ(reg);
83f26f16 1338 WARN(val & DVS_ENABLE,
06da8da2 1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1340 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1341 }
1342}
1343
89eff4be 1344static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1345{
1346 u32 val;
1347 bool enabled;
1348
89eff4be 1349 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1350
92f2584a
JB
1351 val = I915_READ(PCH_DREF_CONTROL);
1352 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353 DREF_SUPERSPREAD_SOURCE_MASK));
1354 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355}
1356
ab9412ba
DV
1357static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
92f2584a
JB
1359{
1360 int reg;
1361 u32 val;
1362 bool enabled;
1363
ab9412ba 1364 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1365 val = I915_READ(reg);
1366 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1367 WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
92f2584a
JB
1370}
1371
4e634389
KP
1372static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1374{
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv->dev)) {
1379 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382 return false;
44f37d1f
CML
1383 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385 return false;
f0575e92
KP
1386 } else {
1387 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388 return false;
1389 }
1390 return true;
1391}
1392
1519b995
KP
1393static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe, u32 val)
1395{
dc0fa718 1396 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1397 return false;
1398
1399 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1401 return false;
44f37d1f
CML
1402 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404 return false;
1519b995 1405 } else {
dc0fa718 1406 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1407 return false;
1408 }
1409 return true;
1410}
1411
1412static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe, u32 val)
1414{
1415 if ((val & LVDS_PORT_EN) == 0)
1416 return false;
1417
1418 if (HAS_PCH_CPT(dev_priv->dev)) {
1419 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420 return false;
1421 } else {
1422 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423 return false;
1424 }
1425 return true;
1426}
1427
1428static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430{
1431 if ((val & ADPA_DAC_ENABLE) == 0)
1432 return false;
1433 if (HAS_PCH_CPT(dev_priv->dev)) {
1434 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435 return false;
1436 } else {
1437 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438 return false;
1439 }
1440 return true;
1441}
1442
291906f1 1443static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1444 enum pipe pipe, int reg, u32 port_sel)
291906f1 1445{
47a05eca 1446 u32 val = I915_READ(reg);
4e634389 1447 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1449 reg, pipe_name(pipe));
de9a35ab 1450
75c5da27
DV
1451 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
de9a35ab 1453 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1454}
1455
1456static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, int reg)
1458{
47a05eca 1459 u32 val = I915_READ(reg);
b70ad586 1460 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1462 reg, pipe_name(pipe));
de9a35ab 1463
dc0fa718 1464 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1465 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1466 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1467}
1468
1469static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471{
1472 int reg;
1473 u32 val;
291906f1 1474
f0575e92
KP
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1478
1479 reg = PCH_ADPA;
1480 val = I915_READ(reg);
b70ad586 1481 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1
JB
1484
1485 reg = PCH_LVDS;
1486 val = I915_READ(reg);
b70ad586 1487 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1488 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1489 pipe_name(pipe));
291906f1 1490
e2debe91
PZ
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1494}
1495
40e9cf64
JB
1496static void intel_init_dpio(struct drm_device *dev)
1497{
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500 if (!IS_VALLEYVIEW(dev))
1501 return;
1502
a09caddd
CML
1503 /*
1504 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505 * CHV x1 PHY (DP/HDMI D)
1506 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507 */
1508 if (IS_CHERRYVIEW(dev)) {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511 } else {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513 }
5382f5f3
JB
1514}
1515
426115cf 1516static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1517{
426115cf
DV
1518 struct drm_device *dev = crtc->base.dev;
1519 struct drm_i915_private *dev_priv = dev->dev_private;
1520 int reg = DPLL(crtc->pipe);
1521 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1522
426115cf 1523 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1524
1525 /* No really, not for ILK+ */
1526 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1527
1528 /* PLL is protected by panel, make sure we can write it */
1529 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1530 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1531
426115cf
DV
1532 I915_WRITE(reg, dpll);
1533 POSTING_READ(reg);
1534 udelay(150);
1535
1536 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1537 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1538
1539 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1540 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1541
1542 /* We do this three times for luck */
426115cf 1543 I915_WRITE(reg, dpll);
87442f73
DV
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
426115cf 1546 I915_WRITE(reg, dpll);
87442f73
DV
1547 POSTING_READ(reg);
1548 udelay(150); /* wait for warmup */
426115cf 1549 I915_WRITE(reg, dpll);
87442f73
DV
1550 POSTING_READ(reg);
1551 udelay(150); /* wait for warmup */
1552}
1553
9d556c99
CML
1554static void chv_enable_pll(struct intel_crtc *crtc)
1555{
1556 struct drm_device *dev = crtc->base.dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 int pipe = crtc->pipe;
1559 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1560 u32 tmp;
1561
1562 assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1565
1566 mutex_lock(&dev_priv->dpio_lock);
1567
1568 /* Enable back the 10bit clock to display controller */
1569 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1570 tmp |= DPIO_DCLKP_EN;
1571 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1572
1573 /*
1574 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1575 */
1576 udelay(1);
1577
1578 /* Enable PLL */
a11b0703 1579 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1580
1581 /* Check PLL is locked */
a11b0703 1582 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1583 DRM_ERROR("PLL %d failed to lock\n", pipe);
1584
a11b0703
VS
1585 /* not sure when this should be written */
1586 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1587 POSTING_READ(DPLL_MD(pipe));
1588
9d556c99
CML
1589 mutex_unlock(&dev_priv->dpio_lock);
1590}
1591
66e3d5c0 1592static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1593{
66e3d5c0
DV
1594 struct drm_device *dev = crtc->base.dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 int reg = DPLL(crtc->pipe);
1597 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1598
66e3d5c0 1599 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1600
63d7bbe9 1601 /* No really, not for ILK+ */
3d13ef2e 1602 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1603
1604 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1605 if (IS_MOBILE(dev) && !IS_I830(dev))
1606 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1607
66e3d5c0
DV
1608 I915_WRITE(reg, dpll);
1609
1610 /* Wait for the clocks to stabilize. */
1611 POSTING_READ(reg);
1612 udelay(150);
1613
1614 if (INTEL_INFO(dev)->gen >= 4) {
1615 I915_WRITE(DPLL_MD(crtc->pipe),
1616 crtc->config.dpll_hw_state.dpll_md);
1617 } else {
1618 /* The pixel multiplier can only be updated once the
1619 * DPLL is enabled and the clocks are stable.
1620 *
1621 * So write it again.
1622 */
1623 I915_WRITE(reg, dpll);
1624 }
63d7bbe9
JB
1625
1626 /* We do this three times for luck */
66e3d5c0 1627 I915_WRITE(reg, dpll);
63d7bbe9
JB
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
66e3d5c0 1630 I915_WRITE(reg, dpll);
63d7bbe9
JB
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
66e3d5c0 1633 I915_WRITE(reg, dpll);
63d7bbe9
JB
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636}
1637
1638/**
50b44a44 1639 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1640 * @dev_priv: i915 private structure
1641 * @pipe: pipe PLL to disable
1642 *
1643 * Disable the PLL for @pipe, making sure the pipe is off first.
1644 *
1645 * Note! This is for pre-ILK only.
1646 */
50b44a44 1647static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1648{
63d7bbe9
JB
1649 /* Don't disable pipe A or pipe A PLLs if needed */
1650 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1651 return;
1652
1653 /* Make sure the pipe isn't still relying on us */
1654 assert_pipe_disabled(dev_priv, pipe);
1655
50b44a44
DV
1656 I915_WRITE(DPLL(pipe), 0);
1657 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1658}
1659
f6071166
JB
1660static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1661{
1662 u32 val = 0;
1663
1664 /* Make sure the pipe isn't still relying on us */
1665 assert_pipe_disabled(dev_priv, pipe);
1666
e5cbfbfb
ID
1667 /*
1668 * Leave integrated clock source and reference clock enabled for pipe B.
1669 * The latter is needed for VGA hotplug / manual detection.
1670 */
f6071166 1671 if (pipe == PIPE_B)
e5cbfbfb 1672 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1673 I915_WRITE(DPLL(pipe), val);
1674 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1675
1676}
1677
1678static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1679{
d752048d 1680 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1681 u32 val;
1682
a11b0703
VS
1683 /* Make sure the pipe isn't still relying on us */
1684 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1685
a11b0703
VS
1686 /* Set PLL en = 0 */
1687 val = DPLL_SSC_REF_CLOCK_CHV;
1688 if (pipe != PIPE_A)
1689 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1690 I915_WRITE(DPLL(pipe), val);
1691 POSTING_READ(DPLL(pipe));
d752048d
VS
1692
1693 mutex_lock(&dev_priv->dpio_lock);
1694
1695 /* Disable 10bit clock to display controller */
1696 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1697 val &= ~DPIO_DCLKP_EN;
1698 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1699
61407f6d
VS
1700 /* disable left/right clock distribution */
1701 if (pipe != PIPE_B) {
1702 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1703 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1704 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1705 } else {
1706 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1707 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1708 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1709 }
1710
d752048d 1711 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1712}
1713
e4607fcf
CML
1714void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1715 struct intel_digital_port *dport)
89b667f8
JB
1716{
1717 u32 port_mask;
00fc31b7 1718 int dpll_reg;
89b667f8 1719
e4607fcf
CML
1720 switch (dport->port) {
1721 case PORT_B:
89b667f8 1722 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1723 dpll_reg = DPLL(0);
e4607fcf
CML
1724 break;
1725 case PORT_C:
89b667f8 1726 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1727 dpll_reg = DPLL(0);
1728 break;
1729 case PORT_D:
1730 port_mask = DPLL_PORTD_READY_MASK;
1731 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1732 break;
1733 default:
1734 BUG();
1735 }
89b667f8 1736
00fc31b7 1737 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1738 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1739 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1740}
1741
b14b1055
DV
1742static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1743{
1744 struct drm_device *dev = crtc->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1747
be19f0ff
CW
1748 if (WARN_ON(pll == NULL))
1749 return;
1750
b14b1055
DV
1751 WARN_ON(!pll->refcount);
1752 if (pll->active == 0) {
1753 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1754 WARN_ON(pll->on);
1755 assert_shared_dpll_disabled(dev_priv, pll);
1756
1757 pll->mode_set(dev_priv, pll);
1758 }
1759}
1760
92f2584a 1761/**
85b3894f 1762 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1763 * @dev_priv: i915 private structure
1764 * @pipe: pipe PLL to enable
1765 *
1766 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1767 * drives the transcoder clock.
1768 */
85b3894f 1769static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1770{
3d13ef2e
DL
1771 struct drm_device *dev = crtc->base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1773 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1774
87a875bb 1775 if (WARN_ON(pll == NULL))
48da64a8
CW
1776 return;
1777
1778 if (WARN_ON(pll->refcount == 0))
1779 return;
ee7b9f93 1780
74dd6928 1781 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1782 pll->name, pll->active, pll->on,
e2b78267 1783 crtc->base.base.id);
92f2584a 1784
cdbd2316
DV
1785 if (pll->active++) {
1786 WARN_ON(!pll->on);
e9d6944e 1787 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1788 return;
1789 }
f4a091c7 1790 WARN_ON(pll->on);
ee7b9f93 1791
bd2bb1b9
PZ
1792 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1793
46edb027 1794 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1795 pll->enable(dev_priv, pll);
ee7b9f93 1796 pll->on = true;
92f2584a
JB
1797}
1798
716c2e55 1799void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1800{
3d13ef2e
DL
1801 struct drm_device *dev = crtc->base.dev;
1802 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1803 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1804
92f2584a 1805 /* PCH only available on ILK+ */
3d13ef2e 1806 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1807 if (WARN_ON(pll == NULL))
ee7b9f93 1808 return;
92f2584a 1809
48da64a8
CW
1810 if (WARN_ON(pll->refcount == 0))
1811 return;
7a419866 1812
46edb027
DV
1813 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1814 pll->name, pll->active, pll->on,
e2b78267 1815 crtc->base.base.id);
7a419866 1816
48da64a8 1817 if (WARN_ON(pll->active == 0)) {
e9d6944e 1818 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1819 return;
1820 }
1821
e9d6944e 1822 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1823 WARN_ON(!pll->on);
cdbd2316 1824 if (--pll->active)
7a419866 1825 return;
ee7b9f93 1826
46edb027 1827 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1828 pll->disable(dev_priv, pll);
ee7b9f93 1829 pll->on = false;
bd2bb1b9
PZ
1830
1831 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1832}
1833
b8a4f404
PZ
1834static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1835 enum pipe pipe)
040484af 1836{
23670b32 1837 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1838 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1840 uint32_t reg, val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
3d13ef2e 1843 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
e72f9fbf 1846 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1847 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, pipe);
1851 assert_fdi_rx_enabled(dev_priv, pipe);
1852
23670b32
DV
1853 if (HAS_PCH_CPT(dev)) {
1854 /* Workaround: Set the timing override bit before enabling the
1855 * pch transcoder. */
1856 reg = TRANS_CHICKEN2(pipe);
1857 val = I915_READ(reg);
1858 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1859 I915_WRITE(reg, val);
59c859d6 1860 }
23670b32 1861
ab9412ba 1862 reg = PCH_TRANSCONF(pipe);
040484af 1863 val = I915_READ(reg);
5f7f726d 1864 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1865
1866 if (HAS_PCH_IBX(dev_priv->dev)) {
1867 /*
1868 * make the BPC in transcoder be consistent with
1869 * that in pipeconf reg.
1870 */
dfd07d72
DV
1871 val &= ~PIPECONF_BPC_MASK;
1872 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1873 }
5f7f726d
PZ
1874
1875 val &= ~TRANS_INTERLACE_MASK;
1876 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1877 if (HAS_PCH_IBX(dev_priv->dev) &&
1878 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1879 val |= TRANS_LEGACY_INTERLACED_ILK;
1880 else
1881 val |= TRANS_INTERLACED;
5f7f726d
PZ
1882 else
1883 val |= TRANS_PROGRESSIVE;
1884
040484af
JB
1885 I915_WRITE(reg, val | TRANS_ENABLE);
1886 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1887 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1888}
1889
8fb033d7 1890static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1891 enum transcoder cpu_transcoder)
040484af 1892{
8fb033d7 1893 u32 val, pipeconf_val;
8fb033d7
PZ
1894
1895 /* PCH only available on ILK+ */
3d13ef2e 1896 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1897
8fb033d7 1898 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1899 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1900 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1901
223a6fdf
PZ
1902 /* Workaround: set timing override bit. */
1903 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1904 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1905 I915_WRITE(_TRANSA_CHICKEN2, val);
1906
25f3ef11 1907 val = TRANS_ENABLE;
937bb610 1908 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1909
9a76b1c6
PZ
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1911 PIPECONF_INTERLACED_ILK)
a35f2679 1912 val |= TRANS_INTERLACED;
8fb033d7
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
ab9412ba
DV
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1918 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1919}
1920
b8a4f404
PZ
1921static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum pipe pipe)
040484af 1923{
23670b32
DV
1924 struct drm_device *dev = dev_priv->dev;
1925 uint32_t reg, val;
040484af
JB
1926
1927 /* FDI relies on the transcoder */
1928 assert_fdi_tx_disabled(dev_priv, pipe);
1929 assert_fdi_rx_disabled(dev_priv, pipe);
1930
291906f1
JB
1931 /* Ports must be off as well */
1932 assert_pch_ports_disabled(dev_priv, pipe);
1933
ab9412ba 1934 reg = PCH_TRANSCONF(pipe);
040484af
JB
1935 val = I915_READ(reg);
1936 val &= ~TRANS_ENABLE;
1937 I915_WRITE(reg, val);
1938 /* wait for PCH transcoder off, transcoder state */
1939 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1940 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1941
1942 if (!HAS_PCH_IBX(dev)) {
1943 /* Workaround: Clear the timing override chicken bit again. */
1944 reg = TRANS_CHICKEN2(pipe);
1945 val = I915_READ(reg);
1946 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947 I915_WRITE(reg, val);
1948 }
040484af
JB
1949}
1950
ab4d966c 1951static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1952{
8fb033d7
PZ
1953 u32 val;
1954
ab9412ba 1955 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1956 val &= ~TRANS_ENABLE;
ab9412ba 1957 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1958 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1959 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1960 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1961
1962 /* Workaround: clear timing override bit. */
1963 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1964 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1965 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1966}
1967
b24e7179 1968/**
309cfea8 1969 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1970 * @crtc: crtc responsible for the pipe
b24e7179 1971 *
0372264a 1972 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1973 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1974 */
e1fdc473 1975static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1976{
0372264a
PZ
1977 struct drm_device *dev = crtc->base.dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1980 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1981 pipe);
1a240d4d 1982 enum pipe pch_transcoder;
b24e7179
JB
1983 int reg;
1984 u32 val;
1985
58c6eaa2 1986 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1987 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1988 assert_sprites_disabled(dev_priv, pipe);
1989
681e5811 1990 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1991 pch_transcoder = TRANSCODER_A;
1992 else
1993 pch_transcoder = pipe;
1994
b24e7179
JB
1995 /*
1996 * A pipe without a PLL won't actually be able to drive bits from
1997 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1998 * need the check.
1999 */
2000 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2001 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2002 assert_dsi_pll_enabled(dev_priv);
2003 else
2004 assert_pll_enabled(dev_priv, pipe);
040484af 2005 else {
30421c4f 2006 if (crtc->config.has_pch_encoder) {
040484af 2007 /* if driving the PCH, we need FDI enabled */
cc391bbb 2008 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2009 assert_fdi_tx_pll_enabled(dev_priv,
2010 (enum pipe) cpu_transcoder);
040484af
JB
2011 }
2012 /* FIXME: assert CPU port conditions for SNB+ */
2013 }
b24e7179 2014
702e7a56 2015 reg = PIPECONF(cpu_transcoder);
b24e7179 2016 val = I915_READ(reg);
7ad25d48
PZ
2017 if (val & PIPECONF_ENABLE) {
2018 WARN_ON(!(pipe == PIPE_A &&
2019 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2020 return;
7ad25d48 2021 }
00d70b15
CW
2022
2023 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2024 POSTING_READ(reg);
b24e7179
JB
2025}
2026
2027/**
309cfea8 2028 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2029 * @dev_priv: i915 private structure
2030 * @pipe: pipe to disable
2031 *
2032 * Disable @pipe, making sure that various hardware specific requirements
2033 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2034 *
2035 * @pipe should be %PIPE_A or %PIPE_B.
2036 *
2037 * Will wait until the pipe has shut down before returning.
2038 */
2039static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2040 enum pipe pipe)
2041{
702e7a56
PZ
2042 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2043 pipe);
b24e7179
JB
2044 int reg;
2045 u32 val;
2046
2047 /*
2048 * Make sure planes won't keep trying to pump pixels to us,
2049 * or we might hang the display.
2050 */
2051 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2052 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2053 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2054
2055 /* Don't disable pipe A or pipe A PLLs if needed */
2056 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2057 return;
2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
00d70b15
CW
2061 if ((val & PIPECONF_ENABLE) == 0)
2062 return;
2063
2064 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2065 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2066}
2067
d74362c9
KP
2068/*
2069 * Plane regs are double buffered, going from enabled->disabled needs a
2070 * trigger in order to latch. The display address reg provides this.
2071 */
1dba99f4
VS
2072void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2073 enum plane plane)
d74362c9 2074{
3d13ef2e
DL
2075 struct drm_device *dev = dev_priv->dev;
2076 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2077
2078 I915_WRITE(reg, I915_READ(reg));
2079 POSTING_READ(reg);
d74362c9
KP
2080}
2081
b24e7179 2082/**
262ca2b0 2083 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2084 * @dev_priv: i915 private structure
2085 * @plane: plane to enable
2086 * @pipe: pipe being fed
2087 *
2088 * Enable @plane on @pipe, making sure that @pipe is running first.
2089 */
262ca2b0
MR
2090static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2091 enum plane plane, enum pipe pipe)
b24e7179 2092{
33c3b0d1 2093 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2094 struct intel_crtc *intel_crtc =
2095 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2096 int reg;
2097 u32 val;
2098
2099 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2100 assert_pipe_enabled(dev_priv, pipe);
2101
98ec7739
VS
2102 if (intel_crtc->primary_enabled)
2103 return;
0037f71c 2104
4c445e0e 2105 intel_crtc->primary_enabled = true;
939c2fe8 2106
b24e7179
JB
2107 reg = DSPCNTR(plane);
2108 val = I915_READ(reg);
10efa932 2109 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2110
2111 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2112 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2113
2114 /*
2115 * BDW signals flip done immediately if the plane
2116 * is disabled, even if the plane enable is already
2117 * armed to occur at the next vblank :(
2118 */
2119 if (IS_BROADWELL(dev))
2120 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2125 * @dev_priv: i915 private structure
2126 * @plane: plane to disable
2127 * @pipe: pipe consuming the data
2128 *
2129 * Disable @plane; should be an independent operation.
2130 */
262ca2b0
MR
2131static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2132 enum plane plane, enum pipe pipe)
b24e7179 2133{
939c2fe8
VS
2134 struct intel_crtc *intel_crtc =
2135 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2136 int reg;
2137 u32 val;
2138
98ec7739
VS
2139 if (!intel_crtc->primary_enabled)
2140 return;
0037f71c 2141
4c445e0e 2142 intel_crtc->primary_enabled = false;
939c2fe8 2143
b24e7179
JB
2144 reg = DSPCNTR(plane);
2145 val = I915_READ(reg);
10efa932 2146 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2147
2148 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2149 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2150}
2151
693db184
CW
2152static bool need_vtd_wa(struct drm_device *dev)
2153{
2154#ifdef CONFIG_INTEL_IOMMU
2155 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2156 return true;
2157#endif
2158 return false;
2159}
2160
a57ce0b2
JB
2161static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2162{
2163 int tile_height;
2164
2165 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2166 return ALIGN(height, tile_height);
2167}
2168
127bd2ac 2169int
48b956c5 2170intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2171 struct drm_i915_gem_object *obj,
a4872ba6 2172 struct intel_engine_cs *pipelined)
6b95a207 2173{
ce453d81 2174 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2175 u32 alignment;
2176 int ret;
2177
ebcdd39e
MR
2178 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2179
05394f39 2180 switch (obj->tiling_mode) {
6b95a207 2181 case I915_TILING_NONE:
534843da
CW
2182 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2183 alignment = 128 * 1024;
a6c45cf0 2184 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2185 alignment = 4 * 1024;
2186 else
2187 alignment = 64 * 1024;
6b95a207
KH
2188 break;
2189 case I915_TILING_X:
2190 /* pin() will align the object as required by fence */
2191 alignment = 0;
2192 break;
2193 case I915_TILING_Y:
80075d49 2194 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2195 return -EINVAL;
2196 default:
2197 BUG();
2198 }
2199
693db184
CW
2200 /* Note that the w/a also requires 64 PTE of padding following the
2201 * bo. We currently fill all unused PTE with the shadow page and so
2202 * we should always have valid PTE following the scanout preventing
2203 * the VT-d warning.
2204 */
2205 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2206 alignment = 256 * 1024;
2207
ce453d81 2208 dev_priv->mm.interruptible = false;
2da3b9b9 2209 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2210 if (ret)
ce453d81 2211 goto err_interruptible;
6b95a207
KH
2212
2213 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2214 * fence, whereas 965+ only requires a fence if using
2215 * framebuffer compression. For simplicity, we always install
2216 * a fence as the cost is not that onerous.
2217 */
06d98131 2218 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2219 if (ret)
2220 goto err_unpin;
1690e1eb 2221
9a5a53b3 2222 i915_gem_object_pin_fence(obj);
6b95a207 2223
ce453d81 2224 dev_priv->mm.interruptible = true;
6b95a207 2225 return 0;
48b956c5
CW
2226
2227err_unpin:
cc98b413 2228 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2229err_interruptible:
2230 dev_priv->mm.interruptible = true;
48b956c5 2231 return ret;
6b95a207
KH
2232}
2233
1690e1eb
CW
2234void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2235{
ebcdd39e
MR
2236 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2237
1690e1eb 2238 i915_gem_object_unpin_fence(obj);
cc98b413 2239 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2240}
2241
c2c75131
DV
2242/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2243 * is assumed to be a power-of-two. */
bc752862
CW
2244unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2245 unsigned int tiling_mode,
2246 unsigned int cpp,
2247 unsigned int pitch)
c2c75131 2248{
bc752862
CW
2249 if (tiling_mode != I915_TILING_NONE) {
2250 unsigned int tile_rows, tiles;
c2c75131 2251
bc752862
CW
2252 tile_rows = *y / 8;
2253 *y %= 8;
c2c75131 2254
bc752862
CW
2255 tiles = *x / (512/cpp);
2256 *x %= 512/cpp;
2257
2258 return tile_rows * pitch * 8 + tiles * 4096;
2259 } else {
2260 unsigned int offset;
2261
2262 offset = *y * pitch + *x * cpp;
2263 *y = 0;
2264 *x = (offset & 4095) / cpp;
2265 return offset & -4096;
2266 }
c2c75131
DV
2267}
2268
46f297fb
JB
2269int intel_format_to_fourcc(int format)
2270{
2271 switch (format) {
2272 case DISPPLANE_8BPP:
2273 return DRM_FORMAT_C8;
2274 case DISPPLANE_BGRX555:
2275 return DRM_FORMAT_XRGB1555;
2276 case DISPPLANE_BGRX565:
2277 return DRM_FORMAT_RGB565;
2278 default:
2279 case DISPPLANE_BGRX888:
2280 return DRM_FORMAT_XRGB8888;
2281 case DISPPLANE_RGBX888:
2282 return DRM_FORMAT_XBGR8888;
2283 case DISPPLANE_BGRX101010:
2284 return DRM_FORMAT_XRGB2101010;
2285 case DISPPLANE_RGBX101010:
2286 return DRM_FORMAT_XBGR2101010;
2287 }
2288}
2289
484b41dd 2290static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2291 struct intel_plane_config *plane_config)
2292{
2293 struct drm_device *dev = crtc->base.dev;
2294 struct drm_i915_gem_object *obj = NULL;
2295 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2296 u32 base = plane_config->base;
2297
ff2652ea
CW
2298 if (plane_config->size == 0)
2299 return false;
2300
46f297fb
JB
2301 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2302 plane_config->size);
2303 if (!obj)
484b41dd 2304 return false;
46f297fb
JB
2305
2306 if (plane_config->tiled) {
2307 obj->tiling_mode = I915_TILING_X;
66e514c1 2308 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2309 }
2310
66e514c1
DA
2311 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2312 mode_cmd.width = crtc->base.primary->fb->width;
2313 mode_cmd.height = crtc->base.primary->fb->height;
2314 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2315
2316 mutex_lock(&dev->struct_mutex);
2317
66e514c1 2318 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2319 &mode_cmd, obj)) {
46f297fb
JB
2320 DRM_DEBUG_KMS("intel fb init failed\n");
2321 goto out_unref_obj;
2322 }
2323
a071fa00 2324 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2325 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2326
2327 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2328 return true;
46f297fb
JB
2329
2330out_unref_obj:
2331 drm_gem_object_unreference(&obj->base);
2332 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2333 return false;
2334}
2335
2336static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2337 struct intel_plane_config *plane_config)
2338{
2339 struct drm_device *dev = intel_crtc->base.dev;
2340 struct drm_crtc *c;
2341 struct intel_crtc *i;
2ff8fde1 2342 struct drm_i915_gem_object *obj;
484b41dd 2343
66e514c1 2344 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2345 return;
2346
2347 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2348 return;
2349
66e514c1
DA
2350 kfree(intel_crtc->base.primary->fb);
2351 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2352
2353 /*
2354 * Failed to alloc the obj, check to see if we should share
2355 * an fb with another CRTC instead
2356 */
70e1e0ec 2357 for_each_crtc(dev, c) {
484b41dd
JB
2358 i = to_intel_crtc(c);
2359
2360 if (c == &intel_crtc->base)
2361 continue;
2362
2ff8fde1
MR
2363 if (!i->active)
2364 continue;
2365
2366 obj = intel_fb_obj(c->primary->fb);
2367 if (obj == NULL)
484b41dd
JB
2368 continue;
2369
2ff8fde1 2370 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2371 drm_framebuffer_reference(c->primary->fb);
2372 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2373 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2374 break;
2375 }
2376 }
46f297fb
JB
2377}
2378
29b9bde6
DV
2379static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2380 struct drm_framebuffer *fb,
2381 int x, int y)
81255565
JB
2382{
2383 struct drm_device *dev = crtc->dev;
2384 struct drm_i915_private *dev_priv = dev->dev_private;
2385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2386 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2387 int plane = intel_crtc->plane;
e506a0c6 2388 unsigned long linear_offset;
81255565 2389 u32 dspcntr;
5eddb70b 2390 u32 reg;
81255565 2391
5eddb70b
CW
2392 reg = DSPCNTR(plane);
2393 dspcntr = I915_READ(reg);
81255565
JB
2394 /* Mask out pixel format bits in case we change it */
2395 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2396 switch (fb->pixel_format) {
2397 case DRM_FORMAT_C8:
81255565
JB
2398 dspcntr |= DISPPLANE_8BPP;
2399 break;
57779d06
VS
2400 case DRM_FORMAT_XRGB1555:
2401 case DRM_FORMAT_ARGB1555:
2402 dspcntr |= DISPPLANE_BGRX555;
81255565 2403 break;
57779d06
VS
2404 case DRM_FORMAT_RGB565:
2405 dspcntr |= DISPPLANE_BGRX565;
2406 break;
2407 case DRM_FORMAT_XRGB8888:
2408 case DRM_FORMAT_ARGB8888:
2409 dspcntr |= DISPPLANE_BGRX888;
2410 break;
2411 case DRM_FORMAT_XBGR8888:
2412 case DRM_FORMAT_ABGR8888:
2413 dspcntr |= DISPPLANE_RGBX888;
2414 break;
2415 case DRM_FORMAT_XRGB2101010:
2416 case DRM_FORMAT_ARGB2101010:
2417 dspcntr |= DISPPLANE_BGRX101010;
2418 break;
2419 case DRM_FORMAT_XBGR2101010:
2420 case DRM_FORMAT_ABGR2101010:
2421 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2422 break;
2423 default:
baba133a 2424 BUG();
81255565 2425 }
57779d06 2426
a6c45cf0 2427 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2428 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2429 dspcntr |= DISPPLANE_TILED;
2430 else
2431 dspcntr &= ~DISPPLANE_TILED;
2432 }
2433
de1aa629
VS
2434 if (IS_G4X(dev))
2435 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2436
5eddb70b 2437 I915_WRITE(reg, dspcntr);
81255565 2438
e506a0c6 2439 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2440
c2c75131
DV
2441 if (INTEL_INFO(dev)->gen >= 4) {
2442 intel_crtc->dspaddr_offset =
bc752862
CW
2443 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2444 fb->bits_per_pixel / 8,
2445 fb->pitches[0]);
c2c75131
DV
2446 linear_offset -= intel_crtc->dspaddr_offset;
2447 } else {
e506a0c6 2448 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2449 }
e506a0c6 2450
f343c5f6
BW
2451 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2452 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2453 fb->pitches[0]);
01f2c773 2454 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2455 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2456 I915_WRITE(DSPSURF(plane),
2457 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2458 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2459 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2460 } else
f343c5f6 2461 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2462 POSTING_READ(reg);
17638cd6
JB
2463}
2464
29b9bde6
DV
2465static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2466 struct drm_framebuffer *fb,
2467 int x, int y)
17638cd6
JB
2468{
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2472 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2473 int plane = intel_crtc->plane;
e506a0c6 2474 unsigned long linear_offset;
17638cd6
JB
2475 u32 dspcntr;
2476 u32 reg;
2477
17638cd6
JB
2478 reg = DSPCNTR(plane);
2479 dspcntr = I915_READ(reg);
2480 /* Mask out pixel format bits in case we change it */
2481 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
17638cd6
JB
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
57779d06
VS
2486 case DRM_FORMAT_RGB565:
2487 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2488 break;
57779d06
VS
2489 case DRM_FORMAT_XRGB8888:
2490 case DRM_FORMAT_ARGB8888:
2491 dspcntr |= DISPPLANE_BGRX888;
2492 break;
2493 case DRM_FORMAT_XBGR8888:
2494 case DRM_FORMAT_ABGR8888:
2495 dspcntr |= DISPPLANE_RGBX888;
2496 break;
2497 case DRM_FORMAT_XRGB2101010:
2498 case DRM_FORMAT_ARGB2101010:
2499 dspcntr |= DISPPLANE_BGRX101010;
2500 break;
2501 case DRM_FORMAT_XBGR2101010:
2502 case DRM_FORMAT_ABGR2101010:
2503 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2504 break;
2505 default:
baba133a 2506 BUG();
17638cd6
JB
2507 }
2508
2509 if (obj->tiling_mode != I915_TILING_NONE)
2510 dspcntr |= DISPPLANE_TILED;
2511 else
2512 dspcntr &= ~DISPPLANE_TILED;
2513
b42c6009 2514 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2515 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2516 else
2517 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2518
2519 I915_WRITE(reg, dspcntr);
2520
e506a0c6 2521 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2522 intel_crtc->dspaddr_offset =
bc752862
CW
2523 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2524 fb->bits_per_pixel / 8,
2525 fb->pitches[0]);
c2c75131 2526 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2527
f343c5f6
BW
2528 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2529 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2530 fb->pitches[0]);
01f2c773 2531 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2532 I915_WRITE(DSPSURF(plane),
2533 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2535 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2536 } else {
2537 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2538 I915_WRITE(DSPLINOFF(plane), linear_offset);
2539 }
17638cd6 2540 POSTING_READ(reg);
17638cd6
JB
2541}
2542
2543/* Assume fb object is pinned & idle & fenced and just update base pointers */
2544static int
2545intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2546 int x, int y, enum mode_set_atomic state)
2547{
2548 struct drm_device *dev = crtc->dev;
2549 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2550
6b8e6ed0
CW
2551 if (dev_priv->display.disable_fbc)
2552 dev_priv->display.disable_fbc(dev);
cc36513c 2553 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2554
29b9bde6
DV
2555 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2556
2557 return 0;
81255565
JB
2558}
2559
96a02917
VS
2560void intel_display_handle_reset(struct drm_device *dev)
2561{
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct drm_crtc *crtc;
2564
2565 /*
2566 * Flips in the rings have been nuked by the reset,
2567 * so complete all pending flips so that user space
2568 * will get its events and not get stuck.
2569 *
2570 * Also update the base address of all primary
2571 * planes to the the last fb to make sure we're
2572 * showing the correct fb after a reset.
2573 *
2574 * Need to make two loops over the crtcs so that we
2575 * don't try to grab a crtc mutex before the
2576 * pending_flip_queue really got woken up.
2577 */
2578
70e1e0ec 2579 for_each_crtc(dev, crtc) {
96a02917
VS
2580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2581 enum plane plane = intel_crtc->plane;
2582
2583 intel_prepare_page_flip(dev, plane);
2584 intel_finish_page_flip_plane(dev, plane);
2585 }
2586
70e1e0ec 2587 for_each_crtc(dev, crtc) {
96a02917
VS
2588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2589
51fd371b 2590 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2591 /*
2592 * FIXME: Once we have proper support for primary planes (and
2593 * disabling them without disabling the entire crtc) allow again
66e514c1 2594 * a NULL crtc->primary->fb.
947fdaad 2595 */
f4510a27 2596 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2597 dev_priv->display.update_primary_plane(crtc,
66e514c1 2598 crtc->primary->fb,
262ca2b0
MR
2599 crtc->x,
2600 crtc->y);
51fd371b 2601 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2602 }
2603}
2604
14667a4b
CW
2605static int
2606intel_finish_fb(struct drm_framebuffer *old_fb)
2607{
2ff8fde1 2608 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2609 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2610 bool was_interruptible = dev_priv->mm.interruptible;
2611 int ret;
2612
14667a4b
CW
2613 /* Big Hammer, we also need to ensure that any pending
2614 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2615 * current scanout is retired before unpinning the old
2616 * framebuffer.
2617 *
2618 * This should only fail upon a hung GPU, in which case we
2619 * can safely continue.
2620 */
2621 dev_priv->mm.interruptible = false;
2622 ret = i915_gem_object_finish_gpu(obj);
2623 dev_priv->mm.interruptible = was_interruptible;
2624
2625 return ret;
2626}
2627
7d5e3799
CW
2628static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2629{
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 unsigned long flags;
2634 bool pending;
2635
2636 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2637 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2638 return false;
2639
2640 spin_lock_irqsave(&dev->event_lock, flags);
2641 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2642 spin_unlock_irqrestore(&dev->event_lock, flags);
2643
2644 return pending;
2645}
2646
5c3b82e2 2647static int
3c4fdcfb 2648intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2649 struct drm_framebuffer *fb)
79e53945
JB
2650{
2651 struct drm_device *dev = crtc->dev;
6b8e6ed0 2652 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2654 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2655 struct drm_framebuffer *old_fb = crtc->primary->fb;
2656 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2657 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2658 int ret;
79e53945 2659
7d5e3799
CW
2660 if (intel_crtc_has_pending_flip(crtc)) {
2661 DRM_ERROR("pipe is still busy with an old pageflip\n");
2662 return -EBUSY;
2663 }
2664
79e53945 2665 /* no fb bound */
94352cf9 2666 if (!fb) {
a5071c2f 2667 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2668 return 0;
2669 }
2670
7eb552ae 2671 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2672 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2673 plane_name(intel_crtc->plane),
2674 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2675 return -EINVAL;
79e53945
JB
2676 }
2677
5c3b82e2 2678 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2679 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2680 if (ret == 0)
91565c85 2681 i915_gem_track_fb(old_obj, obj,
a071fa00 2682 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2683 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2684 if (ret != 0) {
a5071c2f 2685 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2686 return ret;
2687 }
79e53945 2688
bb2043de
DL
2689 /*
2690 * Update pipe size and adjust fitter if needed: the reason for this is
2691 * that in compute_mode_changes we check the native mode (not the pfit
2692 * mode) to see if we can flip rather than do a full mode set. In the
2693 * fastboot case, we'll flip, but if we don't update the pipesrc and
2694 * pfit state, we'll end up with a big fb scanned out into the wrong
2695 * sized surface.
2696 *
2697 * To fix this properly, we need to hoist the checks up into
2698 * compute_mode_changes (or above), check the actual pfit state and
2699 * whether the platform allows pfit disable with pipe active, and only
2700 * then update the pipesrc and pfit state, even on the flip path.
2701 */
d330a953 2702 if (i915.fastboot) {
d7bf63f2
DL
2703 const struct drm_display_mode *adjusted_mode =
2704 &intel_crtc->config.adjusted_mode;
2705
4d6a3e63 2706 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2707 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2708 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2709 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2710 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2711 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2712 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2713 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2714 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2715 }
0637d60d
JB
2716 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2717 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2718 }
2719
29b9bde6 2720 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2721
f99d7069
DV
2722 if (intel_crtc->active)
2723 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2724
f4510a27 2725 crtc->primary->fb = fb;
6c4c86f5
DV
2726 crtc->x = x;
2727 crtc->y = y;
94352cf9 2728
b7f1de28 2729 if (old_fb) {
d7697eea
DV
2730 if (intel_crtc->active && old_fb != fb)
2731 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2732 mutex_lock(&dev->struct_mutex);
2ff8fde1 2733 intel_unpin_fb_obj(old_obj);
8ac36ec1 2734 mutex_unlock(&dev->struct_mutex);
b7f1de28 2735 }
652c393a 2736
8ac36ec1 2737 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2738 intel_update_fbc(dev);
5c3b82e2 2739 mutex_unlock(&dev->struct_mutex);
79e53945 2740
5c3b82e2 2741 return 0;
79e53945
JB
2742}
2743
5e84e1a4
ZW
2744static void intel_fdi_normal_train(struct drm_crtc *crtc)
2745{
2746 struct drm_device *dev = crtc->dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2749 int pipe = intel_crtc->pipe;
2750 u32 reg, temp;
2751
2752 /* enable normal train */
2753 reg = FDI_TX_CTL(pipe);
2754 temp = I915_READ(reg);
61e499bf 2755 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2756 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2757 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2758 } else {
2759 temp &= ~FDI_LINK_TRAIN_NONE;
2760 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2761 }
5e84e1a4
ZW
2762 I915_WRITE(reg, temp);
2763
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 if (HAS_PCH_CPT(dev)) {
2767 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2768 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2769 } else {
2770 temp &= ~FDI_LINK_TRAIN_NONE;
2771 temp |= FDI_LINK_TRAIN_NONE;
2772 }
2773 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2774
2775 /* wait one idle pattern time */
2776 POSTING_READ(reg);
2777 udelay(1000);
357555c0
JB
2778
2779 /* IVB wants error correction enabled */
2780 if (IS_IVYBRIDGE(dev))
2781 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2782 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2783}
2784
1fbc0d78 2785static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2786{
1fbc0d78
DV
2787 return crtc->base.enabled && crtc->active &&
2788 crtc->config.has_pch_encoder;
1e833f40
DV
2789}
2790
01a415fd
DV
2791static void ivb_modeset_global_resources(struct drm_device *dev)
2792{
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 struct intel_crtc *pipe_B_crtc =
2795 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2796 struct intel_crtc *pipe_C_crtc =
2797 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2798 uint32_t temp;
2799
1e833f40
DV
2800 /*
2801 * When everything is off disable fdi C so that we could enable fdi B
2802 * with all lanes. Note that we don't care about enabled pipes without
2803 * an enabled pch encoder.
2804 */
2805 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2806 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2807 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2808 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2809
2810 temp = I915_READ(SOUTH_CHICKEN1);
2811 temp &= ~FDI_BC_BIFURCATION_SELECT;
2812 DRM_DEBUG_KMS("disabling fdi C rx\n");
2813 I915_WRITE(SOUTH_CHICKEN1, temp);
2814 }
2815}
2816
8db9d77b
ZW
2817/* The FDI link training functions for ILK/Ibexpeak. */
2818static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2819{
2820 struct drm_device *dev = crtc->dev;
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2823 int pipe = intel_crtc->pipe;
5eddb70b 2824 u32 reg, temp, tries;
8db9d77b 2825
1c8562f6 2826 /* FDI needs bits from pipe first */
0fc932b8 2827 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2828
e1a44743
AJ
2829 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2830 for train result */
5eddb70b
CW
2831 reg = FDI_RX_IMR(pipe);
2832 temp = I915_READ(reg);
e1a44743
AJ
2833 temp &= ~FDI_RX_SYMBOL_LOCK;
2834 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2835 I915_WRITE(reg, temp);
2836 I915_READ(reg);
e1a44743
AJ
2837 udelay(150);
2838
8db9d77b 2839 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2840 reg = FDI_TX_CTL(pipe);
2841 temp = I915_READ(reg);
627eb5a3
DV
2842 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2843 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2844 temp &= ~FDI_LINK_TRAIN_NONE;
2845 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2846 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2847
5eddb70b
CW
2848 reg = FDI_RX_CTL(pipe);
2849 temp = I915_READ(reg);
8db9d77b
ZW
2850 temp &= ~FDI_LINK_TRAIN_NONE;
2851 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2852 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2853
2854 POSTING_READ(reg);
8db9d77b
ZW
2855 udelay(150);
2856
5b2adf89 2857 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2858 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2859 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2860 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2861
5eddb70b 2862 reg = FDI_RX_IIR(pipe);
e1a44743 2863 for (tries = 0; tries < 5; tries++) {
5eddb70b 2864 temp = I915_READ(reg);
8db9d77b
ZW
2865 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2866
2867 if ((temp & FDI_RX_BIT_LOCK)) {
2868 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2869 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2870 break;
2871 }
8db9d77b 2872 }
e1a44743 2873 if (tries == 5)
5eddb70b 2874 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2875
2876 /* Train 2 */
5eddb70b
CW
2877 reg = FDI_TX_CTL(pipe);
2878 temp = I915_READ(reg);
8db9d77b
ZW
2879 temp &= ~FDI_LINK_TRAIN_NONE;
2880 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2881 I915_WRITE(reg, temp);
8db9d77b 2882
5eddb70b
CW
2883 reg = FDI_RX_CTL(pipe);
2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 temp &= ~FDI_LINK_TRAIN_NONE;
2886 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2887 I915_WRITE(reg, temp);
8db9d77b 2888
5eddb70b
CW
2889 POSTING_READ(reg);
2890 udelay(150);
8db9d77b 2891
5eddb70b 2892 reg = FDI_RX_IIR(pipe);
e1a44743 2893 for (tries = 0; tries < 5; tries++) {
5eddb70b 2894 temp = I915_READ(reg);
8db9d77b
ZW
2895 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2896
2897 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2898 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2899 DRM_DEBUG_KMS("FDI train 2 done.\n");
2900 break;
2901 }
8db9d77b 2902 }
e1a44743 2903 if (tries == 5)
5eddb70b 2904 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2905
2906 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2907
8db9d77b
ZW
2908}
2909
0206e353 2910static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2911 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2912 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2913 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2914 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2915};
2916
2917/* The FDI link training functions for SNB/Cougarpoint. */
2918static void gen6_fdi_link_train(struct drm_crtc *crtc)
2919{
2920 struct drm_device *dev = crtc->dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2923 int pipe = intel_crtc->pipe;
fa37d39e 2924 u32 reg, temp, i, retry;
8db9d77b 2925
e1a44743
AJ
2926 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2927 for train result */
5eddb70b
CW
2928 reg = FDI_RX_IMR(pipe);
2929 temp = I915_READ(reg);
e1a44743
AJ
2930 temp &= ~FDI_RX_SYMBOL_LOCK;
2931 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2932 I915_WRITE(reg, temp);
2933
2934 POSTING_READ(reg);
e1a44743
AJ
2935 udelay(150);
2936
8db9d77b 2937 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2938 reg = FDI_TX_CTL(pipe);
2939 temp = I915_READ(reg);
627eb5a3
DV
2940 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2941 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2942 temp &= ~FDI_LINK_TRAIN_NONE;
2943 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2945 /* SNB-B */
2946 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2947 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2948
d74cf324
DV
2949 I915_WRITE(FDI_RX_MISC(pipe),
2950 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2951
5eddb70b
CW
2952 reg = FDI_RX_CTL(pipe);
2953 temp = I915_READ(reg);
8db9d77b
ZW
2954 if (HAS_PCH_CPT(dev)) {
2955 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2956 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2957 } else {
2958 temp &= ~FDI_LINK_TRAIN_NONE;
2959 temp |= FDI_LINK_TRAIN_PATTERN_1;
2960 }
5eddb70b
CW
2961 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2962
2963 POSTING_READ(reg);
8db9d77b
ZW
2964 udelay(150);
2965
0206e353 2966 for (i = 0; i < 4; i++) {
5eddb70b
CW
2967 reg = FDI_TX_CTL(pipe);
2968 temp = I915_READ(reg);
8db9d77b
ZW
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2971 I915_WRITE(reg, temp);
2972
2973 POSTING_READ(reg);
8db9d77b
ZW
2974 udelay(500);
2975
fa37d39e
SP
2976 for (retry = 0; retry < 5; retry++) {
2977 reg = FDI_RX_IIR(pipe);
2978 temp = I915_READ(reg);
2979 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2980 if (temp & FDI_RX_BIT_LOCK) {
2981 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2982 DRM_DEBUG_KMS("FDI train 1 done.\n");
2983 break;
2984 }
2985 udelay(50);
8db9d77b 2986 }
fa37d39e
SP
2987 if (retry < 5)
2988 break;
8db9d77b
ZW
2989 }
2990 if (i == 4)
5eddb70b 2991 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2992
2993 /* Train 2 */
5eddb70b
CW
2994 reg = FDI_TX_CTL(pipe);
2995 temp = I915_READ(reg);
8db9d77b
ZW
2996 temp &= ~FDI_LINK_TRAIN_NONE;
2997 temp |= FDI_LINK_TRAIN_PATTERN_2;
2998 if (IS_GEN6(dev)) {
2999 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3000 /* SNB-B */
3001 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3002 }
5eddb70b 3003 I915_WRITE(reg, temp);
8db9d77b 3004
5eddb70b
CW
3005 reg = FDI_RX_CTL(pipe);
3006 temp = I915_READ(reg);
8db9d77b
ZW
3007 if (HAS_PCH_CPT(dev)) {
3008 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3009 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3010 } else {
3011 temp &= ~FDI_LINK_TRAIN_NONE;
3012 temp |= FDI_LINK_TRAIN_PATTERN_2;
3013 }
5eddb70b
CW
3014 I915_WRITE(reg, temp);
3015
3016 POSTING_READ(reg);
8db9d77b
ZW
3017 udelay(150);
3018
0206e353 3019 for (i = 0; i < 4; i++) {
5eddb70b
CW
3020 reg = FDI_TX_CTL(pipe);
3021 temp = I915_READ(reg);
8db9d77b
ZW
3022 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3023 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3024 I915_WRITE(reg, temp);
3025
3026 POSTING_READ(reg);
8db9d77b
ZW
3027 udelay(500);
3028
fa37d39e
SP
3029 for (retry = 0; retry < 5; retry++) {
3030 reg = FDI_RX_IIR(pipe);
3031 temp = I915_READ(reg);
3032 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3033 if (temp & FDI_RX_SYMBOL_LOCK) {
3034 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3035 DRM_DEBUG_KMS("FDI train 2 done.\n");
3036 break;
3037 }
3038 udelay(50);
8db9d77b 3039 }
fa37d39e
SP
3040 if (retry < 5)
3041 break;
8db9d77b
ZW
3042 }
3043 if (i == 4)
5eddb70b 3044 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3045
3046 DRM_DEBUG_KMS("FDI train done.\n");
3047}
3048
357555c0
JB
3049/* Manual link training for Ivy Bridge A0 parts */
3050static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3051{
3052 struct drm_device *dev = crtc->dev;
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055 int pipe = intel_crtc->pipe;
139ccd3f 3056 u32 reg, temp, i, j;
357555c0
JB
3057
3058 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3059 for train result */
3060 reg = FDI_RX_IMR(pipe);
3061 temp = I915_READ(reg);
3062 temp &= ~FDI_RX_SYMBOL_LOCK;
3063 temp &= ~FDI_RX_BIT_LOCK;
3064 I915_WRITE(reg, temp);
3065
3066 POSTING_READ(reg);
3067 udelay(150);
3068
01a415fd
DV
3069 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3070 I915_READ(FDI_RX_IIR(pipe)));
3071
139ccd3f
JB
3072 /* Try each vswing and preemphasis setting twice before moving on */
3073 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3074 /* disable first in case we need to retry */
3075 reg = FDI_TX_CTL(pipe);
3076 temp = I915_READ(reg);
3077 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3078 temp &= ~FDI_TX_ENABLE;
3079 I915_WRITE(reg, temp);
357555c0 3080
139ccd3f
JB
3081 reg = FDI_RX_CTL(pipe);
3082 temp = I915_READ(reg);
3083 temp &= ~FDI_LINK_TRAIN_AUTO;
3084 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3085 temp &= ~FDI_RX_ENABLE;
3086 I915_WRITE(reg, temp);
357555c0 3087
139ccd3f 3088 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3089 reg = FDI_TX_CTL(pipe);
3090 temp = I915_READ(reg);
139ccd3f
JB
3091 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3092 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3093 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3094 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3095 temp |= snb_b_fdi_train_param[j/2];
3096 temp |= FDI_COMPOSITE_SYNC;
3097 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3098
139ccd3f
JB
3099 I915_WRITE(FDI_RX_MISC(pipe),
3100 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3101
139ccd3f 3102 reg = FDI_RX_CTL(pipe);
357555c0 3103 temp = I915_READ(reg);
139ccd3f
JB
3104 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3105 temp |= FDI_COMPOSITE_SYNC;
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3107
139ccd3f
JB
3108 POSTING_READ(reg);
3109 udelay(1); /* should be 0.5us */
357555c0 3110
139ccd3f
JB
3111 for (i = 0; i < 4; i++) {
3112 reg = FDI_RX_IIR(pipe);
3113 temp = I915_READ(reg);
3114 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3115
139ccd3f
JB
3116 if (temp & FDI_RX_BIT_LOCK ||
3117 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3118 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3119 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3120 i);
3121 break;
3122 }
3123 udelay(1); /* should be 0.5us */
3124 }
3125 if (i == 4) {
3126 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3127 continue;
3128 }
357555c0 3129
139ccd3f 3130 /* Train 2 */
357555c0
JB
3131 reg = FDI_TX_CTL(pipe);
3132 temp = I915_READ(reg);
139ccd3f
JB
3133 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3134 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3135 I915_WRITE(reg, temp);
3136
3137 reg = FDI_RX_CTL(pipe);
3138 temp = I915_READ(reg);
3139 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3140 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3141 I915_WRITE(reg, temp);
3142
3143 POSTING_READ(reg);
139ccd3f 3144 udelay(2); /* should be 1.5us */
357555c0 3145
139ccd3f
JB
3146 for (i = 0; i < 4; i++) {
3147 reg = FDI_RX_IIR(pipe);
3148 temp = I915_READ(reg);
3149 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3150
139ccd3f
JB
3151 if (temp & FDI_RX_SYMBOL_LOCK ||
3152 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3153 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3154 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3155 i);
3156 goto train_done;
3157 }
3158 udelay(2); /* should be 1.5us */
357555c0 3159 }
139ccd3f
JB
3160 if (i == 4)
3161 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3162 }
357555c0 3163
139ccd3f 3164train_done:
357555c0
JB
3165 DRM_DEBUG_KMS("FDI train done.\n");
3166}
3167
88cefb6c 3168static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3169{
88cefb6c 3170 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3171 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3172 int pipe = intel_crtc->pipe;
5eddb70b 3173 u32 reg, temp;
79e53945 3174
c64e311e 3175
c98e9dcf 3176 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3177 reg = FDI_RX_CTL(pipe);
3178 temp = I915_READ(reg);
627eb5a3
DV
3179 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3180 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3181 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3182 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3183
3184 POSTING_READ(reg);
c98e9dcf
JB
3185 udelay(200);
3186
3187 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3188 temp = I915_READ(reg);
3189 I915_WRITE(reg, temp | FDI_PCDCLK);
3190
3191 POSTING_READ(reg);
c98e9dcf
JB
3192 udelay(200);
3193
20749730
PZ
3194 /* Enable CPU FDI TX PLL, always on for Ironlake */
3195 reg = FDI_TX_CTL(pipe);
3196 temp = I915_READ(reg);
3197 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3198 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3199
20749730
PZ
3200 POSTING_READ(reg);
3201 udelay(100);
6be4a607 3202 }
0e23b99d
JB
3203}
3204
88cefb6c
DV
3205static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3206{
3207 struct drm_device *dev = intel_crtc->base.dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 int pipe = intel_crtc->pipe;
3210 u32 reg, temp;
3211
3212 /* Switch from PCDclk to Rawclk */
3213 reg = FDI_RX_CTL(pipe);
3214 temp = I915_READ(reg);
3215 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3216
3217 /* Disable CPU FDI TX PLL */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3221
3222 POSTING_READ(reg);
3223 udelay(100);
3224
3225 reg = FDI_RX_CTL(pipe);
3226 temp = I915_READ(reg);
3227 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3228
3229 /* Wait for the clocks to turn off. */
3230 POSTING_READ(reg);
3231 udelay(100);
3232}
3233
0fc932b8
JB
3234static void ironlake_fdi_disable(struct drm_crtc *crtc)
3235{
3236 struct drm_device *dev = crtc->dev;
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3239 int pipe = intel_crtc->pipe;
3240 u32 reg, temp;
3241
3242 /* disable CPU FDI tx and PCH FDI rx */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3246 POSTING_READ(reg);
3247
3248 reg = FDI_RX_CTL(pipe);
3249 temp = I915_READ(reg);
3250 temp &= ~(0x7 << 16);
dfd07d72 3251 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3252 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3253
3254 POSTING_READ(reg);
3255 udelay(100);
3256
3257 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3258 if (HAS_PCH_IBX(dev))
6f06ce18 3259 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3260
3261 /* still set train pattern 1 */
3262 reg = FDI_TX_CTL(pipe);
3263 temp = I915_READ(reg);
3264 temp &= ~FDI_LINK_TRAIN_NONE;
3265 temp |= FDI_LINK_TRAIN_PATTERN_1;
3266 I915_WRITE(reg, temp);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 if (HAS_PCH_CPT(dev)) {
3271 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3273 } else {
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_1;
3276 }
3277 /* BPC in FDI rx is consistent with that in PIPECONF */
3278 temp &= ~(0x07 << 16);
dfd07d72 3279 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3280 I915_WRITE(reg, temp);
3281
3282 POSTING_READ(reg);
3283 udelay(100);
3284}
3285
5dce5b93
CW
3286bool intel_has_pending_fb_unpin(struct drm_device *dev)
3287{
3288 struct intel_crtc *crtc;
3289
3290 /* Note that we don't need to be called with mode_config.lock here
3291 * as our list of CRTC objects is static for the lifetime of the
3292 * device and so cannot disappear as we iterate. Similarly, we can
3293 * happily treat the predicates as racy, atomic checks as userspace
3294 * cannot claim and pin a new fb without at least acquring the
3295 * struct_mutex and so serialising with us.
3296 */
d3fcc808 3297 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3298 if (atomic_read(&crtc->unpin_work_count) == 0)
3299 continue;
3300
3301 if (crtc->unpin_work)
3302 intel_wait_for_vblank(dev, crtc->pipe);
3303
3304 return true;
3305 }
3306
3307 return false;
3308}
3309
46a55d30 3310void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3311{
0f91128d 3312 struct drm_device *dev = crtc->dev;
5bb61643 3313 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3314
f4510a27 3315 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3316 return;
3317
2c10d571
DV
3318 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3319
eed6d67d
DV
3320 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3321 !intel_crtc_has_pending_flip(crtc),
3322 60*HZ) == 0);
5bb61643 3323
0f91128d 3324 mutex_lock(&dev->struct_mutex);
f4510a27 3325 intel_finish_fb(crtc->primary->fb);
0f91128d 3326 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3327}
3328
e615efe4
ED
3329/* Program iCLKIP clock to the desired frequency */
3330static void lpt_program_iclkip(struct drm_crtc *crtc)
3331{
3332 struct drm_device *dev = crtc->dev;
3333 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3334 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3335 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3336 u32 temp;
3337
09153000
DV
3338 mutex_lock(&dev_priv->dpio_lock);
3339
e615efe4
ED
3340 /* It is necessary to ungate the pixclk gate prior to programming
3341 * the divisors, and gate it back when it is done.
3342 */
3343 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3344
3345 /* Disable SSCCTL */
3346 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3347 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3348 SBI_SSCCTL_DISABLE,
3349 SBI_ICLK);
e615efe4
ED
3350
3351 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3352 if (clock == 20000) {
e615efe4
ED
3353 auxdiv = 1;
3354 divsel = 0x41;
3355 phaseinc = 0x20;
3356 } else {
3357 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3358 * but the adjusted_mode->crtc_clock in in KHz. To get the
3359 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3360 * convert the virtual clock precision to KHz here for higher
3361 * precision.
3362 */
3363 u32 iclk_virtual_root_freq = 172800 * 1000;
3364 u32 iclk_pi_range = 64;
3365 u32 desired_divisor, msb_divisor_value, pi_value;
3366
12d7ceed 3367 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3368 msb_divisor_value = desired_divisor / iclk_pi_range;
3369 pi_value = desired_divisor % iclk_pi_range;
3370
3371 auxdiv = 0;
3372 divsel = msb_divisor_value - 2;
3373 phaseinc = pi_value;
3374 }
3375
3376 /* This should not happen with any sane values */
3377 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3378 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3379 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3380 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3381
3382 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3383 clock,
e615efe4
ED
3384 auxdiv,
3385 divsel,
3386 phasedir,
3387 phaseinc);
3388
3389 /* Program SSCDIVINTPHASE6 */
988d6ee8 3390 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3391 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3392 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3393 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3394 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3395 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3396 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3397 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3398
3399 /* Program SSCAUXDIV */
988d6ee8 3400 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3401 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3402 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3403 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3404
3405 /* Enable modulator and associated divider */
988d6ee8 3406 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3407 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3408 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3409
3410 /* Wait for initialization time */
3411 udelay(24);
3412
3413 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3414
3415 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3416}
3417
275f01b2
DV
3418static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3419 enum pipe pch_transcoder)
3420{
3421 struct drm_device *dev = crtc->base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3424
3425 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3426 I915_READ(HTOTAL(cpu_transcoder)));
3427 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3428 I915_READ(HBLANK(cpu_transcoder)));
3429 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3430 I915_READ(HSYNC(cpu_transcoder)));
3431
3432 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3433 I915_READ(VTOTAL(cpu_transcoder)));
3434 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3435 I915_READ(VBLANK(cpu_transcoder)));
3436 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3437 I915_READ(VSYNC(cpu_transcoder)));
3438 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3439 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3440}
3441
1fbc0d78
DV
3442static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3443{
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 uint32_t temp;
3446
3447 temp = I915_READ(SOUTH_CHICKEN1);
3448 if (temp & FDI_BC_BIFURCATION_SELECT)
3449 return;
3450
3451 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3453
3454 temp |= FDI_BC_BIFURCATION_SELECT;
3455 DRM_DEBUG_KMS("enabling fdi C rx\n");
3456 I915_WRITE(SOUTH_CHICKEN1, temp);
3457 POSTING_READ(SOUTH_CHICKEN1);
3458}
3459
3460static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3461{
3462 struct drm_device *dev = intel_crtc->base.dev;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464
3465 switch (intel_crtc->pipe) {
3466 case PIPE_A:
3467 break;
3468 case PIPE_B:
3469 if (intel_crtc->config.fdi_lanes > 2)
3470 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3471 else
3472 cpt_enable_fdi_bc_bifurcation(dev);
3473
3474 break;
3475 case PIPE_C:
3476 cpt_enable_fdi_bc_bifurcation(dev);
3477
3478 break;
3479 default:
3480 BUG();
3481 }
3482}
3483
f67a559d
JB
3484/*
3485 * Enable PCH resources required for PCH ports:
3486 * - PCH PLLs
3487 * - FDI training & RX/TX
3488 * - update transcoder timings
3489 * - DP transcoding bits
3490 * - transcoder
3491 */
3492static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3493{
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
ee7b9f93 3498 u32 reg, temp;
2c07245f 3499
ab9412ba 3500 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3501
1fbc0d78
DV
3502 if (IS_IVYBRIDGE(dev))
3503 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3504
cd986abb
DV
3505 /* Write the TU size bits before fdi link training, so that error
3506 * detection works. */
3507 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3508 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3509
c98e9dcf 3510 /* For PCH output, training FDI link */
674cf967 3511 dev_priv->display.fdi_link_train(crtc);
2c07245f 3512
3ad8a208
DV
3513 /* We need to program the right clock selection before writing the pixel
3514 * mutliplier into the DPLL. */
303b81e0 3515 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3516 u32 sel;
4b645f14 3517
c98e9dcf 3518 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3519 temp |= TRANS_DPLL_ENABLE(pipe);
3520 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3521 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3522 temp |= sel;
3523 else
3524 temp &= ~sel;
c98e9dcf 3525 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3526 }
5eddb70b 3527
3ad8a208
DV
3528 /* XXX: pch pll's can be enabled any time before we enable the PCH
3529 * transcoder, and we actually should do this to not upset any PCH
3530 * transcoder that already use the clock when we share it.
3531 *
3532 * Note that enable_shared_dpll tries to do the right thing, but
3533 * get_shared_dpll unconditionally resets the pll - we need that to have
3534 * the right LVDS enable sequence. */
85b3894f 3535 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3536
d9b6cb56
JB
3537 /* set transcoder timing, panel must allow it */
3538 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3539 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3540
303b81e0 3541 intel_fdi_normal_train(crtc);
5e84e1a4 3542
c98e9dcf
JB
3543 /* For PCH DP, enable TRANS_DP_CTL */
3544 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3545 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3546 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3547 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3548 reg = TRANS_DP_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3551 TRANS_DP_SYNC_MASK |
3552 TRANS_DP_BPC_MASK);
5eddb70b
CW
3553 temp |= (TRANS_DP_OUTPUT_ENABLE |
3554 TRANS_DP_ENH_FRAMING);
9325c9f0 3555 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3556
3557 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3558 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3559 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3560 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3561
3562 switch (intel_trans_dp_port_sel(crtc)) {
3563 case PCH_DP_B:
5eddb70b 3564 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3565 break;
3566 case PCH_DP_C:
5eddb70b 3567 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3568 break;
3569 case PCH_DP_D:
5eddb70b 3570 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3571 break;
3572 default:
e95d41e1 3573 BUG();
32f9d658 3574 }
2c07245f 3575
5eddb70b 3576 I915_WRITE(reg, temp);
6be4a607 3577 }
b52eb4dc 3578
b8a4f404 3579 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3580}
3581
1507e5bd
PZ
3582static void lpt_pch_enable(struct drm_crtc *crtc)
3583{
3584 struct drm_device *dev = crtc->dev;
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3587 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3588
ab9412ba 3589 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3590
8c52b5e8 3591 lpt_program_iclkip(crtc);
1507e5bd 3592
0540e488 3593 /* Set transcoder timing. */
275f01b2 3594 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3595
937bb610 3596 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3597}
3598
716c2e55 3599void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3600{
e2b78267 3601 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3602
3603 if (pll == NULL)
3604 return;
3605
3606 if (pll->refcount == 0) {
46edb027 3607 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3608 return;
3609 }
3610
f4a091c7
DV
3611 if (--pll->refcount == 0) {
3612 WARN_ON(pll->on);
3613 WARN_ON(pll->active);
3614 }
3615
a43f6e0f 3616 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3617}
3618
716c2e55 3619struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267
DV
3621 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3622 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3623 enum intel_dpll_id i;
ee7b9f93 3624
ee7b9f93 3625 if (pll) {
46edb027
DV
3626 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3627 crtc->base.base.id, pll->name);
e2b78267 3628 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3629 }
3630
98b6bd99
DV
3631 if (HAS_PCH_IBX(dev_priv->dev)) {
3632 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3633 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3634 pll = &dev_priv->shared_dplls[i];
98b6bd99 3635
46edb027
DV
3636 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3637 crtc->base.base.id, pll->name);
98b6bd99 3638
f2a69f44
DV
3639 WARN_ON(pll->refcount);
3640
98b6bd99
DV
3641 goto found;
3642 }
3643
e72f9fbf
DV
3644 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3645 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3646
3647 /* Only want to check enabled timings first */
3648 if (pll->refcount == 0)
3649 continue;
3650
b89a1d39
DV
3651 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3652 sizeof(pll->hw_state)) == 0) {
46edb027 3653 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3654 crtc->base.base.id,
46edb027 3655 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3656
3657 goto found;
3658 }
3659 }
3660
3661 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3662 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3663 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3664 if (pll->refcount == 0) {
46edb027
DV
3665 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3666 crtc->base.base.id, pll->name);
ee7b9f93
JB
3667 goto found;
3668 }
3669 }
3670
3671 return NULL;
3672
3673found:
f2a69f44
DV
3674 if (pll->refcount == 0)
3675 pll->hw_state = crtc->config.dpll_hw_state;
3676
a43f6e0f 3677 crtc->config.shared_dpll = i;
46edb027
DV
3678 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3679 pipe_name(crtc->pipe));
ee7b9f93 3680
cdbd2316 3681 pll->refcount++;
e04c7350 3682
ee7b9f93
JB
3683 return pll;
3684}
3685
a1520318 3686static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3687{
3688 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3689 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3690 u32 temp;
3691
3692 temp = I915_READ(dslreg);
3693 udelay(500);
3694 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3695 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3696 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3697 }
3698}
3699
b074cec8
JB
3700static void ironlake_pfit_enable(struct intel_crtc *crtc)
3701{
3702 struct drm_device *dev = crtc->base.dev;
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 int pipe = crtc->pipe;
3705
fd4daa9c 3706 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3707 /* Force use of hard-coded filter coefficients
3708 * as some pre-programmed values are broken,
3709 * e.g. x201.
3710 */
3711 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3712 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3713 PF_PIPE_SEL_IVB(pipe));
3714 else
3715 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3716 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3717 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3718 }
3719}
3720
bb53d4ae
VS
3721static void intel_enable_planes(struct drm_crtc *crtc)
3722{
3723 struct drm_device *dev = crtc->dev;
3724 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3725 struct drm_plane *plane;
bb53d4ae
VS
3726 struct intel_plane *intel_plane;
3727
af2b653b
MR
3728 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3729 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3730 if (intel_plane->pipe == pipe)
3731 intel_plane_restore(&intel_plane->base);
af2b653b 3732 }
bb53d4ae
VS
3733}
3734
3735static void intel_disable_planes(struct drm_crtc *crtc)
3736{
3737 struct drm_device *dev = crtc->dev;
3738 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3739 struct drm_plane *plane;
bb53d4ae
VS
3740 struct intel_plane *intel_plane;
3741
af2b653b
MR
3742 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3743 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3744 if (intel_plane->pipe == pipe)
3745 intel_plane_disable(&intel_plane->base);
af2b653b 3746 }
bb53d4ae
VS
3747}
3748
20bc8673 3749void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3750{
cea165c3
VS
3751 struct drm_device *dev = crtc->base.dev;
3752 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3753
3754 if (!crtc->config.ips_enabled)
3755 return;
3756
cea165c3
VS
3757 /* We can only enable IPS after we enable a plane and wait for a vblank */
3758 intel_wait_for_vblank(dev, crtc->pipe);
3759
d77e4531 3760 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3761 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3762 mutex_lock(&dev_priv->rps.hw_lock);
3763 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3764 mutex_unlock(&dev_priv->rps.hw_lock);
3765 /* Quoting Art Runyan: "its not safe to expect any particular
3766 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3767 * mailbox." Moreover, the mailbox may return a bogus state,
3768 * so we need to just enable it and continue on.
2a114cc1
BW
3769 */
3770 } else {
3771 I915_WRITE(IPS_CTL, IPS_ENABLE);
3772 /* The bit only becomes 1 in the next vblank, so this wait here
3773 * is essentially intel_wait_for_vblank. If we don't have this
3774 * and don't wait for vblanks until the end of crtc_enable, then
3775 * the HW state readout code will complain that the expected
3776 * IPS_CTL value is not the one we read. */
3777 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3778 DRM_ERROR("Timed out waiting for IPS enable\n");
3779 }
d77e4531
PZ
3780}
3781
20bc8673 3782void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3783{
3784 struct drm_device *dev = crtc->base.dev;
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786
3787 if (!crtc->config.ips_enabled)
3788 return;
3789
3790 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3791 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3792 mutex_lock(&dev_priv->rps.hw_lock);
3793 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3794 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3795 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3796 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3797 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3798 } else {
2a114cc1 3799 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3800 POSTING_READ(IPS_CTL);
3801 }
d77e4531
PZ
3802
3803 /* We need to wait for a vblank before we can disable the plane. */
3804 intel_wait_for_vblank(dev, crtc->pipe);
3805}
3806
3807/** Loads the palette/gamma unit for the CRTC with the prepared values */
3808static void intel_crtc_load_lut(struct drm_crtc *crtc)
3809{
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 enum pipe pipe = intel_crtc->pipe;
3814 int palreg = PALETTE(pipe);
3815 int i;
3816 bool reenable_ips = false;
3817
3818 /* The clocks have to be on to load the palette. */
3819 if (!crtc->enabled || !intel_crtc->active)
3820 return;
3821
3822 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3823 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3824 assert_dsi_pll_enabled(dev_priv);
3825 else
3826 assert_pll_enabled(dev_priv, pipe);
3827 }
3828
3829 /* use legacy palette for Ironlake */
7a1db49a 3830 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3831 palreg = LGC_PALETTE(pipe);
3832
3833 /* Workaround : Do not read or write the pipe palette/gamma data while
3834 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3835 */
41e6fc4c 3836 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3837 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3838 GAMMA_MODE_MODE_SPLIT)) {
3839 hsw_disable_ips(intel_crtc);
3840 reenable_ips = true;
3841 }
3842
3843 for (i = 0; i < 256; i++) {
3844 I915_WRITE(palreg + 4 * i,
3845 (intel_crtc->lut_r[i] << 16) |
3846 (intel_crtc->lut_g[i] << 8) |
3847 intel_crtc->lut_b[i]);
3848 }
3849
3850 if (reenable_ips)
3851 hsw_enable_ips(intel_crtc);
3852}
3853
d3eedb1a
VS
3854static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3855{
3856 if (!enable && intel_crtc->overlay) {
3857 struct drm_device *dev = intel_crtc->base.dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859
3860 mutex_lock(&dev->struct_mutex);
3861 dev_priv->mm.interruptible = false;
3862 (void) intel_overlay_switch_off(intel_crtc->overlay);
3863 dev_priv->mm.interruptible = true;
3864 mutex_unlock(&dev->struct_mutex);
3865 }
3866
3867 /* Let userspace switch the overlay on again. In most cases userspace
3868 * has to recompute where to put it anyway.
3869 */
3870}
3871
d3eedb1a 3872static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3873{
3874 struct drm_device *dev = crtc->dev;
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3877 int pipe = intel_crtc->pipe;
3878 int plane = intel_crtc->plane;
3879
f98551ae
VS
3880 drm_vblank_on(dev, pipe);
3881
a5c4d7bc
VS
3882 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3883 intel_enable_planes(crtc);
3884 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3885 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3886
3887 hsw_enable_ips(intel_crtc);
3888
3889 mutex_lock(&dev->struct_mutex);
3890 intel_update_fbc(dev);
3891 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3892
3893 /*
3894 * FIXME: Once we grow proper nuclear flip support out of this we need
3895 * to compute the mask of flip planes precisely. For the time being
3896 * consider this a flip from a NULL plane.
3897 */
3898 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3899}
3900
d3eedb1a 3901static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3902{
3903 struct drm_device *dev = crtc->dev;
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3906 int pipe = intel_crtc->pipe;
3907 int plane = intel_crtc->plane;
3908
3909 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3910
3911 if (dev_priv->fbc.plane == plane)
3912 intel_disable_fbc(dev);
3913
3914 hsw_disable_ips(intel_crtc);
3915
d3eedb1a 3916 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3917 intel_crtc_update_cursor(crtc, false);
3918 intel_disable_planes(crtc);
3919 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3920
f99d7069
DV
3921 /*
3922 * FIXME: Once we grow proper nuclear flip support out of this we need
3923 * to compute the mask of flip planes precisely. For the time being
3924 * consider this a flip to a NULL plane.
3925 */
3926 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927
f98551ae 3928 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3929}
3930
f67a559d
JB
3931static void ironlake_crtc_enable(struct drm_crtc *crtc)
3932{
3933 struct drm_device *dev = crtc->dev;
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3936 struct intel_encoder *encoder;
f67a559d 3937 int pipe = intel_crtc->pipe;
29407aab 3938 enum plane plane = intel_crtc->plane;
f67a559d 3939
08a48469
DV
3940 WARN_ON(!crtc->enabled);
3941
f67a559d
JB
3942 if (intel_crtc->active)
3943 return;
3944
b14b1055
DV
3945 if (intel_crtc->config.has_pch_encoder)
3946 intel_prepare_shared_dpll(intel_crtc);
3947
29407aab
DV
3948 if (intel_crtc->config.has_dp_encoder)
3949 intel_dp_set_m_n(intel_crtc);
3950
3951 intel_set_pipe_timings(intel_crtc);
3952
3953 if (intel_crtc->config.has_pch_encoder) {
3954 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 3955 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
3956 }
3957
3958 ironlake_set_pipeconf(crtc);
3959
3960 /* Set up the display plane register */
3961 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3962 POSTING_READ(DSPCNTR(plane));
3963
3964 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3965 crtc->x, crtc->y);
3966
f67a559d 3967 intel_crtc->active = true;
8664281b
PZ
3968
3969 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3970 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3971
f6736a1a 3972 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3973 if (encoder->pre_enable)
3974 encoder->pre_enable(encoder);
f67a559d 3975
5bfe2ac0 3976 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3977 /* Note: FDI PLL enabling _must_ be done before we enable the
3978 * cpu pipes, hence this is separate from all the other fdi/pch
3979 * enabling. */
88cefb6c 3980 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3981 } else {
3982 assert_fdi_tx_disabled(dev_priv, pipe);
3983 assert_fdi_rx_disabled(dev_priv, pipe);
3984 }
f67a559d 3985
b074cec8 3986 ironlake_pfit_enable(intel_crtc);
f67a559d 3987
9c54c0dd
JB
3988 /*
3989 * On ILK+ LUT must be loaded before the pipe is running but with
3990 * clocks enabled
3991 */
3992 intel_crtc_load_lut(crtc);
3993
f37fcc2a 3994 intel_update_watermarks(crtc);
e1fdc473 3995 intel_enable_pipe(intel_crtc);
f67a559d 3996
5bfe2ac0 3997 if (intel_crtc->config.has_pch_encoder)
f67a559d 3998 ironlake_pch_enable(crtc);
c98e9dcf 3999
fa5c73b1
DV
4000 for_each_encoder_on_crtc(dev, crtc, encoder)
4001 encoder->enable(encoder);
61b77ddd
DV
4002
4003 if (HAS_PCH_CPT(dev))
a1520318 4004 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4005
d3eedb1a 4006 intel_crtc_enable_planes(crtc);
6be4a607
JB
4007}
4008
42db64ef
PZ
4009/* IPS only exists on ULT machines and is tied to pipe A. */
4010static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4011{
f5adf94e 4012 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4013}
4014
e4916946
PZ
4015/*
4016 * This implements the workaround described in the "notes" section of the mode
4017 * set sequence documentation. When going from no pipes or single pipe to
4018 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4019 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4020 */
4021static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4022{
4023 struct drm_device *dev = crtc->base.dev;
4024 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4025
4026 /* We want to get the other_active_crtc only if there's only 1 other
4027 * active crtc. */
d3fcc808 4028 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4029 if (!crtc_it->active || crtc_it == crtc)
4030 continue;
4031
4032 if (other_active_crtc)
4033 return;
4034
4035 other_active_crtc = crtc_it;
4036 }
4037 if (!other_active_crtc)
4038 return;
4039
4040 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4041 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4042}
4043
4f771f10
PZ
4044static void haswell_crtc_enable(struct drm_crtc *crtc)
4045{
4046 struct drm_device *dev = crtc->dev;
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049 struct intel_encoder *encoder;
4050 int pipe = intel_crtc->pipe;
229fca97 4051 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4052
4053 WARN_ON(!crtc->enabled);
4054
4055 if (intel_crtc->active)
4056 return;
4057
df8ad70c
DV
4058 if (intel_crtc_to_shared_dpll(intel_crtc))
4059 intel_enable_shared_dpll(intel_crtc);
4060
229fca97
DV
4061 if (intel_crtc->config.has_dp_encoder)
4062 intel_dp_set_m_n(intel_crtc);
4063
4064 intel_set_pipe_timings(intel_crtc);
4065
4066 if (intel_crtc->config.has_pch_encoder) {
4067 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4068 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4069 }
4070
4071 haswell_set_pipeconf(crtc);
4072
4073 intel_set_pipe_csc(crtc);
4074
4075 /* Set up the display plane register */
4076 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4077 POSTING_READ(DSPCNTR(plane));
4078
4079 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4080 crtc->x, crtc->y);
4081
4f771f10 4082 intel_crtc->active = true;
8664281b
PZ
4083
4084 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4085 for_each_encoder_on_crtc(dev, crtc, encoder)
4086 if (encoder->pre_enable)
4087 encoder->pre_enable(encoder);
4088
4fe9467d
ID
4089 if (intel_crtc->config.has_pch_encoder) {
4090 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4091 dev_priv->display.fdi_link_train(crtc);
4092 }
4093
1f544388 4094 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4095
b074cec8 4096 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4097
4098 /*
4099 * On ILK+ LUT must be loaded before the pipe is running but with
4100 * clocks enabled
4101 */
4102 intel_crtc_load_lut(crtc);
4103
1f544388 4104 intel_ddi_set_pipe_settings(crtc);
8228c251 4105 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4106
f37fcc2a 4107 intel_update_watermarks(crtc);
e1fdc473 4108 intel_enable_pipe(intel_crtc);
42db64ef 4109
5bfe2ac0 4110 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4111 lpt_pch_enable(crtc);
4f771f10 4112
0e32b39c
DA
4113 if (intel_crtc->config.dp_encoder_is_mst)
4114 intel_ddi_set_vc_payload_alloc(crtc, true);
4115
8807e55b 4116 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4117 encoder->enable(encoder);
8807e55b
JN
4118 intel_opregion_notify_encoder(encoder, true);
4119 }
4f771f10 4120
e4916946
PZ
4121 /* If we change the relative order between pipe/planes enabling, we need
4122 * to change the workaround. */
4123 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4124 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4125}
4126
3f8dce3a
DV
4127static void ironlake_pfit_disable(struct intel_crtc *crtc)
4128{
4129 struct drm_device *dev = crtc->base.dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 int pipe = crtc->pipe;
4132
4133 /* To avoid upsetting the power well on haswell only disable the pfit if
4134 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4135 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4136 I915_WRITE(PF_CTL(pipe), 0);
4137 I915_WRITE(PF_WIN_POS(pipe), 0);
4138 I915_WRITE(PF_WIN_SZ(pipe), 0);
4139 }
4140}
4141
6be4a607
JB
4142static void ironlake_crtc_disable(struct drm_crtc *crtc)
4143{
4144 struct drm_device *dev = crtc->dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4147 struct intel_encoder *encoder;
6be4a607 4148 int pipe = intel_crtc->pipe;
5eddb70b 4149 u32 reg, temp;
b52eb4dc 4150
f7abfe8b
CW
4151 if (!intel_crtc->active)
4152 return;
4153
d3eedb1a 4154 intel_crtc_disable_planes(crtc);
a5c4d7bc 4155
ea9d758d
DV
4156 for_each_encoder_on_crtc(dev, crtc, encoder)
4157 encoder->disable(encoder);
4158
d925c59a
DV
4159 if (intel_crtc->config.has_pch_encoder)
4160 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4161
b24e7179 4162 intel_disable_pipe(dev_priv, pipe);
32f9d658 4163
0e32b39c
DA
4164 if (intel_crtc->config.dp_encoder_is_mst)
4165 intel_ddi_set_vc_payload_alloc(crtc, false);
4166
3f8dce3a 4167 ironlake_pfit_disable(intel_crtc);
2c07245f 4168
bf49ec8c
DV
4169 for_each_encoder_on_crtc(dev, crtc, encoder)
4170 if (encoder->post_disable)
4171 encoder->post_disable(encoder);
2c07245f 4172
d925c59a
DV
4173 if (intel_crtc->config.has_pch_encoder) {
4174 ironlake_fdi_disable(crtc);
913d8d11 4175
d925c59a
DV
4176 ironlake_disable_pch_transcoder(dev_priv, pipe);
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4178
d925c59a
DV
4179 if (HAS_PCH_CPT(dev)) {
4180 /* disable TRANS_DP_CTL */
4181 reg = TRANS_DP_CTL(pipe);
4182 temp = I915_READ(reg);
4183 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4184 TRANS_DP_PORT_SEL_MASK);
4185 temp |= TRANS_DP_PORT_SEL_NONE;
4186 I915_WRITE(reg, temp);
4187
4188 /* disable DPLL_SEL */
4189 temp = I915_READ(PCH_DPLL_SEL);
11887397 4190 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4191 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4192 }
e3421a18 4193
d925c59a 4194 /* disable PCH DPLL */
e72f9fbf 4195 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4196
d925c59a
DV
4197 ironlake_fdi_pll_disable(intel_crtc);
4198 }
6b383a7f 4199
f7abfe8b 4200 intel_crtc->active = false;
46ba614c 4201 intel_update_watermarks(crtc);
d1ebd816
BW
4202
4203 mutex_lock(&dev->struct_mutex);
6b383a7f 4204 intel_update_fbc(dev);
d1ebd816 4205 mutex_unlock(&dev->struct_mutex);
6be4a607 4206}
1b3c7a47 4207
4f771f10 4208static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4209{
4f771f10
PZ
4210 struct drm_device *dev = crtc->dev;
4211 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4213 struct intel_encoder *encoder;
4214 int pipe = intel_crtc->pipe;
3b117c8f 4215 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4216
4f771f10
PZ
4217 if (!intel_crtc->active)
4218 return;
4219
d3eedb1a 4220 intel_crtc_disable_planes(crtc);
dda9a66a 4221
8807e55b
JN
4222 for_each_encoder_on_crtc(dev, crtc, encoder) {
4223 intel_opregion_notify_encoder(encoder, false);
4f771f10 4224 encoder->disable(encoder);
8807e55b 4225 }
4f771f10 4226
8664281b
PZ
4227 if (intel_crtc->config.has_pch_encoder)
4228 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4229 intel_disable_pipe(dev_priv, pipe);
4230
ad80a810 4231 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4232
3f8dce3a 4233 ironlake_pfit_disable(intel_crtc);
4f771f10 4234
1f544388 4235 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4236
88adfff1 4237 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4238 lpt_disable_pch_transcoder(dev_priv);
8664281b 4239 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4240 intel_ddi_fdi_disable(crtc);
83616634 4241 }
4f771f10 4242
97b040aa
ID
4243 for_each_encoder_on_crtc(dev, crtc, encoder)
4244 if (encoder->post_disable)
4245 encoder->post_disable(encoder);
4246
4f771f10 4247 intel_crtc->active = false;
46ba614c 4248 intel_update_watermarks(crtc);
4f771f10
PZ
4249
4250 mutex_lock(&dev->struct_mutex);
4251 intel_update_fbc(dev);
4252 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4253
4254 if (intel_crtc_to_shared_dpll(intel_crtc))
4255 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4256}
4257
ee7b9f93
JB
4258static void ironlake_crtc_off(struct drm_crtc *crtc)
4259{
4260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4261 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4262}
4263
6441ab5f 4264
2dd24552
JB
4265static void i9xx_pfit_enable(struct intel_crtc *crtc)
4266{
4267 struct drm_device *dev = crtc->base.dev;
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 struct intel_crtc_config *pipe_config = &crtc->config;
4270
328d8e82 4271 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4272 return;
4273
2dd24552 4274 /*
c0b03411
DV
4275 * The panel fitter should only be adjusted whilst the pipe is disabled,
4276 * according to register description and PRM.
2dd24552 4277 */
c0b03411
DV
4278 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4279 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4280
b074cec8
JB
4281 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4282 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4283
4284 /* Border color in case we don't scale up to the full screen. Black by
4285 * default, change to something else for debugging. */
4286 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4287}
4288
d05410f9
DA
4289static enum intel_display_power_domain port_to_power_domain(enum port port)
4290{
4291 switch (port) {
4292 case PORT_A:
4293 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4294 case PORT_B:
4295 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4296 case PORT_C:
4297 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4298 case PORT_D:
4299 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4300 default:
4301 WARN_ON_ONCE(1);
4302 return POWER_DOMAIN_PORT_OTHER;
4303 }
4304}
4305
77d22dca
ID
4306#define for_each_power_domain(domain, mask) \
4307 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4308 if ((1 << (domain)) & (mask))
4309
319be8ae
ID
4310enum intel_display_power_domain
4311intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4312{
4313 struct drm_device *dev = intel_encoder->base.dev;
4314 struct intel_digital_port *intel_dig_port;
4315
4316 switch (intel_encoder->type) {
4317 case INTEL_OUTPUT_UNKNOWN:
4318 /* Only DDI platforms should ever use this output type */
4319 WARN_ON_ONCE(!HAS_DDI(dev));
4320 case INTEL_OUTPUT_DISPLAYPORT:
4321 case INTEL_OUTPUT_HDMI:
4322 case INTEL_OUTPUT_EDP:
4323 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4324 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4325 case INTEL_OUTPUT_DP_MST:
4326 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4327 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4328 case INTEL_OUTPUT_ANALOG:
4329 return POWER_DOMAIN_PORT_CRT;
4330 case INTEL_OUTPUT_DSI:
4331 return POWER_DOMAIN_PORT_DSI;
4332 default:
4333 return POWER_DOMAIN_PORT_OTHER;
4334 }
4335}
4336
4337static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4338{
319be8ae
ID
4339 struct drm_device *dev = crtc->dev;
4340 struct intel_encoder *intel_encoder;
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4342 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4343 unsigned long mask;
4344 enum transcoder transcoder;
4345
4346 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4347
4348 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4349 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4350 if (intel_crtc->config.pch_pfit.enabled ||
4351 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4352 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4353
319be8ae
ID
4354 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4355 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4356
77d22dca
ID
4357 return mask;
4358}
4359
4360void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4361 bool enable)
4362{
4363 if (dev_priv->power_domains.init_power_on == enable)
4364 return;
4365
4366 if (enable)
4367 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4368 else
4369 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4370
4371 dev_priv->power_domains.init_power_on = enable;
4372}
4373
4374static void modeset_update_crtc_power_domains(struct drm_device *dev)
4375{
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4378 struct intel_crtc *crtc;
4379
4380 /*
4381 * First get all needed power domains, then put all unneeded, to avoid
4382 * any unnecessary toggling of the power wells.
4383 */
d3fcc808 4384 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4385 enum intel_display_power_domain domain;
4386
4387 if (!crtc->base.enabled)
4388 continue;
4389
319be8ae 4390 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4391
4392 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4393 intel_display_power_get(dev_priv, domain);
4394 }
4395
d3fcc808 4396 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4397 enum intel_display_power_domain domain;
4398
4399 for_each_power_domain(domain, crtc->enabled_power_domains)
4400 intel_display_power_put(dev_priv, domain);
4401
4402 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4403 }
4404
4405 intel_display_set_init_power(dev_priv, false);
4406}
4407
dfcab17e 4408/* returns HPLL frequency in kHz */
f8bf63fd 4409static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4410{
586f49dc 4411 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4412
586f49dc
JB
4413 /* Obtain SKU information */
4414 mutex_lock(&dev_priv->dpio_lock);
4415 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4416 CCK_FUSE_HPLL_FREQ_MASK;
4417 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4418
dfcab17e 4419 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4420}
4421
f8bf63fd
VS
4422static void vlv_update_cdclk(struct drm_device *dev)
4423{
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425
4426 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4427 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4428 dev_priv->vlv_cdclk_freq);
4429
4430 /*
4431 * Program the gmbus_freq based on the cdclk frequency.
4432 * BSpec erroneously claims we should aim for 4MHz, but
4433 * in fact 1MHz is the correct frequency.
4434 */
4435 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4436}
4437
30a970c6
JB
4438/* Adjust CDclk dividers to allow high res or save power if possible */
4439static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4440{
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 u32 val, cmd;
4443
d197b7d3 4444 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4445
dfcab17e 4446 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4447 cmd = 2;
dfcab17e 4448 else if (cdclk == 266667)
30a970c6
JB
4449 cmd = 1;
4450 else
4451 cmd = 0;
4452
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4455 val &= ~DSPFREQGUAR_MASK;
4456 val |= (cmd << DSPFREQGUAR_SHIFT);
4457 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4458 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4459 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4460 50)) {
4461 DRM_ERROR("timed out waiting for CDclk change\n");
4462 }
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464
dfcab17e 4465 if (cdclk == 400000) {
30a970c6
JB
4466 u32 divider, vco;
4467
4468 vco = valleyview_get_vco(dev_priv);
dfcab17e 4469 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4470
4471 mutex_lock(&dev_priv->dpio_lock);
4472 /* adjust cdclk divider */
4473 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4474 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4475 val |= divider;
4476 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4477
4478 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4479 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4480 50))
4481 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4482 mutex_unlock(&dev_priv->dpio_lock);
4483 }
4484
4485 mutex_lock(&dev_priv->dpio_lock);
4486 /* adjust self-refresh exit latency value */
4487 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4488 val &= ~0x7f;
4489
4490 /*
4491 * For high bandwidth configs, we set a higher latency in the bunit
4492 * so that the core display fetch happens in time to avoid underruns.
4493 */
dfcab17e 4494 if (cdclk == 400000)
30a970c6
JB
4495 val |= 4500 / 250; /* 4.5 usec */
4496 else
4497 val |= 3000 / 250; /* 3.0 usec */
4498 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4499 mutex_unlock(&dev_priv->dpio_lock);
4500
f8bf63fd 4501 vlv_update_cdclk(dev);
30a970c6
JB
4502}
4503
30a970c6
JB
4504static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4505 int max_pixclk)
4506{
29dc7ef3
VS
4507 int vco = valleyview_get_vco(dev_priv);
4508 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4509
30a970c6
JB
4510 /*
4511 * Really only a few cases to deal with, as only 4 CDclks are supported:
4512 * 200MHz
4513 * 267MHz
29dc7ef3 4514 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4515 * 400MHz
4516 * So we check to see whether we're above 90% of the lower bin and
4517 * adjust if needed.
e37c67a1
VS
4518 *
4519 * We seem to get an unstable or solid color picture at 200MHz.
4520 * Not sure what's wrong. For now use 200MHz only when all pipes
4521 * are off.
30a970c6 4522 */
29dc7ef3 4523 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4524 return 400000;
4525 else if (max_pixclk > 266667*9/10)
29dc7ef3 4526 return freq_320;
e37c67a1 4527 else if (max_pixclk > 0)
dfcab17e 4528 return 266667;
e37c67a1
VS
4529 else
4530 return 200000;
30a970c6
JB
4531}
4532
2f2d7aa1
VS
4533/* compute the max pixel clock for new configuration */
4534static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4535{
4536 struct drm_device *dev = dev_priv->dev;
4537 struct intel_crtc *intel_crtc;
4538 int max_pixclk = 0;
4539
d3fcc808 4540 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4541 if (intel_crtc->new_enabled)
30a970c6 4542 max_pixclk = max(max_pixclk,
2f2d7aa1 4543 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4544 }
4545
4546 return max_pixclk;
4547}
4548
4549static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4550 unsigned *prepare_pipes)
30a970c6
JB
4551{
4552 struct drm_i915_private *dev_priv = dev->dev_private;
4553 struct intel_crtc *intel_crtc;
2f2d7aa1 4554 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4555
d60c4473
ID
4556 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4557 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4558 return;
4559
2f2d7aa1 4560 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4561 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4562 if (intel_crtc->base.enabled)
4563 *prepare_pipes |= (1 << intel_crtc->pipe);
4564}
4565
4566static void valleyview_modeset_global_resources(struct drm_device *dev)
4567{
4568 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4569 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4570 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4571
d60c4473 4572 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4573 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4574 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4575}
4576
89b667f8
JB
4577static void valleyview_crtc_enable(struct drm_crtc *crtc)
4578{
4579 struct drm_device *dev = crtc->dev;
5b18e57c 4580 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582 struct intel_encoder *encoder;
4583 int pipe = intel_crtc->pipe;
5b18e57c 4584 int plane = intel_crtc->plane;
23538ef1 4585 bool is_dsi;
5b18e57c 4586 u32 dspcntr;
89b667f8
JB
4587
4588 WARN_ON(!crtc->enabled);
4589
4590 if (intel_crtc->active)
4591 return;
4592
8525a235
SK
4593 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4594
4595 if (!is_dsi && !IS_CHERRYVIEW(dev))
4596 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4597
5b18e57c
DV
4598 /* Set up the display plane register */
4599 dspcntr = DISPPLANE_GAMMA_ENABLE;
4600
4601 if (intel_crtc->config.has_dp_encoder)
4602 intel_dp_set_m_n(intel_crtc);
4603
4604 intel_set_pipe_timings(intel_crtc);
4605
4606 /* pipesrc and dspsize control the size that is scaled from,
4607 * which should always be the user's requested size.
4608 */
4609 I915_WRITE(DSPSIZE(plane),
4610 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4611 (intel_crtc->config.pipe_src_w - 1));
4612 I915_WRITE(DSPPOS(plane), 0);
4613
4614 i9xx_set_pipeconf(intel_crtc);
4615
4616 I915_WRITE(DSPCNTR(plane), dspcntr);
4617 POSTING_READ(DSPCNTR(plane));
4618
4619 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4620 crtc->x, crtc->y);
4621
89b667f8 4622 intel_crtc->active = true;
89b667f8 4623
4a3436e8
VS
4624 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4625
89b667f8
JB
4626 for_each_encoder_on_crtc(dev, crtc, encoder)
4627 if (encoder->pre_pll_enable)
4628 encoder->pre_pll_enable(encoder);
4629
9d556c99
CML
4630 if (!is_dsi) {
4631 if (IS_CHERRYVIEW(dev))
4632 chv_enable_pll(intel_crtc);
4633 else
4634 vlv_enable_pll(intel_crtc);
4635 }
89b667f8
JB
4636
4637 for_each_encoder_on_crtc(dev, crtc, encoder)
4638 if (encoder->pre_enable)
4639 encoder->pre_enable(encoder);
4640
2dd24552
JB
4641 i9xx_pfit_enable(intel_crtc);
4642
63cbb074
VS
4643 intel_crtc_load_lut(crtc);
4644
f37fcc2a 4645 intel_update_watermarks(crtc);
e1fdc473 4646 intel_enable_pipe(intel_crtc);
be6a6f8e 4647
5004945f
JN
4648 for_each_encoder_on_crtc(dev, crtc, encoder)
4649 encoder->enable(encoder);
9ab0460b
VS
4650
4651 intel_crtc_enable_planes(crtc);
d40d9187 4652
56b80e1f
VS
4653 /* Underruns don't raise interrupts, so check manually. */
4654 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4655}
4656
f13c2ef3
DV
4657static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4658{
4659 struct drm_device *dev = crtc->base.dev;
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4663 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4664}
4665
0b8765c6 4666static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4667{
4668 struct drm_device *dev = crtc->dev;
5b18e57c 4669 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4671 struct intel_encoder *encoder;
79e53945 4672 int pipe = intel_crtc->pipe;
5b18e57c
DV
4673 int plane = intel_crtc->plane;
4674 u32 dspcntr;
79e53945 4675
08a48469
DV
4676 WARN_ON(!crtc->enabled);
4677
f7abfe8b
CW
4678 if (intel_crtc->active)
4679 return;
4680
f13c2ef3
DV
4681 i9xx_set_pll_dividers(intel_crtc);
4682
5b18e57c
DV
4683 /* Set up the display plane register */
4684 dspcntr = DISPPLANE_GAMMA_ENABLE;
4685
4686 if (pipe == 0)
4687 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4688 else
4689 dspcntr |= DISPPLANE_SEL_PIPE_B;
4690
4691 if (intel_crtc->config.has_dp_encoder)
4692 intel_dp_set_m_n(intel_crtc);
4693
4694 intel_set_pipe_timings(intel_crtc);
4695
4696 /* pipesrc and dspsize control the size that is scaled from,
4697 * which should always be the user's requested size.
4698 */
4699 I915_WRITE(DSPSIZE(plane),
4700 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4701 (intel_crtc->config.pipe_src_w - 1));
4702 I915_WRITE(DSPPOS(plane), 0);
4703
4704 i9xx_set_pipeconf(intel_crtc);
4705
4706 I915_WRITE(DSPCNTR(plane), dspcntr);
4707 POSTING_READ(DSPCNTR(plane));
4708
4709 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4710 crtc->x, crtc->y);
4711
f7abfe8b 4712 intel_crtc->active = true;
6b383a7f 4713
4a3436e8
VS
4714 if (!IS_GEN2(dev))
4715 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4716
9d6d9f19
MK
4717 for_each_encoder_on_crtc(dev, crtc, encoder)
4718 if (encoder->pre_enable)
4719 encoder->pre_enable(encoder);
4720
f6736a1a
DV
4721 i9xx_enable_pll(intel_crtc);
4722
2dd24552
JB
4723 i9xx_pfit_enable(intel_crtc);
4724
63cbb074
VS
4725 intel_crtc_load_lut(crtc);
4726
f37fcc2a 4727 intel_update_watermarks(crtc);
e1fdc473 4728 intel_enable_pipe(intel_crtc);
be6a6f8e 4729
fa5c73b1
DV
4730 for_each_encoder_on_crtc(dev, crtc, encoder)
4731 encoder->enable(encoder);
9ab0460b
VS
4732
4733 intel_crtc_enable_planes(crtc);
d40d9187 4734
4a3436e8
VS
4735 /*
4736 * Gen2 reports pipe underruns whenever all planes are disabled.
4737 * So don't enable underrun reporting before at least some planes
4738 * are enabled.
4739 * FIXME: Need to fix the logic to work when we turn off all planes
4740 * but leave the pipe running.
4741 */
4742 if (IS_GEN2(dev))
4743 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4744
56b80e1f
VS
4745 /* Underruns don't raise interrupts, so check manually. */
4746 i9xx_check_fifo_underruns(dev);
0b8765c6 4747}
79e53945 4748
87476d63
DV
4749static void i9xx_pfit_disable(struct intel_crtc *crtc)
4750{
4751 struct drm_device *dev = crtc->base.dev;
4752 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4753
328d8e82
DV
4754 if (!crtc->config.gmch_pfit.control)
4755 return;
87476d63 4756
328d8e82 4757 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4758
328d8e82
DV
4759 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4760 I915_READ(PFIT_CONTROL));
4761 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4762}
4763
0b8765c6
JB
4764static void i9xx_crtc_disable(struct drm_crtc *crtc)
4765{
4766 struct drm_device *dev = crtc->dev;
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4769 struct intel_encoder *encoder;
0b8765c6 4770 int pipe = intel_crtc->pipe;
ef9c3aee 4771
f7abfe8b
CW
4772 if (!intel_crtc->active)
4773 return;
4774
4a3436e8
VS
4775 /*
4776 * Gen2 reports pipe underruns whenever all planes are disabled.
4777 * So diasble underrun reporting before all the planes get disabled.
4778 * FIXME: Need to fix the logic to work when we turn off all planes
4779 * but leave the pipe running.
4780 */
4781 if (IS_GEN2(dev))
4782 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4783
564ed191
ID
4784 /*
4785 * Vblank time updates from the shadow to live plane control register
4786 * are blocked if the memory self-refresh mode is active at that
4787 * moment. So to make sure the plane gets truly disabled, disable
4788 * first the self-refresh mode. The self-refresh enable bit in turn
4789 * will be checked/applied by the HW only at the next frame start
4790 * event which is after the vblank start event, so we need to have a
4791 * wait-for-vblank between disabling the plane and the pipe.
4792 */
4793 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4794 intel_crtc_disable_planes(crtc);
4795
ea9d758d
DV
4796 for_each_encoder_on_crtc(dev, crtc, encoder)
4797 encoder->disable(encoder);
4798
6304cd91
VS
4799 /*
4800 * On gen2 planes are double buffered but the pipe isn't, so we must
4801 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4802 * We also need to wait on all gmch platforms because of the
4803 * self-refresh mode constraint explained above.
6304cd91 4804 */
564ed191 4805 intel_wait_for_vblank(dev, pipe);
6304cd91 4806
b24e7179 4807 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4808
87476d63 4809 i9xx_pfit_disable(intel_crtc);
24a1f16d 4810
89b667f8
JB
4811 for_each_encoder_on_crtc(dev, crtc, encoder)
4812 if (encoder->post_disable)
4813 encoder->post_disable(encoder);
4814
076ed3b2
CML
4815 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4816 if (IS_CHERRYVIEW(dev))
4817 chv_disable_pll(dev_priv, pipe);
4818 else if (IS_VALLEYVIEW(dev))
4819 vlv_disable_pll(dev_priv, pipe);
4820 else
4821 i9xx_disable_pll(dev_priv, pipe);
4822 }
0b8765c6 4823
4a3436e8
VS
4824 if (!IS_GEN2(dev))
4825 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4826
f7abfe8b 4827 intel_crtc->active = false;
46ba614c 4828 intel_update_watermarks(crtc);
f37fcc2a 4829
efa9624e 4830 mutex_lock(&dev->struct_mutex);
6b383a7f 4831 intel_update_fbc(dev);
efa9624e 4832 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4833}
4834
ee7b9f93
JB
4835static void i9xx_crtc_off(struct drm_crtc *crtc)
4836{
4837}
4838
976f8a20
DV
4839static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4840 bool enabled)
2c07245f
ZW
4841{
4842 struct drm_device *dev = crtc->dev;
4843 struct drm_i915_master_private *master_priv;
4844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4845 int pipe = intel_crtc->pipe;
79e53945
JB
4846
4847 if (!dev->primary->master)
4848 return;
4849
4850 master_priv = dev->primary->master->driver_priv;
4851 if (!master_priv->sarea_priv)
4852 return;
4853
79e53945
JB
4854 switch (pipe) {
4855 case 0:
4856 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4857 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4858 break;
4859 case 1:
4860 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4861 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4862 break;
4863 default:
9db4a9c7 4864 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4865 break;
4866 }
79e53945
JB
4867}
4868
b04c5bd6
BF
4869/* Master function to enable/disable CRTC and corresponding power wells */
4870void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4871{
4872 struct drm_device *dev = crtc->dev;
4873 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4875 enum intel_display_power_domain domain;
4876 unsigned long domains;
976f8a20 4877
0e572fe7
DV
4878 if (enable) {
4879 if (!intel_crtc->active) {
e1e9fb84
DV
4880 domains = get_crtc_power_domains(crtc);
4881 for_each_power_domain(domain, domains)
4882 intel_display_power_get(dev_priv, domain);
4883 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4884
4885 dev_priv->display.crtc_enable(crtc);
4886 }
4887 } else {
4888 if (intel_crtc->active) {
4889 dev_priv->display.crtc_disable(crtc);
4890
e1e9fb84
DV
4891 domains = intel_crtc->enabled_power_domains;
4892 for_each_power_domain(domain, domains)
4893 intel_display_power_put(dev_priv, domain);
4894 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4895 }
4896 }
b04c5bd6
BF
4897}
4898
4899/**
4900 * Sets the power management mode of the pipe and plane.
4901 */
4902void intel_crtc_update_dpms(struct drm_crtc *crtc)
4903{
4904 struct drm_device *dev = crtc->dev;
4905 struct intel_encoder *intel_encoder;
4906 bool enable = false;
4907
4908 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4909 enable |= intel_encoder->connectors_active;
4910
4911 intel_crtc_control(crtc, enable);
976f8a20
DV
4912
4913 intel_crtc_update_sarea(crtc, enable);
4914}
4915
cdd59983
CW
4916static void intel_crtc_disable(struct drm_crtc *crtc)
4917{
cdd59983 4918 struct drm_device *dev = crtc->dev;
976f8a20 4919 struct drm_connector *connector;
ee7b9f93 4920 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4921 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4922 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4923
976f8a20
DV
4924 /* crtc should still be enabled when we disable it. */
4925 WARN_ON(!crtc->enabled);
4926
4927 dev_priv->display.crtc_disable(crtc);
4928 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4929 dev_priv->display.off(crtc);
4930
f4510a27 4931 if (crtc->primary->fb) {
cdd59983 4932 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4933 intel_unpin_fb_obj(old_obj);
4934 i915_gem_track_fb(old_obj, NULL,
4935 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4936 mutex_unlock(&dev->struct_mutex);
f4510a27 4937 crtc->primary->fb = NULL;
976f8a20
DV
4938 }
4939
4940 /* Update computed state. */
4941 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4942 if (!connector->encoder || !connector->encoder->crtc)
4943 continue;
4944
4945 if (connector->encoder->crtc != crtc)
4946 continue;
4947
4948 connector->dpms = DRM_MODE_DPMS_OFF;
4949 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4950 }
4951}
4952
ea5b213a 4953void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4954{
4ef69c7a 4955 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4956
ea5b213a
CW
4957 drm_encoder_cleanup(encoder);
4958 kfree(intel_encoder);
7e7d76c3
JB
4959}
4960
9237329d 4961/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4962 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4963 * state of the entire output pipe. */
9237329d 4964static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4965{
5ab432ef
DV
4966 if (mode == DRM_MODE_DPMS_ON) {
4967 encoder->connectors_active = true;
4968
b2cabb0e 4969 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4970 } else {
4971 encoder->connectors_active = false;
4972
b2cabb0e 4973 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4974 }
79e53945
JB
4975}
4976
0a91ca29
DV
4977/* Cross check the actual hw state with our own modeset state tracking (and it's
4978 * internal consistency). */
b980514c 4979static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4980{
0a91ca29
DV
4981 if (connector->get_hw_state(connector)) {
4982 struct intel_encoder *encoder = connector->encoder;
4983 struct drm_crtc *crtc;
4984 bool encoder_enabled;
4985 enum pipe pipe;
4986
4987 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4988 connector->base.base.id,
c23cc417 4989 connector->base.name);
0a91ca29 4990
0e32b39c
DA
4991 /* there is no real hw state for MST connectors */
4992 if (connector->mst_port)
4993 return;
4994
0a91ca29
DV
4995 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4996 "wrong connector dpms state\n");
4997 WARN(connector->base.encoder != &encoder->base,
4998 "active connector not linked to encoder\n");
0a91ca29 4999
36cd7444
DA
5000 if (encoder) {
5001 WARN(!encoder->connectors_active,
5002 "encoder->connectors_active not set\n");
5003
5004 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5005 WARN(!encoder_enabled, "encoder not enabled\n");
5006 if (WARN_ON(!encoder->base.crtc))
5007 return;
0a91ca29 5008
36cd7444 5009 crtc = encoder->base.crtc;
0a91ca29 5010
36cd7444
DA
5011 WARN(!crtc->enabled, "crtc not enabled\n");
5012 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5013 WARN(pipe != to_intel_crtc(crtc)->pipe,
5014 "encoder active on the wrong pipe\n");
5015 }
0a91ca29 5016 }
79e53945
JB
5017}
5018
5ab432ef
DV
5019/* Even simpler default implementation, if there's really no special case to
5020 * consider. */
5021void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5022{
5ab432ef
DV
5023 /* All the simple cases only support two dpms states. */
5024 if (mode != DRM_MODE_DPMS_ON)
5025 mode = DRM_MODE_DPMS_OFF;
d4270e57 5026
5ab432ef
DV
5027 if (mode == connector->dpms)
5028 return;
5029
5030 connector->dpms = mode;
5031
5032 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5033 if (connector->encoder)
5034 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5035
b980514c 5036 intel_modeset_check_state(connector->dev);
79e53945
JB
5037}
5038
f0947c37
DV
5039/* Simple connector->get_hw_state implementation for encoders that support only
5040 * one connector and no cloning and hence the encoder state determines the state
5041 * of the connector. */
5042bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5043{
24929352 5044 enum pipe pipe = 0;
f0947c37 5045 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5046
f0947c37 5047 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5048}
5049
1857e1da
DV
5050static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5051 struct intel_crtc_config *pipe_config)
5052{
5053 struct drm_i915_private *dev_priv = dev->dev_private;
5054 struct intel_crtc *pipe_B_crtc =
5055 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5056
5057 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5058 pipe_name(pipe), pipe_config->fdi_lanes);
5059 if (pipe_config->fdi_lanes > 4) {
5060 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5061 pipe_name(pipe), pipe_config->fdi_lanes);
5062 return false;
5063 }
5064
bafb6553 5065 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5066 if (pipe_config->fdi_lanes > 2) {
5067 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5068 pipe_config->fdi_lanes);
5069 return false;
5070 } else {
5071 return true;
5072 }
5073 }
5074
5075 if (INTEL_INFO(dev)->num_pipes == 2)
5076 return true;
5077
5078 /* Ivybridge 3 pipe is really complicated */
5079 switch (pipe) {
5080 case PIPE_A:
5081 return true;
5082 case PIPE_B:
5083 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5084 pipe_config->fdi_lanes > 2) {
5085 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 return false;
5088 }
5089 return true;
5090 case PIPE_C:
1e833f40 5091 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5092 pipe_B_crtc->config.fdi_lanes <= 2) {
5093 if (pipe_config->fdi_lanes > 2) {
5094 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5095 pipe_name(pipe), pipe_config->fdi_lanes);
5096 return false;
5097 }
5098 } else {
5099 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5100 return false;
5101 }
5102 return true;
5103 default:
5104 BUG();
5105 }
5106}
5107
e29c22c0
DV
5108#define RETRY 1
5109static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5110 struct intel_crtc_config *pipe_config)
877d48d5 5111{
1857e1da 5112 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5113 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5114 int lane, link_bw, fdi_dotclock;
e29c22c0 5115 bool setup_ok, needs_recompute = false;
877d48d5 5116
e29c22c0 5117retry:
877d48d5
DV
5118 /* FDI is a binary signal running at ~2.7GHz, encoding
5119 * each output octet as 10 bits. The actual frequency
5120 * is stored as a divider into a 100MHz clock, and the
5121 * mode pixel clock is stored in units of 1KHz.
5122 * Hence the bw of each lane in terms of the mode signal
5123 * is:
5124 */
5125 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5126
241bfc38 5127 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5128
2bd89a07 5129 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5130 pipe_config->pipe_bpp);
5131
5132 pipe_config->fdi_lanes = lane;
5133
2bd89a07 5134 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5135 link_bw, &pipe_config->fdi_m_n);
1857e1da 5136
e29c22c0
DV
5137 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5138 intel_crtc->pipe, pipe_config);
5139 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5140 pipe_config->pipe_bpp -= 2*3;
5141 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5142 pipe_config->pipe_bpp);
5143 needs_recompute = true;
5144 pipe_config->bw_constrained = true;
5145
5146 goto retry;
5147 }
5148
5149 if (needs_recompute)
5150 return RETRY;
5151
5152 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5153}
5154
42db64ef
PZ
5155static void hsw_compute_ips_config(struct intel_crtc *crtc,
5156 struct intel_crtc_config *pipe_config)
5157{
d330a953 5158 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5159 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5160 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5161}
5162
a43f6e0f 5163static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5164 struct intel_crtc_config *pipe_config)
79e53945 5165{
a43f6e0f 5166 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5167 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5168
ad3a4479 5169 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5170 if (INTEL_INFO(dev)->gen < 4) {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 int clock_limit =
5173 dev_priv->display.get_display_clock_speed(dev);
5174
5175 /*
5176 * Enable pixel doubling when the dot clock
5177 * is > 90% of the (display) core speed.
5178 *
b397c96b
VS
5179 * GDG double wide on either pipe,
5180 * otherwise pipe A only.
cf532bb2 5181 */
b397c96b 5182 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5183 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5184 clock_limit *= 2;
cf532bb2 5185 pipe_config->double_wide = true;
ad3a4479
VS
5186 }
5187
241bfc38 5188 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5189 return -EINVAL;
2c07245f 5190 }
89749350 5191
1d1d0e27
VS
5192 /*
5193 * Pipe horizontal size must be even in:
5194 * - DVO ganged mode
5195 * - LVDS dual channel mode
5196 * - Double wide pipe
5197 */
5198 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5199 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5200 pipe_config->pipe_src_w &= ~1;
5201
8693a824
DL
5202 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5203 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5204 */
5205 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5206 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5207 return -EINVAL;
44f46b42 5208
bd080ee5 5209 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5210 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5211 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5212 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5213 * for lvds. */
5214 pipe_config->pipe_bpp = 8*3;
5215 }
5216
f5adf94e 5217 if (HAS_IPS(dev))
a43f6e0f
DV
5218 hsw_compute_ips_config(crtc, pipe_config);
5219
12030431
DV
5220 /*
5221 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5222 * old clock survives for now.
5223 */
5224 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5225 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5226
877d48d5 5227 if (pipe_config->has_pch_encoder)
a43f6e0f 5228 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5229
e29c22c0 5230 return 0;
79e53945
JB
5231}
5232
25eb05fc
JB
5233static int valleyview_get_display_clock_speed(struct drm_device *dev)
5234{
d197b7d3
VS
5235 struct drm_i915_private *dev_priv = dev->dev_private;
5236 int vco = valleyview_get_vco(dev_priv);
5237 u32 val;
5238 int divider;
5239
5240 mutex_lock(&dev_priv->dpio_lock);
5241 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5242 mutex_unlock(&dev_priv->dpio_lock);
5243
5244 divider = val & DISPLAY_FREQUENCY_VALUES;
5245
7d007f40
VS
5246 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5247 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5248 "cdclk change in progress\n");
5249
d197b7d3 5250 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5251}
5252
e70236a8
JB
5253static int i945_get_display_clock_speed(struct drm_device *dev)
5254{
5255 return 400000;
5256}
79e53945 5257
e70236a8 5258static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5259{
e70236a8
JB
5260 return 333000;
5261}
79e53945 5262
e70236a8
JB
5263static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5264{
5265 return 200000;
5266}
79e53945 5267
257a7ffc
DV
5268static int pnv_get_display_clock_speed(struct drm_device *dev)
5269{
5270 u16 gcfgc = 0;
5271
5272 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5273
5274 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5275 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5276 return 267000;
5277 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5278 return 333000;
5279 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5280 return 444000;
5281 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5282 return 200000;
5283 default:
5284 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5285 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5286 return 133000;
5287 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5288 return 167000;
5289 }
5290}
5291
e70236a8
JB
5292static int i915gm_get_display_clock_speed(struct drm_device *dev)
5293{
5294 u16 gcfgc = 0;
79e53945 5295
e70236a8
JB
5296 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5297
5298 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5299 return 133000;
5300 else {
5301 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5302 case GC_DISPLAY_CLOCK_333_MHZ:
5303 return 333000;
5304 default:
5305 case GC_DISPLAY_CLOCK_190_200_MHZ:
5306 return 190000;
79e53945 5307 }
e70236a8
JB
5308 }
5309}
5310
5311static int i865_get_display_clock_speed(struct drm_device *dev)
5312{
5313 return 266000;
5314}
5315
5316static int i855_get_display_clock_speed(struct drm_device *dev)
5317{
5318 u16 hpllcc = 0;
5319 /* Assume that the hardware is in the high speed state. This
5320 * should be the default.
5321 */
5322 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5323 case GC_CLOCK_133_200:
5324 case GC_CLOCK_100_200:
5325 return 200000;
5326 case GC_CLOCK_166_250:
5327 return 250000;
5328 case GC_CLOCK_100_133:
79e53945 5329 return 133000;
e70236a8 5330 }
79e53945 5331
e70236a8
JB
5332 /* Shouldn't happen */
5333 return 0;
5334}
79e53945 5335
e70236a8
JB
5336static int i830_get_display_clock_speed(struct drm_device *dev)
5337{
5338 return 133000;
79e53945
JB
5339}
5340
2c07245f 5341static void
a65851af 5342intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5343{
a65851af
VS
5344 while (*num > DATA_LINK_M_N_MASK ||
5345 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5346 *num >>= 1;
5347 *den >>= 1;
5348 }
5349}
5350
a65851af
VS
5351static void compute_m_n(unsigned int m, unsigned int n,
5352 uint32_t *ret_m, uint32_t *ret_n)
5353{
5354 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5355 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5356 intel_reduce_m_n_ratio(ret_m, ret_n);
5357}
5358
e69d0bc1
DV
5359void
5360intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5361 int pixel_clock, int link_clock,
5362 struct intel_link_m_n *m_n)
2c07245f 5363{
e69d0bc1 5364 m_n->tu = 64;
a65851af
VS
5365
5366 compute_m_n(bits_per_pixel * pixel_clock,
5367 link_clock * nlanes * 8,
5368 &m_n->gmch_m, &m_n->gmch_n);
5369
5370 compute_m_n(pixel_clock, link_clock,
5371 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5372}
5373
a7615030
CW
5374static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5375{
d330a953
JN
5376 if (i915.panel_use_ssc >= 0)
5377 return i915.panel_use_ssc != 0;
41aa3448 5378 return dev_priv->vbt.lvds_use_ssc
435793df 5379 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5380}
5381
c65d77d8
JB
5382static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5383{
5384 struct drm_device *dev = crtc->dev;
5385 struct drm_i915_private *dev_priv = dev->dev_private;
5386 int refclk;
5387
a0c4da24 5388 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5389 refclk = 100000;
a0c4da24 5390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5391 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5392 refclk = dev_priv->vbt.lvds_ssc_freq;
5393 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5394 } else if (!IS_GEN2(dev)) {
5395 refclk = 96000;
5396 } else {
5397 refclk = 48000;
5398 }
5399
5400 return refclk;
5401}
5402
7429e9d4 5403static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5404{
7df00d7a 5405 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5406}
f47709a9 5407
7429e9d4
DV
5408static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5409{
5410 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5411}
5412
f47709a9 5413static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5414 intel_clock_t *reduced_clock)
5415{
f47709a9 5416 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5417 u32 fp, fp2 = 0;
5418
5419 if (IS_PINEVIEW(dev)) {
7429e9d4 5420 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5421 if (reduced_clock)
7429e9d4 5422 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5423 } else {
7429e9d4 5424 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5425 if (reduced_clock)
7429e9d4 5426 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5427 }
5428
8bcc2795 5429 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5430
f47709a9
DV
5431 crtc->lowfreq_avail = false;
5432 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5433 reduced_clock && i915.powersave) {
8bcc2795 5434 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5435 crtc->lowfreq_avail = true;
a7516a05 5436 } else {
8bcc2795 5437 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5438 }
5439}
5440
5e69f97f
CML
5441static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5442 pipe)
89b667f8
JB
5443{
5444 u32 reg_val;
5445
5446 /*
5447 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5448 * and set it to a reasonable value instead.
5449 */
ab3c759a 5450 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5451 reg_val &= 0xffffff00;
5452 reg_val |= 0x00000030;
ab3c759a 5453 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5454
ab3c759a 5455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5456 reg_val &= 0x8cffffff;
5457 reg_val = 0x8c000000;
ab3c759a 5458 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5459
ab3c759a 5460 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5461 reg_val &= 0xffffff00;
ab3c759a 5462 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5463
ab3c759a 5464 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5465 reg_val &= 0x00ffffff;
5466 reg_val |= 0xb0000000;
ab3c759a 5467 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5468}
5469
b551842d
DV
5470static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5471 struct intel_link_m_n *m_n)
5472{
5473 struct drm_device *dev = crtc->base.dev;
5474 struct drm_i915_private *dev_priv = dev->dev_private;
5475 int pipe = crtc->pipe;
5476
e3b95f1e
DV
5477 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5478 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5479 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5480 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5481}
5482
5483static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5484 struct intel_link_m_n *m_n,
5485 struct intel_link_m_n *m2_n2)
b551842d
DV
5486{
5487 struct drm_device *dev = crtc->base.dev;
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489 int pipe = crtc->pipe;
5490 enum transcoder transcoder = crtc->config.cpu_transcoder;
5491
5492 if (INTEL_INFO(dev)->gen >= 5) {
5493 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5494 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5495 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5496 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5497 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5498 * for gen < 8) and if DRRS is supported (to make sure the
5499 * registers are not unnecessarily accessed).
5500 */
5501 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5502 crtc->config.has_drrs) {
5503 I915_WRITE(PIPE_DATA_M2(transcoder),
5504 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5505 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5506 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5507 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5508 }
b551842d 5509 } else {
e3b95f1e
DV
5510 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5511 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5512 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5513 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5514 }
5515}
5516
f769cd24 5517void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5518{
5519 if (crtc->config.has_pch_encoder)
5520 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5521 else
f769cd24
VK
5522 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5523 &crtc->config.dp_m2_n2);
03afc4a2
DV
5524}
5525
f47709a9 5526static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5527{
5528 u32 dpll, dpll_md;
5529
5530 /*
5531 * Enable DPIO clock input. We should never disable the reference
5532 * clock for pipe B, since VGA hotplug / manual detection depends
5533 * on it.
5534 */
5535 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5536 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5537 /* We should never disable this, set it here for state tracking */
5538 if (crtc->pipe == PIPE_B)
5539 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5540 dpll |= DPLL_VCO_ENABLE;
5541 crtc->config.dpll_hw_state.dpll = dpll;
5542
5543 dpll_md = (crtc->config.pixel_multiplier - 1)
5544 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5545 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5546}
5547
5548static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5549{
f47709a9 5550 struct drm_device *dev = crtc->base.dev;
a0c4da24 5551 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5552 int pipe = crtc->pipe;
bdd4b6a6 5553 u32 mdiv;
a0c4da24 5554 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5555 u32 coreclk, reg_val;
a0c4da24 5556
09153000
DV
5557 mutex_lock(&dev_priv->dpio_lock);
5558
f47709a9
DV
5559 bestn = crtc->config.dpll.n;
5560 bestm1 = crtc->config.dpll.m1;
5561 bestm2 = crtc->config.dpll.m2;
5562 bestp1 = crtc->config.dpll.p1;
5563 bestp2 = crtc->config.dpll.p2;
a0c4da24 5564
89b667f8
JB
5565 /* See eDP HDMI DPIO driver vbios notes doc */
5566
5567 /* PLL B needs special handling */
bdd4b6a6 5568 if (pipe == PIPE_B)
5e69f97f 5569 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5570
5571 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5572 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5573
5574 /* Disable target IRef on PLL */
ab3c759a 5575 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5576 reg_val &= 0x00ffffff;
ab3c759a 5577 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5578
5579 /* Disable fast lock */
ab3c759a 5580 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5581
5582 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5583 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5584 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5585 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5586 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5587
5588 /*
5589 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5590 * but we don't support that).
5591 * Note: don't use the DAC post divider as it seems unstable.
5592 */
5593 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5595
a0c4da24 5596 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5598
89b667f8 5599 /* Set HBR and RBR LPF coefficients */
ff9a6750 5600 if (crtc->config.port_clock == 162000 ||
99750bd4 5601 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5602 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5604 0x009f0003);
89b667f8 5605 else
ab3c759a 5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5607 0x00d0000f);
5608
5609 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5610 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5611 /* Use SSC source */
bdd4b6a6 5612 if (pipe == PIPE_A)
ab3c759a 5613 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5614 0x0df40000);
5615 else
ab3c759a 5616 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5617 0x0df70000);
5618 } else { /* HDMI or VGA */
5619 /* Use bend source */
bdd4b6a6 5620 if (pipe == PIPE_A)
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5622 0x0df70000);
5623 else
ab3c759a 5624 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5625 0x0df40000);
5626 }
a0c4da24 5627
ab3c759a 5628 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5629 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5630 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5631 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5632 coreclk |= 0x01000000;
ab3c759a 5633 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5634
ab3c759a 5635 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5636 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5637}
5638
9d556c99
CML
5639static void chv_update_pll(struct intel_crtc *crtc)
5640{
5641 struct drm_device *dev = crtc->base.dev;
5642 struct drm_i915_private *dev_priv = dev->dev_private;
5643 int pipe = crtc->pipe;
5644 int dpll_reg = DPLL(crtc->pipe);
5645 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5646 u32 loopfilter, intcoeff;
9d556c99
CML
5647 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5648 int refclk;
5649
a11b0703
VS
5650 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5651 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5652 DPLL_VCO_ENABLE;
5653 if (pipe != PIPE_A)
5654 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5655
5656 crtc->config.dpll_hw_state.dpll_md =
5657 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5658
5659 bestn = crtc->config.dpll.n;
5660 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5661 bestm1 = crtc->config.dpll.m1;
5662 bestm2 = crtc->config.dpll.m2 >> 22;
5663 bestp1 = crtc->config.dpll.p1;
5664 bestp2 = crtc->config.dpll.p2;
5665
5666 /*
5667 * Enable Refclk and SSC
5668 */
a11b0703
VS
5669 I915_WRITE(dpll_reg,
5670 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5671
5672 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5673
9d556c99
CML
5674 /* p1 and p2 divider */
5675 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5676 5 << DPIO_CHV_S1_DIV_SHIFT |
5677 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5678 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5679 1 << DPIO_CHV_K_DIV_SHIFT);
5680
5681 /* Feedback post-divider - m2 */
5682 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5683
5684 /* Feedback refclk divider - n and m1 */
5685 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5686 DPIO_CHV_M1_DIV_BY_2 |
5687 1 << DPIO_CHV_N_DIV_SHIFT);
5688
5689 /* M2 fraction division */
5690 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5691
5692 /* M2 fraction division enable */
5693 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5694 DPIO_CHV_FRAC_DIV_EN |
5695 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5696
5697 /* Loop filter */
5698 refclk = i9xx_get_refclk(&crtc->base, 0);
5699 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5700 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5701 if (refclk == 100000)
5702 intcoeff = 11;
5703 else if (refclk == 38400)
5704 intcoeff = 10;
5705 else
5706 intcoeff = 9;
5707 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5708 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5709
5710 /* AFC Recal */
5711 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5712 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5713 DPIO_AFC_RECAL);
5714
5715 mutex_unlock(&dev_priv->dpio_lock);
5716}
5717
f47709a9
DV
5718static void i9xx_update_pll(struct intel_crtc *crtc,
5719 intel_clock_t *reduced_clock,
eb1cbe48
DV
5720 int num_connectors)
5721{
f47709a9 5722 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5723 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5724 u32 dpll;
5725 bool is_sdvo;
f47709a9 5726 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5727
f47709a9 5728 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5729
f47709a9
DV
5730 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5731 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5732
5733 dpll = DPLL_VGA_MODE_DIS;
5734
f47709a9 5735 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5736 dpll |= DPLLB_MODE_LVDS;
5737 else
5738 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5739
ef1b460d 5740 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5741 dpll |= (crtc->config.pixel_multiplier - 1)
5742 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5743 }
198a037f
DV
5744
5745 if (is_sdvo)
4a33e48d 5746 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5747
f47709a9 5748 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5749 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5750
5751 /* compute bitmask from p1 value */
5752 if (IS_PINEVIEW(dev))
5753 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5754 else {
5755 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5756 if (IS_G4X(dev) && reduced_clock)
5757 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5758 }
5759 switch (clock->p2) {
5760 case 5:
5761 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5762 break;
5763 case 7:
5764 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5765 break;
5766 case 10:
5767 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5768 break;
5769 case 14:
5770 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5771 break;
5772 }
5773 if (INTEL_INFO(dev)->gen >= 4)
5774 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5775
09ede541 5776 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5777 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5778 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5779 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5780 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5781 else
5782 dpll |= PLL_REF_INPUT_DREFCLK;
5783
5784 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5785 crtc->config.dpll_hw_state.dpll = dpll;
5786
eb1cbe48 5787 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5788 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5789 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5790 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5791 }
5792}
5793
f47709a9 5794static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5795 intel_clock_t *reduced_clock,
eb1cbe48
DV
5796 int num_connectors)
5797{
f47709a9 5798 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5799 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5800 u32 dpll;
f47709a9 5801 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5802
f47709a9 5803 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5804
eb1cbe48
DV
5805 dpll = DPLL_VGA_MODE_DIS;
5806
f47709a9 5807 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5808 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5809 } else {
5810 if (clock->p1 == 2)
5811 dpll |= PLL_P1_DIVIDE_BY_TWO;
5812 else
5813 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5814 if (clock->p2 == 4)
5815 dpll |= PLL_P2_DIVIDE_BY_4;
5816 }
5817
4a33e48d
DV
5818 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5819 dpll |= DPLL_DVO_2X_MODE;
5820
f47709a9 5821 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5822 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5823 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5824 else
5825 dpll |= PLL_REF_INPUT_DREFCLK;
5826
5827 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5828 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5829}
5830
8a654f3b 5831static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5832{
5833 struct drm_device *dev = intel_crtc->base.dev;
5834 struct drm_i915_private *dev_priv = dev->dev_private;
5835 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5836 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5837 struct drm_display_mode *adjusted_mode =
5838 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5839 uint32_t crtc_vtotal, crtc_vblank_end;
5840 int vsyncshift = 0;
4d8a62ea
DV
5841
5842 /* We need to be careful not to changed the adjusted mode, for otherwise
5843 * the hw state checker will get angry at the mismatch. */
5844 crtc_vtotal = adjusted_mode->crtc_vtotal;
5845 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5846
609aeaca 5847 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5848 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5849 crtc_vtotal -= 1;
5850 crtc_vblank_end -= 1;
609aeaca
VS
5851
5852 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5853 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5854 else
5855 vsyncshift = adjusted_mode->crtc_hsync_start -
5856 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5857 if (vsyncshift < 0)
5858 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5859 }
5860
5861 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5862 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5863
fe2b8f9d 5864 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5865 (adjusted_mode->crtc_hdisplay - 1) |
5866 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5867 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5868 (adjusted_mode->crtc_hblank_start - 1) |
5869 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5870 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5871 (adjusted_mode->crtc_hsync_start - 1) |
5872 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5873
fe2b8f9d 5874 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5875 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5876 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5877 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5878 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5879 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5880 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5881 (adjusted_mode->crtc_vsync_start - 1) |
5882 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5883
b5e508d4
PZ
5884 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5885 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5886 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5887 * bits. */
5888 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5889 (pipe == PIPE_B || pipe == PIPE_C))
5890 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5891
b0e77b9c
PZ
5892 /* pipesrc controls the size that is scaled from, which should
5893 * always be the user's requested size.
5894 */
5895 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5896 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5897 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5898}
5899
1bd1bd80
DV
5900static void intel_get_pipe_timings(struct intel_crtc *crtc,
5901 struct intel_crtc_config *pipe_config)
5902{
5903 struct drm_device *dev = crtc->base.dev;
5904 struct drm_i915_private *dev_priv = dev->dev_private;
5905 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5906 uint32_t tmp;
5907
5908 tmp = I915_READ(HTOTAL(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5911 tmp = I915_READ(HBLANK(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5914 tmp = I915_READ(HSYNC(cpu_transcoder));
5915 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5916 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5917
5918 tmp = I915_READ(VTOTAL(cpu_transcoder));
5919 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5920 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5921 tmp = I915_READ(VBLANK(cpu_transcoder));
5922 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5923 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5924 tmp = I915_READ(VSYNC(cpu_transcoder));
5925 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5926 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5927
5928 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5929 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5930 pipe_config->adjusted_mode.crtc_vtotal += 1;
5931 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5932 }
5933
5934 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5935 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5936 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5937
5938 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5939 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5940}
5941
f6a83288
DV
5942void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5943 struct intel_crtc_config *pipe_config)
babea61d 5944{
f6a83288
DV
5945 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5946 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5947 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5948 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5949
f6a83288
DV
5950 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5951 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5952 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5953 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5954
f6a83288 5955 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5956
f6a83288
DV
5957 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5958 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5959}
5960
84b046f3
DV
5961static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5962{
5963 struct drm_device *dev = intel_crtc->base.dev;
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 uint32_t pipeconf;
5966
9f11a9e4 5967 pipeconf = 0;
84b046f3 5968
67c72a12
DV
5969 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5970 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5971 pipeconf |= PIPECONF_ENABLE;
5972
cf532bb2
VS
5973 if (intel_crtc->config.double_wide)
5974 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5975
ff9ce46e
DV
5976 /* only g4x and later have fancy bpc/dither controls */
5977 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5978 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5979 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5980 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5981 PIPECONF_DITHER_TYPE_SP;
84b046f3 5982
ff9ce46e
DV
5983 switch (intel_crtc->config.pipe_bpp) {
5984 case 18:
5985 pipeconf |= PIPECONF_6BPC;
5986 break;
5987 case 24:
5988 pipeconf |= PIPECONF_8BPC;
5989 break;
5990 case 30:
5991 pipeconf |= PIPECONF_10BPC;
5992 break;
5993 default:
5994 /* Case prevented by intel_choose_pipe_bpp_dither. */
5995 BUG();
84b046f3
DV
5996 }
5997 }
5998
5999 if (HAS_PIPE_CXSR(dev)) {
6000 if (intel_crtc->lowfreq_avail) {
6001 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6002 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6003 } else {
6004 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6005 }
6006 }
6007
efc2cfff
VS
6008 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6009 if (INTEL_INFO(dev)->gen < 4 ||
6010 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6011 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6012 else
6013 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6014 } else
84b046f3
DV
6015 pipeconf |= PIPECONF_PROGRESSIVE;
6016
9f11a9e4
DV
6017 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6018 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6019
84b046f3
DV
6020 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6021 POSTING_READ(PIPECONF(intel_crtc->pipe));
6022}
6023
f564048e 6024static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6025 int x, int y,
94352cf9 6026 struct drm_framebuffer *fb)
79e53945
JB
6027{
6028 struct drm_device *dev = crtc->dev;
6029 struct drm_i915_private *dev_priv = dev->dev_private;
6030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6031 int refclk, num_connectors = 0;
652c393a 6032 intel_clock_t clock, reduced_clock;
a16af721 6033 bool ok, has_reduced_clock = false;
e9fd1c02 6034 bool is_lvds = false, is_dsi = false;
5eddb70b 6035 struct intel_encoder *encoder;
d4906093 6036 const intel_limit_t *limit;
79e53945 6037
6c2b7c12 6038 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6039 switch (encoder->type) {
79e53945
JB
6040 case INTEL_OUTPUT_LVDS:
6041 is_lvds = true;
6042 break;
e9fd1c02
JN
6043 case INTEL_OUTPUT_DSI:
6044 is_dsi = true;
6045 break;
79e53945 6046 }
43565a06 6047
c751ce4f 6048 num_connectors++;
79e53945
JB
6049 }
6050
f2335330 6051 if (is_dsi)
5b18e57c 6052 return 0;
f2335330
JN
6053
6054 if (!intel_crtc->config.clock_set) {
6055 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6056
e9fd1c02
JN
6057 /*
6058 * Returns a set of divisors for the desired target clock with
6059 * the given refclk, or FALSE. The returned values represent
6060 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6061 * 2) / p1 / p2.
6062 */
6063 limit = intel_limit(crtc, refclk);
6064 ok = dev_priv->display.find_dpll(limit, crtc,
6065 intel_crtc->config.port_clock,
6066 refclk, NULL, &clock);
f2335330 6067 if (!ok) {
e9fd1c02
JN
6068 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6069 return -EINVAL;
6070 }
79e53945 6071
f2335330
JN
6072 if (is_lvds && dev_priv->lvds_downclock_avail) {
6073 /*
6074 * Ensure we match the reduced clock's P to the target
6075 * clock. If the clocks don't match, we can't switch
6076 * the display clock by using the FP0/FP1. In such case
6077 * we will disable the LVDS downclock feature.
6078 */
6079 has_reduced_clock =
6080 dev_priv->display.find_dpll(limit, crtc,
6081 dev_priv->lvds_downclock,
6082 refclk, &clock,
6083 &reduced_clock);
6084 }
6085 /* Compat-code for transition, will disappear. */
f47709a9
DV
6086 intel_crtc->config.dpll.n = clock.n;
6087 intel_crtc->config.dpll.m1 = clock.m1;
6088 intel_crtc->config.dpll.m2 = clock.m2;
6089 intel_crtc->config.dpll.p1 = clock.p1;
6090 intel_crtc->config.dpll.p2 = clock.p2;
6091 }
7026d4ac 6092
e9fd1c02 6093 if (IS_GEN2(dev)) {
8a654f3b 6094 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6095 has_reduced_clock ? &reduced_clock : NULL,
6096 num_connectors);
9d556c99
CML
6097 } else if (IS_CHERRYVIEW(dev)) {
6098 chv_update_pll(intel_crtc);
e9fd1c02 6099 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6100 vlv_update_pll(intel_crtc);
e9fd1c02 6101 } else {
f47709a9 6102 i9xx_update_pll(intel_crtc,
eb1cbe48 6103 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6104 num_connectors);
e9fd1c02 6105 }
79e53945 6106
c8f7a0db 6107 return 0;
f564048e
EA
6108}
6109
2fa2fe9a
DV
6110static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6111 struct intel_crtc_config *pipe_config)
6112{
6113 struct drm_device *dev = crtc->base.dev;
6114 struct drm_i915_private *dev_priv = dev->dev_private;
6115 uint32_t tmp;
6116
dc9e7dec
VS
6117 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6118 return;
6119
2fa2fe9a 6120 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6121 if (!(tmp & PFIT_ENABLE))
6122 return;
2fa2fe9a 6123
06922821 6124 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6125 if (INTEL_INFO(dev)->gen < 4) {
6126 if (crtc->pipe != PIPE_B)
6127 return;
2fa2fe9a
DV
6128 } else {
6129 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6130 return;
6131 }
6132
06922821 6133 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6134 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6135 if (INTEL_INFO(dev)->gen < 5)
6136 pipe_config->gmch_pfit.lvds_border_bits =
6137 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6138}
6139
acbec814
JB
6140static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6141 struct intel_crtc_config *pipe_config)
6142{
6143 struct drm_device *dev = crtc->base.dev;
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145 int pipe = pipe_config->cpu_transcoder;
6146 intel_clock_t clock;
6147 u32 mdiv;
662c6ecb 6148 int refclk = 100000;
acbec814 6149
f573de5a
SK
6150 /* In case of MIPI DPLL will not even be used */
6151 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6152 return;
6153
acbec814 6154 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6155 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6156 mutex_unlock(&dev_priv->dpio_lock);
6157
6158 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6159 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6160 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6161 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6162 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6163
f646628b 6164 vlv_clock(refclk, &clock);
acbec814 6165
f646628b
VS
6166 /* clock.dot is the fast clock */
6167 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6168}
6169
1ad292b5
JB
6170static void i9xx_get_plane_config(struct intel_crtc *crtc,
6171 struct intel_plane_config *plane_config)
6172{
6173 struct drm_device *dev = crtc->base.dev;
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 u32 val, base, offset;
6176 int pipe = crtc->pipe, plane = crtc->plane;
6177 int fourcc, pixel_format;
6178 int aligned_height;
6179
66e514c1
DA
6180 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6181 if (!crtc->base.primary->fb) {
1ad292b5
JB
6182 DRM_DEBUG_KMS("failed to alloc fb\n");
6183 return;
6184 }
6185
6186 val = I915_READ(DSPCNTR(plane));
6187
6188 if (INTEL_INFO(dev)->gen >= 4)
6189 if (val & DISPPLANE_TILED)
6190 plane_config->tiled = true;
6191
6192 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6193 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6194 crtc->base.primary->fb->pixel_format = fourcc;
6195 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6196 drm_format_plane_cpp(fourcc, 0) * 8;
6197
6198 if (INTEL_INFO(dev)->gen >= 4) {
6199 if (plane_config->tiled)
6200 offset = I915_READ(DSPTILEOFF(plane));
6201 else
6202 offset = I915_READ(DSPLINOFF(plane));
6203 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6204 } else {
6205 base = I915_READ(DSPADDR(plane));
6206 }
6207 plane_config->base = base;
6208
6209 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6210 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6211 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6212
6213 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6214 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6215
66e514c1 6216 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6217 plane_config->tiled);
6218
1267a26b
FF
6219 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6220 aligned_height);
1ad292b5
JB
6221
6222 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6223 pipe, plane, crtc->base.primary->fb->width,
6224 crtc->base.primary->fb->height,
6225 crtc->base.primary->fb->bits_per_pixel, base,
6226 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6227 plane_config->size);
6228
6229}
6230
70b23a98
VS
6231static void chv_crtc_clock_get(struct intel_crtc *crtc,
6232 struct intel_crtc_config *pipe_config)
6233{
6234 struct drm_device *dev = crtc->base.dev;
6235 struct drm_i915_private *dev_priv = dev->dev_private;
6236 int pipe = pipe_config->cpu_transcoder;
6237 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6238 intel_clock_t clock;
6239 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6240 int refclk = 100000;
6241
6242 mutex_lock(&dev_priv->dpio_lock);
6243 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6244 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6245 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6246 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6247 mutex_unlock(&dev_priv->dpio_lock);
6248
6249 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6250 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6251 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6252 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6253 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6254
6255 chv_clock(refclk, &clock);
6256
6257 /* clock.dot is the fast clock */
6258 pipe_config->port_clock = clock.dot / 5;
6259}
6260
0e8ffe1b
DV
6261static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6262 struct intel_crtc_config *pipe_config)
6263{
6264 struct drm_device *dev = crtc->base.dev;
6265 struct drm_i915_private *dev_priv = dev->dev_private;
6266 uint32_t tmp;
6267
b5482bd0
ID
6268 if (!intel_display_power_enabled(dev_priv,
6269 POWER_DOMAIN_PIPE(crtc->pipe)))
6270 return false;
6271
e143a21c 6272 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6273 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6274
0e8ffe1b
DV
6275 tmp = I915_READ(PIPECONF(crtc->pipe));
6276 if (!(tmp & PIPECONF_ENABLE))
6277 return false;
6278
42571aef
VS
6279 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6280 switch (tmp & PIPECONF_BPC_MASK) {
6281 case PIPECONF_6BPC:
6282 pipe_config->pipe_bpp = 18;
6283 break;
6284 case PIPECONF_8BPC:
6285 pipe_config->pipe_bpp = 24;
6286 break;
6287 case PIPECONF_10BPC:
6288 pipe_config->pipe_bpp = 30;
6289 break;
6290 default:
6291 break;
6292 }
6293 }
6294
b5a9fa09
DV
6295 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6296 pipe_config->limited_color_range = true;
6297
282740f7
VS
6298 if (INTEL_INFO(dev)->gen < 4)
6299 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6300
1bd1bd80
DV
6301 intel_get_pipe_timings(crtc, pipe_config);
6302
2fa2fe9a
DV
6303 i9xx_get_pfit_config(crtc, pipe_config);
6304
6c49f241
DV
6305 if (INTEL_INFO(dev)->gen >= 4) {
6306 tmp = I915_READ(DPLL_MD(crtc->pipe));
6307 pipe_config->pixel_multiplier =
6308 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6309 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6310 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6311 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6312 tmp = I915_READ(DPLL(crtc->pipe));
6313 pipe_config->pixel_multiplier =
6314 ((tmp & SDVO_MULTIPLIER_MASK)
6315 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6316 } else {
6317 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6318 * port and will be fixed up in the encoder->get_config
6319 * function. */
6320 pipe_config->pixel_multiplier = 1;
6321 }
8bcc2795
DV
6322 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6323 if (!IS_VALLEYVIEW(dev)) {
6324 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6325 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6326 } else {
6327 /* Mask out read-only status bits. */
6328 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6329 DPLL_PORTC_READY_MASK |
6330 DPLL_PORTB_READY_MASK);
8bcc2795 6331 }
6c49f241 6332
70b23a98
VS
6333 if (IS_CHERRYVIEW(dev))
6334 chv_crtc_clock_get(crtc, pipe_config);
6335 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6336 vlv_crtc_clock_get(crtc, pipe_config);
6337 else
6338 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6339
0e8ffe1b
DV
6340 return true;
6341}
6342
dde86e2d 6343static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6344{
6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6347 struct intel_encoder *encoder;
74cfd7ac 6348 u32 val, final;
13d83a67 6349 bool has_lvds = false;
199e5d79 6350 bool has_cpu_edp = false;
199e5d79 6351 bool has_panel = false;
99eb6a01
KP
6352 bool has_ck505 = false;
6353 bool can_ssc = false;
13d83a67
JB
6354
6355 /* We need to take the global config into account */
199e5d79
KP
6356 list_for_each_entry(encoder, &mode_config->encoder_list,
6357 base.head) {
6358 switch (encoder->type) {
6359 case INTEL_OUTPUT_LVDS:
6360 has_panel = true;
6361 has_lvds = true;
6362 break;
6363 case INTEL_OUTPUT_EDP:
6364 has_panel = true;
2de6905f 6365 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6366 has_cpu_edp = true;
6367 break;
13d83a67
JB
6368 }
6369 }
6370
99eb6a01 6371 if (HAS_PCH_IBX(dev)) {
41aa3448 6372 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6373 can_ssc = has_ck505;
6374 } else {
6375 has_ck505 = false;
6376 can_ssc = true;
6377 }
6378
2de6905f
ID
6379 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6380 has_panel, has_lvds, has_ck505);
13d83a67
JB
6381
6382 /* Ironlake: try to setup display ref clock before DPLL
6383 * enabling. This is only under driver's control after
6384 * PCH B stepping, previous chipset stepping should be
6385 * ignoring this setting.
6386 */
74cfd7ac
CW
6387 val = I915_READ(PCH_DREF_CONTROL);
6388
6389 /* As we must carefully and slowly disable/enable each source in turn,
6390 * compute the final state we want first and check if we need to
6391 * make any changes at all.
6392 */
6393 final = val;
6394 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6395 if (has_ck505)
6396 final |= DREF_NONSPREAD_CK505_ENABLE;
6397 else
6398 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6399
6400 final &= ~DREF_SSC_SOURCE_MASK;
6401 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6402 final &= ~DREF_SSC1_ENABLE;
6403
6404 if (has_panel) {
6405 final |= DREF_SSC_SOURCE_ENABLE;
6406
6407 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6408 final |= DREF_SSC1_ENABLE;
6409
6410 if (has_cpu_edp) {
6411 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6412 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6413 else
6414 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6415 } else
6416 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6417 } else {
6418 final |= DREF_SSC_SOURCE_DISABLE;
6419 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6420 }
6421
6422 if (final == val)
6423 return;
6424
13d83a67 6425 /* Always enable nonspread source */
74cfd7ac 6426 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6427
99eb6a01 6428 if (has_ck505)
74cfd7ac 6429 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6430 else
74cfd7ac 6431 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6432
199e5d79 6433 if (has_panel) {
74cfd7ac
CW
6434 val &= ~DREF_SSC_SOURCE_MASK;
6435 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6436
199e5d79 6437 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6438 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6439 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6440 val |= DREF_SSC1_ENABLE;
e77166b5 6441 } else
74cfd7ac 6442 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6443
6444 /* Get SSC going before enabling the outputs */
74cfd7ac 6445 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6446 POSTING_READ(PCH_DREF_CONTROL);
6447 udelay(200);
6448
74cfd7ac 6449 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6450
6451 /* Enable CPU source on CPU attached eDP */
199e5d79 6452 if (has_cpu_edp) {
99eb6a01 6453 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6454 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6455 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6456 } else
74cfd7ac 6457 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6458 } else
74cfd7ac 6459 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6460
74cfd7ac 6461 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6462 POSTING_READ(PCH_DREF_CONTROL);
6463 udelay(200);
6464 } else {
6465 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6466
74cfd7ac 6467 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6468
6469 /* Turn off CPU output */
74cfd7ac 6470 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6471
74cfd7ac 6472 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6473 POSTING_READ(PCH_DREF_CONTROL);
6474 udelay(200);
6475
6476 /* Turn off the SSC source */
74cfd7ac
CW
6477 val &= ~DREF_SSC_SOURCE_MASK;
6478 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6479
6480 /* Turn off SSC1 */
74cfd7ac 6481 val &= ~DREF_SSC1_ENABLE;
199e5d79 6482
74cfd7ac 6483 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6484 POSTING_READ(PCH_DREF_CONTROL);
6485 udelay(200);
6486 }
74cfd7ac
CW
6487
6488 BUG_ON(val != final);
13d83a67
JB
6489}
6490
f31f2d55 6491static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6492{
f31f2d55 6493 uint32_t tmp;
dde86e2d 6494
0ff066a9
PZ
6495 tmp = I915_READ(SOUTH_CHICKEN2);
6496 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6497 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6498
0ff066a9
PZ
6499 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6500 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6501 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6502
0ff066a9
PZ
6503 tmp = I915_READ(SOUTH_CHICKEN2);
6504 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6505 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6506
0ff066a9
PZ
6507 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6508 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6509 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6510}
6511
6512/* WaMPhyProgramming:hsw */
6513static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6514{
6515 uint32_t tmp;
dde86e2d
PZ
6516
6517 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6518 tmp &= ~(0xFF << 24);
6519 tmp |= (0x12 << 24);
6520 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6521
dde86e2d
PZ
6522 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6523 tmp |= (1 << 11);
6524 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6525
6526 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6527 tmp |= (1 << 11);
6528 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6529
dde86e2d
PZ
6530 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6531 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6532 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6533
6534 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6535 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6536 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6537
0ff066a9
PZ
6538 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6539 tmp &= ~(7 << 13);
6540 tmp |= (5 << 13);
6541 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6542
0ff066a9
PZ
6543 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6544 tmp &= ~(7 << 13);
6545 tmp |= (5 << 13);
6546 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6547
6548 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6549 tmp &= ~0xFF;
6550 tmp |= 0x1C;
6551 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6552
6553 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6554 tmp &= ~0xFF;
6555 tmp |= 0x1C;
6556 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6557
6558 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6559 tmp &= ~(0xFF << 16);
6560 tmp |= (0x1C << 16);
6561 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6562
6563 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6564 tmp &= ~(0xFF << 16);
6565 tmp |= (0x1C << 16);
6566 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6567
0ff066a9
PZ
6568 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6569 tmp |= (1 << 27);
6570 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6571
0ff066a9
PZ
6572 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6573 tmp |= (1 << 27);
6574 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6575
0ff066a9
PZ
6576 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6577 tmp &= ~(0xF << 28);
6578 tmp |= (4 << 28);
6579 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6580
0ff066a9
PZ
6581 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6582 tmp &= ~(0xF << 28);
6583 tmp |= (4 << 28);
6584 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6585}
6586
2fa86a1f
PZ
6587/* Implements 3 different sequences from BSpec chapter "Display iCLK
6588 * Programming" based on the parameters passed:
6589 * - Sequence to enable CLKOUT_DP
6590 * - Sequence to enable CLKOUT_DP without spread
6591 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6592 */
6593static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6594 bool with_fdi)
f31f2d55
PZ
6595{
6596 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6597 uint32_t reg, tmp;
6598
6599 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6600 with_spread = true;
6601 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6602 with_fdi, "LP PCH doesn't have FDI\n"))
6603 with_fdi = false;
f31f2d55
PZ
6604
6605 mutex_lock(&dev_priv->dpio_lock);
6606
6607 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6608 tmp &= ~SBI_SSCCTL_DISABLE;
6609 tmp |= SBI_SSCCTL_PATHALT;
6610 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6611
6612 udelay(24);
6613
2fa86a1f
PZ
6614 if (with_spread) {
6615 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6616 tmp &= ~SBI_SSCCTL_PATHALT;
6617 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6618
2fa86a1f
PZ
6619 if (with_fdi) {
6620 lpt_reset_fdi_mphy(dev_priv);
6621 lpt_program_fdi_mphy(dev_priv);
6622 }
6623 }
dde86e2d 6624
2fa86a1f
PZ
6625 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6626 SBI_GEN0 : SBI_DBUFF0;
6627 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6628 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6629 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6630
6631 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6632}
6633
47701c3b
PZ
6634/* Sequence to disable CLKOUT_DP */
6635static void lpt_disable_clkout_dp(struct drm_device *dev)
6636{
6637 struct drm_i915_private *dev_priv = dev->dev_private;
6638 uint32_t reg, tmp;
6639
6640 mutex_lock(&dev_priv->dpio_lock);
6641
6642 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6643 SBI_GEN0 : SBI_DBUFF0;
6644 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6645 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6646 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6647
6648 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6649 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6650 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6651 tmp |= SBI_SSCCTL_PATHALT;
6652 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6653 udelay(32);
6654 }
6655 tmp |= SBI_SSCCTL_DISABLE;
6656 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6657 }
6658
6659 mutex_unlock(&dev_priv->dpio_lock);
6660}
6661
bf8fa3d3
PZ
6662static void lpt_init_pch_refclk(struct drm_device *dev)
6663{
6664 struct drm_mode_config *mode_config = &dev->mode_config;
6665 struct intel_encoder *encoder;
6666 bool has_vga = false;
6667
6668 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6669 switch (encoder->type) {
6670 case INTEL_OUTPUT_ANALOG:
6671 has_vga = true;
6672 break;
6673 }
6674 }
6675
47701c3b
PZ
6676 if (has_vga)
6677 lpt_enable_clkout_dp(dev, true, true);
6678 else
6679 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6680}
6681
dde86e2d
PZ
6682/*
6683 * Initialize reference clocks when the driver loads
6684 */
6685void intel_init_pch_refclk(struct drm_device *dev)
6686{
6687 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6688 ironlake_init_pch_refclk(dev);
6689 else if (HAS_PCH_LPT(dev))
6690 lpt_init_pch_refclk(dev);
6691}
6692
d9d444cb
JB
6693static int ironlake_get_refclk(struct drm_crtc *crtc)
6694{
6695 struct drm_device *dev = crtc->dev;
6696 struct drm_i915_private *dev_priv = dev->dev_private;
6697 struct intel_encoder *encoder;
d9d444cb
JB
6698 int num_connectors = 0;
6699 bool is_lvds = false;
6700
6c2b7c12 6701 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6702 switch (encoder->type) {
6703 case INTEL_OUTPUT_LVDS:
6704 is_lvds = true;
6705 break;
d9d444cb
JB
6706 }
6707 num_connectors++;
6708 }
6709
6710 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6711 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6712 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6713 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6714 }
6715
6716 return 120000;
6717}
6718
6ff93609 6719static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6720{
c8203565 6721 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6723 int pipe = intel_crtc->pipe;
c8203565
PZ
6724 uint32_t val;
6725
78114071 6726 val = 0;
c8203565 6727
965e0c48 6728 switch (intel_crtc->config.pipe_bpp) {
c8203565 6729 case 18:
dfd07d72 6730 val |= PIPECONF_6BPC;
c8203565
PZ
6731 break;
6732 case 24:
dfd07d72 6733 val |= PIPECONF_8BPC;
c8203565
PZ
6734 break;
6735 case 30:
dfd07d72 6736 val |= PIPECONF_10BPC;
c8203565
PZ
6737 break;
6738 case 36:
dfd07d72 6739 val |= PIPECONF_12BPC;
c8203565
PZ
6740 break;
6741 default:
cc769b62
PZ
6742 /* Case prevented by intel_choose_pipe_bpp_dither. */
6743 BUG();
c8203565
PZ
6744 }
6745
d8b32247 6746 if (intel_crtc->config.dither)
c8203565
PZ
6747 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6748
6ff93609 6749 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6750 val |= PIPECONF_INTERLACED_ILK;
6751 else
6752 val |= PIPECONF_PROGRESSIVE;
6753
50f3b016 6754 if (intel_crtc->config.limited_color_range)
3685a8f3 6755 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6756
c8203565
PZ
6757 I915_WRITE(PIPECONF(pipe), val);
6758 POSTING_READ(PIPECONF(pipe));
6759}
6760
86d3efce
VS
6761/*
6762 * Set up the pipe CSC unit.
6763 *
6764 * Currently only full range RGB to limited range RGB conversion
6765 * is supported, but eventually this should handle various
6766 * RGB<->YCbCr scenarios as well.
6767 */
50f3b016 6768static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6769{
6770 struct drm_device *dev = crtc->dev;
6771 struct drm_i915_private *dev_priv = dev->dev_private;
6772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6773 int pipe = intel_crtc->pipe;
6774 uint16_t coeff = 0x7800; /* 1.0 */
6775
6776 /*
6777 * TODO: Check what kind of values actually come out of the pipe
6778 * with these coeff/postoff values and adjust to get the best
6779 * accuracy. Perhaps we even need to take the bpc value into
6780 * consideration.
6781 */
6782
50f3b016 6783 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6784 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6785
6786 /*
6787 * GY/GU and RY/RU should be the other way around according
6788 * to BSpec, but reality doesn't agree. Just set them up in
6789 * a way that results in the correct picture.
6790 */
6791 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6792 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6793
6794 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6795 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6796
6797 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6798 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6799
6800 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6801 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6802 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6803
6804 if (INTEL_INFO(dev)->gen > 6) {
6805 uint16_t postoff = 0;
6806
50f3b016 6807 if (intel_crtc->config.limited_color_range)
32cf0cb0 6808 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6809
6810 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6811 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6812 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6813
6814 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6815 } else {
6816 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6817
50f3b016 6818 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6819 mode |= CSC_BLACK_SCREEN_OFFSET;
6820
6821 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6822 }
6823}
6824
6ff93609 6825static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6826{
756f85cf
PZ
6827 struct drm_device *dev = crtc->dev;
6828 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6830 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6831 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6832 uint32_t val;
6833
3eff4faa 6834 val = 0;
ee2b0b38 6835
756f85cf 6836 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6837 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6838
6ff93609 6839 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6840 val |= PIPECONF_INTERLACED_ILK;
6841 else
6842 val |= PIPECONF_PROGRESSIVE;
6843
702e7a56
PZ
6844 I915_WRITE(PIPECONF(cpu_transcoder), val);
6845 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6846
6847 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6848 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6849
6850 if (IS_BROADWELL(dev)) {
6851 val = 0;
6852
6853 switch (intel_crtc->config.pipe_bpp) {
6854 case 18:
6855 val |= PIPEMISC_DITHER_6_BPC;
6856 break;
6857 case 24:
6858 val |= PIPEMISC_DITHER_8_BPC;
6859 break;
6860 case 30:
6861 val |= PIPEMISC_DITHER_10_BPC;
6862 break;
6863 case 36:
6864 val |= PIPEMISC_DITHER_12_BPC;
6865 break;
6866 default:
6867 /* Case prevented by pipe_config_set_bpp. */
6868 BUG();
6869 }
6870
6871 if (intel_crtc->config.dither)
6872 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6873
6874 I915_WRITE(PIPEMISC(pipe), val);
6875 }
ee2b0b38
PZ
6876}
6877
6591c6e4 6878static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6879 intel_clock_t *clock,
6880 bool *has_reduced_clock,
6881 intel_clock_t *reduced_clock)
6882{
6883 struct drm_device *dev = crtc->dev;
6884 struct drm_i915_private *dev_priv = dev->dev_private;
6885 struct intel_encoder *intel_encoder;
6886 int refclk;
d4906093 6887 const intel_limit_t *limit;
a16af721 6888 bool ret, is_lvds = false;
79e53945 6889
6591c6e4
PZ
6890 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6891 switch (intel_encoder->type) {
79e53945
JB
6892 case INTEL_OUTPUT_LVDS:
6893 is_lvds = true;
6894 break;
79e53945
JB
6895 }
6896 }
6897
d9d444cb 6898 refclk = ironlake_get_refclk(crtc);
79e53945 6899
d4906093
ML
6900 /*
6901 * Returns a set of divisors for the desired target clock with the given
6902 * refclk, or FALSE. The returned values represent the clock equation:
6903 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6904 */
1b894b59 6905 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6906 ret = dev_priv->display.find_dpll(limit, crtc,
6907 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6908 refclk, NULL, clock);
6591c6e4
PZ
6909 if (!ret)
6910 return false;
cda4b7d3 6911
ddc9003c 6912 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6913 /*
6914 * Ensure we match the reduced clock's P to the target clock.
6915 * If the clocks don't match, we can't switch the display clock
6916 * by using the FP0/FP1. In such case we will disable the LVDS
6917 * downclock feature.
6918 */
ee9300bb
DV
6919 *has_reduced_clock =
6920 dev_priv->display.find_dpll(limit, crtc,
6921 dev_priv->lvds_downclock,
6922 refclk, clock,
6923 reduced_clock);
652c393a 6924 }
61e9653f 6925
6591c6e4
PZ
6926 return true;
6927}
6928
d4b1931c
PZ
6929int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6930{
6931 /*
6932 * Account for spread spectrum to avoid
6933 * oversubscribing the link. Max center spread
6934 * is 2.5%; use 5% for safety's sake.
6935 */
6936 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6937 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6938}
6939
7429e9d4 6940static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6941{
7429e9d4 6942 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6943}
6944
de13a2e3 6945static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6946 u32 *fp,
9a7c7890 6947 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6948{
de13a2e3 6949 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6950 struct drm_device *dev = crtc->dev;
6951 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6952 struct intel_encoder *intel_encoder;
6953 uint32_t dpll;
6cc5f341 6954 int factor, num_connectors = 0;
09ede541 6955 bool is_lvds = false, is_sdvo = false;
79e53945 6956
de13a2e3
PZ
6957 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6958 switch (intel_encoder->type) {
79e53945
JB
6959 case INTEL_OUTPUT_LVDS:
6960 is_lvds = true;
6961 break;
6962 case INTEL_OUTPUT_SDVO:
7d57382e 6963 case INTEL_OUTPUT_HDMI:
79e53945 6964 is_sdvo = true;
79e53945 6965 break;
79e53945 6966 }
43565a06 6967
c751ce4f 6968 num_connectors++;
79e53945 6969 }
79e53945 6970
c1858123 6971 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6972 factor = 21;
6973 if (is_lvds) {
6974 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6975 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6976 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6977 factor = 25;
09ede541 6978 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6979 factor = 20;
c1858123 6980
7429e9d4 6981 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6982 *fp |= FP_CB_TUNE;
2c07245f 6983
9a7c7890
DV
6984 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6985 *fp2 |= FP_CB_TUNE;
6986
5eddb70b 6987 dpll = 0;
2c07245f 6988
a07d6787
EA
6989 if (is_lvds)
6990 dpll |= DPLLB_MODE_LVDS;
6991 else
6992 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6993
ef1b460d
DV
6994 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6995 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6996
6997 if (is_sdvo)
4a33e48d 6998 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6999 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7000 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7001
a07d6787 7002 /* compute bitmask from p1 value */
7429e9d4 7003 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7004 /* also FPA1 */
7429e9d4 7005 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7006
7429e9d4 7007 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7008 case 5:
7009 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7010 break;
7011 case 7:
7012 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7013 break;
7014 case 10:
7015 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7016 break;
7017 case 14:
7018 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7019 break;
79e53945
JB
7020 }
7021
b4c09f3b 7022 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7023 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7024 else
7025 dpll |= PLL_REF_INPUT_DREFCLK;
7026
959e16d6 7027 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7028}
7029
7030static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7031 int x, int y,
7032 struct drm_framebuffer *fb)
7033{
7034 struct drm_device *dev = crtc->dev;
de13a2e3 7035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7036 int num_connectors = 0;
7037 intel_clock_t clock, reduced_clock;
cbbab5bd 7038 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7039 bool ok, has_reduced_clock = false;
8b47047b 7040 bool is_lvds = false;
de13a2e3 7041 struct intel_encoder *encoder;
e2b78267 7042 struct intel_shared_dpll *pll;
de13a2e3
PZ
7043
7044 for_each_encoder_on_crtc(dev, crtc, encoder) {
7045 switch (encoder->type) {
7046 case INTEL_OUTPUT_LVDS:
7047 is_lvds = true;
7048 break;
de13a2e3
PZ
7049 }
7050
7051 num_connectors++;
a07d6787 7052 }
79e53945 7053
5dc5298b
PZ
7054 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7055 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7056
ff9a6750 7057 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7058 &has_reduced_clock, &reduced_clock);
ee9300bb 7059 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7060 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7061 return -EINVAL;
79e53945 7062 }
f47709a9
DV
7063 /* Compat-code for transition, will disappear. */
7064 if (!intel_crtc->config.clock_set) {
7065 intel_crtc->config.dpll.n = clock.n;
7066 intel_crtc->config.dpll.m1 = clock.m1;
7067 intel_crtc->config.dpll.m2 = clock.m2;
7068 intel_crtc->config.dpll.p1 = clock.p1;
7069 intel_crtc->config.dpll.p2 = clock.p2;
7070 }
79e53945 7071
5dc5298b 7072 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7073 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7074 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7075 if (has_reduced_clock)
7429e9d4 7076 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7077
7429e9d4 7078 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7079 &fp, &reduced_clock,
7080 has_reduced_clock ? &fp2 : NULL);
7081
959e16d6 7082 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7083 intel_crtc->config.dpll_hw_state.fp0 = fp;
7084 if (has_reduced_clock)
7085 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7086 else
7087 intel_crtc->config.dpll_hw_state.fp1 = fp;
7088
b89a1d39 7089 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7090 if (pll == NULL) {
84f44ce7 7091 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7092 pipe_name(intel_crtc->pipe));
4b645f14
JB
7093 return -EINVAL;
7094 }
ee7b9f93 7095 } else
e72f9fbf 7096 intel_put_shared_dpll(intel_crtc);
79e53945 7097
d330a953 7098 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7099 intel_crtc->lowfreq_avail = true;
7100 else
7101 intel_crtc->lowfreq_avail = false;
e2b78267 7102
c8f7a0db 7103 return 0;
79e53945
JB
7104}
7105
eb14cb74
VS
7106static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7107 struct intel_link_m_n *m_n)
7108{
7109 struct drm_device *dev = crtc->base.dev;
7110 struct drm_i915_private *dev_priv = dev->dev_private;
7111 enum pipe pipe = crtc->pipe;
7112
7113 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7114 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7115 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7116 & ~TU_SIZE_MASK;
7117 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7118 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7119 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7120}
7121
7122static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7123 enum transcoder transcoder,
b95af8be
VK
7124 struct intel_link_m_n *m_n,
7125 struct intel_link_m_n *m2_n2)
72419203
DV
7126{
7127 struct drm_device *dev = crtc->base.dev;
7128 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7129 enum pipe pipe = crtc->pipe;
72419203 7130
eb14cb74
VS
7131 if (INTEL_INFO(dev)->gen >= 5) {
7132 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7133 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7134 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7135 & ~TU_SIZE_MASK;
7136 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7137 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7138 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7139 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7140 * gen < 8) and if DRRS is supported (to make sure the
7141 * registers are not unnecessarily read).
7142 */
7143 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7144 crtc->config.has_drrs) {
7145 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7146 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7147 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7148 & ~TU_SIZE_MASK;
7149 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7150 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7151 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7152 }
eb14cb74
VS
7153 } else {
7154 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7155 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7156 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7157 & ~TU_SIZE_MASK;
7158 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7159 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7160 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7161 }
7162}
7163
7164void intel_dp_get_m_n(struct intel_crtc *crtc,
7165 struct intel_crtc_config *pipe_config)
7166{
7167 if (crtc->config.has_pch_encoder)
7168 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7169 else
7170 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7171 &pipe_config->dp_m_n,
7172 &pipe_config->dp_m2_n2);
eb14cb74 7173}
72419203 7174
eb14cb74
VS
7175static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7176 struct intel_crtc_config *pipe_config)
7177{
7178 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7179 &pipe_config->fdi_m_n, NULL);
72419203
DV
7180}
7181
2fa2fe9a
DV
7182static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7183 struct intel_crtc_config *pipe_config)
7184{
7185 struct drm_device *dev = crtc->base.dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 uint32_t tmp;
7188
7189 tmp = I915_READ(PF_CTL(crtc->pipe));
7190
7191 if (tmp & PF_ENABLE) {
fd4daa9c 7192 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7193 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7194 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7195
7196 /* We currently do not free assignements of panel fitters on
7197 * ivb/hsw (since we don't use the higher upscaling modes which
7198 * differentiates them) so just WARN about this case for now. */
7199 if (IS_GEN7(dev)) {
7200 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7201 PF_PIPE_SEL_IVB(crtc->pipe));
7202 }
2fa2fe9a 7203 }
79e53945
JB
7204}
7205
4c6baa59
JB
7206static void ironlake_get_plane_config(struct intel_crtc *crtc,
7207 struct intel_plane_config *plane_config)
7208{
7209 struct drm_device *dev = crtc->base.dev;
7210 struct drm_i915_private *dev_priv = dev->dev_private;
7211 u32 val, base, offset;
7212 int pipe = crtc->pipe, plane = crtc->plane;
7213 int fourcc, pixel_format;
7214 int aligned_height;
7215
66e514c1
DA
7216 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7217 if (!crtc->base.primary->fb) {
4c6baa59
JB
7218 DRM_DEBUG_KMS("failed to alloc fb\n");
7219 return;
7220 }
7221
7222 val = I915_READ(DSPCNTR(plane));
7223
7224 if (INTEL_INFO(dev)->gen >= 4)
7225 if (val & DISPPLANE_TILED)
7226 plane_config->tiled = true;
7227
7228 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7229 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7230 crtc->base.primary->fb->pixel_format = fourcc;
7231 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7232 drm_format_plane_cpp(fourcc, 0) * 8;
7233
7234 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7235 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7236 offset = I915_READ(DSPOFFSET(plane));
7237 } else {
7238 if (plane_config->tiled)
7239 offset = I915_READ(DSPTILEOFF(plane));
7240 else
7241 offset = I915_READ(DSPLINOFF(plane));
7242 }
7243 plane_config->base = base;
7244
7245 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7246 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7247 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7248
7249 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7250 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7251
66e514c1 7252 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7253 plane_config->tiled);
7254
1267a26b
FF
7255 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7256 aligned_height);
4c6baa59
JB
7257
7258 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7259 pipe, plane, crtc->base.primary->fb->width,
7260 crtc->base.primary->fb->height,
7261 crtc->base.primary->fb->bits_per_pixel, base,
7262 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7263 plane_config->size);
7264}
7265
0e8ffe1b
DV
7266static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7267 struct intel_crtc_config *pipe_config)
7268{
7269 struct drm_device *dev = crtc->base.dev;
7270 struct drm_i915_private *dev_priv = dev->dev_private;
7271 uint32_t tmp;
7272
930e8c9e
PZ
7273 if (!intel_display_power_enabled(dev_priv,
7274 POWER_DOMAIN_PIPE(crtc->pipe)))
7275 return false;
7276
e143a21c 7277 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7278 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7279
0e8ffe1b
DV
7280 tmp = I915_READ(PIPECONF(crtc->pipe));
7281 if (!(tmp & PIPECONF_ENABLE))
7282 return false;
7283
42571aef
VS
7284 switch (tmp & PIPECONF_BPC_MASK) {
7285 case PIPECONF_6BPC:
7286 pipe_config->pipe_bpp = 18;
7287 break;
7288 case PIPECONF_8BPC:
7289 pipe_config->pipe_bpp = 24;
7290 break;
7291 case PIPECONF_10BPC:
7292 pipe_config->pipe_bpp = 30;
7293 break;
7294 case PIPECONF_12BPC:
7295 pipe_config->pipe_bpp = 36;
7296 break;
7297 default:
7298 break;
7299 }
7300
b5a9fa09
DV
7301 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7302 pipe_config->limited_color_range = true;
7303
ab9412ba 7304 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7305 struct intel_shared_dpll *pll;
7306
88adfff1
DV
7307 pipe_config->has_pch_encoder = true;
7308
627eb5a3
DV
7309 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7310 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7311 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7312
7313 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7314
c0d43d62 7315 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7316 pipe_config->shared_dpll =
7317 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7318 } else {
7319 tmp = I915_READ(PCH_DPLL_SEL);
7320 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7321 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7322 else
7323 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7324 }
66e985c0
DV
7325
7326 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7327
7328 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7329 &pipe_config->dpll_hw_state));
c93f54cf
DV
7330
7331 tmp = pipe_config->dpll_hw_state.dpll;
7332 pipe_config->pixel_multiplier =
7333 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7334 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7335
7336 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7337 } else {
7338 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7339 }
7340
1bd1bd80
DV
7341 intel_get_pipe_timings(crtc, pipe_config);
7342
2fa2fe9a
DV
7343 ironlake_get_pfit_config(crtc, pipe_config);
7344
0e8ffe1b
DV
7345 return true;
7346}
7347
be256dc7
PZ
7348static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7349{
7350 struct drm_device *dev = dev_priv->dev;
be256dc7 7351 struct intel_crtc *crtc;
be256dc7 7352
d3fcc808 7353 for_each_intel_crtc(dev, crtc)
798183c5 7354 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7355 pipe_name(crtc->pipe));
7356
7357 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7358 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7359 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7360 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7361 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7362 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7363 "CPU PWM1 enabled\n");
c5107b87
PZ
7364 if (IS_HASWELL(dev))
7365 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7366 "CPU PWM2 enabled\n");
be256dc7
PZ
7367 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7368 "PCH PWM1 enabled\n");
7369 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7370 "Utility pin enabled\n");
7371 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7372
9926ada1
PZ
7373 /*
7374 * In theory we can still leave IRQs enabled, as long as only the HPD
7375 * interrupts remain enabled. We used to check for that, but since it's
7376 * gen-specific and since we only disable LCPLL after we fully disable
7377 * the interrupts, the check below should be enough.
7378 */
9df7575f 7379 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7380}
7381
9ccd5aeb
PZ
7382static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7383{
7384 struct drm_device *dev = dev_priv->dev;
7385
7386 if (IS_HASWELL(dev))
7387 return I915_READ(D_COMP_HSW);
7388 else
7389 return I915_READ(D_COMP_BDW);
7390}
7391
3c4c9b81
PZ
7392static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7393{
7394 struct drm_device *dev = dev_priv->dev;
7395
7396 if (IS_HASWELL(dev)) {
7397 mutex_lock(&dev_priv->rps.hw_lock);
7398 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7399 val))
f475dadf 7400 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7401 mutex_unlock(&dev_priv->rps.hw_lock);
7402 } else {
9ccd5aeb
PZ
7403 I915_WRITE(D_COMP_BDW, val);
7404 POSTING_READ(D_COMP_BDW);
3c4c9b81 7405 }
be256dc7
PZ
7406}
7407
7408/*
7409 * This function implements pieces of two sequences from BSpec:
7410 * - Sequence for display software to disable LCPLL
7411 * - Sequence for display software to allow package C8+
7412 * The steps implemented here are just the steps that actually touch the LCPLL
7413 * register. Callers should take care of disabling all the display engine
7414 * functions, doing the mode unset, fixing interrupts, etc.
7415 */
6ff58d53
PZ
7416static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7417 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7418{
7419 uint32_t val;
7420
7421 assert_can_disable_lcpll(dev_priv);
7422
7423 val = I915_READ(LCPLL_CTL);
7424
7425 if (switch_to_fclk) {
7426 val |= LCPLL_CD_SOURCE_FCLK;
7427 I915_WRITE(LCPLL_CTL, val);
7428
7429 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7430 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7431 DRM_ERROR("Switching to FCLK failed\n");
7432
7433 val = I915_READ(LCPLL_CTL);
7434 }
7435
7436 val |= LCPLL_PLL_DISABLE;
7437 I915_WRITE(LCPLL_CTL, val);
7438 POSTING_READ(LCPLL_CTL);
7439
7440 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7441 DRM_ERROR("LCPLL still locked\n");
7442
9ccd5aeb 7443 val = hsw_read_dcomp(dev_priv);
be256dc7 7444 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7445 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7446 ndelay(100);
7447
9ccd5aeb
PZ
7448 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7449 1))
be256dc7
PZ
7450 DRM_ERROR("D_COMP RCOMP still in progress\n");
7451
7452 if (allow_power_down) {
7453 val = I915_READ(LCPLL_CTL);
7454 val |= LCPLL_POWER_DOWN_ALLOW;
7455 I915_WRITE(LCPLL_CTL, val);
7456 POSTING_READ(LCPLL_CTL);
7457 }
7458}
7459
7460/*
7461 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7462 * source.
7463 */
6ff58d53 7464static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7465{
7466 uint32_t val;
a8a8bd54 7467 unsigned long irqflags;
be256dc7
PZ
7468
7469 val = I915_READ(LCPLL_CTL);
7470
7471 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7472 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7473 return;
7474
a8a8bd54
PZ
7475 /*
7476 * Make sure we're not on PC8 state before disabling PC8, otherwise
7477 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7478 *
7479 * The other problem is that hsw_restore_lcpll() is called as part of
7480 * the runtime PM resume sequence, so we can't just call
7481 * gen6_gt_force_wake_get() because that function calls
7482 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7483 * while we are on the resume sequence. So to solve this problem we have
7484 * to call special forcewake code that doesn't touch runtime PM and
7485 * doesn't enable the forcewake delayed work.
7486 */
7487 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7488 if (dev_priv->uncore.forcewake_count++ == 0)
7489 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7490 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7491
be256dc7
PZ
7492 if (val & LCPLL_POWER_DOWN_ALLOW) {
7493 val &= ~LCPLL_POWER_DOWN_ALLOW;
7494 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7495 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7496 }
7497
9ccd5aeb 7498 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7499 val |= D_COMP_COMP_FORCE;
7500 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7501 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7502
7503 val = I915_READ(LCPLL_CTL);
7504 val &= ~LCPLL_PLL_DISABLE;
7505 I915_WRITE(LCPLL_CTL, val);
7506
7507 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7508 DRM_ERROR("LCPLL not locked yet\n");
7509
7510 if (val & LCPLL_CD_SOURCE_FCLK) {
7511 val = I915_READ(LCPLL_CTL);
7512 val &= ~LCPLL_CD_SOURCE_FCLK;
7513 I915_WRITE(LCPLL_CTL, val);
7514
7515 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7516 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7517 DRM_ERROR("Switching back to LCPLL failed\n");
7518 }
215733fa 7519
a8a8bd54
PZ
7520 /* See the big comment above. */
7521 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7522 if (--dev_priv->uncore.forcewake_count == 0)
7523 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7524 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7525}
7526
765dab67
PZ
7527/*
7528 * Package states C8 and deeper are really deep PC states that can only be
7529 * reached when all the devices on the system allow it, so even if the graphics
7530 * device allows PC8+, it doesn't mean the system will actually get to these
7531 * states. Our driver only allows PC8+ when going into runtime PM.
7532 *
7533 * The requirements for PC8+ are that all the outputs are disabled, the power
7534 * well is disabled and most interrupts are disabled, and these are also
7535 * requirements for runtime PM. When these conditions are met, we manually do
7536 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7537 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7538 * hang the machine.
7539 *
7540 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7541 * the state of some registers, so when we come back from PC8+ we need to
7542 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7543 * need to take care of the registers kept by RC6. Notice that this happens even
7544 * if we don't put the device in PCI D3 state (which is what currently happens
7545 * because of the runtime PM support).
7546 *
7547 * For more, read "Display Sequences for Package C8" on the hardware
7548 * documentation.
7549 */
a14cb6fc 7550void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7551{
c67a470b
PZ
7552 struct drm_device *dev = dev_priv->dev;
7553 uint32_t val;
7554
c67a470b
PZ
7555 DRM_DEBUG_KMS("Enabling package C8+\n");
7556
c67a470b
PZ
7557 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7558 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7559 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7560 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7561 }
7562
7563 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7564 hsw_disable_lcpll(dev_priv, true, true);
7565}
7566
a14cb6fc 7567void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7568{
7569 struct drm_device *dev = dev_priv->dev;
7570 uint32_t val;
7571
c67a470b
PZ
7572 DRM_DEBUG_KMS("Disabling package C8+\n");
7573
7574 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7575 lpt_init_pch_refclk(dev);
7576
7577 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7578 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7579 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7580 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7581 }
7582
7583 intel_prepare_ddi(dev);
c67a470b
PZ
7584}
7585
9a952a0d
PZ
7586static void snb_modeset_global_resources(struct drm_device *dev)
7587{
7588 modeset_update_crtc_power_domains(dev);
7589}
7590
4f074129
ID
7591static void haswell_modeset_global_resources(struct drm_device *dev)
7592{
da723569 7593 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7594}
7595
09b4ddf9 7596static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7597 int x, int y,
7598 struct drm_framebuffer *fb)
7599{
09b4ddf9 7600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7601
566b734a 7602 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7603 return -EINVAL;
716c2e55 7604
644cef34
DV
7605 intel_crtc->lowfreq_avail = false;
7606
c8f7a0db 7607 return 0;
79e53945
JB
7608}
7609
7d2c8175
DL
7610static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7611 enum port port,
7612 struct intel_crtc_config *pipe_config)
7613{
7614 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7615
7616 switch (pipe_config->ddi_pll_sel) {
7617 case PORT_CLK_SEL_WRPLL1:
7618 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7619 break;
7620 case PORT_CLK_SEL_WRPLL2:
7621 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7622 break;
7623 }
7624}
7625
26804afd
DV
7626static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7627 struct intel_crtc_config *pipe_config)
7628{
7629 struct drm_device *dev = crtc->base.dev;
7630 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7631 struct intel_shared_dpll *pll;
26804afd
DV
7632 enum port port;
7633 uint32_t tmp;
7634
7635 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7636
7637 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7638
7d2c8175 7639 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7640
d452c5b6
DV
7641 if (pipe_config->shared_dpll >= 0) {
7642 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7643
7644 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7645 &pipe_config->dpll_hw_state));
7646 }
7647
26804afd
DV
7648 /*
7649 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7650 * DDI E. So just check whether this pipe is wired to DDI E and whether
7651 * the PCH transcoder is on.
7652 */
7653 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7654 pipe_config->has_pch_encoder = true;
7655
7656 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7657 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7658 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7659
7660 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7661 }
7662}
7663
0e8ffe1b
DV
7664static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7665 struct intel_crtc_config *pipe_config)
7666{
7667 struct drm_device *dev = crtc->base.dev;
7668 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7669 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7670 uint32_t tmp;
7671
b5482bd0
ID
7672 if (!intel_display_power_enabled(dev_priv,
7673 POWER_DOMAIN_PIPE(crtc->pipe)))
7674 return false;
7675
e143a21c 7676 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7677 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7678
eccb140b
DV
7679 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7680 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7681 enum pipe trans_edp_pipe;
7682 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7683 default:
7684 WARN(1, "unknown pipe linked to edp transcoder\n");
7685 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7686 case TRANS_DDI_EDP_INPUT_A_ON:
7687 trans_edp_pipe = PIPE_A;
7688 break;
7689 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7690 trans_edp_pipe = PIPE_B;
7691 break;
7692 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7693 trans_edp_pipe = PIPE_C;
7694 break;
7695 }
7696
7697 if (trans_edp_pipe == crtc->pipe)
7698 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7699 }
7700
da7e29bd 7701 if (!intel_display_power_enabled(dev_priv,
eccb140b 7702 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7703 return false;
7704
eccb140b 7705 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7706 if (!(tmp & PIPECONF_ENABLE))
7707 return false;
7708
26804afd 7709 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7710
1bd1bd80
DV
7711 intel_get_pipe_timings(crtc, pipe_config);
7712
2fa2fe9a 7713 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7714 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7715 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7716
e59150dc
JB
7717 if (IS_HASWELL(dev))
7718 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7719 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7720
6c49f241
DV
7721 pipe_config->pixel_multiplier = 1;
7722
0e8ffe1b
DV
7723 return true;
7724}
7725
1a91510d
JN
7726static struct {
7727 int clock;
7728 u32 config;
7729} hdmi_audio_clock[] = {
7730 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7731 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7732 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7733 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7734 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7735 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7736 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7737 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7738 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7739 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7740};
7741
7742/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7743static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7744{
7745 int i;
7746
7747 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7748 if (mode->clock == hdmi_audio_clock[i].clock)
7749 break;
7750 }
7751
7752 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7753 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7754 i = 1;
7755 }
7756
7757 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7758 hdmi_audio_clock[i].clock,
7759 hdmi_audio_clock[i].config);
7760
7761 return hdmi_audio_clock[i].config;
7762}
7763
3a9627f4
WF
7764static bool intel_eld_uptodate(struct drm_connector *connector,
7765 int reg_eldv, uint32_t bits_eldv,
7766 int reg_elda, uint32_t bits_elda,
7767 int reg_edid)
7768{
7769 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7770 uint8_t *eld = connector->eld;
7771 uint32_t i;
7772
7773 i = I915_READ(reg_eldv);
7774 i &= bits_eldv;
7775
7776 if (!eld[0])
7777 return !i;
7778
7779 if (!i)
7780 return false;
7781
7782 i = I915_READ(reg_elda);
7783 i &= ~bits_elda;
7784 I915_WRITE(reg_elda, i);
7785
7786 for (i = 0; i < eld[2]; i++)
7787 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7788 return false;
7789
7790 return true;
7791}
7792
e0dac65e 7793static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7794 struct drm_crtc *crtc,
7795 struct drm_display_mode *mode)
e0dac65e
WF
7796{
7797 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7798 uint8_t *eld = connector->eld;
7799 uint32_t eldv;
7800 uint32_t len;
7801 uint32_t i;
7802
7803 i = I915_READ(G4X_AUD_VID_DID);
7804
7805 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7806 eldv = G4X_ELDV_DEVCL_DEVBLC;
7807 else
7808 eldv = G4X_ELDV_DEVCTG;
7809
3a9627f4
WF
7810 if (intel_eld_uptodate(connector,
7811 G4X_AUD_CNTL_ST, eldv,
7812 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7813 G4X_HDMIW_HDMIEDID))
7814 return;
7815
e0dac65e
WF
7816 i = I915_READ(G4X_AUD_CNTL_ST);
7817 i &= ~(eldv | G4X_ELD_ADDR);
7818 len = (i >> 9) & 0x1f; /* ELD buffer size */
7819 I915_WRITE(G4X_AUD_CNTL_ST, i);
7820
7821 if (!eld[0])
7822 return;
7823
7824 len = min_t(uint8_t, eld[2], len);
7825 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7826 for (i = 0; i < len; i++)
7827 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7828
7829 i = I915_READ(G4X_AUD_CNTL_ST);
7830 i |= eldv;
7831 I915_WRITE(G4X_AUD_CNTL_ST, i);
7832}
7833
83358c85 7834static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7835 struct drm_crtc *crtc,
7836 struct drm_display_mode *mode)
83358c85
WX
7837{
7838 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7839 uint8_t *eld = connector->eld;
83358c85
WX
7840 uint32_t eldv;
7841 uint32_t i;
7842 int len;
7843 int pipe = to_intel_crtc(crtc)->pipe;
7844 int tmp;
7845
7846 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7847 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7848 int aud_config = HSW_AUD_CFG(pipe);
7849 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7850
83358c85
WX
7851 /* Audio output enable */
7852 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7853 tmp = I915_READ(aud_cntrl_st2);
7854 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7855 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7856 POSTING_READ(aud_cntrl_st2);
83358c85 7857
c7905792 7858 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7859
7860 /* Set ELD valid state */
7861 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7862 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7863 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7864 I915_WRITE(aud_cntrl_st2, tmp);
7865 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7866 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7867
7868 /* Enable HDMI mode */
7869 tmp = I915_READ(aud_config);
7e7cb34f 7870 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7871 /* clear N_programing_enable and N_value_index */
7872 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7873 I915_WRITE(aud_config, tmp);
7874
7875 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7876
7877 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7878
7879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7880 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7881 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7882 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7883 } else {
7884 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7885 }
83358c85
WX
7886
7887 if (intel_eld_uptodate(connector,
7888 aud_cntrl_st2, eldv,
7889 aud_cntl_st, IBX_ELD_ADDRESS,
7890 hdmiw_hdmiedid))
7891 return;
7892
7893 i = I915_READ(aud_cntrl_st2);
7894 i &= ~eldv;
7895 I915_WRITE(aud_cntrl_st2, i);
7896
7897 if (!eld[0])
7898 return;
7899
7900 i = I915_READ(aud_cntl_st);
7901 i &= ~IBX_ELD_ADDRESS;
7902 I915_WRITE(aud_cntl_st, i);
7903 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7904 DRM_DEBUG_DRIVER("port num:%d\n", i);
7905
7906 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7907 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7908 for (i = 0; i < len; i++)
7909 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7910
7911 i = I915_READ(aud_cntrl_st2);
7912 i |= eldv;
7913 I915_WRITE(aud_cntrl_st2, i);
7914
7915}
7916
e0dac65e 7917static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7918 struct drm_crtc *crtc,
7919 struct drm_display_mode *mode)
e0dac65e
WF
7920{
7921 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7922 uint8_t *eld = connector->eld;
7923 uint32_t eldv;
7924 uint32_t i;
7925 int len;
7926 int hdmiw_hdmiedid;
b6daa025 7927 int aud_config;
e0dac65e
WF
7928 int aud_cntl_st;
7929 int aud_cntrl_st2;
9b138a83 7930 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7931
b3f33cbf 7932 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7933 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7934 aud_config = IBX_AUD_CFG(pipe);
7935 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7936 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7937 } else if (IS_VALLEYVIEW(connector->dev)) {
7938 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7939 aud_config = VLV_AUD_CFG(pipe);
7940 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7941 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7942 } else {
9b138a83
WX
7943 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7944 aud_config = CPT_AUD_CFG(pipe);
7945 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7946 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7947 }
7948
9b138a83 7949 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7950
9ca2fe73
ML
7951 if (IS_VALLEYVIEW(connector->dev)) {
7952 struct intel_encoder *intel_encoder;
7953 struct intel_digital_port *intel_dig_port;
7954
7955 intel_encoder = intel_attached_encoder(connector);
7956 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7957 i = intel_dig_port->port;
7958 } else {
7959 i = I915_READ(aud_cntl_st);
7960 i = (i >> 29) & DIP_PORT_SEL_MASK;
7961 /* DIP_Port_Select, 0x1 = PortB */
7962 }
7963
e0dac65e
WF
7964 if (!i) {
7965 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7966 /* operate blindly on all ports */
1202b4c6
WF
7967 eldv = IBX_ELD_VALIDB;
7968 eldv |= IBX_ELD_VALIDB << 4;
7969 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7970 } else {
2582a850 7971 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7972 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7973 }
7974
3a9627f4
WF
7975 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7976 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7977 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7978 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7979 } else {
7980 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7981 }
e0dac65e 7982
3a9627f4
WF
7983 if (intel_eld_uptodate(connector,
7984 aud_cntrl_st2, eldv,
7985 aud_cntl_st, IBX_ELD_ADDRESS,
7986 hdmiw_hdmiedid))
7987 return;
7988
e0dac65e
WF
7989 i = I915_READ(aud_cntrl_st2);
7990 i &= ~eldv;
7991 I915_WRITE(aud_cntrl_st2, i);
7992
7993 if (!eld[0])
7994 return;
7995
e0dac65e 7996 i = I915_READ(aud_cntl_st);
1202b4c6 7997 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7998 I915_WRITE(aud_cntl_st, i);
7999
8000 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8001 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8002 for (i = 0; i < len; i++)
8003 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8004
8005 i = I915_READ(aud_cntrl_st2);
8006 i |= eldv;
8007 I915_WRITE(aud_cntrl_st2, i);
8008}
8009
8010void intel_write_eld(struct drm_encoder *encoder,
8011 struct drm_display_mode *mode)
8012{
8013 struct drm_crtc *crtc = encoder->crtc;
8014 struct drm_connector *connector;
8015 struct drm_device *dev = encoder->dev;
8016 struct drm_i915_private *dev_priv = dev->dev_private;
8017
8018 connector = drm_select_eld(encoder, mode);
8019 if (!connector)
8020 return;
8021
8022 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8023 connector->base.id,
c23cc417 8024 connector->name,
e0dac65e 8025 connector->encoder->base.id,
8e329a03 8026 connector->encoder->name);
e0dac65e
WF
8027
8028 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8029
8030 if (dev_priv->display.write_eld)
34427052 8031 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8032}
8033
560b85bb
CW
8034static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8035{
8036 struct drm_device *dev = crtc->dev;
8037 struct drm_i915_private *dev_priv = dev->dev_private;
8038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8039 uint32_t cntl;
560b85bb 8040
4b0e333e 8041 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8042 /* On these chipsets we can only modify the base whilst
8043 * the cursor is disabled.
8044 */
4b0e333e
CW
8045 if (intel_crtc->cursor_cntl) {
8046 I915_WRITE(_CURACNTR, 0);
8047 POSTING_READ(_CURACNTR);
8048 intel_crtc->cursor_cntl = 0;
8049 }
8050
9db4a9c7 8051 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8052 POSTING_READ(_CURABASE);
8053 }
560b85bb 8054
4b0e333e
CW
8055 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8056 cntl = 0;
8057 if (base)
8058 cntl = (CURSOR_ENABLE |
560b85bb 8059 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8060 CURSOR_FORMAT_ARGB);
8061 if (intel_crtc->cursor_cntl != cntl) {
8062 I915_WRITE(_CURACNTR, cntl);
8063 POSTING_READ(_CURACNTR);
8064 intel_crtc->cursor_cntl = cntl;
8065 }
560b85bb
CW
8066}
8067
8068static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8069{
8070 struct drm_device *dev = crtc->dev;
8071 struct drm_i915_private *dev_priv = dev->dev_private;
8072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8073 int pipe = intel_crtc->pipe;
4b0e333e 8074 uint32_t cntl;
4726e0b0 8075
4b0e333e
CW
8076 cntl = 0;
8077 if (base) {
8078 cntl = MCURSOR_GAMMA_ENABLE;
8079 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8080 case 64:
8081 cntl |= CURSOR_MODE_64_ARGB_AX;
8082 break;
8083 case 128:
8084 cntl |= CURSOR_MODE_128_ARGB_AX;
8085 break;
8086 case 256:
8087 cntl |= CURSOR_MODE_256_ARGB_AX;
8088 break;
8089 default:
8090 WARN_ON(1);
8091 return;
560b85bb 8092 }
4b0e333e
CW
8093 cntl |= pipe << 28; /* Connect to correct pipe */
8094 }
8095 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8096 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8097 POSTING_READ(CURCNTR(pipe));
8098 intel_crtc->cursor_cntl = cntl;
560b85bb 8099 }
4b0e333e 8100
560b85bb 8101 /* and commit changes on next vblank */
9db4a9c7 8102 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8103 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8104}
8105
65a21cd6
JB
8106static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8107{
8108 struct drm_device *dev = crtc->dev;
8109 struct drm_i915_private *dev_priv = dev->dev_private;
8110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8111 int pipe = intel_crtc->pipe;
4b0e333e
CW
8112 uint32_t cntl;
8113
8114 cntl = 0;
8115 if (base) {
8116 cntl = MCURSOR_GAMMA_ENABLE;
8117 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8118 case 64:
8119 cntl |= CURSOR_MODE_64_ARGB_AX;
8120 break;
8121 case 128:
8122 cntl |= CURSOR_MODE_128_ARGB_AX;
8123 break;
8124 case 256:
8125 cntl |= CURSOR_MODE_256_ARGB_AX;
8126 break;
8127 default:
8128 WARN_ON(1);
8129 return;
65a21cd6 8130 }
4b0e333e
CW
8131 }
8132 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8133 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8134
4b0e333e
CW
8135 if (intel_crtc->cursor_cntl != cntl) {
8136 I915_WRITE(CURCNTR(pipe), cntl);
8137 POSTING_READ(CURCNTR(pipe));
8138 intel_crtc->cursor_cntl = cntl;
65a21cd6 8139 }
4b0e333e 8140
65a21cd6 8141 /* and commit changes on next vblank */
5efb3e28
VS
8142 I915_WRITE(CURBASE(pipe), base);
8143 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8144}
8145
cda4b7d3 8146/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8147static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8148 bool on)
cda4b7d3
CW
8149{
8150 struct drm_device *dev = crtc->dev;
8151 struct drm_i915_private *dev_priv = dev->dev_private;
8152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8153 int pipe = intel_crtc->pipe;
3d7d6510
MR
8154 int x = crtc->cursor_x;
8155 int y = crtc->cursor_y;
d6e4db15 8156 u32 base = 0, pos = 0;
cda4b7d3 8157
d6e4db15 8158 if (on)
cda4b7d3 8159 base = intel_crtc->cursor_addr;
cda4b7d3 8160
d6e4db15
VS
8161 if (x >= intel_crtc->config.pipe_src_w)
8162 base = 0;
8163
8164 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8165 base = 0;
8166
8167 if (x < 0) {
efc9064e 8168 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8169 base = 0;
8170
8171 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8172 x = -x;
8173 }
8174 pos |= x << CURSOR_X_SHIFT;
8175
8176 if (y < 0) {
efc9064e 8177 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8178 base = 0;
8179
8180 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8181 y = -y;
8182 }
8183 pos |= y << CURSOR_Y_SHIFT;
8184
4b0e333e 8185 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8186 return;
8187
5efb3e28
VS
8188 I915_WRITE(CURPOS(pipe), pos);
8189
8190 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8191 ivb_update_cursor(crtc, base);
5efb3e28
VS
8192 else if (IS_845G(dev) || IS_I865G(dev))
8193 i845_update_cursor(crtc, base);
8194 else
8195 i9xx_update_cursor(crtc, base);
4b0e333e 8196 intel_crtc->cursor_base = base;
cda4b7d3
CW
8197}
8198
e3287951
MR
8199/*
8200 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8201 *
8202 * Note that the object's reference will be consumed if the update fails. If
8203 * the update succeeds, the reference of the old object (if any) will be
8204 * consumed.
8205 */
8206static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8207 struct drm_i915_gem_object *obj,
8208 uint32_t width, uint32_t height)
79e53945
JB
8209{
8210 struct drm_device *dev = crtc->dev;
8211 struct drm_i915_private *dev_priv = dev->dev_private;
8212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8213 enum pipe pipe = intel_crtc->pipe;
64f962e3 8214 unsigned old_width;
cda4b7d3 8215 uint32_t addr;
3f8bc370 8216 int ret;
79e53945 8217
79e53945 8218 /* if we want to turn off the cursor ignore width and height */
e3287951 8219 if (!obj) {
28c97730 8220 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8221 addr = 0;
05394f39 8222 obj = NULL;
5004417d 8223 mutex_lock(&dev->struct_mutex);
3f8bc370 8224 goto finish;
79e53945
JB
8225 }
8226
4726e0b0
SK
8227 /* Check for which cursor types we support */
8228 if (!((width == 64 && height == 64) ||
8229 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8230 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8231 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8232 return -EINVAL;
8233 }
8234
05394f39 8235 if (obj->base.size < width * height * 4) {
e3287951 8236 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8237 ret = -ENOMEM;
8238 goto fail;
79e53945
JB
8239 }
8240
71acb5eb 8241 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8242 mutex_lock(&dev->struct_mutex);
3d13ef2e 8243 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8244 unsigned alignment;
8245
d9e86c0e 8246 if (obj->tiling_mode) {
3b25b31f 8247 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8248 ret = -EINVAL;
8249 goto fail_locked;
8250 }
8251
693db184
CW
8252 /* Note that the w/a also requires 2 PTE of padding following
8253 * the bo. We currently fill all unused PTE with the shadow
8254 * page and so we should always have valid PTE following the
8255 * cursor preventing the VT-d warning.
8256 */
8257 alignment = 0;
8258 if (need_vtd_wa(dev))
8259 alignment = 64*1024;
8260
8261 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8262 if (ret) {
3b25b31f 8263 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8264 goto fail_locked;
e7b526bb
CW
8265 }
8266
d9e86c0e
CW
8267 ret = i915_gem_object_put_fence(obj);
8268 if (ret) {
3b25b31f 8269 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8270 goto fail_unpin;
8271 }
8272
f343c5f6 8273 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8274 } else {
6eeefaf3 8275 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8276 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8277 if (ret) {
3b25b31f 8278 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8279 goto fail_locked;
71acb5eb 8280 }
00731155 8281 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8282 }
8283
a6c45cf0 8284 if (IS_GEN2(dev))
14b60391
JB
8285 I915_WRITE(CURSIZE, (height << 12) | width);
8286
3f8bc370 8287 finish:
3f8bc370 8288 if (intel_crtc->cursor_bo) {
00731155 8289 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8290 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8291 }
80824003 8292
a071fa00
DV
8293 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8294 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8295 mutex_unlock(&dev->struct_mutex);
3f8bc370 8296
64f962e3
CW
8297 old_width = intel_crtc->cursor_width;
8298
3f8bc370 8299 intel_crtc->cursor_addr = addr;
05394f39 8300 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8301 intel_crtc->cursor_width = width;
8302 intel_crtc->cursor_height = height;
8303
64f962e3
CW
8304 if (intel_crtc->active) {
8305 if (old_width != width)
8306 intel_update_watermarks(crtc);
f2f5f771 8307 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8308 }
3f8bc370 8309
f99d7069
DV
8310 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8311
79e53945 8312 return 0;
e7b526bb 8313fail_unpin:
cc98b413 8314 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8315fail_locked:
34b8686e 8316 mutex_unlock(&dev->struct_mutex);
bc9025bd 8317fail:
05394f39 8318 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8319 return ret;
79e53945
JB
8320}
8321
79e53945 8322static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8323 u16 *blue, uint32_t start, uint32_t size)
79e53945 8324{
7203425a 8325 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8327
7203425a 8328 for (i = start; i < end; i++) {
79e53945
JB
8329 intel_crtc->lut_r[i] = red[i] >> 8;
8330 intel_crtc->lut_g[i] = green[i] >> 8;
8331 intel_crtc->lut_b[i] = blue[i] >> 8;
8332 }
8333
8334 intel_crtc_load_lut(crtc);
8335}
8336
79e53945
JB
8337/* VESA 640x480x72Hz mode to set on the pipe */
8338static struct drm_display_mode load_detect_mode = {
8339 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8340 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8341};
8342
a8bb6818
DV
8343struct drm_framebuffer *
8344__intel_framebuffer_create(struct drm_device *dev,
8345 struct drm_mode_fb_cmd2 *mode_cmd,
8346 struct drm_i915_gem_object *obj)
d2dff872
CW
8347{
8348 struct intel_framebuffer *intel_fb;
8349 int ret;
8350
8351 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8352 if (!intel_fb) {
8353 drm_gem_object_unreference_unlocked(&obj->base);
8354 return ERR_PTR(-ENOMEM);
8355 }
8356
8357 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8358 if (ret)
8359 goto err;
d2dff872
CW
8360
8361 return &intel_fb->base;
dd4916c5
DV
8362err:
8363 drm_gem_object_unreference_unlocked(&obj->base);
8364 kfree(intel_fb);
8365
8366 return ERR_PTR(ret);
d2dff872
CW
8367}
8368
b5ea642a 8369static struct drm_framebuffer *
a8bb6818
DV
8370intel_framebuffer_create(struct drm_device *dev,
8371 struct drm_mode_fb_cmd2 *mode_cmd,
8372 struct drm_i915_gem_object *obj)
8373{
8374 struct drm_framebuffer *fb;
8375 int ret;
8376
8377 ret = i915_mutex_lock_interruptible(dev);
8378 if (ret)
8379 return ERR_PTR(ret);
8380 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8381 mutex_unlock(&dev->struct_mutex);
8382
8383 return fb;
8384}
8385
d2dff872
CW
8386static u32
8387intel_framebuffer_pitch_for_width(int width, int bpp)
8388{
8389 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8390 return ALIGN(pitch, 64);
8391}
8392
8393static u32
8394intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8395{
8396 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8397 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8398}
8399
8400static struct drm_framebuffer *
8401intel_framebuffer_create_for_mode(struct drm_device *dev,
8402 struct drm_display_mode *mode,
8403 int depth, int bpp)
8404{
8405 struct drm_i915_gem_object *obj;
0fed39bd 8406 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8407
8408 obj = i915_gem_alloc_object(dev,
8409 intel_framebuffer_size_for_mode(mode, bpp));
8410 if (obj == NULL)
8411 return ERR_PTR(-ENOMEM);
8412
8413 mode_cmd.width = mode->hdisplay;
8414 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8415 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8416 bpp);
5ca0c34a 8417 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8418
8419 return intel_framebuffer_create(dev, &mode_cmd, obj);
8420}
8421
8422static struct drm_framebuffer *
8423mode_fits_in_fbdev(struct drm_device *dev,
8424 struct drm_display_mode *mode)
8425{
4520f53a 8426#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8427 struct drm_i915_private *dev_priv = dev->dev_private;
8428 struct drm_i915_gem_object *obj;
8429 struct drm_framebuffer *fb;
8430
4c0e5528 8431 if (!dev_priv->fbdev)
d2dff872
CW
8432 return NULL;
8433
4c0e5528 8434 if (!dev_priv->fbdev->fb)
d2dff872
CW
8435 return NULL;
8436
4c0e5528
DV
8437 obj = dev_priv->fbdev->fb->obj;
8438 BUG_ON(!obj);
8439
8bcd4553 8440 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8441 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8442 fb->bits_per_pixel))
d2dff872
CW
8443 return NULL;
8444
01f2c773 8445 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8446 return NULL;
8447
8448 return fb;
4520f53a
DV
8449#else
8450 return NULL;
8451#endif
d2dff872
CW
8452}
8453
d2434ab7 8454bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8455 struct drm_display_mode *mode,
51fd371b
RC
8456 struct intel_load_detect_pipe *old,
8457 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8458{
8459 struct intel_crtc *intel_crtc;
d2434ab7
DV
8460 struct intel_encoder *intel_encoder =
8461 intel_attached_encoder(connector);
79e53945 8462 struct drm_crtc *possible_crtc;
4ef69c7a 8463 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8464 struct drm_crtc *crtc = NULL;
8465 struct drm_device *dev = encoder->dev;
94352cf9 8466 struct drm_framebuffer *fb;
51fd371b
RC
8467 struct drm_mode_config *config = &dev->mode_config;
8468 int ret, i = -1;
79e53945 8469
d2dff872 8470 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8471 connector->base.id, connector->name,
8e329a03 8472 encoder->base.id, encoder->name);
d2dff872 8473
51fd371b
RC
8474 drm_modeset_acquire_init(ctx, 0);
8475
8476retry:
8477 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8478 if (ret)
8479 goto fail_unlock;
6e9f798d 8480
79e53945
JB
8481 /*
8482 * Algorithm gets a little messy:
7a5e4805 8483 *
79e53945
JB
8484 * - if the connector already has an assigned crtc, use it (but make
8485 * sure it's on first)
7a5e4805 8486 *
79e53945
JB
8487 * - try to find the first unused crtc that can drive this connector,
8488 * and use that if we find one
79e53945
JB
8489 */
8490
8491 /* See if we already have a CRTC for this connector */
8492 if (encoder->crtc) {
8493 crtc = encoder->crtc;
8261b191 8494
51fd371b
RC
8495 ret = drm_modeset_lock(&crtc->mutex, ctx);
8496 if (ret)
8497 goto fail_unlock;
7b24056b 8498
24218aac 8499 old->dpms_mode = connector->dpms;
8261b191
CW
8500 old->load_detect_temp = false;
8501
8502 /* Make sure the crtc and connector are running */
24218aac
DV
8503 if (connector->dpms != DRM_MODE_DPMS_ON)
8504 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8505
7173188d 8506 return true;
79e53945
JB
8507 }
8508
8509 /* Find an unused one (if possible) */
70e1e0ec 8510 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8511 i++;
8512 if (!(encoder->possible_crtcs & (1 << i)))
8513 continue;
8514 if (!possible_crtc->enabled) {
8515 crtc = possible_crtc;
8516 break;
8517 }
79e53945
JB
8518 }
8519
8520 /*
8521 * If we didn't find an unused CRTC, don't use any.
8522 */
8523 if (!crtc) {
7173188d 8524 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8525 goto fail_unlock;
79e53945
JB
8526 }
8527
51fd371b
RC
8528 ret = drm_modeset_lock(&crtc->mutex, ctx);
8529 if (ret)
8530 goto fail_unlock;
fc303101
DV
8531 intel_encoder->new_crtc = to_intel_crtc(crtc);
8532 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8533
8534 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8535 intel_crtc->new_enabled = true;
8536 intel_crtc->new_config = &intel_crtc->config;
24218aac 8537 old->dpms_mode = connector->dpms;
8261b191 8538 old->load_detect_temp = true;
d2dff872 8539 old->release_fb = NULL;
79e53945 8540
6492711d
CW
8541 if (!mode)
8542 mode = &load_detect_mode;
79e53945 8543
d2dff872
CW
8544 /* We need a framebuffer large enough to accommodate all accesses
8545 * that the plane may generate whilst we perform load detection.
8546 * We can not rely on the fbcon either being present (we get called
8547 * during its initialisation to detect all boot displays, or it may
8548 * not even exist) or that it is large enough to satisfy the
8549 * requested mode.
8550 */
94352cf9
DV
8551 fb = mode_fits_in_fbdev(dev, mode);
8552 if (fb == NULL) {
d2dff872 8553 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8554 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8555 old->release_fb = fb;
d2dff872
CW
8556 } else
8557 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8558 if (IS_ERR(fb)) {
d2dff872 8559 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8560 goto fail;
79e53945 8561 }
79e53945 8562
c0c36b94 8563 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8564 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8565 if (old->release_fb)
8566 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8567 goto fail;
79e53945 8568 }
7173188d 8569
79e53945 8570 /* let the connector get through one full cycle before testing */
9d0498a2 8571 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8572 return true;
412b61d8
VS
8573
8574 fail:
8575 intel_crtc->new_enabled = crtc->enabled;
8576 if (intel_crtc->new_enabled)
8577 intel_crtc->new_config = &intel_crtc->config;
8578 else
8579 intel_crtc->new_config = NULL;
51fd371b
RC
8580fail_unlock:
8581 if (ret == -EDEADLK) {
8582 drm_modeset_backoff(ctx);
8583 goto retry;
8584 }
8585
8586 drm_modeset_drop_locks(ctx);
8587 drm_modeset_acquire_fini(ctx);
6e9f798d 8588
412b61d8 8589 return false;
79e53945
JB
8590}
8591
d2434ab7 8592void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8593 struct intel_load_detect_pipe *old,
8594 struct drm_modeset_acquire_ctx *ctx)
79e53945 8595{
d2434ab7
DV
8596 struct intel_encoder *intel_encoder =
8597 intel_attached_encoder(connector);
4ef69c7a 8598 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8599 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8601
d2dff872 8602 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8603 connector->base.id, connector->name,
8e329a03 8604 encoder->base.id, encoder->name);
d2dff872 8605
8261b191 8606 if (old->load_detect_temp) {
fc303101
DV
8607 to_intel_connector(connector)->new_encoder = NULL;
8608 intel_encoder->new_crtc = NULL;
412b61d8
VS
8609 intel_crtc->new_enabled = false;
8610 intel_crtc->new_config = NULL;
fc303101 8611 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8612
36206361
DV
8613 if (old->release_fb) {
8614 drm_framebuffer_unregister_private(old->release_fb);
8615 drm_framebuffer_unreference(old->release_fb);
8616 }
d2dff872 8617
51fd371b 8618 goto unlock;
0622a53c 8619 return;
79e53945
JB
8620 }
8621
c751ce4f 8622 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8623 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8624 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8625
51fd371b
RC
8626unlock:
8627 drm_modeset_drop_locks(ctx);
8628 drm_modeset_acquire_fini(ctx);
79e53945
JB
8629}
8630
da4a1efa
VS
8631static int i9xx_pll_refclk(struct drm_device *dev,
8632 const struct intel_crtc_config *pipe_config)
8633{
8634 struct drm_i915_private *dev_priv = dev->dev_private;
8635 u32 dpll = pipe_config->dpll_hw_state.dpll;
8636
8637 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8638 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8639 else if (HAS_PCH_SPLIT(dev))
8640 return 120000;
8641 else if (!IS_GEN2(dev))
8642 return 96000;
8643 else
8644 return 48000;
8645}
8646
79e53945 8647/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8648static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8649 struct intel_crtc_config *pipe_config)
79e53945 8650{
f1f644dc 8651 struct drm_device *dev = crtc->base.dev;
79e53945 8652 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8653 int pipe = pipe_config->cpu_transcoder;
293623f7 8654 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8655 u32 fp;
8656 intel_clock_t clock;
da4a1efa 8657 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8658
8659 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8660 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8661 else
293623f7 8662 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8663
8664 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8665 if (IS_PINEVIEW(dev)) {
8666 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8667 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8668 } else {
8669 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8670 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8671 }
8672
a6c45cf0 8673 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8674 if (IS_PINEVIEW(dev))
8675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8676 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8677 else
8678 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8679 DPLL_FPA01_P1_POST_DIV_SHIFT);
8680
8681 switch (dpll & DPLL_MODE_MASK) {
8682 case DPLLB_MODE_DAC_SERIAL:
8683 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8684 5 : 10;
8685 break;
8686 case DPLLB_MODE_LVDS:
8687 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8688 7 : 14;
8689 break;
8690 default:
28c97730 8691 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8692 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8693 return;
79e53945
JB
8694 }
8695
ac58c3f0 8696 if (IS_PINEVIEW(dev))
da4a1efa 8697 pineview_clock(refclk, &clock);
ac58c3f0 8698 else
da4a1efa 8699 i9xx_clock(refclk, &clock);
79e53945 8700 } else {
0fb58223 8701 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8702 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8703
8704 if (is_lvds) {
8705 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8706 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8707
8708 if (lvds & LVDS_CLKB_POWER_UP)
8709 clock.p2 = 7;
8710 else
8711 clock.p2 = 14;
79e53945
JB
8712 } else {
8713 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8714 clock.p1 = 2;
8715 else {
8716 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8717 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8718 }
8719 if (dpll & PLL_P2_DIVIDE_BY_4)
8720 clock.p2 = 4;
8721 else
8722 clock.p2 = 2;
79e53945 8723 }
da4a1efa
VS
8724
8725 i9xx_clock(refclk, &clock);
79e53945
JB
8726 }
8727
18442d08
VS
8728 /*
8729 * This value includes pixel_multiplier. We will use
241bfc38 8730 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8731 * encoder's get_config() function.
8732 */
8733 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8734}
8735
6878da05
VS
8736int intel_dotclock_calculate(int link_freq,
8737 const struct intel_link_m_n *m_n)
f1f644dc 8738{
f1f644dc
JB
8739 /*
8740 * The calculation for the data clock is:
1041a02f 8741 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8742 * But we want to avoid losing precison if possible, so:
1041a02f 8743 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8744 *
8745 * and the link clock is simpler:
1041a02f 8746 * link_clock = (m * link_clock) / n
f1f644dc
JB
8747 */
8748
6878da05
VS
8749 if (!m_n->link_n)
8750 return 0;
f1f644dc 8751
6878da05
VS
8752 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8753}
f1f644dc 8754
18442d08
VS
8755static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8756 struct intel_crtc_config *pipe_config)
6878da05
VS
8757{
8758 struct drm_device *dev = crtc->base.dev;
79e53945 8759
18442d08
VS
8760 /* read out port_clock from the DPLL */
8761 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8762
f1f644dc 8763 /*
18442d08 8764 * This value does not include pixel_multiplier.
241bfc38 8765 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8766 * agree once we know their relationship in the encoder's
8767 * get_config() function.
79e53945 8768 */
241bfc38 8769 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8770 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8771 &pipe_config->fdi_m_n);
79e53945
JB
8772}
8773
8774/** Returns the currently programmed mode of the given pipe. */
8775struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8776 struct drm_crtc *crtc)
8777{
548f245b 8778 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8780 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8781 struct drm_display_mode *mode;
f1f644dc 8782 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8783 int htot = I915_READ(HTOTAL(cpu_transcoder));
8784 int hsync = I915_READ(HSYNC(cpu_transcoder));
8785 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8786 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8787 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8788
8789 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8790 if (!mode)
8791 return NULL;
8792
f1f644dc
JB
8793 /*
8794 * Construct a pipe_config sufficient for getting the clock info
8795 * back out of crtc_clock_get.
8796 *
8797 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8798 * to use a real value here instead.
8799 */
293623f7 8800 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8801 pipe_config.pixel_multiplier = 1;
293623f7
VS
8802 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8803 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8804 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8805 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8806
773ae034 8807 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8808 mode->hdisplay = (htot & 0xffff) + 1;
8809 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8810 mode->hsync_start = (hsync & 0xffff) + 1;
8811 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8812 mode->vdisplay = (vtot & 0xffff) + 1;
8813 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8814 mode->vsync_start = (vsync & 0xffff) + 1;
8815 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8816
8817 drm_mode_set_name(mode);
79e53945
JB
8818
8819 return mode;
8820}
8821
cc36513c
DV
8822static void intel_increase_pllclock(struct drm_device *dev,
8823 enum pipe pipe)
652c393a 8824{
fbee40df 8825 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8826 int dpll_reg = DPLL(pipe);
8827 int dpll;
652c393a 8828
baff296c 8829 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8830 return;
8831
8832 if (!dev_priv->lvds_downclock_avail)
8833 return;
8834
dbdc6479 8835 dpll = I915_READ(dpll_reg);
652c393a 8836 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8837 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8838
8ac5a6d5 8839 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8840
8841 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8842 I915_WRITE(dpll_reg, dpll);
9d0498a2 8843 intel_wait_for_vblank(dev, pipe);
dbdc6479 8844
652c393a
JB
8845 dpll = I915_READ(dpll_reg);
8846 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8847 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8848 }
652c393a
JB
8849}
8850
8851static void intel_decrease_pllclock(struct drm_crtc *crtc)
8852{
8853 struct drm_device *dev = crtc->dev;
fbee40df 8854 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8856
baff296c 8857 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8858 return;
8859
8860 if (!dev_priv->lvds_downclock_avail)
8861 return;
8862
8863 /*
8864 * Since this is called by a timer, we should never get here in
8865 * the manual case.
8866 */
8867 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8868 int pipe = intel_crtc->pipe;
8869 int dpll_reg = DPLL(pipe);
8870 int dpll;
f6e5b160 8871
44d98a61 8872 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8873
8ac5a6d5 8874 assert_panel_unlocked(dev_priv, pipe);
652c393a 8875
dc257cf1 8876 dpll = I915_READ(dpll_reg);
652c393a
JB
8877 dpll |= DISPLAY_RATE_SELECT_FPA1;
8878 I915_WRITE(dpll_reg, dpll);
9d0498a2 8879 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8880 dpll = I915_READ(dpll_reg);
8881 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8882 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8883 }
8884
8885}
8886
f047e395
CW
8887void intel_mark_busy(struct drm_device *dev)
8888{
c67a470b
PZ
8889 struct drm_i915_private *dev_priv = dev->dev_private;
8890
f62a0076
CW
8891 if (dev_priv->mm.busy)
8892 return;
8893
43694d69 8894 intel_runtime_pm_get(dev_priv);
c67a470b 8895 i915_update_gfx_val(dev_priv);
f62a0076 8896 dev_priv->mm.busy = true;
f047e395
CW
8897}
8898
8899void intel_mark_idle(struct drm_device *dev)
652c393a 8900{
c67a470b 8901 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8902 struct drm_crtc *crtc;
652c393a 8903
f62a0076
CW
8904 if (!dev_priv->mm.busy)
8905 return;
8906
8907 dev_priv->mm.busy = false;
8908
d330a953 8909 if (!i915.powersave)
bb4cdd53 8910 goto out;
652c393a 8911
70e1e0ec 8912 for_each_crtc(dev, crtc) {
f4510a27 8913 if (!crtc->primary->fb)
652c393a
JB
8914 continue;
8915
725a5b54 8916 intel_decrease_pllclock(crtc);
652c393a 8917 }
b29c19b6 8918
3d13ef2e 8919 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8920 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8921
8922out:
43694d69 8923 intel_runtime_pm_put(dev_priv);
652c393a
JB
8924}
8925
7c8f8a70 8926
f99d7069
DV
8927/**
8928 * intel_mark_fb_busy - mark given planes as busy
8929 * @dev: DRM device
8930 * @frontbuffer_bits: bits for the affected planes
8931 * @ring: optional ring for asynchronous commands
8932 *
8933 * This function gets called every time the screen contents change. It can be
8934 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8935 */
8936static void intel_mark_fb_busy(struct drm_device *dev,
8937 unsigned frontbuffer_bits,
8938 struct intel_engine_cs *ring)
652c393a 8939{
cc36513c 8940 enum pipe pipe;
652c393a 8941
d330a953 8942 if (!i915.powersave)
acb87dfb
CW
8943 return;
8944
cc36513c 8945 for_each_pipe(pipe) {
f99d7069 8946 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8947 continue;
8948
cc36513c 8949 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8950 if (ring && intel_fbc_enabled(dev))
8951 ring->fbc_dirty = true;
652c393a
JB
8952 }
8953}
8954
f99d7069
DV
8955/**
8956 * intel_fb_obj_invalidate - invalidate frontbuffer object
8957 * @obj: GEM object to invalidate
8958 * @ring: set for asynchronous rendering
8959 *
8960 * This function gets called every time rendering on the given object starts and
8961 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8962 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8963 * until the rendering completes or a flip on this frontbuffer plane is
8964 * scheduled.
8965 */
8966void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8967 struct intel_engine_cs *ring)
8968{
8969 struct drm_device *dev = obj->base.dev;
8970 struct drm_i915_private *dev_priv = dev->dev_private;
8971
8972 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8973
8974 if (!obj->frontbuffer_bits)
8975 return;
8976
8977 if (ring) {
8978 mutex_lock(&dev_priv->fb_tracking.lock);
8979 dev_priv->fb_tracking.busy_bits
8980 |= obj->frontbuffer_bits;
8981 dev_priv->fb_tracking.flip_bits
8982 &= ~obj->frontbuffer_bits;
8983 mutex_unlock(&dev_priv->fb_tracking.lock);
8984 }
8985
8986 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8987
9ca15301 8988 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
8989}
8990
8991/**
8992 * intel_frontbuffer_flush - flush frontbuffer
8993 * @dev: DRM device
8994 * @frontbuffer_bits: frontbuffer plane tracking bits
8995 *
8996 * This function gets called every time rendering on the given planes has
8997 * completed and frontbuffer caching can be started again. Flushes will get
8998 * delayed if they're blocked by some oustanding asynchronous rendering.
8999 *
9000 * Can be called without any locks held.
9001 */
9002void intel_frontbuffer_flush(struct drm_device *dev,
9003 unsigned frontbuffer_bits)
9004{
9005 struct drm_i915_private *dev_priv = dev->dev_private;
9006
9007 /* Delay flushing when rings are still busy.*/
9008 mutex_lock(&dev_priv->fb_tracking.lock);
9009 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9010 mutex_unlock(&dev_priv->fb_tracking.lock);
9011
9012 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9013
9ca15301 9014 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9015}
9016
9017/**
9018 * intel_fb_obj_flush - flush frontbuffer object
9019 * @obj: GEM object to flush
9020 * @retire: set when retiring asynchronous rendering
9021 *
9022 * This function gets called every time rendering on the given object has
9023 * completed and frontbuffer caching can be started again. If @retire is true
9024 * then any delayed flushes will be unblocked.
9025 */
9026void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9027 bool retire)
9028{
9029 struct drm_device *dev = obj->base.dev;
9030 struct drm_i915_private *dev_priv = dev->dev_private;
9031 unsigned frontbuffer_bits;
9032
9033 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9034
9035 if (!obj->frontbuffer_bits)
9036 return;
9037
9038 frontbuffer_bits = obj->frontbuffer_bits;
9039
9040 if (retire) {
9041 mutex_lock(&dev_priv->fb_tracking.lock);
9042 /* Filter out new bits since rendering started. */
9043 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9044
9045 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9046 mutex_unlock(&dev_priv->fb_tracking.lock);
9047 }
9048
9049 intel_frontbuffer_flush(dev, frontbuffer_bits);
9050}
9051
9052/**
9053 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9054 * @dev: DRM device
9055 * @frontbuffer_bits: frontbuffer plane tracking bits
9056 *
9057 * This function gets called after scheduling a flip on @obj. The actual
9058 * frontbuffer flushing will be delayed until completion is signalled with
9059 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9060 * flush will be cancelled.
9061 *
9062 * Can be called without any locks held.
9063 */
9064void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9065 unsigned frontbuffer_bits)
9066{
9067 struct drm_i915_private *dev_priv = dev->dev_private;
9068
9069 mutex_lock(&dev_priv->fb_tracking.lock);
9070 dev_priv->fb_tracking.flip_bits
9071 |= frontbuffer_bits;
9072 mutex_unlock(&dev_priv->fb_tracking.lock);
9073}
9074
9075/**
9076 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9077 * @dev: DRM device
9078 * @frontbuffer_bits: frontbuffer plane tracking bits
9079 *
9080 * This function gets called after the flip has been latched and will complete
9081 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9082 *
9083 * Can be called without any locks held.
9084 */
9085void intel_frontbuffer_flip_complete(struct drm_device *dev,
9086 unsigned frontbuffer_bits)
9087{
9088 struct drm_i915_private *dev_priv = dev->dev_private;
9089
9090 mutex_lock(&dev_priv->fb_tracking.lock);
9091 /* Mask any cancelled flips. */
9092 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9093 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9094 mutex_unlock(&dev_priv->fb_tracking.lock);
9095
9096 intel_frontbuffer_flush(dev, frontbuffer_bits);
9097}
9098
79e53945
JB
9099static void intel_crtc_destroy(struct drm_crtc *crtc)
9100{
9101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9102 struct drm_device *dev = crtc->dev;
9103 struct intel_unpin_work *work;
9104 unsigned long flags;
9105
9106 spin_lock_irqsave(&dev->event_lock, flags);
9107 work = intel_crtc->unpin_work;
9108 intel_crtc->unpin_work = NULL;
9109 spin_unlock_irqrestore(&dev->event_lock, flags);
9110
9111 if (work) {
9112 cancel_work_sync(&work->work);
9113 kfree(work);
9114 }
79e53945
JB
9115
9116 drm_crtc_cleanup(crtc);
67e77c5a 9117
79e53945
JB
9118 kfree(intel_crtc);
9119}
9120
6b95a207
KH
9121static void intel_unpin_work_fn(struct work_struct *__work)
9122{
9123 struct intel_unpin_work *work =
9124 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9125 struct drm_device *dev = work->crtc->dev;
f99d7069 9126 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9127
b4a98e57 9128 mutex_lock(&dev->struct_mutex);
1690e1eb 9129 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9130 drm_gem_object_unreference(&work->pending_flip_obj->base);
9131 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9132
b4a98e57
CW
9133 intel_update_fbc(dev);
9134 mutex_unlock(&dev->struct_mutex);
9135
f99d7069
DV
9136 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9137
b4a98e57
CW
9138 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9139 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9140
6b95a207
KH
9141 kfree(work);
9142}
9143
1afe3e9d 9144static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9145 struct drm_crtc *crtc)
6b95a207 9146{
fbee40df 9147 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9149 struct intel_unpin_work *work;
6b95a207
KH
9150 unsigned long flags;
9151
9152 /* Ignore early vblank irqs */
9153 if (intel_crtc == NULL)
9154 return;
9155
9156 spin_lock_irqsave(&dev->event_lock, flags);
9157 work = intel_crtc->unpin_work;
e7d841ca
CW
9158
9159 /* Ensure we don't miss a work->pending update ... */
9160 smp_rmb();
9161
9162 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9163 spin_unlock_irqrestore(&dev->event_lock, flags);
9164 return;
9165 }
9166
e7d841ca
CW
9167 /* and that the unpin work is consistent wrt ->pending. */
9168 smp_rmb();
9169
6b95a207 9170 intel_crtc->unpin_work = NULL;
6b95a207 9171
45a066eb
RC
9172 if (work->event)
9173 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9174
87b6b101 9175 drm_crtc_vblank_put(crtc);
0af7e4df 9176
6b95a207
KH
9177 spin_unlock_irqrestore(&dev->event_lock, flags);
9178
2c10d571 9179 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9180
9181 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9182
9183 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9184}
9185
1afe3e9d
JB
9186void intel_finish_page_flip(struct drm_device *dev, int pipe)
9187{
fbee40df 9188 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9189 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9190
49b14a5c 9191 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9192}
9193
9194void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9195{
fbee40df 9196 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9197 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9198
49b14a5c 9199 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9200}
9201
75f7f3ec
VS
9202/* Is 'a' after or equal to 'b'? */
9203static bool g4x_flip_count_after_eq(u32 a, u32 b)
9204{
9205 return !((a - b) & 0x80000000);
9206}
9207
9208static bool page_flip_finished(struct intel_crtc *crtc)
9209{
9210 struct drm_device *dev = crtc->base.dev;
9211 struct drm_i915_private *dev_priv = dev->dev_private;
9212
9213 /*
9214 * The relevant registers doen't exist on pre-ctg.
9215 * As the flip done interrupt doesn't trigger for mmio
9216 * flips on gmch platforms, a flip count check isn't
9217 * really needed there. But since ctg has the registers,
9218 * include it in the check anyway.
9219 */
9220 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9221 return true;
9222
9223 /*
9224 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9225 * used the same base address. In that case the mmio flip might
9226 * have completed, but the CS hasn't even executed the flip yet.
9227 *
9228 * A flip count check isn't enough as the CS might have updated
9229 * the base address just after start of vblank, but before we
9230 * managed to process the interrupt. This means we'd complete the
9231 * CS flip too soon.
9232 *
9233 * Combining both checks should get us a good enough result. It may
9234 * still happen that the CS flip has been executed, but has not
9235 * yet actually completed. But in case the base address is the same
9236 * anyway, we don't really care.
9237 */
9238 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9239 crtc->unpin_work->gtt_offset &&
9240 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9241 crtc->unpin_work->flip_count);
9242}
9243
6b95a207
KH
9244void intel_prepare_page_flip(struct drm_device *dev, int plane)
9245{
fbee40df 9246 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9247 struct intel_crtc *intel_crtc =
9248 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9249 unsigned long flags;
9250
e7d841ca
CW
9251 /* NB: An MMIO update of the plane base pointer will also
9252 * generate a page-flip completion irq, i.e. every modeset
9253 * is also accompanied by a spurious intel_prepare_page_flip().
9254 */
6b95a207 9255 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9256 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9257 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9258 spin_unlock_irqrestore(&dev->event_lock, flags);
9259}
9260
eba905b2 9261static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9262{
9263 /* Ensure that the work item is consistent when activating it ... */
9264 smp_wmb();
9265 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9266 /* and that it is marked active as soon as the irq could fire. */
9267 smp_wmb();
9268}
9269
8c9f3aaf
JB
9270static int intel_gen2_queue_flip(struct drm_device *dev,
9271 struct drm_crtc *crtc,
9272 struct drm_framebuffer *fb,
ed8d1975 9273 struct drm_i915_gem_object *obj,
a4872ba6 9274 struct intel_engine_cs *ring,
ed8d1975 9275 uint32_t flags)
8c9f3aaf 9276{
8c9f3aaf 9277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9278 u32 flip_mask;
9279 int ret;
9280
6d90c952 9281 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9282 if (ret)
4fa62c89 9283 return ret;
8c9f3aaf
JB
9284
9285 /* Can't queue multiple flips, so wait for the previous
9286 * one to finish before executing the next.
9287 */
9288 if (intel_crtc->plane)
9289 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9290 else
9291 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9292 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9293 intel_ring_emit(ring, MI_NOOP);
9294 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9295 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9296 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9297 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9298 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9299
9300 intel_mark_page_flip_active(intel_crtc);
09246732 9301 __intel_ring_advance(ring);
83d4092b 9302 return 0;
8c9f3aaf
JB
9303}
9304
9305static int intel_gen3_queue_flip(struct drm_device *dev,
9306 struct drm_crtc *crtc,
9307 struct drm_framebuffer *fb,
ed8d1975 9308 struct drm_i915_gem_object *obj,
a4872ba6 9309 struct intel_engine_cs *ring,
ed8d1975 9310 uint32_t flags)
8c9f3aaf 9311{
8c9f3aaf 9312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9313 u32 flip_mask;
9314 int ret;
9315
6d90c952 9316 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9317 if (ret)
4fa62c89 9318 return ret;
8c9f3aaf
JB
9319
9320 if (intel_crtc->plane)
9321 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9322 else
9323 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9324 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9325 intel_ring_emit(ring, MI_NOOP);
9326 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9327 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9328 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9329 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9330 intel_ring_emit(ring, MI_NOOP);
9331
e7d841ca 9332 intel_mark_page_flip_active(intel_crtc);
09246732 9333 __intel_ring_advance(ring);
83d4092b 9334 return 0;
8c9f3aaf
JB
9335}
9336
9337static int intel_gen4_queue_flip(struct drm_device *dev,
9338 struct drm_crtc *crtc,
9339 struct drm_framebuffer *fb,
ed8d1975 9340 struct drm_i915_gem_object *obj,
a4872ba6 9341 struct intel_engine_cs *ring,
ed8d1975 9342 uint32_t flags)
8c9f3aaf
JB
9343{
9344 struct drm_i915_private *dev_priv = dev->dev_private;
9345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9346 uint32_t pf, pipesrc;
9347 int ret;
9348
6d90c952 9349 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9350 if (ret)
4fa62c89 9351 return ret;
8c9f3aaf
JB
9352
9353 /* i965+ uses the linear or tiled offsets from the
9354 * Display Registers (which do not change across a page-flip)
9355 * so we need only reprogram the base address.
9356 */
6d90c952
DV
9357 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9358 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9359 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9360 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9361 obj->tiling_mode);
8c9f3aaf
JB
9362
9363 /* XXX Enabling the panel-fitter across page-flip is so far
9364 * untested on non-native modes, so ignore it for now.
9365 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9366 */
9367 pf = 0;
9368 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9369 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9370
9371 intel_mark_page_flip_active(intel_crtc);
09246732 9372 __intel_ring_advance(ring);
83d4092b 9373 return 0;
8c9f3aaf
JB
9374}
9375
9376static int intel_gen6_queue_flip(struct drm_device *dev,
9377 struct drm_crtc *crtc,
9378 struct drm_framebuffer *fb,
ed8d1975 9379 struct drm_i915_gem_object *obj,
a4872ba6 9380 struct intel_engine_cs *ring,
ed8d1975 9381 uint32_t flags)
8c9f3aaf
JB
9382{
9383 struct drm_i915_private *dev_priv = dev->dev_private;
9384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9385 uint32_t pf, pipesrc;
9386 int ret;
9387
6d90c952 9388 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9389 if (ret)
4fa62c89 9390 return ret;
8c9f3aaf 9391
6d90c952
DV
9392 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9393 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9394 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9395 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9396
dc257cf1
DV
9397 /* Contrary to the suggestions in the documentation,
9398 * "Enable Panel Fitter" does not seem to be required when page
9399 * flipping with a non-native mode, and worse causes a normal
9400 * modeset to fail.
9401 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9402 */
9403 pf = 0;
8c9f3aaf 9404 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9405 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9406
9407 intel_mark_page_flip_active(intel_crtc);
09246732 9408 __intel_ring_advance(ring);
83d4092b 9409 return 0;
8c9f3aaf
JB
9410}
9411
7c9017e5
JB
9412static int intel_gen7_queue_flip(struct drm_device *dev,
9413 struct drm_crtc *crtc,
9414 struct drm_framebuffer *fb,
ed8d1975 9415 struct drm_i915_gem_object *obj,
a4872ba6 9416 struct intel_engine_cs *ring,
ed8d1975 9417 uint32_t flags)
7c9017e5 9418{
7c9017e5 9419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9420 uint32_t plane_bit = 0;
ffe74d75
CW
9421 int len, ret;
9422
eba905b2 9423 switch (intel_crtc->plane) {
cb05d8de
DV
9424 case PLANE_A:
9425 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9426 break;
9427 case PLANE_B:
9428 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9429 break;
9430 case PLANE_C:
9431 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9432 break;
9433 default:
9434 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9435 return -ENODEV;
cb05d8de
DV
9436 }
9437
ffe74d75 9438 len = 4;
f476828a 9439 if (ring->id == RCS) {
ffe74d75 9440 len += 6;
f476828a
DL
9441 /*
9442 * On Gen 8, SRM is now taking an extra dword to accommodate
9443 * 48bits addresses, and we need a NOOP for the batch size to
9444 * stay even.
9445 */
9446 if (IS_GEN8(dev))
9447 len += 2;
9448 }
ffe74d75 9449
f66fab8e
VS
9450 /*
9451 * BSpec MI_DISPLAY_FLIP for IVB:
9452 * "The full packet must be contained within the same cache line."
9453 *
9454 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9455 * cacheline, if we ever start emitting more commands before
9456 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9457 * then do the cacheline alignment, and finally emit the
9458 * MI_DISPLAY_FLIP.
9459 */
9460 ret = intel_ring_cacheline_align(ring);
9461 if (ret)
4fa62c89 9462 return ret;
f66fab8e 9463
ffe74d75 9464 ret = intel_ring_begin(ring, len);
7c9017e5 9465 if (ret)
4fa62c89 9466 return ret;
7c9017e5 9467
ffe74d75
CW
9468 /* Unmask the flip-done completion message. Note that the bspec says that
9469 * we should do this for both the BCS and RCS, and that we must not unmask
9470 * more than one flip event at any time (or ensure that one flip message
9471 * can be sent by waiting for flip-done prior to queueing new flips).
9472 * Experimentation says that BCS works despite DERRMR masking all
9473 * flip-done completion events and that unmasking all planes at once
9474 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9475 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9476 */
9477 if (ring->id == RCS) {
9478 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9479 intel_ring_emit(ring, DERRMR);
9480 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9481 DERRMR_PIPEB_PRI_FLIP_DONE |
9482 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9483 if (IS_GEN8(dev))
9484 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9485 MI_SRM_LRM_GLOBAL_GTT);
9486 else
9487 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9488 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9489 intel_ring_emit(ring, DERRMR);
9490 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9491 if (IS_GEN8(dev)) {
9492 intel_ring_emit(ring, 0);
9493 intel_ring_emit(ring, MI_NOOP);
9494 }
ffe74d75
CW
9495 }
9496
cb05d8de 9497 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9498 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9499 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9500 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9501
9502 intel_mark_page_flip_active(intel_crtc);
09246732 9503 __intel_ring_advance(ring);
83d4092b 9504 return 0;
7c9017e5
JB
9505}
9506
84c33a64
SG
9507static bool use_mmio_flip(struct intel_engine_cs *ring,
9508 struct drm_i915_gem_object *obj)
9509{
9510 /*
9511 * This is not being used for older platforms, because
9512 * non-availability of flip done interrupt forces us to use
9513 * CS flips. Older platforms derive flip done using some clever
9514 * tricks involving the flip_pending status bits and vblank irqs.
9515 * So using MMIO flips there would disrupt this mechanism.
9516 */
9517
8e09bf83
CW
9518 if (ring == NULL)
9519 return true;
9520
84c33a64
SG
9521 if (INTEL_INFO(ring->dev)->gen < 5)
9522 return false;
9523
9524 if (i915.use_mmio_flip < 0)
9525 return false;
9526 else if (i915.use_mmio_flip > 0)
9527 return true;
9528 else
9529 return ring != obj->ring;
9530}
9531
9532static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9533{
9534 struct drm_device *dev = intel_crtc->base.dev;
9535 struct drm_i915_private *dev_priv = dev->dev_private;
9536 struct intel_framebuffer *intel_fb =
9537 to_intel_framebuffer(intel_crtc->base.primary->fb);
9538 struct drm_i915_gem_object *obj = intel_fb->obj;
9539 u32 dspcntr;
9540 u32 reg;
9541
9542 intel_mark_page_flip_active(intel_crtc);
9543
9544 reg = DSPCNTR(intel_crtc->plane);
9545 dspcntr = I915_READ(reg);
9546
9547 if (INTEL_INFO(dev)->gen >= 4) {
9548 if (obj->tiling_mode != I915_TILING_NONE)
9549 dspcntr |= DISPPLANE_TILED;
9550 else
9551 dspcntr &= ~DISPPLANE_TILED;
9552 }
9553 I915_WRITE(reg, dspcntr);
9554
9555 I915_WRITE(DSPSURF(intel_crtc->plane),
9556 intel_crtc->unpin_work->gtt_offset);
9557 POSTING_READ(DSPSURF(intel_crtc->plane));
9558}
9559
9560static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9561{
9562 struct intel_engine_cs *ring;
9563 int ret;
9564
9565 lockdep_assert_held(&obj->base.dev->struct_mutex);
9566
9567 if (!obj->last_write_seqno)
9568 return 0;
9569
9570 ring = obj->ring;
9571
9572 if (i915_seqno_passed(ring->get_seqno(ring, true),
9573 obj->last_write_seqno))
9574 return 0;
9575
9576 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9577 if (ret)
9578 return ret;
9579
9580 if (WARN_ON(!ring->irq_get(ring)))
9581 return 0;
9582
9583 return 1;
9584}
9585
9586void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9587{
9588 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9589 struct intel_crtc *intel_crtc;
9590 unsigned long irq_flags;
9591 u32 seqno;
9592
9593 seqno = ring->get_seqno(ring, false);
9594
9595 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9596 for_each_intel_crtc(ring->dev, intel_crtc) {
9597 struct intel_mmio_flip *mmio_flip;
9598
9599 mmio_flip = &intel_crtc->mmio_flip;
9600 if (mmio_flip->seqno == 0)
9601 continue;
9602
9603 if (ring->id != mmio_flip->ring_id)
9604 continue;
9605
9606 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9607 intel_do_mmio_flip(intel_crtc);
9608 mmio_flip->seqno = 0;
9609 ring->irq_put(ring);
9610 }
9611 }
9612 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9613}
9614
9615static int intel_queue_mmio_flip(struct drm_device *dev,
9616 struct drm_crtc *crtc,
9617 struct drm_framebuffer *fb,
9618 struct drm_i915_gem_object *obj,
9619 struct intel_engine_cs *ring,
9620 uint32_t flags)
9621{
9622 struct drm_i915_private *dev_priv = dev->dev_private;
9623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9624 unsigned long irq_flags;
9625 int ret;
9626
9627 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9628 return -EBUSY;
9629
9630 ret = intel_postpone_flip(obj);
9631 if (ret < 0)
9632 return ret;
9633 if (ret == 0) {
9634 intel_do_mmio_flip(intel_crtc);
9635 return 0;
9636 }
9637
9638 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9639 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9640 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9641 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9642
9643 /*
9644 * Double check to catch cases where irq fired before
9645 * mmio flip data was ready
9646 */
9647 intel_notify_mmio_flip(obj->ring);
9648 return 0;
9649}
9650
8c9f3aaf
JB
9651static int intel_default_queue_flip(struct drm_device *dev,
9652 struct drm_crtc *crtc,
9653 struct drm_framebuffer *fb,
ed8d1975 9654 struct drm_i915_gem_object *obj,
a4872ba6 9655 struct intel_engine_cs *ring,
ed8d1975 9656 uint32_t flags)
8c9f3aaf
JB
9657{
9658 return -ENODEV;
9659}
9660
6b95a207
KH
9661static int intel_crtc_page_flip(struct drm_crtc *crtc,
9662 struct drm_framebuffer *fb,
ed8d1975
KP
9663 struct drm_pending_vblank_event *event,
9664 uint32_t page_flip_flags)
6b95a207
KH
9665{
9666 struct drm_device *dev = crtc->dev;
9667 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9668 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9669 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9671 enum pipe pipe = intel_crtc->pipe;
6b95a207 9672 struct intel_unpin_work *work;
a4872ba6 9673 struct intel_engine_cs *ring;
8c9f3aaf 9674 unsigned long flags;
52e68630 9675 int ret;
6b95a207 9676
2ff8fde1
MR
9677 /*
9678 * drm_mode_page_flip_ioctl() should already catch this, but double
9679 * check to be safe. In the future we may enable pageflipping from
9680 * a disabled primary plane.
9681 */
9682 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9683 return -EBUSY;
9684
e6a595d2 9685 /* Can't change pixel format via MI display flips. */
f4510a27 9686 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9687 return -EINVAL;
9688
9689 /*
9690 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9691 * Note that pitch changes could also affect these register.
9692 */
9693 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9694 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9695 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9696 return -EINVAL;
9697
f900db47
CW
9698 if (i915_terminally_wedged(&dev_priv->gpu_error))
9699 goto out_hang;
9700
b14c5679 9701 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9702 if (work == NULL)
9703 return -ENOMEM;
9704
6b95a207 9705 work->event = event;
b4a98e57 9706 work->crtc = crtc;
2ff8fde1 9707 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9708 INIT_WORK(&work->work, intel_unpin_work_fn);
9709
87b6b101 9710 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9711 if (ret)
9712 goto free_work;
9713
6b95a207
KH
9714 /* We borrow the event spin lock for protecting unpin_work */
9715 spin_lock_irqsave(&dev->event_lock, flags);
9716 if (intel_crtc->unpin_work) {
9717 spin_unlock_irqrestore(&dev->event_lock, flags);
9718 kfree(work);
87b6b101 9719 drm_crtc_vblank_put(crtc);
468f0b44
CW
9720
9721 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9722 return -EBUSY;
9723 }
9724 intel_crtc->unpin_work = work;
9725 spin_unlock_irqrestore(&dev->event_lock, flags);
9726
b4a98e57
CW
9727 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9728 flush_workqueue(dev_priv->wq);
9729
79158103
CW
9730 ret = i915_mutex_lock_interruptible(dev);
9731 if (ret)
9732 goto cleanup;
6b95a207 9733
75dfca80 9734 /* Reference the objects for the scheduled work. */
05394f39
CW
9735 drm_gem_object_reference(&work->old_fb_obj->base);
9736 drm_gem_object_reference(&obj->base);
6b95a207 9737
f4510a27 9738 crtc->primary->fb = fb;
96b099fd 9739
e1f99ce6 9740 work->pending_flip_obj = obj;
e1f99ce6 9741
4e5359cd
SF
9742 work->enable_stall_check = true;
9743
b4a98e57 9744 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9745 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9746
75f7f3ec 9747 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9748 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9749
4fa62c89
VS
9750 if (IS_VALLEYVIEW(dev)) {
9751 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9752 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9753 /* vlv: DISPLAY_FLIP fails to change tiling */
9754 ring = NULL;
2a92d5bc
CW
9755 } else if (IS_IVYBRIDGE(dev)) {
9756 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9757 } else if (INTEL_INFO(dev)->gen >= 7) {
9758 ring = obj->ring;
9759 if (ring == NULL || ring->id != RCS)
9760 ring = &dev_priv->ring[BCS];
9761 } else {
9762 ring = &dev_priv->ring[RCS];
9763 }
9764
9765 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9766 if (ret)
9767 goto cleanup_pending;
6b95a207 9768
4fa62c89
VS
9769 work->gtt_offset =
9770 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9771
84c33a64
SG
9772 if (use_mmio_flip(ring, obj))
9773 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9774 page_flip_flags);
9775 else
9776 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9777 page_flip_flags);
4fa62c89
VS
9778 if (ret)
9779 goto cleanup_unpin;
9780
a071fa00
DV
9781 i915_gem_track_fb(work->old_fb_obj, obj,
9782 INTEL_FRONTBUFFER_PRIMARY(pipe));
9783
7782de3b 9784 intel_disable_fbc(dev);
f99d7069 9785 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9786 mutex_unlock(&dev->struct_mutex);
9787
e5510fac
JB
9788 trace_i915_flip_request(intel_crtc->plane, obj);
9789
6b95a207 9790 return 0;
96b099fd 9791
4fa62c89
VS
9792cleanup_unpin:
9793 intel_unpin_fb_obj(obj);
8c9f3aaf 9794cleanup_pending:
b4a98e57 9795 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9796 crtc->primary->fb = old_fb;
05394f39
CW
9797 drm_gem_object_unreference(&work->old_fb_obj->base);
9798 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9799 mutex_unlock(&dev->struct_mutex);
9800
79158103 9801cleanup:
96b099fd
CW
9802 spin_lock_irqsave(&dev->event_lock, flags);
9803 intel_crtc->unpin_work = NULL;
9804 spin_unlock_irqrestore(&dev->event_lock, flags);
9805
87b6b101 9806 drm_crtc_vblank_put(crtc);
7317c75e 9807free_work:
96b099fd
CW
9808 kfree(work);
9809
f900db47
CW
9810 if (ret == -EIO) {
9811out_hang:
9812 intel_crtc_wait_for_pending_flips(crtc);
9813 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9814 if (ret == 0 && event)
a071fa00 9815 drm_send_vblank_event(dev, pipe, event);
f900db47 9816 }
96b099fd 9817 return ret;
6b95a207
KH
9818}
9819
f6e5b160 9820static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9821 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9822 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9823};
9824
9a935856
DV
9825/**
9826 * intel_modeset_update_staged_output_state
9827 *
9828 * Updates the staged output configuration state, e.g. after we've read out the
9829 * current hw state.
9830 */
9831static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9832{
7668851f 9833 struct intel_crtc *crtc;
9a935856
DV
9834 struct intel_encoder *encoder;
9835 struct intel_connector *connector;
f6e5b160 9836
9a935856
DV
9837 list_for_each_entry(connector, &dev->mode_config.connector_list,
9838 base.head) {
9839 connector->new_encoder =
9840 to_intel_encoder(connector->base.encoder);
9841 }
f6e5b160 9842
9a935856
DV
9843 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9844 base.head) {
9845 encoder->new_crtc =
9846 to_intel_crtc(encoder->base.crtc);
9847 }
7668851f 9848
d3fcc808 9849 for_each_intel_crtc(dev, crtc) {
7668851f 9850 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9851
9852 if (crtc->new_enabled)
9853 crtc->new_config = &crtc->config;
9854 else
9855 crtc->new_config = NULL;
7668851f 9856 }
f6e5b160
CW
9857}
9858
9a935856
DV
9859/**
9860 * intel_modeset_commit_output_state
9861 *
9862 * This function copies the stage display pipe configuration to the real one.
9863 */
9864static void intel_modeset_commit_output_state(struct drm_device *dev)
9865{
7668851f 9866 struct intel_crtc *crtc;
9a935856
DV
9867 struct intel_encoder *encoder;
9868 struct intel_connector *connector;
f6e5b160 9869
9a935856
DV
9870 list_for_each_entry(connector, &dev->mode_config.connector_list,
9871 base.head) {
9872 connector->base.encoder = &connector->new_encoder->base;
9873 }
f6e5b160 9874
9a935856
DV
9875 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9876 base.head) {
9877 encoder->base.crtc = &encoder->new_crtc->base;
9878 }
7668851f 9879
d3fcc808 9880 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9881 crtc->base.enabled = crtc->new_enabled;
9882 }
9a935856
DV
9883}
9884
050f7aeb 9885static void
eba905b2 9886connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9887 struct intel_crtc_config *pipe_config)
9888{
9889 int bpp = pipe_config->pipe_bpp;
9890
9891 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9892 connector->base.base.id,
c23cc417 9893 connector->base.name);
050f7aeb
DV
9894
9895 /* Don't use an invalid EDID bpc value */
9896 if (connector->base.display_info.bpc &&
9897 connector->base.display_info.bpc * 3 < bpp) {
9898 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9899 bpp, connector->base.display_info.bpc*3);
9900 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9901 }
9902
9903 /* Clamp bpp to 8 on screens without EDID 1.4 */
9904 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9905 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9906 bpp);
9907 pipe_config->pipe_bpp = 24;
9908 }
9909}
9910
4e53c2e0 9911static int
050f7aeb
DV
9912compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9913 struct drm_framebuffer *fb,
9914 struct intel_crtc_config *pipe_config)
4e53c2e0 9915{
050f7aeb
DV
9916 struct drm_device *dev = crtc->base.dev;
9917 struct intel_connector *connector;
4e53c2e0
DV
9918 int bpp;
9919
d42264b1
DV
9920 switch (fb->pixel_format) {
9921 case DRM_FORMAT_C8:
4e53c2e0
DV
9922 bpp = 8*3; /* since we go through a colormap */
9923 break;
d42264b1
DV
9924 case DRM_FORMAT_XRGB1555:
9925 case DRM_FORMAT_ARGB1555:
9926 /* checked in intel_framebuffer_init already */
9927 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9928 return -EINVAL;
9929 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9930 bpp = 6*3; /* min is 18bpp */
9931 break;
d42264b1
DV
9932 case DRM_FORMAT_XBGR8888:
9933 case DRM_FORMAT_ABGR8888:
9934 /* checked in intel_framebuffer_init already */
9935 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9936 return -EINVAL;
9937 case DRM_FORMAT_XRGB8888:
9938 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9939 bpp = 8*3;
9940 break;
d42264b1
DV
9941 case DRM_FORMAT_XRGB2101010:
9942 case DRM_FORMAT_ARGB2101010:
9943 case DRM_FORMAT_XBGR2101010:
9944 case DRM_FORMAT_ABGR2101010:
9945 /* checked in intel_framebuffer_init already */
9946 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9947 return -EINVAL;
4e53c2e0
DV
9948 bpp = 10*3;
9949 break;
baba133a 9950 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9951 default:
9952 DRM_DEBUG_KMS("unsupported depth\n");
9953 return -EINVAL;
9954 }
9955
4e53c2e0
DV
9956 pipe_config->pipe_bpp = bpp;
9957
9958 /* Clamp display bpp to EDID value */
9959 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9960 base.head) {
1b829e05
DV
9961 if (!connector->new_encoder ||
9962 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9963 continue;
9964
050f7aeb 9965 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9966 }
9967
9968 return bpp;
9969}
9970
644db711
DV
9971static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9972{
9973 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9974 "type: 0x%x flags: 0x%x\n",
1342830c 9975 mode->crtc_clock,
644db711
DV
9976 mode->crtc_hdisplay, mode->crtc_hsync_start,
9977 mode->crtc_hsync_end, mode->crtc_htotal,
9978 mode->crtc_vdisplay, mode->crtc_vsync_start,
9979 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9980}
9981
c0b03411
DV
9982static void intel_dump_pipe_config(struct intel_crtc *crtc,
9983 struct intel_crtc_config *pipe_config,
9984 const char *context)
9985{
9986 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9987 context, pipe_name(crtc->pipe));
9988
9989 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9990 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9991 pipe_config->pipe_bpp, pipe_config->dither);
9992 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9993 pipe_config->has_pch_encoder,
9994 pipe_config->fdi_lanes,
9995 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9996 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9997 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9998 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9999 pipe_config->has_dp_encoder,
10000 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10001 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10002 pipe_config->dp_m_n.tu);
b95af8be
VK
10003
10004 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10005 pipe_config->has_dp_encoder,
10006 pipe_config->dp_m2_n2.gmch_m,
10007 pipe_config->dp_m2_n2.gmch_n,
10008 pipe_config->dp_m2_n2.link_m,
10009 pipe_config->dp_m2_n2.link_n,
10010 pipe_config->dp_m2_n2.tu);
10011
c0b03411
DV
10012 DRM_DEBUG_KMS("requested mode:\n");
10013 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10014 DRM_DEBUG_KMS("adjusted mode:\n");
10015 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10016 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10017 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10018 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10019 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10020 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10021 pipe_config->gmch_pfit.control,
10022 pipe_config->gmch_pfit.pgm_ratios,
10023 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10024 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10025 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10026 pipe_config->pch_pfit.size,
10027 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10028 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10029 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10030}
10031
bc079e8b
VS
10032static bool encoders_cloneable(const struct intel_encoder *a,
10033 const struct intel_encoder *b)
accfc0c5 10034{
bc079e8b
VS
10035 /* masks could be asymmetric, so check both ways */
10036 return a == b || (a->cloneable & (1 << b->type) &&
10037 b->cloneable & (1 << a->type));
10038}
10039
10040static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10041 struct intel_encoder *encoder)
10042{
10043 struct drm_device *dev = crtc->base.dev;
10044 struct intel_encoder *source_encoder;
10045
10046 list_for_each_entry(source_encoder,
10047 &dev->mode_config.encoder_list, base.head) {
10048 if (source_encoder->new_crtc != crtc)
10049 continue;
10050
10051 if (!encoders_cloneable(encoder, source_encoder))
10052 return false;
10053 }
10054
10055 return true;
10056}
10057
10058static bool check_encoder_cloning(struct intel_crtc *crtc)
10059{
10060 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10061 struct intel_encoder *encoder;
10062
bc079e8b
VS
10063 list_for_each_entry(encoder,
10064 &dev->mode_config.encoder_list, base.head) {
10065 if (encoder->new_crtc != crtc)
accfc0c5
DV
10066 continue;
10067
bc079e8b
VS
10068 if (!check_single_encoder_cloning(crtc, encoder))
10069 return false;
accfc0c5
DV
10070 }
10071
bc079e8b 10072 return true;
accfc0c5
DV
10073}
10074
b8cecdf5
DV
10075static struct intel_crtc_config *
10076intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10077 struct drm_framebuffer *fb,
b8cecdf5 10078 struct drm_display_mode *mode)
ee7b9f93 10079{
7758a113 10080 struct drm_device *dev = crtc->dev;
7758a113 10081 struct intel_encoder *encoder;
b8cecdf5 10082 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10083 int plane_bpp, ret = -EINVAL;
10084 bool retry = true;
ee7b9f93 10085
bc079e8b 10086 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10087 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10088 return ERR_PTR(-EINVAL);
10089 }
10090
b8cecdf5
DV
10091 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10092 if (!pipe_config)
7758a113
DV
10093 return ERR_PTR(-ENOMEM);
10094
b8cecdf5
DV
10095 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10096 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10097
e143a21c
DV
10098 pipe_config->cpu_transcoder =
10099 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10100 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10101
2960bc9c
ID
10102 /*
10103 * Sanitize sync polarity flags based on requested ones. If neither
10104 * positive or negative polarity is requested, treat this as meaning
10105 * negative polarity.
10106 */
10107 if (!(pipe_config->adjusted_mode.flags &
10108 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10109 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10110
10111 if (!(pipe_config->adjusted_mode.flags &
10112 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10113 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10114
050f7aeb
DV
10115 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10116 * plane pixel format and any sink constraints into account. Returns the
10117 * source plane bpp so that dithering can be selected on mismatches
10118 * after encoders and crtc also have had their say. */
10119 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10120 fb, pipe_config);
4e53c2e0
DV
10121 if (plane_bpp < 0)
10122 goto fail;
10123
e41a56be
VS
10124 /*
10125 * Determine the real pipe dimensions. Note that stereo modes can
10126 * increase the actual pipe size due to the frame doubling and
10127 * insertion of additional space for blanks between the frame. This
10128 * is stored in the crtc timings. We use the requested mode to do this
10129 * computation to clearly distinguish it from the adjusted mode, which
10130 * can be changed by the connectors in the below retry loop.
10131 */
10132 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10133 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10134 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10135
e29c22c0 10136encoder_retry:
ef1b460d 10137 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10138 pipe_config->port_clock = 0;
ef1b460d 10139 pipe_config->pixel_multiplier = 1;
ff9a6750 10140
135c81b8 10141 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10142 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10143
7758a113
DV
10144 /* Pass our mode to the connectors and the CRTC to give them a chance to
10145 * adjust it according to limitations or connector properties, and also
10146 * a chance to reject the mode entirely.
47f1c6c9 10147 */
7758a113
DV
10148 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10149 base.head) {
47f1c6c9 10150
7758a113
DV
10151 if (&encoder->new_crtc->base != crtc)
10152 continue;
7ae89233 10153
efea6e8e
DV
10154 if (!(encoder->compute_config(encoder, pipe_config))) {
10155 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10156 goto fail;
10157 }
ee7b9f93 10158 }
47f1c6c9 10159
ff9a6750
DV
10160 /* Set default port clock if not overwritten by the encoder. Needs to be
10161 * done afterwards in case the encoder adjusts the mode. */
10162 if (!pipe_config->port_clock)
241bfc38
DL
10163 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10164 * pipe_config->pixel_multiplier;
ff9a6750 10165
a43f6e0f 10166 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10167 if (ret < 0) {
7758a113
DV
10168 DRM_DEBUG_KMS("CRTC fixup failed\n");
10169 goto fail;
ee7b9f93 10170 }
e29c22c0
DV
10171
10172 if (ret == RETRY) {
10173 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10174 ret = -EINVAL;
10175 goto fail;
10176 }
10177
10178 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10179 retry = false;
10180 goto encoder_retry;
10181 }
10182
4e53c2e0
DV
10183 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10184 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10185 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10186
b8cecdf5 10187 return pipe_config;
7758a113 10188fail:
b8cecdf5 10189 kfree(pipe_config);
e29c22c0 10190 return ERR_PTR(ret);
ee7b9f93 10191}
47f1c6c9 10192
e2e1ed41
DV
10193/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10194 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10195static void
10196intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10197 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10198{
10199 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10200 struct drm_device *dev = crtc->dev;
10201 struct intel_encoder *encoder;
10202 struct intel_connector *connector;
10203 struct drm_crtc *tmp_crtc;
79e53945 10204
e2e1ed41 10205 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10206
e2e1ed41
DV
10207 /* Check which crtcs have changed outputs connected to them, these need
10208 * to be part of the prepare_pipes mask. We don't (yet) support global
10209 * modeset across multiple crtcs, so modeset_pipes will only have one
10210 * bit set at most. */
10211 list_for_each_entry(connector, &dev->mode_config.connector_list,
10212 base.head) {
10213 if (connector->base.encoder == &connector->new_encoder->base)
10214 continue;
79e53945 10215
e2e1ed41
DV
10216 if (connector->base.encoder) {
10217 tmp_crtc = connector->base.encoder->crtc;
10218
10219 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10220 }
10221
10222 if (connector->new_encoder)
10223 *prepare_pipes |=
10224 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10225 }
10226
e2e1ed41
DV
10227 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10228 base.head) {
10229 if (encoder->base.crtc == &encoder->new_crtc->base)
10230 continue;
10231
10232 if (encoder->base.crtc) {
10233 tmp_crtc = encoder->base.crtc;
10234
10235 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10236 }
10237
10238 if (encoder->new_crtc)
10239 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10240 }
10241
7668851f 10242 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10243 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10244 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10245 continue;
7e7d76c3 10246
7668851f 10247 if (!intel_crtc->new_enabled)
e2e1ed41 10248 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10249 else
10250 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10251 }
10252
e2e1ed41
DV
10253
10254 /* set_mode is also used to update properties on life display pipes. */
10255 intel_crtc = to_intel_crtc(crtc);
7668851f 10256 if (intel_crtc->new_enabled)
e2e1ed41
DV
10257 *prepare_pipes |= 1 << intel_crtc->pipe;
10258
b6c5164d
DV
10259 /*
10260 * For simplicity do a full modeset on any pipe where the output routing
10261 * changed. We could be more clever, but that would require us to be
10262 * more careful with calling the relevant encoder->mode_set functions.
10263 */
e2e1ed41
DV
10264 if (*prepare_pipes)
10265 *modeset_pipes = *prepare_pipes;
10266
10267 /* ... and mask these out. */
10268 *modeset_pipes &= ~(*disable_pipes);
10269 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10270
10271 /*
10272 * HACK: We don't (yet) fully support global modesets. intel_set_config
10273 * obies this rule, but the modeset restore mode of
10274 * intel_modeset_setup_hw_state does not.
10275 */
10276 *modeset_pipes &= 1 << intel_crtc->pipe;
10277 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10278
10279 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10280 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10281}
79e53945 10282
ea9d758d 10283static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10284{
ea9d758d 10285 struct drm_encoder *encoder;
f6e5b160 10286 struct drm_device *dev = crtc->dev;
f6e5b160 10287
ea9d758d
DV
10288 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10289 if (encoder->crtc == crtc)
10290 return true;
10291
10292 return false;
10293}
10294
10295static void
10296intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10297{
10298 struct intel_encoder *intel_encoder;
10299 struct intel_crtc *intel_crtc;
10300 struct drm_connector *connector;
10301
10302 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10303 base.head) {
10304 if (!intel_encoder->base.crtc)
10305 continue;
10306
10307 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10308
10309 if (prepare_pipes & (1 << intel_crtc->pipe))
10310 intel_encoder->connectors_active = false;
10311 }
10312
10313 intel_modeset_commit_output_state(dev);
10314
7668851f 10315 /* Double check state. */
d3fcc808 10316 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10317 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10318 WARN_ON(intel_crtc->new_config &&
10319 intel_crtc->new_config != &intel_crtc->config);
10320 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10321 }
10322
10323 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10324 if (!connector->encoder || !connector->encoder->crtc)
10325 continue;
10326
10327 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10328
10329 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10330 struct drm_property *dpms_property =
10331 dev->mode_config.dpms_property;
10332
ea9d758d 10333 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10334 drm_object_property_set_value(&connector->base,
68d34720
DV
10335 dpms_property,
10336 DRM_MODE_DPMS_ON);
ea9d758d
DV
10337
10338 intel_encoder = to_intel_encoder(connector->encoder);
10339 intel_encoder->connectors_active = true;
10340 }
10341 }
10342
10343}
10344
3bd26263 10345static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10346{
3bd26263 10347 int diff;
f1f644dc
JB
10348
10349 if (clock1 == clock2)
10350 return true;
10351
10352 if (!clock1 || !clock2)
10353 return false;
10354
10355 diff = abs(clock1 - clock2);
10356
10357 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10358 return true;
10359
10360 return false;
10361}
10362
25c5b266
DV
10363#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10364 list_for_each_entry((intel_crtc), \
10365 &(dev)->mode_config.crtc_list, \
10366 base.head) \
0973f18f 10367 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10368
0e8ffe1b 10369static bool
2fa2fe9a
DV
10370intel_pipe_config_compare(struct drm_device *dev,
10371 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10372 struct intel_crtc_config *pipe_config)
10373{
66e985c0
DV
10374#define PIPE_CONF_CHECK_X(name) \
10375 if (current_config->name != pipe_config->name) { \
10376 DRM_ERROR("mismatch in " #name " " \
10377 "(expected 0x%08x, found 0x%08x)\n", \
10378 current_config->name, \
10379 pipe_config->name); \
10380 return false; \
10381 }
10382
08a24034
DV
10383#define PIPE_CONF_CHECK_I(name) \
10384 if (current_config->name != pipe_config->name) { \
10385 DRM_ERROR("mismatch in " #name " " \
10386 "(expected %i, found %i)\n", \
10387 current_config->name, \
10388 pipe_config->name); \
10389 return false; \
88adfff1
DV
10390 }
10391
b95af8be
VK
10392/* This is required for BDW+ where there is only one set of registers for
10393 * switching between high and low RR.
10394 * This macro can be used whenever a comparison has to be made between one
10395 * hw state and multiple sw state variables.
10396 */
10397#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10398 if ((current_config->name != pipe_config->name) && \
10399 (current_config->alt_name != pipe_config->name)) { \
10400 DRM_ERROR("mismatch in " #name " " \
10401 "(expected %i or %i, found %i)\n", \
10402 current_config->name, \
10403 current_config->alt_name, \
10404 pipe_config->name); \
10405 return false; \
10406 }
10407
1bd1bd80
DV
10408#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10409 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10410 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10411 "(expected %i, found %i)\n", \
10412 current_config->name & (mask), \
10413 pipe_config->name & (mask)); \
10414 return false; \
10415 }
10416
5e550656
VS
10417#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10418 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10419 DRM_ERROR("mismatch in " #name " " \
10420 "(expected %i, found %i)\n", \
10421 current_config->name, \
10422 pipe_config->name); \
10423 return false; \
10424 }
10425
bb760063
DV
10426#define PIPE_CONF_QUIRK(quirk) \
10427 ((current_config->quirks | pipe_config->quirks) & (quirk))
10428
eccb140b
DV
10429 PIPE_CONF_CHECK_I(cpu_transcoder);
10430
08a24034
DV
10431 PIPE_CONF_CHECK_I(has_pch_encoder);
10432 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10433 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10434 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10435 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10436 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10437 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10438
eb14cb74 10439 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10440
10441 if (INTEL_INFO(dev)->gen < 8) {
10442 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10443 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10444 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10445 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10446 PIPE_CONF_CHECK_I(dp_m_n.tu);
10447
10448 if (current_config->has_drrs) {
10449 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10450 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10451 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10452 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10453 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10454 }
10455 } else {
10456 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10457 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10458 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10459 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10460 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10461 }
eb14cb74 10462
1bd1bd80
DV
10463 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10464 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10465 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10466 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10467 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10468 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10469
10470 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10471 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10472 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10473 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10474 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10475 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10476
c93f54cf 10477 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10478 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10479 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10480 IS_VALLEYVIEW(dev))
10481 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10482
9ed109a7
DV
10483 PIPE_CONF_CHECK_I(has_audio);
10484
1bd1bd80
DV
10485 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10486 DRM_MODE_FLAG_INTERLACE);
10487
bb760063
DV
10488 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10489 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10490 DRM_MODE_FLAG_PHSYNC);
10491 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10492 DRM_MODE_FLAG_NHSYNC);
10493 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10494 DRM_MODE_FLAG_PVSYNC);
10495 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10496 DRM_MODE_FLAG_NVSYNC);
10497 }
045ac3b5 10498
37327abd
VS
10499 PIPE_CONF_CHECK_I(pipe_src_w);
10500 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10501
9953599b
DV
10502 /*
10503 * FIXME: BIOS likes to set up a cloned config with lvds+external
10504 * screen. Since we don't yet re-compute the pipe config when moving
10505 * just the lvds port away to another pipe the sw tracking won't match.
10506 *
10507 * Proper atomic modesets with recomputed global state will fix this.
10508 * Until then just don't check gmch state for inherited modes.
10509 */
10510 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10511 PIPE_CONF_CHECK_I(gmch_pfit.control);
10512 /* pfit ratios are autocomputed by the hw on gen4+ */
10513 if (INTEL_INFO(dev)->gen < 4)
10514 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10515 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10516 }
10517
fd4daa9c
CW
10518 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10519 if (current_config->pch_pfit.enabled) {
10520 PIPE_CONF_CHECK_I(pch_pfit.pos);
10521 PIPE_CONF_CHECK_I(pch_pfit.size);
10522 }
2fa2fe9a 10523
e59150dc
JB
10524 /* BDW+ don't expose a synchronous way to read the state */
10525 if (IS_HASWELL(dev))
10526 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10527
282740f7
VS
10528 PIPE_CONF_CHECK_I(double_wide);
10529
26804afd
DV
10530 PIPE_CONF_CHECK_X(ddi_pll_sel);
10531
c0d43d62 10532 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10533 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10534 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10535 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10536 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10537 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10538
42571aef
VS
10539 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10540 PIPE_CONF_CHECK_I(pipe_bpp);
10541
a9a7e98a
JB
10542 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10543 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10544
66e985c0 10545#undef PIPE_CONF_CHECK_X
08a24034 10546#undef PIPE_CONF_CHECK_I
b95af8be 10547#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10548#undef PIPE_CONF_CHECK_FLAGS
5e550656 10549#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10550#undef PIPE_CONF_QUIRK
88adfff1 10551
0e8ffe1b
DV
10552 return true;
10553}
10554
91d1b4bd
DV
10555static void
10556check_connector_state(struct drm_device *dev)
8af6cf88 10557{
8af6cf88
DV
10558 struct intel_connector *connector;
10559
10560 list_for_each_entry(connector, &dev->mode_config.connector_list,
10561 base.head) {
10562 /* This also checks the encoder/connector hw state with the
10563 * ->get_hw_state callbacks. */
10564 intel_connector_check_state(connector);
10565
10566 WARN(&connector->new_encoder->base != connector->base.encoder,
10567 "connector's staged encoder doesn't match current encoder\n");
10568 }
91d1b4bd
DV
10569}
10570
10571static void
10572check_encoder_state(struct drm_device *dev)
10573{
10574 struct intel_encoder *encoder;
10575 struct intel_connector *connector;
8af6cf88
DV
10576
10577 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10578 base.head) {
10579 bool enabled = false;
10580 bool active = false;
10581 enum pipe pipe, tracked_pipe;
10582
10583 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10584 encoder->base.base.id,
8e329a03 10585 encoder->base.name);
8af6cf88
DV
10586
10587 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10588 "encoder's stage crtc doesn't match current crtc\n");
10589 WARN(encoder->connectors_active && !encoder->base.crtc,
10590 "encoder's active_connectors set, but no crtc\n");
10591
10592 list_for_each_entry(connector, &dev->mode_config.connector_list,
10593 base.head) {
10594 if (connector->base.encoder != &encoder->base)
10595 continue;
10596 enabled = true;
10597 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10598 active = true;
10599 }
0e32b39c
DA
10600 /*
10601 * for MST connectors if we unplug the connector is gone
10602 * away but the encoder is still connected to a crtc
10603 * until a modeset happens in response to the hotplug.
10604 */
10605 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10606 continue;
10607
8af6cf88
DV
10608 WARN(!!encoder->base.crtc != enabled,
10609 "encoder's enabled state mismatch "
10610 "(expected %i, found %i)\n",
10611 !!encoder->base.crtc, enabled);
10612 WARN(active && !encoder->base.crtc,
10613 "active encoder with no crtc\n");
10614
10615 WARN(encoder->connectors_active != active,
10616 "encoder's computed active state doesn't match tracked active state "
10617 "(expected %i, found %i)\n", active, encoder->connectors_active);
10618
10619 active = encoder->get_hw_state(encoder, &pipe);
10620 WARN(active != encoder->connectors_active,
10621 "encoder's hw state doesn't match sw tracking "
10622 "(expected %i, found %i)\n",
10623 encoder->connectors_active, active);
10624
10625 if (!encoder->base.crtc)
10626 continue;
10627
10628 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10629 WARN(active && pipe != tracked_pipe,
10630 "active encoder's pipe doesn't match"
10631 "(expected %i, found %i)\n",
10632 tracked_pipe, pipe);
10633
10634 }
91d1b4bd
DV
10635}
10636
10637static void
10638check_crtc_state(struct drm_device *dev)
10639{
fbee40df 10640 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10641 struct intel_crtc *crtc;
10642 struct intel_encoder *encoder;
10643 struct intel_crtc_config pipe_config;
8af6cf88 10644
d3fcc808 10645 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10646 bool enabled = false;
10647 bool active = false;
10648
045ac3b5
JB
10649 memset(&pipe_config, 0, sizeof(pipe_config));
10650
8af6cf88
DV
10651 DRM_DEBUG_KMS("[CRTC:%d]\n",
10652 crtc->base.base.id);
10653
10654 WARN(crtc->active && !crtc->base.enabled,
10655 "active crtc, but not enabled in sw tracking\n");
10656
10657 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10658 base.head) {
10659 if (encoder->base.crtc != &crtc->base)
10660 continue;
10661 enabled = true;
10662 if (encoder->connectors_active)
10663 active = true;
10664 }
6c49f241 10665
8af6cf88
DV
10666 WARN(active != crtc->active,
10667 "crtc's computed active state doesn't match tracked active state "
10668 "(expected %i, found %i)\n", active, crtc->active);
10669 WARN(enabled != crtc->base.enabled,
10670 "crtc's computed enabled state doesn't match tracked enabled state "
10671 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10672
0e8ffe1b
DV
10673 active = dev_priv->display.get_pipe_config(crtc,
10674 &pipe_config);
d62cf62a
DV
10675
10676 /* hw state is inconsistent with the pipe A quirk */
10677 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10678 active = crtc->active;
10679
6c49f241
DV
10680 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10681 base.head) {
3eaba51c 10682 enum pipe pipe;
6c49f241
DV
10683 if (encoder->base.crtc != &crtc->base)
10684 continue;
1d37b689 10685 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10686 encoder->get_config(encoder, &pipe_config);
10687 }
10688
0e8ffe1b
DV
10689 WARN(crtc->active != active,
10690 "crtc active state doesn't match with hw state "
10691 "(expected %i, found %i)\n", crtc->active, active);
10692
c0b03411
DV
10693 if (active &&
10694 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10695 WARN(1, "pipe state doesn't match!\n");
10696 intel_dump_pipe_config(crtc, &pipe_config,
10697 "[hw state]");
10698 intel_dump_pipe_config(crtc, &crtc->config,
10699 "[sw state]");
10700 }
8af6cf88
DV
10701 }
10702}
10703
91d1b4bd
DV
10704static void
10705check_shared_dpll_state(struct drm_device *dev)
10706{
fbee40df 10707 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10708 struct intel_crtc *crtc;
10709 struct intel_dpll_hw_state dpll_hw_state;
10710 int i;
5358901f
DV
10711
10712 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10713 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10714 int enabled_crtcs = 0, active_crtcs = 0;
10715 bool active;
10716
10717 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10718
10719 DRM_DEBUG_KMS("%s\n", pll->name);
10720
10721 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10722
10723 WARN(pll->active > pll->refcount,
10724 "more active pll users than references: %i vs %i\n",
10725 pll->active, pll->refcount);
10726 WARN(pll->active && !pll->on,
10727 "pll in active use but not on in sw tracking\n");
35c95375
DV
10728 WARN(pll->on && !pll->active,
10729 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10730 WARN(pll->on != active,
10731 "pll on state mismatch (expected %i, found %i)\n",
10732 pll->on, active);
10733
d3fcc808 10734 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10735 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10736 enabled_crtcs++;
10737 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10738 active_crtcs++;
10739 }
10740 WARN(pll->active != active_crtcs,
10741 "pll active crtcs mismatch (expected %i, found %i)\n",
10742 pll->active, active_crtcs);
10743 WARN(pll->refcount != enabled_crtcs,
10744 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10745 pll->refcount, enabled_crtcs);
66e985c0
DV
10746
10747 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10748 sizeof(dpll_hw_state)),
10749 "pll hw state mismatch\n");
5358901f 10750 }
8af6cf88
DV
10751}
10752
91d1b4bd
DV
10753void
10754intel_modeset_check_state(struct drm_device *dev)
10755{
10756 check_connector_state(dev);
10757 check_encoder_state(dev);
10758 check_crtc_state(dev);
10759 check_shared_dpll_state(dev);
10760}
10761
18442d08
VS
10762void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10763 int dotclock)
10764{
10765 /*
10766 * FDI already provided one idea for the dotclock.
10767 * Yell if the encoder disagrees.
10768 */
241bfc38 10769 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10770 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10771 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10772}
10773
80715b2f
VS
10774static void update_scanline_offset(struct intel_crtc *crtc)
10775{
10776 struct drm_device *dev = crtc->base.dev;
10777
10778 /*
10779 * The scanline counter increments at the leading edge of hsync.
10780 *
10781 * On most platforms it starts counting from vtotal-1 on the
10782 * first active line. That means the scanline counter value is
10783 * always one less than what we would expect. Ie. just after
10784 * start of vblank, which also occurs at start of hsync (on the
10785 * last active line), the scanline counter will read vblank_start-1.
10786 *
10787 * On gen2 the scanline counter starts counting from 1 instead
10788 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10789 * to keep the value positive), instead of adding one.
10790 *
10791 * On HSW+ the behaviour of the scanline counter depends on the output
10792 * type. For DP ports it behaves like most other platforms, but on HDMI
10793 * there's an extra 1 line difference. So we need to add two instead of
10794 * one to the value.
10795 */
10796 if (IS_GEN2(dev)) {
10797 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10798 int vtotal;
10799
10800 vtotal = mode->crtc_vtotal;
10801 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10802 vtotal /= 2;
10803
10804 crtc->scanline_offset = vtotal - 1;
10805 } else if (HAS_DDI(dev) &&
10806 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10807 crtc->scanline_offset = 2;
10808 } else
10809 crtc->scanline_offset = 1;
10810}
10811
f30da187
DV
10812static int __intel_set_mode(struct drm_crtc *crtc,
10813 struct drm_display_mode *mode,
10814 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10815{
10816 struct drm_device *dev = crtc->dev;
fbee40df 10817 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10818 struct drm_display_mode *saved_mode;
b8cecdf5 10819 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10820 struct intel_crtc *intel_crtc;
10821 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10822 int ret = 0;
a6778b3c 10823
4b4b9238 10824 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10825 if (!saved_mode)
10826 return -ENOMEM;
a6778b3c 10827
e2e1ed41 10828 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10829 &prepare_pipes, &disable_pipes);
10830
3ac18232 10831 *saved_mode = crtc->mode;
a6778b3c 10832
25c5b266
DV
10833 /* Hack: Because we don't (yet) support global modeset on multiple
10834 * crtcs, we don't keep track of the new mode for more than one crtc.
10835 * Hence simply check whether any bit is set in modeset_pipes in all the
10836 * pieces of code that are not yet converted to deal with mutliple crtcs
10837 * changing their mode at the same time. */
25c5b266 10838 if (modeset_pipes) {
4e53c2e0 10839 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10840 if (IS_ERR(pipe_config)) {
10841 ret = PTR_ERR(pipe_config);
10842 pipe_config = NULL;
10843
3ac18232 10844 goto out;
25c5b266 10845 }
c0b03411
DV
10846 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10847 "[modeset]");
50741abc 10848 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10849 }
a6778b3c 10850
30a970c6
JB
10851 /*
10852 * See if the config requires any additional preparation, e.g.
10853 * to adjust global state with pipes off. We need to do this
10854 * here so we can get the modeset_pipe updated config for the new
10855 * mode set on this crtc. For other crtcs we need to use the
10856 * adjusted_mode bits in the crtc directly.
10857 */
c164f833 10858 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10859 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10860
c164f833
VS
10861 /* may have added more to prepare_pipes than we should */
10862 prepare_pipes &= ~disable_pipes;
10863 }
10864
460da916
DV
10865 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10866 intel_crtc_disable(&intel_crtc->base);
10867
ea9d758d
DV
10868 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10869 if (intel_crtc->base.enabled)
10870 dev_priv->display.crtc_disable(&intel_crtc->base);
10871 }
a6778b3c 10872
6c4c86f5
DV
10873 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10874 * to set it here already despite that we pass it down the callchain.
f6e5b160 10875 */
b8cecdf5 10876 if (modeset_pipes) {
25c5b266 10877 crtc->mode = *mode;
b8cecdf5
DV
10878 /* mode_set/enable/disable functions rely on a correct pipe
10879 * config. */
10880 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10881 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10882
10883 /*
10884 * Calculate and store various constants which
10885 * are later needed by vblank and swap-completion
10886 * timestamping. They are derived from true hwmode.
10887 */
10888 drm_calc_timestamping_constants(crtc,
10889 &pipe_config->adjusted_mode);
b8cecdf5 10890 }
7758a113 10891
ea9d758d
DV
10892 /* Only after disabling all output pipelines that will be changed can we
10893 * update the the output configuration. */
10894 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10895
47fab737
DV
10896 if (dev_priv->display.modeset_global_resources)
10897 dev_priv->display.modeset_global_resources(dev);
10898
a6778b3c
DV
10899 /* Set up the DPLL and any encoders state that needs to adjust or depend
10900 * on the DPLL.
f6e5b160 10901 */
25c5b266 10902 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10903 struct drm_framebuffer *old_fb = crtc->primary->fb;
10904 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10905 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10906
10907 mutex_lock(&dev->struct_mutex);
10908 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10909 obj,
4c10794f
DV
10910 NULL);
10911 if (ret != 0) {
10912 DRM_ERROR("pin & fence failed\n");
10913 mutex_unlock(&dev->struct_mutex);
10914 goto done;
10915 }
2ff8fde1 10916 if (old_fb)
a071fa00 10917 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10918 i915_gem_track_fb(old_obj, obj,
10919 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10920 mutex_unlock(&dev->struct_mutex);
10921
10922 crtc->primary->fb = fb;
10923 crtc->x = x;
10924 crtc->y = y;
10925
4271b753
DV
10926 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10927 x, y, fb);
c0c36b94
CW
10928 if (ret)
10929 goto done;
a6778b3c
DV
10930 }
10931
10932 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10933 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10934 update_scanline_offset(intel_crtc);
10935
25c5b266 10936 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10937 }
a6778b3c 10938
a6778b3c
DV
10939 /* FIXME: add subpixel order */
10940done:
4b4b9238 10941 if (ret && crtc->enabled)
3ac18232 10942 crtc->mode = *saved_mode;
a6778b3c 10943
3ac18232 10944out:
b8cecdf5 10945 kfree(pipe_config);
3ac18232 10946 kfree(saved_mode);
a6778b3c 10947 return ret;
f6e5b160
CW
10948}
10949
e7457a9a
DL
10950static int intel_set_mode(struct drm_crtc *crtc,
10951 struct drm_display_mode *mode,
10952 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10953{
10954 int ret;
10955
10956 ret = __intel_set_mode(crtc, mode, x, y, fb);
10957
10958 if (ret == 0)
10959 intel_modeset_check_state(crtc->dev);
10960
10961 return ret;
10962}
10963
c0c36b94
CW
10964void intel_crtc_restore_mode(struct drm_crtc *crtc)
10965{
f4510a27 10966 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10967}
10968
25c5b266
DV
10969#undef for_each_intel_crtc_masked
10970
d9e55608
DV
10971static void intel_set_config_free(struct intel_set_config *config)
10972{
10973 if (!config)
10974 return;
10975
1aa4b628
DV
10976 kfree(config->save_connector_encoders);
10977 kfree(config->save_encoder_crtcs);
7668851f 10978 kfree(config->save_crtc_enabled);
d9e55608
DV
10979 kfree(config);
10980}
10981
85f9eb71
DV
10982static int intel_set_config_save_state(struct drm_device *dev,
10983 struct intel_set_config *config)
10984{
7668851f 10985 struct drm_crtc *crtc;
85f9eb71
DV
10986 struct drm_encoder *encoder;
10987 struct drm_connector *connector;
10988 int count;
10989
7668851f
VS
10990 config->save_crtc_enabled =
10991 kcalloc(dev->mode_config.num_crtc,
10992 sizeof(bool), GFP_KERNEL);
10993 if (!config->save_crtc_enabled)
10994 return -ENOMEM;
10995
1aa4b628
DV
10996 config->save_encoder_crtcs =
10997 kcalloc(dev->mode_config.num_encoder,
10998 sizeof(struct drm_crtc *), GFP_KERNEL);
10999 if (!config->save_encoder_crtcs)
85f9eb71
DV
11000 return -ENOMEM;
11001
1aa4b628
DV
11002 config->save_connector_encoders =
11003 kcalloc(dev->mode_config.num_connector,
11004 sizeof(struct drm_encoder *), GFP_KERNEL);
11005 if (!config->save_connector_encoders)
85f9eb71
DV
11006 return -ENOMEM;
11007
11008 /* Copy data. Note that driver private data is not affected.
11009 * Should anything bad happen only the expected state is
11010 * restored, not the drivers personal bookkeeping.
11011 */
7668851f 11012 count = 0;
70e1e0ec 11013 for_each_crtc(dev, crtc) {
7668851f
VS
11014 config->save_crtc_enabled[count++] = crtc->enabled;
11015 }
11016
85f9eb71
DV
11017 count = 0;
11018 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11019 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11020 }
11021
11022 count = 0;
11023 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11024 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11025 }
11026
11027 return 0;
11028}
11029
11030static void intel_set_config_restore_state(struct drm_device *dev,
11031 struct intel_set_config *config)
11032{
7668851f 11033 struct intel_crtc *crtc;
9a935856
DV
11034 struct intel_encoder *encoder;
11035 struct intel_connector *connector;
85f9eb71
DV
11036 int count;
11037
7668851f 11038 count = 0;
d3fcc808 11039 for_each_intel_crtc(dev, crtc) {
7668851f 11040 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11041
11042 if (crtc->new_enabled)
11043 crtc->new_config = &crtc->config;
11044 else
11045 crtc->new_config = NULL;
7668851f
VS
11046 }
11047
85f9eb71 11048 count = 0;
9a935856
DV
11049 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11050 encoder->new_crtc =
11051 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11052 }
11053
11054 count = 0;
9a935856
DV
11055 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11056 connector->new_encoder =
11057 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11058 }
11059}
11060
e3de42b6 11061static bool
2e57f47d 11062is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11063{
11064 int i;
11065
2e57f47d
CW
11066 if (set->num_connectors == 0)
11067 return false;
11068
11069 if (WARN_ON(set->connectors == NULL))
11070 return false;
11071
11072 for (i = 0; i < set->num_connectors; i++)
11073 if (set->connectors[i]->encoder &&
11074 set->connectors[i]->encoder->crtc == set->crtc &&
11075 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11076 return true;
11077
11078 return false;
11079}
11080
5e2b584e
DV
11081static void
11082intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11083 struct intel_set_config *config)
11084{
11085
11086 /* We should be able to check here if the fb has the same properties
11087 * and then just flip_or_move it */
2e57f47d
CW
11088 if (is_crtc_connector_off(set)) {
11089 config->mode_changed = true;
f4510a27 11090 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11091 /*
11092 * If we have no fb, we can only flip as long as the crtc is
11093 * active, otherwise we need a full mode set. The crtc may
11094 * be active if we've only disabled the primary plane, or
11095 * in fastboot situations.
11096 */
f4510a27 11097 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11098 struct intel_crtc *intel_crtc =
11099 to_intel_crtc(set->crtc);
11100
3b150f08 11101 if (intel_crtc->active) {
319d9827
JB
11102 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11103 config->fb_changed = true;
11104 } else {
11105 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11106 config->mode_changed = true;
11107 }
5e2b584e
DV
11108 } else if (set->fb == NULL) {
11109 config->mode_changed = true;
72f4901e 11110 } else if (set->fb->pixel_format !=
f4510a27 11111 set->crtc->primary->fb->pixel_format) {
5e2b584e 11112 config->mode_changed = true;
e3de42b6 11113 } else {
5e2b584e 11114 config->fb_changed = true;
e3de42b6 11115 }
5e2b584e
DV
11116 }
11117
835c5873 11118 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11119 config->fb_changed = true;
11120
11121 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11122 DRM_DEBUG_KMS("modes are different, full mode set\n");
11123 drm_mode_debug_printmodeline(&set->crtc->mode);
11124 drm_mode_debug_printmodeline(set->mode);
11125 config->mode_changed = true;
11126 }
a1d95703
CW
11127
11128 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11129 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11130}
11131
2e431051 11132static int
9a935856
DV
11133intel_modeset_stage_output_state(struct drm_device *dev,
11134 struct drm_mode_set *set,
11135 struct intel_set_config *config)
50f56119 11136{
9a935856
DV
11137 struct intel_connector *connector;
11138 struct intel_encoder *encoder;
7668851f 11139 struct intel_crtc *crtc;
f3f08572 11140 int ro;
50f56119 11141
9abdda74 11142 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11143 * of connectors. For paranoia, double-check this. */
11144 WARN_ON(!set->fb && (set->num_connectors != 0));
11145 WARN_ON(set->fb && (set->num_connectors == 0));
11146
9a935856
DV
11147 list_for_each_entry(connector, &dev->mode_config.connector_list,
11148 base.head) {
11149 /* Otherwise traverse passed in connector list and get encoders
11150 * for them. */
50f56119 11151 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11152 if (set->connectors[ro] == &connector->base) {
0e32b39c 11153 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11154 break;
11155 }
11156 }
11157
9a935856
DV
11158 /* If we disable the crtc, disable all its connectors. Also, if
11159 * the connector is on the changing crtc but not on the new
11160 * connector list, disable it. */
11161 if ((!set->fb || ro == set->num_connectors) &&
11162 connector->base.encoder &&
11163 connector->base.encoder->crtc == set->crtc) {
11164 connector->new_encoder = NULL;
11165
11166 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11167 connector->base.base.id,
c23cc417 11168 connector->base.name);
9a935856
DV
11169 }
11170
11171
11172 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11173 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11174 config->mode_changed = true;
50f56119
DV
11175 }
11176 }
9a935856 11177 /* connector->new_encoder is now updated for all connectors. */
50f56119 11178
9a935856 11179 /* Update crtc of enabled connectors. */
9a935856
DV
11180 list_for_each_entry(connector, &dev->mode_config.connector_list,
11181 base.head) {
7668851f
VS
11182 struct drm_crtc *new_crtc;
11183
9a935856 11184 if (!connector->new_encoder)
50f56119
DV
11185 continue;
11186
9a935856 11187 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11188
11189 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11190 if (set->connectors[ro] == &connector->base)
50f56119
DV
11191 new_crtc = set->crtc;
11192 }
11193
11194 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11195 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11196 new_crtc)) {
5e2b584e 11197 return -EINVAL;
50f56119 11198 }
0e32b39c 11199 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11200
11201 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11202 connector->base.base.id,
c23cc417 11203 connector->base.name,
9a935856
DV
11204 new_crtc->base.id);
11205 }
11206
11207 /* Check for any encoders that needs to be disabled. */
11208 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11209 base.head) {
5a65f358 11210 int num_connectors = 0;
9a935856
DV
11211 list_for_each_entry(connector,
11212 &dev->mode_config.connector_list,
11213 base.head) {
11214 if (connector->new_encoder == encoder) {
11215 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11216 num_connectors++;
9a935856
DV
11217 }
11218 }
5a65f358
PZ
11219
11220 if (num_connectors == 0)
11221 encoder->new_crtc = NULL;
11222 else if (num_connectors > 1)
11223 return -EINVAL;
11224
9a935856
DV
11225 /* Only now check for crtc changes so we don't miss encoders
11226 * that will be disabled. */
11227 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11228 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11229 config->mode_changed = true;
50f56119
DV
11230 }
11231 }
9a935856 11232 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11233 list_for_each_entry(connector, &dev->mode_config.connector_list,
11234 base.head) {
11235 if (connector->new_encoder)
11236 if (connector->new_encoder != connector->encoder)
11237 connector->encoder = connector->new_encoder;
11238 }
d3fcc808 11239 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11240 crtc->new_enabled = false;
11241
11242 list_for_each_entry(encoder,
11243 &dev->mode_config.encoder_list,
11244 base.head) {
11245 if (encoder->new_crtc == crtc) {
11246 crtc->new_enabled = true;
11247 break;
11248 }
11249 }
11250
11251 if (crtc->new_enabled != crtc->base.enabled) {
11252 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11253 crtc->new_enabled ? "en" : "dis");
11254 config->mode_changed = true;
11255 }
7bd0a8e7
VS
11256
11257 if (crtc->new_enabled)
11258 crtc->new_config = &crtc->config;
11259 else
11260 crtc->new_config = NULL;
7668851f
VS
11261 }
11262
2e431051
DV
11263 return 0;
11264}
11265
7d00a1f5
VS
11266static void disable_crtc_nofb(struct intel_crtc *crtc)
11267{
11268 struct drm_device *dev = crtc->base.dev;
11269 struct intel_encoder *encoder;
11270 struct intel_connector *connector;
11271
11272 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11273 pipe_name(crtc->pipe));
11274
11275 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11276 if (connector->new_encoder &&
11277 connector->new_encoder->new_crtc == crtc)
11278 connector->new_encoder = NULL;
11279 }
11280
11281 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11282 if (encoder->new_crtc == crtc)
11283 encoder->new_crtc = NULL;
11284 }
11285
11286 crtc->new_enabled = false;
7bd0a8e7 11287 crtc->new_config = NULL;
7d00a1f5
VS
11288}
11289
2e431051
DV
11290static int intel_crtc_set_config(struct drm_mode_set *set)
11291{
11292 struct drm_device *dev;
2e431051
DV
11293 struct drm_mode_set save_set;
11294 struct intel_set_config *config;
11295 int ret;
2e431051 11296
8d3e375e
DV
11297 BUG_ON(!set);
11298 BUG_ON(!set->crtc);
11299 BUG_ON(!set->crtc->helper_private);
2e431051 11300
7e53f3a4
DV
11301 /* Enforce sane interface api - has been abused by the fb helper. */
11302 BUG_ON(!set->mode && set->fb);
11303 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11304
2e431051
DV
11305 if (set->fb) {
11306 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11307 set->crtc->base.id, set->fb->base.id,
11308 (int)set->num_connectors, set->x, set->y);
11309 } else {
11310 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11311 }
11312
11313 dev = set->crtc->dev;
11314
11315 ret = -ENOMEM;
11316 config = kzalloc(sizeof(*config), GFP_KERNEL);
11317 if (!config)
11318 goto out_config;
11319
11320 ret = intel_set_config_save_state(dev, config);
11321 if (ret)
11322 goto out_config;
11323
11324 save_set.crtc = set->crtc;
11325 save_set.mode = &set->crtc->mode;
11326 save_set.x = set->crtc->x;
11327 save_set.y = set->crtc->y;
f4510a27 11328 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11329
11330 /* Compute whether we need a full modeset, only an fb base update or no
11331 * change at all. In the future we might also check whether only the
11332 * mode changed, e.g. for LVDS where we only change the panel fitter in
11333 * such cases. */
11334 intel_set_config_compute_mode_changes(set, config);
11335
9a935856 11336 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11337 if (ret)
11338 goto fail;
11339
5e2b584e 11340 if (config->mode_changed) {
c0c36b94
CW
11341 ret = intel_set_mode(set->crtc, set->mode,
11342 set->x, set->y, set->fb);
5e2b584e 11343 } else if (config->fb_changed) {
3b150f08
MR
11344 struct drm_i915_private *dev_priv = dev->dev_private;
11345 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11346
4878cae2
VS
11347 intel_crtc_wait_for_pending_flips(set->crtc);
11348
4f660f49 11349 ret = intel_pipe_set_base(set->crtc,
94352cf9 11350 set->x, set->y, set->fb);
3b150f08
MR
11351
11352 /*
11353 * We need to make sure the primary plane is re-enabled if it
11354 * has previously been turned off.
11355 */
11356 if (!intel_crtc->primary_enabled && ret == 0) {
11357 WARN_ON(!intel_crtc->active);
11358 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11359 intel_crtc->pipe);
11360 }
11361
7ca51a3a
JB
11362 /*
11363 * In the fastboot case this may be our only check of the
11364 * state after boot. It would be better to only do it on
11365 * the first update, but we don't have a nice way of doing that
11366 * (and really, set_config isn't used much for high freq page
11367 * flipping, so increasing its cost here shouldn't be a big
11368 * deal).
11369 */
d330a953 11370 if (i915.fastboot && ret == 0)
7ca51a3a 11371 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11372 }
11373
2d05eae1 11374 if (ret) {
bf67dfeb
DV
11375 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11376 set->crtc->base.id, ret);
50f56119 11377fail:
2d05eae1 11378 intel_set_config_restore_state(dev, config);
50f56119 11379
7d00a1f5
VS
11380 /*
11381 * HACK: if the pipe was on, but we didn't have a framebuffer,
11382 * force the pipe off to avoid oopsing in the modeset code
11383 * due to fb==NULL. This should only happen during boot since
11384 * we don't yet reconstruct the FB from the hardware state.
11385 */
11386 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11387 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11388
2d05eae1
CW
11389 /* Try to restore the config */
11390 if (config->mode_changed &&
11391 intel_set_mode(save_set.crtc, save_set.mode,
11392 save_set.x, save_set.y, save_set.fb))
11393 DRM_ERROR("failed to restore config after modeset failure\n");
11394 }
50f56119 11395
d9e55608
DV
11396out_config:
11397 intel_set_config_free(config);
50f56119
DV
11398 return ret;
11399}
f6e5b160
CW
11400
11401static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11402 .gamma_set = intel_crtc_gamma_set,
50f56119 11403 .set_config = intel_crtc_set_config,
f6e5b160
CW
11404 .destroy = intel_crtc_destroy,
11405 .page_flip = intel_crtc_page_flip,
11406};
11407
5358901f
DV
11408static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11409 struct intel_shared_dpll *pll,
11410 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11411{
5358901f 11412 uint32_t val;
ee7b9f93 11413
bd2bb1b9
PZ
11414 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11415 return false;
11416
5358901f 11417 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11418 hw_state->dpll = val;
11419 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11420 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11421
11422 return val & DPLL_VCO_ENABLE;
11423}
11424
15bdd4cf
DV
11425static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11426 struct intel_shared_dpll *pll)
11427{
11428 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11429 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11430}
11431
e7b903d2
DV
11432static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11433 struct intel_shared_dpll *pll)
11434{
e7b903d2 11435 /* PCH refclock must be enabled first */
89eff4be 11436 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11437
15bdd4cf
DV
11438 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11439
11440 /* Wait for the clocks to stabilize. */
11441 POSTING_READ(PCH_DPLL(pll->id));
11442 udelay(150);
11443
11444 /* The pixel multiplier can only be updated once the
11445 * DPLL is enabled and the clocks are stable.
11446 *
11447 * So write it again.
11448 */
11449 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11450 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11451 udelay(200);
11452}
11453
11454static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11455 struct intel_shared_dpll *pll)
11456{
11457 struct drm_device *dev = dev_priv->dev;
11458 struct intel_crtc *crtc;
e7b903d2
DV
11459
11460 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11461 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11462 if (intel_crtc_to_shared_dpll(crtc) == pll)
11463 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11464 }
11465
15bdd4cf
DV
11466 I915_WRITE(PCH_DPLL(pll->id), 0);
11467 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11468 udelay(200);
11469}
11470
46edb027
DV
11471static char *ibx_pch_dpll_names[] = {
11472 "PCH DPLL A",
11473 "PCH DPLL B",
11474};
11475
7c74ade1 11476static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11477{
e7b903d2 11478 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11479 int i;
11480
7c74ade1 11481 dev_priv->num_shared_dpll = 2;
ee7b9f93 11482
e72f9fbf 11483 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11484 dev_priv->shared_dplls[i].id = i;
11485 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11486 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11487 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11488 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11489 dev_priv->shared_dplls[i].get_hw_state =
11490 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11491 }
11492}
11493
7c74ade1
DV
11494static void intel_shared_dpll_init(struct drm_device *dev)
11495{
e7b903d2 11496 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11497
9cd86933
DV
11498 if (HAS_DDI(dev))
11499 intel_ddi_pll_init(dev);
11500 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11501 ibx_pch_dpll_init(dev);
11502 else
11503 dev_priv->num_shared_dpll = 0;
11504
11505 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11506}
11507
465c120c
MR
11508static int
11509intel_primary_plane_disable(struct drm_plane *plane)
11510{
11511 struct drm_device *dev = plane->dev;
11512 struct drm_i915_private *dev_priv = dev->dev_private;
11513 struct intel_plane *intel_plane = to_intel_plane(plane);
11514 struct intel_crtc *intel_crtc;
11515
11516 if (!plane->fb)
11517 return 0;
11518
11519 BUG_ON(!plane->crtc);
11520
11521 intel_crtc = to_intel_crtc(plane->crtc);
11522
11523 /*
11524 * Even though we checked plane->fb above, it's still possible that
11525 * the primary plane has been implicitly disabled because the crtc
11526 * coordinates given weren't visible, or because we detected
11527 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11528 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11529 * In either case, we need to unpin the FB and let the fb pointer get
11530 * updated, but otherwise we don't need to touch the hardware.
11531 */
11532 if (!intel_crtc->primary_enabled)
11533 goto disable_unpin;
11534
11535 intel_crtc_wait_for_pending_flips(plane->crtc);
11536 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11537 intel_plane->pipe);
465c120c 11538disable_unpin:
4c34574f 11539 mutex_lock(&dev->struct_mutex);
2ff8fde1 11540 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11541 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11542 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11543 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11544 plane->fb = NULL;
11545
11546 return 0;
11547}
11548
11549static int
11550intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11551 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11552 unsigned int crtc_w, unsigned int crtc_h,
11553 uint32_t src_x, uint32_t src_y,
11554 uint32_t src_w, uint32_t src_h)
11555{
11556 struct drm_device *dev = crtc->dev;
11557 struct drm_i915_private *dev_priv = dev->dev_private;
11558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11559 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11560 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11561 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11562 struct drm_rect dest = {
11563 /* integer pixels */
11564 .x1 = crtc_x,
11565 .y1 = crtc_y,
11566 .x2 = crtc_x + crtc_w,
11567 .y2 = crtc_y + crtc_h,
11568 };
11569 struct drm_rect src = {
11570 /* 16.16 fixed point */
11571 .x1 = src_x,
11572 .y1 = src_y,
11573 .x2 = src_x + src_w,
11574 .y2 = src_y + src_h,
11575 };
11576 const struct drm_rect clip = {
11577 /* integer pixels */
11578 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11579 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11580 };
11581 bool visible;
11582 int ret;
11583
11584 ret = drm_plane_helper_check_update(plane, crtc, fb,
11585 &src, &dest, &clip,
11586 DRM_PLANE_HELPER_NO_SCALING,
11587 DRM_PLANE_HELPER_NO_SCALING,
11588 false, true, &visible);
11589
11590 if (ret)
11591 return ret;
11592
11593 /*
11594 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11595 * updating the fb pointer, and returning without touching the
11596 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11597 * turn on the display with all planes setup as desired.
11598 */
11599 if (!crtc->enabled) {
4c34574f
MR
11600 mutex_lock(&dev->struct_mutex);
11601
465c120c
MR
11602 /*
11603 * If we already called setplane while the crtc was disabled,
11604 * we may have an fb pinned; unpin it.
11605 */
11606 if (plane->fb)
a071fa00
DV
11607 intel_unpin_fb_obj(old_obj);
11608
11609 i915_gem_track_fb(old_obj, obj,
11610 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11611
11612 /* Pin and return without programming hardware */
4c34574f
MR
11613 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11614 mutex_unlock(&dev->struct_mutex);
11615
11616 return ret;
465c120c
MR
11617 }
11618
11619 intel_crtc_wait_for_pending_flips(crtc);
11620
11621 /*
11622 * If clipping results in a non-visible primary plane, we'll disable
11623 * the primary plane. Note that this is a bit different than what
11624 * happens if userspace explicitly disables the plane by passing fb=0
11625 * because plane->fb still gets set and pinned.
11626 */
11627 if (!visible) {
4c34574f
MR
11628 mutex_lock(&dev->struct_mutex);
11629
465c120c
MR
11630 /*
11631 * Try to pin the new fb first so that we can bail out if we
11632 * fail.
11633 */
11634 if (plane->fb != fb) {
a071fa00 11635 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11636 if (ret) {
11637 mutex_unlock(&dev->struct_mutex);
465c120c 11638 return ret;
4c34574f 11639 }
465c120c
MR
11640 }
11641
a071fa00
DV
11642 i915_gem_track_fb(old_obj, obj,
11643 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11644
465c120c
MR
11645 if (intel_crtc->primary_enabled)
11646 intel_disable_primary_hw_plane(dev_priv,
11647 intel_plane->plane,
11648 intel_plane->pipe);
11649
11650
11651 if (plane->fb != fb)
11652 if (plane->fb)
a071fa00 11653 intel_unpin_fb_obj(old_obj);
465c120c 11654
4c34574f
MR
11655 mutex_unlock(&dev->struct_mutex);
11656
465c120c
MR
11657 return 0;
11658 }
11659
11660 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11661 if (ret)
11662 return ret;
11663
11664 if (!intel_crtc->primary_enabled)
11665 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11666 intel_crtc->pipe);
11667
11668 return 0;
11669}
11670
3d7d6510
MR
11671/* Common destruction function for both primary and cursor planes */
11672static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11673{
11674 struct intel_plane *intel_plane = to_intel_plane(plane);
11675 drm_plane_cleanup(plane);
11676 kfree(intel_plane);
11677}
11678
11679static const struct drm_plane_funcs intel_primary_plane_funcs = {
11680 .update_plane = intel_primary_plane_setplane,
11681 .disable_plane = intel_primary_plane_disable,
3d7d6510 11682 .destroy = intel_plane_destroy,
465c120c
MR
11683};
11684
11685static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11686 int pipe)
11687{
11688 struct intel_plane *primary;
11689 const uint32_t *intel_primary_formats;
11690 int num_formats;
11691
11692 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11693 if (primary == NULL)
11694 return NULL;
11695
11696 primary->can_scale = false;
11697 primary->max_downscale = 1;
11698 primary->pipe = pipe;
11699 primary->plane = pipe;
11700 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11701 primary->plane = !pipe;
11702
11703 if (INTEL_INFO(dev)->gen <= 3) {
11704 intel_primary_formats = intel_primary_formats_gen2;
11705 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11706 } else {
11707 intel_primary_formats = intel_primary_formats_gen4;
11708 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11709 }
11710
11711 drm_universal_plane_init(dev, &primary->base, 0,
11712 &intel_primary_plane_funcs,
11713 intel_primary_formats, num_formats,
11714 DRM_PLANE_TYPE_PRIMARY);
11715 return &primary->base;
11716}
11717
3d7d6510
MR
11718static int
11719intel_cursor_plane_disable(struct drm_plane *plane)
11720{
11721 if (!plane->fb)
11722 return 0;
11723
11724 BUG_ON(!plane->crtc);
11725
11726 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11727}
11728
11729static int
11730intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11731 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11732 unsigned int crtc_w, unsigned int crtc_h,
11733 uint32_t src_x, uint32_t src_y,
11734 uint32_t src_w, uint32_t src_h)
11735{
11736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11737 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11738 struct drm_i915_gem_object *obj = intel_fb->obj;
11739 struct drm_rect dest = {
11740 /* integer pixels */
11741 .x1 = crtc_x,
11742 .y1 = crtc_y,
11743 .x2 = crtc_x + crtc_w,
11744 .y2 = crtc_y + crtc_h,
11745 };
11746 struct drm_rect src = {
11747 /* 16.16 fixed point */
11748 .x1 = src_x,
11749 .y1 = src_y,
11750 .x2 = src_x + src_w,
11751 .y2 = src_y + src_h,
11752 };
11753 const struct drm_rect clip = {
11754 /* integer pixels */
11755 .x2 = intel_crtc->config.pipe_src_w,
11756 .y2 = intel_crtc->config.pipe_src_h,
11757 };
11758 bool visible;
11759 int ret;
11760
11761 ret = drm_plane_helper_check_update(plane, crtc, fb,
11762 &src, &dest, &clip,
11763 DRM_PLANE_HELPER_NO_SCALING,
11764 DRM_PLANE_HELPER_NO_SCALING,
11765 true, true, &visible);
11766 if (ret)
11767 return ret;
11768
11769 crtc->cursor_x = crtc_x;
11770 crtc->cursor_y = crtc_y;
11771 if (fb != crtc->cursor->fb) {
11772 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11773 } else {
11774 intel_crtc_update_cursor(crtc, visible);
11775 return 0;
11776 }
11777}
11778static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11779 .update_plane = intel_cursor_plane_update,
11780 .disable_plane = intel_cursor_plane_disable,
11781 .destroy = intel_plane_destroy,
11782};
11783
11784static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11785 int pipe)
11786{
11787 struct intel_plane *cursor;
11788
11789 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11790 if (cursor == NULL)
11791 return NULL;
11792
11793 cursor->can_scale = false;
11794 cursor->max_downscale = 1;
11795 cursor->pipe = pipe;
11796 cursor->plane = pipe;
11797
11798 drm_universal_plane_init(dev, &cursor->base, 0,
11799 &intel_cursor_plane_funcs,
11800 intel_cursor_formats,
11801 ARRAY_SIZE(intel_cursor_formats),
11802 DRM_PLANE_TYPE_CURSOR);
11803 return &cursor->base;
11804}
11805
b358d0a6 11806static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11807{
fbee40df 11808 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11809 struct intel_crtc *intel_crtc;
3d7d6510
MR
11810 struct drm_plane *primary = NULL;
11811 struct drm_plane *cursor = NULL;
465c120c 11812 int i, ret;
79e53945 11813
955382f3 11814 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11815 if (intel_crtc == NULL)
11816 return;
11817
465c120c 11818 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11819 if (!primary)
11820 goto fail;
11821
11822 cursor = intel_cursor_plane_create(dev, pipe);
11823 if (!cursor)
11824 goto fail;
11825
465c120c 11826 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11827 cursor, &intel_crtc_funcs);
11828 if (ret)
11829 goto fail;
79e53945
JB
11830
11831 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11832 for (i = 0; i < 256; i++) {
11833 intel_crtc->lut_r[i] = i;
11834 intel_crtc->lut_g[i] = i;
11835 intel_crtc->lut_b[i] = i;
11836 }
11837
1f1c2e24
VS
11838 /*
11839 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11840 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11841 */
80824003
JB
11842 intel_crtc->pipe = pipe;
11843 intel_crtc->plane = pipe;
3a77c4c4 11844 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11845 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11846 intel_crtc->plane = !pipe;
80824003
JB
11847 }
11848
4b0e333e
CW
11849 intel_crtc->cursor_base = ~0;
11850 intel_crtc->cursor_cntl = ~0;
11851
22fd0fab
JB
11852 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11853 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11854 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11855 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11856
79e53945 11857 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11858
11859 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11860 return;
11861
11862fail:
11863 if (primary)
11864 drm_plane_cleanup(primary);
11865 if (cursor)
11866 drm_plane_cleanup(cursor);
11867 kfree(intel_crtc);
79e53945
JB
11868}
11869
752aa88a
JB
11870enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11871{
11872 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11873 struct drm_device *dev = connector->base.dev;
752aa88a 11874
51fd371b 11875 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11876
11877 if (!encoder)
11878 return INVALID_PIPE;
11879
11880 return to_intel_crtc(encoder->crtc)->pipe;
11881}
11882
08d7b3d1 11883int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11884 struct drm_file *file)
08d7b3d1 11885{
08d7b3d1 11886 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11887 struct drm_crtc *drmmode_crtc;
c05422d5 11888 struct intel_crtc *crtc;
08d7b3d1 11889
1cff8f6b
DV
11890 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11891 return -ENODEV;
08d7b3d1 11892
7707e653 11893 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11894
7707e653 11895 if (!drmmode_crtc) {
08d7b3d1 11896 DRM_ERROR("no such CRTC id\n");
3f2c2057 11897 return -ENOENT;
08d7b3d1
CW
11898 }
11899
7707e653 11900 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11901 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11902
c05422d5 11903 return 0;
08d7b3d1
CW
11904}
11905
66a9278e 11906static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11907{
66a9278e
DV
11908 struct drm_device *dev = encoder->base.dev;
11909 struct intel_encoder *source_encoder;
79e53945 11910 int index_mask = 0;
79e53945
JB
11911 int entry = 0;
11912
66a9278e
DV
11913 list_for_each_entry(source_encoder,
11914 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11915 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11916 index_mask |= (1 << entry);
11917
79e53945
JB
11918 entry++;
11919 }
4ef69c7a 11920
79e53945
JB
11921 return index_mask;
11922}
11923
4d302442
CW
11924static bool has_edp_a(struct drm_device *dev)
11925{
11926 struct drm_i915_private *dev_priv = dev->dev_private;
11927
11928 if (!IS_MOBILE(dev))
11929 return false;
11930
11931 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11932 return false;
11933
e3589908 11934 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11935 return false;
11936
11937 return true;
11938}
11939
ba0fbca4
DL
11940const char *intel_output_name(int output)
11941{
11942 static const char *names[] = {
11943 [INTEL_OUTPUT_UNUSED] = "Unused",
11944 [INTEL_OUTPUT_ANALOG] = "Analog",
11945 [INTEL_OUTPUT_DVO] = "DVO",
11946 [INTEL_OUTPUT_SDVO] = "SDVO",
11947 [INTEL_OUTPUT_LVDS] = "LVDS",
11948 [INTEL_OUTPUT_TVOUT] = "TV",
11949 [INTEL_OUTPUT_HDMI] = "HDMI",
11950 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11951 [INTEL_OUTPUT_EDP] = "eDP",
11952 [INTEL_OUTPUT_DSI] = "DSI",
11953 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11954 };
11955
11956 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11957 return "Invalid";
11958
11959 return names[output];
11960}
11961
84b4e042
JB
11962static bool intel_crt_present(struct drm_device *dev)
11963{
11964 struct drm_i915_private *dev_priv = dev->dev_private;
11965
11966 if (IS_ULT(dev))
11967 return false;
11968
11969 if (IS_CHERRYVIEW(dev))
11970 return false;
11971
11972 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11973 return false;
11974
11975 return true;
11976}
11977
79e53945
JB
11978static void intel_setup_outputs(struct drm_device *dev)
11979{
725e30ad 11980 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11981 struct intel_encoder *encoder;
cb0953d7 11982 bool dpd_is_edp = false;
79e53945 11983
c9093354 11984 intel_lvds_init(dev);
79e53945 11985
84b4e042 11986 if (intel_crt_present(dev))
79935fca 11987 intel_crt_init(dev);
cb0953d7 11988
affa9354 11989 if (HAS_DDI(dev)) {
0e72a5b5
ED
11990 int found;
11991
11992 /* Haswell uses DDI functions to detect digital outputs */
11993 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11994 /* DDI A only supports eDP */
11995 if (found)
11996 intel_ddi_init(dev, PORT_A);
11997
11998 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11999 * register */
12000 found = I915_READ(SFUSE_STRAP);
12001
12002 if (found & SFUSE_STRAP_DDIB_DETECTED)
12003 intel_ddi_init(dev, PORT_B);
12004 if (found & SFUSE_STRAP_DDIC_DETECTED)
12005 intel_ddi_init(dev, PORT_C);
12006 if (found & SFUSE_STRAP_DDID_DETECTED)
12007 intel_ddi_init(dev, PORT_D);
12008 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12009 int found;
5d8a7752 12010 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12011
12012 if (has_edp_a(dev))
12013 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12014
dc0fa718 12015 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12016 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12017 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12018 if (!found)
e2debe91 12019 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12020 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12021 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12022 }
12023
dc0fa718 12024 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12025 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12026
dc0fa718 12027 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12028 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12029
5eb08b69 12030 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12031 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12032
270b3042 12033 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12034 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12035 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12036 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12037 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12038 PORT_B);
12039 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12040 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12041 }
12042
6f6005a5
JB
12043 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12044 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12045 PORT_C);
12046 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12047 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12048 }
19c03924 12049
9418c1f1
VS
12050 if (IS_CHERRYVIEW(dev)) {
12051 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12052 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12053 PORT_D);
12054 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12055 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12056 }
12057 }
12058
3cfca973 12059 intel_dsi_init(dev);
103a196f 12060 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12061 bool found = false;
7d57382e 12062
e2debe91 12063 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12064 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12065 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12066 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12067 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12068 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12069 }
27185ae1 12070
e7281eab 12071 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12072 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12073 }
13520b05
KH
12074
12075 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12076
e2debe91 12077 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12078 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12079 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12080 }
27185ae1 12081
e2debe91 12082 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12083
b01f2c3a
JB
12084 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12085 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12086 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12087 }
e7281eab 12088 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12089 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12090 }
27185ae1 12091
b01f2c3a 12092 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12093 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12094 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12095 } else if (IS_GEN2(dev))
79e53945
JB
12096 intel_dvo_init(dev);
12097
103a196f 12098 if (SUPPORTS_TV(dev))
79e53945
JB
12099 intel_tv_init(dev);
12100
7c8f8a70
RV
12101 intel_edp_psr_init(dev);
12102
4ef69c7a
CW
12103 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12104 encoder->base.possible_crtcs = encoder->crtc_mask;
12105 encoder->base.possible_clones =
66a9278e 12106 intel_encoder_clones(encoder);
79e53945 12107 }
47356eb6 12108
dde86e2d 12109 intel_init_pch_refclk(dev);
270b3042
DV
12110
12111 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12112}
12113
12114static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12115{
60a5ca01 12116 struct drm_device *dev = fb->dev;
79e53945 12117 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12118
ef2d633e 12119 drm_framebuffer_cleanup(fb);
60a5ca01 12120 mutex_lock(&dev->struct_mutex);
ef2d633e 12121 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12122 drm_gem_object_unreference(&intel_fb->obj->base);
12123 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12124 kfree(intel_fb);
12125}
12126
12127static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12128 struct drm_file *file,
79e53945
JB
12129 unsigned int *handle)
12130{
12131 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12132 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12133
05394f39 12134 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12135}
12136
12137static const struct drm_framebuffer_funcs intel_fb_funcs = {
12138 .destroy = intel_user_framebuffer_destroy,
12139 .create_handle = intel_user_framebuffer_create_handle,
12140};
12141
b5ea642a
DV
12142static int intel_framebuffer_init(struct drm_device *dev,
12143 struct intel_framebuffer *intel_fb,
12144 struct drm_mode_fb_cmd2 *mode_cmd,
12145 struct drm_i915_gem_object *obj)
79e53945 12146{
a57ce0b2 12147 int aligned_height;
a35cdaa0 12148 int pitch_limit;
79e53945
JB
12149 int ret;
12150
dd4916c5
DV
12151 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12152
c16ed4be
CW
12153 if (obj->tiling_mode == I915_TILING_Y) {
12154 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12155 return -EINVAL;
c16ed4be 12156 }
57cd6508 12157
c16ed4be
CW
12158 if (mode_cmd->pitches[0] & 63) {
12159 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12160 mode_cmd->pitches[0]);
57cd6508 12161 return -EINVAL;
c16ed4be 12162 }
57cd6508 12163
a35cdaa0
CW
12164 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12165 pitch_limit = 32*1024;
12166 } else if (INTEL_INFO(dev)->gen >= 4) {
12167 if (obj->tiling_mode)
12168 pitch_limit = 16*1024;
12169 else
12170 pitch_limit = 32*1024;
12171 } else if (INTEL_INFO(dev)->gen >= 3) {
12172 if (obj->tiling_mode)
12173 pitch_limit = 8*1024;
12174 else
12175 pitch_limit = 16*1024;
12176 } else
12177 /* XXX DSPC is limited to 4k tiled */
12178 pitch_limit = 8*1024;
12179
12180 if (mode_cmd->pitches[0] > pitch_limit) {
12181 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12182 obj->tiling_mode ? "tiled" : "linear",
12183 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12184 return -EINVAL;
c16ed4be 12185 }
5d7bd705
VS
12186
12187 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12188 mode_cmd->pitches[0] != obj->stride) {
12189 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12190 mode_cmd->pitches[0], obj->stride);
5d7bd705 12191 return -EINVAL;
c16ed4be 12192 }
5d7bd705 12193
57779d06 12194 /* Reject formats not supported by any plane early. */
308e5bcb 12195 switch (mode_cmd->pixel_format) {
57779d06 12196 case DRM_FORMAT_C8:
04b3924d
VS
12197 case DRM_FORMAT_RGB565:
12198 case DRM_FORMAT_XRGB8888:
12199 case DRM_FORMAT_ARGB8888:
57779d06
VS
12200 break;
12201 case DRM_FORMAT_XRGB1555:
12202 case DRM_FORMAT_ARGB1555:
c16ed4be 12203 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12204 DRM_DEBUG("unsupported pixel format: %s\n",
12205 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12206 return -EINVAL;
c16ed4be 12207 }
57779d06
VS
12208 break;
12209 case DRM_FORMAT_XBGR8888:
12210 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12211 case DRM_FORMAT_XRGB2101010:
12212 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12213 case DRM_FORMAT_XBGR2101010:
12214 case DRM_FORMAT_ABGR2101010:
c16ed4be 12215 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12216 DRM_DEBUG("unsupported pixel format: %s\n",
12217 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12218 return -EINVAL;
c16ed4be 12219 }
b5626747 12220 break;
04b3924d
VS
12221 case DRM_FORMAT_YUYV:
12222 case DRM_FORMAT_UYVY:
12223 case DRM_FORMAT_YVYU:
12224 case DRM_FORMAT_VYUY:
c16ed4be 12225 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12226 DRM_DEBUG("unsupported pixel format: %s\n",
12227 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12228 return -EINVAL;
c16ed4be 12229 }
57cd6508
CW
12230 break;
12231 default:
4ee62c76
VS
12232 DRM_DEBUG("unsupported pixel format: %s\n",
12233 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12234 return -EINVAL;
12235 }
12236
90f9a336
VS
12237 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12238 if (mode_cmd->offsets[0] != 0)
12239 return -EINVAL;
12240
a57ce0b2
JB
12241 aligned_height = intel_align_height(dev, mode_cmd->height,
12242 obj->tiling_mode);
53155c0a
DV
12243 /* FIXME drm helper for size checks (especially planar formats)? */
12244 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12245 return -EINVAL;
12246
c7d73f6a
DV
12247 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12248 intel_fb->obj = obj;
80075d49 12249 intel_fb->obj->framebuffer_references++;
c7d73f6a 12250
79e53945
JB
12251 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12252 if (ret) {
12253 DRM_ERROR("framebuffer init failed %d\n", ret);
12254 return ret;
12255 }
12256
79e53945
JB
12257 return 0;
12258}
12259
79e53945
JB
12260static struct drm_framebuffer *
12261intel_user_framebuffer_create(struct drm_device *dev,
12262 struct drm_file *filp,
308e5bcb 12263 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12264{
05394f39 12265 struct drm_i915_gem_object *obj;
79e53945 12266
308e5bcb
JB
12267 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12268 mode_cmd->handles[0]));
c8725226 12269 if (&obj->base == NULL)
cce13ff7 12270 return ERR_PTR(-ENOENT);
79e53945 12271
d2dff872 12272 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12273}
12274
4520f53a 12275#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12276static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12277{
12278}
12279#endif
12280
79e53945 12281static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12282 .fb_create = intel_user_framebuffer_create,
0632fef6 12283 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12284};
12285
e70236a8
JB
12286/* Set up chip specific display functions */
12287static void intel_init_display(struct drm_device *dev)
12288{
12289 struct drm_i915_private *dev_priv = dev->dev_private;
12290
ee9300bb
DV
12291 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12292 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12293 else if (IS_CHERRYVIEW(dev))
12294 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12295 else if (IS_VALLEYVIEW(dev))
12296 dev_priv->display.find_dpll = vlv_find_best_dpll;
12297 else if (IS_PINEVIEW(dev))
12298 dev_priv->display.find_dpll = pnv_find_best_dpll;
12299 else
12300 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12301
affa9354 12302 if (HAS_DDI(dev)) {
0e8ffe1b 12303 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12304 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12305 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12306 dev_priv->display.crtc_enable = haswell_crtc_enable;
12307 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12308 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12309 dev_priv->display.update_primary_plane =
12310 ironlake_update_primary_plane;
09b4ddf9 12311 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12312 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12313 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12314 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12315 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12316 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12317 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12318 dev_priv->display.update_primary_plane =
12319 ironlake_update_primary_plane;
89b667f8
JB
12320 } else if (IS_VALLEYVIEW(dev)) {
12321 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12322 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12323 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12324 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12325 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12326 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12327 dev_priv->display.update_primary_plane =
12328 i9xx_update_primary_plane;
f564048e 12329 } else {
0e8ffe1b 12330 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12331 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12332 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12333 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12334 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12335 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12336 dev_priv->display.update_primary_plane =
12337 i9xx_update_primary_plane;
f564048e 12338 }
e70236a8 12339
e70236a8 12340 /* Returns the core display clock speed */
25eb05fc
JB
12341 if (IS_VALLEYVIEW(dev))
12342 dev_priv->display.get_display_clock_speed =
12343 valleyview_get_display_clock_speed;
12344 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12345 dev_priv->display.get_display_clock_speed =
12346 i945_get_display_clock_speed;
12347 else if (IS_I915G(dev))
12348 dev_priv->display.get_display_clock_speed =
12349 i915_get_display_clock_speed;
257a7ffc 12350 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12351 dev_priv->display.get_display_clock_speed =
12352 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12353 else if (IS_PINEVIEW(dev))
12354 dev_priv->display.get_display_clock_speed =
12355 pnv_get_display_clock_speed;
e70236a8
JB
12356 else if (IS_I915GM(dev))
12357 dev_priv->display.get_display_clock_speed =
12358 i915gm_get_display_clock_speed;
12359 else if (IS_I865G(dev))
12360 dev_priv->display.get_display_clock_speed =
12361 i865_get_display_clock_speed;
f0f8a9ce 12362 else if (IS_I85X(dev))
e70236a8
JB
12363 dev_priv->display.get_display_clock_speed =
12364 i855_get_display_clock_speed;
12365 else /* 852, 830 */
12366 dev_priv->display.get_display_clock_speed =
12367 i830_get_display_clock_speed;
12368
7f8a8569 12369 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12370 if (IS_GEN5(dev)) {
674cf967 12371 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12372 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12373 } else if (IS_GEN6(dev)) {
674cf967 12374 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12375 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12376 dev_priv->display.modeset_global_resources =
12377 snb_modeset_global_resources;
357555c0
JB
12378 } else if (IS_IVYBRIDGE(dev)) {
12379 /* FIXME: detect B0+ stepping and use auto training */
12380 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12381 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12382 dev_priv->display.modeset_global_resources =
12383 ivb_modeset_global_resources;
4e0bbc31 12384 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12385 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12386 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12387 dev_priv->display.modeset_global_resources =
12388 haswell_modeset_global_resources;
a0e63c22 12389 }
6067aaea 12390 } else if (IS_G4X(dev)) {
e0dac65e 12391 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12392 } else if (IS_VALLEYVIEW(dev)) {
12393 dev_priv->display.modeset_global_resources =
12394 valleyview_modeset_global_resources;
9ca2fe73 12395 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12396 }
8c9f3aaf
JB
12397
12398 /* Default just returns -ENODEV to indicate unsupported */
12399 dev_priv->display.queue_flip = intel_default_queue_flip;
12400
12401 switch (INTEL_INFO(dev)->gen) {
12402 case 2:
12403 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12404 break;
12405
12406 case 3:
12407 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12408 break;
12409
12410 case 4:
12411 case 5:
12412 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12413 break;
12414
12415 case 6:
12416 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12417 break;
7c9017e5 12418 case 7:
4e0bbc31 12419 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12420 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12421 break;
8c9f3aaf 12422 }
7bd688cd
JN
12423
12424 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12425}
12426
b690e96c
JB
12427/*
12428 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12429 * resume, or other times. This quirk makes sure that's the case for
12430 * affected systems.
12431 */
0206e353 12432static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12433{
12434 struct drm_i915_private *dev_priv = dev->dev_private;
12435
12436 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12437 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12438}
12439
435793df
KP
12440/*
12441 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12442 */
12443static void quirk_ssc_force_disable(struct drm_device *dev)
12444{
12445 struct drm_i915_private *dev_priv = dev->dev_private;
12446 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12447 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12448}
12449
4dca20ef 12450/*
5a15ab5b
CE
12451 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12452 * brightness value
4dca20ef
CE
12453 */
12454static void quirk_invert_brightness(struct drm_device *dev)
12455{
12456 struct drm_i915_private *dev_priv = dev->dev_private;
12457 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12458 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12459}
12460
9c72cc6f
SD
12461/* Some VBT's incorrectly indicate no backlight is present */
12462static void quirk_backlight_present(struct drm_device *dev)
12463{
12464 struct drm_i915_private *dev_priv = dev->dev_private;
12465 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12466 DRM_INFO("applying backlight present quirk\n");
12467}
12468
b690e96c
JB
12469struct intel_quirk {
12470 int device;
12471 int subsystem_vendor;
12472 int subsystem_device;
12473 void (*hook)(struct drm_device *dev);
12474};
12475
5f85f176
EE
12476/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12477struct intel_dmi_quirk {
12478 void (*hook)(struct drm_device *dev);
12479 const struct dmi_system_id (*dmi_id_list)[];
12480};
12481
12482static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12483{
12484 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12485 return 1;
12486}
12487
12488static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12489 {
12490 .dmi_id_list = &(const struct dmi_system_id[]) {
12491 {
12492 .callback = intel_dmi_reverse_brightness,
12493 .ident = "NCR Corporation",
12494 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12495 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12496 },
12497 },
12498 { } /* terminating entry */
12499 },
12500 .hook = quirk_invert_brightness,
12501 },
12502};
12503
c43b5634 12504static struct intel_quirk intel_quirks[] = {
b690e96c 12505 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12506 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12507
b690e96c
JB
12508 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12509 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12510
b690e96c
JB
12511 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12512 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12513
435793df
KP
12514 /* Lenovo U160 cannot use SSC on LVDS */
12515 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12516
12517 /* Sony Vaio Y cannot use SSC on LVDS */
12518 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12519
be505f64
AH
12520 /* Acer Aspire 5734Z must invert backlight brightness */
12521 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12522
12523 /* Acer/eMachines G725 */
12524 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12525
12526 /* Acer/eMachines e725 */
12527 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12528
12529 /* Acer/Packard Bell NCL20 */
12530 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12531
12532 /* Acer Aspire 4736Z */
12533 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12534
12535 /* Acer Aspire 5336 */
12536 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12537
12538 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12539 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12540
12541 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12542 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12543
12544 /* HP Chromebook 14 (Celeron 2955U) */
12545 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12546};
12547
12548static void intel_init_quirks(struct drm_device *dev)
12549{
12550 struct pci_dev *d = dev->pdev;
12551 int i;
12552
12553 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12554 struct intel_quirk *q = &intel_quirks[i];
12555
12556 if (d->device == q->device &&
12557 (d->subsystem_vendor == q->subsystem_vendor ||
12558 q->subsystem_vendor == PCI_ANY_ID) &&
12559 (d->subsystem_device == q->subsystem_device ||
12560 q->subsystem_device == PCI_ANY_ID))
12561 q->hook(dev);
12562 }
5f85f176
EE
12563 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12564 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12565 intel_dmi_quirks[i].hook(dev);
12566 }
b690e96c
JB
12567}
12568
9cce37f4
JB
12569/* Disable the VGA plane that we never use */
12570static void i915_disable_vga(struct drm_device *dev)
12571{
12572 struct drm_i915_private *dev_priv = dev->dev_private;
12573 u8 sr1;
766aa1c4 12574 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12575
2b37c616 12576 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12577 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12578 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12579 sr1 = inb(VGA_SR_DATA);
12580 outb(sr1 | 1<<5, VGA_SR_DATA);
12581 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12582 udelay(300);
12583
12584 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12585 POSTING_READ(vga_reg);
12586}
12587
f817586c
DV
12588void intel_modeset_init_hw(struct drm_device *dev)
12589{
a8f78b58
ED
12590 intel_prepare_ddi(dev);
12591
f8bf63fd
VS
12592 if (IS_VALLEYVIEW(dev))
12593 vlv_update_cdclk(dev);
12594
f817586c
DV
12595 intel_init_clock_gating(dev);
12596
8090c6b9 12597 intel_enable_gt_powersave(dev);
f817586c
DV
12598}
12599
7d708ee4
ID
12600void intel_modeset_suspend_hw(struct drm_device *dev)
12601{
12602 intel_suspend_hw(dev);
12603}
12604
79e53945
JB
12605void intel_modeset_init(struct drm_device *dev)
12606{
652c393a 12607 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12608 int sprite, ret;
8cc87b75 12609 enum pipe pipe;
46f297fb 12610 struct intel_crtc *crtc;
79e53945
JB
12611
12612 drm_mode_config_init(dev);
12613
12614 dev->mode_config.min_width = 0;
12615 dev->mode_config.min_height = 0;
12616
019d96cb
DA
12617 dev->mode_config.preferred_depth = 24;
12618 dev->mode_config.prefer_shadow = 1;
12619
e6ecefaa 12620 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12621
b690e96c
JB
12622 intel_init_quirks(dev);
12623
1fa61106
ED
12624 intel_init_pm(dev);
12625
e3c74757
BW
12626 if (INTEL_INFO(dev)->num_pipes == 0)
12627 return;
12628
e70236a8
JB
12629 intel_init_display(dev);
12630
a6c45cf0
CW
12631 if (IS_GEN2(dev)) {
12632 dev->mode_config.max_width = 2048;
12633 dev->mode_config.max_height = 2048;
12634 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12635 dev->mode_config.max_width = 4096;
12636 dev->mode_config.max_height = 4096;
79e53945 12637 } else {
a6c45cf0
CW
12638 dev->mode_config.max_width = 8192;
12639 dev->mode_config.max_height = 8192;
79e53945 12640 }
068be561
DL
12641
12642 if (IS_GEN2(dev)) {
12643 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12644 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12645 } else {
12646 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12647 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12648 }
12649
5d4545ae 12650 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12651
28c97730 12652 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12653 INTEL_INFO(dev)->num_pipes,
12654 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12655
8cc87b75
DL
12656 for_each_pipe(pipe) {
12657 intel_crtc_init(dev, pipe);
1fe47785
DL
12658 for_each_sprite(pipe, sprite) {
12659 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12660 if (ret)
06da8da2 12661 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12662 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12663 }
79e53945
JB
12664 }
12665
f42bb70d
JB
12666 intel_init_dpio(dev);
12667
e72f9fbf 12668 intel_shared_dpll_init(dev);
ee7b9f93 12669
9cce37f4
JB
12670 /* Just disable it once at startup */
12671 i915_disable_vga(dev);
79e53945 12672 intel_setup_outputs(dev);
11be49eb
CW
12673
12674 /* Just in case the BIOS is doing something questionable. */
12675 intel_disable_fbc(dev);
fa9fa083 12676
6e9f798d 12677 drm_modeset_lock_all(dev);
fa9fa083 12678 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12679 drm_modeset_unlock_all(dev);
46f297fb 12680
d3fcc808 12681 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12682 if (!crtc->active)
12683 continue;
12684
46f297fb 12685 /*
46f297fb
JB
12686 * Note that reserving the BIOS fb up front prevents us
12687 * from stuffing other stolen allocations like the ring
12688 * on top. This prevents some ugliness at boot time, and
12689 * can even allow for smooth boot transitions if the BIOS
12690 * fb is large enough for the active pipe configuration.
12691 */
12692 if (dev_priv->display.get_plane_config) {
12693 dev_priv->display.get_plane_config(crtc,
12694 &crtc->plane_config);
12695 /*
12696 * If the fb is shared between multiple heads, we'll
12697 * just get the first one.
12698 */
484b41dd 12699 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12700 }
46f297fb 12701 }
2c7111db
CW
12702}
12703
7fad798e
DV
12704static void intel_enable_pipe_a(struct drm_device *dev)
12705{
12706 struct intel_connector *connector;
12707 struct drm_connector *crt = NULL;
12708 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12709 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12710
12711 /* We can't just switch on the pipe A, we need to set things up with a
12712 * proper mode and output configuration. As a gross hack, enable pipe A
12713 * by enabling the load detect pipe once. */
12714 list_for_each_entry(connector,
12715 &dev->mode_config.connector_list,
12716 base.head) {
12717 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12718 crt = &connector->base;
12719 break;
12720 }
12721 }
12722
12723 if (!crt)
12724 return;
12725
51fd371b
RC
12726 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12727 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12728
652c393a 12729
7fad798e
DV
12730}
12731
fa555837
DV
12732static bool
12733intel_check_plane_mapping(struct intel_crtc *crtc)
12734{
7eb552ae
BW
12735 struct drm_device *dev = crtc->base.dev;
12736 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12737 u32 reg, val;
12738
7eb552ae 12739 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12740 return true;
12741
12742 reg = DSPCNTR(!crtc->plane);
12743 val = I915_READ(reg);
12744
12745 if ((val & DISPLAY_PLANE_ENABLE) &&
12746 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12747 return false;
12748
12749 return true;
12750}
12751
24929352
DV
12752static void intel_sanitize_crtc(struct intel_crtc *crtc)
12753{
12754 struct drm_device *dev = crtc->base.dev;
12755 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12756 u32 reg;
24929352 12757
24929352 12758 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12759 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12760 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12761
d3eaf884
VS
12762 /* restore vblank interrupts to correct state */
12763 if (crtc->active)
12764 drm_vblank_on(dev, crtc->pipe);
12765 else
12766 drm_vblank_off(dev, crtc->pipe);
12767
24929352 12768 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12769 * disable the crtc (and hence change the state) if it is wrong. Note
12770 * that gen4+ has a fixed plane -> pipe mapping. */
12771 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12772 struct intel_connector *connector;
12773 bool plane;
12774
24929352
DV
12775 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12776 crtc->base.base.id);
12777
12778 /* Pipe has the wrong plane attached and the plane is active.
12779 * Temporarily change the plane mapping and disable everything
12780 * ... */
12781 plane = crtc->plane;
12782 crtc->plane = !plane;
9c8958bc 12783 crtc->primary_enabled = true;
24929352
DV
12784 dev_priv->display.crtc_disable(&crtc->base);
12785 crtc->plane = plane;
12786
12787 /* ... and break all links. */
12788 list_for_each_entry(connector, &dev->mode_config.connector_list,
12789 base.head) {
12790 if (connector->encoder->base.crtc != &crtc->base)
12791 continue;
12792
7f1950fb
EE
12793 connector->base.dpms = DRM_MODE_DPMS_OFF;
12794 connector->base.encoder = NULL;
24929352 12795 }
7f1950fb
EE
12796 /* multiple connectors may have the same encoder:
12797 * handle them and break crtc link separately */
12798 list_for_each_entry(connector, &dev->mode_config.connector_list,
12799 base.head)
12800 if (connector->encoder->base.crtc == &crtc->base) {
12801 connector->encoder->base.crtc = NULL;
12802 connector->encoder->connectors_active = false;
12803 }
24929352
DV
12804
12805 WARN_ON(crtc->active);
12806 crtc->base.enabled = false;
12807 }
24929352 12808
7fad798e
DV
12809 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12810 crtc->pipe == PIPE_A && !crtc->active) {
12811 /* BIOS forgot to enable pipe A, this mostly happens after
12812 * resume. Force-enable the pipe to fix this, the update_dpms
12813 * call below we restore the pipe to the right state, but leave
12814 * the required bits on. */
12815 intel_enable_pipe_a(dev);
12816 }
12817
24929352
DV
12818 /* Adjust the state of the output pipe according to whether we
12819 * have active connectors/encoders. */
12820 intel_crtc_update_dpms(&crtc->base);
12821
12822 if (crtc->active != crtc->base.enabled) {
12823 struct intel_encoder *encoder;
12824
12825 /* This can happen either due to bugs in the get_hw_state
12826 * functions or because the pipe is force-enabled due to the
12827 * pipe A quirk. */
12828 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12829 crtc->base.base.id,
12830 crtc->base.enabled ? "enabled" : "disabled",
12831 crtc->active ? "enabled" : "disabled");
12832
12833 crtc->base.enabled = crtc->active;
12834
12835 /* Because we only establish the connector -> encoder ->
12836 * crtc links if something is active, this means the
12837 * crtc is now deactivated. Break the links. connector
12838 * -> encoder links are only establish when things are
12839 * actually up, hence no need to break them. */
12840 WARN_ON(crtc->active);
12841
12842 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12843 WARN_ON(encoder->connectors_active);
12844 encoder->base.crtc = NULL;
12845 }
12846 }
c5ab3bc0
DV
12847
12848 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12849 /*
12850 * We start out with underrun reporting disabled to avoid races.
12851 * For correct bookkeeping mark this on active crtcs.
12852 *
c5ab3bc0
DV
12853 * Also on gmch platforms we dont have any hardware bits to
12854 * disable the underrun reporting. Which means we need to start
12855 * out with underrun reporting disabled also on inactive pipes,
12856 * since otherwise we'll complain about the garbage we read when
12857 * e.g. coming up after runtime pm.
12858 *
4cc31489
DV
12859 * No protection against concurrent access is required - at
12860 * worst a fifo underrun happens which also sets this to false.
12861 */
12862 crtc->cpu_fifo_underrun_disabled = true;
12863 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12864
12865 update_scanline_offset(crtc);
4cc31489 12866 }
24929352
DV
12867}
12868
12869static void intel_sanitize_encoder(struct intel_encoder *encoder)
12870{
12871 struct intel_connector *connector;
12872 struct drm_device *dev = encoder->base.dev;
12873
12874 /* We need to check both for a crtc link (meaning that the
12875 * encoder is active and trying to read from a pipe) and the
12876 * pipe itself being active. */
12877 bool has_active_crtc = encoder->base.crtc &&
12878 to_intel_crtc(encoder->base.crtc)->active;
12879
12880 if (encoder->connectors_active && !has_active_crtc) {
12881 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12882 encoder->base.base.id,
8e329a03 12883 encoder->base.name);
24929352
DV
12884
12885 /* Connector is active, but has no active pipe. This is
12886 * fallout from our resume register restoring. Disable
12887 * the encoder manually again. */
12888 if (encoder->base.crtc) {
12889 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12890 encoder->base.base.id,
8e329a03 12891 encoder->base.name);
24929352 12892 encoder->disable(encoder);
a62d1497
VS
12893 if (encoder->post_disable)
12894 encoder->post_disable(encoder);
24929352 12895 }
7f1950fb
EE
12896 encoder->base.crtc = NULL;
12897 encoder->connectors_active = false;
24929352
DV
12898
12899 /* Inconsistent output/port/pipe state happens presumably due to
12900 * a bug in one of the get_hw_state functions. Or someplace else
12901 * in our code, like the register restore mess on resume. Clamp
12902 * things to off as a safer default. */
12903 list_for_each_entry(connector,
12904 &dev->mode_config.connector_list,
12905 base.head) {
12906 if (connector->encoder != encoder)
12907 continue;
7f1950fb
EE
12908 connector->base.dpms = DRM_MODE_DPMS_OFF;
12909 connector->base.encoder = NULL;
24929352
DV
12910 }
12911 }
12912 /* Enabled encoders without active connectors will be fixed in
12913 * the crtc fixup. */
12914}
12915
04098753 12916void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12917{
12918 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12919 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12920
04098753
ID
12921 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12922 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12923 i915_disable_vga(dev);
12924 }
12925}
12926
12927void i915_redisable_vga(struct drm_device *dev)
12928{
12929 struct drm_i915_private *dev_priv = dev->dev_private;
12930
8dc8a27c
PZ
12931 /* This function can be called both from intel_modeset_setup_hw_state or
12932 * at a very early point in our resume sequence, where the power well
12933 * structures are not yet restored. Since this function is at a very
12934 * paranoid "someone might have enabled VGA while we were not looking"
12935 * level, just check if the power well is enabled instead of trying to
12936 * follow the "don't touch the power well if we don't need it" policy
12937 * the rest of the driver uses. */
04098753 12938 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12939 return;
12940
04098753 12941 i915_redisable_vga_power_on(dev);
0fde901f
KM
12942}
12943
98ec7739
VS
12944static bool primary_get_hw_state(struct intel_crtc *crtc)
12945{
12946 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12947
12948 if (!crtc->active)
12949 return false;
12950
12951 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12952}
12953
30e984df 12954static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12955{
12956 struct drm_i915_private *dev_priv = dev->dev_private;
12957 enum pipe pipe;
24929352
DV
12958 struct intel_crtc *crtc;
12959 struct intel_encoder *encoder;
12960 struct intel_connector *connector;
5358901f 12961 int i;
24929352 12962
d3fcc808 12963 for_each_intel_crtc(dev, crtc) {
88adfff1 12964 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12965
9953599b
DV
12966 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12967
0e8ffe1b
DV
12968 crtc->active = dev_priv->display.get_pipe_config(crtc,
12969 &crtc->config);
24929352
DV
12970
12971 crtc->base.enabled = crtc->active;
98ec7739 12972 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12973
12974 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12975 crtc->base.base.id,
12976 crtc->active ? "enabled" : "disabled");
12977 }
12978
5358901f
DV
12979 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12980 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12981
12982 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12983 pll->active = 0;
d3fcc808 12984 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12985 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12986 pll->active++;
12987 }
12988 pll->refcount = pll->active;
12989
35c95375
DV
12990 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12991 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12992
12993 if (pll->refcount)
12994 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12995 }
12996
24929352
DV
12997 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12998 base.head) {
12999 pipe = 0;
13000
13001 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13002 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13003 encoder->base.crtc = &crtc->base;
1d37b689 13004 encoder->get_config(encoder, &crtc->config);
24929352
DV
13005 } else {
13006 encoder->base.crtc = NULL;
13007 }
13008
13009 encoder->connectors_active = false;
6f2bcceb 13010 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13011 encoder->base.base.id,
8e329a03 13012 encoder->base.name,
24929352 13013 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13014 pipe_name(pipe));
24929352
DV
13015 }
13016
13017 list_for_each_entry(connector, &dev->mode_config.connector_list,
13018 base.head) {
13019 if (connector->get_hw_state(connector)) {
13020 connector->base.dpms = DRM_MODE_DPMS_ON;
13021 connector->encoder->connectors_active = true;
13022 connector->base.encoder = &connector->encoder->base;
13023 } else {
13024 connector->base.dpms = DRM_MODE_DPMS_OFF;
13025 connector->base.encoder = NULL;
13026 }
13027 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13028 connector->base.base.id,
c23cc417 13029 connector->base.name,
24929352
DV
13030 connector->base.encoder ? "enabled" : "disabled");
13031 }
30e984df
DV
13032}
13033
13034/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13035 * and i915 state tracking structures. */
13036void intel_modeset_setup_hw_state(struct drm_device *dev,
13037 bool force_restore)
13038{
13039 struct drm_i915_private *dev_priv = dev->dev_private;
13040 enum pipe pipe;
30e984df
DV
13041 struct intel_crtc *crtc;
13042 struct intel_encoder *encoder;
35c95375 13043 int i;
30e984df
DV
13044
13045 intel_modeset_readout_hw_state(dev);
24929352 13046
babea61d
JB
13047 /*
13048 * Now that we have the config, copy it to each CRTC struct
13049 * Note that this could go away if we move to using crtc_config
13050 * checking everywhere.
13051 */
d3fcc808 13052 for_each_intel_crtc(dev, crtc) {
d330a953 13053 if (crtc->active && i915.fastboot) {
f6a83288 13054 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13055 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13056 crtc->base.base.id);
13057 drm_mode_debug_printmodeline(&crtc->base.mode);
13058 }
13059 }
13060
24929352
DV
13061 /* HW state is read out, now we need to sanitize this mess. */
13062 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13063 base.head) {
13064 intel_sanitize_encoder(encoder);
13065 }
13066
13067 for_each_pipe(pipe) {
13068 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13069 intel_sanitize_crtc(crtc);
c0b03411 13070 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13071 }
9a935856 13072
35c95375
DV
13073 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13074 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13075
13076 if (!pll->on || pll->active)
13077 continue;
13078
13079 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13080
13081 pll->disable(dev_priv, pll);
13082 pll->on = false;
13083 }
13084
96f90c54 13085 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13086 ilk_wm_get_hw_state(dev);
13087
45e2b5f6 13088 if (force_restore) {
7d0bc1ea
VS
13089 i915_redisable_vga(dev);
13090
f30da187
DV
13091 /*
13092 * We need to use raw interfaces for restoring state to avoid
13093 * checking (bogus) intermediate states.
13094 */
45e2b5f6 13095 for_each_pipe(pipe) {
b5644d05
JB
13096 struct drm_crtc *crtc =
13097 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13098
13099 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13100 crtc->primary->fb);
45e2b5f6
DV
13101 }
13102 } else {
13103 intel_modeset_update_staged_output_state(dev);
13104 }
8af6cf88
DV
13105
13106 intel_modeset_check_state(dev);
2c7111db
CW
13107}
13108
13109void intel_modeset_gem_init(struct drm_device *dev)
13110{
484b41dd 13111 struct drm_crtc *c;
2ff8fde1 13112 struct drm_i915_gem_object *obj;
484b41dd 13113
ae48434c
ID
13114 mutex_lock(&dev->struct_mutex);
13115 intel_init_gt_powersave(dev);
13116 mutex_unlock(&dev->struct_mutex);
13117
1833b134 13118 intel_modeset_init_hw(dev);
02e792fb
DV
13119
13120 intel_setup_overlay(dev);
484b41dd
JB
13121
13122 /*
13123 * Make sure any fbs we allocated at startup are properly
13124 * pinned & fenced. When we do the allocation it's too early
13125 * for this.
13126 */
13127 mutex_lock(&dev->struct_mutex);
70e1e0ec 13128 for_each_crtc(dev, c) {
2ff8fde1
MR
13129 obj = intel_fb_obj(c->primary->fb);
13130 if (obj == NULL)
484b41dd
JB
13131 continue;
13132
2ff8fde1 13133 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13134 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13135 to_intel_crtc(c)->pipe);
66e514c1
DA
13136 drm_framebuffer_unreference(c->primary->fb);
13137 c->primary->fb = NULL;
484b41dd
JB
13138 }
13139 }
13140 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13141}
13142
4932e2c3
ID
13143void intel_connector_unregister(struct intel_connector *intel_connector)
13144{
13145 struct drm_connector *connector = &intel_connector->base;
13146
13147 intel_panel_destroy_backlight(connector);
34ea3d38 13148 drm_connector_unregister(connector);
4932e2c3
ID
13149}
13150
79e53945
JB
13151void intel_modeset_cleanup(struct drm_device *dev)
13152{
652c393a 13153 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13154 struct drm_connector *connector;
652c393a 13155
fd0c0642
DV
13156 /*
13157 * Interrupts and polling as the first thing to avoid creating havoc.
13158 * Too much stuff here (turning of rps, connectors, ...) would
13159 * experience fancy races otherwise.
13160 */
13161 drm_irq_uninstall(dev);
13162 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13163 dev_priv->pm._irqs_disabled = true;
13164
fd0c0642
DV
13165 /*
13166 * Due to the hpd irq storm handling the hotplug work can re-arm the
13167 * poll handlers. Hence disable polling after hpd handling is shut down.
13168 */
f87ea761 13169 drm_kms_helper_poll_fini(dev);
fd0c0642 13170
652c393a
JB
13171 mutex_lock(&dev->struct_mutex);
13172
723bfd70
JB
13173 intel_unregister_dsm_handler();
13174
973d04f9 13175 intel_disable_fbc(dev);
e70236a8 13176
8090c6b9 13177 intel_disable_gt_powersave(dev);
0cdab21f 13178
930ebb46
DV
13179 ironlake_teardown_rc6(dev);
13180
69341a5e
KH
13181 mutex_unlock(&dev->struct_mutex);
13182
1630fe75
CW
13183 /* flush any delayed tasks or pending work */
13184 flush_scheduled_work();
13185
db31af1d
JN
13186 /* destroy the backlight and sysfs files before encoders/connectors */
13187 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13188 struct intel_connector *intel_connector;
13189
13190 intel_connector = to_intel_connector(connector);
13191 intel_connector->unregister(intel_connector);
db31af1d 13192 }
d9255d57 13193
79e53945 13194 drm_mode_config_cleanup(dev);
4d7bb011
DV
13195
13196 intel_cleanup_overlay(dev);
ae48434c
ID
13197
13198 mutex_lock(&dev->struct_mutex);
13199 intel_cleanup_gt_powersave(dev);
13200 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13201}
13202
f1c79df3
ZW
13203/*
13204 * Return which encoder is currently attached for connector.
13205 */
df0e9248 13206struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13207{
df0e9248
CW
13208 return &intel_attached_encoder(connector)->base;
13209}
f1c79df3 13210
df0e9248
CW
13211void intel_connector_attach_encoder(struct intel_connector *connector,
13212 struct intel_encoder *encoder)
13213{
13214 connector->encoder = encoder;
13215 drm_mode_connector_attach_encoder(&connector->base,
13216 &encoder->base);
79e53945 13217}
28d52043
DA
13218
13219/*
13220 * set vga decode state - true == enable VGA decode
13221 */
13222int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13223{
13224 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13225 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13226 u16 gmch_ctrl;
13227
75fa041d
CW
13228 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13229 DRM_ERROR("failed to read control word\n");
13230 return -EIO;
13231 }
13232
c0cc8a55
CW
13233 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13234 return 0;
13235
28d52043
DA
13236 if (state)
13237 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13238 else
13239 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13240
13241 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13242 DRM_ERROR("failed to write control word\n");
13243 return -EIO;
13244 }
13245
28d52043
DA
13246 return 0;
13247}
c4a1d9e4 13248
c4a1d9e4 13249struct intel_display_error_state {
ff57f1b0
PZ
13250
13251 u32 power_well_driver;
13252
63b66e5b
CW
13253 int num_transcoders;
13254
c4a1d9e4
CW
13255 struct intel_cursor_error_state {
13256 u32 control;
13257 u32 position;
13258 u32 base;
13259 u32 size;
52331309 13260 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13261
13262 struct intel_pipe_error_state {
ddf9c536 13263 bool power_domain_on;
c4a1d9e4 13264 u32 source;
f301b1e1 13265 u32 stat;
52331309 13266 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13267
13268 struct intel_plane_error_state {
13269 u32 control;
13270 u32 stride;
13271 u32 size;
13272 u32 pos;
13273 u32 addr;
13274 u32 surface;
13275 u32 tile_offset;
52331309 13276 } plane[I915_MAX_PIPES];
63b66e5b
CW
13277
13278 struct intel_transcoder_error_state {
ddf9c536 13279 bool power_domain_on;
63b66e5b
CW
13280 enum transcoder cpu_transcoder;
13281
13282 u32 conf;
13283
13284 u32 htotal;
13285 u32 hblank;
13286 u32 hsync;
13287 u32 vtotal;
13288 u32 vblank;
13289 u32 vsync;
13290 } transcoder[4];
c4a1d9e4
CW
13291};
13292
13293struct intel_display_error_state *
13294intel_display_capture_error_state(struct drm_device *dev)
13295{
fbee40df 13296 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13297 struct intel_display_error_state *error;
63b66e5b
CW
13298 int transcoders[] = {
13299 TRANSCODER_A,
13300 TRANSCODER_B,
13301 TRANSCODER_C,
13302 TRANSCODER_EDP,
13303 };
c4a1d9e4
CW
13304 int i;
13305
63b66e5b
CW
13306 if (INTEL_INFO(dev)->num_pipes == 0)
13307 return NULL;
13308
9d1cb914 13309 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13310 if (error == NULL)
13311 return NULL;
13312
190be112 13313 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13314 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13315
52331309 13316 for_each_pipe(i) {
ddf9c536 13317 error->pipe[i].power_domain_on =
bfafe93a
ID
13318 intel_display_power_enabled_unlocked(dev_priv,
13319 POWER_DOMAIN_PIPE(i));
ddf9c536 13320 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13321 continue;
13322
5efb3e28
VS
13323 error->cursor[i].control = I915_READ(CURCNTR(i));
13324 error->cursor[i].position = I915_READ(CURPOS(i));
13325 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13326
13327 error->plane[i].control = I915_READ(DSPCNTR(i));
13328 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13329 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13330 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13331 error->plane[i].pos = I915_READ(DSPPOS(i));
13332 }
ca291363
PZ
13333 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13334 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13335 if (INTEL_INFO(dev)->gen >= 4) {
13336 error->plane[i].surface = I915_READ(DSPSURF(i));
13337 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13338 }
13339
c4a1d9e4 13340 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13341
3abfce77 13342 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13343 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13344 }
13345
13346 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13347 if (HAS_DDI(dev_priv->dev))
13348 error->num_transcoders++; /* Account for eDP. */
13349
13350 for (i = 0; i < error->num_transcoders; i++) {
13351 enum transcoder cpu_transcoder = transcoders[i];
13352
ddf9c536 13353 error->transcoder[i].power_domain_on =
bfafe93a 13354 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13355 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13356 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13357 continue;
13358
63b66e5b
CW
13359 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13360
13361 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13362 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13363 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13364 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13365 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13366 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13367 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13368 }
13369
13370 return error;
13371}
13372
edc3d884
MK
13373#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13374
c4a1d9e4 13375void
edc3d884 13376intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13377 struct drm_device *dev,
13378 struct intel_display_error_state *error)
13379{
13380 int i;
13381
63b66e5b
CW
13382 if (!error)
13383 return;
13384
edc3d884 13385 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13386 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13387 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13388 error->power_well_driver);
52331309 13389 for_each_pipe(i) {
edc3d884 13390 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13391 err_printf(m, " Power: %s\n",
13392 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13393 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13394 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13395
13396 err_printf(m, "Plane [%d]:\n", i);
13397 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13398 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13399 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13400 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13401 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13402 }
4b71a570 13403 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13404 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13405 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13406 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13407 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13408 }
13409
edc3d884
MK
13410 err_printf(m, "Cursor [%d]:\n", i);
13411 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13412 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13413 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13414 }
63b66e5b
CW
13415
13416 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13417 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13418 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13419 err_printf(m, " Power: %s\n",
13420 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13421 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13422 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13423 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13424 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13425 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13426 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13427 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13428 }
c4a1d9e4 13429}