]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Performed deferred clflush inside set-cache-level
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc 78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 79 struct intel_crtc_state *pipe_config);
18442d08 80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 97static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 98 const struct intel_crtc_state *pipe_config);
d288f65f 99static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 100 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
101static void intel_begin_crtc_commit(struct drm_crtc *crtc);
102static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
4093561b 413bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 414{
409ee761 415 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
416 struct intel_encoder *encoder;
417
409ee761 418 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
d0737e1d
ACO
425/**
426 * Returns whether any output on the specified pipe will have the specified
427 * type after a staged modeset is complete, i.e., the same as
428 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
429 * encoder->crtc.
430 */
431static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
432{
433 struct drm_device *dev = crtc->base.dev;
434 struct intel_encoder *encoder;
435
436 for_each_intel_encoder(dev, encoder)
437 if (encoder->new_crtc == crtc && encoder->type == type)
438 return true;
439
440 return false;
441}
442
409ee761 443static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 444 int refclk)
2c07245f 445{
409ee761 446 struct drm_device *dev = crtc->base.dev;
2c07245f 447 const intel_limit_t *limit;
b91ad0ec 448
d0737e1d 449 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 450 if (intel_is_dual_link_lvds(dev)) {
1b894b59 451 if (refclk == 100000)
b91ad0ec
ZW
452 limit = &intel_limits_ironlake_dual_lvds_100m;
453 else
454 limit = &intel_limits_ironlake_dual_lvds;
455 } else {
1b894b59 456 if (refclk == 100000)
b91ad0ec
ZW
457 limit = &intel_limits_ironlake_single_lvds_100m;
458 else
459 limit = &intel_limits_ironlake_single_lvds;
460 }
c6bb3538 461 } else
b91ad0ec 462 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
463
464 return limit;
465}
466
409ee761 467static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 468{
409ee761 469 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
470 const intel_limit_t *limit;
471
d0737e1d 472 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 473 if (intel_is_dual_link_lvds(dev))
e4b36699 474 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 475 else
e4b36699 476 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
477 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
478 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 479 limit = &intel_limits_g4x_hdmi;
d0737e1d 480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 481 limit = &intel_limits_g4x_sdvo;
044c7c41 482 } else /* The option is for other outputs */
e4b36699 483 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
484
485 return limit;
486}
487
409ee761 488static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 489{
409ee761 490 struct drm_device *dev = crtc->base.dev;
79e53945
JB
491 const intel_limit_t *limit;
492
bad720ff 493 if (HAS_PCH_SPLIT(dev))
1b894b59 494 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 495 else if (IS_G4X(dev)) {
044c7c41 496 limit = intel_g4x_limit(crtc);
f2b115e6 497 } else if (IS_PINEVIEW(dev)) {
d0737e1d 498 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 499 limit = &intel_limits_pineview_lvds;
2177832f 500 else
f2b115e6 501 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
502 } else if (IS_CHERRYVIEW(dev)) {
503 limit = &intel_limits_chv;
a0c4da24 504 } else if (IS_VALLEYVIEW(dev)) {
dc730512 505 limit = &intel_limits_vlv;
a6c45cf0 506 } else if (!IS_GEN2(dev)) {
d0737e1d 507 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
508 limit = &intel_limits_i9xx_lvds;
509 else
510 limit = &intel_limits_i9xx_sdvo;
79e53945 511 } else {
d0737e1d 512 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 513 limit = &intel_limits_i8xx_lvds;
d0737e1d 514 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 515 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
516 else
517 limit = &intel_limits_i8xx_dac;
79e53945
JB
518 }
519 return limit;
520}
521
f2b115e6
AJ
522/* m1 is reserved as 0 in Pineview, n is a ring counter */
523static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 524{
2177832f
SL
525 clock->m = clock->m2 + 2;
526 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
527 if (WARN_ON(clock->n == 0 || clock->p == 0))
528 return;
fb03ac01
VS
529 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
531}
532
7429e9d4
DV
533static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
534{
535 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
536}
537
ac58c3f0 538static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 539{
7429e9d4 540 clock->m = i9xx_dpll_compute_m(clock);
79e53945 541 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
542 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
543 return;
fb03ac01
VS
544 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
545 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
546}
547
ef9348c8
CML
548static void chv_clock(int refclk, intel_clock_t *clock)
549{
550 clock->m = clock->m1 * clock->m2;
551 clock->p = clock->p1 * clock->p2;
552 if (WARN_ON(clock->n == 0 || clock->p == 0))
553 return;
554 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
555 clock->n << 22);
556 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
557}
558
7c04d1d9 559#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
560/**
561 * Returns whether the given set of divisors are valid for a given refclk with
562 * the given connectors.
563 */
564
1b894b59
CW
565static bool intel_PLL_is_valid(struct drm_device *dev,
566 const intel_limit_t *limit,
567 const intel_clock_t *clock)
79e53945 568{
f01b7962
VS
569 if (clock->n < limit->n.min || limit->n.max < clock->n)
570 INTELPllInvalid("n out of range\n");
79e53945 571 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 572 INTELPllInvalid("p1 out of range\n");
79e53945 573 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 574 INTELPllInvalid("m2 out of range\n");
79e53945 575 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 576 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
577
578 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
579 if (clock->m1 <= clock->m2)
580 INTELPllInvalid("m1 <= m2\n");
581
582 if (!IS_VALLEYVIEW(dev)) {
583 if (clock->p < limit->p.min || limit->p.max < clock->p)
584 INTELPllInvalid("p out of range\n");
585 if (clock->m < limit->m.min || limit->m.max < clock->m)
586 INTELPllInvalid("m out of range\n");
587 }
588
79e53945 589 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 590 INTELPllInvalid("vco out of range\n");
79e53945
JB
591 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
592 * connector, etc., rather than just a single range.
593 */
594 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 595 INTELPllInvalid("dot out of range\n");
79e53945
JB
596
597 return true;
598}
599
d4906093 600static bool
a919ff14 601i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
602 int target, int refclk, intel_clock_t *match_clock,
603 intel_clock_t *best_clock)
79e53945 604{
a919ff14 605 struct drm_device *dev = crtc->base.dev;
79e53945 606 intel_clock_t clock;
79e53945
JB
607 int err = target;
608
d0737e1d 609 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 610 /*
a210b028
DV
611 * For LVDS just rely on its current settings for dual-channel.
612 * We haven't figured out how to reliably set up different
613 * single/dual channel state, if we even can.
79e53945 614 */
1974cad0 615 if (intel_is_dual_link_lvds(dev))
79e53945
JB
616 clock.p2 = limit->p2.p2_fast;
617 else
618 clock.p2 = limit->p2.p2_slow;
619 } else {
620 if (target < limit->p2.dot_limit)
621 clock.p2 = limit->p2.p2_slow;
622 else
623 clock.p2 = limit->p2.p2_fast;
624 }
625
0206e353 626 memset(best_clock, 0, sizeof(*best_clock));
79e53945 627
42158660
ZY
628 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
629 clock.m1++) {
630 for (clock.m2 = limit->m2.min;
631 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 632 if (clock.m2 >= clock.m1)
42158660
ZY
633 break;
634 for (clock.n = limit->n.min;
635 clock.n <= limit->n.max; clock.n++) {
636 for (clock.p1 = limit->p1.min;
637 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
638 int this_err;
639
ac58c3f0
DV
640 i9xx_clock(refclk, &clock);
641 if (!intel_PLL_is_valid(dev, limit,
642 &clock))
643 continue;
644 if (match_clock &&
645 clock.p != match_clock->p)
646 continue;
647
648 this_err = abs(clock.dot - target);
649 if (this_err < err) {
650 *best_clock = clock;
651 err = this_err;
652 }
653 }
654 }
655 }
656 }
657
658 return (err != target);
659}
660
661static bool
a919ff14 662pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
663 int target, int refclk, intel_clock_t *match_clock,
664 intel_clock_t *best_clock)
79e53945 665{
a919ff14 666 struct drm_device *dev = crtc->base.dev;
79e53945 667 intel_clock_t clock;
79e53945
JB
668 int err = target;
669
d0737e1d 670 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 671 /*
a210b028
DV
672 * For LVDS just rely on its current settings for dual-channel.
673 * We haven't figured out how to reliably set up different
674 * single/dual channel state, if we even can.
79e53945 675 */
1974cad0 676 if (intel_is_dual_link_lvds(dev))
79e53945
JB
677 clock.p2 = limit->p2.p2_fast;
678 else
679 clock.p2 = limit->p2.p2_slow;
680 } else {
681 if (target < limit->p2.dot_limit)
682 clock.p2 = limit->p2.p2_slow;
683 else
684 clock.p2 = limit->p2.p2_fast;
685 }
686
0206e353 687 memset(best_clock, 0, sizeof(*best_clock));
79e53945 688
42158660
ZY
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
697 int this_err;
698
ac58c3f0 699 pineview_clock(refclk, &clock);
1b894b59
CW
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
79e53945 702 continue;
cec2f356
SP
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
79e53945
JB
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718}
719
d4906093 720static bool
a919ff14 721g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
722 int target, int refclk, intel_clock_t *match_clock,
723 intel_clock_t *best_clock)
d4906093 724{
a919ff14 725 struct drm_device *dev = crtc->base.dev;
d4906093
ML
726 intel_clock_t clock;
727 int max_n;
728 bool found;
6ba770dc
AJ
729 /* approximately equals target * 0.00585 */
730 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
731 found = false;
732
d0737e1d 733 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 734 if (intel_is_dual_link_lvds(dev))
d4906093
ML
735 clock.p2 = limit->p2.p2_fast;
736 else
737 clock.p2 = limit->p2.p2_slow;
738 } else {
739 if (target < limit->p2.dot_limit)
740 clock.p2 = limit->p2.p2_slow;
741 else
742 clock.p2 = limit->p2.p2_fast;
743 }
744
745 memset(best_clock, 0, sizeof(*best_clock));
746 max_n = limit->n.max;
f77f13e2 747 /* based on hardware requirement, prefer smaller n to precision */
d4906093 748 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 749 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
750 for (clock.m1 = limit->m1.max;
751 clock.m1 >= limit->m1.min; clock.m1--) {
752 for (clock.m2 = limit->m2.max;
753 clock.m2 >= limit->m2.min; clock.m2--) {
754 for (clock.p1 = limit->p1.max;
755 clock.p1 >= limit->p1.min; clock.p1--) {
756 int this_err;
757
ac58c3f0 758 i9xx_clock(refclk, &clock);
1b894b59
CW
759 if (!intel_PLL_is_valid(dev, limit,
760 &clock))
d4906093 761 continue;
1b894b59
CW
762
763 this_err = abs(clock.dot - target);
d4906093
ML
764 if (this_err < err_most) {
765 *best_clock = clock;
766 err_most = this_err;
767 max_n = clock.n;
768 found = true;
769 }
770 }
771 }
772 }
773 }
2c07245f
ZW
774 return found;
775}
776
a0c4da24 777static bool
a919ff14 778vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
779 int target, int refclk, intel_clock_t *match_clock,
780 intel_clock_t *best_clock)
a0c4da24 781{
a919ff14 782 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 783 intel_clock_t clock;
69e4f900 784 unsigned int bestppm = 1000000;
27e639bf
VS
785 /* min update 19.2 MHz */
786 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 787 bool found = false;
a0c4da24 788
6b4bf1c4
VS
789 target *= 5; /* fast clock */
790
791 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
792
793 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 794 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 795 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 796 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 797 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 798 clock.p = clock.p1 * clock.p2;
a0c4da24 799 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 800 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
801 unsigned int ppm, diff;
802
6b4bf1c4
VS
803 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
804 refclk * clock.m1);
805
806 vlv_clock(refclk, &clock);
43b0ac53 807
f01b7962
VS
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
43b0ac53
VS
810 continue;
811
6b4bf1c4
VS
812 diff = abs(clock.dot - target);
813 ppm = div_u64(1000000ULL * diff, target);
814
815 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 816 bestppm = 0;
6b4bf1c4 817 *best_clock = clock;
49e497ef 818 found = true;
43b0ac53 819 }
6b4bf1c4 820
c686122c 821 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 822 bestppm = ppm;
6b4bf1c4 823 *best_clock = clock;
49e497ef 824 found = true;
a0c4da24
JB
825 }
826 }
827 }
828 }
829 }
a0c4da24 830
49e497ef 831 return found;
a0c4da24 832}
a4fc5ed6 833
ef9348c8 834static bool
a919ff14 835chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
836 int target, int refclk, intel_clock_t *match_clock,
837 intel_clock_t *best_clock)
838{
a919ff14 839 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
840 intel_clock_t clock;
841 uint64_t m2;
842 int found = false;
843
844 memset(best_clock, 0, sizeof(*best_clock));
845
846 /*
847 * Based on hardware doc, the n always set to 1, and m1 always
848 * set to 2. If requires to support 200Mhz refclk, we need to
849 * revisit this because n may not 1 anymore.
850 */
851 clock.n = 1, clock.m1 = 2;
852 target *= 5; /* fast clock */
853
854 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
855 for (clock.p2 = limit->p2.p2_fast;
856 clock.p2 >= limit->p2.p2_slow;
857 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
858
859 clock.p = clock.p1 * clock.p2;
860
861 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
862 clock.n) << 22, refclk * clock.m1);
863
864 if (m2 > INT_MAX/clock.m1)
865 continue;
866
867 clock.m2 = m2;
868
869 chv_clock(refclk, &clock);
870
871 if (!intel_PLL_is_valid(dev, limit, &clock))
872 continue;
873
874 /* based on hardware requirement, prefer bigger p
875 */
876 if (clock.p > best_clock->p) {
877 *best_clock = clock;
878 found = true;
879 }
880 }
881 }
882
883 return found;
884}
885
20ddf665
VS
886bool intel_crtc_active(struct drm_crtc *crtc)
887{
888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
889
890 /* Be paranoid as we can arrive here with only partial
891 * state retrieved from the hardware during setup.
892 *
241bfc38 893 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
894 * as Haswell has gained clock readout/fastboot support.
895 *
66e514c1 896 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
897 * properly reconstruct framebuffers.
898 */
f4510a27 899 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 900 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
901}
902
a5c961d1
PZ
903enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905{
906 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
908
6e3c9717 909 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
910}
911
fbf49ea2
VS
912static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
913{
914 struct drm_i915_private *dev_priv = dev->dev_private;
915 u32 reg = PIPEDSL(pipe);
916 u32 line1, line2;
917 u32 line_mask;
918
919 if (IS_GEN2(dev))
920 line_mask = DSL_LINEMASK_GEN2;
921 else
922 line_mask = DSL_LINEMASK_GEN3;
923
924 line1 = I915_READ(reg) & line_mask;
925 mdelay(5);
926 line2 = I915_READ(reg) & line_mask;
927
928 return line1 == line2;
929}
930
ab7ad7f6
KP
931/*
932 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 933 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
934 *
935 * After disabling a pipe, we can't wait for vblank in the usual way,
936 * spinning on the vblank interrupt status bit, since we won't actually
937 * see an interrupt when the pipe is disabled.
938 *
ab7ad7f6
KP
939 * On Gen4 and above:
940 * wait for the pipe register state bit to turn off
941 *
942 * Otherwise:
943 * wait for the display line value to settle (it usually
944 * ends up stopping at the start of the next frame).
58e10eb9 945 *
9d0498a2 946 */
575f7ab7 947static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 948{
575f7ab7 949 struct drm_device *dev = crtc->base.dev;
9d0498a2 950 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 951 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 952 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
953
954 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 955 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
956
957 /* Wait for the Pipe State to go off */
58e10eb9
CW
958 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
959 100))
284637d9 960 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 961 } else {
ab7ad7f6 962 /* Wait for the display line to settle */
fbf49ea2 963 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 964 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 965 }
79e53945
JB
966}
967
b0ea7d37
DL
968/*
969 * ibx_digital_port_connected - is the specified port connected?
970 * @dev_priv: i915 private structure
971 * @port: the port to test
972 *
973 * Returns true if @port is connected, false otherwise.
974 */
975bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
976 struct intel_digital_port *port)
977{
978 u32 bit;
979
c36346e3 980 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 981 switch (port->port) {
c36346e3
DL
982 case PORT_B:
983 bit = SDE_PORTB_HOTPLUG;
984 break;
985 case PORT_C:
986 bit = SDE_PORTC_HOTPLUG;
987 break;
988 case PORT_D:
989 bit = SDE_PORTD_HOTPLUG;
990 break;
991 default:
992 return true;
993 }
994 } else {
eba905b2 995 switch (port->port) {
c36346e3
DL
996 case PORT_B:
997 bit = SDE_PORTB_HOTPLUG_CPT;
998 break;
999 case PORT_C:
1000 bit = SDE_PORTC_HOTPLUG_CPT;
1001 break;
1002 case PORT_D:
1003 bit = SDE_PORTD_HOTPLUG_CPT;
1004 break;
1005 default:
1006 return true;
1007 }
b0ea7d37
DL
1008 }
1009
1010 return I915_READ(SDEISR) & bit;
1011}
1012
b24e7179
JB
1013static const char *state_string(bool enabled)
1014{
1015 return enabled ? "on" : "off";
1016}
1017
1018/* Only for pre-ILK configs */
55607e8a
DV
1019void assert_pll(struct drm_i915_private *dev_priv,
1020 enum pipe pipe, bool state)
b24e7179
JB
1021{
1022 int reg;
1023 u32 val;
1024 bool cur_state;
1025
1026 reg = DPLL(pipe);
1027 val = I915_READ(reg);
1028 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1029 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1030 "PLL state assertion failure (expected %s, current %s)\n",
1031 state_string(state), state_string(cur_state));
1032}
b24e7179 1033
23538ef1
JN
1034/* XXX: the dsi pll is shared between MIPI DSI ports */
1035static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1036{
1037 u32 val;
1038 bool cur_state;
1039
1040 mutex_lock(&dev_priv->dpio_lock);
1041 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1042 mutex_unlock(&dev_priv->dpio_lock);
1043
1044 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1045 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1046 "DSI PLL state assertion failure (expected %s, current %s)\n",
1047 state_string(state), state_string(cur_state));
1048}
1049#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1050#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1051
55607e8a 1052struct intel_shared_dpll *
e2b78267
DV
1053intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1054{
1055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1056
6e3c9717 1057 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1058 return NULL;
1059
6e3c9717 1060 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1061}
1062
040484af 1063/* For ILK+ */
55607e8a
DV
1064void assert_shared_dpll(struct drm_i915_private *dev_priv,
1065 struct intel_shared_dpll *pll,
1066 bool state)
040484af 1067{
040484af 1068 bool cur_state;
5358901f 1069 struct intel_dpll_hw_state hw_state;
040484af 1070
92b27b08 1071 if (WARN (!pll,
46edb027 1072 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1073 return;
ee7b9f93 1074
5358901f 1075 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1076 I915_STATE_WARN(cur_state != state,
5358901f
DV
1077 "%s assertion failure (expected %s, current %s)\n",
1078 pll->name, state_string(state), state_string(cur_state));
040484af 1079}
040484af
JB
1080
1081static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1082 enum pipe pipe, bool state)
1083{
1084 int reg;
1085 u32 val;
1086 bool cur_state;
ad80a810
PZ
1087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1088 pipe);
040484af 1089
affa9354
PZ
1090 if (HAS_DDI(dev_priv->dev)) {
1091 /* DDI does not have a specific FDI_TX register */
ad80a810 1092 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1093 val = I915_READ(reg);
ad80a810 1094 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1095 } else {
1096 reg = FDI_TX_CTL(pipe);
1097 val = I915_READ(reg);
1098 cur_state = !!(val & FDI_TX_ENABLE);
1099 }
e2c719b7 1100 I915_STATE_WARN(cur_state != state,
040484af
JB
1101 "FDI TX state assertion failure (expected %s, current %s)\n",
1102 state_string(state), state_string(cur_state));
1103}
1104#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1105#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1106
1107static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
1113
d63fa0dc
PZ
1114 reg = FDI_RX_CTL(pipe);
1115 val = I915_READ(reg);
1116 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1117 I915_STATE_WARN(cur_state != state,
040484af
JB
1118 "FDI RX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1122#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1123
1124static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1125 enum pipe pipe)
1126{
1127 int reg;
1128 u32 val;
1129
1130 /* ILK FDI PLL is always enabled */
3d13ef2e 1131 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1132 return;
1133
bf507ef7 1134 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1135 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1136 return;
1137
040484af
JB
1138 reg = FDI_TX_CTL(pipe);
1139 val = I915_READ(reg);
e2c719b7 1140 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1141}
1142
55607e8a
DV
1143void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1144 enum pipe pipe, bool state)
040484af
JB
1145{
1146 int reg;
1147 u32 val;
55607e8a 1148 bool cur_state;
040484af
JB
1149
1150 reg = FDI_RX_CTL(pipe);
1151 val = I915_READ(reg);
55607e8a 1152 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1153 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1154 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1155 state_string(state), state_string(cur_state));
040484af
JB
1156}
1157
b680c37a
DV
1158void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
ea0760cf 1160{
bedd4dba
JN
1161 struct drm_device *dev = dev_priv->dev;
1162 int pp_reg;
ea0760cf
JB
1163 u32 val;
1164 enum pipe panel_pipe = PIPE_A;
0de3b485 1165 bool locked = true;
ea0760cf 1166
bedd4dba
JN
1167 if (WARN_ON(HAS_DDI(dev)))
1168 return;
1169
1170 if (HAS_PCH_SPLIT(dev)) {
1171 u32 port_sel;
1172
ea0760cf 1173 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1174 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1175
1176 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1177 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1178 panel_pipe = PIPE_B;
1179 /* XXX: else fix for eDP */
1180 } else if (IS_VALLEYVIEW(dev)) {
1181 /* presumably write lock depends on pipe, not port select */
1182 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1183 panel_pipe = pipe;
ea0760cf
JB
1184 } else {
1185 pp_reg = PP_CONTROL;
bedd4dba
JN
1186 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1187 panel_pipe = PIPE_B;
ea0760cf
JB
1188 }
1189
1190 val = I915_READ(pp_reg);
1191 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1192 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1193 locked = false;
1194
e2c719b7 1195 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1196 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1197 pipe_name(pipe));
ea0760cf
JB
1198}
1199
93ce0ba6
JN
1200static void assert_cursor(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202{
1203 struct drm_device *dev = dev_priv->dev;
1204 bool cur_state;
1205
d9d82081 1206 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1207 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1208 else
5efb3e28 1209 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1210
e2c719b7 1211 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1212 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1213 pipe_name(pipe), state_string(state), state_string(cur_state));
1214}
1215#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1216#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1217
b840d907
JB
1218void assert_pipe(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
b24e7179
JB
1220{
1221 int reg;
1222 u32 val;
63d7bbe9 1223 bool cur_state;
702e7a56
PZ
1224 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1225 pipe);
b24e7179 1226
b6b5d049
VS
1227 /* if we need the pipe quirk it must be always on */
1228 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1229 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1230 state = true;
1231
f458ebbc 1232 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1233 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1234 cur_state = false;
1235 } else {
1236 reg = PIPECONF(cpu_transcoder);
1237 val = I915_READ(reg);
1238 cur_state = !!(val & PIPECONF_ENABLE);
1239 }
1240
e2c719b7 1241 I915_STATE_WARN(cur_state != state,
63d7bbe9 1242 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1243 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1244}
1245
931872fc
CW
1246static void assert_plane(struct drm_i915_private *dev_priv,
1247 enum plane plane, bool state)
b24e7179
JB
1248{
1249 int reg;
1250 u32 val;
931872fc 1251 bool cur_state;
b24e7179
JB
1252
1253 reg = DSPCNTR(plane);
1254 val = I915_READ(reg);
931872fc 1255 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1256 I915_STATE_WARN(cur_state != state,
931872fc
CW
1257 "plane %c assertion failure (expected %s, current %s)\n",
1258 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1259}
1260
931872fc
CW
1261#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1262#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1263
b24e7179
JB
1264static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1265 enum pipe pipe)
1266{
653e1026 1267 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1268 int reg, i;
1269 u32 val;
1270 int cur_pipe;
1271
653e1026
VS
1272 /* Primary planes are fixed to pipes on gen4+ */
1273 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1274 reg = DSPCNTR(pipe);
1275 val = I915_READ(reg);
e2c719b7 1276 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1277 "plane %c assertion failure, should be disabled but not\n",
1278 plane_name(pipe));
19ec1358 1279 return;
28c05794 1280 }
19ec1358 1281
b24e7179 1282 /* Need to check both planes against the pipe */
055e393f 1283 for_each_pipe(dev_priv, i) {
b24e7179
JB
1284 reg = DSPCNTR(i);
1285 val = I915_READ(reg);
1286 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1287 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1288 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1289 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1290 plane_name(i), pipe_name(pipe));
b24e7179
JB
1291 }
1292}
1293
19332d7a
JB
1294static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296{
20674eef 1297 struct drm_device *dev = dev_priv->dev;
1fe47785 1298 int reg, sprite;
19332d7a
JB
1299 u32 val;
1300
7feb8b88
DL
1301 if (INTEL_INFO(dev)->gen >= 9) {
1302 for_each_sprite(pipe, sprite) {
1303 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1304 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1305 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1306 sprite, pipe_name(pipe));
1307 }
1308 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1309 for_each_sprite(pipe, sprite) {
1310 reg = SPCNTR(pipe, sprite);
20674eef 1311 val = I915_READ(reg);
e2c719b7 1312 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1313 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1314 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1315 }
1316 } else if (INTEL_INFO(dev)->gen >= 7) {
1317 reg = SPRCTL(pipe);
19332d7a 1318 val = I915_READ(reg);
e2c719b7 1319 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1320 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1321 plane_name(pipe), pipe_name(pipe));
1322 } else if (INTEL_INFO(dev)->gen >= 5) {
1323 reg = DVSCNTR(pipe);
19332d7a 1324 val = I915_READ(reg);
e2c719b7 1325 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1327 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1328 }
1329}
1330
08c71e5e
VS
1331static void assert_vblank_disabled(struct drm_crtc *crtc)
1332{
e2c719b7 1333 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1334 drm_crtc_vblank_put(crtc);
1335}
1336
89eff4be 1337static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1338{
1339 u32 val;
1340 bool enabled;
1341
e2c719b7 1342 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1343
92f2584a
JB
1344 val = I915_READ(PCH_DREF_CONTROL);
1345 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1346 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1347 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1348}
1349
ab9412ba
DV
1350static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1351 enum pipe pipe)
92f2584a
JB
1352{
1353 int reg;
1354 u32 val;
1355 bool enabled;
1356
ab9412ba 1357 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1358 val = I915_READ(reg);
1359 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1360 I915_STATE_WARN(enabled,
9db4a9c7
JB
1361 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1362 pipe_name(pipe));
92f2584a
JB
1363}
1364
4e634389
KP
1365static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1367{
1368 if ((val & DP_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1373 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1374 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1375 return false;
44f37d1f
CML
1376 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1377 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1378 return false;
f0575e92
KP
1379 } else {
1380 if ((val & DP_PIPE_MASK) != (pipe << 30))
1381 return false;
1382 }
1383 return true;
1384}
1385
1519b995
KP
1386static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe, u32 val)
1388{
dc0fa718 1389 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1390 return false;
1391
1392 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1393 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1394 return false;
44f37d1f
CML
1395 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1396 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1397 return false;
1519b995 1398 } else {
dc0fa718 1399 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1400 return false;
1401 }
1402 return true;
1403}
1404
1405static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1406 enum pipe pipe, u32 val)
1407{
1408 if ((val & LVDS_PORT_EN) == 0)
1409 return false;
1410
1411 if (HAS_PCH_CPT(dev_priv->dev)) {
1412 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1413 return false;
1414 } else {
1415 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1416 return false;
1417 }
1418 return true;
1419}
1420
1421static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1422 enum pipe pipe, u32 val)
1423{
1424 if ((val & ADPA_DAC_ENABLE) == 0)
1425 return false;
1426 if (HAS_PCH_CPT(dev_priv->dev)) {
1427 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1428 return false;
1429 } else {
1430 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1431 return false;
1432 }
1433 return true;
1434}
1435
291906f1 1436static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1437 enum pipe pipe, int reg, u32 port_sel)
291906f1 1438{
47a05eca 1439 u32 val = I915_READ(reg);
e2c719b7 1440 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1441 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1442 reg, pipe_name(pipe));
de9a35ab 1443
e2c719b7 1444 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1445 && (val & DP_PIPEB_SELECT),
de9a35ab 1446 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1447}
1448
1449static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, int reg)
1451{
47a05eca 1452 u32 val = I915_READ(reg);
e2c719b7 1453 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1454 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1455 reg, pipe_name(pipe));
de9a35ab 1456
e2c719b7 1457 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1458 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1459 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1460}
1461
1462static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe)
1464{
1465 int reg;
1466 u32 val;
291906f1 1467
f0575e92
KP
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1471
1472 reg = PCH_ADPA;
1473 val = I915_READ(reg);
e2c719b7 1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1476 pipe_name(pipe));
291906f1
JB
1477
1478 reg = PCH_LVDS;
1479 val = I915_READ(reg);
e2c719b7 1480 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1481 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1482 pipe_name(pipe));
291906f1 1483
e2debe91
PZ
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1487}
1488
40e9cf64
JB
1489static void intel_init_dpio(struct drm_device *dev)
1490{
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492
1493 if (!IS_VALLEYVIEW(dev))
1494 return;
1495
a09caddd
CML
1496 /*
1497 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1498 * CHV x1 PHY (DP/HDMI D)
1499 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1500 */
1501 if (IS_CHERRYVIEW(dev)) {
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1504 } else {
1505 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1506 }
5382f5f3
JB
1507}
1508
d288f65f 1509static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1510 const struct intel_crtc_state *pipe_config)
87442f73 1511{
426115cf
DV
1512 struct drm_device *dev = crtc->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 int reg = DPLL(crtc->pipe);
d288f65f 1515 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1516
426115cf 1517 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1518
1519 /* No really, not for ILK+ */
1520 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1521
1522 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1523 if (IS_MOBILE(dev_priv->dev))
426115cf 1524 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1525
426115cf
DV
1526 I915_WRITE(reg, dpll);
1527 POSTING_READ(reg);
1528 udelay(150);
1529
1530 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1531 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1532
d288f65f 1533 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1534 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1535
1536 /* We do this three times for luck */
426115cf 1537 I915_WRITE(reg, dpll);
87442f73
DV
1538 POSTING_READ(reg);
1539 udelay(150); /* wait for warmup */
426115cf 1540 I915_WRITE(reg, dpll);
87442f73
DV
1541 POSTING_READ(reg);
1542 udelay(150); /* wait for warmup */
426115cf 1543 I915_WRITE(reg, dpll);
87442f73
DV
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
1546}
1547
d288f65f 1548static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1549 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1550{
1551 struct drm_device *dev = crtc->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 int pipe = crtc->pipe;
1554 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1555 u32 tmp;
1556
1557 assert_pipe_disabled(dev_priv, crtc->pipe);
1558
1559 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1560
1561 mutex_lock(&dev_priv->dpio_lock);
1562
1563 /* Enable back the 10bit clock to display controller */
1564 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1565 tmp |= DPIO_DCLKP_EN;
1566 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1567
1568 /*
1569 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1570 */
1571 udelay(1);
1572
1573 /* Enable PLL */
d288f65f 1574 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1575
1576 /* Check PLL is locked */
a11b0703 1577 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1578 DRM_ERROR("PLL %d failed to lock\n", pipe);
1579
a11b0703 1580 /* not sure when this should be written */
d288f65f 1581 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1582 POSTING_READ(DPLL_MD(pipe));
1583
9d556c99
CML
1584 mutex_unlock(&dev_priv->dpio_lock);
1585}
1586
1c4e0274
VS
1587static int intel_num_dvo_pipes(struct drm_device *dev)
1588{
1589 struct intel_crtc *crtc;
1590 int count = 0;
1591
1592 for_each_intel_crtc(dev, crtc)
1593 count += crtc->active &&
409ee761 1594 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1595
1596 return count;
1597}
1598
66e3d5c0 1599static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1600{
66e3d5c0
DV
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
6e3c9717 1604 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1605
66e3d5c0 1606 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1607
63d7bbe9 1608 /* No really, not for ILK+ */
3d13ef2e 1609 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1610
1611 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1612 if (IS_MOBILE(dev) && !IS_I830(dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1614
1c4e0274
VS
1615 /* Enable DVO 2x clock on both PLLs if necessary */
1616 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1617 /*
1618 * It appears to be important that we don't enable this
1619 * for the current pipe before otherwise configuring the
1620 * PLL. No idea how this should be handled if multiple
1621 * DVO outputs are enabled simultaneosly.
1622 */
1623 dpll |= DPLL_DVO_2X_MODE;
1624 I915_WRITE(DPLL(!crtc->pipe),
1625 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1626 }
66e3d5c0
DV
1627
1628 /* Wait for the clocks to stabilize. */
1629 POSTING_READ(reg);
1630 udelay(150);
1631
1632 if (INTEL_INFO(dev)->gen >= 4) {
1633 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1634 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1635 } else {
1636 /* The pixel multiplier can only be updated once the
1637 * DPLL is enabled and the clocks are stable.
1638 *
1639 * So write it again.
1640 */
1641 I915_WRITE(reg, dpll);
1642 }
63d7bbe9
JB
1643
1644 /* We do this three times for luck */
66e3d5c0 1645 I915_WRITE(reg, dpll);
63d7bbe9
JB
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
66e3d5c0 1648 I915_WRITE(reg, dpll);
63d7bbe9
JB
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
66e3d5c0 1651 I915_WRITE(reg, dpll);
63d7bbe9
JB
1652 POSTING_READ(reg);
1653 udelay(150); /* wait for warmup */
1654}
1655
1656/**
50b44a44 1657 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1658 * @dev_priv: i915 private structure
1659 * @pipe: pipe PLL to disable
1660 *
1661 * Disable the PLL for @pipe, making sure the pipe is off first.
1662 *
1663 * Note! This is for pre-ILK only.
1664 */
1c4e0274 1665static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1666{
1c4e0274
VS
1667 struct drm_device *dev = crtc->base.dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 enum pipe pipe = crtc->pipe;
1670
1671 /* Disable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) &&
409ee761 1673 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1674 intel_num_dvo_pipes(dev) == 1) {
1675 I915_WRITE(DPLL(PIPE_B),
1676 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1677 I915_WRITE(DPLL(PIPE_A),
1678 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1679 }
1680
b6b5d049
VS
1681 /* Don't disable pipe or pipe PLLs if needed */
1682 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1683 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1684 return;
1685
1686 /* Make sure the pipe isn't still relying on us */
1687 assert_pipe_disabled(dev_priv, pipe);
1688
50b44a44
DV
1689 I915_WRITE(DPLL(pipe), 0);
1690 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1691}
1692
f6071166
JB
1693static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694{
1695 u32 val = 0;
1696
1697 /* Make sure the pipe isn't still relying on us */
1698 assert_pipe_disabled(dev_priv, pipe);
1699
e5cbfbfb
ID
1700 /*
1701 * Leave integrated clock source and reference clock enabled for pipe B.
1702 * The latter is needed for VGA hotplug / manual detection.
1703 */
f6071166 1704 if (pipe == PIPE_B)
e5cbfbfb 1705 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1706 I915_WRITE(DPLL(pipe), val);
1707 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1708
1709}
1710
1711static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712{
d752048d 1713 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1714 u32 val;
1715
a11b0703
VS
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1718
a11b0703 1719 /* Set PLL en = 0 */
d17ec4ce 1720 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
d752048d
VS
1725
1726 mutex_lock(&dev_priv->dpio_lock);
1727
1728 /* Disable 10bit clock to display controller */
1729 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1730 val &= ~DPIO_DCLKP_EN;
1731 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1732
61407f6d
VS
1733 /* disable left/right clock distribution */
1734 if (pipe != PIPE_B) {
1735 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1736 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1737 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1738 } else {
1739 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1740 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1741 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1742 }
1743
d752048d 1744 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1745}
1746
e4607fcf
CML
1747void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport)
89b667f8
JB
1749{
1750 u32 port_mask;
00fc31b7 1751 int dpll_reg;
89b667f8 1752
e4607fcf
CML
1753 switch (dport->port) {
1754 case PORT_B:
89b667f8 1755 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1756 dpll_reg = DPLL(0);
e4607fcf
CML
1757 break;
1758 case PORT_C:
89b667f8 1759 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1760 dpll_reg = DPLL(0);
1761 break;
1762 case PORT_D:
1763 port_mask = DPLL_PORTD_READY_MASK;
1764 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1765 break;
1766 default:
1767 BUG();
1768 }
89b667f8 1769
00fc31b7 1770 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1771 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1772 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1773}
1774
b14b1055
DV
1775static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1776{
1777 struct drm_device *dev = crtc->base.dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1780
be19f0ff
CW
1781 if (WARN_ON(pll == NULL))
1782 return;
1783
3e369b76 1784 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1785 if (pll->active == 0) {
1786 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1787 WARN_ON(pll->on);
1788 assert_shared_dpll_disabled(dev_priv, pll);
1789
1790 pll->mode_set(dev_priv, pll);
1791 }
1792}
1793
92f2584a 1794/**
85b3894f 1795 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1796 * @dev_priv: i915 private structure
1797 * @pipe: pipe PLL to enable
1798 *
1799 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1800 * drives the transcoder clock.
1801 */
85b3894f 1802static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1803{
3d13ef2e
DL
1804 struct drm_device *dev = crtc->base.dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1806 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1807
87a875bb 1808 if (WARN_ON(pll == NULL))
48da64a8
CW
1809 return;
1810
3e369b76 1811 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1812 return;
ee7b9f93 1813
74dd6928 1814 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1815 pll->name, pll->active, pll->on,
e2b78267 1816 crtc->base.base.id);
92f2584a 1817
cdbd2316
DV
1818 if (pll->active++) {
1819 WARN_ON(!pll->on);
e9d6944e 1820 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1821 return;
1822 }
f4a091c7 1823 WARN_ON(pll->on);
ee7b9f93 1824
bd2bb1b9
PZ
1825 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1826
46edb027 1827 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1828 pll->enable(dev_priv, pll);
ee7b9f93 1829 pll->on = true;
92f2584a
JB
1830}
1831
f6daaec2 1832static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1833{
3d13ef2e
DL
1834 struct drm_device *dev = crtc->base.dev;
1835 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1836 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1837
92f2584a 1838 /* PCH only available on ILK+ */
3d13ef2e 1839 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1840 if (WARN_ON(pll == NULL))
ee7b9f93 1841 return;
92f2584a 1842
3e369b76 1843 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1844 return;
7a419866 1845
46edb027
DV
1846 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1847 pll->name, pll->active, pll->on,
e2b78267 1848 crtc->base.base.id);
7a419866 1849
48da64a8 1850 if (WARN_ON(pll->active == 0)) {
e9d6944e 1851 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1852 return;
1853 }
1854
e9d6944e 1855 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1856 WARN_ON(!pll->on);
cdbd2316 1857 if (--pll->active)
7a419866 1858 return;
ee7b9f93 1859
46edb027 1860 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1861 pll->disable(dev_priv, pll);
ee7b9f93 1862 pll->on = false;
bd2bb1b9
PZ
1863
1864 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1865}
1866
b8a4f404
PZ
1867static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1868 enum pipe pipe)
040484af 1869{
23670b32 1870 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1871 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1873 uint32_t reg, val, pipeconf_val;
040484af
JB
1874
1875 /* PCH only available on ILK+ */
55522f37 1876 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1877
1878 /* Make sure PCH DPLL is enabled */
e72f9fbf 1879 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1880 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1881
1882 /* FDI must be feeding us bits for PCH ports */
1883 assert_fdi_tx_enabled(dev_priv, pipe);
1884 assert_fdi_rx_enabled(dev_priv, pipe);
1885
23670b32
DV
1886 if (HAS_PCH_CPT(dev)) {
1887 /* Workaround: Set the timing override bit before enabling the
1888 * pch transcoder. */
1889 reg = TRANS_CHICKEN2(pipe);
1890 val = I915_READ(reg);
1891 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1892 I915_WRITE(reg, val);
59c859d6 1893 }
23670b32 1894
ab9412ba 1895 reg = PCH_TRANSCONF(pipe);
040484af 1896 val = I915_READ(reg);
5f7f726d 1897 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1898
1899 if (HAS_PCH_IBX(dev_priv->dev)) {
1900 /*
1901 * make the BPC in transcoder be consistent with
1902 * that in pipeconf reg.
1903 */
dfd07d72
DV
1904 val &= ~PIPECONF_BPC_MASK;
1905 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1906 }
5f7f726d
PZ
1907
1908 val &= ~TRANS_INTERLACE_MASK;
1909 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1910 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1911 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1912 val |= TRANS_LEGACY_INTERLACED_ILK;
1913 else
1914 val |= TRANS_INTERLACED;
5f7f726d
PZ
1915 else
1916 val |= TRANS_PROGRESSIVE;
1917
040484af
JB
1918 I915_WRITE(reg, val | TRANS_ENABLE);
1919 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1920 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1921}
1922
8fb033d7 1923static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1924 enum transcoder cpu_transcoder)
040484af 1925{
8fb033d7 1926 u32 val, pipeconf_val;
8fb033d7
PZ
1927
1928 /* PCH only available on ILK+ */
55522f37 1929 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1930
8fb033d7 1931 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1932 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1933 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1934
223a6fdf
PZ
1935 /* Workaround: set timing override bit. */
1936 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1938 I915_WRITE(_TRANSA_CHICKEN2, val);
1939
25f3ef11 1940 val = TRANS_ENABLE;
937bb610 1941 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1942
9a76b1c6
PZ
1943 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1944 PIPECONF_INTERLACED_ILK)
a35f2679 1945 val |= TRANS_INTERLACED;
8fb033d7
PZ
1946 else
1947 val |= TRANS_PROGRESSIVE;
1948
ab9412ba
DV
1949 I915_WRITE(LPT_TRANSCONF, val);
1950 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1951 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1952}
1953
b8a4f404
PZ
1954static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1955 enum pipe pipe)
040484af 1956{
23670b32
DV
1957 struct drm_device *dev = dev_priv->dev;
1958 uint32_t reg, val;
040484af
JB
1959
1960 /* FDI relies on the transcoder */
1961 assert_fdi_tx_disabled(dev_priv, pipe);
1962 assert_fdi_rx_disabled(dev_priv, pipe);
1963
291906f1
JB
1964 /* Ports must be off as well */
1965 assert_pch_ports_disabled(dev_priv, pipe);
1966
ab9412ba 1967 reg = PCH_TRANSCONF(pipe);
040484af
JB
1968 val = I915_READ(reg);
1969 val &= ~TRANS_ENABLE;
1970 I915_WRITE(reg, val);
1971 /* wait for PCH transcoder off, transcoder state */
1972 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1973 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1974
1975 if (!HAS_PCH_IBX(dev)) {
1976 /* Workaround: Clear the timing override chicken bit again. */
1977 reg = TRANS_CHICKEN2(pipe);
1978 val = I915_READ(reg);
1979 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1980 I915_WRITE(reg, val);
1981 }
040484af
JB
1982}
1983
ab4d966c 1984static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1985{
8fb033d7
PZ
1986 u32 val;
1987
ab9412ba 1988 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1989 val &= ~TRANS_ENABLE;
ab9412ba 1990 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1991 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1992 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1993 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1994
1995 /* Workaround: clear timing override bit. */
1996 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1997 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1998 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1999}
2000
b24e7179 2001/**
309cfea8 2002 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2003 * @crtc: crtc responsible for the pipe
b24e7179 2004 *
0372264a 2005 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2006 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2007 */
e1fdc473 2008static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2009{
0372264a
PZ
2010 struct drm_device *dev = crtc->base.dev;
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2013 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2014 pipe);
1a240d4d 2015 enum pipe pch_transcoder;
b24e7179
JB
2016 int reg;
2017 u32 val;
2018
58c6eaa2 2019 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2020 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2021 assert_sprites_disabled(dev_priv, pipe);
2022
681e5811 2023 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2024 pch_transcoder = TRANSCODER_A;
2025 else
2026 pch_transcoder = pipe;
2027
b24e7179
JB
2028 /*
2029 * A pipe without a PLL won't actually be able to drive bits from
2030 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2031 * need the check.
2032 */
2033 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2035 assert_dsi_pll_enabled(dev_priv);
2036 else
2037 assert_pll_enabled(dev_priv, pipe);
040484af 2038 else {
6e3c9717 2039 if (crtc->config->has_pch_encoder) {
040484af 2040 /* if driving the PCH, we need FDI enabled */
cc391bbb 2041 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2042 assert_fdi_tx_pll_enabled(dev_priv,
2043 (enum pipe) cpu_transcoder);
040484af
JB
2044 }
2045 /* FIXME: assert CPU port conditions for SNB+ */
2046 }
b24e7179 2047
702e7a56 2048 reg = PIPECONF(cpu_transcoder);
b24e7179 2049 val = I915_READ(reg);
7ad25d48 2050 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2051 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2052 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2053 return;
7ad25d48 2054 }
00d70b15
CW
2055
2056 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2057 POSTING_READ(reg);
b24e7179
JB
2058}
2059
2060/**
309cfea8 2061 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2062 * @crtc: crtc whose pipes is to be disabled
b24e7179 2063 *
575f7ab7
VS
2064 * Disable the pipe of @crtc, making sure that various hardware
2065 * specific requirements are met, if applicable, e.g. plane
2066 * disabled, panel fitter off, etc.
b24e7179
JB
2067 *
2068 * Will wait until the pipe has shut down before returning.
2069 */
575f7ab7 2070static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2071{
575f7ab7 2072 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2073 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2074 enum pipe pipe = crtc->pipe;
b24e7179
JB
2075 int reg;
2076 u32 val;
2077
2078 /*
2079 * Make sure planes won't keep trying to pump pixels to us,
2080 * or we might hang the display.
2081 */
2082 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2083 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2084 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2085
702e7a56 2086 reg = PIPECONF(cpu_transcoder);
b24e7179 2087 val = I915_READ(reg);
00d70b15
CW
2088 if ((val & PIPECONF_ENABLE) == 0)
2089 return;
2090
67adc644
VS
2091 /*
2092 * Double wide has implications for planes
2093 * so best keep it disabled when not needed.
2094 */
6e3c9717 2095 if (crtc->config->double_wide)
67adc644
VS
2096 val &= ~PIPECONF_DOUBLE_WIDE;
2097
2098 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2099 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2100 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2101 val &= ~PIPECONF_ENABLE;
2102
2103 I915_WRITE(reg, val);
2104 if ((val & PIPECONF_ENABLE) == 0)
2105 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2106}
2107
d74362c9
KP
2108/*
2109 * Plane regs are double buffered, going from enabled->disabled needs a
2110 * trigger in order to latch. The display address reg provides this.
2111 */
1dba99f4
VS
2112void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2113 enum plane plane)
d74362c9 2114{
3d13ef2e
DL
2115 struct drm_device *dev = dev_priv->dev;
2116 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2117
2118 I915_WRITE(reg, I915_READ(reg));
2119 POSTING_READ(reg);
d74362c9
KP
2120}
2121
b24e7179 2122/**
262ca2b0 2123 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2124 * @plane: plane to be enabled
2125 * @crtc: crtc for the plane
b24e7179 2126 *
fdd508a6 2127 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2128 */
fdd508a6
VS
2129static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2130 struct drm_crtc *crtc)
b24e7179 2131{
fdd508a6
VS
2132 struct drm_device *dev = plane->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2135
2136 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2137 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2138
98ec7739
VS
2139 if (intel_crtc->primary_enabled)
2140 return;
0037f71c 2141
4c445e0e 2142 intel_crtc->primary_enabled = true;
939c2fe8 2143
fdd508a6
VS
2144 dev_priv->display.update_primary_plane(crtc, plane->fb,
2145 crtc->x, crtc->y);
33c3b0d1
VS
2146
2147 /*
2148 * BDW signals flip done immediately if the plane
2149 * is disabled, even if the plane enable is already
2150 * armed to occur at the next vblank :(
2151 */
2152 if (IS_BROADWELL(dev))
2153 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2154}
2155
b24e7179 2156/**
262ca2b0 2157 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2158 * @plane: plane to be disabled
2159 * @crtc: crtc for the plane
b24e7179 2160 *
fdd508a6 2161 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2162 */
fdd508a6
VS
2163static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2164 struct drm_crtc *crtc)
b24e7179 2165{
fdd508a6
VS
2166 struct drm_device *dev = plane->dev;
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169
32b7eeec
MR
2170 if (WARN_ON(!intel_crtc->active))
2171 return;
b24e7179 2172
98ec7739
VS
2173 if (!intel_crtc->primary_enabled)
2174 return;
0037f71c 2175
4c445e0e 2176 intel_crtc->primary_enabled = false;
939c2fe8 2177
fdd508a6
VS
2178 dev_priv->display.update_primary_plane(crtc, plane->fb,
2179 crtc->x, crtc->y);
b24e7179
JB
2180}
2181
693db184
CW
2182static bool need_vtd_wa(struct drm_device *dev)
2183{
2184#ifdef CONFIG_INTEL_IOMMU
2185 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186 return true;
2187#endif
2188 return false;
2189}
2190
ec2c981e
DL
2191int
2192intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
a57ce0b2
JB
2193{
2194 int tile_height;
2195
ec2c981e 2196 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
a57ce0b2
JB
2197 return ALIGN(height, tile_height);
2198}
2199
127bd2ac 2200int
850c4cdc
TU
2201intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2202 struct drm_framebuffer *fb,
a4872ba6 2203 struct intel_engine_cs *pipelined)
6b95a207 2204{
850c4cdc 2205 struct drm_device *dev = fb->dev;
ce453d81 2206 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2207 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2208 u32 alignment;
2209 int ret;
2210
ebcdd39e
MR
2211 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2212
05394f39 2213 switch (obj->tiling_mode) {
6b95a207 2214 case I915_TILING_NONE:
1fada4cc
DL
2215 if (INTEL_INFO(dev)->gen >= 9)
2216 alignment = 256 * 1024;
2217 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2218 alignment = 128 * 1024;
a6c45cf0 2219 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2220 alignment = 4 * 1024;
2221 else
2222 alignment = 64 * 1024;
6b95a207
KH
2223 break;
2224 case I915_TILING_X:
1fada4cc
DL
2225 if (INTEL_INFO(dev)->gen >= 9)
2226 alignment = 256 * 1024;
2227 else {
2228 /* pin() will align the object as required by fence */
2229 alignment = 0;
2230 }
6b95a207
KH
2231 break;
2232 case I915_TILING_Y:
80075d49 2233 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2234 return -EINVAL;
2235 default:
2236 BUG();
2237 }
2238
693db184
CW
2239 /* Note that the w/a also requires 64 PTE of padding following the
2240 * bo. We currently fill all unused PTE with the shadow page and so
2241 * we should always have valid PTE following the scanout preventing
2242 * the VT-d warning.
2243 */
2244 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2245 alignment = 256 * 1024;
2246
d6dd6843
PZ
2247 /*
2248 * Global gtt pte registers are special registers which actually forward
2249 * writes to a chunk of system memory. Which means that there is no risk
2250 * that the register values disappear as soon as we call
2251 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 * pin/unpin/fence and not more.
2253 */
2254 intel_runtime_pm_get(dev_priv);
2255
ce453d81 2256 dev_priv->mm.interruptible = false;
2da3b9b9 2257 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2258 if (ret)
ce453d81 2259 goto err_interruptible;
6b95a207
KH
2260
2261 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2262 * fence, whereas 965+ only requires a fence if using
2263 * framebuffer compression. For simplicity, we always install
2264 * a fence as the cost is not that onerous.
2265 */
06d98131 2266 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2267 if (ret)
2268 goto err_unpin;
1690e1eb 2269
9a5a53b3 2270 i915_gem_object_pin_fence(obj);
6b95a207 2271
ce453d81 2272 dev_priv->mm.interruptible = true;
d6dd6843 2273 intel_runtime_pm_put(dev_priv);
6b95a207 2274 return 0;
48b956c5
CW
2275
2276err_unpin:
cc98b413 2277 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2278err_interruptible:
2279 dev_priv->mm.interruptible = true;
d6dd6843 2280 intel_runtime_pm_put(dev_priv);
48b956c5 2281 return ret;
6b95a207
KH
2282}
2283
1690e1eb
CW
2284void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2285{
ebcdd39e
MR
2286 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
1690e1eb 2288 i915_gem_object_unpin_fence(obj);
cc98b413 2289 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2290}
2291
c2c75131
DV
2292/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2293 * is assumed to be a power-of-two. */
bc752862
CW
2294unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2295 unsigned int tiling_mode,
2296 unsigned int cpp,
2297 unsigned int pitch)
c2c75131 2298{
bc752862
CW
2299 if (tiling_mode != I915_TILING_NONE) {
2300 unsigned int tile_rows, tiles;
c2c75131 2301
bc752862
CW
2302 tile_rows = *y / 8;
2303 *y %= 8;
c2c75131 2304
bc752862
CW
2305 tiles = *x / (512/cpp);
2306 *x %= 512/cpp;
2307
2308 return tile_rows * pitch * 8 + tiles * 4096;
2309 } else {
2310 unsigned int offset;
2311
2312 offset = *y * pitch + *x * cpp;
2313 *y = 0;
2314 *x = (offset & 4095) / cpp;
2315 return offset & -4096;
2316 }
c2c75131
DV
2317}
2318
b35d63fa 2319static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2320{
2321 switch (format) {
2322 case DISPPLANE_8BPP:
2323 return DRM_FORMAT_C8;
2324 case DISPPLANE_BGRX555:
2325 return DRM_FORMAT_XRGB1555;
2326 case DISPPLANE_BGRX565:
2327 return DRM_FORMAT_RGB565;
2328 default:
2329 case DISPPLANE_BGRX888:
2330 return DRM_FORMAT_XRGB8888;
2331 case DISPPLANE_RGBX888:
2332 return DRM_FORMAT_XBGR8888;
2333 case DISPPLANE_BGRX101010:
2334 return DRM_FORMAT_XRGB2101010;
2335 case DISPPLANE_RGBX101010:
2336 return DRM_FORMAT_XBGR2101010;
2337 }
2338}
2339
bc8d7dff
DL
2340static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2341{
2342 switch (format) {
2343 case PLANE_CTL_FORMAT_RGB_565:
2344 return DRM_FORMAT_RGB565;
2345 default:
2346 case PLANE_CTL_FORMAT_XRGB_8888:
2347 if (rgb_order) {
2348 if (alpha)
2349 return DRM_FORMAT_ABGR8888;
2350 else
2351 return DRM_FORMAT_XBGR8888;
2352 } else {
2353 if (alpha)
2354 return DRM_FORMAT_ARGB8888;
2355 else
2356 return DRM_FORMAT_XRGB8888;
2357 }
2358 case PLANE_CTL_FORMAT_XRGB_2101010:
2359 if (rgb_order)
2360 return DRM_FORMAT_XBGR2101010;
2361 else
2362 return DRM_FORMAT_XRGB2101010;
2363 }
2364}
2365
5724dbd1
DL
2366static bool
2367intel_alloc_plane_obj(struct intel_crtc *crtc,
2368 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2369{
2370 struct drm_device *dev = crtc->base.dev;
2371 struct drm_i915_gem_object *obj = NULL;
2372 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2373 u32 base = plane_config->base;
2374
ff2652ea
CW
2375 if (plane_config->size == 0)
2376 return false;
2377
46f297fb
JB
2378 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2379 plane_config->size);
2380 if (!obj)
484b41dd 2381 return false;
46f297fb 2382
49af449b
DL
2383 obj->tiling_mode = plane_config->tiling;
2384 if (obj->tiling_mode == I915_TILING_X)
66e514c1 2385 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb 2386
66e514c1
DA
2387 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2388 mode_cmd.width = crtc->base.primary->fb->width;
2389 mode_cmd.height = crtc->base.primary->fb->height;
2390 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2391
2392 mutex_lock(&dev->struct_mutex);
2393
66e514c1 2394 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2395 &mode_cmd, obj)) {
46f297fb
JB
2396 DRM_DEBUG_KMS("intel fb init failed\n");
2397 goto out_unref_obj;
2398 }
2399
a071fa00 2400 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2401 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2402
2403 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2404 return true;
46f297fb
JB
2405
2406out_unref_obj:
2407 drm_gem_object_unreference(&obj->base);
2408 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2409 return false;
2410}
2411
5724dbd1
DL
2412static void
2413intel_find_plane_obj(struct intel_crtc *intel_crtc,
2414 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2415{
2416 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2417 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2418 struct drm_crtc *c;
2419 struct intel_crtc *i;
2ff8fde1 2420 struct drm_i915_gem_object *obj;
484b41dd 2421
66e514c1 2422 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2423 return;
2424
2425 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2426 return;
2427
66e514c1
DA
2428 kfree(intel_crtc->base.primary->fb);
2429 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2430
2431 /*
2432 * Failed to alloc the obj, check to see if we should share
2433 * an fb with another CRTC instead
2434 */
70e1e0ec 2435 for_each_crtc(dev, c) {
484b41dd
JB
2436 i = to_intel_crtc(c);
2437
2438 if (c == &intel_crtc->base)
2439 continue;
2440
2ff8fde1
MR
2441 if (!i->active)
2442 continue;
2443
2444 obj = intel_fb_obj(c->primary->fb);
2445 if (obj == NULL)
484b41dd
JB
2446 continue;
2447
2ff8fde1 2448 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2449 if (obj->tiling_mode != I915_TILING_NONE)
2450 dev_priv->preserve_bios_swizzle = true;
2451
66e514c1
DA
2452 drm_framebuffer_reference(c->primary->fb);
2453 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2454 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2455 break;
2456 }
2457 }
46f297fb
JB
2458}
2459
29b9bde6
DV
2460static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2461 struct drm_framebuffer *fb,
2462 int x, int y)
81255565
JB
2463{
2464 struct drm_device *dev = crtc->dev;
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2467 struct drm_i915_gem_object *obj;
81255565 2468 int plane = intel_crtc->plane;
e506a0c6 2469 unsigned long linear_offset;
81255565 2470 u32 dspcntr;
f45651ba 2471 u32 reg = DSPCNTR(plane);
48404c1e 2472 int pixel_size;
f45651ba 2473
fdd508a6
VS
2474 if (!intel_crtc->primary_enabled) {
2475 I915_WRITE(reg, 0);
2476 if (INTEL_INFO(dev)->gen >= 4)
2477 I915_WRITE(DSPSURF(plane), 0);
2478 else
2479 I915_WRITE(DSPADDR(plane), 0);
2480 POSTING_READ(reg);
2481 return;
2482 }
2483
c9ba6fad
VS
2484 obj = intel_fb_obj(fb);
2485 if (WARN_ON(obj == NULL))
2486 return;
2487
2488 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2489
f45651ba
VS
2490 dspcntr = DISPPLANE_GAMMA_ENABLE;
2491
fdd508a6 2492 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2493
2494 if (INTEL_INFO(dev)->gen < 4) {
2495 if (intel_crtc->pipe == PIPE_B)
2496 dspcntr |= DISPPLANE_SEL_PIPE_B;
2497
2498 /* pipesrc and dspsize control the size that is scaled from,
2499 * which should always be the user's requested size.
2500 */
2501 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2502 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2503 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2504 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2505 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2506 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2507 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2508 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2509 I915_WRITE(PRIMPOS(plane), 0);
2510 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2511 }
81255565 2512
57779d06
VS
2513 switch (fb->pixel_format) {
2514 case DRM_FORMAT_C8:
81255565
JB
2515 dspcntr |= DISPPLANE_8BPP;
2516 break;
57779d06
VS
2517 case DRM_FORMAT_XRGB1555:
2518 case DRM_FORMAT_ARGB1555:
2519 dspcntr |= DISPPLANE_BGRX555;
81255565 2520 break;
57779d06
VS
2521 case DRM_FORMAT_RGB565:
2522 dspcntr |= DISPPLANE_BGRX565;
2523 break;
2524 case DRM_FORMAT_XRGB8888:
2525 case DRM_FORMAT_ARGB8888:
2526 dspcntr |= DISPPLANE_BGRX888;
2527 break;
2528 case DRM_FORMAT_XBGR8888:
2529 case DRM_FORMAT_ABGR8888:
2530 dspcntr |= DISPPLANE_RGBX888;
2531 break;
2532 case DRM_FORMAT_XRGB2101010:
2533 case DRM_FORMAT_ARGB2101010:
2534 dspcntr |= DISPPLANE_BGRX101010;
2535 break;
2536 case DRM_FORMAT_XBGR2101010:
2537 case DRM_FORMAT_ABGR2101010:
2538 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2539 break;
2540 default:
baba133a 2541 BUG();
81255565 2542 }
57779d06 2543
f45651ba
VS
2544 if (INTEL_INFO(dev)->gen >= 4 &&
2545 obj->tiling_mode != I915_TILING_NONE)
2546 dspcntr |= DISPPLANE_TILED;
81255565 2547
de1aa629
VS
2548 if (IS_G4X(dev))
2549 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2550
b9897127 2551 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2552
c2c75131
DV
2553 if (INTEL_INFO(dev)->gen >= 4) {
2554 intel_crtc->dspaddr_offset =
bc752862 2555 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2556 pixel_size,
bc752862 2557 fb->pitches[0]);
c2c75131
DV
2558 linear_offset -= intel_crtc->dspaddr_offset;
2559 } else {
e506a0c6 2560 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2561 }
e506a0c6 2562
48404c1e
SJ
2563 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2564 dspcntr |= DISPPLANE_ROTATE_180;
2565
6e3c9717
ACO
2566 x += (intel_crtc->config->pipe_src_w - 1);
2567 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2568
2569 /* Finding the last pixel of the last line of the display
2570 data and adding to linear_offset*/
2571 linear_offset +=
6e3c9717
ACO
2572 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2573 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2574 }
2575
2576 I915_WRITE(reg, dspcntr);
2577
f343c5f6
BW
2578 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2579 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2580 fb->pitches[0]);
01f2c773 2581 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2582 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2583 I915_WRITE(DSPSURF(plane),
2584 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2585 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2586 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2587 } else
f343c5f6 2588 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2589 POSTING_READ(reg);
17638cd6
JB
2590}
2591
29b9bde6
DV
2592static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2593 struct drm_framebuffer *fb,
2594 int x, int y)
17638cd6
JB
2595{
2596 struct drm_device *dev = crtc->dev;
2597 struct drm_i915_private *dev_priv = dev->dev_private;
2598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2599 struct drm_i915_gem_object *obj;
17638cd6 2600 int plane = intel_crtc->plane;
e506a0c6 2601 unsigned long linear_offset;
17638cd6 2602 u32 dspcntr;
f45651ba 2603 u32 reg = DSPCNTR(plane);
48404c1e 2604 int pixel_size;
f45651ba 2605
fdd508a6
VS
2606 if (!intel_crtc->primary_enabled) {
2607 I915_WRITE(reg, 0);
2608 I915_WRITE(DSPSURF(plane), 0);
2609 POSTING_READ(reg);
2610 return;
2611 }
2612
c9ba6fad
VS
2613 obj = intel_fb_obj(fb);
2614 if (WARN_ON(obj == NULL))
2615 return;
2616
2617 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2618
f45651ba
VS
2619 dspcntr = DISPPLANE_GAMMA_ENABLE;
2620
fdd508a6 2621 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2622
2623 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2624 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2625
57779d06
VS
2626 switch (fb->pixel_format) {
2627 case DRM_FORMAT_C8:
17638cd6
JB
2628 dspcntr |= DISPPLANE_8BPP;
2629 break;
57779d06
VS
2630 case DRM_FORMAT_RGB565:
2631 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2632 break;
57779d06
VS
2633 case DRM_FORMAT_XRGB8888:
2634 case DRM_FORMAT_ARGB8888:
2635 dspcntr |= DISPPLANE_BGRX888;
2636 break;
2637 case DRM_FORMAT_XBGR8888:
2638 case DRM_FORMAT_ABGR8888:
2639 dspcntr |= DISPPLANE_RGBX888;
2640 break;
2641 case DRM_FORMAT_XRGB2101010:
2642 case DRM_FORMAT_ARGB2101010:
2643 dspcntr |= DISPPLANE_BGRX101010;
2644 break;
2645 case DRM_FORMAT_XBGR2101010:
2646 case DRM_FORMAT_ABGR2101010:
2647 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2648 break;
2649 default:
baba133a 2650 BUG();
17638cd6
JB
2651 }
2652
2653 if (obj->tiling_mode != I915_TILING_NONE)
2654 dspcntr |= DISPPLANE_TILED;
17638cd6 2655
f45651ba 2656 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2657 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2658
b9897127 2659 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2660 intel_crtc->dspaddr_offset =
bc752862 2661 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2662 pixel_size,
bc752862 2663 fb->pitches[0]);
c2c75131 2664 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2665 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2666 dspcntr |= DISPPLANE_ROTATE_180;
2667
2668 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2669 x += (intel_crtc->config->pipe_src_w - 1);
2670 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2671
2672 /* Finding the last pixel of the last line of the display
2673 data and adding to linear_offset*/
2674 linear_offset +=
6e3c9717
ACO
2675 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2676 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2677 }
2678 }
2679
2680 I915_WRITE(reg, dspcntr);
17638cd6 2681
f343c5f6
BW
2682 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2683 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2684 fb->pitches[0]);
01f2c773 2685 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2686 I915_WRITE(DSPSURF(plane),
2687 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2688 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2689 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2690 } else {
2691 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2692 I915_WRITE(DSPLINOFF(plane), linear_offset);
2693 }
17638cd6 2694 POSTING_READ(reg);
17638cd6
JB
2695}
2696
70d21f0e
DL
2697static void skylake_update_primary_plane(struct drm_crtc *crtc,
2698 struct drm_framebuffer *fb,
2699 int x, int y)
2700{
2701 struct drm_device *dev = crtc->dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2704 struct intel_framebuffer *intel_fb;
2705 struct drm_i915_gem_object *obj;
2706 int pipe = intel_crtc->pipe;
2707 u32 plane_ctl, stride;
2708
2709 if (!intel_crtc->primary_enabled) {
2710 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2711 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2712 POSTING_READ(PLANE_CTL(pipe, 0));
2713 return;
2714 }
2715
2716 plane_ctl = PLANE_CTL_ENABLE |
2717 PLANE_CTL_PIPE_GAMMA_ENABLE |
2718 PLANE_CTL_PIPE_CSC_ENABLE;
2719
2720 switch (fb->pixel_format) {
2721 case DRM_FORMAT_RGB565:
2722 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2723 break;
2724 case DRM_FORMAT_XRGB8888:
2725 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2726 break;
2727 case DRM_FORMAT_XBGR8888:
2728 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2729 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2730 break;
2731 case DRM_FORMAT_XRGB2101010:
2732 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2733 break;
2734 case DRM_FORMAT_XBGR2101010:
2735 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2736 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2737 break;
2738 default:
2739 BUG();
2740 }
2741
2742 intel_fb = to_intel_framebuffer(fb);
2743 obj = intel_fb->obj;
2744
2745 /*
2746 * The stride is either expressed as a multiple of 64 bytes chunks for
2747 * linear buffers or in number of tiles for tiled buffers.
2748 */
2749 switch (obj->tiling_mode) {
2750 case I915_TILING_NONE:
2751 stride = fb->pitches[0] >> 6;
2752 break;
2753 case I915_TILING_X:
2754 plane_ctl |= PLANE_CTL_TILED_X;
2755 stride = fb->pitches[0] >> 9;
2756 break;
2757 default:
2758 BUG();
2759 }
2760
2761 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2762 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2763 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2764
2765 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2766
2767 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2768 i915_gem_obj_ggtt_offset(obj),
2769 x, y, fb->width, fb->height,
2770 fb->pitches[0]);
2771
2772 I915_WRITE(PLANE_POS(pipe, 0), 0);
2773 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2774 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2775 (intel_crtc->config->pipe_src_h - 1) << 16 |
2776 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2777 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2778 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2779
2780 POSTING_READ(PLANE_SURF(pipe, 0));
2781}
2782
17638cd6
JB
2783/* Assume fb object is pinned & idle & fenced and just update base pointers */
2784static int
2785intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2786 int x, int y, enum mode_set_atomic state)
2787{
2788 struct drm_device *dev = crtc->dev;
2789 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2790
6b8e6ed0
CW
2791 if (dev_priv->display.disable_fbc)
2792 dev_priv->display.disable_fbc(dev);
81255565 2793
29b9bde6
DV
2794 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2795
2796 return 0;
81255565
JB
2797}
2798
7514747d 2799static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2800{
96a02917
VS
2801 struct drm_crtc *crtc;
2802
70e1e0ec 2803 for_each_crtc(dev, crtc) {
96a02917
VS
2804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2805 enum plane plane = intel_crtc->plane;
2806
2807 intel_prepare_page_flip(dev, plane);
2808 intel_finish_page_flip_plane(dev, plane);
2809 }
7514747d
VS
2810}
2811
2812static void intel_update_primary_planes(struct drm_device *dev)
2813{
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct drm_crtc *crtc;
96a02917 2816
70e1e0ec 2817 for_each_crtc(dev, crtc) {
96a02917
VS
2818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819
51fd371b 2820 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2821 /*
2822 * FIXME: Once we have proper support for primary planes (and
2823 * disabling them without disabling the entire crtc) allow again
66e514c1 2824 * a NULL crtc->primary->fb.
947fdaad 2825 */
f4510a27 2826 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2827 dev_priv->display.update_primary_plane(crtc,
66e514c1 2828 crtc->primary->fb,
262ca2b0
MR
2829 crtc->x,
2830 crtc->y);
51fd371b 2831 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2832 }
2833}
2834
7514747d
VS
2835void intel_prepare_reset(struct drm_device *dev)
2836{
f98ce92f
VS
2837 struct drm_i915_private *dev_priv = to_i915(dev);
2838 struct intel_crtc *crtc;
2839
7514747d
VS
2840 /* no reset support for gen2 */
2841 if (IS_GEN2(dev))
2842 return;
2843
2844 /* reset doesn't touch the display */
2845 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2846 return;
2847
2848 drm_modeset_lock_all(dev);
f98ce92f
VS
2849
2850 /*
2851 * Disabling the crtcs gracefully seems nicer. Also the
2852 * g33 docs say we should at least disable all the planes.
2853 */
2854 for_each_intel_crtc(dev, crtc) {
2855 if (crtc->active)
2856 dev_priv->display.crtc_disable(&crtc->base);
2857 }
7514747d
VS
2858}
2859
2860void intel_finish_reset(struct drm_device *dev)
2861{
2862 struct drm_i915_private *dev_priv = to_i915(dev);
2863
2864 /*
2865 * Flips in the rings will be nuked by the reset,
2866 * so complete all pending flips so that user space
2867 * will get its events and not get stuck.
2868 */
2869 intel_complete_page_flips(dev);
2870
2871 /* no reset support for gen2 */
2872 if (IS_GEN2(dev))
2873 return;
2874
2875 /* reset doesn't touch the display */
2876 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2877 /*
2878 * Flips in the rings have been nuked by the reset,
2879 * so update the base address of all primary
2880 * planes to the the last fb to make sure we're
2881 * showing the correct fb after a reset.
2882 */
2883 intel_update_primary_planes(dev);
2884 return;
2885 }
2886
2887 /*
2888 * The display has been reset as well,
2889 * so need a full re-initialization.
2890 */
2891 intel_runtime_pm_disable_interrupts(dev_priv);
2892 intel_runtime_pm_enable_interrupts(dev_priv);
2893
2894 intel_modeset_init_hw(dev);
2895
2896 spin_lock_irq(&dev_priv->irq_lock);
2897 if (dev_priv->display.hpd_irq_setup)
2898 dev_priv->display.hpd_irq_setup(dev);
2899 spin_unlock_irq(&dev_priv->irq_lock);
2900
2901 intel_modeset_setup_hw_state(dev, true);
2902
2903 intel_hpd_init(dev_priv);
2904
2905 drm_modeset_unlock_all(dev);
2906}
2907
14667a4b
CW
2908static int
2909intel_finish_fb(struct drm_framebuffer *old_fb)
2910{
2ff8fde1 2911 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2912 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2913 bool was_interruptible = dev_priv->mm.interruptible;
2914 int ret;
2915
14667a4b
CW
2916 /* Big Hammer, we also need to ensure that any pending
2917 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2918 * current scanout is retired before unpinning the old
2919 * framebuffer.
2920 *
2921 * This should only fail upon a hung GPU, in which case we
2922 * can safely continue.
2923 */
2924 dev_priv->mm.interruptible = false;
2925 ret = i915_gem_object_finish_gpu(obj);
2926 dev_priv->mm.interruptible = was_interruptible;
2927
2928 return ret;
2929}
2930
7d5e3799
CW
2931static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2932{
2933 struct drm_device *dev = crtc->dev;
2934 struct drm_i915_private *dev_priv = dev->dev_private;
2935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2936 bool pending;
2937
2938 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2939 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2940 return false;
2941
5e2d7afc 2942 spin_lock_irq(&dev->event_lock);
7d5e3799 2943 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2944 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2945
2946 return pending;
2947}
2948
e30e8f75
GP
2949static void intel_update_pipe_size(struct intel_crtc *crtc)
2950{
2951 struct drm_device *dev = crtc->base.dev;
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953 const struct drm_display_mode *adjusted_mode;
2954
2955 if (!i915.fastboot)
2956 return;
2957
2958 /*
2959 * Update pipe size and adjust fitter if needed: the reason for this is
2960 * that in compute_mode_changes we check the native mode (not the pfit
2961 * mode) to see if we can flip rather than do a full mode set. In the
2962 * fastboot case, we'll flip, but if we don't update the pipesrc and
2963 * pfit state, we'll end up with a big fb scanned out into the wrong
2964 * sized surface.
2965 *
2966 * To fix this properly, we need to hoist the checks up into
2967 * compute_mode_changes (or above), check the actual pfit state and
2968 * whether the platform allows pfit disable with pipe active, and only
2969 * then update the pipesrc and pfit state, even on the flip path.
2970 */
2971
6e3c9717 2972 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
2973
2974 I915_WRITE(PIPESRC(crtc->pipe),
2975 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2976 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 2977 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
2978 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2979 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2980 I915_WRITE(PF_CTL(crtc->pipe), 0);
2981 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2982 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2983 }
6e3c9717
ACO
2984 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2985 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
2986}
2987
5e84e1a4
ZW
2988static void intel_fdi_normal_train(struct drm_crtc *crtc)
2989{
2990 struct drm_device *dev = crtc->dev;
2991 struct drm_i915_private *dev_priv = dev->dev_private;
2992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2993 int pipe = intel_crtc->pipe;
2994 u32 reg, temp;
2995
2996 /* enable normal train */
2997 reg = FDI_TX_CTL(pipe);
2998 temp = I915_READ(reg);
61e499bf 2999 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3000 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3001 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3002 } else {
3003 temp &= ~FDI_LINK_TRAIN_NONE;
3004 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3005 }
5e84e1a4
ZW
3006 I915_WRITE(reg, temp);
3007
3008 reg = FDI_RX_CTL(pipe);
3009 temp = I915_READ(reg);
3010 if (HAS_PCH_CPT(dev)) {
3011 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3012 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3013 } else {
3014 temp &= ~FDI_LINK_TRAIN_NONE;
3015 temp |= FDI_LINK_TRAIN_NONE;
3016 }
3017 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3018
3019 /* wait one idle pattern time */
3020 POSTING_READ(reg);
3021 udelay(1000);
357555c0
JB
3022
3023 /* IVB wants error correction enabled */
3024 if (IS_IVYBRIDGE(dev))
3025 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3026 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3027}
3028
1fbc0d78 3029static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3030{
1fbc0d78 3031 return crtc->base.enabled && crtc->active &&
6e3c9717 3032 crtc->config->has_pch_encoder;
1e833f40
DV
3033}
3034
01a415fd
DV
3035static void ivb_modeset_global_resources(struct drm_device *dev)
3036{
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct intel_crtc *pipe_B_crtc =
3039 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3040 struct intel_crtc *pipe_C_crtc =
3041 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3042 uint32_t temp;
3043
1e833f40
DV
3044 /*
3045 * When everything is off disable fdi C so that we could enable fdi B
3046 * with all lanes. Note that we don't care about enabled pipes without
3047 * an enabled pch encoder.
3048 */
3049 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3050 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3051 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3052 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3053
3054 temp = I915_READ(SOUTH_CHICKEN1);
3055 temp &= ~FDI_BC_BIFURCATION_SELECT;
3056 DRM_DEBUG_KMS("disabling fdi C rx\n");
3057 I915_WRITE(SOUTH_CHICKEN1, temp);
3058 }
3059}
3060
8db9d77b
ZW
3061/* The FDI link training functions for ILK/Ibexpeak. */
3062static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3063{
3064 struct drm_device *dev = crtc->dev;
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067 int pipe = intel_crtc->pipe;
5eddb70b 3068 u32 reg, temp, tries;
8db9d77b 3069
1c8562f6 3070 /* FDI needs bits from pipe first */
0fc932b8 3071 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3072
e1a44743
AJ
3073 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3074 for train result */
5eddb70b
CW
3075 reg = FDI_RX_IMR(pipe);
3076 temp = I915_READ(reg);
e1a44743
AJ
3077 temp &= ~FDI_RX_SYMBOL_LOCK;
3078 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3079 I915_WRITE(reg, temp);
3080 I915_READ(reg);
e1a44743
AJ
3081 udelay(150);
3082
8db9d77b 3083 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3084 reg = FDI_TX_CTL(pipe);
3085 temp = I915_READ(reg);
627eb5a3 3086 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3087 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3088 temp &= ~FDI_LINK_TRAIN_NONE;
3089 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3090 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3091
5eddb70b
CW
3092 reg = FDI_RX_CTL(pipe);
3093 temp = I915_READ(reg);
8db9d77b
ZW
3094 temp &= ~FDI_LINK_TRAIN_NONE;
3095 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3096 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3097
3098 POSTING_READ(reg);
8db9d77b
ZW
3099 udelay(150);
3100
5b2adf89 3101 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3102 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3103 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3104 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3105
5eddb70b 3106 reg = FDI_RX_IIR(pipe);
e1a44743 3107 for (tries = 0; tries < 5; tries++) {
5eddb70b 3108 temp = I915_READ(reg);
8db9d77b
ZW
3109 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3110
3111 if ((temp & FDI_RX_BIT_LOCK)) {
3112 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3113 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3114 break;
3115 }
8db9d77b 3116 }
e1a44743 3117 if (tries == 5)
5eddb70b 3118 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3119
3120 /* Train 2 */
5eddb70b
CW
3121 reg = FDI_TX_CTL(pipe);
3122 temp = I915_READ(reg);
8db9d77b
ZW
3123 temp &= ~FDI_LINK_TRAIN_NONE;
3124 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3125 I915_WRITE(reg, temp);
8db9d77b 3126
5eddb70b
CW
3127 reg = FDI_RX_CTL(pipe);
3128 temp = I915_READ(reg);
8db9d77b
ZW
3129 temp &= ~FDI_LINK_TRAIN_NONE;
3130 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3131 I915_WRITE(reg, temp);
8db9d77b 3132
5eddb70b
CW
3133 POSTING_READ(reg);
3134 udelay(150);
8db9d77b 3135
5eddb70b 3136 reg = FDI_RX_IIR(pipe);
e1a44743 3137 for (tries = 0; tries < 5; tries++) {
5eddb70b 3138 temp = I915_READ(reg);
8db9d77b
ZW
3139 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3140
3141 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3142 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3143 DRM_DEBUG_KMS("FDI train 2 done.\n");
3144 break;
3145 }
8db9d77b 3146 }
e1a44743 3147 if (tries == 5)
5eddb70b 3148 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3149
3150 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3151
8db9d77b
ZW
3152}
3153
0206e353 3154static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3155 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3156 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3157 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3158 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3159};
3160
3161/* The FDI link training functions for SNB/Cougarpoint. */
3162static void gen6_fdi_link_train(struct drm_crtc *crtc)
3163{
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167 int pipe = intel_crtc->pipe;
fa37d39e 3168 u32 reg, temp, i, retry;
8db9d77b 3169
e1a44743
AJ
3170 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3171 for train result */
5eddb70b
CW
3172 reg = FDI_RX_IMR(pipe);
3173 temp = I915_READ(reg);
e1a44743
AJ
3174 temp &= ~FDI_RX_SYMBOL_LOCK;
3175 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3176 I915_WRITE(reg, temp);
3177
3178 POSTING_READ(reg);
e1a44743
AJ
3179 udelay(150);
3180
8db9d77b 3181 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3182 reg = FDI_TX_CTL(pipe);
3183 temp = I915_READ(reg);
627eb5a3 3184 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3185 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3186 temp &= ~FDI_LINK_TRAIN_NONE;
3187 temp |= FDI_LINK_TRAIN_PATTERN_1;
3188 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3189 /* SNB-B */
3190 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3191 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3192
d74cf324
DV
3193 I915_WRITE(FDI_RX_MISC(pipe),
3194 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3195
5eddb70b
CW
3196 reg = FDI_RX_CTL(pipe);
3197 temp = I915_READ(reg);
8db9d77b
ZW
3198 if (HAS_PCH_CPT(dev)) {
3199 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3200 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3201 } else {
3202 temp &= ~FDI_LINK_TRAIN_NONE;
3203 temp |= FDI_LINK_TRAIN_PATTERN_1;
3204 }
5eddb70b
CW
3205 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3206
3207 POSTING_READ(reg);
8db9d77b
ZW
3208 udelay(150);
3209
0206e353 3210 for (i = 0; i < 4; i++) {
5eddb70b
CW
3211 reg = FDI_TX_CTL(pipe);
3212 temp = I915_READ(reg);
8db9d77b
ZW
3213 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3214 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3215 I915_WRITE(reg, temp);
3216
3217 POSTING_READ(reg);
8db9d77b
ZW
3218 udelay(500);
3219
fa37d39e
SP
3220 for (retry = 0; retry < 5; retry++) {
3221 reg = FDI_RX_IIR(pipe);
3222 temp = I915_READ(reg);
3223 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3224 if (temp & FDI_RX_BIT_LOCK) {
3225 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3226 DRM_DEBUG_KMS("FDI train 1 done.\n");
3227 break;
3228 }
3229 udelay(50);
8db9d77b 3230 }
fa37d39e
SP
3231 if (retry < 5)
3232 break;
8db9d77b
ZW
3233 }
3234 if (i == 4)
5eddb70b 3235 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3236
3237 /* Train 2 */
5eddb70b
CW
3238 reg = FDI_TX_CTL(pipe);
3239 temp = I915_READ(reg);
8db9d77b
ZW
3240 temp &= ~FDI_LINK_TRAIN_NONE;
3241 temp |= FDI_LINK_TRAIN_PATTERN_2;
3242 if (IS_GEN6(dev)) {
3243 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3244 /* SNB-B */
3245 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3246 }
5eddb70b 3247 I915_WRITE(reg, temp);
8db9d77b 3248
5eddb70b
CW
3249 reg = FDI_RX_CTL(pipe);
3250 temp = I915_READ(reg);
8db9d77b
ZW
3251 if (HAS_PCH_CPT(dev)) {
3252 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3253 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3254 } else {
3255 temp &= ~FDI_LINK_TRAIN_NONE;
3256 temp |= FDI_LINK_TRAIN_PATTERN_2;
3257 }
5eddb70b
CW
3258 I915_WRITE(reg, temp);
3259
3260 POSTING_READ(reg);
8db9d77b
ZW
3261 udelay(150);
3262
0206e353 3263 for (i = 0; i < 4; i++) {
5eddb70b
CW
3264 reg = FDI_TX_CTL(pipe);
3265 temp = I915_READ(reg);
8db9d77b
ZW
3266 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3267 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3268 I915_WRITE(reg, temp);
3269
3270 POSTING_READ(reg);
8db9d77b
ZW
3271 udelay(500);
3272
fa37d39e
SP
3273 for (retry = 0; retry < 5; retry++) {
3274 reg = FDI_RX_IIR(pipe);
3275 temp = I915_READ(reg);
3276 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3277 if (temp & FDI_RX_SYMBOL_LOCK) {
3278 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3279 DRM_DEBUG_KMS("FDI train 2 done.\n");
3280 break;
3281 }
3282 udelay(50);
8db9d77b 3283 }
fa37d39e
SP
3284 if (retry < 5)
3285 break;
8db9d77b
ZW
3286 }
3287 if (i == 4)
5eddb70b 3288 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3289
3290 DRM_DEBUG_KMS("FDI train done.\n");
3291}
3292
357555c0
JB
3293/* Manual link training for Ivy Bridge A0 parts */
3294static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3295{
3296 struct drm_device *dev = crtc->dev;
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3299 int pipe = intel_crtc->pipe;
139ccd3f 3300 u32 reg, temp, i, j;
357555c0
JB
3301
3302 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3303 for train result */
3304 reg = FDI_RX_IMR(pipe);
3305 temp = I915_READ(reg);
3306 temp &= ~FDI_RX_SYMBOL_LOCK;
3307 temp &= ~FDI_RX_BIT_LOCK;
3308 I915_WRITE(reg, temp);
3309
3310 POSTING_READ(reg);
3311 udelay(150);
3312
01a415fd
DV
3313 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3314 I915_READ(FDI_RX_IIR(pipe)));
3315
139ccd3f
JB
3316 /* Try each vswing and preemphasis setting twice before moving on */
3317 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3318 /* disable first in case we need to retry */
3319 reg = FDI_TX_CTL(pipe);
3320 temp = I915_READ(reg);
3321 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3322 temp &= ~FDI_TX_ENABLE;
3323 I915_WRITE(reg, temp);
357555c0 3324
139ccd3f
JB
3325 reg = FDI_RX_CTL(pipe);
3326 temp = I915_READ(reg);
3327 temp &= ~FDI_LINK_TRAIN_AUTO;
3328 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3329 temp &= ~FDI_RX_ENABLE;
3330 I915_WRITE(reg, temp);
357555c0 3331
139ccd3f 3332 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3333 reg = FDI_TX_CTL(pipe);
3334 temp = I915_READ(reg);
139ccd3f 3335 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3336 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3337 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3338 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3339 temp |= snb_b_fdi_train_param[j/2];
3340 temp |= FDI_COMPOSITE_SYNC;
3341 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3342
139ccd3f
JB
3343 I915_WRITE(FDI_RX_MISC(pipe),
3344 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3345
139ccd3f 3346 reg = FDI_RX_CTL(pipe);
357555c0 3347 temp = I915_READ(reg);
139ccd3f
JB
3348 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3349 temp |= FDI_COMPOSITE_SYNC;
3350 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3351
139ccd3f
JB
3352 POSTING_READ(reg);
3353 udelay(1); /* should be 0.5us */
357555c0 3354
139ccd3f
JB
3355 for (i = 0; i < 4; i++) {
3356 reg = FDI_RX_IIR(pipe);
3357 temp = I915_READ(reg);
3358 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3359
139ccd3f
JB
3360 if (temp & FDI_RX_BIT_LOCK ||
3361 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3362 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3363 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3364 i);
3365 break;
3366 }
3367 udelay(1); /* should be 0.5us */
3368 }
3369 if (i == 4) {
3370 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3371 continue;
3372 }
357555c0 3373
139ccd3f 3374 /* Train 2 */
357555c0
JB
3375 reg = FDI_TX_CTL(pipe);
3376 temp = I915_READ(reg);
139ccd3f
JB
3377 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3378 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3379 I915_WRITE(reg, temp);
3380
3381 reg = FDI_RX_CTL(pipe);
3382 temp = I915_READ(reg);
3383 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3384 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3385 I915_WRITE(reg, temp);
3386
3387 POSTING_READ(reg);
139ccd3f 3388 udelay(2); /* should be 1.5us */
357555c0 3389
139ccd3f
JB
3390 for (i = 0; i < 4; i++) {
3391 reg = FDI_RX_IIR(pipe);
3392 temp = I915_READ(reg);
3393 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3394
139ccd3f
JB
3395 if (temp & FDI_RX_SYMBOL_LOCK ||
3396 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3397 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3398 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3399 i);
3400 goto train_done;
3401 }
3402 udelay(2); /* should be 1.5us */
357555c0 3403 }
139ccd3f
JB
3404 if (i == 4)
3405 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3406 }
357555c0 3407
139ccd3f 3408train_done:
357555c0
JB
3409 DRM_DEBUG_KMS("FDI train done.\n");
3410}
3411
88cefb6c 3412static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3413{
88cefb6c 3414 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3415 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3416 int pipe = intel_crtc->pipe;
5eddb70b 3417 u32 reg, temp;
79e53945 3418
c64e311e 3419
c98e9dcf 3420 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3421 reg = FDI_RX_CTL(pipe);
3422 temp = I915_READ(reg);
627eb5a3 3423 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3424 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3425 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3426 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3427
3428 POSTING_READ(reg);
c98e9dcf
JB
3429 udelay(200);
3430
3431 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3432 temp = I915_READ(reg);
3433 I915_WRITE(reg, temp | FDI_PCDCLK);
3434
3435 POSTING_READ(reg);
c98e9dcf
JB
3436 udelay(200);
3437
20749730
PZ
3438 /* Enable CPU FDI TX PLL, always on for Ironlake */
3439 reg = FDI_TX_CTL(pipe);
3440 temp = I915_READ(reg);
3441 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3442 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3443
20749730
PZ
3444 POSTING_READ(reg);
3445 udelay(100);
6be4a607 3446 }
0e23b99d
JB
3447}
3448
88cefb6c
DV
3449static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3450{
3451 struct drm_device *dev = intel_crtc->base.dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 int pipe = intel_crtc->pipe;
3454 u32 reg, temp;
3455
3456 /* Switch from PCDclk to Rawclk */
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3460
3461 /* Disable CPU FDI TX PLL */
3462 reg = FDI_TX_CTL(pipe);
3463 temp = I915_READ(reg);
3464 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3465
3466 POSTING_READ(reg);
3467 udelay(100);
3468
3469 reg = FDI_RX_CTL(pipe);
3470 temp = I915_READ(reg);
3471 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3472
3473 /* Wait for the clocks to turn off. */
3474 POSTING_READ(reg);
3475 udelay(100);
3476}
3477
0fc932b8
JB
3478static void ironlake_fdi_disable(struct drm_crtc *crtc)
3479{
3480 struct drm_device *dev = crtc->dev;
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483 int pipe = intel_crtc->pipe;
3484 u32 reg, temp;
3485
3486 /* disable CPU FDI tx and PCH FDI rx */
3487 reg = FDI_TX_CTL(pipe);
3488 temp = I915_READ(reg);
3489 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3490 POSTING_READ(reg);
3491
3492 reg = FDI_RX_CTL(pipe);
3493 temp = I915_READ(reg);
3494 temp &= ~(0x7 << 16);
dfd07d72 3495 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3496 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3497
3498 POSTING_READ(reg);
3499 udelay(100);
3500
3501 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3502 if (HAS_PCH_IBX(dev))
6f06ce18 3503 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3504
3505 /* still set train pattern 1 */
3506 reg = FDI_TX_CTL(pipe);
3507 temp = I915_READ(reg);
3508 temp &= ~FDI_LINK_TRAIN_NONE;
3509 temp |= FDI_LINK_TRAIN_PATTERN_1;
3510 I915_WRITE(reg, temp);
3511
3512 reg = FDI_RX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 if (HAS_PCH_CPT(dev)) {
3515 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3516 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3517 } else {
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 }
3521 /* BPC in FDI rx is consistent with that in PIPECONF */
3522 temp &= ~(0x07 << 16);
dfd07d72 3523 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3524 I915_WRITE(reg, temp);
3525
3526 POSTING_READ(reg);
3527 udelay(100);
3528}
3529
5dce5b93
CW
3530bool intel_has_pending_fb_unpin(struct drm_device *dev)
3531{
3532 struct intel_crtc *crtc;
3533
3534 /* Note that we don't need to be called with mode_config.lock here
3535 * as our list of CRTC objects is static for the lifetime of the
3536 * device and so cannot disappear as we iterate. Similarly, we can
3537 * happily treat the predicates as racy, atomic checks as userspace
3538 * cannot claim and pin a new fb without at least acquring the
3539 * struct_mutex and so serialising with us.
3540 */
d3fcc808 3541 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3542 if (atomic_read(&crtc->unpin_work_count) == 0)
3543 continue;
3544
3545 if (crtc->unpin_work)
3546 intel_wait_for_vblank(dev, crtc->pipe);
3547
3548 return true;
3549 }
3550
3551 return false;
3552}
3553
d6bbafa1
CW
3554static void page_flip_completed(struct intel_crtc *intel_crtc)
3555{
3556 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3557 struct intel_unpin_work *work = intel_crtc->unpin_work;
3558
3559 /* ensure that the unpin work is consistent wrt ->pending. */
3560 smp_rmb();
3561 intel_crtc->unpin_work = NULL;
3562
3563 if (work->event)
3564 drm_send_vblank_event(intel_crtc->base.dev,
3565 intel_crtc->pipe,
3566 work->event);
3567
3568 drm_crtc_vblank_put(&intel_crtc->base);
3569
3570 wake_up_all(&dev_priv->pending_flip_queue);
3571 queue_work(dev_priv->wq, &work->work);
3572
3573 trace_i915_flip_complete(intel_crtc->plane,
3574 work->pending_flip_obj);
3575}
3576
46a55d30 3577void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3578{
0f91128d 3579 struct drm_device *dev = crtc->dev;
5bb61643 3580 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3581
2c10d571 3582 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3583 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3584 !intel_crtc_has_pending_flip(crtc),
3585 60*HZ) == 0)) {
3586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3587
5e2d7afc 3588 spin_lock_irq(&dev->event_lock);
9c787942
CW
3589 if (intel_crtc->unpin_work) {
3590 WARN_ONCE(1, "Removing stuck page flip\n");
3591 page_flip_completed(intel_crtc);
3592 }
5e2d7afc 3593 spin_unlock_irq(&dev->event_lock);
9c787942 3594 }
5bb61643 3595
975d568a
CW
3596 if (crtc->primary->fb) {
3597 mutex_lock(&dev->struct_mutex);
3598 intel_finish_fb(crtc->primary->fb);
3599 mutex_unlock(&dev->struct_mutex);
3600 }
e6c3a2a6
CW
3601}
3602
e615efe4
ED
3603/* Program iCLKIP clock to the desired frequency */
3604static void lpt_program_iclkip(struct drm_crtc *crtc)
3605{
3606 struct drm_device *dev = crtc->dev;
3607 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3608 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3609 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3610 u32 temp;
3611
09153000
DV
3612 mutex_lock(&dev_priv->dpio_lock);
3613
e615efe4
ED
3614 /* It is necessary to ungate the pixclk gate prior to programming
3615 * the divisors, and gate it back when it is done.
3616 */
3617 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3618
3619 /* Disable SSCCTL */
3620 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3621 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3622 SBI_SSCCTL_DISABLE,
3623 SBI_ICLK);
e615efe4
ED
3624
3625 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3626 if (clock == 20000) {
e615efe4
ED
3627 auxdiv = 1;
3628 divsel = 0x41;
3629 phaseinc = 0x20;
3630 } else {
3631 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3632 * but the adjusted_mode->crtc_clock in in KHz. To get the
3633 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3634 * convert the virtual clock precision to KHz here for higher
3635 * precision.
3636 */
3637 u32 iclk_virtual_root_freq = 172800 * 1000;
3638 u32 iclk_pi_range = 64;
3639 u32 desired_divisor, msb_divisor_value, pi_value;
3640
12d7ceed 3641 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3642 msb_divisor_value = desired_divisor / iclk_pi_range;
3643 pi_value = desired_divisor % iclk_pi_range;
3644
3645 auxdiv = 0;
3646 divsel = msb_divisor_value - 2;
3647 phaseinc = pi_value;
3648 }
3649
3650 /* This should not happen with any sane values */
3651 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3652 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3653 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3654 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3655
3656 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3657 clock,
e615efe4
ED
3658 auxdiv,
3659 divsel,
3660 phasedir,
3661 phaseinc);
3662
3663 /* Program SSCDIVINTPHASE6 */
988d6ee8 3664 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3665 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3666 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3667 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3668 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3669 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3670 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3671 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3672
3673 /* Program SSCAUXDIV */
988d6ee8 3674 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3675 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3676 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3677 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3678
3679 /* Enable modulator and associated divider */
988d6ee8 3680 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3681 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3682 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3683
3684 /* Wait for initialization time */
3685 udelay(24);
3686
3687 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3688
3689 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3690}
3691
275f01b2
DV
3692static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3693 enum pipe pch_transcoder)
3694{
3695 struct drm_device *dev = crtc->base.dev;
3696 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3697 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3698
3699 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3700 I915_READ(HTOTAL(cpu_transcoder)));
3701 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3702 I915_READ(HBLANK(cpu_transcoder)));
3703 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3704 I915_READ(HSYNC(cpu_transcoder)));
3705
3706 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3707 I915_READ(VTOTAL(cpu_transcoder)));
3708 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3709 I915_READ(VBLANK(cpu_transcoder)));
3710 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3711 I915_READ(VSYNC(cpu_transcoder)));
3712 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3713 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3714}
3715
1fbc0d78
DV
3716static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3717{
3718 struct drm_i915_private *dev_priv = dev->dev_private;
3719 uint32_t temp;
3720
3721 temp = I915_READ(SOUTH_CHICKEN1);
3722 if (temp & FDI_BC_BIFURCATION_SELECT)
3723 return;
3724
3725 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3726 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3727
3728 temp |= FDI_BC_BIFURCATION_SELECT;
3729 DRM_DEBUG_KMS("enabling fdi C rx\n");
3730 I915_WRITE(SOUTH_CHICKEN1, temp);
3731 POSTING_READ(SOUTH_CHICKEN1);
3732}
3733
3734static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3735{
3736 struct drm_device *dev = intel_crtc->base.dev;
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738
3739 switch (intel_crtc->pipe) {
3740 case PIPE_A:
3741 break;
3742 case PIPE_B:
6e3c9717 3743 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3744 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3745 else
3746 cpt_enable_fdi_bc_bifurcation(dev);
3747
3748 break;
3749 case PIPE_C:
3750 cpt_enable_fdi_bc_bifurcation(dev);
3751
3752 break;
3753 default:
3754 BUG();
3755 }
3756}
3757
f67a559d
JB
3758/*
3759 * Enable PCH resources required for PCH ports:
3760 * - PCH PLLs
3761 * - FDI training & RX/TX
3762 * - update transcoder timings
3763 * - DP transcoding bits
3764 * - transcoder
3765 */
3766static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3767{
3768 struct drm_device *dev = crtc->dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3771 int pipe = intel_crtc->pipe;
ee7b9f93 3772 u32 reg, temp;
2c07245f 3773
ab9412ba 3774 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3775
1fbc0d78
DV
3776 if (IS_IVYBRIDGE(dev))
3777 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3778
cd986abb
DV
3779 /* Write the TU size bits before fdi link training, so that error
3780 * detection works. */
3781 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3782 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3783
c98e9dcf 3784 /* For PCH output, training FDI link */
674cf967 3785 dev_priv->display.fdi_link_train(crtc);
2c07245f 3786
3ad8a208
DV
3787 /* We need to program the right clock selection before writing the pixel
3788 * mutliplier into the DPLL. */
303b81e0 3789 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3790 u32 sel;
4b645f14 3791
c98e9dcf 3792 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3793 temp |= TRANS_DPLL_ENABLE(pipe);
3794 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3795 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3796 temp |= sel;
3797 else
3798 temp &= ~sel;
c98e9dcf 3799 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3800 }
5eddb70b 3801
3ad8a208
DV
3802 /* XXX: pch pll's can be enabled any time before we enable the PCH
3803 * transcoder, and we actually should do this to not upset any PCH
3804 * transcoder that already use the clock when we share it.
3805 *
3806 * Note that enable_shared_dpll tries to do the right thing, but
3807 * get_shared_dpll unconditionally resets the pll - we need that to have
3808 * the right LVDS enable sequence. */
85b3894f 3809 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3810
d9b6cb56
JB
3811 /* set transcoder timing, panel must allow it */
3812 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3813 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3814
303b81e0 3815 intel_fdi_normal_train(crtc);
5e84e1a4 3816
c98e9dcf 3817 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3818 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3819 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3820 reg = TRANS_DP_CTL(pipe);
3821 temp = I915_READ(reg);
3822 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3823 TRANS_DP_SYNC_MASK |
3824 TRANS_DP_BPC_MASK);
5eddb70b
CW
3825 temp |= (TRANS_DP_OUTPUT_ENABLE |
3826 TRANS_DP_ENH_FRAMING);
9325c9f0 3827 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3828
3829 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3830 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3831 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3832 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3833
3834 switch (intel_trans_dp_port_sel(crtc)) {
3835 case PCH_DP_B:
5eddb70b 3836 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3837 break;
3838 case PCH_DP_C:
5eddb70b 3839 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3840 break;
3841 case PCH_DP_D:
5eddb70b 3842 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3843 break;
3844 default:
e95d41e1 3845 BUG();
32f9d658 3846 }
2c07245f 3847
5eddb70b 3848 I915_WRITE(reg, temp);
6be4a607 3849 }
b52eb4dc 3850
b8a4f404 3851 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3852}
3853
1507e5bd
PZ
3854static void lpt_pch_enable(struct drm_crtc *crtc)
3855{
3856 struct drm_device *dev = crtc->dev;
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3859 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3860
ab9412ba 3861 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3862
8c52b5e8 3863 lpt_program_iclkip(crtc);
1507e5bd 3864
0540e488 3865 /* Set transcoder timing. */
275f01b2 3866 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3867
937bb610 3868 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3869}
3870
716c2e55 3871void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3872{
e2b78267 3873 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3874
3875 if (pll == NULL)
3876 return;
3877
3e369b76 3878 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3879 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3880 return;
3881 }
3882
3e369b76
ACO
3883 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3884 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3885 WARN_ON(pll->on);
3886 WARN_ON(pll->active);
3887 }
3888
6e3c9717 3889 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3890}
3891
190f68c5
ACO
3892struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3893 struct intel_crtc_state *crtc_state)
ee7b9f93 3894{
e2b78267 3895 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3896 struct intel_shared_dpll *pll;
e2b78267 3897 enum intel_dpll_id i;
ee7b9f93 3898
98b6bd99
DV
3899 if (HAS_PCH_IBX(dev_priv->dev)) {
3900 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3901 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3902 pll = &dev_priv->shared_dplls[i];
98b6bd99 3903
46edb027
DV
3904 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3905 crtc->base.base.id, pll->name);
98b6bd99 3906
8bd31e67 3907 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3908
98b6bd99
DV
3909 goto found;
3910 }
3911
e72f9fbf
DV
3912 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3913 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3914
3915 /* Only want to check enabled timings first */
8bd31e67 3916 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3917 continue;
3918
190f68c5 3919 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3920 &pll->new_config->hw_state,
3921 sizeof(pll->new_config->hw_state)) == 0) {
3922 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3923 crtc->base.base.id, pll->name,
8bd31e67
ACO
3924 pll->new_config->crtc_mask,
3925 pll->active);
ee7b9f93
JB
3926 goto found;
3927 }
3928 }
3929
3930 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3931 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3932 pll = &dev_priv->shared_dplls[i];
8bd31e67 3933 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3934 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3935 crtc->base.base.id, pll->name);
ee7b9f93
JB
3936 goto found;
3937 }
3938 }
3939
3940 return NULL;
3941
3942found:
8bd31e67 3943 if (pll->new_config->crtc_mask == 0)
190f68c5 3944 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3945
190f68c5 3946 crtc_state->shared_dpll = i;
46edb027
DV
3947 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3948 pipe_name(crtc->pipe));
ee7b9f93 3949
8bd31e67 3950 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3951
ee7b9f93
JB
3952 return pll;
3953}
3954
8bd31e67
ACO
3955/**
3956 * intel_shared_dpll_start_config - start a new PLL staged config
3957 * @dev_priv: DRM device
3958 * @clear_pipes: mask of pipes that will have their PLLs freed
3959 *
3960 * Starts a new PLL staged config, copying the current config but
3961 * releasing the references of pipes specified in clear_pipes.
3962 */
3963static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3964 unsigned clear_pipes)
3965{
3966 struct intel_shared_dpll *pll;
3967 enum intel_dpll_id i;
3968
3969 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3970 pll = &dev_priv->shared_dplls[i];
3971
3972 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3973 GFP_KERNEL);
3974 if (!pll->new_config)
3975 goto cleanup;
3976
3977 pll->new_config->crtc_mask &= ~clear_pipes;
3978 }
3979
3980 return 0;
3981
3982cleanup:
3983 while (--i >= 0) {
3984 pll = &dev_priv->shared_dplls[i];
f354d733 3985 kfree(pll->new_config);
8bd31e67
ACO
3986 pll->new_config = NULL;
3987 }
3988
3989 return -ENOMEM;
3990}
3991
3992static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3993{
3994 struct intel_shared_dpll *pll;
3995 enum intel_dpll_id i;
3996
3997 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3998 pll = &dev_priv->shared_dplls[i];
3999
4000 WARN_ON(pll->new_config == &pll->config);
4001
4002 pll->config = *pll->new_config;
4003 kfree(pll->new_config);
4004 pll->new_config = NULL;
4005 }
4006}
4007
4008static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4009{
4010 struct intel_shared_dpll *pll;
4011 enum intel_dpll_id i;
4012
4013 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4014 pll = &dev_priv->shared_dplls[i];
4015
4016 WARN_ON(pll->new_config == &pll->config);
4017
4018 kfree(pll->new_config);
4019 pll->new_config = NULL;
4020 }
4021}
4022
a1520318 4023static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4024{
4025 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4026 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4027 u32 temp;
4028
4029 temp = I915_READ(dslreg);
4030 udelay(500);
4031 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4032 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4033 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4034 }
4035}
4036
bd2e244f
JB
4037static void skylake_pfit_enable(struct intel_crtc *crtc)
4038{
4039 struct drm_device *dev = crtc->base.dev;
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 int pipe = crtc->pipe;
4042
6e3c9717 4043 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4044 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4045 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4046 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4047 }
4048}
4049
b074cec8
JB
4050static void ironlake_pfit_enable(struct intel_crtc *crtc)
4051{
4052 struct drm_device *dev = crtc->base.dev;
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 int pipe = crtc->pipe;
4055
6e3c9717 4056 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4057 /* Force use of hard-coded filter coefficients
4058 * as some pre-programmed values are broken,
4059 * e.g. x201.
4060 */
4061 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4062 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4063 PF_PIPE_SEL_IVB(pipe));
4064 else
4065 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4066 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4067 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4068 }
4069}
4070
4a3b8769 4071static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4072{
4073 struct drm_device *dev = crtc->dev;
4074 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4075 struct drm_plane *plane;
bb53d4ae
VS
4076 struct intel_plane *intel_plane;
4077
af2b653b
MR
4078 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4079 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4080 if (intel_plane->pipe == pipe)
4081 intel_plane_restore(&intel_plane->base);
af2b653b 4082 }
bb53d4ae
VS
4083}
4084
4a3b8769 4085static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4086{
4087 struct drm_device *dev = crtc->dev;
4088 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4089 struct drm_plane *plane;
bb53d4ae
VS
4090 struct intel_plane *intel_plane;
4091
af2b653b
MR
4092 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4093 intel_plane = to_intel_plane(plane);
bb53d4ae 4094 if (intel_plane->pipe == pipe)
cf4c7c12 4095 plane->funcs->disable_plane(plane);
af2b653b 4096 }
bb53d4ae
VS
4097}
4098
20bc8673 4099void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4100{
cea165c3
VS
4101 struct drm_device *dev = crtc->base.dev;
4102 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4103
6e3c9717 4104 if (!crtc->config->ips_enabled)
d77e4531
PZ
4105 return;
4106
cea165c3
VS
4107 /* We can only enable IPS after we enable a plane and wait for a vblank */
4108 intel_wait_for_vblank(dev, crtc->pipe);
4109
d77e4531 4110 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4111 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4112 mutex_lock(&dev_priv->rps.hw_lock);
4113 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4114 mutex_unlock(&dev_priv->rps.hw_lock);
4115 /* Quoting Art Runyan: "its not safe to expect any particular
4116 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4117 * mailbox." Moreover, the mailbox may return a bogus state,
4118 * so we need to just enable it and continue on.
2a114cc1
BW
4119 */
4120 } else {
4121 I915_WRITE(IPS_CTL, IPS_ENABLE);
4122 /* The bit only becomes 1 in the next vblank, so this wait here
4123 * is essentially intel_wait_for_vblank. If we don't have this
4124 * and don't wait for vblanks until the end of crtc_enable, then
4125 * the HW state readout code will complain that the expected
4126 * IPS_CTL value is not the one we read. */
4127 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4128 DRM_ERROR("Timed out waiting for IPS enable\n");
4129 }
d77e4531
PZ
4130}
4131
20bc8673 4132void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4133{
4134 struct drm_device *dev = crtc->base.dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136
6e3c9717 4137 if (!crtc->config->ips_enabled)
d77e4531
PZ
4138 return;
4139
4140 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4141 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4142 mutex_lock(&dev_priv->rps.hw_lock);
4143 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4144 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4145 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4146 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4147 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4148 } else {
2a114cc1 4149 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4150 POSTING_READ(IPS_CTL);
4151 }
d77e4531
PZ
4152
4153 /* We need to wait for a vblank before we can disable the plane. */
4154 intel_wait_for_vblank(dev, crtc->pipe);
4155}
4156
4157/** Loads the palette/gamma unit for the CRTC with the prepared values */
4158static void intel_crtc_load_lut(struct drm_crtc *crtc)
4159{
4160 struct drm_device *dev = crtc->dev;
4161 struct drm_i915_private *dev_priv = dev->dev_private;
4162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4163 enum pipe pipe = intel_crtc->pipe;
4164 int palreg = PALETTE(pipe);
4165 int i;
4166 bool reenable_ips = false;
4167
4168 /* The clocks have to be on to load the palette. */
4169 if (!crtc->enabled || !intel_crtc->active)
4170 return;
4171
4172 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4173 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4174 assert_dsi_pll_enabled(dev_priv);
4175 else
4176 assert_pll_enabled(dev_priv, pipe);
4177 }
4178
4179 /* use legacy palette for Ironlake */
7a1db49a 4180 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4181 palreg = LGC_PALETTE(pipe);
4182
4183 /* Workaround : Do not read or write the pipe palette/gamma data while
4184 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4185 */
6e3c9717 4186 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4187 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4188 GAMMA_MODE_MODE_SPLIT)) {
4189 hsw_disable_ips(intel_crtc);
4190 reenable_ips = true;
4191 }
4192
4193 for (i = 0; i < 256; i++) {
4194 I915_WRITE(palreg + 4 * i,
4195 (intel_crtc->lut_r[i] << 16) |
4196 (intel_crtc->lut_g[i] << 8) |
4197 intel_crtc->lut_b[i]);
4198 }
4199
4200 if (reenable_ips)
4201 hsw_enable_ips(intel_crtc);
4202}
4203
d3eedb1a
VS
4204static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4205{
4206 if (!enable && intel_crtc->overlay) {
4207 struct drm_device *dev = intel_crtc->base.dev;
4208 struct drm_i915_private *dev_priv = dev->dev_private;
4209
4210 mutex_lock(&dev->struct_mutex);
4211 dev_priv->mm.interruptible = false;
4212 (void) intel_overlay_switch_off(intel_crtc->overlay);
4213 dev_priv->mm.interruptible = true;
4214 mutex_unlock(&dev->struct_mutex);
4215 }
4216
4217 /* Let userspace switch the overlay on again. In most cases userspace
4218 * has to recompute where to put it anyway.
4219 */
4220}
4221
d3eedb1a 4222static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4223{
4224 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4226 int pipe = intel_crtc->pipe;
a5c4d7bc 4227
fdd508a6 4228 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4229 intel_enable_sprite_planes(crtc);
a5c4d7bc 4230 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4231 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4232
4233 hsw_enable_ips(intel_crtc);
4234
4235 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4236 intel_fbc_update(dev);
a5c4d7bc 4237 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4238
4239 /*
4240 * FIXME: Once we grow proper nuclear flip support out of this we need
4241 * to compute the mask of flip planes precisely. For the time being
4242 * consider this a flip from a NULL plane.
4243 */
4244 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4245}
4246
d3eedb1a 4247static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4248{
4249 struct drm_device *dev = crtc->dev;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4252 int pipe = intel_crtc->pipe;
4253 int plane = intel_crtc->plane;
4254
4255 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4256
4257 if (dev_priv->fbc.plane == plane)
7ff0ebcc 4258 intel_fbc_disable(dev);
a5c4d7bc
VS
4259
4260 hsw_disable_ips(intel_crtc);
4261
d3eedb1a 4262 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4263 intel_crtc_update_cursor(crtc, false);
4a3b8769 4264 intel_disable_sprite_planes(crtc);
fdd508a6 4265 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4266
f99d7069
DV
4267 /*
4268 * FIXME: Once we grow proper nuclear flip support out of this we need
4269 * to compute the mask of flip planes precisely. For the time being
4270 * consider this a flip to a NULL plane.
4271 */
4272 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4273}
4274
f67a559d
JB
4275static void ironlake_crtc_enable(struct drm_crtc *crtc)
4276{
4277 struct drm_device *dev = crtc->dev;
4278 struct drm_i915_private *dev_priv = dev->dev_private;
4279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4280 struct intel_encoder *encoder;
f67a559d 4281 int pipe = intel_crtc->pipe;
f67a559d 4282
08a48469
DV
4283 WARN_ON(!crtc->enabled);
4284
f67a559d
JB
4285 if (intel_crtc->active)
4286 return;
4287
6e3c9717 4288 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4289 intel_prepare_shared_dpll(intel_crtc);
4290
6e3c9717 4291 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4292 intel_dp_set_m_n(intel_crtc);
4293
4294 intel_set_pipe_timings(intel_crtc);
4295
6e3c9717 4296 if (intel_crtc->config->has_pch_encoder) {
29407aab 4297 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4298 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4299 }
4300
4301 ironlake_set_pipeconf(crtc);
4302
f67a559d 4303 intel_crtc->active = true;
8664281b 4304
a72e4c9f
DV
4305 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4306 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4307
f6736a1a 4308 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4309 if (encoder->pre_enable)
4310 encoder->pre_enable(encoder);
f67a559d 4311
6e3c9717 4312 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4313 /* Note: FDI PLL enabling _must_ be done before we enable the
4314 * cpu pipes, hence this is separate from all the other fdi/pch
4315 * enabling. */
88cefb6c 4316 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4317 } else {
4318 assert_fdi_tx_disabled(dev_priv, pipe);
4319 assert_fdi_rx_disabled(dev_priv, pipe);
4320 }
f67a559d 4321
b074cec8 4322 ironlake_pfit_enable(intel_crtc);
f67a559d 4323
9c54c0dd
JB
4324 /*
4325 * On ILK+ LUT must be loaded before the pipe is running but with
4326 * clocks enabled
4327 */
4328 intel_crtc_load_lut(crtc);
4329
f37fcc2a 4330 intel_update_watermarks(crtc);
e1fdc473 4331 intel_enable_pipe(intel_crtc);
f67a559d 4332
6e3c9717 4333 if (intel_crtc->config->has_pch_encoder)
f67a559d 4334 ironlake_pch_enable(crtc);
c98e9dcf 4335
f9b61ff6
DV
4336 assert_vblank_disabled(crtc);
4337 drm_crtc_vblank_on(crtc);
4338
fa5c73b1
DV
4339 for_each_encoder_on_crtc(dev, crtc, encoder)
4340 encoder->enable(encoder);
61b77ddd
DV
4341
4342 if (HAS_PCH_CPT(dev))
a1520318 4343 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4344
d3eedb1a 4345 intel_crtc_enable_planes(crtc);
6be4a607
JB
4346}
4347
42db64ef
PZ
4348/* IPS only exists on ULT machines and is tied to pipe A. */
4349static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4350{
f5adf94e 4351 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4352}
4353
e4916946
PZ
4354/*
4355 * This implements the workaround described in the "notes" section of the mode
4356 * set sequence documentation. When going from no pipes or single pipe to
4357 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4358 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4359 */
4360static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4361{
4362 struct drm_device *dev = crtc->base.dev;
4363 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4364
4365 /* We want to get the other_active_crtc only if there's only 1 other
4366 * active crtc. */
d3fcc808 4367 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4368 if (!crtc_it->active || crtc_it == crtc)
4369 continue;
4370
4371 if (other_active_crtc)
4372 return;
4373
4374 other_active_crtc = crtc_it;
4375 }
4376 if (!other_active_crtc)
4377 return;
4378
4379 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4380 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4381}
4382
4f771f10
PZ
4383static void haswell_crtc_enable(struct drm_crtc *crtc)
4384{
4385 struct drm_device *dev = crtc->dev;
4386 struct drm_i915_private *dev_priv = dev->dev_private;
4387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4388 struct intel_encoder *encoder;
4389 int pipe = intel_crtc->pipe;
4f771f10
PZ
4390
4391 WARN_ON(!crtc->enabled);
4392
4393 if (intel_crtc->active)
4394 return;
4395
df8ad70c
DV
4396 if (intel_crtc_to_shared_dpll(intel_crtc))
4397 intel_enable_shared_dpll(intel_crtc);
4398
6e3c9717 4399 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4400 intel_dp_set_m_n(intel_crtc);
4401
4402 intel_set_pipe_timings(intel_crtc);
4403
6e3c9717
ACO
4404 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4405 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4406 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4407 }
4408
6e3c9717 4409 if (intel_crtc->config->has_pch_encoder) {
229fca97 4410 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4411 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4412 }
4413
4414 haswell_set_pipeconf(crtc);
4415
4416 intel_set_pipe_csc(crtc);
4417
4f771f10 4418 intel_crtc->active = true;
8664281b 4419
a72e4c9f 4420 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4421 for_each_encoder_on_crtc(dev, crtc, encoder)
4422 if (encoder->pre_enable)
4423 encoder->pre_enable(encoder);
4424
6e3c9717 4425 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4426 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4427 true);
4fe9467d
ID
4428 dev_priv->display.fdi_link_train(crtc);
4429 }
4430
1f544388 4431 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4432
bd2e244f
JB
4433 if (IS_SKYLAKE(dev))
4434 skylake_pfit_enable(intel_crtc);
4435 else
4436 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4437
4438 /*
4439 * On ILK+ LUT must be loaded before the pipe is running but with
4440 * clocks enabled
4441 */
4442 intel_crtc_load_lut(crtc);
4443
1f544388 4444 intel_ddi_set_pipe_settings(crtc);
8228c251 4445 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4446
f37fcc2a 4447 intel_update_watermarks(crtc);
e1fdc473 4448 intel_enable_pipe(intel_crtc);
42db64ef 4449
6e3c9717 4450 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4451 lpt_pch_enable(crtc);
4f771f10 4452
6e3c9717 4453 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4454 intel_ddi_set_vc_payload_alloc(crtc, true);
4455
f9b61ff6
DV
4456 assert_vblank_disabled(crtc);
4457 drm_crtc_vblank_on(crtc);
4458
8807e55b 4459 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4460 encoder->enable(encoder);
8807e55b
JN
4461 intel_opregion_notify_encoder(encoder, true);
4462 }
4f771f10 4463
e4916946
PZ
4464 /* If we change the relative order between pipe/planes enabling, we need
4465 * to change the workaround. */
4466 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4467 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4468}
4469
bd2e244f
JB
4470static void skylake_pfit_disable(struct intel_crtc *crtc)
4471{
4472 struct drm_device *dev = crtc->base.dev;
4473 struct drm_i915_private *dev_priv = dev->dev_private;
4474 int pipe = crtc->pipe;
4475
4476 /* To avoid upsetting the power well on haswell only disable the pfit if
4477 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4478 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4479 I915_WRITE(PS_CTL(pipe), 0);
4480 I915_WRITE(PS_WIN_POS(pipe), 0);
4481 I915_WRITE(PS_WIN_SZ(pipe), 0);
4482 }
4483}
4484
3f8dce3a
DV
4485static void ironlake_pfit_disable(struct intel_crtc *crtc)
4486{
4487 struct drm_device *dev = crtc->base.dev;
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489 int pipe = crtc->pipe;
4490
4491 /* To avoid upsetting the power well on haswell only disable the pfit if
4492 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4493 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4494 I915_WRITE(PF_CTL(pipe), 0);
4495 I915_WRITE(PF_WIN_POS(pipe), 0);
4496 I915_WRITE(PF_WIN_SZ(pipe), 0);
4497 }
4498}
4499
6be4a607
JB
4500static void ironlake_crtc_disable(struct drm_crtc *crtc)
4501{
4502 struct drm_device *dev = crtc->dev;
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4505 struct intel_encoder *encoder;
6be4a607 4506 int pipe = intel_crtc->pipe;
5eddb70b 4507 u32 reg, temp;
b52eb4dc 4508
f7abfe8b
CW
4509 if (!intel_crtc->active)
4510 return;
4511
d3eedb1a 4512 intel_crtc_disable_planes(crtc);
a5c4d7bc 4513
ea9d758d
DV
4514 for_each_encoder_on_crtc(dev, crtc, encoder)
4515 encoder->disable(encoder);
4516
f9b61ff6
DV
4517 drm_crtc_vblank_off(crtc);
4518 assert_vblank_disabled(crtc);
4519
6e3c9717 4520 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4521 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4522
575f7ab7 4523 intel_disable_pipe(intel_crtc);
32f9d658 4524
3f8dce3a 4525 ironlake_pfit_disable(intel_crtc);
2c07245f 4526
bf49ec8c
DV
4527 for_each_encoder_on_crtc(dev, crtc, encoder)
4528 if (encoder->post_disable)
4529 encoder->post_disable(encoder);
2c07245f 4530
6e3c9717 4531 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4532 ironlake_fdi_disable(crtc);
913d8d11 4533
d925c59a 4534 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4535
d925c59a
DV
4536 if (HAS_PCH_CPT(dev)) {
4537 /* disable TRANS_DP_CTL */
4538 reg = TRANS_DP_CTL(pipe);
4539 temp = I915_READ(reg);
4540 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4541 TRANS_DP_PORT_SEL_MASK);
4542 temp |= TRANS_DP_PORT_SEL_NONE;
4543 I915_WRITE(reg, temp);
4544
4545 /* disable DPLL_SEL */
4546 temp = I915_READ(PCH_DPLL_SEL);
11887397 4547 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4548 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4549 }
e3421a18 4550
d925c59a 4551 /* disable PCH DPLL */
e72f9fbf 4552 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4553
d925c59a
DV
4554 ironlake_fdi_pll_disable(intel_crtc);
4555 }
6b383a7f 4556
f7abfe8b 4557 intel_crtc->active = false;
46ba614c 4558 intel_update_watermarks(crtc);
d1ebd816
BW
4559
4560 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4561 intel_fbc_update(dev);
d1ebd816 4562 mutex_unlock(&dev->struct_mutex);
6be4a607 4563}
1b3c7a47 4564
4f771f10 4565static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4566{
4f771f10
PZ
4567 struct drm_device *dev = crtc->dev;
4568 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4570 struct intel_encoder *encoder;
6e3c9717 4571 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4572
4f771f10
PZ
4573 if (!intel_crtc->active)
4574 return;
4575
d3eedb1a 4576 intel_crtc_disable_planes(crtc);
dda9a66a 4577
8807e55b
JN
4578 for_each_encoder_on_crtc(dev, crtc, encoder) {
4579 intel_opregion_notify_encoder(encoder, false);
4f771f10 4580 encoder->disable(encoder);
8807e55b 4581 }
4f771f10 4582
f9b61ff6
DV
4583 drm_crtc_vblank_off(crtc);
4584 assert_vblank_disabled(crtc);
4585
6e3c9717 4586 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4587 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4588 false);
575f7ab7 4589 intel_disable_pipe(intel_crtc);
4f771f10 4590
6e3c9717 4591 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4592 intel_ddi_set_vc_payload_alloc(crtc, false);
4593
ad80a810 4594 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4595
bd2e244f
JB
4596 if (IS_SKYLAKE(dev))
4597 skylake_pfit_disable(intel_crtc);
4598 else
4599 ironlake_pfit_disable(intel_crtc);
4f771f10 4600
1f544388 4601 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4602
6e3c9717 4603 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4604 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4605 intel_ddi_fdi_disable(crtc);
83616634 4606 }
4f771f10 4607
97b040aa
ID
4608 for_each_encoder_on_crtc(dev, crtc, encoder)
4609 if (encoder->post_disable)
4610 encoder->post_disable(encoder);
4611
4f771f10 4612 intel_crtc->active = false;
46ba614c 4613 intel_update_watermarks(crtc);
4f771f10
PZ
4614
4615 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4616 intel_fbc_update(dev);
4f771f10 4617 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4618
4619 if (intel_crtc_to_shared_dpll(intel_crtc))
4620 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4621}
4622
ee7b9f93
JB
4623static void ironlake_crtc_off(struct drm_crtc *crtc)
4624{
4625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4626 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4627}
4628
6441ab5f 4629
2dd24552
JB
4630static void i9xx_pfit_enable(struct intel_crtc *crtc)
4631{
4632 struct drm_device *dev = crtc->base.dev;
4633 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4634 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4635
681a8504 4636 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4637 return;
4638
2dd24552 4639 /*
c0b03411
DV
4640 * The panel fitter should only be adjusted whilst the pipe is disabled,
4641 * according to register description and PRM.
2dd24552 4642 */
c0b03411
DV
4643 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4644 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4645
b074cec8
JB
4646 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4647 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4648
4649 /* Border color in case we don't scale up to the full screen. Black by
4650 * default, change to something else for debugging. */
4651 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4652}
4653
d05410f9
DA
4654static enum intel_display_power_domain port_to_power_domain(enum port port)
4655{
4656 switch (port) {
4657 case PORT_A:
4658 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4659 case PORT_B:
4660 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4661 case PORT_C:
4662 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4663 case PORT_D:
4664 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4665 default:
4666 WARN_ON_ONCE(1);
4667 return POWER_DOMAIN_PORT_OTHER;
4668 }
4669}
4670
77d22dca
ID
4671#define for_each_power_domain(domain, mask) \
4672 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4673 if ((1 << (domain)) & (mask))
4674
319be8ae
ID
4675enum intel_display_power_domain
4676intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4677{
4678 struct drm_device *dev = intel_encoder->base.dev;
4679 struct intel_digital_port *intel_dig_port;
4680
4681 switch (intel_encoder->type) {
4682 case INTEL_OUTPUT_UNKNOWN:
4683 /* Only DDI platforms should ever use this output type */
4684 WARN_ON_ONCE(!HAS_DDI(dev));
4685 case INTEL_OUTPUT_DISPLAYPORT:
4686 case INTEL_OUTPUT_HDMI:
4687 case INTEL_OUTPUT_EDP:
4688 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4689 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4690 case INTEL_OUTPUT_DP_MST:
4691 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4692 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4693 case INTEL_OUTPUT_ANALOG:
4694 return POWER_DOMAIN_PORT_CRT;
4695 case INTEL_OUTPUT_DSI:
4696 return POWER_DOMAIN_PORT_DSI;
4697 default:
4698 return POWER_DOMAIN_PORT_OTHER;
4699 }
4700}
4701
4702static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4703{
319be8ae
ID
4704 struct drm_device *dev = crtc->dev;
4705 struct intel_encoder *intel_encoder;
4706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4708 unsigned long mask;
4709 enum transcoder transcoder;
4710
4711 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4712
4713 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4714 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4715 if (intel_crtc->config->pch_pfit.enabled ||
4716 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4717 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4718
319be8ae
ID
4719 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4720 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4721
77d22dca
ID
4722 return mask;
4723}
4724
77d22dca
ID
4725static void modeset_update_crtc_power_domains(struct drm_device *dev)
4726{
4727 struct drm_i915_private *dev_priv = dev->dev_private;
4728 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4729 struct intel_crtc *crtc;
4730
4731 /*
4732 * First get all needed power domains, then put all unneeded, to avoid
4733 * any unnecessary toggling of the power wells.
4734 */
d3fcc808 4735 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4736 enum intel_display_power_domain domain;
4737
4738 if (!crtc->base.enabled)
4739 continue;
4740
319be8ae 4741 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4742
4743 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4744 intel_display_power_get(dev_priv, domain);
4745 }
4746
50f6e502
VS
4747 if (dev_priv->display.modeset_global_resources)
4748 dev_priv->display.modeset_global_resources(dev);
4749
d3fcc808 4750 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4751 enum intel_display_power_domain domain;
4752
4753 for_each_power_domain(domain, crtc->enabled_power_domains)
4754 intel_display_power_put(dev_priv, domain);
4755
4756 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4757 }
4758
4759 intel_display_set_init_power(dev_priv, false);
4760}
4761
dfcab17e 4762/* returns HPLL frequency in kHz */
f8bf63fd 4763static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4764{
586f49dc 4765 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4766
586f49dc
JB
4767 /* Obtain SKU information */
4768 mutex_lock(&dev_priv->dpio_lock);
4769 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4770 CCK_FUSE_HPLL_FREQ_MASK;
4771 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4772
dfcab17e 4773 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4774}
4775
f8bf63fd
VS
4776static void vlv_update_cdclk(struct drm_device *dev)
4777{
4778 struct drm_i915_private *dev_priv = dev->dev_private;
4779
4780 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4781 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4782 dev_priv->vlv_cdclk_freq);
4783
4784 /*
4785 * Program the gmbus_freq based on the cdclk frequency.
4786 * BSpec erroneously claims we should aim for 4MHz, but
4787 * in fact 1MHz is the correct frequency.
4788 */
6be1e3d3 4789 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4790}
4791
30a970c6
JB
4792/* Adjust CDclk dividers to allow high res or save power if possible */
4793static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4794{
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 u32 val, cmd;
4797
d197b7d3 4798 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4799
dfcab17e 4800 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4801 cmd = 2;
dfcab17e 4802 else if (cdclk == 266667)
30a970c6
JB
4803 cmd = 1;
4804 else
4805 cmd = 0;
4806
4807 mutex_lock(&dev_priv->rps.hw_lock);
4808 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4809 val &= ~DSPFREQGUAR_MASK;
4810 val |= (cmd << DSPFREQGUAR_SHIFT);
4811 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4812 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4813 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4814 50)) {
4815 DRM_ERROR("timed out waiting for CDclk change\n");
4816 }
4817 mutex_unlock(&dev_priv->rps.hw_lock);
4818
dfcab17e 4819 if (cdclk == 400000) {
6bcda4f0 4820 u32 divider;
30a970c6 4821
6bcda4f0 4822 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4823
4824 mutex_lock(&dev_priv->dpio_lock);
4825 /* adjust cdclk divider */
4826 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4827 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4828 val |= divider;
4829 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4830
4831 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4832 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4833 50))
4834 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4835 mutex_unlock(&dev_priv->dpio_lock);
4836 }
4837
4838 mutex_lock(&dev_priv->dpio_lock);
4839 /* adjust self-refresh exit latency value */
4840 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4841 val &= ~0x7f;
4842
4843 /*
4844 * For high bandwidth configs, we set a higher latency in the bunit
4845 * so that the core display fetch happens in time to avoid underruns.
4846 */
dfcab17e 4847 if (cdclk == 400000)
30a970c6
JB
4848 val |= 4500 / 250; /* 4.5 usec */
4849 else
4850 val |= 3000 / 250; /* 3.0 usec */
4851 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4852 mutex_unlock(&dev_priv->dpio_lock);
4853
f8bf63fd 4854 vlv_update_cdclk(dev);
30a970c6
JB
4855}
4856
383c5a6a
VS
4857static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4858{
4859 struct drm_i915_private *dev_priv = dev->dev_private;
4860 u32 val, cmd;
4861
4862 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4863
4864 switch (cdclk) {
4865 case 400000:
4866 cmd = 3;
4867 break;
4868 case 333333:
4869 case 320000:
4870 cmd = 2;
4871 break;
4872 case 266667:
4873 cmd = 1;
4874 break;
4875 case 200000:
4876 cmd = 0;
4877 break;
4878 default:
5f77eeb0 4879 MISSING_CASE(cdclk);
383c5a6a
VS
4880 return;
4881 }
4882
4883 mutex_lock(&dev_priv->rps.hw_lock);
4884 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4885 val &= ~DSPFREQGUAR_MASK_CHV;
4886 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4887 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4888 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4889 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4890 50)) {
4891 DRM_ERROR("timed out waiting for CDclk change\n");
4892 }
4893 mutex_unlock(&dev_priv->rps.hw_lock);
4894
4895 vlv_update_cdclk(dev);
4896}
4897
30a970c6
JB
4898static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4899 int max_pixclk)
4900{
6bcda4f0 4901 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4902
d49a340d
VS
4903 /* FIXME: Punit isn't quite ready yet */
4904 if (IS_CHERRYVIEW(dev_priv->dev))
4905 return 400000;
4906
30a970c6
JB
4907 /*
4908 * Really only a few cases to deal with, as only 4 CDclks are supported:
4909 * 200MHz
4910 * 267MHz
29dc7ef3 4911 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4912 * 400MHz
4913 * So we check to see whether we're above 90% of the lower bin and
4914 * adjust if needed.
e37c67a1
VS
4915 *
4916 * We seem to get an unstable or solid color picture at 200MHz.
4917 * Not sure what's wrong. For now use 200MHz only when all pipes
4918 * are off.
30a970c6 4919 */
29dc7ef3 4920 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4921 return 400000;
4922 else if (max_pixclk > 266667*9/10)
29dc7ef3 4923 return freq_320;
e37c67a1 4924 else if (max_pixclk > 0)
dfcab17e 4925 return 266667;
e37c67a1
VS
4926 else
4927 return 200000;
30a970c6
JB
4928}
4929
2f2d7aa1
VS
4930/* compute the max pixel clock for new configuration */
4931static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4932{
4933 struct drm_device *dev = dev_priv->dev;
4934 struct intel_crtc *intel_crtc;
4935 int max_pixclk = 0;
4936
d3fcc808 4937 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4938 if (intel_crtc->new_enabled)
30a970c6 4939 max_pixclk = max(max_pixclk,
2d112de7 4940 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4941 }
4942
4943 return max_pixclk;
4944}
4945
4946static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4947 unsigned *prepare_pipes)
30a970c6
JB
4948{
4949 struct drm_i915_private *dev_priv = dev->dev_private;
4950 struct intel_crtc *intel_crtc;
2f2d7aa1 4951 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4952
d60c4473
ID
4953 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4954 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4955 return;
4956
2f2d7aa1 4957 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4958 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4959 if (intel_crtc->base.enabled)
4960 *prepare_pipes |= (1 << intel_crtc->pipe);
4961}
4962
4963static void valleyview_modeset_global_resources(struct drm_device *dev)
4964{
4965 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4966 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4967 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4968
383c5a6a 4969 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
4970 /*
4971 * FIXME: We can end up here with all power domains off, yet
4972 * with a CDCLK frequency other than the minimum. To account
4973 * for this take the PIPE-A power domain, which covers the HW
4974 * blocks needed for the following programming. This can be
4975 * removed once it's guaranteed that we get here either with
4976 * the minimum CDCLK set, or the required power domains
4977 * enabled.
4978 */
4979 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4980
383c5a6a
VS
4981 if (IS_CHERRYVIEW(dev))
4982 cherryview_set_cdclk(dev, req_cdclk);
4983 else
4984 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
4985
4986 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 4987 }
30a970c6
JB
4988}
4989
89b667f8
JB
4990static void valleyview_crtc_enable(struct drm_crtc *crtc)
4991{
4992 struct drm_device *dev = crtc->dev;
a72e4c9f 4993 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4995 struct intel_encoder *encoder;
4996 int pipe = intel_crtc->pipe;
23538ef1 4997 bool is_dsi;
89b667f8
JB
4998
4999 WARN_ON(!crtc->enabled);
5000
5001 if (intel_crtc->active)
5002 return;
5003
409ee761 5004 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5005
1ae0d137
VS
5006 if (!is_dsi) {
5007 if (IS_CHERRYVIEW(dev))
6e3c9717 5008 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5009 else
6e3c9717 5010 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5011 }
5b18e57c 5012
6e3c9717 5013 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5014 intel_dp_set_m_n(intel_crtc);
5015
5016 intel_set_pipe_timings(intel_crtc);
5017
c14b0485
VS
5018 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5019 struct drm_i915_private *dev_priv = dev->dev_private;
5020
5021 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5022 I915_WRITE(CHV_CANVAS(pipe), 0);
5023 }
5024
5b18e57c
DV
5025 i9xx_set_pipeconf(intel_crtc);
5026
89b667f8 5027 intel_crtc->active = true;
89b667f8 5028
a72e4c9f 5029 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5030
89b667f8
JB
5031 for_each_encoder_on_crtc(dev, crtc, encoder)
5032 if (encoder->pre_pll_enable)
5033 encoder->pre_pll_enable(encoder);
5034
9d556c99
CML
5035 if (!is_dsi) {
5036 if (IS_CHERRYVIEW(dev))
6e3c9717 5037 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5038 else
6e3c9717 5039 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5040 }
89b667f8
JB
5041
5042 for_each_encoder_on_crtc(dev, crtc, encoder)
5043 if (encoder->pre_enable)
5044 encoder->pre_enable(encoder);
5045
2dd24552
JB
5046 i9xx_pfit_enable(intel_crtc);
5047
63cbb074
VS
5048 intel_crtc_load_lut(crtc);
5049
f37fcc2a 5050 intel_update_watermarks(crtc);
e1fdc473 5051 intel_enable_pipe(intel_crtc);
be6a6f8e 5052
4b3a9526
VS
5053 assert_vblank_disabled(crtc);
5054 drm_crtc_vblank_on(crtc);
5055
f9b61ff6
DV
5056 for_each_encoder_on_crtc(dev, crtc, encoder)
5057 encoder->enable(encoder);
5058
9ab0460b 5059 intel_crtc_enable_planes(crtc);
d40d9187 5060
56b80e1f 5061 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5062 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5063}
5064
f13c2ef3
DV
5065static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5066{
5067 struct drm_device *dev = crtc->base.dev;
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069
6e3c9717
ACO
5070 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5071 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5072}
5073
0b8765c6 5074static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5075{
5076 struct drm_device *dev = crtc->dev;
a72e4c9f 5077 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5079 struct intel_encoder *encoder;
79e53945 5080 int pipe = intel_crtc->pipe;
79e53945 5081
08a48469
DV
5082 WARN_ON(!crtc->enabled);
5083
f7abfe8b
CW
5084 if (intel_crtc->active)
5085 return;
5086
f13c2ef3
DV
5087 i9xx_set_pll_dividers(intel_crtc);
5088
6e3c9717 5089 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5090 intel_dp_set_m_n(intel_crtc);
5091
5092 intel_set_pipe_timings(intel_crtc);
5093
5b18e57c
DV
5094 i9xx_set_pipeconf(intel_crtc);
5095
f7abfe8b 5096 intel_crtc->active = true;
6b383a7f 5097
4a3436e8 5098 if (!IS_GEN2(dev))
a72e4c9f 5099 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5100
9d6d9f19
MK
5101 for_each_encoder_on_crtc(dev, crtc, encoder)
5102 if (encoder->pre_enable)
5103 encoder->pre_enable(encoder);
5104
f6736a1a
DV
5105 i9xx_enable_pll(intel_crtc);
5106
2dd24552
JB
5107 i9xx_pfit_enable(intel_crtc);
5108
63cbb074
VS
5109 intel_crtc_load_lut(crtc);
5110
f37fcc2a 5111 intel_update_watermarks(crtc);
e1fdc473 5112 intel_enable_pipe(intel_crtc);
be6a6f8e 5113
4b3a9526
VS
5114 assert_vblank_disabled(crtc);
5115 drm_crtc_vblank_on(crtc);
5116
f9b61ff6
DV
5117 for_each_encoder_on_crtc(dev, crtc, encoder)
5118 encoder->enable(encoder);
5119
9ab0460b 5120 intel_crtc_enable_planes(crtc);
d40d9187 5121
4a3436e8
VS
5122 /*
5123 * Gen2 reports pipe underruns whenever all planes are disabled.
5124 * So don't enable underrun reporting before at least some planes
5125 * are enabled.
5126 * FIXME: Need to fix the logic to work when we turn off all planes
5127 * but leave the pipe running.
5128 */
5129 if (IS_GEN2(dev))
a72e4c9f 5130 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5131
56b80e1f 5132 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5133 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5134}
79e53945 5135
87476d63
DV
5136static void i9xx_pfit_disable(struct intel_crtc *crtc)
5137{
5138 struct drm_device *dev = crtc->base.dev;
5139 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5140
6e3c9717 5141 if (!crtc->config->gmch_pfit.control)
328d8e82 5142 return;
87476d63 5143
328d8e82 5144 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5145
328d8e82
DV
5146 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5147 I915_READ(PFIT_CONTROL));
5148 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5149}
5150
0b8765c6
JB
5151static void i9xx_crtc_disable(struct drm_crtc *crtc)
5152{
5153 struct drm_device *dev = crtc->dev;
5154 struct drm_i915_private *dev_priv = dev->dev_private;
5155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5156 struct intel_encoder *encoder;
0b8765c6 5157 int pipe = intel_crtc->pipe;
ef9c3aee 5158
f7abfe8b
CW
5159 if (!intel_crtc->active)
5160 return;
5161
4a3436e8
VS
5162 /*
5163 * Gen2 reports pipe underruns whenever all planes are disabled.
5164 * So diasble underrun reporting before all the planes get disabled.
5165 * FIXME: Need to fix the logic to work when we turn off all planes
5166 * but leave the pipe running.
5167 */
5168 if (IS_GEN2(dev))
a72e4c9f 5169 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5170
564ed191
ID
5171 /*
5172 * Vblank time updates from the shadow to live plane control register
5173 * are blocked if the memory self-refresh mode is active at that
5174 * moment. So to make sure the plane gets truly disabled, disable
5175 * first the self-refresh mode. The self-refresh enable bit in turn
5176 * will be checked/applied by the HW only at the next frame start
5177 * event which is after the vblank start event, so we need to have a
5178 * wait-for-vblank between disabling the plane and the pipe.
5179 */
5180 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5181 intel_crtc_disable_planes(crtc);
5182
6304cd91
VS
5183 /*
5184 * On gen2 planes are double buffered but the pipe isn't, so we must
5185 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5186 * We also need to wait on all gmch platforms because of the
5187 * self-refresh mode constraint explained above.
6304cd91 5188 */
564ed191 5189 intel_wait_for_vblank(dev, pipe);
6304cd91 5190
4b3a9526
VS
5191 for_each_encoder_on_crtc(dev, crtc, encoder)
5192 encoder->disable(encoder);
5193
f9b61ff6
DV
5194 drm_crtc_vblank_off(crtc);
5195 assert_vblank_disabled(crtc);
5196
575f7ab7 5197 intel_disable_pipe(intel_crtc);
24a1f16d 5198
87476d63 5199 i9xx_pfit_disable(intel_crtc);
24a1f16d 5200
89b667f8
JB
5201 for_each_encoder_on_crtc(dev, crtc, encoder)
5202 if (encoder->post_disable)
5203 encoder->post_disable(encoder);
5204
409ee761 5205 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5206 if (IS_CHERRYVIEW(dev))
5207 chv_disable_pll(dev_priv, pipe);
5208 else if (IS_VALLEYVIEW(dev))
5209 vlv_disable_pll(dev_priv, pipe);
5210 else
1c4e0274 5211 i9xx_disable_pll(intel_crtc);
076ed3b2 5212 }
0b8765c6 5213
4a3436e8 5214 if (!IS_GEN2(dev))
a72e4c9f 5215 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5216
f7abfe8b 5217 intel_crtc->active = false;
46ba614c 5218 intel_update_watermarks(crtc);
f37fcc2a 5219
efa9624e 5220 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5221 intel_fbc_update(dev);
efa9624e 5222 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5223}
5224
ee7b9f93
JB
5225static void i9xx_crtc_off(struct drm_crtc *crtc)
5226{
5227}
5228
b04c5bd6
BF
5229/* Master function to enable/disable CRTC and corresponding power wells */
5230void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5231{
5232 struct drm_device *dev = crtc->dev;
5233 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5235 enum intel_display_power_domain domain;
5236 unsigned long domains;
976f8a20 5237
0e572fe7
DV
5238 if (enable) {
5239 if (!intel_crtc->active) {
e1e9fb84
DV
5240 domains = get_crtc_power_domains(crtc);
5241 for_each_power_domain(domain, domains)
5242 intel_display_power_get(dev_priv, domain);
5243 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5244
5245 dev_priv->display.crtc_enable(crtc);
5246 }
5247 } else {
5248 if (intel_crtc->active) {
5249 dev_priv->display.crtc_disable(crtc);
5250
e1e9fb84
DV
5251 domains = intel_crtc->enabled_power_domains;
5252 for_each_power_domain(domain, domains)
5253 intel_display_power_put(dev_priv, domain);
5254 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5255 }
5256 }
b04c5bd6
BF
5257}
5258
5259/**
5260 * Sets the power management mode of the pipe and plane.
5261 */
5262void intel_crtc_update_dpms(struct drm_crtc *crtc)
5263{
5264 struct drm_device *dev = crtc->dev;
5265 struct intel_encoder *intel_encoder;
5266 bool enable = false;
5267
5268 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5269 enable |= intel_encoder->connectors_active;
5270
5271 intel_crtc_control(crtc, enable);
976f8a20
DV
5272}
5273
cdd59983
CW
5274static void intel_crtc_disable(struct drm_crtc *crtc)
5275{
cdd59983 5276 struct drm_device *dev = crtc->dev;
976f8a20 5277 struct drm_connector *connector;
ee7b9f93 5278 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5279
976f8a20
DV
5280 /* crtc should still be enabled when we disable it. */
5281 WARN_ON(!crtc->enabled);
5282
5283 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5284 dev_priv->display.off(crtc);
5285
455a6808 5286 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5287
5288 /* Update computed state. */
5289 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5290 if (!connector->encoder || !connector->encoder->crtc)
5291 continue;
5292
5293 if (connector->encoder->crtc != crtc)
5294 continue;
5295
5296 connector->dpms = DRM_MODE_DPMS_OFF;
5297 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5298 }
5299}
5300
ea5b213a 5301void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5302{
4ef69c7a 5303 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5304
ea5b213a
CW
5305 drm_encoder_cleanup(encoder);
5306 kfree(intel_encoder);
7e7d76c3
JB
5307}
5308
9237329d 5309/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5310 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5311 * state of the entire output pipe. */
9237329d 5312static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5313{
5ab432ef
DV
5314 if (mode == DRM_MODE_DPMS_ON) {
5315 encoder->connectors_active = true;
5316
b2cabb0e 5317 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5318 } else {
5319 encoder->connectors_active = false;
5320
b2cabb0e 5321 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5322 }
79e53945
JB
5323}
5324
0a91ca29
DV
5325/* Cross check the actual hw state with our own modeset state tracking (and it's
5326 * internal consistency). */
b980514c 5327static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5328{
0a91ca29
DV
5329 if (connector->get_hw_state(connector)) {
5330 struct intel_encoder *encoder = connector->encoder;
5331 struct drm_crtc *crtc;
5332 bool encoder_enabled;
5333 enum pipe pipe;
5334
5335 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5336 connector->base.base.id,
c23cc417 5337 connector->base.name);
0a91ca29 5338
0e32b39c
DA
5339 /* there is no real hw state for MST connectors */
5340 if (connector->mst_port)
5341 return;
5342
e2c719b7 5343 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5344 "wrong connector dpms state\n");
e2c719b7 5345 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5346 "active connector not linked to encoder\n");
0a91ca29 5347
36cd7444 5348 if (encoder) {
e2c719b7 5349 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5350 "encoder->connectors_active not set\n");
5351
5352 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5353 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5354 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5355 return;
0a91ca29 5356
36cd7444 5357 crtc = encoder->base.crtc;
0a91ca29 5358
e2c719b7
RC
5359 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5360 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5361 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5362 "encoder active on the wrong pipe\n");
5363 }
0a91ca29 5364 }
79e53945
JB
5365}
5366
5ab432ef
DV
5367/* Even simpler default implementation, if there's really no special case to
5368 * consider. */
5369void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5370{
5ab432ef
DV
5371 /* All the simple cases only support two dpms states. */
5372 if (mode != DRM_MODE_DPMS_ON)
5373 mode = DRM_MODE_DPMS_OFF;
d4270e57 5374
5ab432ef
DV
5375 if (mode == connector->dpms)
5376 return;
5377
5378 connector->dpms = mode;
5379
5380 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5381 if (connector->encoder)
5382 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5383
b980514c 5384 intel_modeset_check_state(connector->dev);
79e53945
JB
5385}
5386
f0947c37
DV
5387/* Simple connector->get_hw_state implementation for encoders that support only
5388 * one connector and no cloning and hence the encoder state determines the state
5389 * of the connector. */
5390bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5391{
24929352 5392 enum pipe pipe = 0;
f0947c37 5393 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5394
f0947c37 5395 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5396}
5397
1857e1da 5398static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5399 struct intel_crtc_state *pipe_config)
1857e1da
DV
5400{
5401 struct drm_i915_private *dev_priv = dev->dev_private;
5402 struct intel_crtc *pipe_B_crtc =
5403 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5404
5405 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5406 pipe_name(pipe), pipe_config->fdi_lanes);
5407 if (pipe_config->fdi_lanes > 4) {
5408 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5409 pipe_name(pipe), pipe_config->fdi_lanes);
5410 return false;
5411 }
5412
bafb6553 5413 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5414 if (pipe_config->fdi_lanes > 2) {
5415 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5416 pipe_config->fdi_lanes);
5417 return false;
5418 } else {
5419 return true;
5420 }
5421 }
5422
5423 if (INTEL_INFO(dev)->num_pipes == 2)
5424 return true;
5425
5426 /* Ivybridge 3 pipe is really complicated */
5427 switch (pipe) {
5428 case PIPE_A:
5429 return true;
5430 case PIPE_B:
5431 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5432 pipe_config->fdi_lanes > 2) {
5433 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5434 pipe_name(pipe), pipe_config->fdi_lanes);
5435 return false;
5436 }
5437 return true;
5438 case PIPE_C:
1e833f40 5439 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5440 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5441 if (pipe_config->fdi_lanes > 2) {
5442 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5443 pipe_name(pipe), pipe_config->fdi_lanes);
5444 return false;
5445 }
5446 } else {
5447 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5448 return false;
5449 }
5450 return true;
5451 default:
5452 BUG();
5453 }
5454}
5455
e29c22c0
DV
5456#define RETRY 1
5457static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5458 struct intel_crtc_state *pipe_config)
877d48d5 5459{
1857e1da 5460 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5461 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5462 int lane, link_bw, fdi_dotclock;
e29c22c0 5463 bool setup_ok, needs_recompute = false;
877d48d5 5464
e29c22c0 5465retry:
877d48d5
DV
5466 /* FDI is a binary signal running at ~2.7GHz, encoding
5467 * each output octet as 10 bits. The actual frequency
5468 * is stored as a divider into a 100MHz clock, and the
5469 * mode pixel clock is stored in units of 1KHz.
5470 * Hence the bw of each lane in terms of the mode signal
5471 * is:
5472 */
5473 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5474
241bfc38 5475 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5476
2bd89a07 5477 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5478 pipe_config->pipe_bpp);
5479
5480 pipe_config->fdi_lanes = lane;
5481
2bd89a07 5482 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5483 link_bw, &pipe_config->fdi_m_n);
1857e1da 5484
e29c22c0
DV
5485 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5486 intel_crtc->pipe, pipe_config);
5487 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5488 pipe_config->pipe_bpp -= 2*3;
5489 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5490 pipe_config->pipe_bpp);
5491 needs_recompute = true;
5492 pipe_config->bw_constrained = true;
5493
5494 goto retry;
5495 }
5496
5497 if (needs_recompute)
5498 return RETRY;
5499
5500 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5501}
5502
42db64ef 5503static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5504 struct intel_crtc_state *pipe_config)
42db64ef 5505{
d330a953 5506 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5507 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5508 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5509}
5510
a43f6e0f 5511static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5512 struct intel_crtc_state *pipe_config)
79e53945 5513{
a43f6e0f 5514 struct drm_device *dev = crtc->base.dev;
8bd31e67 5515 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5516 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5517
ad3a4479 5518 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5519 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5520 int clock_limit =
5521 dev_priv->display.get_display_clock_speed(dev);
5522
5523 /*
5524 * Enable pixel doubling when the dot clock
5525 * is > 90% of the (display) core speed.
5526 *
b397c96b
VS
5527 * GDG double wide on either pipe,
5528 * otherwise pipe A only.
cf532bb2 5529 */
b397c96b 5530 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5531 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5532 clock_limit *= 2;
cf532bb2 5533 pipe_config->double_wide = true;
ad3a4479
VS
5534 }
5535
241bfc38 5536 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5537 return -EINVAL;
2c07245f 5538 }
89749350 5539
1d1d0e27
VS
5540 /*
5541 * Pipe horizontal size must be even in:
5542 * - DVO ganged mode
5543 * - LVDS dual channel mode
5544 * - Double wide pipe
5545 */
409ee761 5546 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5547 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5548 pipe_config->pipe_src_w &= ~1;
5549
8693a824
DL
5550 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5551 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5552 */
5553 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5554 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5555 return -EINVAL;
44f46b42 5556
bd080ee5 5557 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5558 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5559 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5560 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5561 * for lvds. */
5562 pipe_config->pipe_bpp = 8*3;
5563 }
5564
f5adf94e 5565 if (HAS_IPS(dev))
a43f6e0f
DV
5566 hsw_compute_ips_config(crtc, pipe_config);
5567
877d48d5 5568 if (pipe_config->has_pch_encoder)
a43f6e0f 5569 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5570
e29c22c0 5571 return 0;
79e53945
JB
5572}
5573
25eb05fc
JB
5574static int valleyview_get_display_clock_speed(struct drm_device *dev)
5575{
d197b7d3 5576 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5577 u32 val;
5578 int divider;
5579
d49a340d
VS
5580 /* FIXME: Punit isn't quite ready yet */
5581 if (IS_CHERRYVIEW(dev))
5582 return 400000;
5583
6bcda4f0
VS
5584 if (dev_priv->hpll_freq == 0)
5585 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5586
d197b7d3
VS
5587 mutex_lock(&dev_priv->dpio_lock);
5588 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5589 mutex_unlock(&dev_priv->dpio_lock);
5590
5591 divider = val & DISPLAY_FREQUENCY_VALUES;
5592
7d007f40
VS
5593 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5594 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5595 "cdclk change in progress\n");
5596
6bcda4f0 5597 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5598}
5599
e70236a8
JB
5600static int i945_get_display_clock_speed(struct drm_device *dev)
5601{
5602 return 400000;
5603}
79e53945 5604
e70236a8 5605static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5606{
e70236a8
JB
5607 return 333000;
5608}
79e53945 5609
e70236a8
JB
5610static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5611{
5612 return 200000;
5613}
79e53945 5614
257a7ffc
DV
5615static int pnv_get_display_clock_speed(struct drm_device *dev)
5616{
5617 u16 gcfgc = 0;
5618
5619 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5620
5621 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5622 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5623 return 267000;
5624 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5625 return 333000;
5626 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5627 return 444000;
5628 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5629 return 200000;
5630 default:
5631 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5632 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5633 return 133000;
5634 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5635 return 167000;
5636 }
5637}
5638
e70236a8
JB
5639static int i915gm_get_display_clock_speed(struct drm_device *dev)
5640{
5641 u16 gcfgc = 0;
79e53945 5642
e70236a8
JB
5643 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5644
5645 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5646 return 133000;
5647 else {
5648 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5649 case GC_DISPLAY_CLOCK_333_MHZ:
5650 return 333000;
5651 default:
5652 case GC_DISPLAY_CLOCK_190_200_MHZ:
5653 return 190000;
79e53945 5654 }
e70236a8
JB
5655 }
5656}
5657
5658static int i865_get_display_clock_speed(struct drm_device *dev)
5659{
5660 return 266000;
5661}
5662
5663static int i855_get_display_clock_speed(struct drm_device *dev)
5664{
5665 u16 hpllcc = 0;
5666 /* Assume that the hardware is in the high speed state. This
5667 * should be the default.
5668 */
5669 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5670 case GC_CLOCK_133_200:
5671 case GC_CLOCK_100_200:
5672 return 200000;
5673 case GC_CLOCK_166_250:
5674 return 250000;
5675 case GC_CLOCK_100_133:
79e53945 5676 return 133000;
e70236a8 5677 }
79e53945 5678
e70236a8
JB
5679 /* Shouldn't happen */
5680 return 0;
5681}
79e53945 5682
e70236a8
JB
5683static int i830_get_display_clock_speed(struct drm_device *dev)
5684{
5685 return 133000;
79e53945
JB
5686}
5687
2c07245f 5688static void
a65851af 5689intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5690{
a65851af
VS
5691 while (*num > DATA_LINK_M_N_MASK ||
5692 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5693 *num >>= 1;
5694 *den >>= 1;
5695 }
5696}
5697
a65851af
VS
5698static void compute_m_n(unsigned int m, unsigned int n,
5699 uint32_t *ret_m, uint32_t *ret_n)
5700{
5701 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5702 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5703 intel_reduce_m_n_ratio(ret_m, ret_n);
5704}
5705
e69d0bc1
DV
5706void
5707intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5708 int pixel_clock, int link_clock,
5709 struct intel_link_m_n *m_n)
2c07245f 5710{
e69d0bc1 5711 m_n->tu = 64;
a65851af
VS
5712
5713 compute_m_n(bits_per_pixel * pixel_clock,
5714 link_clock * nlanes * 8,
5715 &m_n->gmch_m, &m_n->gmch_n);
5716
5717 compute_m_n(pixel_clock, link_clock,
5718 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5719}
5720
a7615030
CW
5721static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5722{
d330a953
JN
5723 if (i915.panel_use_ssc >= 0)
5724 return i915.panel_use_ssc != 0;
41aa3448 5725 return dev_priv->vbt.lvds_use_ssc
435793df 5726 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5727}
5728
409ee761 5729static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5730{
409ee761 5731 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5732 struct drm_i915_private *dev_priv = dev->dev_private;
5733 int refclk;
5734
a0c4da24 5735 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5736 refclk = 100000;
d0737e1d 5737 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5738 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5739 refclk = dev_priv->vbt.lvds_ssc_freq;
5740 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5741 } else if (!IS_GEN2(dev)) {
5742 refclk = 96000;
5743 } else {
5744 refclk = 48000;
5745 }
5746
5747 return refclk;
5748}
5749
7429e9d4 5750static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5751{
7df00d7a 5752 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5753}
f47709a9 5754
7429e9d4
DV
5755static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5756{
5757 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5758}
5759
f47709a9 5760static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5761 struct intel_crtc_state *crtc_state,
a7516a05
JB
5762 intel_clock_t *reduced_clock)
5763{
f47709a9 5764 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5765 u32 fp, fp2 = 0;
5766
5767 if (IS_PINEVIEW(dev)) {
190f68c5 5768 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5769 if (reduced_clock)
7429e9d4 5770 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5771 } else {
190f68c5 5772 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5773 if (reduced_clock)
7429e9d4 5774 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5775 }
5776
190f68c5 5777 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5778
f47709a9 5779 crtc->lowfreq_avail = false;
e1f234bd 5780 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5781 reduced_clock && i915.powersave) {
190f68c5 5782 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5783 crtc->lowfreq_avail = true;
a7516a05 5784 } else {
190f68c5 5785 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5786 }
5787}
5788
5e69f97f
CML
5789static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5790 pipe)
89b667f8
JB
5791{
5792 u32 reg_val;
5793
5794 /*
5795 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5796 * and set it to a reasonable value instead.
5797 */
ab3c759a 5798 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5799 reg_val &= 0xffffff00;
5800 reg_val |= 0x00000030;
ab3c759a 5801 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5802
ab3c759a 5803 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5804 reg_val &= 0x8cffffff;
5805 reg_val = 0x8c000000;
ab3c759a 5806 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5807
ab3c759a 5808 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5809 reg_val &= 0xffffff00;
ab3c759a 5810 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5811
ab3c759a 5812 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5813 reg_val &= 0x00ffffff;
5814 reg_val |= 0xb0000000;
ab3c759a 5815 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5816}
5817
b551842d
DV
5818static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5819 struct intel_link_m_n *m_n)
5820{
5821 struct drm_device *dev = crtc->base.dev;
5822 struct drm_i915_private *dev_priv = dev->dev_private;
5823 int pipe = crtc->pipe;
5824
e3b95f1e
DV
5825 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5826 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5827 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5828 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5829}
5830
5831static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5832 struct intel_link_m_n *m_n,
5833 struct intel_link_m_n *m2_n2)
b551842d
DV
5834{
5835 struct drm_device *dev = crtc->base.dev;
5836 struct drm_i915_private *dev_priv = dev->dev_private;
5837 int pipe = crtc->pipe;
6e3c9717 5838 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5839
5840 if (INTEL_INFO(dev)->gen >= 5) {
5841 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5842 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5843 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5844 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5845 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5846 * for gen < 8) and if DRRS is supported (to make sure the
5847 * registers are not unnecessarily accessed).
5848 */
5849 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5850 crtc->config->has_drrs) {
f769cd24
VK
5851 I915_WRITE(PIPE_DATA_M2(transcoder),
5852 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5853 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5854 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5855 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5856 }
b551842d 5857 } else {
e3b95f1e
DV
5858 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5859 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5860 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5861 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5862 }
5863}
5864
f769cd24 5865void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5866{
6e3c9717
ACO
5867 if (crtc->config->has_pch_encoder)
5868 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5869 else
6e3c9717
ACO
5870 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5871 &crtc->config->dp_m2_n2);
03afc4a2
DV
5872}
5873
d288f65f 5874static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5875 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5876{
5877 u32 dpll, dpll_md;
5878
5879 /*
5880 * Enable DPIO clock input. We should never disable the reference
5881 * clock for pipe B, since VGA hotplug / manual detection depends
5882 * on it.
5883 */
5884 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5885 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5886 /* We should never disable this, set it here for state tracking */
5887 if (crtc->pipe == PIPE_B)
5888 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5889 dpll |= DPLL_VCO_ENABLE;
d288f65f 5890 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5891
d288f65f 5892 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5893 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5894 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5895}
5896
d288f65f 5897static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5898 const struct intel_crtc_state *pipe_config)
a0c4da24 5899{
f47709a9 5900 struct drm_device *dev = crtc->base.dev;
a0c4da24 5901 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5902 int pipe = crtc->pipe;
bdd4b6a6 5903 u32 mdiv;
a0c4da24 5904 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5905 u32 coreclk, reg_val;
a0c4da24 5906
09153000
DV
5907 mutex_lock(&dev_priv->dpio_lock);
5908
d288f65f
VS
5909 bestn = pipe_config->dpll.n;
5910 bestm1 = pipe_config->dpll.m1;
5911 bestm2 = pipe_config->dpll.m2;
5912 bestp1 = pipe_config->dpll.p1;
5913 bestp2 = pipe_config->dpll.p2;
a0c4da24 5914
89b667f8
JB
5915 /* See eDP HDMI DPIO driver vbios notes doc */
5916
5917 /* PLL B needs special handling */
bdd4b6a6 5918 if (pipe == PIPE_B)
5e69f97f 5919 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5920
5921 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5922 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5923
5924 /* Disable target IRef on PLL */
ab3c759a 5925 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5926 reg_val &= 0x00ffffff;
ab3c759a 5927 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5928
5929 /* Disable fast lock */
ab3c759a 5930 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5931
5932 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5933 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5934 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5935 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5936 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5937
5938 /*
5939 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5940 * but we don't support that).
5941 * Note: don't use the DAC post divider as it seems unstable.
5942 */
5943 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5944 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5945
a0c4da24 5946 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5947 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5948
89b667f8 5949 /* Set HBR and RBR LPF coefficients */
d288f65f 5950 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5951 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5952 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5953 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5954 0x009f0003);
89b667f8 5955 else
ab3c759a 5956 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5957 0x00d0000f);
5958
681a8504 5959 if (pipe_config->has_dp_encoder) {
89b667f8 5960 /* Use SSC source */
bdd4b6a6 5961 if (pipe == PIPE_A)
ab3c759a 5962 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5963 0x0df40000);
5964 else
ab3c759a 5965 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5966 0x0df70000);
5967 } else { /* HDMI or VGA */
5968 /* Use bend source */
bdd4b6a6 5969 if (pipe == PIPE_A)
ab3c759a 5970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5971 0x0df70000);
5972 else
ab3c759a 5973 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5974 0x0df40000);
5975 }
a0c4da24 5976
ab3c759a 5977 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5978 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5979 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5980 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5981 coreclk |= 0x01000000;
ab3c759a 5982 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5983
ab3c759a 5984 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5985 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5986}
5987
d288f65f 5988static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 5989 struct intel_crtc_state *pipe_config)
1ae0d137 5990{
d288f65f 5991 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5992 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5993 DPLL_VCO_ENABLE;
5994 if (crtc->pipe != PIPE_A)
d288f65f 5995 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5996
d288f65f
VS
5997 pipe_config->dpll_hw_state.dpll_md =
5998 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
5999}
6000
d288f65f 6001static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6002 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6003{
6004 struct drm_device *dev = crtc->base.dev;
6005 struct drm_i915_private *dev_priv = dev->dev_private;
6006 int pipe = crtc->pipe;
6007 int dpll_reg = DPLL(crtc->pipe);
6008 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6009 u32 loopfilter, intcoeff;
9d556c99
CML
6010 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6011 int refclk;
6012
d288f65f
VS
6013 bestn = pipe_config->dpll.n;
6014 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6015 bestm1 = pipe_config->dpll.m1;
6016 bestm2 = pipe_config->dpll.m2 >> 22;
6017 bestp1 = pipe_config->dpll.p1;
6018 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6019
6020 /*
6021 * Enable Refclk and SSC
6022 */
a11b0703 6023 I915_WRITE(dpll_reg,
d288f65f 6024 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6025
6026 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6027
9d556c99
CML
6028 /* p1 and p2 divider */
6029 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6030 5 << DPIO_CHV_S1_DIV_SHIFT |
6031 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6032 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6033 1 << DPIO_CHV_K_DIV_SHIFT);
6034
6035 /* Feedback post-divider - m2 */
6036 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6037
6038 /* Feedback refclk divider - n and m1 */
6039 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6040 DPIO_CHV_M1_DIV_BY_2 |
6041 1 << DPIO_CHV_N_DIV_SHIFT);
6042
6043 /* M2 fraction division */
6044 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6045
6046 /* M2 fraction division enable */
6047 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6048 DPIO_CHV_FRAC_DIV_EN |
6049 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6050
6051 /* Loop filter */
409ee761 6052 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6053 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6054 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6055 if (refclk == 100000)
6056 intcoeff = 11;
6057 else if (refclk == 38400)
6058 intcoeff = 10;
6059 else
6060 intcoeff = 9;
6061 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6062 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6063
6064 /* AFC Recal */
6065 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6066 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6067 DPIO_AFC_RECAL);
6068
6069 mutex_unlock(&dev_priv->dpio_lock);
6070}
6071
d288f65f
VS
6072/**
6073 * vlv_force_pll_on - forcibly enable just the PLL
6074 * @dev_priv: i915 private structure
6075 * @pipe: pipe PLL to enable
6076 * @dpll: PLL configuration
6077 *
6078 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6079 * in cases where we need the PLL enabled even when @pipe is not going to
6080 * be enabled.
6081 */
6082void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6083 const struct dpll *dpll)
6084{
6085 struct intel_crtc *crtc =
6086 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6087 struct intel_crtc_state pipe_config = {
d288f65f
VS
6088 .pixel_multiplier = 1,
6089 .dpll = *dpll,
6090 };
6091
6092 if (IS_CHERRYVIEW(dev)) {
6093 chv_update_pll(crtc, &pipe_config);
6094 chv_prepare_pll(crtc, &pipe_config);
6095 chv_enable_pll(crtc, &pipe_config);
6096 } else {
6097 vlv_update_pll(crtc, &pipe_config);
6098 vlv_prepare_pll(crtc, &pipe_config);
6099 vlv_enable_pll(crtc, &pipe_config);
6100 }
6101}
6102
6103/**
6104 * vlv_force_pll_off - forcibly disable just the PLL
6105 * @dev_priv: i915 private structure
6106 * @pipe: pipe PLL to disable
6107 *
6108 * Disable the PLL for @pipe. To be used in cases where we need
6109 * the PLL enabled even when @pipe is not going to be enabled.
6110 */
6111void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6112{
6113 if (IS_CHERRYVIEW(dev))
6114 chv_disable_pll(to_i915(dev), pipe);
6115 else
6116 vlv_disable_pll(to_i915(dev), pipe);
6117}
6118
f47709a9 6119static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6120 struct intel_crtc_state *crtc_state,
f47709a9 6121 intel_clock_t *reduced_clock,
eb1cbe48
DV
6122 int num_connectors)
6123{
f47709a9 6124 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6125 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6126 u32 dpll;
6127 bool is_sdvo;
190f68c5 6128 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6129
190f68c5 6130 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6131
d0737e1d
ACO
6132 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6133 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6134
6135 dpll = DPLL_VGA_MODE_DIS;
6136
d0737e1d 6137 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6138 dpll |= DPLLB_MODE_LVDS;
6139 else
6140 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6141
ef1b460d 6142 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6143 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6144 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6145 }
198a037f
DV
6146
6147 if (is_sdvo)
4a33e48d 6148 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6149
190f68c5 6150 if (crtc_state->has_dp_encoder)
4a33e48d 6151 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6152
6153 /* compute bitmask from p1 value */
6154 if (IS_PINEVIEW(dev))
6155 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6156 else {
6157 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6158 if (IS_G4X(dev) && reduced_clock)
6159 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6160 }
6161 switch (clock->p2) {
6162 case 5:
6163 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6164 break;
6165 case 7:
6166 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6167 break;
6168 case 10:
6169 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6170 break;
6171 case 14:
6172 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6173 break;
6174 }
6175 if (INTEL_INFO(dev)->gen >= 4)
6176 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6177
190f68c5 6178 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6179 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6180 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6181 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6182 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6183 else
6184 dpll |= PLL_REF_INPUT_DREFCLK;
6185
6186 dpll |= DPLL_VCO_ENABLE;
190f68c5 6187 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6188
eb1cbe48 6189 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6190 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6191 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6192 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6193 }
6194}
6195
f47709a9 6196static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6197 struct intel_crtc_state *crtc_state,
f47709a9 6198 intel_clock_t *reduced_clock,
eb1cbe48
DV
6199 int num_connectors)
6200{
f47709a9 6201 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6202 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6203 u32 dpll;
190f68c5 6204 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6205
190f68c5 6206 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6207
eb1cbe48
DV
6208 dpll = DPLL_VGA_MODE_DIS;
6209
d0737e1d 6210 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6211 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6212 } else {
6213 if (clock->p1 == 2)
6214 dpll |= PLL_P1_DIVIDE_BY_TWO;
6215 else
6216 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6217 if (clock->p2 == 4)
6218 dpll |= PLL_P2_DIVIDE_BY_4;
6219 }
6220
d0737e1d 6221 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6222 dpll |= DPLL_DVO_2X_MODE;
6223
d0737e1d 6224 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6225 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6226 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6227 else
6228 dpll |= PLL_REF_INPUT_DREFCLK;
6229
6230 dpll |= DPLL_VCO_ENABLE;
190f68c5 6231 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6232}
6233
8a654f3b 6234static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6235{
6236 struct drm_device *dev = intel_crtc->base.dev;
6237 struct drm_i915_private *dev_priv = dev->dev_private;
6238 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6239 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6240 struct drm_display_mode *adjusted_mode =
6e3c9717 6241 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6242 uint32_t crtc_vtotal, crtc_vblank_end;
6243 int vsyncshift = 0;
4d8a62ea
DV
6244
6245 /* We need to be careful not to changed the adjusted mode, for otherwise
6246 * the hw state checker will get angry at the mismatch. */
6247 crtc_vtotal = adjusted_mode->crtc_vtotal;
6248 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6249
609aeaca 6250 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6251 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6252 crtc_vtotal -= 1;
6253 crtc_vblank_end -= 1;
609aeaca 6254
409ee761 6255 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6256 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6257 else
6258 vsyncshift = adjusted_mode->crtc_hsync_start -
6259 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6260 if (vsyncshift < 0)
6261 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6262 }
6263
6264 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6265 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6266
fe2b8f9d 6267 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6268 (adjusted_mode->crtc_hdisplay - 1) |
6269 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6270 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6271 (adjusted_mode->crtc_hblank_start - 1) |
6272 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6273 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6274 (adjusted_mode->crtc_hsync_start - 1) |
6275 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6276
fe2b8f9d 6277 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6278 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6279 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6280 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6281 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6282 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6283 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6284 (adjusted_mode->crtc_vsync_start - 1) |
6285 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6286
b5e508d4
PZ
6287 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6288 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6289 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6290 * bits. */
6291 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6292 (pipe == PIPE_B || pipe == PIPE_C))
6293 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6294
b0e77b9c
PZ
6295 /* pipesrc controls the size that is scaled from, which should
6296 * always be the user's requested size.
6297 */
6298 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6299 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6300 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6301}
6302
1bd1bd80 6303static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6304 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6305{
6306 struct drm_device *dev = crtc->base.dev;
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6309 uint32_t tmp;
6310
6311 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6312 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6313 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6314 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6315 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6316 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6317 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6318 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6319 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6320
6321 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6322 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6323 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6324 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6325 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6326 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6327 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6328 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6329 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6330
6331 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6332 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6333 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6334 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6335 }
6336
6337 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6338 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6339 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6340
2d112de7
ACO
6341 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6342 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6343}
6344
f6a83288 6345void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6346 struct intel_crtc_state *pipe_config)
babea61d 6347{
2d112de7
ACO
6348 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6349 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6350 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6351 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6352
2d112de7
ACO
6353 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6354 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6355 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6356 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6357
2d112de7 6358 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6359
2d112de7
ACO
6360 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6361 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6362}
6363
84b046f3
DV
6364static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6365{
6366 struct drm_device *dev = intel_crtc->base.dev;
6367 struct drm_i915_private *dev_priv = dev->dev_private;
6368 uint32_t pipeconf;
6369
9f11a9e4 6370 pipeconf = 0;
84b046f3 6371
b6b5d049
VS
6372 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6373 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6374 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6375
6e3c9717 6376 if (intel_crtc->config->double_wide)
cf532bb2 6377 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6378
ff9ce46e
DV
6379 /* only g4x and later have fancy bpc/dither controls */
6380 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6381 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6382 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6383 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6384 PIPECONF_DITHER_TYPE_SP;
84b046f3 6385
6e3c9717 6386 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6387 case 18:
6388 pipeconf |= PIPECONF_6BPC;
6389 break;
6390 case 24:
6391 pipeconf |= PIPECONF_8BPC;
6392 break;
6393 case 30:
6394 pipeconf |= PIPECONF_10BPC;
6395 break;
6396 default:
6397 /* Case prevented by intel_choose_pipe_bpp_dither. */
6398 BUG();
84b046f3
DV
6399 }
6400 }
6401
6402 if (HAS_PIPE_CXSR(dev)) {
6403 if (intel_crtc->lowfreq_avail) {
6404 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6405 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6406 } else {
6407 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6408 }
6409 }
6410
6e3c9717 6411 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6412 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6413 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6414 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6415 else
6416 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6417 } else
84b046f3
DV
6418 pipeconf |= PIPECONF_PROGRESSIVE;
6419
6e3c9717 6420 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6421 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6422
84b046f3
DV
6423 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6424 POSTING_READ(PIPECONF(intel_crtc->pipe));
6425}
6426
190f68c5
ACO
6427static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6428 struct intel_crtc_state *crtc_state)
79e53945 6429{
c7653199 6430 struct drm_device *dev = crtc->base.dev;
79e53945 6431 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6432 int refclk, num_connectors = 0;
652c393a 6433 intel_clock_t clock, reduced_clock;
a16af721 6434 bool ok, has_reduced_clock = false;
e9fd1c02 6435 bool is_lvds = false, is_dsi = false;
5eddb70b 6436 struct intel_encoder *encoder;
d4906093 6437 const intel_limit_t *limit;
79e53945 6438
d0737e1d
ACO
6439 for_each_intel_encoder(dev, encoder) {
6440 if (encoder->new_crtc != crtc)
6441 continue;
6442
5eddb70b 6443 switch (encoder->type) {
79e53945
JB
6444 case INTEL_OUTPUT_LVDS:
6445 is_lvds = true;
6446 break;
e9fd1c02
JN
6447 case INTEL_OUTPUT_DSI:
6448 is_dsi = true;
6449 break;
6847d71b
PZ
6450 default:
6451 break;
79e53945 6452 }
43565a06 6453
c751ce4f 6454 num_connectors++;
79e53945
JB
6455 }
6456
f2335330 6457 if (is_dsi)
5b18e57c 6458 return 0;
f2335330 6459
190f68c5 6460 if (!crtc_state->clock_set) {
409ee761 6461 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6462
e9fd1c02
JN
6463 /*
6464 * Returns a set of divisors for the desired target clock with
6465 * the given refclk, or FALSE. The returned values represent
6466 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6467 * 2) / p1 / p2.
6468 */
409ee761 6469 limit = intel_limit(crtc, refclk);
c7653199 6470 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6471 crtc_state->port_clock,
e9fd1c02 6472 refclk, NULL, &clock);
f2335330 6473 if (!ok) {
e9fd1c02
JN
6474 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6475 return -EINVAL;
6476 }
79e53945 6477
f2335330
JN
6478 if (is_lvds && dev_priv->lvds_downclock_avail) {
6479 /*
6480 * Ensure we match the reduced clock's P to the target
6481 * clock. If the clocks don't match, we can't switch
6482 * the display clock by using the FP0/FP1. In such case
6483 * we will disable the LVDS downclock feature.
6484 */
6485 has_reduced_clock =
c7653199 6486 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6487 dev_priv->lvds_downclock,
6488 refclk, &clock,
6489 &reduced_clock);
6490 }
6491 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6492 crtc_state->dpll.n = clock.n;
6493 crtc_state->dpll.m1 = clock.m1;
6494 crtc_state->dpll.m2 = clock.m2;
6495 crtc_state->dpll.p1 = clock.p1;
6496 crtc_state->dpll.p2 = clock.p2;
f47709a9 6497 }
7026d4ac 6498
e9fd1c02 6499 if (IS_GEN2(dev)) {
190f68c5 6500 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6501 has_reduced_clock ? &reduced_clock : NULL,
6502 num_connectors);
9d556c99 6503 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6504 chv_update_pll(crtc, crtc_state);
e9fd1c02 6505 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6506 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6507 } else {
190f68c5 6508 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6509 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6510 num_connectors);
e9fd1c02 6511 }
79e53945 6512
c8f7a0db 6513 return 0;
f564048e
EA
6514}
6515
2fa2fe9a 6516static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6517 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6518{
6519 struct drm_device *dev = crtc->base.dev;
6520 struct drm_i915_private *dev_priv = dev->dev_private;
6521 uint32_t tmp;
6522
dc9e7dec
VS
6523 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6524 return;
6525
2fa2fe9a 6526 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6527 if (!(tmp & PFIT_ENABLE))
6528 return;
2fa2fe9a 6529
06922821 6530 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6531 if (INTEL_INFO(dev)->gen < 4) {
6532 if (crtc->pipe != PIPE_B)
6533 return;
2fa2fe9a
DV
6534 } else {
6535 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6536 return;
6537 }
6538
06922821 6539 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6540 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6541 if (INTEL_INFO(dev)->gen < 5)
6542 pipe_config->gmch_pfit.lvds_border_bits =
6543 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6544}
6545
acbec814 6546static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6547 struct intel_crtc_state *pipe_config)
acbec814
JB
6548{
6549 struct drm_device *dev = crtc->base.dev;
6550 struct drm_i915_private *dev_priv = dev->dev_private;
6551 int pipe = pipe_config->cpu_transcoder;
6552 intel_clock_t clock;
6553 u32 mdiv;
662c6ecb 6554 int refclk = 100000;
acbec814 6555
f573de5a
SK
6556 /* In case of MIPI DPLL will not even be used */
6557 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6558 return;
6559
acbec814 6560 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6561 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6562 mutex_unlock(&dev_priv->dpio_lock);
6563
6564 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6565 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6566 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6567 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6568 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6569
f646628b 6570 vlv_clock(refclk, &clock);
acbec814 6571
f646628b
VS
6572 /* clock.dot is the fast clock */
6573 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6574}
6575
5724dbd1
DL
6576static void
6577i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6578 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6579{
6580 struct drm_device *dev = crtc->base.dev;
6581 struct drm_i915_private *dev_priv = dev->dev_private;
6582 u32 val, base, offset;
6583 int pipe = crtc->pipe, plane = crtc->plane;
6584 int fourcc, pixel_format;
6585 int aligned_height;
b113d5ee 6586 struct drm_framebuffer *fb;
1ad292b5 6587
b113d5ee
DL
6588 fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6589 if (!fb) {
1ad292b5
JB
6590 DRM_DEBUG_KMS("failed to alloc fb\n");
6591 return;
6592 }
6593
6594 val = I915_READ(DSPCNTR(plane));
6595
6596 if (INTEL_INFO(dev)->gen >= 4)
6597 if (val & DISPPLANE_TILED)
49af449b 6598 plane_config->tiling = I915_TILING_X;
1ad292b5
JB
6599
6600 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6601 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6602 fb->pixel_format = fourcc;
6603 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6604
6605 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6606 if (plane_config->tiling)
1ad292b5
JB
6607 offset = I915_READ(DSPTILEOFF(plane));
6608 else
6609 offset = I915_READ(DSPLINOFF(plane));
6610 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6611 } else {
6612 base = I915_READ(DSPADDR(plane));
6613 }
6614 plane_config->base = base;
6615
6616 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6617 fb->width = ((val >> 16) & 0xfff) + 1;
6618 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6619
6620 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6621 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6622
b113d5ee 6623 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 6624 plane_config->tiling);
1ad292b5 6625
b113d5ee 6626 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
1ad292b5 6627
2844a921
DL
6628 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6629 pipe_name(pipe), plane, fb->width, fb->height,
6630 fb->bits_per_pixel, base, fb->pitches[0],
6631 plane_config->size);
1ad292b5 6632
b113d5ee 6633 crtc->base.primary->fb = fb;
1ad292b5
JB
6634}
6635
70b23a98 6636static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6637 struct intel_crtc_state *pipe_config)
70b23a98
VS
6638{
6639 struct drm_device *dev = crtc->base.dev;
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641 int pipe = pipe_config->cpu_transcoder;
6642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6643 intel_clock_t clock;
6644 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6645 int refclk = 100000;
6646
6647 mutex_lock(&dev_priv->dpio_lock);
6648 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6649 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6650 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6651 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6652 mutex_unlock(&dev_priv->dpio_lock);
6653
6654 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6655 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6656 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6657 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6658 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6659
6660 chv_clock(refclk, &clock);
6661
6662 /* clock.dot is the fast clock */
6663 pipe_config->port_clock = clock.dot / 5;
6664}
6665
0e8ffe1b 6666static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6667 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6668{
6669 struct drm_device *dev = crtc->base.dev;
6670 struct drm_i915_private *dev_priv = dev->dev_private;
6671 uint32_t tmp;
6672
f458ebbc
DV
6673 if (!intel_display_power_is_enabled(dev_priv,
6674 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6675 return false;
6676
e143a21c 6677 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6678 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6679
0e8ffe1b
DV
6680 tmp = I915_READ(PIPECONF(crtc->pipe));
6681 if (!(tmp & PIPECONF_ENABLE))
6682 return false;
6683
42571aef
VS
6684 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6685 switch (tmp & PIPECONF_BPC_MASK) {
6686 case PIPECONF_6BPC:
6687 pipe_config->pipe_bpp = 18;
6688 break;
6689 case PIPECONF_8BPC:
6690 pipe_config->pipe_bpp = 24;
6691 break;
6692 case PIPECONF_10BPC:
6693 pipe_config->pipe_bpp = 30;
6694 break;
6695 default:
6696 break;
6697 }
6698 }
6699
b5a9fa09
DV
6700 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6701 pipe_config->limited_color_range = true;
6702
282740f7
VS
6703 if (INTEL_INFO(dev)->gen < 4)
6704 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6705
1bd1bd80
DV
6706 intel_get_pipe_timings(crtc, pipe_config);
6707
2fa2fe9a
DV
6708 i9xx_get_pfit_config(crtc, pipe_config);
6709
6c49f241
DV
6710 if (INTEL_INFO(dev)->gen >= 4) {
6711 tmp = I915_READ(DPLL_MD(crtc->pipe));
6712 pipe_config->pixel_multiplier =
6713 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6714 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6715 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6716 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6717 tmp = I915_READ(DPLL(crtc->pipe));
6718 pipe_config->pixel_multiplier =
6719 ((tmp & SDVO_MULTIPLIER_MASK)
6720 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6721 } else {
6722 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6723 * port and will be fixed up in the encoder->get_config
6724 * function. */
6725 pipe_config->pixel_multiplier = 1;
6726 }
8bcc2795
DV
6727 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6728 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6729 /*
6730 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6731 * on 830. Filter it out here so that we don't
6732 * report errors due to that.
6733 */
6734 if (IS_I830(dev))
6735 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6736
8bcc2795
DV
6737 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6738 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6739 } else {
6740 /* Mask out read-only status bits. */
6741 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6742 DPLL_PORTC_READY_MASK |
6743 DPLL_PORTB_READY_MASK);
8bcc2795 6744 }
6c49f241 6745
70b23a98
VS
6746 if (IS_CHERRYVIEW(dev))
6747 chv_crtc_clock_get(crtc, pipe_config);
6748 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6749 vlv_crtc_clock_get(crtc, pipe_config);
6750 else
6751 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6752
0e8ffe1b
DV
6753 return true;
6754}
6755
dde86e2d 6756static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6757{
6758 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6759 struct intel_encoder *encoder;
74cfd7ac 6760 u32 val, final;
13d83a67 6761 bool has_lvds = false;
199e5d79 6762 bool has_cpu_edp = false;
199e5d79 6763 bool has_panel = false;
99eb6a01
KP
6764 bool has_ck505 = false;
6765 bool can_ssc = false;
13d83a67
JB
6766
6767 /* We need to take the global config into account */
b2784e15 6768 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6769 switch (encoder->type) {
6770 case INTEL_OUTPUT_LVDS:
6771 has_panel = true;
6772 has_lvds = true;
6773 break;
6774 case INTEL_OUTPUT_EDP:
6775 has_panel = true;
2de6905f 6776 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6777 has_cpu_edp = true;
6778 break;
6847d71b
PZ
6779 default:
6780 break;
13d83a67
JB
6781 }
6782 }
6783
99eb6a01 6784 if (HAS_PCH_IBX(dev)) {
41aa3448 6785 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6786 can_ssc = has_ck505;
6787 } else {
6788 has_ck505 = false;
6789 can_ssc = true;
6790 }
6791
2de6905f
ID
6792 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6793 has_panel, has_lvds, has_ck505);
13d83a67
JB
6794
6795 /* Ironlake: try to setup display ref clock before DPLL
6796 * enabling. This is only under driver's control after
6797 * PCH B stepping, previous chipset stepping should be
6798 * ignoring this setting.
6799 */
74cfd7ac
CW
6800 val = I915_READ(PCH_DREF_CONTROL);
6801
6802 /* As we must carefully and slowly disable/enable each source in turn,
6803 * compute the final state we want first and check if we need to
6804 * make any changes at all.
6805 */
6806 final = val;
6807 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6808 if (has_ck505)
6809 final |= DREF_NONSPREAD_CK505_ENABLE;
6810 else
6811 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6812
6813 final &= ~DREF_SSC_SOURCE_MASK;
6814 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6815 final &= ~DREF_SSC1_ENABLE;
6816
6817 if (has_panel) {
6818 final |= DREF_SSC_SOURCE_ENABLE;
6819
6820 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6821 final |= DREF_SSC1_ENABLE;
6822
6823 if (has_cpu_edp) {
6824 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6825 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6826 else
6827 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6828 } else
6829 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6830 } else {
6831 final |= DREF_SSC_SOURCE_DISABLE;
6832 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6833 }
6834
6835 if (final == val)
6836 return;
6837
13d83a67 6838 /* Always enable nonspread source */
74cfd7ac 6839 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6840
99eb6a01 6841 if (has_ck505)
74cfd7ac 6842 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6843 else
74cfd7ac 6844 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6845
199e5d79 6846 if (has_panel) {
74cfd7ac
CW
6847 val &= ~DREF_SSC_SOURCE_MASK;
6848 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6849
199e5d79 6850 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6851 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6852 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6853 val |= DREF_SSC1_ENABLE;
e77166b5 6854 } else
74cfd7ac 6855 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6856
6857 /* Get SSC going before enabling the outputs */
74cfd7ac 6858 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6859 POSTING_READ(PCH_DREF_CONTROL);
6860 udelay(200);
6861
74cfd7ac 6862 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6863
6864 /* Enable CPU source on CPU attached eDP */
199e5d79 6865 if (has_cpu_edp) {
99eb6a01 6866 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6867 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6868 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6869 } else
74cfd7ac 6870 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6871 } else
74cfd7ac 6872 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6873
74cfd7ac 6874 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6875 POSTING_READ(PCH_DREF_CONTROL);
6876 udelay(200);
6877 } else {
6878 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6879
74cfd7ac 6880 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6881
6882 /* Turn off CPU output */
74cfd7ac 6883 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6884
74cfd7ac 6885 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6886 POSTING_READ(PCH_DREF_CONTROL);
6887 udelay(200);
6888
6889 /* Turn off the SSC source */
74cfd7ac
CW
6890 val &= ~DREF_SSC_SOURCE_MASK;
6891 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6892
6893 /* Turn off SSC1 */
74cfd7ac 6894 val &= ~DREF_SSC1_ENABLE;
199e5d79 6895
74cfd7ac 6896 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6897 POSTING_READ(PCH_DREF_CONTROL);
6898 udelay(200);
6899 }
74cfd7ac
CW
6900
6901 BUG_ON(val != final);
13d83a67
JB
6902}
6903
f31f2d55 6904static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6905{
f31f2d55 6906 uint32_t tmp;
dde86e2d 6907
0ff066a9
PZ
6908 tmp = I915_READ(SOUTH_CHICKEN2);
6909 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6910 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6911
0ff066a9
PZ
6912 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6913 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6914 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6915
0ff066a9
PZ
6916 tmp = I915_READ(SOUTH_CHICKEN2);
6917 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6918 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6919
0ff066a9
PZ
6920 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6921 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6922 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6923}
6924
6925/* WaMPhyProgramming:hsw */
6926static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6927{
6928 uint32_t tmp;
dde86e2d
PZ
6929
6930 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6931 tmp &= ~(0xFF << 24);
6932 tmp |= (0x12 << 24);
6933 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6934
dde86e2d
PZ
6935 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6936 tmp |= (1 << 11);
6937 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6938
6939 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6940 tmp |= (1 << 11);
6941 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6942
dde86e2d
PZ
6943 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6944 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6945 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6946
6947 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6948 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6949 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6950
0ff066a9
PZ
6951 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6952 tmp &= ~(7 << 13);
6953 tmp |= (5 << 13);
6954 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6955
0ff066a9
PZ
6956 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6957 tmp &= ~(7 << 13);
6958 tmp |= (5 << 13);
6959 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6960
6961 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6962 tmp &= ~0xFF;
6963 tmp |= 0x1C;
6964 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6965
6966 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6967 tmp &= ~0xFF;
6968 tmp |= 0x1C;
6969 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6970
6971 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6972 tmp &= ~(0xFF << 16);
6973 tmp |= (0x1C << 16);
6974 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6975
6976 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6977 tmp &= ~(0xFF << 16);
6978 tmp |= (0x1C << 16);
6979 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6980
0ff066a9
PZ
6981 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6982 tmp |= (1 << 27);
6983 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6984
0ff066a9
PZ
6985 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6986 tmp |= (1 << 27);
6987 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6988
0ff066a9
PZ
6989 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6990 tmp &= ~(0xF << 28);
6991 tmp |= (4 << 28);
6992 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6993
0ff066a9
PZ
6994 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6995 tmp &= ~(0xF << 28);
6996 tmp |= (4 << 28);
6997 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6998}
6999
2fa86a1f
PZ
7000/* Implements 3 different sequences from BSpec chapter "Display iCLK
7001 * Programming" based on the parameters passed:
7002 * - Sequence to enable CLKOUT_DP
7003 * - Sequence to enable CLKOUT_DP without spread
7004 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7005 */
7006static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7007 bool with_fdi)
f31f2d55
PZ
7008{
7009 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7010 uint32_t reg, tmp;
7011
7012 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7013 with_spread = true;
7014 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7015 with_fdi, "LP PCH doesn't have FDI\n"))
7016 with_fdi = false;
f31f2d55
PZ
7017
7018 mutex_lock(&dev_priv->dpio_lock);
7019
7020 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7021 tmp &= ~SBI_SSCCTL_DISABLE;
7022 tmp |= SBI_SSCCTL_PATHALT;
7023 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7024
7025 udelay(24);
7026
2fa86a1f
PZ
7027 if (with_spread) {
7028 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7029 tmp &= ~SBI_SSCCTL_PATHALT;
7030 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7031
2fa86a1f
PZ
7032 if (with_fdi) {
7033 lpt_reset_fdi_mphy(dev_priv);
7034 lpt_program_fdi_mphy(dev_priv);
7035 }
7036 }
dde86e2d 7037
2fa86a1f
PZ
7038 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7039 SBI_GEN0 : SBI_DBUFF0;
7040 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7041 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7042 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7043
7044 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7045}
7046
47701c3b
PZ
7047/* Sequence to disable CLKOUT_DP */
7048static void lpt_disable_clkout_dp(struct drm_device *dev)
7049{
7050 struct drm_i915_private *dev_priv = dev->dev_private;
7051 uint32_t reg, tmp;
7052
7053 mutex_lock(&dev_priv->dpio_lock);
7054
7055 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7056 SBI_GEN0 : SBI_DBUFF0;
7057 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7058 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7059 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7060
7061 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7062 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7063 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7064 tmp |= SBI_SSCCTL_PATHALT;
7065 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7066 udelay(32);
7067 }
7068 tmp |= SBI_SSCCTL_DISABLE;
7069 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070 }
7071
7072 mutex_unlock(&dev_priv->dpio_lock);
7073}
7074
bf8fa3d3
PZ
7075static void lpt_init_pch_refclk(struct drm_device *dev)
7076{
bf8fa3d3
PZ
7077 struct intel_encoder *encoder;
7078 bool has_vga = false;
7079
b2784e15 7080 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7081 switch (encoder->type) {
7082 case INTEL_OUTPUT_ANALOG:
7083 has_vga = true;
7084 break;
6847d71b
PZ
7085 default:
7086 break;
bf8fa3d3
PZ
7087 }
7088 }
7089
47701c3b
PZ
7090 if (has_vga)
7091 lpt_enable_clkout_dp(dev, true, true);
7092 else
7093 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7094}
7095
dde86e2d
PZ
7096/*
7097 * Initialize reference clocks when the driver loads
7098 */
7099void intel_init_pch_refclk(struct drm_device *dev)
7100{
7101 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7102 ironlake_init_pch_refclk(dev);
7103 else if (HAS_PCH_LPT(dev))
7104 lpt_init_pch_refclk(dev);
7105}
7106
d9d444cb
JB
7107static int ironlake_get_refclk(struct drm_crtc *crtc)
7108{
7109 struct drm_device *dev = crtc->dev;
7110 struct drm_i915_private *dev_priv = dev->dev_private;
7111 struct intel_encoder *encoder;
d9d444cb
JB
7112 int num_connectors = 0;
7113 bool is_lvds = false;
7114
d0737e1d
ACO
7115 for_each_intel_encoder(dev, encoder) {
7116 if (encoder->new_crtc != to_intel_crtc(crtc))
7117 continue;
7118
d9d444cb
JB
7119 switch (encoder->type) {
7120 case INTEL_OUTPUT_LVDS:
7121 is_lvds = true;
7122 break;
6847d71b
PZ
7123 default:
7124 break;
d9d444cb
JB
7125 }
7126 num_connectors++;
7127 }
7128
7129 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7130 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7131 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7132 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7133 }
7134
7135 return 120000;
7136}
7137
6ff93609 7138static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7139{
c8203565 7140 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7142 int pipe = intel_crtc->pipe;
c8203565
PZ
7143 uint32_t val;
7144
78114071 7145 val = 0;
c8203565 7146
6e3c9717 7147 switch (intel_crtc->config->pipe_bpp) {
c8203565 7148 case 18:
dfd07d72 7149 val |= PIPECONF_6BPC;
c8203565
PZ
7150 break;
7151 case 24:
dfd07d72 7152 val |= PIPECONF_8BPC;
c8203565
PZ
7153 break;
7154 case 30:
dfd07d72 7155 val |= PIPECONF_10BPC;
c8203565
PZ
7156 break;
7157 case 36:
dfd07d72 7158 val |= PIPECONF_12BPC;
c8203565
PZ
7159 break;
7160 default:
cc769b62
PZ
7161 /* Case prevented by intel_choose_pipe_bpp_dither. */
7162 BUG();
c8203565
PZ
7163 }
7164
6e3c9717 7165 if (intel_crtc->config->dither)
c8203565
PZ
7166 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7167
6e3c9717 7168 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7169 val |= PIPECONF_INTERLACED_ILK;
7170 else
7171 val |= PIPECONF_PROGRESSIVE;
7172
6e3c9717 7173 if (intel_crtc->config->limited_color_range)
3685a8f3 7174 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7175
c8203565
PZ
7176 I915_WRITE(PIPECONF(pipe), val);
7177 POSTING_READ(PIPECONF(pipe));
7178}
7179
86d3efce
VS
7180/*
7181 * Set up the pipe CSC unit.
7182 *
7183 * Currently only full range RGB to limited range RGB conversion
7184 * is supported, but eventually this should handle various
7185 * RGB<->YCbCr scenarios as well.
7186 */
50f3b016 7187static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7188{
7189 struct drm_device *dev = crtc->dev;
7190 struct drm_i915_private *dev_priv = dev->dev_private;
7191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7192 int pipe = intel_crtc->pipe;
7193 uint16_t coeff = 0x7800; /* 1.0 */
7194
7195 /*
7196 * TODO: Check what kind of values actually come out of the pipe
7197 * with these coeff/postoff values and adjust to get the best
7198 * accuracy. Perhaps we even need to take the bpc value into
7199 * consideration.
7200 */
7201
6e3c9717 7202 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7203 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7204
7205 /*
7206 * GY/GU and RY/RU should be the other way around according
7207 * to BSpec, but reality doesn't agree. Just set them up in
7208 * a way that results in the correct picture.
7209 */
7210 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7211 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7212
7213 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7214 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7215
7216 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7217 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7218
7219 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7220 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7221 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7222
7223 if (INTEL_INFO(dev)->gen > 6) {
7224 uint16_t postoff = 0;
7225
6e3c9717 7226 if (intel_crtc->config->limited_color_range)
32cf0cb0 7227 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7228
7229 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7230 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7231 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7232
7233 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7234 } else {
7235 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7236
6e3c9717 7237 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7238 mode |= CSC_BLACK_SCREEN_OFFSET;
7239
7240 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7241 }
7242}
7243
6ff93609 7244static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7245{
756f85cf
PZ
7246 struct drm_device *dev = crtc->dev;
7247 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7249 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7250 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7251 uint32_t val;
7252
3eff4faa 7253 val = 0;
ee2b0b38 7254
6e3c9717 7255 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7256 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7257
6e3c9717 7258 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7259 val |= PIPECONF_INTERLACED_ILK;
7260 else
7261 val |= PIPECONF_PROGRESSIVE;
7262
702e7a56
PZ
7263 I915_WRITE(PIPECONF(cpu_transcoder), val);
7264 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7265
7266 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7267 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7268
3cdf122c 7269 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7270 val = 0;
7271
6e3c9717 7272 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7273 case 18:
7274 val |= PIPEMISC_DITHER_6_BPC;
7275 break;
7276 case 24:
7277 val |= PIPEMISC_DITHER_8_BPC;
7278 break;
7279 case 30:
7280 val |= PIPEMISC_DITHER_10_BPC;
7281 break;
7282 case 36:
7283 val |= PIPEMISC_DITHER_12_BPC;
7284 break;
7285 default:
7286 /* Case prevented by pipe_config_set_bpp. */
7287 BUG();
7288 }
7289
6e3c9717 7290 if (intel_crtc->config->dither)
756f85cf
PZ
7291 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7292
7293 I915_WRITE(PIPEMISC(pipe), val);
7294 }
ee2b0b38
PZ
7295}
7296
6591c6e4 7297static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7298 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7299 intel_clock_t *clock,
7300 bool *has_reduced_clock,
7301 intel_clock_t *reduced_clock)
7302{
7303 struct drm_device *dev = crtc->dev;
7304 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7306 int refclk;
d4906093 7307 const intel_limit_t *limit;
a16af721 7308 bool ret, is_lvds = false;
79e53945 7309
d0737e1d 7310 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7311
d9d444cb 7312 refclk = ironlake_get_refclk(crtc);
79e53945 7313
d4906093
ML
7314 /*
7315 * Returns a set of divisors for the desired target clock with the given
7316 * refclk, or FALSE. The returned values represent the clock equation:
7317 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7318 */
409ee761 7319 limit = intel_limit(intel_crtc, refclk);
a919ff14 7320 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7321 crtc_state->port_clock,
ee9300bb 7322 refclk, NULL, clock);
6591c6e4
PZ
7323 if (!ret)
7324 return false;
cda4b7d3 7325
ddc9003c 7326 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7327 /*
7328 * Ensure we match the reduced clock's P to the target clock.
7329 * If the clocks don't match, we can't switch the display clock
7330 * by using the FP0/FP1. In such case we will disable the LVDS
7331 * downclock feature.
7332 */
ee9300bb 7333 *has_reduced_clock =
a919ff14 7334 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7335 dev_priv->lvds_downclock,
7336 refclk, clock,
7337 reduced_clock);
652c393a 7338 }
61e9653f 7339
6591c6e4
PZ
7340 return true;
7341}
7342
d4b1931c
PZ
7343int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7344{
7345 /*
7346 * Account for spread spectrum to avoid
7347 * oversubscribing the link. Max center spread
7348 * is 2.5%; use 5% for safety's sake.
7349 */
7350 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7351 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7352}
7353
7429e9d4 7354static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7355{
7429e9d4 7356 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7357}
7358
de13a2e3 7359static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7360 struct intel_crtc_state *crtc_state,
7429e9d4 7361 u32 *fp,
9a7c7890 7362 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7363{
de13a2e3 7364 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7365 struct drm_device *dev = crtc->dev;
7366 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7367 struct intel_encoder *intel_encoder;
7368 uint32_t dpll;
6cc5f341 7369 int factor, num_connectors = 0;
09ede541 7370 bool is_lvds = false, is_sdvo = false;
79e53945 7371
d0737e1d
ACO
7372 for_each_intel_encoder(dev, intel_encoder) {
7373 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7374 continue;
7375
de13a2e3 7376 switch (intel_encoder->type) {
79e53945
JB
7377 case INTEL_OUTPUT_LVDS:
7378 is_lvds = true;
7379 break;
7380 case INTEL_OUTPUT_SDVO:
7d57382e 7381 case INTEL_OUTPUT_HDMI:
79e53945 7382 is_sdvo = true;
79e53945 7383 break;
6847d71b
PZ
7384 default:
7385 break;
79e53945 7386 }
43565a06 7387
c751ce4f 7388 num_connectors++;
79e53945 7389 }
79e53945 7390
c1858123 7391 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7392 factor = 21;
7393 if (is_lvds) {
7394 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7395 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7396 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7397 factor = 25;
190f68c5 7398 } else if (crtc_state->sdvo_tv_clock)
8febb297 7399 factor = 20;
c1858123 7400
190f68c5 7401 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7402 *fp |= FP_CB_TUNE;
2c07245f 7403
9a7c7890
DV
7404 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7405 *fp2 |= FP_CB_TUNE;
7406
5eddb70b 7407 dpll = 0;
2c07245f 7408
a07d6787
EA
7409 if (is_lvds)
7410 dpll |= DPLLB_MODE_LVDS;
7411 else
7412 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7413
190f68c5 7414 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7415 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7416
7417 if (is_sdvo)
4a33e48d 7418 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7419 if (crtc_state->has_dp_encoder)
4a33e48d 7420 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7421
a07d6787 7422 /* compute bitmask from p1 value */
190f68c5 7423 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7424 /* also FPA1 */
190f68c5 7425 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7426
190f68c5 7427 switch (crtc_state->dpll.p2) {
a07d6787
EA
7428 case 5:
7429 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7430 break;
7431 case 7:
7432 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7433 break;
7434 case 10:
7435 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7436 break;
7437 case 14:
7438 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7439 break;
79e53945
JB
7440 }
7441
b4c09f3b 7442 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7443 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7444 else
7445 dpll |= PLL_REF_INPUT_DREFCLK;
7446
959e16d6 7447 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7448}
7449
190f68c5
ACO
7450static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7451 struct intel_crtc_state *crtc_state)
de13a2e3 7452{
c7653199 7453 struct drm_device *dev = crtc->base.dev;
de13a2e3 7454 intel_clock_t clock, reduced_clock;
cbbab5bd 7455 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7456 bool ok, has_reduced_clock = false;
8b47047b 7457 bool is_lvds = false;
e2b78267 7458 struct intel_shared_dpll *pll;
de13a2e3 7459
409ee761 7460 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7461
5dc5298b
PZ
7462 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7463 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7464
190f68c5 7465 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7466 &has_reduced_clock, &reduced_clock);
190f68c5 7467 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7468 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7469 return -EINVAL;
79e53945 7470 }
f47709a9 7471 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7472 if (!crtc_state->clock_set) {
7473 crtc_state->dpll.n = clock.n;
7474 crtc_state->dpll.m1 = clock.m1;
7475 crtc_state->dpll.m2 = clock.m2;
7476 crtc_state->dpll.p1 = clock.p1;
7477 crtc_state->dpll.p2 = clock.p2;
f47709a9 7478 }
79e53945 7479
5dc5298b 7480 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7481 if (crtc_state->has_pch_encoder) {
7482 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7483 if (has_reduced_clock)
7429e9d4 7484 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7485
190f68c5 7486 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7487 &fp, &reduced_clock,
7488 has_reduced_clock ? &fp2 : NULL);
7489
190f68c5
ACO
7490 crtc_state->dpll_hw_state.dpll = dpll;
7491 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7492 if (has_reduced_clock)
190f68c5 7493 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7494 else
190f68c5 7495 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7496
190f68c5 7497 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7498 if (pll == NULL) {
84f44ce7 7499 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7500 pipe_name(crtc->pipe));
4b645f14
JB
7501 return -EINVAL;
7502 }
3fb37703 7503 }
79e53945 7504
d330a953 7505 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7506 crtc->lowfreq_avail = true;
bcd644e0 7507 else
c7653199 7508 crtc->lowfreq_avail = false;
e2b78267 7509
c8f7a0db 7510 return 0;
79e53945
JB
7511}
7512
eb14cb74
VS
7513static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7514 struct intel_link_m_n *m_n)
7515{
7516 struct drm_device *dev = crtc->base.dev;
7517 struct drm_i915_private *dev_priv = dev->dev_private;
7518 enum pipe pipe = crtc->pipe;
7519
7520 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7521 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7522 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7523 & ~TU_SIZE_MASK;
7524 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7525 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7526 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7527}
7528
7529static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7530 enum transcoder transcoder,
b95af8be
VK
7531 struct intel_link_m_n *m_n,
7532 struct intel_link_m_n *m2_n2)
72419203
DV
7533{
7534 struct drm_device *dev = crtc->base.dev;
7535 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7536 enum pipe pipe = crtc->pipe;
72419203 7537
eb14cb74
VS
7538 if (INTEL_INFO(dev)->gen >= 5) {
7539 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7540 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7541 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7542 & ~TU_SIZE_MASK;
7543 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7544 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7545 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7546 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7547 * gen < 8) and if DRRS is supported (to make sure the
7548 * registers are not unnecessarily read).
7549 */
7550 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7551 crtc->config->has_drrs) {
b95af8be
VK
7552 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7553 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7554 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7555 & ~TU_SIZE_MASK;
7556 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7557 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7558 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7559 }
eb14cb74
VS
7560 } else {
7561 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7562 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7563 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7564 & ~TU_SIZE_MASK;
7565 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7566 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7567 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7568 }
7569}
7570
7571void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7572 struct intel_crtc_state *pipe_config)
eb14cb74 7573{
681a8504 7574 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7575 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7576 else
7577 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7578 &pipe_config->dp_m_n,
7579 &pipe_config->dp_m2_n2);
eb14cb74 7580}
72419203 7581
eb14cb74 7582static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7583 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7584{
7585 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7586 &pipe_config->fdi_m_n, NULL);
72419203
DV
7587}
7588
bd2e244f 7589static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7590 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7591{
7592 struct drm_device *dev = crtc->base.dev;
7593 struct drm_i915_private *dev_priv = dev->dev_private;
7594 uint32_t tmp;
7595
7596 tmp = I915_READ(PS_CTL(crtc->pipe));
7597
7598 if (tmp & PS_ENABLE) {
7599 pipe_config->pch_pfit.enabled = true;
7600 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7601 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7602 }
7603}
7604
5724dbd1
DL
7605static void
7606skylake_get_initial_plane_config(struct intel_crtc *crtc,
7607 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7608{
7609 struct drm_device *dev = crtc->base.dev;
7610 struct drm_i915_private *dev_priv = dev->dev_private;
7611 u32 val, base, offset, stride_mult;
7612 int pipe = crtc->pipe;
7613 int fourcc, pixel_format;
7614 int aligned_height;
7615 struct drm_framebuffer *fb;
7616
7617 fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7618 if (!fb) {
7619 DRM_DEBUG_KMS("failed to alloc fb\n");
7620 return;
7621 }
7622
7623 val = I915_READ(PLANE_CTL(pipe, 0));
7624 if (val & PLANE_CTL_TILED_MASK)
7625 plane_config->tiling = I915_TILING_X;
7626
7627 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7628 fourcc = skl_format_to_fourcc(pixel_format,
7629 val & PLANE_CTL_ORDER_RGBX,
7630 val & PLANE_CTL_ALPHA_MASK);
7631 fb->pixel_format = fourcc;
7632 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7633
7634 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7635 plane_config->base = base;
7636
7637 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7638
7639 val = I915_READ(PLANE_SIZE(pipe, 0));
7640 fb->height = ((val >> 16) & 0xfff) + 1;
7641 fb->width = ((val >> 0) & 0x1fff) + 1;
7642
7643 val = I915_READ(PLANE_STRIDE(pipe, 0));
7644 switch (plane_config->tiling) {
7645 case I915_TILING_NONE:
7646 stride_mult = 64;
7647 break;
7648 case I915_TILING_X:
7649 stride_mult = 512;
7650 break;
7651 default:
7652 MISSING_CASE(plane_config->tiling);
7653 goto error;
7654 }
7655 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7656
7657 aligned_height = intel_fb_align_height(dev, fb->height,
7658 plane_config->tiling);
7659
7660 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7661
7662 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7663 pipe_name(pipe), fb->width, fb->height,
7664 fb->bits_per_pixel, base, fb->pitches[0],
7665 plane_config->size);
7666
7667 crtc->base.primary->fb = fb;
7668 return;
7669
7670error:
7671 kfree(fb);
7672}
7673
2fa2fe9a 7674static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7675 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7676{
7677 struct drm_device *dev = crtc->base.dev;
7678 struct drm_i915_private *dev_priv = dev->dev_private;
7679 uint32_t tmp;
7680
7681 tmp = I915_READ(PF_CTL(crtc->pipe));
7682
7683 if (tmp & PF_ENABLE) {
fd4daa9c 7684 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7685 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7686 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7687
7688 /* We currently do not free assignements of panel fitters on
7689 * ivb/hsw (since we don't use the higher upscaling modes which
7690 * differentiates them) so just WARN about this case for now. */
7691 if (IS_GEN7(dev)) {
7692 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7693 PF_PIPE_SEL_IVB(crtc->pipe));
7694 }
2fa2fe9a 7695 }
79e53945
JB
7696}
7697
5724dbd1
DL
7698static void
7699ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7700 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
7701{
7702 struct drm_device *dev = crtc->base.dev;
7703 struct drm_i915_private *dev_priv = dev->dev_private;
7704 u32 val, base, offset;
aeee5a49 7705 int pipe = crtc->pipe;
4c6baa59
JB
7706 int fourcc, pixel_format;
7707 int aligned_height;
b113d5ee 7708 struct drm_framebuffer *fb;
4c6baa59 7709
b113d5ee
DL
7710 fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7711 if (!fb) {
4c6baa59
JB
7712 DRM_DEBUG_KMS("failed to alloc fb\n");
7713 return;
7714 }
7715
aeee5a49 7716 val = I915_READ(DSPCNTR(pipe));
4c6baa59
JB
7717
7718 if (INTEL_INFO(dev)->gen >= 4)
7719 if (val & DISPPLANE_TILED)
49af449b 7720 plane_config->tiling = I915_TILING_X;
4c6baa59
JB
7721
7722 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7723 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7724 fb->pixel_format = fourcc;
7725 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 7726
aeee5a49 7727 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 7728 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 7729 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 7730 } else {
49af449b 7731 if (plane_config->tiling)
aeee5a49 7732 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 7733 else
aeee5a49 7734 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
7735 }
7736 plane_config->base = base;
7737
7738 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7739 fb->width = ((val >> 16) & 0xfff) + 1;
7740 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7741
7742 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7743 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7744
b113d5ee 7745 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 7746 plane_config->tiling);
4c6baa59 7747
b113d5ee 7748 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
4c6baa59 7749
2844a921
DL
7750 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7751 pipe_name(pipe), fb->width, fb->height,
7752 fb->bits_per_pixel, base, fb->pitches[0],
7753 plane_config->size);
b113d5ee
DL
7754
7755 crtc->base.primary->fb = fb;
4c6baa59
JB
7756}
7757
0e8ffe1b 7758static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7759 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7760{
7761 struct drm_device *dev = crtc->base.dev;
7762 struct drm_i915_private *dev_priv = dev->dev_private;
7763 uint32_t tmp;
7764
f458ebbc
DV
7765 if (!intel_display_power_is_enabled(dev_priv,
7766 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7767 return false;
7768
e143a21c 7769 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7770 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7771
0e8ffe1b
DV
7772 tmp = I915_READ(PIPECONF(crtc->pipe));
7773 if (!(tmp & PIPECONF_ENABLE))
7774 return false;
7775
42571aef
VS
7776 switch (tmp & PIPECONF_BPC_MASK) {
7777 case PIPECONF_6BPC:
7778 pipe_config->pipe_bpp = 18;
7779 break;
7780 case PIPECONF_8BPC:
7781 pipe_config->pipe_bpp = 24;
7782 break;
7783 case PIPECONF_10BPC:
7784 pipe_config->pipe_bpp = 30;
7785 break;
7786 case PIPECONF_12BPC:
7787 pipe_config->pipe_bpp = 36;
7788 break;
7789 default:
7790 break;
7791 }
7792
b5a9fa09
DV
7793 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7794 pipe_config->limited_color_range = true;
7795
ab9412ba 7796 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7797 struct intel_shared_dpll *pll;
7798
88adfff1
DV
7799 pipe_config->has_pch_encoder = true;
7800
627eb5a3
DV
7801 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7802 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7803 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7804
7805 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7806
c0d43d62 7807 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7808 pipe_config->shared_dpll =
7809 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7810 } else {
7811 tmp = I915_READ(PCH_DPLL_SEL);
7812 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7813 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7814 else
7815 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7816 }
66e985c0
DV
7817
7818 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7819
7820 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7821 &pipe_config->dpll_hw_state));
c93f54cf
DV
7822
7823 tmp = pipe_config->dpll_hw_state.dpll;
7824 pipe_config->pixel_multiplier =
7825 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7826 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7827
7828 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7829 } else {
7830 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7831 }
7832
1bd1bd80
DV
7833 intel_get_pipe_timings(crtc, pipe_config);
7834
2fa2fe9a
DV
7835 ironlake_get_pfit_config(crtc, pipe_config);
7836
0e8ffe1b
DV
7837 return true;
7838}
7839
be256dc7
PZ
7840static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7841{
7842 struct drm_device *dev = dev_priv->dev;
be256dc7 7843 struct intel_crtc *crtc;
be256dc7 7844
d3fcc808 7845 for_each_intel_crtc(dev, crtc)
e2c719b7 7846 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7847 pipe_name(crtc->pipe));
7848
e2c719b7
RC
7849 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7850 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7851 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7852 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7853 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7854 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7855 "CPU PWM1 enabled\n");
c5107b87 7856 if (IS_HASWELL(dev))
e2c719b7 7857 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7858 "CPU PWM2 enabled\n");
e2c719b7 7859 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7860 "PCH PWM1 enabled\n");
e2c719b7 7861 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7862 "Utility pin enabled\n");
e2c719b7 7863 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7864
9926ada1
PZ
7865 /*
7866 * In theory we can still leave IRQs enabled, as long as only the HPD
7867 * interrupts remain enabled. We used to check for that, but since it's
7868 * gen-specific and since we only disable LCPLL after we fully disable
7869 * the interrupts, the check below should be enough.
7870 */
e2c719b7 7871 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7872}
7873
9ccd5aeb
PZ
7874static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7875{
7876 struct drm_device *dev = dev_priv->dev;
7877
7878 if (IS_HASWELL(dev))
7879 return I915_READ(D_COMP_HSW);
7880 else
7881 return I915_READ(D_COMP_BDW);
7882}
7883
3c4c9b81
PZ
7884static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7885{
7886 struct drm_device *dev = dev_priv->dev;
7887
7888 if (IS_HASWELL(dev)) {
7889 mutex_lock(&dev_priv->rps.hw_lock);
7890 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7891 val))
f475dadf 7892 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7893 mutex_unlock(&dev_priv->rps.hw_lock);
7894 } else {
9ccd5aeb
PZ
7895 I915_WRITE(D_COMP_BDW, val);
7896 POSTING_READ(D_COMP_BDW);
3c4c9b81 7897 }
be256dc7
PZ
7898}
7899
7900/*
7901 * This function implements pieces of two sequences from BSpec:
7902 * - Sequence for display software to disable LCPLL
7903 * - Sequence for display software to allow package C8+
7904 * The steps implemented here are just the steps that actually touch the LCPLL
7905 * register. Callers should take care of disabling all the display engine
7906 * functions, doing the mode unset, fixing interrupts, etc.
7907 */
6ff58d53
PZ
7908static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7909 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7910{
7911 uint32_t val;
7912
7913 assert_can_disable_lcpll(dev_priv);
7914
7915 val = I915_READ(LCPLL_CTL);
7916
7917 if (switch_to_fclk) {
7918 val |= LCPLL_CD_SOURCE_FCLK;
7919 I915_WRITE(LCPLL_CTL, val);
7920
7921 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7922 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7923 DRM_ERROR("Switching to FCLK failed\n");
7924
7925 val = I915_READ(LCPLL_CTL);
7926 }
7927
7928 val |= LCPLL_PLL_DISABLE;
7929 I915_WRITE(LCPLL_CTL, val);
7930 POSTING_READ(LCPLL_CTL);
7931
7932 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7933 DRM_ERROR("LCPLL still locked\n");
7934
9ccd5aeb 7935 val = hsw_read_dcomp(dev_priv);
be256dc7 7936 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7937 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7938 ndelay(100);
7939
9ccd5aeb
PZ
7940 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7941 1))
be256dc7
PZ
7942 DRM_ERROR("D_COMP RCOMP still in progress\n");
7943
7944 if (allow_power_down) {
7945 val = I915_READ(LCPLL_CTL);
7946 val |= LCPLL_POWER_DOWN_ALLOW;
7947 I915_WRITE(LCPLL_CTL, val);
7948 POSTING_READ(LCPLL_CTL);
7949 }
7950}
7951
7952/*
7953 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7954 * source.
7955 */
6ff58d53 7956static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7957{
7958 uint32_t val;
7959
7960 val = I915_READ(LCPLL_CTL);
7961
7962 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7963 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7964 return;
7965
a8a8bd54
PZ
7966 /*
7967 * Make sure we're not on PC8 state before disabling PC8, otherwise
7968 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 7969 */
59bad947 7970 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 7971
be256dc7
PZ
7972 if (val & LCPLL_POWER_DOWN_ALLOW) {
7973 val &= ~LCPLL_POWER_DOWN_ALLOW;
7974 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7975 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7976 }
7977
9ccd5aeb 7978 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7979 val |= D_COMP_COMP_FORCE;
7980 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7981 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7982
7983 val = I915_READ(LCPLL_CTL);
7984 val &= ~LCPLL_PLL_DISABLE;
7985 I915_WRITE(LCPLL_CTL, val);
7986
7987 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7988 DRM_ERROR("LCPLL not locked yet\n");
7989
7990 if (val & LCPLL_CD_SOURCE_FCLK) {
7991 val = I915_READ(LCPLL_CTL);
7992 val &= ~LCPLL_CD_SOURCE_FCLK;
7993 I915_WRITE(LCPLL_CTL, val);
7994
7995 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7996 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7997 DRM_ERROR("Switching back to LCPLL failed\n");
7998 }
215733fa 7999
59bad947 8000 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8001}
8002
765dab67
PZ
8003/*
8004 * Package states C8 and deeper are really deep PC states that can only be
8005 * reached when all the devices on the system allow it, so even if the graphics
8006 * device allows PC8+, it doesn't mean the system will actually get to these
8007 * states. Our driver only allows PC8+ when going into runtime PM.
8008 *
8009 * The requirements for PC8+ are that all the outputs are disabled, the power
8010 * well is disabled and most interrupts are disabled, and these are also
8011 * requirements for runtime PM. When these conditions are met, we manually do
8012 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8013 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8014 * hang the machine.
8015 *
8016 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8017 * the state of some registers, so when we come back from PC8+ we need to
8018 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8019 * need to take care of the registers kept by RC6. Notice that this happens even
8020 * if we don't put the device in PCI D3 state (which is what currently happens
8021 * because of the runtime PM support).
8022 *
8023 * For more, read "Display Sequences for Package C8" on the hardware
8024 * documentation.
8025 */
a14cb6fc 8026void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8027{
c67a470b
PZ
8028 struct drm_device *dev = dev_priv->dev;
8029 uint32_t val;
8030
c67a470b
PZ
8031 DRM_DEBUG_KMS("Enabling package C8+\n");
8032
c67a470b
PZ
8033 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8034 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8035 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8036 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8037 }
8038
8039 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8040 hsw_disable_lcpll(dev_priv, true, true);
8041}
8042
a14cb6fc 8043void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8044{
8045 struct drm_device *dev = dev_priv->dev;
8046 uint32_t val;
8047
c67a470b
PZ
8048 DRM_DEBUG_KMS("Disabling package C8+\n");
8049
8050 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8051 lpt_init_pch_refclk(dev);
8052
8053 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8054 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8055 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8056 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8057 }
8058
8059 intel_prepare_ddi(dev);
c67a470b
PZ
8060}
8061
190f68c5
ACO
8062static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8063 struct intel_crtc_state *crtc_state)
09b4ddf9 8064{
190f68c5 8065 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8066 return -EINVAL;
716c2e55 8067
c7653199 8068 crtc->lowfreq_avail = false;
644cef34 8069
c8f7a0db 8070 return 0;
79e53945
JB
8071}
8072
96b7dfb7
S
8073static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8074 enum port port,
5cec258b 8075 struct intel_crtc_state *pipe_config)
96b7dfb7 8076{
3148ade7 8077 u32 temp, dpll_ctl1;
96b7dfb7
S
8078
8079 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8080 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8081
8082 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8083 case SKL_DPLL0:
8084 /*
8085 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8086 * of the shared DPLL framework and thus needs to be read out
8087 * separately
8088 */
8089 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8090 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8091 break;
96b7dfb7
S
8092 case SKL_DPLL1:
8093 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8094 break;
8095 case SKL_DPLL2:
8096 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8097 break;
8098 case SKL_DPLL3:
8099 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8100 break;
96b7dfb7
S
8101 }
8102}
8103
7d2c8175
DL
8104static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8105 enum port port,
5cec258b 8106 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8107{
8108 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8109
8110 switch (pipe_config->ddi_pll_sel) {
8111 case PORT_CLK_SEL_WRPLL1:
8112 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8113 break;
8114 case PORT_CLK_SEL_WRPLL2:
8115 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8116 break;
8117 }
8118}
8119
26804afd 8120static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8121 struct intel_crtc_state *pipe_config)
26804afd
DV
8122{
8123 struct drm_device *dev = crtc->base.dev;
8124 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8125 struct intel_shared_dpll *pll;
26804afd
DV
8126 enum port port;
8127 uint32_t tmp;
8128
8129 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8130
8131 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8132
96b7dfb7
S
8133 if (IS_SKYLAKE(dev))
8134 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8135 else
8136 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8137
d452c5b6
DV
8138 if (pipe_config->shared_dpll >= 0) {
8139 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8140
8141 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8142 &pipe_config->dpll_hw_state));
8143 }
8144
26804afd
DV
8145 /*
8146 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8147 * DDI E. So just check whether this pipe is wired to DDI E and whether
8148 * the PCH transcoder is on.
8149 */
ca370455
DL
8150 if (INTEL_INFO(dev)->gen < 9 &&
8151 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8152 pipe_config->has_pch_encoder = true;
8153
8154 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8155 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8156 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8157
8158 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8159 }
8160}
8161
0e8ffe1b 8162static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8163 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8164{
8165 struct drm_device *dev = crtc->base.dev;
8166 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8167 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8168 uint32_t tmp;
8169
f458ebbc 8170 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8171 POWER_DOMAIN_PIPE(crtc->pipe)))
8172 return false;
8173
e143a21c 8174 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8175 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8176
eccb140b
DV
8177 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8178 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8179 enum pipe trans_edp_pipe;
8180 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8181 default:
8182 WARN(1, "unknown pipe linked to edp transcoder\n");
8183 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8184 case TRANS_DDI_EDP_INPUT_A_ON:
8185 trans_edp_pipe = PIPE_A;
8186 break;
8187 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8188 trans_edp_pipe = PIPE_B;
8189 break;
8190 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8191 trans_edp_pipe = PIPE_C;
8192 break;
8193 }
8194
8195 if (trans_edp_pipe == crtc->pipe)
8196 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8197 }
8198
f458ebbc 8199 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8200 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8201 return false;
8202
eccb140b 8203 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8204 if (!(tmp & PIPECONF_ENABLE))
8205 return false;
8206
26804afd 8207 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8208
1bd1bd80
DV
8209 intel_get_pipe_timings(crtc, pipe_config);
8210
2fa2fe9a 8211 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8212 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8213 if (IS_SKYLAKE(dev))
8214 skylake_get_pfit_config(crtc, pipe_config);
8215 else
8216 ironlake_get_pfit_config(crtc, pipe_config);
8217 }
88adfff1 8218
e59150dc
JB
8219 if (IS_HASWELL(dev))
8220 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8221 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8222
ebb69c95
CT
8223 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8224 pipe_config->pixel_multiplier =
8225 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8226 } else {
8227 pipe_config->pixel_multiplier = 1;
8228 }
6c49f241 8229
0e8ffe1b
DV
8230 return true;
8231}
8232
560b85bb
CW
8233static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8234{
8235 struct drm_device *dev = crtc->dev;
8236 struct drm_i915_private *dev_priv = dev->dev_private;
8237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8238 uint32_t cntl = 0, size = 0;
560b85bb 8239
dc41c154
VS
8240 if (base) {
8241 unsigned int width = intel_crtc->cursor_width;
8242 unsigned int height = intel_crtc->cursor_height;
8243 unsigned int stride = roundup_pow_of_two(width) * 4;
8244
8245 switch (stride) {
8246 default:
8247 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8248 width, stride);
8249 stride = 256;
8250 /* fallthrough */
8251 case 256:
8252 case 512:
8253 case 1024:
8254 case 2048:
8255 break;
4b0e333e
CW
8256 }
8257
dc41c154
VS
8258 cntl |= CURSOR_ENABLE |
8259 CURSOR_GAMMA_ENABLE |
8260 CURSOR_FORMAT_ARGB |
8261 CURSOR_STRIDE(stride);
8262
8263 size = (height << 12) | width;
4b0e333e 8264 }
560b85bb 8265
dc41c154
VS
8266 if (intel_crtc->cursor_cntl != 0 &&
8267 (intel_crtc->cursor_base != base ||
8268 intel_crtc->cursor_size != size ||
8269 intel_crtc->cursor_cntl != cntl)) {
8270 /* On these chipsets we can only modify the base/size/stride
8271 * whilst the cursor is disabled.
8272 */
8273 I915_WRITE(_CURACNTR, 0);
4b0e333e 8274 POSTING_READ(_CURACNTR);
dc41c154 8275 intel_crtc->cursor_cntl = 0;
4b0e333e 8276 }
560b85bb 8277
99d1f387 8278 if (intel_crtc->cursor_base != base) {
9db4a9c7 8279 I915_WRITE(_CURABASE, base);
99d1f387
VS
8280 intel_crtc->cursor_base = base;
8281 }
4726e0b0 8282
dc41c154
VS
8283 if (intel_crtc->cursor_size != size) {
8284 I915_WRITE(CURSIZE, size);
8285 intel_crtc->cursor_size = size;
4b0e333e 8286 }
560b85bb 8287
4b0e333e 8288 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8289 I915_WRITE(_CURACNTR, cntl);
8290 POSTING_READ(_CURACNTR);
4b0e333e 8291 intel_crtc->cursor_cntl = cntl;
560b85bb 8292 }
560b85bb
CW
8293}
8294
560b85bb 8295static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8296{
8297 struct drm_device *dev = crtc->dev;
8298 struct drm_i915_private *dev_priv = dev->dev_private;
8299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8300 int pipe = intel_crtc->pipe;
4b0e333e
CW
8301 uint32_t cntl;
8302
8303 cntl = 0;
8304 if (base) {
8305 cntl = MCURSOR_GAMMA_ENABLE;
8306 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8307 case 64:
8308 cntl |= CURSOR_MODE_64_ARGB_AX;
8309 break;
8310 case 128:
8311 cntl |= CURSOR_MODE_128_ARGB_AX;
8312 break;
8313 case 256:
8314 cntl |= CURSOR_MODE_256_ARGB_AX;
8315 break;
8316 default:
5f77eeb0 8317 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8318 return;
65a21cd6 8319 }
4b0e333e 8320 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8321
8322 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8323 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8324 }
65a21cd6 8325
4398ad45
VS
8326 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8327 cntl |= CURSOR_ROTATE_180;
8328
4b0e333e
CW
8329 if (intel_crtc->cursor_cntl != cntl) {
8330 I915_WRITE(CURCNTR(pipe), cntl);
8331 POSTING_READ(CURCNTR(pipe));
8332 intel_crtc->cursor_cntl = cntl;
65a21cd6 8333 }
4b0e333e 8334
65a21cd6 8335 /* and commit changes on next vblank */
5efb3e28
VS
8336 I915_WRITE(CURBASE(pipe), base);
8337 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8338
8339 intel_crtc->cursor_base = base;
65a21cd6
JB
8340}
8341
cda4b7d3 8342/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8343static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8344 bool on)
cda4b7d3
CW
8345{
8346 struct drm_device *dev = crtc->dev;
8347 struct drm_i915_private *dev_priv = dev->dev_private;
8348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8349 int pipe = intel_crtc->pipe;
3d7d6510
MR
8350 int x = crtc->cursor_x;
8351 int y = crtc->cursor_y;
d6e4db15 8352 u32 base = 0, pos = 0;
cda4b7d3 8353
d6e4db15 8354 if (on)
cda4b7d3 8355 base = intel_crtc->cursor_addr;
cda4b7d3 8356
6e3c9717 8357 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8358 base = 0;
8359
6e3c9717 8360 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8361 base = 0;
8362
8363 if (x < 0) {
efc9064e 8364 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8365 base = 0;
8366
8367 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8368 x = -x;
8369 }
8370 pos |= x << CURSOR_X_SHIFT;
8371
8372 if (y < 0) {
efc9064e 8373 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8374 base = 0;
8375
8376 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8377 y = -y;
8378 }
8379 pos |= y << CURSOR_Y_SHIFT;
8380
4b0e333e 8381 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8382 return;
8383
5efb3e28
VS
8384 I915_WRITE(CURPOS(pipe), pos);
8385
4398ad45
VS
8386 /* ILK+ do this automagically */
8387 if (HAS_GMCH_DISPLAY(dev) &&
8388 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8389 base += (intel_crtc->cursor_height *
8390 intel_crtc->cursor_width - 1) * 4;
8391 }
8392
8ac54669 8393 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8394 i845_update_cursor(crtc, base);
8395 else
8396 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8397}
8398
dc41c154
VS
8399static bool cursor_size_ok(struct drm_device *dev,
8400 uint32_t width, uint32_t height)
8401{
8402 if (width == 0 || height == 0)
8403 return false;
8404
8405 /*
8406 * 845g/865g are special in that they are only limited by
8407 * the width of their cursors, the height is arbitrary up to
8408 * the precision of the register. Everything else requires
8409 * square cursors, limited to a few power-of-two sizes.
8410 */
8411 if (IS_845G(dev) || IS_I865G(dev)) {
8412 if ((width & 63) != 0)
8413 return false;
8414
8415 if (width > (IS_845G(dev) ? 64 : 512))
8416 return false;
8417
8418 if (height > 1023)
8419 return false;
8420 } else {
8421 switch (width | height) {
8422 case 256:
8423 case 128:
8424 if (IS_GEN2(dev))
8425 return false;
8426 case 64:
8427 break;
8428 default:
8429 return false;
8430 }
8431 }
8432
8433 return true;
8434}
8435
79e53945 8436static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8437 u16 *blue, uint32_t start, uint32_t size)
79e53945 8438{
7203425a 8439 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8441
7203425a 8442 for (i = start; i < end; i++) {
79e53945
JB
8443 intel_crtc->lut_r[i] = red[i] >> 8;
8444 intel_crtc->lut_g[i] = green[i] >> 8;
8445 intel_crtc->lut_b[i] = blue[i] >> 8;
8446 }
8447
8448 intel_crtc_load_lut(crtc);
8449}
8450
79e53945
JB
8451/* VESA 640x480x72Hz mode to set on the pipe */
8452static struct drm_display_mode load_detect_mode = {
8453 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8454 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8455};
8456
a8bb6818
DV
8457struct drm_framebuffer *
8458__intel_framebuffer_create(struct drm_device *dev,
8459 struct drm_mode_fb_cmd2 *mode_cmd,
8460 struct drm_i915_gem_object *obj)
d2dff872
CW
8461{
8462 struct intel_framebuffer *intel_fb;
8463 int ret;
8464
8465 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8466 if (!intel_fb) {
6ccb81f2 8467 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8468 return ERR_PTR(-ENOMEM);
8469 }
8470
8471 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8472 if (ret)
8473 goto err;
d2dff872
CW
8474
8475 return &intel_fb->base;
dd4916c5 8476err:
6ccb81f2 8477 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8478 kfree(intel_fb);
8479
8480 return ERR_PTR(ret);
d2dff872
CW
8481}
8482
b5ea642a 8483static struct drm_framebuffer *
a8bb6818
DV
8484intel_framebuffer_create(struct drm_device *dev,
8485 struct drm_mode_fb_cmd2 *mode_cmd,
8486 struct drm_i915_gem_object *obj)
8487{
8488 struct drm_framebuffer *fb;
8489 int ret;
8490
8491 ret = i915_mutex_lock_interruptible(dev);
8492 if (ret)
8493 return ERR_PTR(ret);
8494 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8495 mutex_unlock(&dev->struct_mutex);
8496
8497 return fb;
8498}
8499
d2dff872
CW
8500static u32
8501intel_framebuffer_pitch_for_width(int width, int bpp)
8502{
8503 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8504 return ALIGN(pitch, 64);
8505}
8506
8507static u32
8508intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8509{
8510 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8511 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8512}
8513
8514static struct drm_framebuffer *
8515intel_framebuffer_create_for_mode(struct drm_device *dev,
8516 struct drm_display_mode *mode,
8517 int depth, int bpp)
8518{
8519 struct drm_i915_gem_object *obj;
0fed39bd 8520 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8521
8522 obj = i915_gem_alloc_object(dev,
8523 intel_framebuffer_size_for_mode(mode, bpp));
8524 if (obj == NULL)
8525 return ERR_PTR(-ENOMEM);
8526
8527 mode_cmd.width = mode->hdisplay;
8528 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8529 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8530 bpp);
5ca0c34a 8531 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8532
8533 return intel_framebuffer_create(dev, &mode_cmd, obj);
8534}
8535
8536static struct drm_framebuffer *
8537mode_fits_in_fbdev(struct drm_device *dev,
8538 struct drm_display_mode *mode)
8539{
4520f53a 8540#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8541 struct drm_i915_private *dev_priv = dev->dev_private;
8542 struct drm_i915_gem_object *obj;
8543 struct drm_framebuffer *fb;
8544
4c0e5528 8545 if (!dev_priv->fbdev)
d2dff872
CW
8546 return NULL;
8547
4c0e5528 8548 if (!dev_priv->fbdev->fb)
d2dff872
CW
8549 return NULL;
8550
4c0e5528
DV
8551 obj = dev_priv->fbdev->fb->obj;
8552 BUG_ON(!obj);
8553
8bcd4553 8554 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8555 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8556 fb->bits_per_pixel))
d2dff872
CW
8557 return NULL;
8558
01f2c773 8559 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8560 return NULL;
8561
8562 return fb;
4520f53a
DV
8563#else
8564 return NULL;
8565#endif
d2dff872
CW
8566}
8567
d2434ab7 8568bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8569 struct drm_display_mode *mode,
51fd371b
RC
8570 struct intel_load_detect_pipe *old,
8571 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8572{
8573 struct intel_crtc *intel_crtc;
d2434ab7
DV
8574 struct intel_encoder *intel_encoder =
8575 intel_attached_encoder(connector);
79e53945 8576 struct drm_crtc *possible_crtc;
4ef69c7a 8577 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8578 struct drm_crtc *crtc = NULL;
8579 struct drm_device *dev = encoder->dev;
94352cf9 8580 struct drm_framebuffer *fb;
51fd371b
RC
8581 struct drm_mode_config *config = &dev->mode_config;
8582 int ret, i = -1;
79e53945 8583
d2dff872 8584 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8585 connector->base.id, connector->name,
8e329a03 8586 encoder->base.id, encoder->name);
d2dff872 8587
51fd371b
RC
8588retry:
8589 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8590 if (ret)
8591 goto fail_unlock;
6e9f798d 8592
79e53945
JB
8593 /*
8594 * Algorithm gets a little messy:
7a5e4805 8595 *
79e53945
JB
8596 * - if the connector already has an assigned crtc, use it (but make
8597 * sure it's on first)
7a5e4805 8598 *
79e53945
JB
8599 * - try to find the first unused crtc that can drive this connector,
8600 * and use that if we find one
79e53945
JB
8601 */
8602
8603 /* See if we already have a CRTC for this connector */
8604 if (encoder->crtc) {
8605 crtc = encoder->crtc;
8261b191 8606
51fd371b 8607 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8608 if (ret)
8609 goto fail_unlock;
8610 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8611 if (ret)
8612 goto fail_unlock;
7b24056b 8613
24218aac 8614 old->dpms_mode = connector->dpms;
8261b191
CW
8615 old->load_detect_temp = false;
8616
8617 /* Make sure the crtc and connector are running */
24218aac
DV
8618 if (connector->dpms != DRM_MODE_DPMS_ON)
8619 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8620
7173188d 8621 return true;
79e53945
JB
8622 }
8623
8624 /* Find an unused one (if possible) */
70e1e0ec 8625 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8626 i++;
8627 if (!(encoder->possible_crtcs & (1 << i)))
8628 continue;
a459249c
VS
8629 if (possible_crtc->enabled)
8630 continue;
8631 /* This can occur when applying the pipe A quirk on resume. */
8632 if (to_intel_crtc(possible_crtc)->new_enabled)
8633 continue;
8634
8635 crtc = possible_crtc;
8636 break;
79e53945
JB
8637 }
8638
8639 /*
8640 * If we didn't find an unused CRTC, don't use any.
8641 */
8642 if (!crtc) {
7173188d 8643 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8644 goto fail_unlock;
79e53945
JB
8645 }
8646
51fd371b
RC
8647 ret = drm_modeset_lock(&crtc->mutex, ctx);
8648 if (ret)
4d02e2de
DV
8649 goto fail_unlock;
8650 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8651 if (ret)
51fd371b 8652 goto fail_unlock;
fc303101
DV
8653 intel_encoder->new_crtc = to_intel_crtc(crtc);
8654 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8655
8656 intel_crtc = to_intel_crtc(crtc);
412b61d8 8657 intel_crtc->new_enabled = true;
6e3c9717 8658 intel_crtc->new_config = intel_crtc->config;
24218aac 8659 old->dpms_mode = connector->dpms;
8261b191 8660 old->load_detect_temp = true;
d2dff872 8661 old->release_fb = NULL;
79e53945 8662
6492711d
CW
8663 if (!mode)
8664 mode = &load_detect_mode;
79e53945 8665
d2dff872
CW
8666 /* We need a framebuffer large enough to accommodate all accesses
8667 * that the plane may generate whilst we perform load detection.
8668 * We can not rely on the fbcon either being present (we get called
8669 * during its initialisation to detect all boot displays, or it may
8670 * not even exist) or that it is large enough to satisfy the
8671 * requested mode.
8672 */
94352cf9
DV
8673 fb = mode_fits_in_fbdev(dev, mode);
8674 if (fb == NULL) {
d2dff872 8675 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8676 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8677 old->release_fb = fb;
d2dff872
CW
8678 } else
8679 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8680 if (IS_ERR(fb)) {
d2dff872 8681 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8682 goto fail;
79e53945 8683 }
79e53945 8684
c0c36b94 8685 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8686 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8687 if (old->release_fb)
8688 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8689 goto fail;
79e53945 8690 }
7173188d 8691
79e53945 8692 /* let the connector get through one full cycle before testing */
9d0498a2 8693 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8694 return true;
412b61d8
VS
8695
8696 fail:
8697 intel_crtc->new_enabled = crtc->enabled;
8698 if (intel_crtc->new_enabled)
6e3c9717 8699 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8700 else
8701 intel_crtc->new_config = NULL;
51fd371b
RC
8702fail_unlock:
8703 if (ret == -EDEADLK) {
8704 drm_modeset_backoff(ctx);
8705 goto retry;
8706 }
8707
412b61d8 8708 return false;
79e53945
JB
8709}
8710
d2434ab7 8711void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8712 struct intel_load_detect_pipe *old)
79e53945 8713{
d2434ab7
DV
8714 struct intel_encoder *intel_encoder =
8715 intel_attached_encoder(connector);
4ef69c7a 8716 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8717 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8719
d2dff872 8720 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8721 connector->base.id, connector->name,
8e329a03 8722 encoder->base.id, encoder->name);
d2dff872 8723
8261b191 8724 if (old->load_detect_temp) {
fc303101
DV
8725 to_intel_connector(connector)->new_encoder = NULL;
8726 intel_encoder->new_crtc = NULL;
412b61d8
VS
8727 intel_crtc->new_enabled = false;
8728 intel_crtc->new_config = NULL;
fc303101 8729 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8730
36206361
DV
8731 if (old->release_fb) {
8732 drm_framebuffer_unregister_private(old->release_fb);
8733 drm_framebuffer_unreference(old->release_fb);
8734 }
d2dff872 8735
0622a53c 8736 return;
79e53945
JB
8737 }
8738
c751ce4f 8739 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8740 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8741 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8742}
8743
da4a1efa 8744static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8745 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8746{
8747 struct drm_i915_private *dev_priv = dev->dev_private;
8748 u32 dpll = pipe_config->dpll_hw_state.dpll;
8749
8750 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8751 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8752 else if (HAS_PCH_SPLIT(dev))
8753 return 120000;
8754 else if (!IS_GEN2(dev))
8755 return 96000;
8756 else
8757 return 48000;
8758}
8759
79e53945 8760/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8761static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8762 struct intel_crtc_state *pipe_config)
79e53945 8763{
f1f644dc 8764 struct drm_device *dev = crtc->base.dev;
79e53945 8765 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8766 int pipe = pipe_config->cpu_transcoder;
293623f7 8767 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8768 u32 fp;
8769 intel_clock_t clock;
da4a1efa 8770 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8771
8772 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8773 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8774 else
293623f7 8775 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8776
8777 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8778 if (IS_PINEVIEW(dev)) {
8779 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8780 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8781 } else {
8782 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8783 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8784 }
8785
a6c45cf0 8786 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8787 if (IS_PINEVIEW(dev))
8788 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8789 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8790 else
8791 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8792 DPLL_FPA01_P1_POST_DIV_SHIFT);
8793
8794 switch (dpll & DPLL_MODE_MASK) {
8795 case DPLLB_MODE_DAC_SERIAL:
8796 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8797 5 : 10;
8798 break;
8799 case DPLLB_MODE_LVDS:
8800 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8801 7 : 14;
8802 break;
8803 default:
28c97730 8804 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8805 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8806 return;
79e53945
JB
8807 }
8808
ac58c3f0 8809 if (IS_PINEVIEW(dev))
da4a1efa 8810 pineview_clock(refclk, &clock);
ac58c3f0 8811 else
da4a1efa 8812 i9xx_clock(refclk, &clock);
79e53945 8813 } else {
0fb58223 8814 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8815 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8816
8817 if (is_lvds) {
8818 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8819 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8820
8821 if (lvds & LVDS_CLKB_POWER_UP)
8822 clock.p2 = 7;
8823 else
8824 clock.p2 = 14;
79e53945
JB
8825 } else {
8826 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8827 clock.p1 = 2;
8828 else {
8829 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8830 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8831 }
8832 if (dpll & PLL_P2_DIVIDE_BY_4)
8833 clock.p2 = 4;
8834 else
8835 clock.p2 = 2;
79e53945 8836 }
da4a1efa
VS
8837
8838 i9xx_clock(refclk, &clock);
79e53945
JB
8839 }
8840
18442d08
VS
8841 /*
8842 * This value includes pixel_multiplier. We will use
241bfc38 8843 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8844 * encoder's get_config() function.
8845 */
8846 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8847}
8848
6878da05
VS
8849int intel_dotclock_calculate(int link_freq,
8850 const struct intel_link_m_n *m_n)
f1f644dc 8851{
f1f644dc
JB
8852 /*
8853 * The calculation for the data clock is:
1041a02f 8854 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8855 * But we want to avoid losing precison if possible, so:
1041a02f 8856 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8857 *
8858 * and the link clock is simpler:
1041a02f 8859 * link_clock = (m * link_clock) / n
f1f644dc
JB
8860 */
8861
6878da05
VS
8862 if (!m_n->link_n)
8863 return 0;
f1f644dc 8864
6878da05
VS
8865 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8866}
f1f644dc 8867
18442d08 8868static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8869 struct intel_crtc_state *pipe_config)
6878da05
VS
8870{
8871 struct drm_device *dev = crtc->base.dev;
79e53945 8872
18442d08
VS
8873 /* read out port_clock from the DPLL */
8874 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8875
f1f644dc 8876 /*
18442d08 8877 * This value does not include pixel_multiplier.
241bfc38 8878 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8879 * agree once we know their relationship in the encoder's
8880 * get_config() function.
79e53945 8881 */
2d112de7 8882 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8883 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8884 &pipe_config->fdi_m_n);
79e53945
JB
8885}
8886
8887/** Returns the currently programmed mode of the given pipe. */
8888struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8889 struct drm_crtc *crtc)
8890{
548f245b 8891 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8893 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8894 struct drm_display_mode *mode;
5cec258b 8895 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8896 int htot = I915_READ(HTOTAL(cpu_transcoder));
8897 int hsync = I915_READ(HSYNC(cpu_transcoder));
8898 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8899 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8900 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8901
8902 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8903 if (!mode)
8904 return NULL;
8905
f1f644dc
JB
8906 /*
8907 * Construct a pipe_config sufficient for getting the clock info
8908 * back out of crtc_clock_get.
8909 *
8910 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8911 * to use a real value here instead.
8912 */
293623f7 8913 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8914 pipe_config.pixel_multiplier = 1;
293623f7
VS
8915 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8916 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8917 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8918 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8919
773ae034 8920 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8921 mode->hdisplay = (htot & 0xffff) + 1;
8922 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8923 mode->hsync_start = (hsync & 0xffff) + 1;
8924 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8925 mode->vdisplay = (vtot & 0xffff) + 1;
8926 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8927 mode->vsync_start = (vsync & 0xffff) + 1;
8928 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8929
8930 drm_mode_set_name(mode);
79e53945
JB
8931
8932 return mode;
8933}
8934
652c393a
JB
8935static void intel_decrease_pllclock(struct drm_crtc *crtc)
8936{
8937 struct drm_device *dev = crtc->dev;
fbee40df 8938 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8940
baff296c 8941 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8942 return;
8943
8944 if (!dev_priv->lvds_downclock_avail)
8945 return;
8946
8947 /*
8948 * Since this is called by a timer, we should never get here in
8949 * the manual case.
8950 */
8951 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8952 int pipe = intel_crtc->pipe;
8953 int dpll_reg = DPLL(pipe);
8954 int dpll;
f6e5b160 8955
44d98a61 8956 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8957
8ac5a6d5 8958 assert_panel_unlocked(dev_priv, pipe);
652c393a 8959
dc257cf1 8960 dpll = I915_READ(dpll_reg);
652c393a
JB
8961 dpll |= DISPLAY_RATE_SELECT_FPA1;
8962 I915_WRITE(dpll_reg, dpll);
9d0498a2 8963 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8964 dpll = I915_READ(dpll_reg);
8965 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8966 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8967 }
8968
8969}
8970
f047e395
CW
8971void intel_mark_busy(struct drm_device *dev)
8972{
c67a470b
PZ
8973 struct drm_i915_private *dev_priv = dev->dev_private;
8974
f62a0076
CW
8975 if (dev_priv->mm.busy)
8976 return;
8977
43694d69 8978 intel_runtime_pm_get(dev_priv);
c67a470b 8979 i915_update_gfx_val(dev_priv);
f62a0076 8980 dev_priv->mm.busy = true;
f047e395
CW
8981}
8982
8983void intel_mark_idle(struct drm_device *dev)
652c393a 8984{
c67a470b 8985 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8986 struct drm_crtc *crtc;
652c393a 8987
f62a0076
CW
8988 if (!dev_priv->mm.busy)
8989 return;
8990
8991 dev_priv->mm.busy = false;
8992
d330a953 8993 if (!i915.powersave)
bb4cdd53 8994 goto out;
652c393a 8995
70e1e0ec 8996 for_each_crtc(dev, crtc) {
f4510a27 8997 if (!crtc->primary->fb)
652c393a
JB
8998 continue;
8999
725a5b54 9000 intel_decrease_pllclock(crtc);
652c393a 9001 }
b29c19b6 9002
3d13ef2e 9003 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9004 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9005
9006out:
43694d69 9007 intel_runtime_pm_put(dev_priv);
652c393a
JB
9008}
9009
f5de6e07
ACO
9010static void intel_crtc_set_state(struct intel_crtc *crtc,
9011 struct intel_crtc_state *crtc_state)
9012{
9013 kfree(crtc->config);
9014 crtc->config = crtc_state;
16f3f658 9015 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9016}
9017
79e53945
JB
9018static void intel_crtc_destroy(struct drm_crtc *crtc)
9019{
9020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9021 struct drm_device *dev = crtc->dev;
9022 struct intel_unpin_work *work;
67e77c5a 9023
5e2d7afc 9024 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9025 work = intel_crtc->unpin_work;
9026 intel_crtc->unpin_work = NULL;
5e2d7afc 9027 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9028
9029 if (work) {
9030 cancel_work_sync(&work->work);
9031 kfree(work);
9032 }
79e53945 9033
f5de6e07 9034 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9035 drm_crtc_cleanup(crtc);
67e77c5a 9036
79e53945
JB
9037 kfree(intel_crtc);
9038}
9039
6b95a207
KH
9040static void intel_unpin_work_fn(struct work_struct *__work)
9041{
9042 struct intel_unpin_work *work =
9043 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9044 struct drm_device *dev = work->crtc->dev;
f99d7069 9045 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9046
b4a98e57 9047 mutex_lock(&dev->struct_mutex);
1690e1eb 9048 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9049 drm_gem_object_unreference(&work->pending_flip_obj->base);
9050 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9051
7ff0ebcc 9052 intel_fbc_update(dev);
f06cc1b9
JH
9053
9054 if (work->flip_queued_req)
146d84f0 9055 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9056 mutex_unlock(&dev->struct_mutex);
9057
f99d7069
DV
9058 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9059
b4a98e57
CW
9060 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9061 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9062
6b95a207
KH
9063 kfree(work);
9064}
9065
1afe3e9d 9066static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9067 struct drm_crtc *crtc)
6b95a207 9068{
6b95a207
KH
9069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9070 struct intel_unpin_work *work;
6b95a207
KH
9071 unsigned long flags;
9072
9073 /* Ignore early vblank irqs */
9074 if (intel_crtc == NULL)
9075 return;
9076
f326038a
DV
9077 /*
9078 * This is called both by irq handlers and the reset code (to complete
9079 * lost pageflips) so needs the full irqsave spinlocks.
9080 */
6b95a207
KH
9081 spin_lock_irqsave(&dev->event_lock, flags);
9082 work = intel_crtc->unpin_work;
e7d841ca
CW
9083
9084 /* Ensure we don't miss a work->pending update ... */
9085 smp_rmb();
9086
9087 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9088 spin_unlock_irqrestore(&dev->event_lock, flags);
9089 return;
9090 }
9091
d6bbafa1 9092 page_flip_completed(intel_crtc);
0af7e4df 9093
6b95a207 9094 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9095}
9096
1afe3e9d
JB
9097void intel_finish_page_flip(struct drm_device *dev, int pipe)
9098{
fbee40df 9099 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9100 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9101
49b14a5c 9102 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9103}
9104
9105void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9106{
fbee40df 9107 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9108 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9109
49b14a5c 9110 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9111}
9112
75f7f3ec
VS
9113/* Is 'a' after or equal to 'b'? */
9114static bool g4x_flip_count_after_eq(u32 a, u32 b)
9115{
9116 return !((a - b) & 0x80000000);
9117}
9118
9119static bool page_flip_finished(struct intel_crtc *crtc)
9120{
9121 struct drm_device *dev = crtc->base.dev;
9122 struct drm_i915_private *dev_priv = dev->dev_private;
9123
bdfa7542
VS
9124 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9125 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9126 return true;
9127
75f7f3ec
VS
9128 /*
9129 * The relevant registers doen't exist on pre-ctg.
9130 * As the flip done interrupt doesn't trigger for mmio
9131 * flips on gmch platforms, a flip count check isn't
9132 * really needed there. But since ctg has the registers,
9133 * include it in the check anyway.
9134 */
9135 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9136 return true;
9137
9138 /*
9139 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9140 * used the same base address. In that case the mmio flip might
9141 * have completed, but the CS hasn't even executed the flip yet.
9142 *
9143 * A flip count check isn't enough as the CS might have updated
9144 * the base address just after start of vblank, but before we
9145 * managed to process the interrupt. This means we'd complete the
9146 * CS flip too soon.
9147 *
9148 * Combining both checks should get us a good enough result. It may
9149 * still happen that the CS flip has been executed, but has not
9150 * yet actually completed. But in case the base address is the same
9151 * anyway, we don't really care.
9152 */
9153 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9154 crtc->unpin_work->gtt_offset &&
9155 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9156 crtc->unpin_work->flip_count);
9157}
9158
6b95a207
KH
9159void intel_prepare_page_flip(struct drm_device *dev, int plane)
9160{
fbee40df 9161 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9162 struct intel_crtc *intel_crtc =
9163 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9164 unsigned long flags;
9165
f326038a
DV
9166
9167 /*
9168 * This is called both by irq handlers and the reset code (to complete
9169 * lost pageflips) so needs the full irqsave spinlocks.
9170 *
9171 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9172 * generate a page-flip completion irq, i.e. every modeset
9173 * is also accompanied by a spurious intel_prepare_page_flip().
9174 */
6b95a207 9175 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9176 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9177 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9178 spin_unlock_irqrestore(&dev->event_lock, flags);
9179}
9180
eba905b2 9181static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9182{
9183 /* Ensure that the work item is consistent when activating it ... */
9184 smp_wmb();
9185 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9186 /* and that it is marked active as soon as the irq could fire. */
9187 smp_wmb();
9188}
9189
8c9f3aaf
JB
9190static int intel_gen2_queue_flip(struct drm_device *dev,
9191 struct drm_crtc *crtc,
9192 struct drm_framebuffer *fb,
ed8d1975 9193 struct drm_i915_gem_object *obj,
a4872ba6 9194 struct intel_engine_cs *ring,
ed8d1975 9195 uint32_t flags)
8c9f3aaf 9196{
8c9f3aaf 9197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9198 u32 flip_mask;
9199 int ret;
9200
6d90c952 9201 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9202 if (ret)
4fa62c89 9203 return ret;
8c9f3aaf
JB
9204
9205 /* Can't queue multiple flips, so wait for the previous
9206 * one to finish before executing the next.
9207 */
9208 if (intel_crtc->plane)
9209 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9210 else
9211 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9212 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9213 intel_ring_emit(ring, MI_NOOP);
9214 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9215 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9216 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9217 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9218 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9219
9220 intel_mark_page_flip_active(intel_crtc);
09246732 9221 __intel_ring_advance(ring);
83d4092b 9222 return 0;
8c9f3aaf
JB
9223}
9224
9225static int intel_gen3_queue_flip(struct drm_device *dev,
9226 struct drm_crtc *crtc,
9227 struct drm_framebuffer *fb,
ed8d1975 9228 struct drm_i915_gem_object *obj,
a4872ba6 9229 struct intel_engine_cs *ring,
ed8d1975 9230 uint32_t flags)
8c9f3aaf 9231{
8c9f3aaf 9232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9233 u32 flip_mask;
9234 int ret;
9235
6d90c952 9236 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9237 if (ret)
4fa62c89 9238 return ret;
8c9f3aaf
JB
9239
9240 if (intel_crtc->plane)
9241 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9242 else
9243 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9244 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9245 intel_ring_emit(ring, MI_NOOP);
9246 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9247 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9248 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9249 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9250 intel_ring_emit(ring, MI_NOOP);
9251
e7d841ca 9252 intel_mark_page_flip_active(intel_crtc);
09246732 9253 __intel_ring_advance(ring);
83d4092b 9254 return 0;
8c9f3aaf
JB
9255}
9256
9257static int intel_gen4_queue_flip(struct drm_device *dev,
9258 struct drm_crtc *crtc,
9259 struct drm_framebuffer *fb,
ed8d1975 9260 struct drm_i915_gem_object *obj,
a4872ba6 9261 struct intel_engine_cs *ring,
ed8d1975 9262 uint32_t flags)
8c9f3aaf
JB
9263{
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9266 uint32_t pf, pipesrc;
9267 int ret;
9268
6d90c952 9269 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9270 if (ret)
4fa62c89 9271 return ret;
8c9f3aaf
JB
9272
9273 /* i965+ uses the linear or tiled offsets from the
9274 * Display Registers (which do not change across a page-flip)
9275 * so we need only reprogram the base address.
9276 */
6d90c952
DV
9277 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9280 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9281 obj->tiling_mode);
8c9f3aaf
JB
9282
9283 /* XXX Enabling the panel-fitter across page-flip is so far
9284 * untested on non-native modes, so ignore it for now.
9285 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9286 */
9287 pf = 0;
9288 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9289 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9290
9291 intel_mark_page_flip_active(intel_crtc);
09246732 9292 __intel_ring_advance(ring);
83d4092b 9293 return 0;
8c9f3aaf
JB
9294}
9295
9296static int intel_gen6_queue_flip(struct drm_device *dev,
9297 struct drm_crtc *crtc,
9298 struct drm_framebuffer *fb,
ed8d1975 9299 struct drm_i915_gem_object *obj,
a4872ba6 9300 struct intel_engine_cs *ring,
ed8d1975 9301 uint32_t flags)
8c9f3aaf
JB
9302{
9303 struct drm_i915_private *dev_priv = dev->dev_private;
9304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9305 uint32_t pf, pipesrc;
9306 int ret;
9307
6d90c952 9308 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9309 if (ret)
4fa62c89 9310 return ret;
8c9f3aaf 9311
6d90c952
DV
9312 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9313 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9314 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9315 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9316
dc257cf1
DV
9317 /* Contrary to the suggestions in the documentation,
9318 * "Enable Panel Fitter" does not seem to be required when page
9319 * flipping with a non-native mode, and worse causes a normal
9320 * modeset to fail.
9321 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9322 */
9323 pf = 0;
8c9f3aaf 9324 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9325 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9326
9327 intel_mark_page_flip_active(intel_crtc);
09246732 9328 __intel_ring_advance(ring);
83d4092b 9329 return 0;
8c9f3aaf
JB
9330}
9331
7c9017e5
JB
9332static int intel_gen7_queue_flip(struct drm_device *dev,
9333 struct drm_crtc *crtc,
9334 struct drm_framebuffer *fb,
ed8d1975 9335 struct drm_i915_gem_object *obj,
a4872ba6 9336 struct intel_engine_cs *ring,
ed8d1975 9337 uint32_t flags)
7c9017e5 9338{
7c9017e5 9339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9340 uint32_t plane_bit = 0;
ffe74d75
CW
9341 int len, ret;
9342
eba905b2 9343 switch (intel_crtc->plane) {
cb05d8de
DV
9344 case PLANE_A:
9345 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9346 break;
9347 case PLANE_B:
9348 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9349 break;
9350 case PLANE_C:
9351 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9352 break;
9353 default:
9354 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9355 return -ENODEV;
cb05d8de
DV
9356 }
9357
ffe74d75 9358 len = 4;
f476828a 9359 if (ring->id == RCS) {
ffe74d75 9360 len += 6;
f476828a
DL
9361 /*
9362 * On Gen 8, SRM is now taking an extra dword to accommodate
9363 * 48bits addresses, and we need a NOOP for the batch size to
9364 * stay even.
9365 */
9366 if (IS_GEN8(dev))
9367 len += 2;
9368 }
ffe74d75 9369
f66fab8e
VS
9370 /*
9371 * BSpec MI_DISPLAY_FLIP for IVB:
9372 * "The full packet must be contained within the same cache line."
9373 *
9374 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9375 * cacheline, if we ever start emitting more commands before
9376 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9377 * then do the cacheline alignment, and finally emit the
9378 * MI_DISPLAY_FLIP.
9379 */
9380 ret = intel_ring_cacheline_align(ring);
9381 if (ret)
4fa62c89 9382 return ret;
f66fab8e 9383
ffe74d75 9384 ret = intel_ring_begin(ring, len);
7c9017e5 9385 if (ret)
4fa62c89 9386 return ret;
7c9017e5 9387
ffe74d75
CW
9388 /* Unmask the flip-done completion message. Note that the bspec says that
9389 * we should do this for both the BCS and RCS, and that we must not unmask
9390 * more than one flip event at any time (or ensure that one flip message
9391 * can be sent by waiting for flip-done prior to queueing new flips).
9392 * Experimentation says that BCS works despite DERRMR masking all
9393 * flip-done completion events and that unmasking all planes at once
9394 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9395 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9396 */
9397 if (ring->id == RCS) {
9398 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9399 intel_ring_emit(ring, DERRMR);
9400 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9401 DERRMR_PIPEB_PRI_FLIP_DONE |
9402 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9403 if (IS_GEN8(dev))
9404 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9405 MI_SRM_LRM_GLOBAL_GTT);
9406 else
9407 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9408 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9409 intel_ring_emit(ring, DERRMR);
9410 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9411 if (IS_GEN8(dev)) {
9412 intel_ring_emit(ring, 0);
9413 intel_ring_emit(ring, MI_NOOP);
9414 }
ffe74d75
CW
9415 }
9416
cb05d8de 9417 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9418 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9420 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9421
9422 intel_mark_page_flip_active(intel_crtc);
09246732 9423 __intel_ring_advance(ring);
83d4092b 9424 return 0;
7c9017e5
JB
9425}
9426
84c33a64
SG
9427static bool use_mmio_flip(struct intel_engine_cs *ring,
9428 struct drm_i915_gem_object *obj)
9429{
9430 /*
9431 * This is not being used for older platforms, because
9432 * non-availability of flip done interrupt forces us to use
9433 * CS flips. Older platforms derive flip done using some clever
9434 * tricks involving the flip_pending status bits and vblank irqs.
9435 * So using MMIO flips there would disrupt this mechanism.
9436 */
9437
8e09bf83
CW
9438 if (ring == NULL)
9439 return true;
9440
84c33a64
SG
9441 if (INTEL_INFO(ring->dev)->gen < 5)
9442 return false;
9443
9444 if (i915.use_mmio_flip < 0)
9445 return false;
9446 else if (i915.use_mmio_flip > 0)
9447 return true;
14bf993e
OM
9448 else if (i915.enable_execlists)
9449 return true;
84c33a64 9450 else
41c52415 9451 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9452}
9453
ff944564
DL
9454static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9455{
9456 struct drm_device *dev = intel_crtc->base.dev;
9457 struct drm_i915_private *dev_priv = dev->dev_private;
9458 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9459 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9460 struct drm_i915_gem_object *obj = intel_fb->obj;
9461 const enum pipe pipe = intel_crtc->pipe;
9462 u32 ctl, stride;
9463
9464 ctl = I915_READ(PLANE_CTL(pipe, 0));
9465 ctl &= ~PLANE_CTL_TILED_MASK;
9466 if (obj->tiling_mode == I915_TILING_X)
9467 ctl |= PLANE_CTL_TILED_X;
9468
9469 /*
9470 * The stride is either expressed as a multiple of 64 bytes chunks for
9471 * linear buffers or in number of tiles for tiled buffers.
9472 */
9473 stride = fb->pitches[0] >> 6;
9474 if (obj->tiling_mode == I915_TILING_X)
9475 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9476
9477 /*
9478 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9479 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9480 */
9481 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9482 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9483
9484 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9485 POSTING_READ(PLANE_SURF(pipe, 0));
9486}
9487
9488static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9489{
9490 struct drm_device *dev = intel_crtc->base.dev;
9491 struct drm_i915_private *dev_priv = dev->dev_private;
9492 struct intel_framebuffer *intel_fb =
9493 to_intel_framebuffer(intel_crtc->base.primary->fb);
9494 struct drm_i915_gem_object *obj = intel_fb->obj;
9495 u32 dspcntr;
9496 u32 reg;
9497
84c33a64
SG
9498 reg = DSPCNTR(intel_crtc->plane);
9499 dspcntr = I915_READ(reg);
9500
c5d97472
DL
9501 if (obj->tiling_mode != I915_TILING_NONE)
9502 dspcntr |= DISPPLANE_TILED;
9503 else
9504 dspcntr &= ~DISPPLANE_TILED;
9505
84c33a64
SG
9506 I915_WRITE(reg, dspcntr);
9507
9508 I915_WRITE(DSPSURF(intel_crtc->plane),
9509 intel_crtc->unpin_work->gtt_offset);
9510 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9511
ff944564
DL
9512}
9513
9514/*
9515 * XXX: This is the temporary way to update the plane registers until we get
9516 * around to using the usual plane update functions for MMIO flips
9517 */
9518static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9519{
9520 struct drm_device *dev = intel_crtc->base.dev;
9521 bool atomic_update;
9522 u32 start_vbl_count;
9523
9524 intel_mark_page_flip_active(intel_crtc);
9525
9526 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9527
9528 if (INTEL_INFO(dev)->gen >= 9)
9529 skl_do_mmio_flip(intel_crtc);
9530 else
9531 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9532 ilk_do_mmio_flip(intel_crtc);
9533
9362c7c5
ACO
9534 if (atomic_update)
9535 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9536}
9537
9362c7c5 9538static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9539{
cc8c4cc2 9540 struct intel_crtc *crtc =
9362c7c5 9541 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9542 struct intel_mmio_flip *mmio_flip;
84c33a64 9543
cc8c4cc2
JH
9544 mmio_flip = &crtc->mmio_flip;
9545 if (mmio_flip->req)
9c654818
JH
9546 WARN_ON(__i915_wait_request(mmio_flip->req,
9547 crtc->reset_counter,
9548 false, NULL, NULL) != 0);
84c33a64 9549
cc8c4cc2
JH
9550 intel_do_mmio_flip(crtc);
9551 if (mmio_flip->req) {
9552 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9553 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9554 mutex_unlock(&crtc->base.dev->struct_mutex);
9555 }
84c33a64
SG
9556}
9557
9558static int intel_queue_mmio_flip(struct drm_device *dev,
9559 struct drm_crtc *crtc,
9560 struct drm_framebuffer *fb,
9561 struct drm_i915_gem_object *obj,
9562 struct intel_engine_cs *ring,
9563 uint32_t flags)
9564{
84c33a64 9565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9566
cc8c4cc2
JH
9567 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9568 obj->last_write_req);
536f5b5e
ACO
9569
9570 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9571
84c33a64
SG
9572 return 0;
9573}
9574
830c81db
DL
9575static int intel_gen9_queue_flip(struct drm_device *dev,
9576 struct drm_crtc *crtc,
9577 struct drm_framebuffer *fb,
9578 struct drm_i915_gem_object *obj,
9579 struct intel_engine_cs *ring,
9580 uint32_t flags)
9581{
9582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9583 uint32_t plane = 0, stride;
9584 int ret;
9585
9586 switch(intel_crtc->pipe) {
9587 case PIPE_A:
9588 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9589 break;
9590 case PIPE_B:
9591 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9592 break;
9593 case PIPE_C:
9594 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9595 break;
9596 default:
9597 WARN_ONCE(1, "unknown plane in flip command\n");
9598 return -ENODEV;
9599 }
9600
9601 switch (obj->tiling_mode) {
9602 case I915_TILING_NONE:
9603 stride = fb->pitches[0] >> 6;
9604 break;
9605 case I915_TILING_X:
9606 stride = fb->pitches[0] >> 9;
9607 break;
9608 default:
9609 WARN_ONCE(1, "unknown tiling in flip command\n");
9610 return -ENODEV;
9611 }
9612
9613 ret = intel_ring_begin(ring, 10);
9614 if (ret)
9615 return ret;
9616
9617 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9618 intel_ring_emit(ring, DERRMR);
9619 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9620 DERRMR_PIPEB_PRI_FLIP_DONE |
9621 DERRMR_PIPEC_PRI_FLIP_DONE));
9622 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9623 MI_SRM_LRM_GLOBAL_GTT);
9624 intel_ring_emit(ring, DERRMR);
9625 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9626 intel_ring_emit(ring, 0);
9627
9628 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9629 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9630 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9631
9632 intel_mark_page_flip_active(intel_crtc);
9633 __intel_ring_advance(ring);
9634
9635 return 0;
9636}
9637
8c9f3aaf
JB
9638static int intel_default_queue_flip(struct drm_device *dev,
9639 struct drm_crtc *crtc,
9640 struct drm_framebuffer *fb,
ed8d1975 9641 struct drm_i915_gem_object *obj,
a4872ba6 9642 struct intel_engine_cs *ring,
ed8d1975 9643 uint32_t flags)
8c9f3aaf
JB
9644{
9645 return -ENODEV;
9646}
9647
d6bbafa1
CW
9648static bool __intel_pageflip_stall_check(struct drm_device *dev,
9649 struct drm_crtc *crtc)
9650{
9651 struct drm_i915_private *dev_priv = dev->dev_private;
9652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9653 struct intel_unpin_work *work = intel_crtc->unpin_work;
9654 u32 addr;
9655
9656 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9657 return true;
9658
9659 if (!work->enable_stall_check)
9660 return false;
9661
9662 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9663 if (work->flip_queued_req &&
9664 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9665 return false;
9666
9667 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9668 }
9669
9670 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9671 return false;
9672
9673 /* Potential stall - if we see that the flip has happened,
9674 * assume a missed interrupt. */
9675 if (INTEL_INFO(dev)->gen >= 4)
9676 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9677 else
9678 addr = I915_READ(DSPADDR(intel_crtc->plane));
9679
9680 /* There is a potential issue here with a false positive after a flip
9681 * to the same address. We could address this by checking for a
9682 * non-incrementing frame counter.
9683 */
9684 return addr == work->gtt_offset;
9685}
9686
9687void intel_check_page_flip(struct drm_device *dev, int pipe)
9688{
9689 struct drm_i915_private *dev_priv = dev->dev_private;
9690 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9692
9693 WARN_ON(!in_irq());
d6bbafa1
CW
9694
9695 if (crtc == NULL)
9696 return;
9697
f326038a 9698 spin_lock(&dev->event_lock);
d6bbafa1
CW
9699 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9700 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9701 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9702 page_flip_completed(intel_crtc);
9703 }
f326038a 9704 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9705}
9706
6b95a207
KH
9707static int intel_crtc_page_flip(struct drm_crtc *crtc,
9708 struct drm_framebuffer *fb,
ed8d1975
KP
9709 struct drm_pending_vblank_event *event,
9710 uint32_t page_flip_flags)
6b95a207
KH
9711{
9712 struct drm_device *dev = crtc->dev;
9713 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9714 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9715 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9717 struct drm_plane *primary = crtc->primary;
a071fa00 9718 enum pipe pipe = intel_crtc->pipe;
6b95a207 9719 struct intel_unpin_work *work;
a4872ba6 9720 struct intel_engine_cs *ring;
52e68630 9721 int ret;
6b95a207 9722
2ff8fde1
MR
9723 /*
9724 * drm_mode_page_flip_ioctl() should already catch this, but double
9725 * check to be safe. In the future we may enable pageflipping from
9726 * a disabled primary plane.
9727 */
9728 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9729 return -EBUSY;
9730
e6a595d2 9731 /* Can't change pixel format via MI display flips. */
f4510a27 9732 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9733 return -EINVAL;
9734
9735 /*
9736 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9737 * Note that pitch changes could also affect these register.
9738 */
9739 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9740 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9741 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9742 return -EINVAL;
9743
f900db47
CW
9744 if (i915_terminally_wedged(&dev_priv->gpu_error))
9745 goto out_hang;
9746
b14c5679 9747 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9748 if (work == NULL)
9749 return -ENOMEM;
9750
6b95a207 9751 work->event = event;
b4a98e57 9752 work->crtc = crtc;
2ff8fde1 9753 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9754 INIT_WORK(&work->work, intel_unpin_work_fn);
9755
87b6b101 9756 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9757 if (ret)
9758 goto free_work;
9759
6b95a207 9760 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9761 spin_lock_irq(&dev->event_lock);
6b95a207 9762 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9763 /* Before declaring the flip queue wedged, check if
9764 * the hardware completed the operation behind our backs.
9765 */
9766 if (__intel_pageflip_stall_check(dev, crtc)) {
9767 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9768 page_flip_completed(intel_crtc);
9769 } else {
9770 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9771 spin_unlock_irq(&dev->event_lock);
468f0b44 9772
d6bbafa1
CW
9773 drm_crtc_vblank_put(crtc);
9774 kfree(work);
9775 return -EBUSY;
9776 }
6b95a207
KH
9777 }
9778 intel_crtc->unpin_work = work;
5e2d7afc 9779 spin_unlock_irq(&dev->event_lock);
6b95a207 9780
b4a98e57
CW
9781 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9782 flush_workqueue(dev_priv->wq);
9783
79158103
CW
9784 ret = i915_mutex_lock_interruptible(dev);
9785 if (ret)
9786 goto cleanup;
6b95a207 9787
75dfca80 9788 /* Reference the objects for the scheduled work. */
05394f39
CW
9789 drm_gem_object_reference(&work->old_fb_obj->base);
9790 drm_gem_object_reference(&obj->base);
6b95a207 9791
f4510a27 9792 crtc->primary->fb = fb;
96b099fd 9793
e1f99ce6 9794 work->pending_flip_obj = obj;
e1f99ce6 9795
b4a98e57 9796 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9797 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9798
75f7f3ec 9799 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9800 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9801
4fa62c89
VS
9802 if (IS_VALLEYVIEW(dev)) {
9803 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9804 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9805 /* vlv: DISPLAY_FLIP fails to change tiling */
9806 ring = NULL;
48bf5b2d 9807 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9808 ring = &dev_priv->ring[BCS];
4fa62c89 9809 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9810 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9811 if (ring == NULL || ring->id != RCS)
9812 ring = &dev_priv->ring[BCS];
9813 } else {
9814 ring = &dev_priv->ring[RCS];
9815 }
9816
850c4cdc 9817 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9818 if (ret)
9819 goto cleanup_pending;
6b95a207 9820
4fa62c89
VS
9821 work->gtt_offset =
9822 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9823
d6bbafa1 9824 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9825 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9826 page_flip_flags);
d6bbafa1
CW
9827 if (ret)
9828 goto cleanup_unpin;
9829
f06cc1b9
JH
9830 i915_gem_request_assign(&work->flip_queued_req,
9831 obj->last_write_req);
d6bbafa1 9832 } else {
84c33a64 9833 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9834 page_flip_flags);
9835 if (ret)
9836 goto cleanup_unpin;
9837
f06cc1b9
JH
9838 i915_gem_request_assign(&work->flip_queued_req,
9839 intel_ring_get_request(ring));
d6bbafa1
CW
9840 }
9841
9842 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9843 work->enable_stall_check = true;
4fa62c89 9844
a071fa00
DV
9845 i915_gem_track_fb(work->old_fb_obj, obj,
9846 INTEL_FRONTBUFFER_PRIMARY(pipe));
9847
7ff0ebcc 9848 intel_fbc_disable(dev);
f99d7069 9849 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9850 mutex_unlock(&dev->struct_mutex);
9851
e5510fac
JB
9852 trace_i915_flip_request(intel_crtc->plane, obj);
9853
6b95a207 9854 return 0;
96b099fd 9855
4fa62c89
VS
9856cleanup_unpin:
9857 intel_unpin_fb_obj(obj);
8c9f3aaf 9858cleanup_pending:
b4a98e57 9859 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9860 crtc->primary->fb = old_fb;
05394f39
CW
9861 drm_gem_object_unreference(&work->old_fb_obj->base);
9862 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9863 mutex_unlock(&dev->struct_mutex);
9864
79158103 9865cleanup:
5e2d7afc 9866 spin_lock_irq(&dev->event_lock);
96b099fd 9867 intel_crtc->unpin_work = NULL;
5e2d7afc 9868 spin_unlock_irq(&dev->event_lock);
96b099fd 9869
87b6b101 9870 drm_crtc_vblank_put(crtc);
7317c75e 9871free_work:
96b099fd
CW
9872 kfree(work);
9873
f900db47
CW
9874 if (ret == -EIO) {
9875out_hang:
53a366b9 9876 ret = intel_plane_restore(primary);
f0d3dad3 9877 if (ret == 0 && event) {
5e2d7afc 9878 spin_lock_irq(&dev->event_lock);
a071fa00 9879 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9880 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9881 }
f900db47 9882 }
96b099fd 9883 return ret;
6b95a207
KH
9884}
9885
f6e5b160 9886static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9887 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9888 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9889 .atomic_begin = intel_begin_crtc_commit,
9890 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9891};
9892
9a935856
DV
9893/**
9894 * intel_modeset_update_staged_output_state
9895 *
9896 * Updates the staged output configuration state, e.g. after we've read out the
9897 * current hw state.
9898 */
9899static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9900{
7668851f 9901 struct intel_crtc *crtc;
9a935856
DV
9902 struct intel_encoder *encoder;
9903 struct intel_connector *connector;
f6e5b160 9904
9a935856
DV
9905 list_for_each_entry(connector, &dev->mode_config.connector_list,
9906 base.head) {
9907 connector->new_encoder =
9908 to_intel_encoder(connector->base.encoder);
9909 }
f6e5b160 9910
b2784e15 9911 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9912 encoder->new_crtc =
9913 to_intel_crtc(encoder->base.crtc);
9914 }
7668851f 9915
d3fcc808 9916 for_each_intel_crtc(dev, crtc) {
7668851f 9917 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9918
9919 if (crtc->new_enabled)
6e3c9717 9920 crtc->new_config = crtc->config;
7bd0a8e7
VS
9921 else
9922 crtc->new_config = NULL;
7668851f 9923 }
f6e5b160
CW
9924}
9925
9a935856
DV
9926/**
9927 * intel_modeset_commit_output_state
9928 *
9929 * This function copies the stage display pipe configuration to the real one.
9930 */
9931static void intel_modeset_commit_output_state(struct drm_device *dev)
9932{
7668851f 9933 struct intel_crtc *crtc;
9a935856
DV
9934 struct intel_encoder *encoder;
9935 struct intel_connector *connector;
f6e5b160 9936
9a935856
DV
9937 list_for_each_entry(connector, &dev->mode_config.connector_list,
9938 base.head) {
9939 connector->base.encoder = &connector->new_encoder->base;
9940 }
f6e5b160 9941
b2784e15 9942 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9943 encoder->base.crtc = &encoder->new_crtc->base;
9944 }
7668851f 9945
d3fcc808 9946 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9947 crtc->base.enabled = crtc->new_enabled;
9948 }
9a935856
DV
9949}
9950
050f7aeb 9951static void
eba905b2 9952connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 9953 struct intel_crtc_state *pipe_config)
050f7aeb
DV
9954{
9955 int bpp = pipe_config->pipe_bpp;
9956
9957 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9958 connector->base.base.id,
c23cc417 9959 connector->base.name);
050f7aeb
DV
9960
9961 /* Don't use an invalid EDID bpc value */
9962 if (connector->base.display_info.bpc &&
9963 connector->base.display_info.bpc * 3 < bpp) {
9964 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9965 bpp, connector->base.display_info.bpc*3);
9966 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9967 }
9968
9969 /* Clamp bpp to 8 on screens without EDID 1.4 */
9970 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9971 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9972 bpp);
9973 pipe_config->pipe_bpp = 24;
9974 }
9975}
9976
4e53c2e0 9977static int
050f7aeb
DV
9978compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9979 struct drm_framebuffer *fb,
5cec258b 9980 struct intel_crtc_state *pipe_config)
4e53c2e0 9981{
050f7aeb
DV
9982 struct drm_device *dev = crtc->base.dev;
9983 struct intel_connector *connector;
4e53c2e0
DV
9984 int bpp;
9985
d42264b1
DV
9986 switch (fb->pixel_format) {
9987 case DRM_FORMAT_C8:
4e53c2e0
DV
9988 bpp = 8*3; /* since we go through a colormap */
9989 break;
d42264b1
DV
9990 case DRM_FORMAT_XRGB1555:
9991 case DRM_FORMAT_ARGB1555:
9992 /* checked in intel_framebuffer_init already */
9993 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9994 return -EINVAL;
9995 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9996 bpp = 6*3; /* min is 18bpp */
9997 break;
d42264b1
DV
9998 case DRM_FORMAT_XBGR8888:
9999 case DRM_FORMAT_ABGR8888:
10000 /* checked in intel_framebuffer_init already */
10001 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10002 return -EINVAL;
10003 case DRM_FORMAT_XRGB8888:
10004 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10005 bpp = 8*3;
10006 break;
d42264b1
DV
10007 case DRM_FORMAT_XRGB2101010:
10008 case DRM_FORMAT_ARGB2101010:
10009 case DRM_FORMAT_XBGR2101010:
10010 case DRM_FORMAT_ABGR2101010:
10011 /* checked in intel_framebuffer_init already */
10012 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10013 return -EINVAL;
4e53c2e0
DV
10014 bpp = 10*3;
10015 break;
baba133a 10016 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10017 default:
10018 DRM_DEBUG_KMS("unsupported depth\n");
10019 return -EINVAL;
10020 }
10021
4e53c2e0
DV
10022 pipe_config->pipe_bpp = bpp;
10023
10024 /* Clamp display bpp to EDID value */
10025 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10026 base.head) {
1b829e05
DV
10027 if (!connector->new_encoder ||
10028 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10029 continue;
10030
050f7aeb 10031 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10032 }
10033
10034 return bpp;
10035}
10036
644db711
DV
10037static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10038{
10039 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10040 "type: 0x%x flags: 0x%x\n",
1342830c 10041 mode->crtc_clock,
644db711
DV
10042 mode->crtc_hdisplay, mode->crtc_hsync_start,
10043 mode->crtc_hsync_end, mode->crtc_htotal,
10044 mode->crtc_vdisplay, mode->crtc_vsync_start,
10045 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10046}
10047
c0b03411 10048static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10049 struct intel_crtc_state *pipe_config,
c0b03411
DV
10050 const char *context)
10051{
10052 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10053 context, pipe_name(crtc->pipe));
10054
10055 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10056 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10057 pipe_config->pipe_bpp, pipe_config->dither);
10058 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10059 pipe_config->has_pch_encoder,
10060 pipe_config->fdi_lanes,
10061 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10062 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10063 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10064 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10065 pipe_config->has_dp_encoder,
10066 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10067 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10068 pipe_config->dp_m_n.tu);
b95af8be
VK
10069
10070 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10071 pipe_config->has_dp_encoder,
10072 pipe_config->dp_m2_n2.gmch_m,
10073 pipe_config->dp_m2_n2.gmch_n,
10074 pipe_config->dp_m2_n2.link_m,
10075 pipe_config->dp_m2_n2.link_n,
10076 pipe_config->dp_m2_n2.tu);
10077
55072d19
DV
10078 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10079 pipe_config->has_audio,
10080 pipe_config->has_infoframe);
10081
c0b03411 10082 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10083 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10084 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10085 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10086 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10087 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10088 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10089 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10090 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10091 pipe_config->gmch_pfit.control,
10092 pipe_config->gmch_pfit.pgm_ratios,
10093 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10094 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10095 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10096 pipe_config->pch_pfit.size,
10097 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10098 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10099 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10100}
10101
bc079e8b
VS
10102static bool encoders_cloneable(const struct intel_encoder *a,
10103 const struct intel_encoder *b)
accfc0c5 10104{
bc079e8b
VS
10105 /* masks could be asymmetric, so check both ways */
10106 return a == b || (a->cloneable & (1 << b->type) &&
10107 b->cloneable & (1 << a->type));
10108}
10109
10110static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10111 struct intel_encoder *encoder)
10112{
10113 struct drm_device *dev = crtc->base.dev;
10114 struct intel_encoder *source_encoder;
10115
b2784e15 10116 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10117 if (source_encoder->new_crtc != crtc)
10118 continue;
10119
10120 if (!encoders_cloneable(encoder, source_encoder))
10121 return false;
10122 }
10123
10124 return true;
10125}
10126
10127static bool check_encoder_cloning(struct intel_crtc *crtc)
10128{
10129 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10130 struct intel_encoder *encoder;
10131
b2784e15 10132 for_each_intel_encoder(dev, encoder) {
bc079e8b 10133 if (encoder->new_crtc != crtc)
accfc0c5
DV
10134 continue;
10135
bc079e8b
VS
10136 if (!check_single_encoder_cloning(crtc, encoder))
10137 return false;
accfc0c5
DV
10138 }
10139
bc079e8b 10140 return true;
accfc0c5
DV
10141}
10142
00f0b378
VS
10143static bool check_digital_port_conflicts(struct drm_device *dev)
10144{
10145 struct intel_connector *connector;
10146 unsigned int used_ports = 0;
10147
10148 /*
10149 * Walk the connector list instead of the encoder
10150 * list to detect the problem on ddi platforms
10151 * where there's just one encoder per digital port.
10152 */
10153 list_for_each_entry(connector,
10154 &dev->mode_config.connector_list, base.head) {
10155 struct intel_encoder *encoder = connector->new_encoder;
10156
10157 if (!encoder)
10158 continue;
10159
10160 WARN_ON(!encoder->new_crtc);
10161
10162 switch (encoder->type) {
10163 unsigned int port_mask;
10164 case INTEL_OUTPUT_UNKNOWN:
10165 if (WARN_ON(!HAS_DDI(dev)))
10166 break;
10167 case INTEL_OUTPUT_DISPLAYPORT:
10168 case INTEL_OUTPUT_HDMI:
10169 case INTEL_OUTPUT_EDP:
10170 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10171
10172 /* the same port mustn't appear more than once */
10173 if (used_ports & port_mask)
10174 return false;
10175
10176 used_ports |= port_mask;
10177 default:
10178 break;
10179 }
10180 }
10181
10182 return true;
10183}
10184
5cec258b 10185static struct intel_crtc_state *
b8cecdf5 10186intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10187 struct drm_framebuffer *fb,
b8cecdf5 10188 struct drm_display_mode *mode)
ee7b9f93 10189{
7758a113 10190 struct drm_device *dev = crtc->dev;
7758a113 10191 struct intel_encoder *encoder;
5cec258b 10192 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10193 int plane_bpp, ret = -EINVAL;
10194 bool retry = true;
ee7b9f93 10195
bc079e8b 10196 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10197 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10198 return ERR_PTR(-EINVAL);
10199 }
10200
00f0b378
VS
10201 if (!check_digital_port_conflicts(dev)) {
10202 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10203 return ERR_PTR(-EINVAL);
10204 }
10205
b8cecdf5
DV
10206 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10207 if (!pipe_config)
7758a113
DV
10208 return ERR_PTR(-ENOMEM);
10209
2d112de7
ACO
10210 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10211 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10212
e143a21c
DV
10213 pipe_config->cpu_transcoder =
10214 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10215 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10216
2960bc9c
ID
10217 /*
10218 * Sanitize sync polarity flags based on requested ones. If neither
10219 * positive or negative polarity is requested, treat this as meaning
10220 * negative polarity.
10221 */
2d112de7 10222 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10223 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10224 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10225
2d112de7 10226 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10227 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10228 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10229
050f7aeb
DV
10230 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10231 * plane pixel format and any sink constraints into account. Returns the
10232 * source plane bpp so that dithering can be selected on mismatches
10233 * after encoders and crtc also have had their say. */
10234 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10235 fb, pipe_config);
4e53c2e0
DV
10236 if (plane_bpp < 0)
10237 goto fail;
10238
e41a56be
VS
10239 /*
10240 * Determine the real pipe dimensions. Note that stereo modes can
10241 * increase the actual pipe size due to the frame doubling and
10242 * insertion of additional space for blanks between the frame. This
10243 * is stored in the crtc timings. We use the requested mode to do this
10244 * computation to clearly distinguish it from the adjusted mode, which
10245 * can be changed by the connectors in the below retry loop.
10246 */
2d112de7 10247 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10248 &pipe_config->pipe_src_w,
10249 &pipe_config->pipe_src_h);
e41a56be 10250
e29c22c0 10251encoder_retry:
ef1b460d 10252 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10253 pipe_config->port_clock = 0;
ef1b460d 10254 pipe_config->pixel_multiplier = 1;
ff9a6750 10255
135c81b8 10256 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10257 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10258 CRTC_STEREO_DOUBLE);
135c81b8 10259
7758a113
DV
10260 /* Pass our mode to the connectors and the CRTC to give them a chance to
10261 * adjust it according to limitations or connector properties, and also
10262 * a chance to reject the mode entirely.
47f1c6c9 10263 */
b2784e15 10264 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10265
7758a113
DV
10266 if (&encoder->new_crtc->base != crtc)
10267 continue;
7ae89233 10268
efea6e8e
DV
10269 if (!(encoder->compute_config(encoder, pipe_config))) {
10270 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10271 goto fail;
10272 }
ee7b9f93 10273 }
47f1c6c9 10274
ff9a6750
DV
10275 /* Set default port clock if not overwritten by the encoder. Needs to be
10276 * done afterwards in case the encoder adjusts the mode. */
10277 if (!pipe_config->port_clock)
2d112de7 10278 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10279 * pipe_config->pixel_multiplier;
ff9a6750 10280
a43f6e0f 10281 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10282 if (ret < 0) {
7758a113
DV
10283 DRM_DEBUG_KMS("CRTC fixup failed\n");
10284 goto fail;
ee7b9f93 10285 }
e29c22c0
DV
10286
10287 if (ret == RETRY) {
10288 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10289 ret = -EINVAL;
10290 goto fail;
10291 }
10292
10293 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10294 retry = false;
10295 goto encoder_retry;
10296 }
10297
4e53c2e0
DV
10298 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10299 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10300 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10301
b8cecdf5 10302 return pipe_config;
7758a113 10303fail:
b8cecdf5 10304 kfree(pipe_config);
e29c22c0 10305 return ERR_PTR(ret);
ee7b9f93 10306}
47f1c6c9 10307
e2e1ed41
DV
10308/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10309 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10310static void
10311intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10312 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10313{
10314 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10315 struct drm_device *dev = crtc->dev;
10316 struct intel_encoder *encoder;
10317 struct intel_connector *connector;
10318 struct drm_crtc *tmp_crtc;
79e53945 10319
e2e1ed41 10320 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10321
e2e1ed41
DV
10322 /* Check which crtcs have changed outputs connected to them, these need
10323 * to be part of the prepare_pipes mask. We don't (yet) support global
10324 * modeset across multiple crtcs, so modeset_pipes will only have one
10325 * bit set at most. */
10326 list_for_each_entry(connector, &dev->mode_config.connector_list,
10327 base.head) {
10328 if (connector->base.encoder == &connector->new_encoder->base)
10329 continue;
79e53945 10330
e2e1ed41
DV
10331 if (connector->base.encoder) {
10332 tmp_crtc = connector->base.encoder->crtc;
10333
10334 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10335 }
10336
10337 if (connector->new_encoder)
10338 *prepare_pipes |=
10339 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10340 }
10341
b2784e15 10342 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10343 if (encoder->base.crtc == &encoder->new_crtc->base)
10344 continue;
10345
10346 if (encoder->base.crtc) {
10347 tmp_crtc = encoder->base.crtc;
10348
10349 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10350 }
10351
10352 if (encoder->new_crtc)
10353 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10354 }
10355
7668851f 10356 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10357 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10358 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10359 continue;
7e7d76c3 10360
7668851f 10361 if (!intel_crtc->new_enabled)
e2e1ed41 10362 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10363 else
10364 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10365 }
10366
e2e1ed41
DV
10367
10368 /* set_mode is also used to update properties on life display pipes. */
10369 intel_crtc = to_intel_crtc(crtc);
7668851f 10370 if (intel_crtc->new_enabled)
e2e1ed41
DV
10371 *prepare_pipes |= 1 << intel_crtc->pipe;
10372
b6c5164d
DV
10373 /*
10374 * For simplicity do a full modeset on any pipe where the output routing
10375 * changed. We could be more clever, but that would require us to be
10376 * more careful with calling the relevant encoder->mode_set functions.
10377 */
e2e1ed41
DV
10378 if (*prepare_pipes)
10379 *modeset_pipes = *prepare_pipes;
10380
10381 /* ... and mask these out. */
10382 *modeset_pipes &= ~(*disable_pipes);
10383 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10384
10385 /*
10386 * HACK: We don't (yet) fully support global modesets. intel_set_config
10387 * obies this rule, but the modeset restore mode of
10388 * intel_modeset_setup_hw_state does not.
10389 */
10390 *modeset_pipes &= 1 << intel_crtc->pipe;
10391 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10392
10393 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10394 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10395}
79e53945 10396
ea9d758d 10397static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10398{
ea9d758d 10399 struct drm_encoder *encoder;
f6e5b160 10400 struct drm_device *dev = crtc->dev;
f6e5b160 10401
ea9d758d
DV
10402 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10403 if (encoder->crtc == crtc)
10404 return true;
10405
10406 return false;
10407}
10408
10409static void
10410intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10411{
ba41c0de 10412 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10413 struct intel_encoder *intel_encoder;
10414 struct intel_crtc *intel_crtc;
10415 struct drm_connector *connector;
10416
ba41c0de
DV
10417 intel_shared_dpll_commit(dev_priv);
10418
b2784e15 10419 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10420 if (!intel_encoder->base.crtc)
10421 continue;
10422
10423 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10424
10425 if (prepare_pipes & (1 << intel_crtc->pipe))
10426 intel_encoder->connectors_active = false;
10427 }
10428
10429 intel_modeset_commit_output_state(dev);
10430
7668851f 10431 /* Double check state. */
d3fcc808 10432 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10433 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10434 WARN_ON(intel_crtc->new_config &&
6e3c9717 10435 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10436 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10437 }
10438
10439 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10440 if (!connector->encoder || !connector->encoder->crtc)
10441 continue;
10442
10443 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10444
10445 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10446 struct drm_property *dpms_property =
10447 dev->mode_config.dpms_property;
10448
ea9d758d 10449 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10450 drm_object_property_set_value(&connector->base,
68d34720
DV
10451 dpms_property,
10452 DRM_MODE_DPMS_ON);
ea9d758d
DV
10453
10454 intel_encoder = to_intel_encoder(connector->encoder);
10455 intel_encoder->connectors_active = true;
10456 }
10457 }
10458
10459}
10460
3bd26263 10461static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10462{
3bd26263 10463 int diff;
f1f644dc
JB
10464
10465 if (clock1 == clock2)
10466 return true;
10467
10468 if (!clock1 || !clock2)
10469 return false;
10470
10471 diff = abs(clock1 - clock2);
10472
10473 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10474 return true;
10475
10476 return false;
10477}
10478
25c5b266
DV
10479#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10480 list_for_each_entry((intel_crtc), \
10481 &(dev)->mode_config.crtc_list, \
10482 base.head) \
0973f18f 10483 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10484
0e8ffe1b 10485static bool
2fa2fe9a 10486intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10487 struct intel_crtc_state *current_config,
10488 struct intel_crtc_state *pipe_config)
0e8ffe1b 10489{
66e985c0
DV
10490#define PIPE_CONF_CHECK_X(name) \
10491 if (current_config->name != pipe_config->name) { \
10492 DRM_ERROR("mismatch in " #name " " \
10493 "(expected 0x%08x, found 0x%08x)\n", \
10494 current_config->name, \
10495 pipe_config->name); \
10496 return false; \
10497 }
10498
08a24034
DV
10499#define PIPE_CONF_CHECK_I(name) \
10500 if (current_config->name != pipe_config->name) { \
10501 DRM_ERROR("mismatch in " #name " " \
10502 "(expected %i, found %i)\n", \
10503 current_config->name, \
10504 pipe_config->name); \
10505 return false; \
88adfff1
DV
10506 }
10507
b95af8be
VK
10508/* This is required for BDW+ where there is only one set of registers for
10509 * switching between high and low RR.
10510 * This macro can be used whenever a comparison has to be made between one
10511 * hw state and multiple sw state variables.
10512 */
10513#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10514 if ((current_config->name != pipe_config->name) && \
10515 (current_config->alt_name != pipe_config->name)) { \
10516 DRM_ERROR("mismatch in " #name " " \
10517 "(expected %i or %i, found %i)\n", \
10518 current_config->name, \
10519 current_config->alt_name, \
10520 pipe_config->name); \
10521 return false; \
10522 }
10523
1bd1bd80
DV
10524#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10525 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10526 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10527 "(expected %i, found %i)\n", \
10528 current_config->name & (mask), \
10529 pipe_config->name & (mask)); \
10530 return false; \
10531 }
10532
5e550656
VS
10533#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10534 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10535 DRM_ERROR("mismatch in " #name " " \
10536 "(expected %i, found %i)\n", \
10537 current_config->name, \
10538 pipe_config->name); \
10539 return false; \
10540 }
10541
bb760063
DV
10542#define PIPE_CONF_QUIRK(quirk) \
10543 ((current_config->quirks | pipe_config->quirks) & (quirk))
10544
eccb140b
DV
10545 PIPE_CONF_CHECK_I(cpu_transcoder);
10546
08a24034
DV
10547 PIPE_CONF_CHECK_I(has_pch_encoder);
10548 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10549 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10550 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10551 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10552 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10553 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10554
eb14cb74 10555 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10556
10557 if (INTEL_INFO(dev)->gen < 8) {
10558 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10559 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10560 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10561 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10562 PIPE_CONF_CHECK_I(dp_m_n.tu);
10563
10564 if (current_config->has_drrs) {
10565 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10566 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10567 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10568 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10569 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10570 }
10571 } else {
10572 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10573 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10574 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10575 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10576 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10577 }
eb14cb74 10578
2d112de7
ACO
10579 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10580 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10581 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10582 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10583 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10584 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10585
2d112de7
ACO
10586 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10587 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10588 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10589 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10590 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10591 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10592
c93f54cf 10593 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10594 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10595 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10596 IS_VALLEYVIEW(dev))
10597 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10598 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10599
9ed109a7
DV
10600 PIPE_CONF_CHECK_I(has_audio);
10601
2d112de7 10602 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10603 DRM_MODE_FLAG_INTERLACE);
10604
bb760063 10605 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10606 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10607 DRM_MODE_FLAG_PHSYNC);
2d112de7 10608 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10609 DRM_MODE_FLAG_NHSYNC);
2d112de7 10610 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10611 DRM_MODE_FLAG_PVSYNC);
2d112de7 10612 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10613 DRM_MODE_FLAG_NVSYNC);
10614 }
045ac3b5 10615
37327abd
VS
10616 PIPE_CONF_CHECK_I(pipe_src_w);
10617 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10618
9953599b
DV
10619 /*
10620 * FIXME: BIOS likes to set up a cloned config with lvds+external
10621 * screen. Since we don't yet re-compute the pipe config when moving
10622 * just the lvds port away to another pipe the sw tracking won't match.
10623 *
10624 * Proper atomic modesets with recomputed global state will fix this.
10625 * Until then just don't check gmch state for inherited modes.
10626 */
10627 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10628 PIPE_CONF_CHECK_I(gmch_pfit.control);
10629 /* pfit ratios are autocomputed by the hw on gen4+ */
10630 if (INTEL_INFO(dev)->gen < 4)
10631 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10632 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10633 }
10634
fd4daa9c
CW
10635 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10636 if (current_config->pch_pfit.enabled) {
10637 PIPE_CONF_CHECK_I(pch_pfit.pos);
10638 PIPE_CONF_CHECK_I(pch_pfit.size);
10639 }
2fa2fe9a 10640
e59150dc
JB
10641 /* BDW+ don't expose a synchronous way to read the state */
10642 if (IS_HASWELL(dev))
10643 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10644
282740f7
VS
10645 PIPE_CONF_CHECK_I(double_wide);
10646
26804afd
DV
10647 PIPE_CONF_CHECK_X(ddi_pll_sel);
10648
c0d43d62 10649 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10650 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10651 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10652 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10653 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10654 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10655 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10656 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10657 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10658
42571aef
VS
10659 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10660 PIPE_CONF_CHECK_I(pipe_bpp);
10661
2d112de7 10662 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10663 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10664
66e985c0 10665#undef PIPE_CONF_CHECK_X
08a24034 10666#undef PIPE_CONF_CHECK_I
b95af8be 10667#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10668#undef PIPE_CONF_CHECK_FLAGS
5e550656 10669#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10670#undef PIPE_CONF_QUIRK
88adfff1 10671
0e8ffe1b
DV
10672 return true;
10673}
10674
08db6652
DL
10675static void check_wm_state(struct drm_device *dev)
10676{
10677 struct drm_i915_private *dev_priv = dev->dev_private;
10678 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10679 struct intel_crtc *intel_crtc;
10680 int plane;
10681
10682 if (INTEL_INFO(dev)->gen < 9)
10683 return;
10684
10685 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10686 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10687
10688 for_each_intel_crtc(dev, intel_crtc) {
10689 struct skl_ddb_entry *hw_entry, *sw_entry;
10690 const enum pipe pipe = intel_crtc->pipe;
10691
10692 if (!intel_crtc->active)
10693 continue;
10694
10695 /* planes */
10696 for_each_plane(pipe, plane) {
10697 hw_entry = &hw_ddb.plane[pipe][plane];
10698 sw_entry = &sw_ddb->plane[pipe][plane];
10699
10700 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10701 continue;
10702
10703 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10704 "(expected (%u,%u), found (%u,%u))\n",
10705 pipe_name(pipe), plane + 1,
10706 sw_entry->start, sw_entry->end,
10707 hw_entry->start, hw_entry->end);
10708 }
10709
10710 /* cursor */
10711 hw_entry = &hw_ddb.cursor[pipe];
10712 sw_entry = &sw_ddb->cursor[pipe];
10713
10714 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10715 continue;
10716
10717 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10718 "(expected (%u,%u), found (%u,%u))\n",
10719 pipe_name(pipe),
10720 sw_entry->start, sw_entry->end,
10721 hw_entry->start, hw_entry->end);
10722 }
10723}
10724
91d1b4bd
DV
10725static void
10726check_connector_state(struct drm_device *dev)
8af6cf88 10727{
8af6cf88
DV
10728 struct intel_connector *connector;
10729
10730 list_for_each_entry(connector, &dev->mode_config.connector_list,
10731 base.head) {
10732 /* This also checks the encoder/connector hw state with the
10733 * ->get_hw_state callbacks. */
10734 intel_connector_check_state(connector);
10735
e2c719b7 10736 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10737 "connector's staged encoder doesn't match current encoder\n");
10738 }
91d1b4bd
DV
10739}
10740
10741static void
10742check_encoder_state(struct drm_device *dev)
10743{
10744 struct intel_encoder *encoder;
10745 struct intel_connector *connector;
8af6cf88 10746
b2784e15 10747 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10748 bool enabled = false;
10749 bool active = false;
10750 enum pipe pipe, tracked_pipe;
10751
10752 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10753 encoder->base.base.id,
8e329a03 10754 encoder->base.name);
8af6cf88 10755
e2c719b7 10756 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10757 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10758 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10759 "encoder's active_connectors set, but no crtc\n");
10760
10761 list_for_each_entry(connector, &dev->mode_config.connector_list,
10762 base.head) {
10763 if (connector->base.encoder != &encoder->base)
10764 continue;
10765 enabled = true;
10766 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10767 active = true;
10768 }
0e32b39c
DA
10769 /*
10770 * for MST connectors if we unplug the connector is gone
10771 * away but the encoder is still connected to a crtc
10772 * until a modeset happens in response to the hotplug.
10773 */
10774 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10775 continue;
10776
e2c719b7 10777 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10778 "encoder's enabled state mismatch "
10779 "(expected %i, found %i)\n",
10780 !!encoder->base.crtc, enabled);
e2c719b7 10781 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10782 "active encoder with no crtc\n");
10783
e2c719b7 10784 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10785 "encoder's computed active state doesn't match tracked active state "
10786 "(expected %i, found %i)\n", active, encoder->connectors_active);
10787
10788 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10789 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10790 "encoder's hw state doesn't match sw tracking "
10791 "(expected %i, found %i)\n",
10792 encoder->connectors_active, active);
10793
10794 if (!encoder->base.crtc)
10795 continue;
10796
10797 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10798 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10799 "active encoder's pipe doesn't match"
10800 "(expected %i, found %i)\n",
10801 tracked_pipe, pipe);
10802
10803 }
91d1b4bd
DV
10804}
10805
10806static void
10807check_crtc_state(struct drm_device *dev)
10808{
fbee40df 10809 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10810 struct intel_crtc *crtc;
10811 struct intel_encoder *encoder;
5cec258b 10812 struct intel_crtc_state pipe_config;
8af6cf88 10813
d3fcc808 10814 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10815 bool enabled = false;
10816 bool active = false;
10817
045ac3b5
JB
10818 memset(&pipe_config, 0, sizeof(pipe_config));
10819
8af6cf88
DV
10820 DRM_DEBUG_KMS("[CRTC:%d]\n",
10821 crtc->base.base.id);
10822
e2c719b7 10823 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10824 "active crtc, but not enabled in sw tracking\n");
10825
b2784e15 10826 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10827 if (encoder->base.crtc != &crtc->base)
10828 continue;
10829 enabled = true;
10830 if (encoder->connectors_active)
10831 active = true;
10832 }
6c49f241 10833
e2c719b7 10834 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10835 "crtc's computed active state doesn't match tracked active state "
10836 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10837 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10838 "crtc's computed enabled state doesn't match tracked enabled state "
10839 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10840
0e8ffe1b
DV
10841 active = dev_priv->display.get_pipe_config(crtc,
10842 &pipe_config);
d62cf62a 10843
b6b5d049
VS
10844 /* hw state is inconsistent with the pipe quirk */
10845 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10846 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10847 active = crtc->active;
10848
b2784e15 10849 for_each_intel_encoder(dev, encoder) {
3eaba51c 10850 enum pipe pipe;
6c49f241
DV
10851 if (encoder->base.crtc != &crtc->base)
10852 continue;
1d37b689 10853 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10854 encoder->get_config(encoder, &pipe_config);
10855 }
10856
e2c719b7 10857 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10858 "crtc active state doesn't match with hw state "
10859 "(expected %i, found %i)\n", crtc->active, active);
10860
c0b03411 10861 if (active &&
6e3c9717 10862 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10863 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10864 intel_dump_pipe_config(crtc, &pipe_config,
10865 "[hw state]");
6e3c9717 10866 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10867 "[sw state]");
10868 }
8af6cf88
DV
10869 }
10870}
10871
91d1b4bd
DV
10872static void
10873check_shared_dpll_state(struct drm_device *dev)
10874{
fbee40df 10875 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10876 struct intel_crtc *crtc;
10877 struct intel_dpll_hw_state dpll_hw_state;
10878 int i;
5358901f
DV
10879
10880 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10881 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10882 int enabled_crtcs = 0, active_crtcs = 0;
10883 bool active;
10884
10885 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10886
10887 DRM_DEBUG_KMS("%s\n", pll->name);
10888
10889 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10890
e2c719b7 10891 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10892 "more active pll users than references: %i vs %i\n",
3e369b76 10893 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10894 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10895 "pll in active use but not on in sw tracking\n");
e2c719b7 10896 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10897 "pll in on but not on in use in sw tracking\n");
e2c719b7 10898 I915_STATE_WARN(pll->on != active,
5358901f
DV
10899 "pll on state mismatch (expected %i, found %i)\n",
10900 pll->on, active);
10901
d3fcc808 10902 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10903 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10904 enabled_crtcs++;
10905 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10906 active_crtcs++;
10907 }
e2c719b7 10908 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10909 "pll active crtcs mismatch (expected %i, found %i)\n",
10910 pll->active, active_crtcs);
e2c719b7 10911 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10912 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10913 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10914
e2c719b7 10915 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10916 sizeof(dpll_hw_state)),
10917 "pll hw state mismatch\n");
5358901f 10918 }
8af6cf88
DV
10919}
10920
91d1b4bd
DV
10921void
10922intel_modeset_check_state(struct drm_device *dev)
10923{
08db6652 10924 check_wm_state(dev);
91d1b4bd
DV
10925 check_connector_state(dev);
10926 check_encoder_state(dev);
10927 check_crtc_state(dev);
10928 check_shared_dpll_state(dev);
10929}
10930
5cec258b 10931void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10932 int dotclock)
10933{
10934 /*
10935 * FDI already provided one idea for the dotclock.
10936 * Yell if the encoder disagrees.
10937 */
2d112de7 10938 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 10939 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 10940 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10941}
10942
80715b2f
VS
10943static void update_scanline_offset(struct intel_crtc *crtc)
10944{
10945 struct drm_device *dev = crtc->base.dev;
10946
10947 /*
10948 * The scanline counter increments at the leading edge of hsync.
10949 *
10950 * On most platforms it starts counting from vtotal-1 on the
10951 * first active line. That means the scanline counter value is
10952 * always one less than what we would expect. Ie. just after
10953 * start of vblank, which also occurs at start of hsync (on the
10954 * last active line), the scanline counter will read vblank_start-1.
10955 *
10956 * On gen2 the scanline counter starts counting from 1 instead
10957 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10958 * to keep the value positive), instead of adding one.
10959 *
10960 * On HSW+ the behaviour of the scanline counter depends on the output
10961 * type. For DP ports it behaves like most other platforms, but on HDMI
10962 * there's an extra 1 line difference. So we need to add two instead of
10963 * one to the value.
10964 */
10965 if (IS_GEN2(dev)) {
6e3c9717 10966 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
10967 int vtotal;
10968
10969 vtotal = mode->crtc_vtotal;
10970 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10971 vtotal /= 2;
10972
10973 crtc->scanline_offset = vtotal - 1;
10974 } else if (HAS_DDI(dev) &&
409ee761 10975 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10976 crtc->scanline_offset = 2;
10977 } else
10978 crtc->scanline_offset = 1;
10979}
10980
5cec258b 10981static struct intel_crtc_state *
7f27126e
JB
10982intel_modeset_compute_config(struct drm_crtc *crtc,
10983 struct drm_display_mode *mode,
10984 struct drm_framebuffer *fb,
10985 unsigned *modeset_pipes,
10986 unsigned *prepare_pipes,
10987 unsigned *disable_pipes)
10988{
5cec258b 10989 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
10990
10991 intel_modeset_affected_pipes(crtc, modeset_pipes,
10992 prepare_pipes, disable_pipes);
10993
10994 if ((*modeset_pipes) == 0)
10995 goto out;
10996
10997 /*
10998 * Note this needs changes when we start tracking multiple modes
10999 * and crtcs. At that point we'll need to compute the whole config
11000 * (i.e. one pipe_config for each crtc) rather than just the one
11001 * for this crtc.
11002 */
11003 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11004 if (IS_ERR(pipe_config)) {
11005 goto out;
11006 }
11007 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11008 "[modeset]");
7f27126e
JB
11009
11010out:
11011 return pipe_config;
11012}
11013
f30da187
DV
11014static int __intel_set_mode(struct drm_crtc *crtc,
11015 struct drm_display_mode *mode,
7f27126e 11016 int x, int y, struct drm_framebuffer *fb,
5cec258b 11017 struct intel_crtc_state *pipe_config,
7f27126e
JB
11018 unsigned modeset_pipes,
11019 unsigned prepare_pipes,
11020 unsigned disable_pipes)
a6778b3c
DV
11021{
11022 struct drm_device *dev = crtc->dev;
fbee40df 11023 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11024 struct drm_display_mode *saved_mode;
25c5b266 11025 struct intel_crtc *intel_crtc;
c0c36b94 11026 int ret = 0;
a6778b3c 11027
4b4b9238 11028 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11029 if (!saved_mode)
11030 return -ENOMEM;
a6778b3c 11031
3ac18232 11032 *saved_mode = crtc->mode;
a6778b3c 11033
b9950a13
VS
11034 if (modeset_pipes)
11035 to_intel_crtc(crtc)->new_config = pipe_config;
11036
30a970c6
JB
11037 /*
11038 * See if the config requires any additional preparation, e.g.
11039 * to adjust global state with pipes off. We need to do this
11040 * here so we can get the modeset_pipe updated config for the new
11041 * mode set on this crtc. For other crtcs we need to use the
11042 * adjusted_mode bits in the crtc directly.
11043 */
c164f833 11044 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11045 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11046
c164f833
VS
11047 /* may have added more to prepare_pipes than we should */
11048 prepare_pipes &= ~disable_pipes;
11049 }
11050
8bd31e67
ACO
11051 if (dev_priv->display.crtc_compute_clock) {
11052 unsigned clear_pipes = modeset_pipes | disable_pipes;
11053
11054 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11055 if (ret)
11056 goto done;
11057
11058 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
190f68c5
ACO
11059 struct intel_crtc_state *state = intel_crtc->new_config;
11060 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11061 state);
8bd31e67
ACO
11062 if (ret) {
11063 intel_shared_dpll_abort_config(dev_priv);
11064 goto done;
11065 }
11066 }
11067 }
11068
460da916
DV
11069 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11070 intel_crtc_disable(&intel_crtc->base);
11071
ea9d758d
DV
11072 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11073 if (intel_crtc->base.enabled)
11074 dev_priv->display.crtc_disable(&intel_crtc->base);
11075 }
a6778b3c 11076
6c4c86f5
DV
11077 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11078 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11079 *
11080 * Note we'll need to fix this up when we start tracking multiple
11081 * pipes; here we assume a single modeset_pipe and only track the
11082 * single crtc and mode.
f6e5b160 11083 */
b8cecdf5 11084 if (modeset_pipes) {
25c5b266 11085 crtc->mode = *mode;
b8cecdf5
DV
11086 /* mode_set/enable/disable functions rely on a correct pipe
11087 * config. */
f5de6e07 11088 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11089
11090 /*
11091 * Calculate and store various constants which
11092 * are later needed by vblank and swap-completion
11093 * timestamping. They are derived from true hwmode.
11094 */
11095 drm_calc_timestamping_constants(crtc,
2d112de7 11096 &pipe_config->base.adjusted_mode);
b8cecdf5 11097 }
7758a113 11098
ea9d758d
DV
11099 /* Only after disabling all output pipelines that will be changed can we
11100 * update the the output configuration. */
11101 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11102
50f6e502 11103 modeset_update_crtc_power_domains(dev);
47fab737 11104
a6778b3c
DV
11105 /* Set up the DPLL and any encoders state that needs to adjust or depend
11106 * on the DPLL.
f6e5b160 11107 */
25c5b266 11108 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11109 struct drm_plane *primary = intel_crtc->base.primary;
11110 int vdisplay, hdisplay;
4c10794f 11111
455a6808
GP
11112 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11113 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11114 fb, 0, 0,
11115 hdisplay, vdisplay,
11116 x << 16, y << 16,
11117 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11118 }
11119
11120 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11121 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11122 update_scanline_offset(intel_crtc);
11123
25c5b266 11124 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11125 }
a6778b3c 11126
a6778b3c
DV
11127 /* FIXME: add subpixel order */
11128done:
4b4b9238 11129 if (ret && crtc->enabled)
3ac18232 11130 crtc->mode = *saved_mode;
a6778b3c 11131
3ac18232 11132 kfree(saved_mode);
a6778b3c 11133 return ret;
f6e5b160
CW
11134}
11135
7f27126e
JB
11136static int intel_set_mode_pipes(struct drm_crtc *crtc,
11137 struct drm_display_mode *mode,
11138 int x, int y, struct drm_framebuffer *fb,
5cec258b 11139 struct intel_crtc_state *pipe_config,
7f27126e
JB
11140 unsigned modeset_pipes,
11141 unsigned prepare_pipes,
11142 unsigned disable_pipes)
f30da187
DV
11143{
11144 int ret;
11145
7f27126e
JB
11146 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11147 prepare_pipes, disable_pipes);
f30da187
DV
11148
11149 if (ret == 0)
11150 intel_modeset_check_state(crtc->dev);
11151
11152 return ret;
11153}
11154
7f27126e
JB
11155static int intel_set_mode(struct drm_crtc *crtc,
11156 struct drm_display_mode *mode,
11157 int x, int y, struct drm_framebuffer *fb)
11158{
5cec258b 11159 struct intel_crtc_state *pipe_config;
7f27126e
JB
11160 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11161
11162 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11163 &modeset_pipes,
11164 &prepare_pipes,
11165 &disable_pipes);
11166
11167 if (IS_ERR(pipe_config))
11168 return PTR_ERR(pipe_config);
11169
11170 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11171 modeset_pipes, prepare_pipes,
11172 disable_pipes);
11173}
11174
c0c36b94
CW
11175void intel_crtc_restore_mode(struct drm_crtc *crtc)
11176{
f4510a27 11177 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11178}
11179
25c5b266
DV
11180#undef for_each_intel_crtc_masked
11181
d9e55608
DV
11182static void intel_set_config_free(struct intel_set_config *config)
11183{
11184 if (!config)
11185 return;
11186
1aa4b628
DV
11187 kfree(config->save_connector_encoders);
11188 kfree(config->save_encoder_crtcs);
7668851f 11189 kfree(config->save_crtc_enabled);
d9e55608
DV
11190 kfree(config);
11191}
11192
85f9eb71
DV
11193static int intel_set_config_save_state(struct drm_device *dev,
11194 struct intel_set_config *config)
11195{
7668851f 11196 struct drm_crtc *crtc;
85f9eb71
DV
11197 struct drm_encoder *encoder;
11198 struct drm_connector *connector;
11199 int count;
11200
7668851f
VS
11201 config->save_crtc_enabled =
11202 kcalloc(dev->mode_config.num_crtc,
11203 sizeof(bool), GFP_KERNEL);
11204 if (!config->save_crtc_enabled)
11205 return -ENOMEM;
11206
1aa4b628
DV
11207 config->save_encoder_crtcs =
11208 kcalloc(dev->mode_config.num_encoder,
11209 sizeof(struct drm_crtc *), GFP_KERNEL);
11210 if (!config->save_encoder_crtcs)
85f9eb71
DV
11211 return -ENOMEM;
11212
1aa4b628
DV
11213 config->save_connector_encoders =
11214 kcalloc(dev->mode_config.num_connector,
11215 sizeof(struct drm_encoder *), GFP_KERNEL);
11216 if (!config->save_connector_encoders)
85f9eb71
DV
11217 return -ENOMEM;
11218
11219 /* Copy data. Note that driver private data is not affected.
11220 * Should anything bad happen only the expected state is
11221 * restored, not the drivers personal bookkeeping.
11222 */
7668851f 11223 count = 0;
70e1e0ec 11224 for_each_crtc(dev, crtc) {
7668851f
VS
11225 config->save_crtc_enabled[count++] = crtc->enabled;
11226 }
11227
85f9eb71
DV
11228 count = 0;
11229 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11230 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11231 }
11232
11233 count = 0;
11234 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11235 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11236 }
11237
11238 return 0;
11239}
11240
11241static void intel_set_config_restore_state(struct drm_device *dev,
11242 struct intel_set_config *config)
11243{
7668851f 11244 struct intel_crtc *crtc;
9a935856
DV
11245 struct intel_encoder *encoder;
11246 struct intel_connector *connector;
85f9eb71
DV
11247 int count;
11248
7668851f 11249 count = 0;
d3fcc808 11250 for_each_intel_crtc(dev, crtc) {
7668851f 11251 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11252
11253 if (crtc->new_enabled)
6e3c9717 11254 crtc->new_config = crtc->config;
7bd0a8e7
VS
11255 else
11256 crtc->new_config = NULL;
7668851f
VS
11257 }
11258
85f9eb71 11259 count = 0;
b2784e15 11260 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11261 encoder->new_crtc =
11262 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11263 }
11264
11265 count = 0;
9a935856
DV
11266 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11267 connector->new_encoder =
11268 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11269 }
11270}
11271
e3de42b6 11272static bool
2e57f47d 11273is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11274{
11275 int i;
11276
2e57f47d
CW
11277 if (set->num_connectors == 0)
11278 return false;
11279
11280 if (WARN_ON(set->connectors == NULL))
11281 return false;
11282
11283 for (i = 0; i < set->num_connectors; i++)
11284 if (set->connectors[i]->encoder &&
11285 set->connectors[i]->encoder->crtc == set->crtc &&
11286 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11287 return true;
11288
11289 return false;
11290}
11291
5e2b584e
DV
11292static void
11293intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11294 struct intel_set_config *config)
11295{
11296
11297 /* We should be able to check here if the fb has the same properties
11298 * and then just flip_or_move it */
2e57f47d
CW
11299 if (is_crtc_connector_off(set)) {
11300 config->mode_changed = true;
f4510a27 11301 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11302 /*
11303 * If we have no fb, we can only flip as long as the crtc is
11304 * active, otherwise we need a full mode set. The crtc may
11305 * be active if we've only disabled the primary plane, or
11306 * in fastboot situations.
11307 */
f4510a27 11308 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11309 struct intel_crtc *intel_crtc =
11310 to_intel_crtc(set->crtc);
11311
3b150f08 11312 if (intel_crtc->active) {
319d9827
JB
11313 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11314 config->fb_changed = true;
11315 } else {
11316 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11317 config->mode_changed = true;
11318 }
5e2b584e
DV
11319 } else if (set->fb == NULL) {
11320 config->mode_changed = true;
72f4901e 11321 } else if (set->fb->pixel_format !=
f4510a27 11322 set->crtc->primary->fb->pixel_format) {
5e2b584e 11323 config->mode_changed = true;
e3de42b6 11324 } else {
5e2b584e 11325 config->fb_changed = true;
e3de42b6 11326 }
5e2b584e
DV
11327 }
11328
835c5873 11329 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11330 config->fb_changed = true;
11331
11332 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11333 DRM_DEBUG_KMS("modes are different, full mode set\n");
11334 drm_mode_debug_printmodeline(&set->crtc->mode);
11335 drm_mode_debug_printmodeline(set->mode);
11336 config->mode_changed = true;
11337 }
a1d95703
CW
11338
11339 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11340 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11341}
11342
2e431051 11343static int
9a935856
DV
11344intel_modeset_stage_output_state(struct drm_device *dev,
11345 struct drm_mode_set *set,
11346 struct intel_set_config *config)
50f56119 11347{
9a935856
DV
11348 struct intel_connector *connector;
11349 struct intel_encoder *encoder;
7668851f 11350 struct intel_crtc *crtc;
f3f08572 11351 int ro;
50f56119 11352
9abdda74 11353 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11354 * of connectors. For paranoia, double-check this. */
11355 WARN_ON(!set->fb && (set->num_connectors != 0));
11356 WARN_ON(set->fb && (set->num_connectors == 0));
11357
9a935856
DV
11358 list_for_each_entry(connector, &dev->mode_config.connector_list,
11359 base.head) {
11360 /* Otherwise traverse passed in connector list and get encoders
11361 * for them. */
50f56119 11362 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11363 if (set->connectors[ro] == &connector->base) {
0e32b39c 11364 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11365 break;
11366 }
11367 }
11368
9a935856
DV
11369 /* If we disable the crtc, disable all its connectors. Also, if
11370 * the connector is on the changing crtc but not on the new
11371 * connector list, disable it. */
11372 if ((!set->fb || ro == set->num_connectors) &&
11373 connector->base.encoder &&
11374 connector->base.encoder->crtc == set->crtc) {
11375 connector->new_encoder = NULL;
11376
11377 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11378 connector->base.base.id,
c23cc417 11379 connector->base.name);
9a935856
DV
11380 }
11381
11382
11383 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11384 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11385 config->mode_changed = true;
50f56119
DV
11386 }
11387 }
9a935856 11388 /* connector->new_encoder is now updated for all connectors. */
50f56119 11389
9a935856 11390 /* Update crtc of enabled connectors. */
9a935856
DV
11391 list_for_each_entry(connector, &dev->mode_config.connector_list,
11392 base.head) {
7668851f
VS
11393 struct drm_crtc *new_crtc;
11394
9a935856 11395 if (!connector->new_encoder)
50f56119
DV
11396 continue;
11397
9a935856 11398 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11399
11400 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11401 if (set->connectors[ro] == &connector->base)
50f56119
DV
11402 new_crtc = set->crtc;
11403 }
11404
11405 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11406 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11407 new_crtc)) {
5e2b584e 11408 return -EINVAL;
50f56119 11409 }
0e32b39c 11410 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11411
11412 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11413 connector->base.base.id,
c23cc417 11414 connector->base.name,
9a935856
DV
11415 new_crtc->base.id);
11416 }
11417
11418 /* Check for any encoders that needs to be disabled. */
b2784e15 11419 for_each_intel_encoder(dev, encoder) {
5a65f358 11420 int num_connectors = 0;
9a935856
DV
11421 list_for_each_entry(connector,
11422 &dev->mode_config.connector_list,
11423 base.head) {
11424 if (connector->new_encoder == encoder) {
11425 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11426 num_connectors++;
9a935856
DV
11427 }
11428 }
5a65f358
PZ
11429
11430 if (num_connectors == 0)
11431 encoder->new_crtc = NULL;
11432 else if (num_connectors > 1)
11433 return -EINVAL;
11434
9a935856
DV
11435 /* Only now check for crtc changes so we don't miss encoders
11436 * that will be disabled. */
11437 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11438 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11439 config->mode_changed = true;
50f56119
DV
11440 }
11441 }
9a935856 11442 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11443 list_for_each_entry(connector, &dev->mode_config.connector_list,
11444 base.head) {
11445 if (connector->new_encoder)
11446 if (connector->new_encoder != connector->encoder)
11447 connector->encoder = connector->new_encoder;
11448 }
d3fcc808 11449 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11450 crtc->new_enabled = false;
11451
b2784e15 11452 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11453 if (encoder->new_crtc == crtc) {
11454 crtc->new_enabled = true;
11455 break;
11456 }
11457 }
11458
11459 if (crtc->new_enabled != crtc->base.enabled) {
11460 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11461 crtc->new_enabled ? "en" : "dis");
11462 config->mode_changed = true;
11463 }
7bd0a8e7
VS
11464
11465 if (crtc->new_enabled)
6e3c9717 11466 crtc->new_config = crtc->config;
7bd0a8e7
VS
11467 else
11468 crtc->new_config = NULL;
7668851f
VS
11469 }
11470
2e431051
DV
11471 return 0;
11472}
11473
7d00a1f5
VS
11474static void disable_crtc_nofb(struct intel_crtc *crtc)
11475{
11476 struct drm_device *dev = crtc->base.dev;
11477 struct intel_encoder *encoder;
11478 struct intel_connector *connector;
11479
11480 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11481 pipe_name(crtc->pipe));
11482
11483 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11484 if (connector->new_encoder &&
11485 connector->new_encoder->new_crtc == crtc)
11486 connector->new_encoder = NULL;
11487 }
11488
b2784e15 11489 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11490 if (encoder->new_crtc == crtc)
11491 encoder->new_crtc = NULL;
11492 }
11493
11494 crtc->new_enabled = false;
7bd0a8e7 11495 crtc->new_config = NULL;
7d00a1f5
VS
11496}
11497
2e431051
DV
11498static int intel_crtc_set_config(struct drm_mode_set *set)
11499{
11500 struct drm_device *dev;
2e431051
DV
11501 struct drm_mode_set save_set;
11502 struct intel_set_config *config;
5cec258b 11503 struct intel_crtc_state *pipe_config;
50f52756 11504 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11505 int ret;
2e431051 11506
8d3e375e
DV
11507 BUG_ON(!set);
11508 BUG_ON(!set->crtc);
11509 BUG_ON(!set->crtc->helper_private);
2e431051 11510
7e53f3a4
DV
11511 /* Enforce sane interface api - has been abused by the fb helper. */
11512 BUG_ON(!set->mode && set->fb);
11513 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11514
2e431051
DV
11515 if (set->fb) {
11516 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11517 set->crtc->base.id, set->fb->base.id,
11518 (int)set->num_connectors, set->x, set->y);
11519 } else {
11520 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11521 }
11522
11523 dev = set->crtc->dev;
11524
11525 ret = -ENOMEM;
11526 config = kzalloc(sizeof(*config), GFP_KERNEL);
11527 if (!config)
11528 goto out_config;
11529
11530 ret = intel_set_config_save_state(dev, config);
11531 if (ret)
11532 goto out_config;
11533
11534 save_set.crtc = set->crtc;
11535 save_set.mode = &set->crtc->mode;
11536 save_set.x = set->crtc->x;
11537 save_set.y = set->crtc->y;
f4510a27 11538 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11539
11540 /* Compute whether we need a full modeset, only an fb base update or no
11541 * change at all. In the future we might also check whether only the
11542 * mode changed, e.g. for LVDS where we only change the panel fitter in
11543 * such cases. */
11544 intel_set_config_compute_mode_changes(set, config);
11545
9a935856 11546 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11547 if (ret)
11548 goto fail;
11549
50f52756
JB
11550 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11551 set->fb,
11552 &modeset_pipes,
11553 &prepare_pipes,
11554 &disable_pipes);
20664591 11555 if (IS_ERR(pipe_config)) {
6ac0483b 11556 ret = PTR_ERR(pipe_config);
50f52756 11557 goto fail;
20664591 11558 } else if (pipe_config) {
b9950a13 11559 if (pipe_config->has_audio !=
6e3c9717 11560 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11561 config->mode_changed = true;
11562
af15d2ce
JB
11563 /*
11564 * Note we have an issue here with infoframes: current code
11565 * only updates them on the full mode set path per hw
11566 * requirements. So here we should be checking for any
11567 * required changes and forcing a mode set.
11568 */
20664591 11569 }
50f52756
JB
11570
11571 /* set_mode will free it in the mode_changed case */
11572 if (!config->mode_changed)
11573 kfree(pipe_config);
11574
1f9954d0
JB
11575 intel_update_pipe_size(to_intel_crtc(set->crtc));
11576
5e2b584e 11577 if (config->mode_changed) {
50f52756
JB
11578 ret = intel_set_mode_pipes(set->crtc, set->mode,
11579 set->x, set->y, set->fb, pipe_config,
11580 modeset_pipes, prepare_pipes,
11581 disable_pipes);
5e2b584e 11582 } else if (config->fb_changed) {
3b150f08 11583 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11584 struct drm_plane *primary = set->crtc->primary;
11585 int vdisplay, hdisplay;
3b150f08 11586
455a6808
GP
11587 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11588 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11589 0, 0, hdisplay, vdisplay,
11590 set->x << 16, set->y << 16,
11591 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11592
11593 /*
11594 * We need to make sure the primary plane is re-enabled if it
11595 * has previously been turned off.
11596 */
11597 if (!intel_crtc->primary_enabled && ret == 0) {
11598 WARN_ON(!intel_crtc->active);
fdd508a6 11599 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11600 }
11601
7ca51a3a
JB
11602 /*
11603 * In the fastboot case this may be our only check of the
11604 * state after boot. It would be better to only do it on
11605 * the first update, but we don't have a nice way of doing that
11606 * (and really, set_config isn't used much for high freq page
11607 * flipping, so increasing its cost here shouldn't be a big
11608 * deal).
11609 */
d330a953 11610 if (i915.fastboot && ret == 0)
7ca51a3a 11611 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11612 }
11613
2d05eae1 11614 if (ret) {
bf67dfeb
DV
11615 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11616 set->crtc->base.id, ret);
50f56119 11617fail:
2d05eae1 11618 intel_set_config_restore_state(dev, config);
50f56119 11619
7d00a1f5
VS
11620 /*
11621 * HACK: if the pipe was on, but we didn't have a framebuffer,
11622 * force the pipe off to avoid oopsing in the modeset code
11623 * due to fb==NULL. This should only happen during boot since
11624 * we don't yet reconstruct the FB from the hardware state.
11625 */
11626 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11627 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11628
2d05eae1
CW
11629 /* Try to restore the config */
11630 if (config->mode_changed &&
11631 intel_set_mode(save_set.crtc, save_set.mode,
11632 save_set.x, save_set.y, save_set.fb))
11633 DRM_ERROR("failed to restore config after modeset failure\n");
11634 }
50f56119 11635
d9e55608
DV
11636out_config:
11637 intel_set_config_free(config);
50f56119
DV
11638 return ret;
11639}
f6e5b160
CW
11640
11641static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11642 .gamma_set = intel_crtc_gamma_set,
50f56119 11643 .set_config = intel_crtc_set_config,
f6e5b160
CW
11644 .destroy = intel_crtc_destroy,
11645 .page_flip = intel_crtc_page_flip,
11646};
11647
5358901f
DV
11648static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11649 struct intel_shared_dpll *pll,
11650 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11651{
5358901f 11652 uint32_t val;
ee7b9f93 11653
f458ebbc 11654 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11655 return false;
11656
5358901f 11657 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11658 hw_state->dpll = val;
11659 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11660 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11661
11662 return val & DPLL_VCO_ENABLE;
11663}
11664
15bdd4cf
DV
11665static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11666 struct intel_shared_dpll *pll)
11667{
3e369b76
ACO
11668 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11669 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11670}
11671
e7b903d2
DV
11672static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11673 struct intel_shared_dpll *pll)
11674{
e7b903d2 11675 /* PCH refclock must be enabled first */
89eff4be 11676 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11677
3e369b76 11678 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11679
11680 /* Wait for the clocks to stabilize. */
11681 POSTING_READ(PCH_DPLL(pll->id));
11682 udelay(150);
11683
11684 /* The pixel multiplier can only be updated once the
11685 * DPLL is enabled and the clocks are stable.
11686 *
11687 * So write it again.
11688 */
3e369b76 11689 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11690 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11691 udelay(200);
11692}
11693
11694static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11695 struct intel_shared_dpll *pll)
11696{
11697 struct drm_device *dev = dev_priv->dev;
11698 struct intel_crtc *crtc;
e7b903d2
DV
11699
11700 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11701 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11702 if (intel_crtc_to_shared_dpll(crtc) == pll)
11703 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11704 }
11705
15bdd4cf
DV
11706 I915_WRITE(PCH_DPLL(pll->id), 0);
11707 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11708 udelay(200);
11709}
11710
46edb027
DV
11711static char *ibx_pch_dpll_names[] = {
11712 "PCH DPLL A",
11713 "PCH DPLL B",
11714};
11715
7c74ade1 11716static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11717{
e7b903d2 11718 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11719 int i;
11720
7c74ade1 11721 dev_priv->num_shared_dpll = 2;
ee7b9f93 11722
e72f9fbf 11723 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11724 dev_priv->shared_dplls[i].id = i;
11725 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11726 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11727 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11728 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11729 dev_priv->shared_dplls[i].get_hw_state =
11730 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11731 }
11732}
11733
7c74ade1
DV
11734static void intel_shared_dpll_init(struct drm_device *dev)
11735{
e7b903d2 11736 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11737
9cd86933
DV
11738 if (HAS_DDI(dev))
11739 intel_ddi_pll_init(dev);
11740 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11741 ibx_pch_dpll_init(dev);
11742 else
11743 dev_priv->num_shared_dpll = 0;
11744
11745 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11746}
11747
6beb8c23
MR
11748/**
11749 * intel_prepare_plane_fb - Prepare fb for usage on plane
11750 * @plane: drm plane to prepare for
11751 * @fb: framebuffer to prepare for presentation
11752 *
11753 * Prepares a framebuffer for usage on a display plane. Generally this
11754 * involves pinning the underlying object and updating the frontbuffer tracking
11755 * bits. Some older platforms need special physical address handling for
11756 * cursor planes.
11757 *
11758 * Returns 0 on success, negative error code on failure.
11759 */
11760int
11761intel_prepare_plane_fb(struct drm_plane *plane,
11762 struct drm_framebuffer *fb)
465c120c
MR
11763{
11764 struct drm_device *dev = plane->dev;
6beb8c23
MR
11765 struct intel_plane *intel_plane = to_intel_plane(plane);
11766 enum pipe pipe = intel_plane->pipe;
11767 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11768 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11769 unsigned frontbuffer_bits = 0;
11770 int ret = 0;
465c120c 11771
ea2c67bb 11772 if (!obj)
465c120c
MR
11773 return 0;
11774
6beb8c23
MR
11775 switch (plane->type) {
11776 case DRM_PLANE_TYPE_PRIMARY:
11777 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11778 break;
11779 case DRM_PLANE_TYPE_CURSOR:
11780 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11781 break;
11782 case DRM_PLANE_TYPE_OVERLAY:
11783 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11784 break;
11785 }
465c120c 11786
6beb8c23 11787 mutex_lock(&dev->struct_mutex);
465c120c 11788
6beb8c23
MR
11789 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11790 INTEL_INFO(dev)->cursor_needs_physical) {
11791 int align = IS_I830(dev) ? 16 * 1024 : 256;
11792 ret = i915_gem_object_attach_phys(obj, align);
11793 if (ret)
11794 DRM_DEBUG_KMS("failed to attach phys object\n");
11795 } else {
11796 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11797 }
465c120c 11798
6beb8c23
MR
11799 if (ret == 0)
11800 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11801
4c34574f 11802 mutex_unlock(&dev->struct_mutex);
465c120c 11803
6beb8c23
MR
11804 return ret;
11805}
11806
38f3ce3a
MR
11807/**
11808 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11809 * @plane: drm plane to clean up for
11810 * @fb: old framebuffer that was on plane
11811 *
11812 * Cleans up a framebuffer that has just been removed from a plane.
11813 */
11814void
11815intel_cleanup_plane_fb(struct drm_plane *plane,
11816 struct drm_framebuffer *fb)
11817{
11818 struct drm_device *dev = plane->dev;
11819 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11820
11821 if (WARN_ON(!obj))
11822 return;
11823
11824 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11825 !INTEL_INFO(dev)->cursor_needs_physical) {
11826 mutex_lock(&dev->struct_mutex);
11827 intel_unpin_fb_obj(obj);
11828 mutex_unlock(&dev->struct_mutex);
11829 }
465c120c
MR
11830}
11831
11832static int
3c692a41
GP
11833intel_check_primary_plane(struct drm_plane *plane,
11834 struct intel_plane_state *state)
11835{
32b7eeec
MR
11836 struct drm_device *dev = plane->dev;
11837 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11838 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11839 struct intel_crtc *intel_crtc;
32b7eeec 11840 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 11841 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11842 struct drm_rect *dest = &state->dst;
11843 struct drm_rect *src = &state->src;
11844 const struct drm_rect *clip = &state->clip;
465c120c
MR
11845 int ret;
11846
ea2c67bb
MR
11847 crtc = crtc ? crtc : plane->crtc;
11848 intel_crtc = to_intel_crtc(crtc);
11849
c59cb179
MR
11850 ret = drm_plane_helper_check_update(plane, crtc, fb,
11851 src, dest, clip,
11852 DRM_PLANE_HELPER_NO_SCALING,
11853 DRM_PLANE_HELPER_NO_SCALING,
11854 false, true, &state->visible);
11855 if (ret)
11856 return ret;
465c120c 11857
32b7eeec
MR
11858 if (intel_crtc->active) {
11859 intel_crtc->atomic.wait_for_flips = true;
11860
11861 /*
11862 * FBC does not work on some platforms for rotated
11863 * planes, so disable it when rotation is not 0 and
11864 * update it when rotation is set back to 0.
11865 *
11866 * FIXME: This is redundant with the fbc update done in
11867 * the primary plane enable function except that that
11868 * one is done too late. We eventually need to unify
11869 * this.
11870 */
11871 if (intel_crtc->primary_enabled &&
11872 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11873 dev_priv->fbc.plane == intel_crtc->plane &&
11874 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11875 intel_crtc->atomic.disable_fbc = true;
11876 }
11877
11878 if (state->visible) {
11879 /*
11880 * BDW signals flip done immediately if the plane
11881 * is disabled, even if the plane enable is already
11882 * armed to occur at the next vblank :(
11883 */
11884 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11885 intel_crtc->atomic.wait_vblank = true;
11886 }
11887
11888 intel_crtc->atomic.fb_bits |=
11889 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11890
11891 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11892 }
11893
14af293f
GP
11894 return 0;
11895}
11896
11897static void
11898intel_commit_primary_plane(struct drm_plane *plane,
11899 struct intel_plane_state *state)
11900{
2b875c22
MR
11901 struct drm_crtc *crtc = state->base.crtc;
11902 struct drm_framebuffer *fb = state->base.fb;
11903 struct drm_device *dev = plane->dev;
14af293f 11904 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11905 struct intel_crtc *intel_crtc;
14af293f 11906 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11907 struct intel_plane *intel_plane = to_intel_plane(plane);
11908 struct drm_rect *src = &state->src;
11909
ea2c67bb
MR
11910 crtc = crtc ? crtc : plane->crtc;
11911 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11912
11913 plane->fb = fb;
9dc806fc
MR
11914 crtc->x = src->x1 >> 16;
11915 crtc->y = src->y1 >> 16;
ccc759dc 11916
ccc759dc 11917 intel_plane->obj = obj;
4c34574f 11918
ccc759dc 11919 if (intel_crtc->active) {
ccc759dc 11920 if (state->visible) {
ccc759dc
GP
11921 /* FIXME: kill this fastboot hack */
11922 intel_update_pipe_size(intel_crtc);
465c120c 11923
ccc759dc 11924 intel_crtc->primary_enabled = true;
465c120c 11925
ccc759dc
GP
11926 dev_priv->display.update_primary_plane(crtc, plane->fb,
11927 crtc->x, crtc->y);
ccc759dc
GP
11928 } else {
11929 /*
11930 * If clipping results in a non-visible primary plane,
11931 * we'll disable the primary plane. Note that this is
11932 * a bit different than what happens if userspace
11933 * explicitly disables the plane by passing fb=0
11934 * because plane->fb still gets set and pinned.
11935 */
11936 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11937 }
ccc759dc 11938 }
465c120c
MR
11939}
11940
32b7eeec 11941static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 11942{
32b7eeec 11943 struct drm_device *dev = crtc->dev;
140fd38d 11944 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 11945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
11946 struct intel_plane *intel_plane;
11947 struct drm_plane *p;
11948 unsigned fb_bits = 0;
11949
11950 /* Track fb's for any planes being disabled */
11951 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11952 intel_plane = to_intel_plane(p);
11953
11954 if (intel_crtc->atomic.disabled_planes &
11955 (1 << drm_plane_index(p))) {
11956 switch (p->type) {
11957 case DRM_PLANE_TYPE_PRIMARY:
11958 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11959 break;
11960 case DRM_PLANE_TYPE_CURSOR:
11961 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11962 break;
11963 case DRM_PLANE_TYPE_OVERLAY:
11964 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11965 break;
11966 }
3c692a41 11967
ea2c67bb
MR
11968 mutex_lock(&dev->struct_mutex);
11969 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11970 mutex_unlock(&dev->struct_mutex);
11971 }
11972 }
3c692a41 11973
32b7eeec
MR
11974 if (intel_crtc->atomic.wait_for_flips)
11975 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 11976
32b7eeec
MR
11977 if (intel_crtc->atomic.disable_fbc)
11978 intel_fbc_disable(dev);
3c692a41 11979
32b7eeec
MR
11980 if (intel_crtc->atomic.pre_disable_primary)
11981 intel_pre_disable_primary(crtc);
3c692a41 11982
32b7eeec
MR
11983 if (intel_crtc->atomic.update_wm)
11984 intel_update_watermarks(crtc);
3c692a41 11985
32b7eeec 11986 intel_runtime_pm_get(dev_priv);
3c692a41 11987
c34c9ee4
MR
11988 /* Perform vblank evasion around commit operation */
11989 if (intel_crtc->active)
11990 intel_crtc->atomic.evade =
11991 intel_pipe_update_start(intel_crtc,
11992 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
11993}
11994
11995static void intel_finish_crtc_commit(struct drm_crtc *crtc)
11996{
11997 struct drm_device *dev = crtc->dev;
11998 struct drm_i915_private *dev_priv = dev->dev_private;
11999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12000 struct drm_plane *p;
12001
c34c9ee4
MR
12002 if (intel_crtc->atomic.evade)
12003 intel_pipe_update_end(intel_crtc,
12004 intel_crtc->atomic.start_vbl_count);
3c692a41 12005
140fd38d 12006 intel_runtime_pm_put(dev_priv);
3c692a41 12007
32b7eeec
MR
12008 if (intel_crtc->atomic.wait_vblank)
12009 intel_wait_for_vblank(dev, intel_crtc->pipe);
12010
12011 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12012
12013 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12014 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12015 intel_fbc_update(dev);
ccc759dc 12016 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12017 }
3c692a41 12018
32b7eeec
MR
12019 if (intel_crtc->atomic.post_enable_primary)
12020 intel_post_enable_primary(crtc);
3c692a41 12021
32b7eeec
MR
12022 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12023 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12024 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12025 false, false);
12026
12027 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12028}
12029
cf4c7c12 12030/**
4a3b8769
MR
12031 * intel_plane_destroy - destroy a plane
12032 * @plane: plane to destroy
cf4c7c12 12033 *
4a3b8769
MR
12034 * Common destruction function for all types of planes (primary, cursor,
12035 * sprite).
cf4c7c12 12036 */
4a3b8769 12037void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12038{
12039 struct intel_plane *intel_plane = to_intel_plane(plane);
12040 drm_plane_cleanup(plane);
12041 kfree(intel_plane);
12042}
12043
12044static const struct drm_plane_funcs intel_primary_plane_funcs = {
ea2c67bb
MR
12045 .update_plane = drm_plane_helper_update,
12046 .disable_plane = drm_plane_helper_disable,
3d7d6510 12047 .destroy = intel_plane_destroy,
ea2c67bb
MR
12048 .set_property = intel_plane_set_property,
12049 .atomic_duplicate_state = intel_plane_duplicate_state,
12050 .atomic_destroy_state = intel_plane_destroy_state,
12051
465c120c
MR
12052};
12053
12054static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12055 int pipe)
12056{
12057 struct intel_plane *primary;
12058 const uint32_t *intel_primary_formats;
12059 int num_formats;
12060
12061 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12062 if (primary == NULL)
12063 return NULL;
12064
ea2c67bb
MR
12065 primary->base.state = intel_plane_duplicate_state(&primary->base);
12066 if (primary->base.state == NULL) {
12067 kfree(primary);
12068 return NULL;
12069 }
12070
465c120c
MR
12071 primary->can_scale = false;
12072 primary->max_downscale = 1;
12073 primary->pipe = pipe;
12074 primary->plane = pipe;
48404c1e 12075 primary->rotation = BIT(DRM_ROTATE_0);
c59cb179
MR
12076 primary->check_plane = intel_check_primary_plane;
12077 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12078 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12079 primary->plane = !pipe;
12080
12081 if (INTEL_INFO(dev)->gen <= 3) {
12082 intel_primary_formats = intel_primary_formats_gen2;
12083 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12084 } else {
12085 intel_primary_formats = intel_primary_formats_gen4;
12086 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12087 }
12088
12089 drm_universal_plane_init(dev, &primary->base, 0,
12090 &intel_primary_plane_funcs,
12091 intel_primary_formats, num_formats,
12092 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12093
12094 if (INTEL_INFO(dev)->gen >= 4) {
12095 if (!dev->mode_config.rotation_property)
12096 dev->mode_config.rotation_property =
12097 drm_mode_create_rotation_property(dev,
12098 BIT(DRM_ROTATE_0) |
12099 BIT(DRM_ROTATE_180));
12100 if (dev->mode_config.rotation_property)
12101 drm_object_attach_property(&primary->base.base,
12102 dev->mode_config.rotation_property,
12103 primary->rotation);
12104 }
12105
ea2c67bb
MR
12106 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12107
465c120c
MR
12108 return &primary->base;
12109}
12110
3d7d6510 12111static int
852e787c
GP
12112intel_check_cursor_plane(struct drm_plane *plane,
12113 struct intel_plane_state *state)
3d7d6510 12114{
2b875c22 12115 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12116 struct drm_device *dev = plane->dev;
2b875c22 12117 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12118 struct drm_rect *dest = &state->dst;
12119 struct drm_rect *src = &state->src;
12120 const struct drm_rect *clip = &state->clip;
757f9a3e 12121 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12122 struct intel_crtc *intel_crtc;
757f9a3e
GP
12123 unsigned stride;
12124 int ret;
3d7d6510 12125
ea2c67bb
MR
12126 crtc = crtc ? crtc : plane->crtc;
12127 intel_crtc = to_intel_crtc(crtc);
12128
757f9a3e 12129 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12130 src, dest, clip,
3d7d6510
MR
12131 DRM_PLANE_HELPER_NO_SCALING,
12132 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12133 true, true, &state->visible);
757f9a3e
GP
12134 if (ret)
12135 return ret;
12136
12137
12138 /* if we want to turn off the cursor ignore width and height */
12139 if (!obj)
32b7eeec 12140 goto finish;
757f9a3e 12141
757f9a3e 12142 /* Check for which cursor types we support */
ea2c67bb
MR
12143 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12144 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12145 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12146 return -EINVAL;
12147 }
12148
ea2c67bb
MR
12149 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12150 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12151 DRM_DEBUG_KMS("buffer is too small\n");
12152 return -ENOMEM;
12153 }
12154
e391ea88
GP
12155 if (fb == crtc->cursor->fb)
12156 return 0;
12157
757f9a3e
GP
12158 /* we only need to pin inside GTT if cursor is non-phy */
12159 mutex_lock(&dev->struct_mutex);
12160 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12161 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12162 ret = -EINVAL;
12163 }
12164 mutex_unlock(&dev->struct_mutex);
12165
32b7eeec
MR
12166finish:
12167 if (intel_crtc->active) {
ea2c67bb 12168 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12169 intel_crtc->atomic.update_wm = true;
12170
12171 intel_crtc->atomic.fb_bits |=
12172 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12173 }
12174
757f9a3e 12175 return ret;
852e787c 12176}
3d7d6510 12177
f4a2cf29 12178static void
852e787c
GP
12179intel_commit_cursor_plane(struct drm_plane *plane,
12180 struct intel_plane_state *state)
12181{
2b875c22 12182 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12183 struct drm_device *dev = plane->dev;
12184 struct intel_crtc *intel_crtc;
a919db90 12185 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12186 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12187 uint32_t addr;
852e787c 12188
ea2c67bb
MR
12189 crtc = crtc ? crtc : plane->crtc;
12190 intel_crtc = to_intel_crtc(crtc);
12191
2b875c22 12192 plane->fb = state->base.fb;
ea2c67bb
MR
12193 crtc->cursor_x = state->base.crtc_x;
12194 crtc->cursor_y = state->base.crtc_y;
12195
a919db90
SJ
12196 intel_plane->obj = obj;
12197
a912f12f
GP
12198 if (intel_crtc->cursor_bo == obj)
12199 goto update;
4ed91096 12200
f4a2cf29 12201 if (!obj)
a912f12f 12202 addr = 0;
f4a2cf29 12203 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12204 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12205 else
a912f12f 12206 addr = obj->phys_handle->busaddr;
852e787c 12207
a912f12f
GP
12208 intel_crtc->cursor_addr = addr;
12209 intel_crtc->cursor_bo = obj;
12210update:
ea2c67bb
MR
12211 intel_crtc->cursor_width = state->base.crtc_w;
12212 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12213
32b7eeec 12214 if (intel_crtc->active)
a912f12f 12215 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12216}
12217
3d7d6510 12218static const struct drm_plane_funcs intel_cursor_plane_funcs = {
ea2c67bb
MR
12219 .update_plane = drm_plane_helper_update,
12220 .disable_plane = drm_plane_helper_disable,
3d7d6510 12221 .destroy = intel_plane_destroy,
4398ad45 12222 .set_property = intel_plane_set_property,
ea2c67bb
MR
12223 .atomic_duplicate_state = intel_plane_duplicate_state,
12224 .atomic_destroy_state = intel_plane_destroy_state,
3d7d6510
MR
12225};
12226
12227static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12228 int pipe)
12229{
12230 struct intel_plane *cursor;
12231
12232 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12233 if (cursor == NULL)
12234 return NULL;
12235
ea2c67bb
MR
12236 cursor->base.state = intel_plane_duplicate_state(&cursor->base);
12237 if (cursor->base.state == NULL) {
12238 kfree(cursor);
12239 return NULL;
12240 }
12241
3d7d6510
MR
12242 cursor->can_scale = false;
12243 cursor->max_downscale = 1;
12244 cursor->pipe = pipe;
12245 cursor->plane = pipe;
4398ad45 12246 cursor->rotation = BIT(DRM_ROTATE_0);
c59cb179
MR
12247 cursor->check_plane = intel_check_cursor_plane;
12248 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12249
12250 drm_universal_plane_init(dev, &cursor->base, 0,
12251 &intel_cursor_plane_funcs,
12252 intel_cursor_formats,
12253 ARRAY_SIZE(intel_cursor_formats),
12254 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12255
12256 if (INTEL_INFO(dev)->gen >= 4) {
12257 if (!dev->mode_config.rotation_property)
12258 dev->mode_config.rotation_property =
12259 drm_mode_create_rotation_property(dev,
12260 BIT(DRM_ROTATE_0) |
12261 BIT(DRM_ROTATE_180));
12262 if (dev->mode_config.rotation_property)
12263 drm_object_attach_property(&cursor->base.base,
12264 dev->mode_config.rotation_property,
12265 cursor->rotation);
12266 }
12267
ea2c67bb
MR
12268 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12269
3d7d6510
MR
12270 return &cursor->base;
12271}
12272
b358d0a6 12273static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12274{
fbee40df 12275 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12276 struct intel_crtc *intel_crtc;
f5de6e07 12277 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12278 struct drm_plane *primary = NULL;
12279 struct drm_plane *cursor = NULL;
465c120c 12280 int i, ret;
79e53945 12281
955382f3 12282 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12283 if (intel_crtc == NULL)
12284 return;
12285
f5de6e07
ACO
12286 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12287 if (!crtc_state)
12288 goto fail;
12289 intel_crtc_set_state(intel_crtc, crtc_state);
12290
465c120c 12291 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12292 if (!primary)
12293 goto fail;
12294
12295 cursor = intel_cursor_plane_create(dev, pipe);
12296 if (!cursor)
12297 goto fail;
12298
465c120c 12299 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12300 cursor, &intel_crtc_funcs);
12301 if (ret)
12302 goto fail;
79e53945
JB
12303
12304 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12305 for (i = 0; i < 256; i++) {
12306 intel_crtc->lut_r[i] = i;
12307 intel_crtc->lut_g[i] = i;
12308 intel_crtc->lut_b[i] = i;
12309 }
12310
1f1c2e24
VS
12311 /*
12312 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12313 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12314 */
80824003
JB
12315 intel_crtc->pipe = pipe;
12316 intel_crtc->plane = pipe;
3a77c4c4 12317 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12318 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12319 intel_crtc->plane = !pipe;
80824003
JB
12320 }
12321
4b0e333e
CW
12322 intel_crtc->cursor_base = ~0;
12323 intel_crtc->cursor_cntl = ~0;
dc41c154 12324 intel_crtc->cursor_size = ~0;
8d7849db 12325
22fd0fab
JB
12326 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12327 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12328 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12329 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12330
9362c7c5
ACO
12331 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12332
79e53945 12333 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12334
12335 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12336 return;
12337
12338fail:
12339 if (primary)
12340 drm_plane_cleanup(primary);
12341 if (cursor)
12342 drm_plane_cleanup(cursor);
f5de6e07 12343 kfree(crtc_state);
3d7d6510 12344 kfree(intel_crtc);
79e53945
JB
12345}
12346
752aa88a
JB
12347enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12348{
12349 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12350 struct drm_device *dev = connector->base.dev;
752aa88a 12351
51fd371b 12352 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12353
d3babd3f 12354 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12355 return INVALID_PIPE;
12356
12357 return to_intel_crtc(encoder->crtc)->pipe;
12358}
12359
08d7b3d1 12360int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12361 struct drm_file *file)
08d7b3d1 12362{
08d7b3d1 12363 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12364 struct drm_crtc *drmmode_crtc;
c05422d5 12365 struct intel_crtc *crtc;
08d7b3d1 12366
1cff8f6b
DV
12367 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12368 return -ENODEV;
08d7b3d1 12369
7707e653 12370 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12371
7707e653 12372 if (!drmmode_crtc) {
08d7b3d1 12373 DRM_ERROR("no such CRTC id\n");
3f2c2057 12374 return -ENOENT;
08d7b3d1
CW
12375 }
12376
7707e653 12377 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12378 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12379
c05422d5 12380 return 0;
08d7b3d1
CW
12381}
12382
66a9278e 12383static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12384{
66a9278e
DV
12385 struct drm_device *dev = encoder->base.dev;
12386 struct intel_encoder *source_encoder;
79e53945 12387 int index_mask = 0;
79e53945
JB
12388 int entry = 0;
12389
b2784e15 12390 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12391 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12392 index_mask |= (1 << entry);
12393
79e53945
JB
12394 entry++;
12395 }
4ef69c7a 12396
79e53945
JB
12397 return index_mask;
12398}
12399
4d302442
CW
12400static bool has_edp_a(struct drm_device *dev)
12401{
12402 struct drm_i915_private *dev_priv = dev->dev_private;
12403
12404 if (!IS_MOBILE(dev))
12405 return false;
12406
12407 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12408 return false;
12409
e3589908 12410 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12411 return false;
12412
12413 return true;
12414}
12415
84b4e042
JB
12416static bool intel_crt_present(struct drm_device *dev)
12417{
12418 struct drm_i915_private *dev_priv = dev->dev_private;
12419
884497ed
DL
12420 if (INTEL_INFO(dev)->gen >= 9)
12421 return false;
12422
cf404ce4 12423 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12424 return false;
12425
12426 if (IS_CHERRYVIEW(dev))
12427 return false;
12428
12429 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12430 return false;
12431
12432 return true;
12433}
12434
79e53945
JB
12435static void intel_setup_outputs(struct drm_device *dev)
12436{
725e30ad 12437 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12438 struct intel_encoder *encoder;
cb0953d7 12439 bool dpd_is_edp = false;
79e53945 12440
c9093354 12441 intel_lvds_init(dev);
79e53945 12442
84b4e042 12443 if (intel_crt_present(dev))
79935fca 12444 intel_crt_init(dev);
cb0953d7 12445
affa9354 12446 if (HAS_DDI(dev)) {
0e72a5b5
ED
12447 int found;
12448
12449 /* Haswell uses DDI functions to detect digital outputs */
12450 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12451 /* DDI A only supports eDP */
12452 if (found)
12453 intel_ddi_init(dev, PORT_A);
12454
12455 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12456 * register */
12457 found = I915_READ(SFUSE_STRAP);
12458
12459 if (found & SFUSE_STRAP_DDIB_DETECTED)
12460 intel_ddi_init(dev, PORT_B);
12461 if (found & SFUSE_STRAP_DDIC_DETECTED)
12462 intel_ddi_init(dev, PORT_C);
12463 if (found & SFUSE_STRAP_DDID_DETECTED)
12464 intel_ddi_init(dev, PORT_D);
12465 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12466 int found;
5d8a7752 12467 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12468
12469 if (has_edp_a(dev))
12470 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12471
dc0fa718 12472 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12473 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12474 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12475 if (!found)
e2debe91 12476 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12477 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12478 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12479 }
12480
dc0fa718 12481 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12482 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12483
dc0fa718 12484 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12485 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12486
5eb08b69 12487 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12488 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12489
270b3042 12490 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12491 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12492 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12493 /*
12494 * The DP_DETECTED bit is the latched state of the DDC
12495 * SDA pin at boot. However since eDP doesn't require DDC
12496 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12497 * eDP ports may have been muxed to an alternate function.
12498 * Thus we can't rely on the DP_DETECTED bit alone to detect
12499 * eDP ports. Consult the VBT as well as DP_DETECTED to
12500 * detect eDP ports.
12501 */
d2182a66
VS
12502 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12503 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12504 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12505 PORT_B);
e17ac6db
VS
12506 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12507 intel_dp_is_edp(dev, PORT_B))
12508 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12509
d2182a66
VS
12510 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12511 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12512 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12513 PORT_C);
e17ac6db
VS
12514 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12515 intel_dp_is_edp(dev, PORT_C))
12516 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12517
9418c1f1 12518 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12519 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12520 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12521 PORT_D);
e17ac6db
VS
12522 /* eDP not supported on port D, so don't check VBT */
12523 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12524 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12525 }
12526
3cfca973 12527 intel_dsi_init(dev);
103a196f 12528 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12529 bool found = false;
7d57382e 12530
e2debe91 12531 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12532 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12533 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12534 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12535 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12536 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12537 }
27185ae1 12538
e7281eab 12539 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12540 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12541 }
13520b05
KH
12542
12543 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12544
e2debe91 12545 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12546 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12547 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12548 }
27185ae1 12549
e2debe91 12550 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12551
b01f2c3a
JB
12552 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12553 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12554 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12555 }
e7281eab 12556 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12557 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12558 }
27185ae1 12559
b01f2c3a 12560 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12561 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12562 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12563 } else if (IS_GEN2(dev))
79e53945
JB
12564 intel_dvo_init(dev);
12565
103a196f 12566 if (SUPPORTS_TV(dev))
79e53945
JB
12567 intel_tv_init(dev);
12568
0bc12bcb 12569 intel_psr_init(dev);
7c8f8a70 12570
b2784e15 12571 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12572 encoder->base.possible_crtcs = encoder->crtc_mask;
12573 encoder->base.possible_clones =
66a9278e 12574 intel_encoder_clones(encoder);
79e53945 12575 }
47356eb6 12576
dde86e2d 12577 intel_init_pch_refclk(dev);
270b3042
DV
12578
12579 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12580}
12581
12582static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12583{
60a5ca01 12584 struct drm_device *dev = fb->dev;
79e53945 12585 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12586
ef2d633e 12587 drm_framebuffer_cleanup(fb);
60a5ca01 12588 mutex_lock(&dev->struct_mutex);
ef2d633e 12589 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12590 drm_gem_object_unreference(&intel_fb->obj->base);
12591 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12592 kfree(intel_fb);
12593}
12594
12595static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12596 struct drm_file *file,
79e53945
JB
12597 unsigned int *handle)
12598{
12599 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12600 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12601
05394f39 12602 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12603}
12604
12605static const struct drm_framebuffer_funcs intel_fb_funcs = {
12606 .destroy = intel_user_framebuffer_destroy,
12607 .create_handle = intel_user_framebuffer_create_handle,
12608};
12609
b5ea642a
DV
12610static int intel_framebuffer_init(struct drm_device *dev,
12611 struct intel_framebuffer *intel_fb,
12612 struct drm_mode_fb_cmd2 *mode_cmd,
12613 struct drm_i915_gem_object *obj)
79e53945 12614{
a57ce0b2 12615 int aligned_height;
a35cdaa0 12616 int pitch_limit;
79e53945
JB
12617 int ret;
12618
dd4916c5
DV
12619 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12620
c16ed4be
CW
12621 if (obj->tiling_mode == I915_TILING_Y) {
12622 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12623 return -EINVAL;
c16ed4be 12624 }
57cd6508 12625
c16ed4be
CW
12626 if (mode_cmd->pitches[0] & 63) {
12627 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12628 mode_cmd->pitches[0]);
57cd6508 12629 return -EINVAL;
c16ed4be 12630 }
57cd6508 12631
a35cdaa0
CW
12632 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12633 pitch_limit = 32*1024;
12634 } else if (INTEL_INFO(dev)->gen >= 4) {
12635 if (obj->tiling_mode)
12636 pitch_limit = 16*1024;
12637 else
12638 pitch_limit = 32*1024;
12639 } else if (INTEL_INFO(dev)->gen >= 3) {
12640 if (obj->tiling_mode)
12641 pitch_limit = 8*1024;
12642 else
12643 pitch_limit = 16*1024;
12644 } else
12645 /* XXX DSPC is limited to 4k tiled */
12646 pitch_limit = 8*1024;
12647
12648 if (mode_cmd->pitches[0] > pitch_limit) {
12649 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12650 obj->tiling_mode ? "tiled" : "linear",
12651 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12652 return -EINVAL;
c16ed4be 12653 }
5d7bd705
VS
12654
12655 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12656 mode_cmd->pitches[0] != obj->stride) {
12657 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12658 mode_cmd->pitches[0], obj->stride);
5d7bd705 12659 return -EINVAL;
c16ed4be 12660 }
5d7bd705 12661
57779d06 12662 /* Reject formats not supported by any plane early. */
308e5bcb 12663 switch (mode_cmd->pixel_format) {
57779d06 12664 case DRM_FORMAT_C8:
04b3924d
VS
12665 case DRM_FORMAT_RGB565:
12666 case DRM_FORMAT_XRGB8888:
12667 case DRM_FORMAT_ARGB8888:
57779d06
VS
12668 break;
12669 case DRM_FORMAT_XRGB1555:
12670 case DRM_FORMAT_ARGB1555:
c16ed4be 12671 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12672 DRM_DEBUG("unsupported pixel format: %s\n",
12673 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12674 return -EINVAL;
c16ed4be 12675 }
57779d06
VS
12676 break;
12677 case DRM_FORMAT_XBGR8888:
12678 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12679 case DRM_FORMAT_XRGB2101010:
12680 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12681 case DRM_FORMAT_XBGR2101010:
12682 case DRM_FORMAT_ABGR2101010:
c16ed4be 12683 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12684 DRM_DEBUG("unsupported pixel format: %s\n",
12685 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12686 return -EINVAL;
c16ed4be 12687 }
b5626747 12688 break;
04b3924d
VS
12689 case DRM_FORMAT_YUYV:
12690 case DRM_FORMAT_UYVY:
12691 case DRM_FORMAT_YVYU:
12692 case DRM_FORMAT_VYUY:
c16ed4be 12693 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12694 DRM_DEBUG("unsupported pixel format: %s\n",
12695 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12696 return -EINVAL;
c16ed4be 12697 }
57cd6508
CW
12698 break;
12699 default:
4ee62c76
VS
12700 DRM_DEBUG("unsupported pixel format: %s\n",
12701 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12702 return -EINVAL;
12703 }
12704
90f9a336
VS
12705 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12706 if (mode_cmd->offsets[0] != 0)
12707 return -EINVAL;
12708
ec2c981e
DL
12709 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12710 obj->tiling_mode);
53155c0a
DV
12711 /* FIXME drm helper for size checks (especially planar formats)? */
12712 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12713 return -EINVAL;
12714
c7d73f6a
DV
12715 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12716 intel_fb->obj = obj;
80075d49 12717 intel_fb->obj->framebuffer_references++;
c7d73f6a 12718
79e53945
JB
12719 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12720 if (ret) {
12721 DRM_ERROR("framebuffer init failed %d\n", ret);
12722 return ret;
12723 }
12724
79e53945
JB
12725 return 0;
12726}
12727
79e53945
JB
12728static struct drm_framebuffer *
12729intel_user_framebuffer_create(struct drm_device *dev,
12730 struct drm_file *filp,
308e5bcb 12731 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12732{
05394f39 12733 struct drm_i915_gem_object *obj;
79e53945 12734
308e5bcb
JB
12735 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12736 mode_cmd->handles[0]));
c8725226 12737 if (&obj->base == NULL)
cce13ff7 12738 return ERR_PTR(-ENOENT);
79e53945 12739
d2dff872 12740 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12741}
12742
4520f53a 12743#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12744static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12745{
12746}
12747#endif
12748
79e53945 12749static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12750 .fb_create = intel_user_framebuffer_create,
0632fef6 12751 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12752};
12753
e70236a8
JB
12754/* Set up chip specific display functions */
12755static void intel_init_display(struct drm_device *dev)
12756{
12757 struct drm_i915_private *dev_priv = dev->dev_private;
12758
ee9300bb
DV
12759 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12760 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12761 else if (IS_CHERRYVIEW(dev))
12762 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12763 else if (IS_VALLEYVIEW(dev))
12764 dev_priv->display.find_dpll = vlv_find_best_dpll;
12765 else if (IS_PINEVIEW(dev))
12766 dev_priv->display.find_dpll = pnv_find_best_dpll;
12767 else
12768 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12769
bc8d7dff
DL
12770 if (INTEL_INFO(dev)->gen >= 9) {
12771 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12772 dev_priv->display.get_initial_plane_config =
12773 skylake_get_initial_plane_config;
bc8d7dff
DL
12774 dev_priv->display.crtc_compute_clock =
12775 haswell_crtc_compute_clock;
12776 dev_priv->display.crtc_enable = haswell_crtc_enable;
12777 dev_priv->display.crtc_disable = haswell_crtc_disable;
12778 dev_priv->display.off = ironlake_crtc_off;
12779 dev_priv->display.update_primary_plane =
12780 skylake_update_primary_plane;
12781 } else if (HAS_DDI(dev)) {
0e8ffe1b 12782 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12783 dev_priv->display.get_initial_plane_config =
12784 ironlake_get_initial_plane_config;
797d0259
ACO
12785 dev_priv->display.crtc_compute_clock =
12786 haswell_crtc_compute_clock;
4f771f10
PZ
12787 dev_priv->display.crtc_enable = haswell_crtc_enable;
12788 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12789 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
12790 dev_priv->display.update_primary_plane =
12791 ironlake_update_primary_plane;
09b4ddf9 12792 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12793 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
12794 dev_priv->display.get_initial_plane_config =
12795 ironlake_get_initial_plane_config;
3fb37703
ACO
12796 dev_priv->display.crtc_compute_clock =
12797 ironlake_crtc_compute_clock;
76e5a89c
DV
12798 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12799 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12800 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12801 dev_priv->display.update_primary_plane =
12802 ironlake_update_primary_plane;
89b667f8
JB
12803 } else if (IS_VALLEYVIEW(dev)) {
12804 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12805 dev_priv->display.get_initial_plane_config =
12806 i9xx_get_initial_plane_config;
d6dfee7a 12807 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12808 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12809 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12810 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12811 dev_priv->display.update_primary_plane =
12812 i9xx_update_primary_plane;
f564048e 12813 } else {
0e8ffe1b 12814 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12815 dev_priv->display.get_initial_plane_config =
12816 i9xx_get_initial_plane_config;
d6dfee7a 12817 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12818 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12819 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12820 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12821 dev_priv->display.update_primary_plane =
12822 i9xx_update_primary_plane;
f564048e 12823 }
e70236a8 12824
e70236a8 12825 /* Returns the core display clock speed */
25eb05fc
JB
12826 if (IS_VALLEYVIEW(dev))
12827 dev_priv->display.get_display_clock_speed =
12828 valleyview_get_display_clock_speed;
12829 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12830 dev_priv->display.get_display_clock_speed =
12831 i945_get_display_clock_speed;
12832 else if (IS_I915G(dev))
12833 dev_priv->display.get_display_clock_speed =
12834 i915_get_display_clock_speed;
257a7ffc 12835 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12836 dev_priv->display.get_display_clock_speed =
12837 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12838 else if (IS_PINEVIEW(dev))
12839 dev_priv->display.get_display_clock_speed =
12840 pnv_get_display_clock_speed;
e70236a8
JB
12841 else if (IS_I915GM(dev))
12842 dev_priv->display.get_display_clock_speed =
12843 i915gm_get_display_clock_speed;
12844 else if (IS_I865G(dev))
12845 dev_priv->display.get_display_clock_speed =
12846 i865_get_display_clock_speed;
f0f8a9ce 12847 else if (IS_I85X(dev))
e70236a8
JB
12848 dev_priv->display.get_display_clock_speed =
12849 i855_get_display_clock_speed;
12850 else /* 852, 830 */
12851 dev_priv->display.get_display_clock_speed =
12852 i830_get_display_clock_speed;
12853
7c10a2b5 12854 if (IS_GEN5(dev)) {
3bb11b53 12855 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12856 } else if (IS_GEN6(dev)) {
12857 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12858 } else if (IS_IVYBRIDGE(dev)) {
12859 /* FIXME: detect B0+ stepping and use auto training */
12860 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12861 dev_priv->display.modeset_global_resources =
12862 ivb_modeset_global_resources;
059b2fe9 12863 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12864 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12865 } else if (IS_VALLEYVIEW(dev)) {
12866 dev_priv->display.modeset_global_resources =
12867 valleyview_modeset_global_resources;
e70236a8 12868 }
8c9f3aaf
JB
12869
12870 /* Default just returns -ENODEV to indicate unsupported */
12871 dev_priv->display.queue_flip = intel_default_queue_flip;
12872
12873 switch (INTEL_INFO(dev)->gen) {
12874 case 2:
12875 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12876 break;
12877
12878 case 3:
12879 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12880 break;
12881
12882 case 4:
12883 case 5:
12884 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12885 break;
12886
12887 case 6:
12888 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12889 break;
7c9017e5 12890 case 7:
4e0bbc31 12891 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12892 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12893 break;
830c81db
DL
12894 case 9:
12895 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12896 break;
8c9f3aaf 12897 }
7bd688cd
JN
12898
12899 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12900
12901 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12902}
12903
b690e96c
JB
12904/*
12905 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12906 * resume, or other times. This quirk makes sure that's the case for
12907 * affected systems.
12908 */
0206e353 12909static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12910{
12911 struct drm_i915_private *dev_priv = dev->dev_private;
12912
12913 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12914 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12915}
12916
b6b5d049
VS
12917static void quirk_pipeb_force(struct drm_device *dev)
12918{
12919 struct drm_i915_private *dev_priv = dev->dev_private;
12920
12921 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12922 DRM_INFO("applying pipe b force quirk\n");
12923}
12924
435793df
KP
12925/*
12926 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12927 */
12928static void quirk_ssc_force_disable(struct drm_device *dev)
12929{
12930 struct drm_i915_private *dev_priv = dev->dev_private;
12931 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12932 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12933}
12934
4dca20ef 12935/*
5a15ab5b
CE
12936 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12937 * brightness value
4dca20ef
CE
12938 */
12939static void quirk_invert_brightness(struct drm_device *dev)
12940{
12941 struct drm_i915_private *dev_priv = dev->dev_private;
12942 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12943 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12944}
12945
9c72cc6f
SD
12946/* Some VBT's incorrectly indicate no backlight is present */
12947static void quirk_backlight_present(struct drm_device *dev)
12948{
12949 struct drm_i915_private *dev_priv = dev->dev_private;
12950 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12951 DRM_INFO("applying backlight present quirk\n");
12952}
12953
b690e96c
JB
12954struct intel_quirk {
12955 int device;
12956 int subsystem_vendor;
12957 int subsystem_device;
12958 void (*hook)(struct drm_device *dev);
12959};
12960
5f85f176
EE
12961/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12962struct intel_dmi_quirk {
12963 void (*hook)(struct drm_device *dev);
12964 const struct dmi_system_id (*dmi_id_list)[];
12965};
12966
12967static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12968{
12969 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12970 return 1;
12971}
12972
12973static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12974 {
12975 .dmi_id_list = &(const struct dmi_system_id[]) {
12976 {
12977 .callback = intel_dmi_reverse_brightness,
12978 .ident = "NCR Corporation",
12979 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12980 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12981 },
12982 },
12983 { } /* terminating entry */
12984 },
12985 .hook = quirk_invert_brightness,
12986 },
12987};
12988
c43b5634 12989static struct intel_quirk intel_quirks[] = {
b690e96c 12990 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12991 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12992
b690e96c
JB
12993 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12994 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12995
b690e96c
JB
12996 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12997 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12998
5f080c0f
VS
12999 /* 830 needs to leave pipe A & dpll A up */
13000 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13001
b6b5d049
VS
13002 /* 830 needs to leave pipe B & dpll B up */
13003 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13004
435793df
KP
13005 /* Lenovo U160 cannot use SSC on LVDS */
13006 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13007
13008 /* Sony Vaio Y cannot use SSC on LVDS */
13009 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13010
be505f64
AH
13011 /* Acer Aspire 5734Z must invert backlight brightness */
13012 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13013
13014 /* Acer/eMachines G725 */
13015 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13016
13017 /* Acer/eMachines e725 */
13018 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13019
13020 /* Acer/Packard Bell NCL20 */
13021 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13022
13023 /* Acer Aspire 4736Z */
13024 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13025
13026 /* Acer Aspire 5336 */
13027 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13028
13029 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13030 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13031
dfb3d47b
SD
13032 /* Acer C720 Chromebook (Core i3 4005U) */
13033 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13034
b2a9601c 13035 /* Apple Macbook 2,1 (Core 2 T7400) */
13036 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13037
d4967d8c
SD
13038 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13039 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13040
13041 /* HP Chromebook 14 (Celeron 2955U) */
13042 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
13043};
13044
13045static void intel_init_quirks(struct drm_device *dev)
13046{
13047 struct pci_dev *d = dev->pdev;
13048 int i;
13049
13050 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13051 struct intel_quirk *q = &intel_quirks[i];
13052
13053 if (d->device == q->device &&
13054 (d->subsystem_vendor == q->subsystem_vendor ||
13055 q->subsystem_vendor == PCI_ANY_ID) &&
13056 (d->subsystem_device == q->subsystem_device ||
13057 q->subsystem_device == PCI_ANY_ID))
13058 q->hook(dev);
13059 }
5f85f176
EE
13060 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13061 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13062 intel_dmi_quirks[i].hook(dev);
13063 }
b690e96c
JB
13064}
13065
9cce37f4
JB
13066/* Disable the VGA plane that we never use */
13067static void i915_disable_vga(struct drm_device *dev)
13068{
13069 struct drm_i915_private *dev_priv = dev->dev_private;
13070 u8 sr1;
766aa1c4 13071 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13072
2b37c616 13073 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13074 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13075 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13076 sr1 = inb(VGA_SR_DATA);
13077 outb(sr1 | 1<<5, VGA_SR_DATA);
13078 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13079 udelay(300);
13080
01f5a626 13081 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13082 POSTING_READ(vga_reg);
13083}
13084
f817586c
DV
13085void intel_modeset_init_hw(struct drm_device *dev)
13086{
a8f78b58
ED
13087 intel_prepare_ddi(dev);
13088
f8bf63fd
VS
13089 if (IS_VALLEYVIEW(dev))
13090 vlv_update_cdclk(dev);
13091
f817586c
DV
13092 intel_init_clock_gating(dev);
13093
8090c6b9 13094 intel_enable_gt_powersave(dev);
f817586c
DV
13095}
13096
79e53945
JB
13097void intel_modeset_init(struct drm_device *dev)
13098{
652c393a 13099 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13100 int sprite, ret;
8cc87b75 13101 enum pipe pipe;
46f297fb 13102 struct intel_crtc *crtc;
79e53945
JB
13103
13104 drm_mode_config_init(dev);
13105
13106 dev->mode_config.min_width = 0;
13107 dev->mode_config.min_height = 0;
13108
019d96cb
DA
13109 dev->mode_config.preferred_depth = 24;
13110 dev->mode_config.prefer_shadow = 1;
13111
e6ecefaa 13112 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13113
b690e96c
JB
13114 intel_init_quirks(dev);
13115
1fa61106
ED
13116 intel_init_pm(dev);
13117
e3c74757
BW
13118 if (INTEL_INFO(dev)->num_pipes == 0)
13119 return;
13120
e70236a8 13121 intel_init_display(dev);
7c10a2b5 13122 intel_init_audio(dev);
e70236a8 13123
a6c45cf0
CW
13124 if (IS_GEN2(dev)) {
13125 dev->mode_config.max_width = 2048;
13126 dev->mode_config.max_height = 2048;
13127 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13128 dev->mode_config.max_width = 4096;
13129 dev->mode_config.max_height = 4096;
79e53945 13130 } else {
a6c45cf0
CW
13131 dev->mode_config.max_width = 8192;
13132 dev->mode_config.max_height = 8192;
79e53945 13133 }
068be561 13134
dc41c154
VS
13135 if (IS_845G(dev) || IS_I865G(dev)) {
13136 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13137 dev->mode_config.cursor_height = 1023;
13138 } else if (IS_GEN2(dev)) {
068be561
DL
13139 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13140 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13141 } else {
13142 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13143 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13144 }
13145
5d4545ae 13146 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13147
28c97730 13148 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13149 INTEL_INFO(dev)->num_pipes,
13150 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13151
055e393f 13152 for_each_pipe(dev_priv, pipe) {
8cc87b75 13153 intel_crtc_init(dev, pipe);
1fe47785
DL
13154 for_each_sprite(pipe, sprite) {
13155 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13156 if (ret)
06da8da2 13157 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13158 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13159 }
79e53945
JB
13160 }
13161
f42bb70d
JB
13162 intel_init_dpio(dev);
13163
e72f9fbf 13164 intel_shared_dpll_init(dev);
ee7b9f93 13165
9cce37f4
JB
13166 /* Just disable it once at startup */
13167 i915_disable_vga(dev);
79e53945 13168 intel_setup_outputs(dev);
11be49eb
CW
13169
13170 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13171 intel_fbc_disable(dev);
fa9fa083 13172
6e9f798d 13173 drm_modeset_lock_all(dev);
fa9fa083 13174 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13175 drm_modeset_unlock_all(dev);
46f297fb 13176
d3fcc808 13177 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13178 if (!crtc->active)
13179 continue;
13180
46f297fb 13181 /*
46f297fb
JB
13182 * Note that reserving the BIOS fb up front prevents us
13183 * from stuffing other stolen allocations like the ring
13184 * on top. This prevents some ugliness at boot time, and
13185 * can even allow for smooth boot transitions if the BIOS
13186 * fb is large enough for the active pipe configuration.
13187 */
5724dbd1
DL
13188 if (dev_priv->display.get_initial_plane_config) {
13189 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13190 &crtc->plane_config);
13191 /*
13192 * If the fb is shared between multiple heads, we'll
13193 * just get the first one.
13194 */
484b41dd 13195 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13196 }
46f297fb 13197 }
2c7111db
CW
13198}
13199
7fad798e
DV
13200static void intel_enable_pipe_a(struct drm_device *dev)
13201{
13202 struct intel_connector *connector;
13203 struct drm_connector *crt = NULL;
13204 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13205 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13206
13207 /* We can't just switch on the pipe A, we need to set things up with a
13208 * proper mode and output configuration. As a gross hack, enable pipe A
13209 * by enabling the load detect pipe once. */
13210 list_for_each_entry(connector,
13211 &dev->mode_config.connector_list,
13212 base.head) {
13213 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13214 crt = &connector->base;
13215 break;
13216 }
13217 }
13218
13219 if (!crt)
13220 return;
13221
208bf9fd
VS
13222 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13223 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13224}
13225
fa555837
DV
13226static bool
13227intel_check_plane_mapping(struct intel_crtc *crtc)
13228{
7eb552ae
BW
13229 struct drm_device *dev = crtc->base.dev;
13230 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13231 u32 reg, val;
13232
7eb552ae 13233 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13234 return true;
13235
13236 reg = DSPCNTR(!crtc->plane);
13237 val = I915_READ(reg);
13238
13239 if ((val & DISPLAY_PLANE_ENABLE) &&
13240 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13241 return false;
13242
13243 return true;
13244}
13245
24929352
DV
13246static void intel_sanitize_crtc(struct intel_crtc *crtc)
13247{
13248 struct drm_device *dev = crtc->base.dev;
13249 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13250 u32 reg;
24929352 13251
24929352 13252 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13253 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13254 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13255
d3eaf884 13256 /* restore vblank interrupts to correct state */
d297e103
VS
13257 if (crtc->active) {
13258 update_scanline_offset(crtc);
d3eaf884 13259 drm_vblank_on(dev, crtc->pipe);
d297e103 13260 } else
d3eaf884
VS
13261 drm_vblank_off(dev, crtc->pipe);
13262
24929352 13263 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13264 * disable the crtc (and hence change the state) if it is wrong. Note
13265 * that gen4+ has a fixed plane -> pipe mapping. */
13266 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13267 struct intel_connector *connector;
13268 bool plane;
13269
24929352
DV
13270 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13271 crtc->base.base.id);
13272
13273 /* Pipe has the wrong plane attached and the plane is active.
13274 * Temporarily change the plane mapping and disable everything
13275 * ... */
13276 plane = crtc->plane;
13277 crtc->plane = !plane;
9c8958bc 13278 crtc->primary_enabled = true;
24929352
DV
13279 dev_priv->display.crtc_disable(&crtc->base);
13280 crtc->plane = plane;
13281
13282 /* ... and break all links. */
13283 list_for_each_entry(connector, &dev->mode_config.connector_list,
13284 base.head) {
13285 if (connector->encoder->base.crtc != &crtc->base)
13286 continue;
13287
7f1950fb
EE
13288 connector->base.dpms = DRM_MODE_DPMS_OFF;
13289 connector->base.encoder = NULL;
24929352 13290 }
7f1950fb
EE
13291 /* multiple connectors may have the same encoder:
13292 * handle them and break crtc link separately */
13293 list_for_each_entry(connector, &dev->mode_config.connector_list,
13294 base.head)
13295 if (connector->encoder->base.crtc == &crtc->base) {
13296 connector->encoder->base.crtc = NULL;
13297 connector->encoder->connectors_active = false;
13298 }
24929352
DV
13299
13300 WARN_ON(crtc->active);
13301 crtc->base.enabled = false;
13302 }
24929352 13303
7fad798e
DV
13304 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13305 crtc->pipe == PIPE_A && !crtc->active) {
13306 /* BIOS forgot to enable pipe A, this mostly happens after
13307 * resume. Force-enable the pipe to fix this, the update_dpms
13308 * call below we restore the pipe to the right state, but leave
13309 * the required bits on. */
13310 intel_enable_pipe_a(dev);
13311 }
13312
24929352
DV
13313 /* Adjust the state of the output pipe according to whether we
13314 * have active connectors/encoders. */
13315 intel_crtc_update_dpms(&crtc->base);
13316
13317 if (crtc->active != crtc->base.enabled) {
13318 struct intel_encoder *encoder;
13319
13320 /* This can happen either due to bugs in the get_hw_state
13321 * functions or because the pipe is force-enabled due to the
13322 * pipe A quirk. */
13323 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13324 crtc->base.base.id,
13325 crtc->base.enabled ? "enabled" : "disabled",
13326 crtc->active ? "enabled" : "disabled");
13327
13328 crtc->base.enabled = crtc->active;
13329
13330 /* Because we only establish the connector -> encoder ->
13331 * crtc links if something is active, this means the
13332 * crtc is now deactivated. Break the links. connector
13333 * -> encoder links are only establish when things are
13334 * actually up, hence no need to break them. */
13335 WARN_ON(crtc->active);
13336
13337 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13338 WARN_ON(encoder->connectors_active);
13339 encoder->base.crtc = NULL;
13340 }
13341 }
c5ab3bc0 13342
a3ed6aad 13343 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13344 /*
13345 * We start out with underrun reporting disabled to avoid races.
13346 * For correct bookkeeping mark this on active crtcs.
13347 *
c5ab3bc0
DV
13348 * Also on gmch platforms we dont have any hardware bits to
13349 * disable the underrun reporting. Which means we need to start
13350 * out with underrun reporting disabled also on inactive pipes,
13351 * since otherwise we'll complain about the garbage we read when
13352 * e.g. coming up after runtime pm.
13353 *
4cc31489
DV
13354 * No protection against concurrent access is required - at
13355 * worst a fifo underrun happens which also sets this to false.
13356 */
13357 crtc->cpu_fifo_underrun_disabled = true;
13358 crtc->pch_fifo_underrun_disabled = true;
13359 }
24929352
DV
13360}
13361
13362static void intel_sanitize_encoder(struct intel_encoder *encoder)
13363{
13364 struct intel_connector *connector;
13365 struct drm_device *dev = encoder->base.dev;
13366
13367 /* We need to check both for a crtc link (meaning that the
13368 * encoder is active and trying to read from a pipe) and the
13369 * pipe itself being active. */
13370 bool has_active_crtc = encoder->base.crtc &&
13371 to_intel_crtc(encoder->base.crtc)->active;
13372
13373 if (encoder->connectors_active && !has_active_crtc) {
13374 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13375 encoder->base.base.id,
8e329a03 13376 encoder->base.name);
24929352
DV
13377
13378 /* Connector is active, but has no active pipe. This is
13379 * fallout from our resume register restoring. Disable
13380 * the encoder manually again. */
13381 if (encoder->base.crtc) {
13382 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13383 encoder->base.base.id,
8e329a03 13384 encoder->base.name);
24929352 13385 encoder->disable(encoder);
a62d1497
VS
13386 if (encoder->post_disable)
13387 encoder->post_disable(encoder);
24929352 13388 }
7f1950fb
EE
13389 encoder->base.crtc = NULL;
13390 encoder->connectors_active = false;
24929352
DV
13391
13392 /* Inconsistent output/port/pipe state happens presumably due to
13393 * a bug in one of the get_hw_state functions. Or someplace else
13394 * in our code, like the register restore mess on resume. Clamp
13395 * things to off as a safer default. */
13396 list_for_each_entry(connector,
13397 &dev->mode_config.connector_list,
13398 base.head) {
13399 if (connector->encoder != encoder)
13400 continue;
7f1950fb
EE
13401 connector->base.dpms = DRM_MODE_DPMS_OFF;
13402 connector->base.encoder = NULL;
24929352
DV
13403 }
13404 }
13405 /* Enabled encoders without active connectors will be fixed in
13406 * the crtc fixup. */
13407}
13408
04098753 13409void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13410{
13411 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13412 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13413
04098753
ID
13414 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13415 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13416 i915_disable_vga(dev);
13417 }
13418}
13419
13420void i915_redisable_vga(struct drm_device *dev)
13421{
13422 struct drm_i915_private *dev_priv = dev->dev_private;
13423
8dc8a27c
PZ
13424 /* This function can be called both from intel_modeset_setup_hw_state or
13425 * at a very early point in our resume sequence, where the power well
13426 * structures are not yet restored. Since this function is at a very
13427 * paranoid "someone might have enabled VGA while we were not looking"
13428 * level, just check if the power well is enabled instead of trying to
13429 * follow the "don't touch the power well if we don't need it" policy
13430 * the rest of the driver uses. */
f458ebbc 13431 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13432 return;
13433
04098753 13434 i915_redisable_vga_power_on(dev);
0fde901f
KM
13435}
13436
98ec7739
VS
13437static bool primary_get_hw_state(struct intel_crtc *crtc)
13438{
13439 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13440
13441 if (!crtc->active)
13442 return false;
13443
13444 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13445}
13446
30e984df 13447static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13448{
13449 struct drm_i915_private *dev_priv = dev->dev_private;
13450 enum pipe pipe;
24929352
DV
13451 struct intel_crtc *crtc;
13452 struct intel_encoder *encoder;
13453 struct intel_connector *connector;
5358901f 13454 int i;
24929352 13455
d3fcc808 13456 for_each_intel_crtc(dev, crtc) {
6e3c9717 13457 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13458
6e3c9717 13459 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13460
0e8ffe1b 13461 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13462 crtc->config);
24929352
DV
13463
13464 crtc->base.enabled = crtc->active;
98ec7739 13465 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13466
13467 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13468 crtc->base.base.id,
13469 crtc->active ? "enabled" : "disabled");
13470 }
13471
5358901f
DV
13472 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13473 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13474
3e369b76
ACO
13475 pll->on = pll->get_hw_state(dev_priv, pll,
13476 &pll->config.hw_state);
5358901f 13477 pll->active = 0;
3e369b76 13478 pll->config.crtc_mask = 0;
d3fcc808 13479 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13480 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13481 pll->active++;
3e369b76 13482 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13483 }
5358901f 13484 }
5358901f 13485
1e6f2ddc 13486 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13487 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13488
3e369b76 13489 if (pll->config.crtc_mask)
bd2bb1b9 13490 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13491 }
13492
b2784e15 13493 for_each_intel_encoder(dev, encoder) {
24929352
DV
13494 pipe = 0;
13495
13496 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13497 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13498 encoder->base.crtc = &crtc->base;
6e3c9717 13499 encoder->get_config(encoder, crtc->config);
24929352
DV
13500 } else {
13501 encoder->base.crtc = NULL;
13502 }
13503
13504 encoder->connectors_active = false;
6f2bcceb 13505 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13506 encoder->base.base.id,
8e329a03 13507 encoder->base.name,
24929352 13508 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13509 pipe_name(pipe));
24929352
DV
13510 }
13511
13512 list_for_each_entry(connector, &dev->mode_config.connector_list,
13513 base.head) {
13514 if (connector->get_hw_state(connector)) {
13515 connector->base.dpms = DRM_MODE_DPMS_ON;
13516 connector->encoder->connectors_active = true;
13517 connector->base.encoder = &connector->encoder->base;
13518 } else {
13519 connector->base.dpms = DRM_MODE_DPMS_OFF;
13520 connector->base.encoder = NULL;
13521 }
13522 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13523 connector->base.base.id,
c23cc417 13524 connector->base.name,
24929352
DV
13525 connector->base.encoder ? "enabled" : "disabled");
13526 }
30e984df
DV
13527}
13528
13529/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13530 * and i915 state tracking structures. */
13531void intel_modeset_setup_hw_state(struct drm_device *dev,
13532 bool force_restore)
13533{
13534 struct drm_i915_private *dev_priv = dev->dev_private;
13535 enum pipe pipe;
30e984df
DV
13536 struct intel_crtc *crtc;
13537 struct intel_encoder *encoder;
35c95375 13538 int i;
30e984df
DV
13539
13540 intel_modeset_readout_hw_state(dev);
24929352 13541
babea61d
JB
13542 /*
13543 * Now that we have the config, copy it to each CRTC struct
13544 * Note that this could go away if we move to using crtc_config
13545 * checking everywhere.
13546 */
d3fcc808 13547 for_each_intel_crtc(dev, crtc) {
d330a953 13548 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13549 intel_mode_from_pipe_config(&crtc->base.mode,
13550 crtc->config);
babea61d
JB
13551 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13552 crtc->base.base.id);
13553 drm_mode_debug_printmodeline(&crtc->base.mode);
13554 }
13555 }
13556
24929352 13557 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13558 for_each_intel_encoder(dev, encoder) {
24929352
DV
13559 intel_sanitize_encoder(encoder);
13560 }
13561
055e393f 13562 for_each_pipe(dev_priv, pipe) {
24929352
DV
13563 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13564 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13565 intel_dump_pipe_config(crtc, crtc->config,
13566 "[setup_hw_state]");
24929352 13567 }
9a935856 13568
35c95375
DV
13569 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13570 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13571
13572 if (!pll->on || pll->active)
13573 continue;
13574
13575 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13576
13577 pll->disable(dev_priv, pll);
13578 pll->on = false;
13579 }
13580
3078999f
PB
13581 if (IS_GEN9(dev))
13582 skl_wm_get_hw_state(dev);
13583 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13584 ilk_wm_get_hw_state(dev);
13585
45e2b5f6 13586 if (force_restore) {
7d0bc1ea
VS
13587 i915_redisable_vga(dev);
13588
f30da187
DV
13589 /*
13590 * We need to use raw interfaces for restoring state to avoid
13591 * checking (bogus) intermediate states.
13592 */
055e393f 13593 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13594 struct drm_crtc *crtc =
13595 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13596
7f27126e
JB
13597 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13598 crtc->primary->fb);
45e2b5f6
DV
13599 }
13600 } else {
13601 intel_modeset_update_staged_output_state(dev);
13602 }
8af6cf88
DV
13603
13604 intel_modeset_check_state(dev);
2c7111db
CW
13605}
13606
13607void intel_modeset_gem_init(struct drm_device *dev)
13608{
92122789 13609 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13610 struct drm_crtc *c;
2ff8fde1 13611 struct drm_i915_gem_object *obj;
484b41dd 13612
ae48434c
ID
13613 mutex_lock(&dev->struct_mutex);
13614 intel_init_gt_powersave(dev);
13615 mutex_unlock(&dev->struct_mutex);
13616
92122789
JB
13617 /*
13618 * There may be no VBT; and if the BIOS enabled SSC we can
13619 * just keep using it to avoid unnecessary flicker. Whereas if the
13620 * BIOS isn't using it, don't assume it will work even if the VBT
13621 * indicates as much.
13622 */
13623 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13624 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13625 DREF_SSC1_ENABLE);
13626
1833b134 13627 intel_modeset_init_hw(dev);
02e792fb
DV
13628
13629 intel_setup_overlay(dev);
484b41dd
JB
13630
13631 /*
13632 * Make sure any fbs we allocated at startup are properly
13633 * pinned & fenced. When we do the allocation it's too early
13634 * for this.
13635 */
13636 mutex_lock(&dev->struct_mutex);
70e1e0ec 13637 for_each_crtc(dev, c) {
2ff8fde1
MR
13638 obj = intel_fb_obj(c->primary->fb);
13639 if (obj == NULL)
484b41dd
JB
13640 continue;
13641
850c4cdc
TU
13642 if (intel_pin_and_fence_fb_obj(c->primary,
13643 c->primary->fb,
13644 NULL)) {
484b41dd
JB
13645 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13646 to_intel_crtc(c)->pipe);
66e514c1
DA
13647 drm_framebuffer_unreference(c->primary->fb);
13648 c->primary->fb = NULL;
484b41dd
JB
13649 }
13650 }
13651 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13652
13653 intel_backlight_register(dev);
79e53945
JB
13654}
13655
4932e2c3
ID
13656void intel_connector_unregister(struct intel_connector *intel_connector)
13657{
13658 struct drm_connector *connector = &intel_connector->base;
13659
13660 intel_panel_destroy_backlight(connector);
34ea3d38 13661 drm_connector_unregister(connector);
4932e2c3
ID
13662}
13663
79e53945
JB
13664void intel_modeset_cleanup(struct drm_device *dev)
13665{
652c393a 13666 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13667 struct drm_connector *connector;
652c393a 13668
2eb5252e
ID
13669 intel_disable_gt_powersave(dev);
13670
0962c3c9
VS
13671 intel_backlight_unregister(dev);
13672
fd0c0642
DV
13673 /*
13674 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13675 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13676 * experience fancy races otherwise.
13677 */
2aeb7d3a 13678 intel_irq_uninstall(dev_priv);
eb21b92b 13679
fd0c0642
DV
13680 /*
13681 * Due to the hpd irq storm handling the hotplug work can re-arm the
13682 * poll handlers. Hence disable polling after hpd handling is shut down.
13683 */
f87ea761 13684 drm_kms_helper_poll_fini(dev);
fd0c0642 13685
652c393a
JB
13686 mutex_lock(&dev->struct_mutex);
13687
723bfd70
JB
13688 intel_unregister_dsm_handler();
13689
7ff0ebcc 13690 intel_fbc_disable(dev);
e70236a8 13691
930ebb46
DV
13692 ironlake_teardown_rc6(dev);
13693
69341a5e
KH
13694 mutex_unlock(&dev->struct_mutex);
13695
1630fe75
CW
13696 /* flush any delayed tasks or pending work */
13697 flush_scheduled_work();
13698
db31af1d
JN
13699 /* destroy the backlight and sysfs files before encoders/connectors */
13700 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13701 struct intel_connector *intel_connector;
13702
13703 intel_connector = to_intel_connector(connector);
13704 intel_connector->unregister(intel_connector);
db31af1d 13705 }
d9255d57 13706
79e53945 13707 drm_mode_config_cleanup(dev);
4d7bb011
DV
13708
13709 intel_cleanup_overlay(dev);
ae48434c
ID
13710
13711 mutex_lock(&dev->struct_mutex);
13712 intel_cleanup_gt_powersave(dev);
13713 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13714}
13715
f1c79df3
ZW
13716/*
13717 * Return which encoder is currently attached for connector.
13718 */
df0e9248 13719struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13720{
df0e9248
CW
13721 return &intel_attached_encoder(connector)->base;
13722}
f1c79df3 13723
df0e9248
CW
13724void intel_connector_attach_encoder(struct intel_connector *connector,
13725 struct intel_encoder *encoder)
13726{
13727 connector->encoder = encoder;
13728 drm_mode_connector_attach_encoder(&connector->base,
13729 &encoder->base);
79e53945 13730}
28d52043
DA
13731
13732/*
13733 * set vga decode state - true == enable VGA decode
13734 */
13735int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13736{
13737 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13738 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13739 u16 gmch_ctrl;
13740
75fa041d
CW
13741 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13742 DRM_ERROR("failed to read control word\n");
13743 return -EIO;
13744 }
13745
c0cc8a55
CW
13746 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13747 return 0;
13748
28d52043
DA
13749 if (state)
13750 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13751 else
13752 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13753
13754 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13755 DRM_ERROR("failed to write control word\n");
13756 return -EIO;
13757 }
13758
28d52043
DA
13759 return 0;
13760}
c4a1d9e4 13761
c4a1d9e4 13762struct intel_display_error_state {
ff57f1b0
PZ
13763
13764 u32 power_well_driver;
13765
63b66e5b
CW
13766 int num_transcoders;
13767
c4a1d9e4
CW
13768 struct intel_cursor_error_state {
13769 u32 control;
13770 u32 position;
13771 u32 base;
13772 u32 size;
52331309 13773 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13774
13775 struct intel_pipe_error_state {
ddf9c536 13776 bool power_domain_on;
c4a1d9e4 13777 u32 source;
f301b1e1 13778 u32 stat;
52331309 13779 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13780
13781 struct intel_plane_error_state {
13782 u32 control;
13783 u32 stride;
13784 u32 size;
13785 u32 pos;
13786 u32 addr;
13787 u32 surface;
13788 u32 tile_offset;
52331309 13789 } plane[I915_MAX_PIPES];
63b66e5b
CW
13790
13791 struct intel_transcoder_error_state {
ddf9c536 13792 bool power_domain_on;
63b66e5b
CW
13793 enum transcoder cpu_transcoder;
13794
13795 u32 conf;
13796
13797 u32 htotal;
13798 u32 hblank;
13799 u32 hsync;
13800 u32 vtotal;
13801 u32 vblank;
13802 u32 vsync;
13803 } transcoder[4];
c4a1d9e4
CW
13804};
13805
13806struct intel_display_error_state *
13807intel_display_capture_error_state(struct drm_device *dev)
13808{
fbee40df 13809 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13810 struct intel_display_error_state *error;
63b66e5b
CW
13811 int transcoders[] = {
13812 TRANSCODER_A,
13813 TRANSCODER_B,
13814 TRANSCODER_C,
13815 TRANSCODER_EDP,
13816 };
c4a1d9e4
CW
13817 int i;
13818
63b66e5b
CW
13819 if (INTEL_INFO(dev)->num_pipes == 0)
13820 return NULL;
13821
9d1cb914 13822 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13823 if (error == NULL)
13824 return NULL;
13825
190be112 13826 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13827 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13828
055e393f 13829 for_each_pipe(dev_priv, i) {
ddf9c536 13830 error->pipe[i].power_domain_on =
f458ebbc
DV
13831 __intel_display_power_is_enabled(dev_priv,
13832 POWER_DOMAIN_PIPE(i));
ddf9c536 13833 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13834 continue;
13835
5efb3e28
VS
13836 error->cursor[i].control = I915_READ(CURCNTR(i));
13837 error->cursor[i].position = I915_READ(CURPOS(i));
13838 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13839
13840 error->plane[i].control = I915_READ(DSPCNTR(i));
13841 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13842 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13843 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13844 error->plane[i].pos = I915_READ(DSPPOS(i));
13845 }
ca291363
PZ
13846 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13847 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13848 if (INTEL_INFO(dev)->gen >= 4) {
13849 error->plane[i].surface = I915_READ(DSPSURF(i));
13850 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13851 }
13852
c4a1d9e4 13853 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13854
3abfce77 13855 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13856 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13857 }
13858
13859 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13860 if (HAS_DDI(dev_priv->dev))
13861 error->num_transcoders++; /* Account for eDP. */
13862
13863 for (i = 0; i < error->num_transcoders; i++) {
13864 enum transcoder cpu_transcoder = transcoders[i];
13865
ddf9c536 13866 error->transcoder[i].power_domain_on =
f458ebbc 13867 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13868 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13869 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13870 continue;
13871
63b66e5b
CW
13872 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13873
13874 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13875 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13876 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13877 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13878 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13879 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13880 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13881 }
13882
13883 return error;
13884}
13885
edc3d884
MK
13886#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13887
c4a1d9e4 13888void
edc3d884 13889intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13890 struct drm_device *dev,
13891 struct intel_display_error_state *error)
13892{
055e393f 13893 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13894 int i;
13895
63b66e5b
CW
13896 if (!error)
13897 return;
13898
edc3d884 13899 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13900 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13901 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13902 error->power_well_driver);
055e393f 13903 for_each_pipe(dev_priv, i) {
edc3d884 13904 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13905 err_printf(m, " Power: %s\n",
13906 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13907 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13908 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13909
13910 err_printf(m, "Plane [%d]:\n", i);
13911 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13912 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13913 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13914 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13915 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13916 }
4b71a570 13917 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13918 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13919 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13920 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13921 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13922 }
13923
edc3d884
MK
13924 err_printf(m, "Cursor [%d]:\n", i);
13925 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13926 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13927 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13928 }
63b66e5b
CW
13929
13930 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13931 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13932 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13933 err_printf(m, " Power: %s\n",
13934 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13935 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13936 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13937 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13938 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13939 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13940 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13941 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13942 }
c4a1d9e4 13943}
e2fcdaa9
VS
13944
13945void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13946{
13947 struct intel_crtc *crtc;
13948
13949 for_each_intel_crtc(dev, crtc) {
13950 struct intel_unpin_work *work;
e2fcdaa9 13951
5e2d7afc 13952 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13953
13954 work = crtc->unpin_work;
13955
13956 if (work && work->event &&
13957 work->event->base.file_priv == file) {
13958 kfree(work->event);
13959 work->event = NULL;
13960 }
13961
5e2d7afc 13962 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13963 }
13964}