]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Covert HSW+ to choose DPLLS before disabling CRTCs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f
VS
97static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
e7457a9a 101
0e32b39c
DA
102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103{
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108}
109
79e53945 110typedef struct {
0206e353 111 int min, max;
79e53945
JB
112} intel_range_t;
113
114typedef struct {
0206e353
AJ
115 int dot_limit;
116 int p2_slow, p2_fast;
79e53945
JB
117} intel_p2_t;
118
d4906093
ML
119typedef struct intel_limit intel_limit_t;
120struct intel_limit {
0206e353
AJ
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
d4906093 123};
79e53945 124
d2acd215
DV
125int
126intel_pch_rawclk(struct drm_device *dev)
127{
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133}
134
021357ac
CW
135static inline u32 /* units of 100MHz */
136intel_fdi_link_freq(struct drm_device *dev)
137{
8b99e68c
CW
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
021357ac
CW
143}
144
5d536e28 145static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 146 .dot = { .min = 25000, .max = 350000 },
9c333719 147 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 148 .n = { .min = 2, .max = 16 },
0206e353
AJ
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
156};
157
5d536e28
DV
158static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
9c333719 160 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 161 .n = { .min = 2, .max = 16 },
5d536e28
DV
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169};
170
e4b36699 171static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 172 .dot = { .min = 25000, .max = 350000 },
9c333719 173 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 174 .n = { .min = 2, .max = 16 },
0206e353
AJ
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
e4b36699 182};
273e27ca 183
e4b36699 184static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
208};
209
273e27ca 210
e4b36699 211static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
044c7c41 223 },
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
237};
238
239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
044c7c41 250 },
e4b36699
KP
251};
252
253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
044c7c41 264 },
e4b36699
KP
265};
266
f2b115e6 267static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 270 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273e27ca 273 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
280};
281
f2b115e6 282static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
293};
294
273e27ca
EA
295/* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
b91ad0ec 300static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
311};
312
b91ad0ec 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
324};
325
326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
337};
338
273e27ca 339/* LVDS 100mhz refclk limits. */
b91ad0ec 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
0206e353 348 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
351};
352
353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
0206e353 361 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
364};
365
dc730512 366static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 374 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 375 .n = { .min = 1, .max = 7 },
a0c4da24
JB
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
b99ab663 378 .p1 = { .min = 2, .max = 3 },
5fdc9c49 379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
380};
381
ef9348c8
CML
382static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396};
397
6b4bf1c4
VS
398static void vlv_clock(int refclk, intel_clock_t *clock)
399{
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
fb03ac01
VS
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
406}
407
e0638cdf
PZ
408/**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
7c10a2b5 411bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
e0638cdf 412{
409ee761 413 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
414 struct intel_encoder *encoder;
415
409ee761 416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
417 if (encoder->type == type)
418 return true;
419
420 return false;
421}
422
d0737e1d
ACO
423/**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430{
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439}
440
409ee761 441static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 442 int refclk)
2c07245f 443{
409ee761 444 struct drm_device *dev = crtc->base.dev;
2c07245f 445 const intel_limit_t *limit;
b91ad0ec 446
d0737e1d 447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 448 if (intel_is_dual_link_lvds(dev)) {
1b894b59 449 if (refclk == 100000)
b91ad0ec
ZW
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
c6bb3538 459 } else
b91ad0ec 460 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
461
462 return limit;
463}
464
409ee761 465static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 466{
409ee761 467 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
468 const intel_limit_t *limit;
469
d0737e1d 470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 471 if (intel_is_dual_link_lvds(dev))
e4b36699 472 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 473 else
e4b36699 474 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 477 limit = &intel_limits_g4x_hdmi;
d0737e1d 478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 479 limit = &intel_limits_g4x_sdvo;
044c7c41 480 } else /* The option is for other outputs */
e4b36699 481 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
482
483 return limit;
484}
485
409ee761 486static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 487{
409ee761 488 struct drm_device *dev = crtc->base.dev;
79e53945
JB
489 const intel_limit_t *limit;
490
bad720ff 491 if (HAS_PCH_SPLIT(dev))
1b894b59 492 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 493 else if (IS_G4X(dev)) {
044c7c41 494 limit = intel_g4x_limit(crtc);
f2b115e6 495 } else if (IS_PINEVIEW(dev)) {
d0737e1d 496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 497 limit = &intel_limits_pineview_lvds;
2177832f 498 else
f2b115e6 499 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
a0c4da24 502 } else if (IS_VALLEYVIEW(dev)) {
dc730512 503 limit = &intel_limits_vlv;
a6c45cf0 504 } else if (!IS_GEN2(dev)) {
d0737e1d 505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
79e53945 509 } else {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 511 limit = &intel_limits_i8xx_lvds;
d0737e1d 512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 513 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
514 else
515 limit = &intel_limits_i8xx_dac;
79e53945
JB
516 }
517 return limit;
518}
519
f2b115e6
AJ
520/* m1 is reserved as 0 in Pineview, n is a ring counter */
521static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 522{
2177832f
SL
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
529}
530
7429e9d4
DV
531static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532{
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534}
535
ac58c3f0 536static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 537{
7429e9d4 538 clock->m = i9xx_dpll_compute_m(clock);
79e53945 539 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
fb03ac01
VS
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
544}
545
ef9348c8
CML
546static void chv_clock(int refclk, intel_clock_t *clock)
547{
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555}
556
7c04d1d9 557#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
558/**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
1b894b59
CW
563static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
79e53945 566{
f01b7962
VS
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
79e53945 569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 570 INTELPllInvalid("p1 out of range\n");
79e53945 571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 572 INTELPllInvalid("m2 out of range\n");
79e53945 573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 574 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
79e53945 587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 588 INTELPllInvalid("vco out of range\n");
79e53945
JB
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 593 INTELPllInvalid("dot out of range\n");
79e53945
JB
594
595 return true;
596}
597
d4906093 598static bool
a919ff14 599i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
79e53945 602{
a919ff14 603 struct drm_device *dev = crtc->base.dev;
79e53945 604 intel_clock_t clock;
79e53945
JB
605 int err = target;
606
d0737e1d 607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 608 /*
a210b028
DV
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
79e53945 612 */
1974cad0 613 if (intel_is_dual_link_lvds(dev))
79e53945
JB
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
0206e353 624 memset(best_clock, 0, sizeof(*best_clock));
79e53945 625
42158660
ZY
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 630 if (clock.m2 >= clock.m1)
42158660
ZY
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
636 int this_err;
637
ac58c3f0
DV
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657}
658
659static bool
a919ff14 660pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
79e53945 663{
a919ff14 664 struct drm_device *dev = crtc->base.dev;
79e53945 665 intel_clock_t clock;
79e53945
JB
666 int err = target;
667
d0737e1d 668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 669 /*
a210b028
DV
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
79e53945 673 */
1974cad0 674 if (intel_is_dual_link_lvds(dev))
79e53945
JB
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
0206e353 685 memset(best_clock, 0, sizeof(*best_clock));
79e53945 686
42158660
ZY
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
695 int this_err;
696
ac58c3f0 697 pineview_clock(refclk, &clock);
1b894b59
CW
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
79e53945 700 continue;
cec2f356
SP
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
79e53945
JB
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716}
717
d4906093 718static bool
a919ff14 719g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
d4906093 722{
a919ff14 723 struct drm_device *dev = crtc->base.dev;
d4906093
ML
724 intel_clock_t clock;
725 int max_n;
726 bool found;
6ba770dc
AJ
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
729 found = false;
730
d0737e1d 731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 732 if (intel_is_dual_link_lvds(dev))
d4906093
ML
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
f77f13e2 745 /* based on hardware requirement, prefer smaller n to precision */
d4906093 746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 747 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
ac58c3f0 756 i9xx_clock(refclk, &clock);
1b894b59
CW
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
d4906093 759 continue;
1b894b59
CW
760
761 this_err = abs(clock.dot - target);
d4906093
ML
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
2c07245f
ZW
772 return found;
773}
774
a0c4da24 775static bool
a919ff14 776vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
a0c4da24 779{
a919ff14 780 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 781 intel_clock_t clock;
69e4f900 782 unsigned int bestppm = 1000000;
27e639bf
VS
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 785 bool found = false;
a0c4da24 786
6b4bf1c4
VS
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
790
791 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 796 clock.p = clock.p1 * clock.p2;
a0c4da24 797 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
799 unsigned int ppm, diff;
800
6b4bf1c4
VS
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
43b0ac53 805
f01b7962
VS
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
43b0ac53
VS
808 continue;
809
6b4bf1c4
VS
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 814 bestppm = 0;
6b4bf1c4 815 *best_clock = clock;
49e497ef 816 found = true;
43b0ac53 817 }
6b4bf1c4 818
c686122c 819 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 820 bestppm = ppm;
6b4bf1c4 821 *best_clock = clock;
49e497ef 822 found = true;
a0c4da24
JB
823 }
824 }
825 }
826 }
827 }
a0c4da24 828
49e497ef 829 return found;
a0c4da24 830}
a4fc5ed6 831
ef9348c8 832static bool
a919ff14 833chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836{
a919ff14 837 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882}
883
20ddf665
VS
884bool intel_crtc_active(struct drm_crtc *crtc)
885{
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
241bfc38 891 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
892 * as Haswell has gained clock readout/fastboot support.
893 *
66e514c1 894 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
895 * properly reconstruct framebuffers.
896 */
f4510a27 897 return intel_crtc->active && crtc->primary->fb &&
241bfc38 898 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
899}
900
a5c961d1
PZ
901enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903{
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
3b117c8f 907 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
908}
909
fbf49ea2
VS
910static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911{
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927}
928
ab7ad7f6
KP
929/*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 931 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
ab7ad7f6
KP
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
58e10eb9 943 *
9d0498a2 944 */
575f7ab7 945static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 946{
575f7ab7 947 struct drm_device *dev = crtc->base.dev;
9d0498a2 948 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
951
952 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 953 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
954
955 /* Wait for the Pipe State to go off */
58e10eb9
CW
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
284637d9 958 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 959 } else {
ab7ad7f6 960 /* Wait for the display line to settle */
fbf49ea2 961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 962 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 963 }
79e53945
JB
964}
965
b0ea7d37
DL
966/*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975{
976 u32 bit;
977
c36346e3 978 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 979 switch (port->port) {
c36346e3
DL
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
eba905b2 993 switch (port->port) {
c36346e3
DL
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
b0ea7d37
DL
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009}
1010
b24e7179
JB
1011static const char *state_string(bool enabled)
1012{
1013 return enabled ? "on" : "off";
1014}
1015
1016/* Only for pre-ILK configs */
55607e8a
DV
1017void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
b24e7179
JB
1019{
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030}
b24e7179 1031
23538ef1
JN
1032/* XXX: the dsi pll is shared between MIPI DSI ports */
1033static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034{
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046}
1047#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
55607e8a 1050struct intel_shared_dpll *
e2b78267
DV
1051intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052{
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
a43f6e0f 1055 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1056 return NULL;
1057
a43f6e0f 1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1059}
1060
040484af 1061/* For ILK+ */
55607e8a
DV
1062void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
040484af 1065{
040484af 1066 bool cur_state;
5358901f 1067 struct intel_dpll_hw_state hw_state;
040484af 1068
92b27b08 1069 if (WARN (!pll,
46edb027 1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1071 return;
ee7b9f93 1072
5358901f 1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1074 WARN(cur_state != state,
5358901f
DV
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
040484af 1077}
040484af
JB
1078
1079static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081{
1082 int reg;
1083 u32 val;
1084 bool cur_state;
ad80a810
PZ
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
040484af 1087
affa9354
PZ
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
ad80a810 1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1091 val = I915_READ(reg);
ad80a810 1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
040484af
JB
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101}
1102#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107{
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
d63fa0dc
PZ
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118}
1119#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124{
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
3d13ef2e 1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1130 return;
1131
bf507ef7 1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1133 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1134 return;
1135
040484af
JB
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139}
1140
55607e8a
DV
1141void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
040484af
JB
1143{
1144 int reg;
1145 u32 val;
55607e8a 1146 bool cur_state;
040484af
JB
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
55607e8a
DV
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
040484af
JB
1154}
1155
b680c37a
DV
1156void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
ea0760cf 1158{
bedd4dba
JN
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
ea0760cf
JB
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
0de3b485 1163 bool locked = true;
ea0760cf 1164
bedd4dba
JN
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
ea0760cf 1171 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
ea0760cf
JB
1182 } else {
1183 pp_reg = PP_CONTROL;
bedd4dba
JN
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
ea0760cf
JB
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1191 locked = false;
1192
ea0760cf
JB
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1195 pipe_name(pipe));
ea0760cf
JB
1196}
1197
93ce0ba6
JN
1198static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200{
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
d9d82081 1204 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1206 else
5efb3e28 1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212}
1213#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
b840d907
JB
1216void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
b24e7179
JB
1218{
1219 int reg;
1220 u32 val;
63d7bbe9 1221 bool cur_state;
702e7a56
PZ
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
b24e7179 1224
b6b5d049
VS
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1228 state = true;
1229
f458ebbc 1230 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
63d7bbe9
JB
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1241 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1242}
1243
931872fc
CW
1244static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
b24e7179
JB
1246{
1247 int reg;
1248 u32 val;
931872fc 1249 bool cur_state;
b24e7179
JB
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
931872fc
CW
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1257}
1258
931872fc
CW
1259#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
b24e7179
JB
1262static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264{
653e1026 1265 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
653e1026
VS
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
83f26f16 1274 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
19ec1358 1277 return;
28c05794 1278 }
19ec1358 1279
b24e7179 1280 /* Need to check both planes against the pipe */
055e393f 1281 for_each_pipe(dev_priv, i) {
b24e7179
JB
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
b24e7179
JB
1289 }
1290}
1291
19332d7a
JB
1292static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294{
20674eef 1295 struct drm_device *dev = dev_priv->dev;
1fe47785 1296 int reg, sprite;
19332d7a
JB
1297 u32 val;
1298
7feb8b88
DL
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
20674eef 1309 val = I915_READ(reg);
83f26f16 1310 WARN(val & SP_ENABLE,
20674eef 1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1312 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
19332d7a 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SPRITE_ENABLE,
06da8da2 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
19332d7a 1322 val = I915_READ(reg);
83f26f16 1323 WARN(val & DVS_ENABLE,
06da8da2 1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1325 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1326 }
1327}
1328
08c71e5e
VS
1329static void assert_vblank_disabled(struct drm_crtc *crtc)
1330{
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333}
1334
89eff4be 1335static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1336{
1337 u32 val;
1338 bool enabled;
1339
89eff4be 1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1341
92f2584a
JB
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346}
1347
ab9412ba
DV
1348static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
92f2584a
JB
1350{
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
ab9412ba 1355 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
92f2584a
JB
1361}
1362
4e634389
KP
1363static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1365{
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
44f37d1f
CML
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
f0575e92
KP
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382}
1383
1519b995
KP
1384static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386{
dc0fa718 1387 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1392 return false;
44f37d1f
CML
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1519b995 1396 } else {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1398 return false;
1399 }
1400 return true;
1401}
1402
1403static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405{
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417}
1418
1419static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421{
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432}
1433
291906f1 1434static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1435 enum pipe pipe, int reg, u32 port_sel)
291906f1 1436{
47a05eca 1437 u32 val = I915_READ(reg);
4e634389 1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1440 reg, pipe_name(pipe));
de9a35ab 1441
75c5da27
DV
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
de9a35ab 1444 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1445}
1446
1447static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449{
47a05eca 1450 u32 val = I915_READ(reg);
b70ad586 1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1453 reg, pipe_name(pipe));
de9a35ab 1454
dc0fa718 1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1456 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1457 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1458}
1459
1460static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462{
1463 int reg;
1464 u32 val;
291906f1 1465
f0575e92
KP
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
b70ad586 1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1474 pipe_name(pipe));
291906f1
JB
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1 1481
e2debe91
PZ
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1485}
1486
40e9cf64
JB
1487static void intel_init_dpio(struct drm_device *dev)
1488{
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
a09caddd
CML
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
5382f5f3
JB
1505}
1506
d288f65f
VS
1507static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
87442f73 1509{
426115cf
DV
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
d288f65f 1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1514
426115cf 1515 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1521 if (IS_MOBILE(dev_priv->dev))
426115cf 1522 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1523
426115cf
DV
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
d288f65f 1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1532 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1533
1534 /* We do this three times for luck */
426115cf 1535 I915_WRITE(reg, dpll);
87442f73
DV
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544}
1545
d288f65f
VS
1546static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
9d556c99
CML
1548{
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
d288f65f 1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1573
1574 /* Check PLL is locked */
a11b0703 1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
a11b0703 1578 /* not sure when this should be written */
d288f65f 1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1580 POSTING_READ(DPLL_MD(pipe));
1581
9d556c99
CML
1582 mutex_unlock(&dev_priv->dpio_lock);
1583}
1584
1c4e0274
VS
1585static int intel_num_dvo_pipes(struct drm_device *dev)
1586{
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
409ee761 1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1593
1594 return count;
1595}
1596
66e3d5c0 1597static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1598{
66e3d5c0
DV
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1603
66e3d5c0 1604 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1605
63d7bbe9 1606 /* No really, not for ILK+ */
3d13ef2e 1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1608
1609 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1612
1c4e0274
VS
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
66e3d5c0
DV
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
63d7bbe9
JB
1641
1642 /* We do this three times for luck */
66e3d5c0 1643 I915_WRITE(reg, dpll);
63d7bbe9
JB
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652}
1653
1654/**
50b44a44 1655 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1c4e0274 1663static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1664{
1c4e0274
VS
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
409ee761 1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
b6b5d049
VS
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
50b44a44
DV
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1689}
1690
f6071166
JB
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
e5cbfbfb
ID
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
f6071166 1702 if (pipe == PIPE_B)
e5cbfbfb 1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
d752048d 1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1712 u32 val;
1713
a11b0703
VS
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1716
a11b0703 1717 /* Set PLL en = 0 */
d17ec4ce 1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
d752048d
VS
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
61407f6d
VS
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
d752048d 1742 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1743}
1744
e4607fcf
CML
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
89b667f8
JB
1747{
1748 u32 port_mask;
00fc31b7 1749 int dpll_reg;
89b667f8 1750
e4607fcf
CML
1751 switch (dport->port) {
1752 case PORT_B:
89b667f8 1753 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1754 dpll_reg = DPLL(0);
e4607fcf
CML
1755 break;
1756 case PORT_C:
89b667f8 1757 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1763 break;
1764 default:
1765 BUG();
1766 }
89b667f8 1767
00fc31b7 1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1770 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1771}
1772
b14b1055
DV
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
be19f0ff
CW
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
3e369b76 1782 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790}
1791
92f2584a 1792/**
85b3894f 1793 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
85b3894f 1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1805
87a875bb 1806 if (WARN_ON(pll == NULL))
48da64a8
CW
1807 return;
1808
3e369b76 1809 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1810 return;
ee7b9f93 1811
74dd6928 1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1813 pll->name, pll->active, pll->on,
e2b78267 1814 crtc->base.base.id);
92f2584a 1815
cdbd2316
DV
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
e9d6944e 1818 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1819 return;
1820 }
f4a091c7 1821 WARN_ON(pll->on);
ee7b9f93 1822
bd2bb1b9
PZ
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
46edb027 1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1826 pll->enable(dev_priv, pll);
ee7b9f93 1827 pll->on = true;
92f2584a
JB
1828}
1829
f6daaec2 1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1835
92f2584a 1836 /* PCH only available on ILK+ */
3d13ef2e 1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1838 if (WARN_ON(pll == NULL))
ee7b9f93 1839 return;
92f2584a 1840
3e369b76 1841 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1842 return;
7a419866 1843
46edb027
DV
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
e2b78267 1846 crtc->base.base.id);
7a419866 1847
48da64a8 1848 if (WARN_ON(pll->active == 0)) {
e9d6944e 1849 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1850 return;
1851 }
1852
e9d6944e 1853 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1854 WARN_ON(!pll->on);
cdbd2316 1855 if (--pll->active)
7a419866 1856 return;
ee7b9f93 1857
46edb027 1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1859 pll->disable(dev_priv, pll);
ee7b9f93 1860 pll->on = false;
bd2bb1b9
PZ
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1863}
1864
b8a4f404
PZ
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
040484af 1867{
23670b32 1868 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1871 uint32_t reg, val, pipeconf_val;
040484af
JB
1872
1873 /* PCH only available on ILK+ */
55522f37 1874 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1875
1876 /* Make sure PCH DPLL is enabled */
e72f9fbf 1877 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1878 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
23670b32
DV
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
59c859d6 1891 }
23670b32 1892
ab9412ba 1893 reg = PCH_TRANSCONF(pipe);
040484af 1894 val = I915_READ(reg);
5f7f726d 1895 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
dfd07d72
DV
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1904 }
5f7f726d
PZ
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1908 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
5f7f726d
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
040484af
JB
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1919}
1920
8fb033d7 1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1922 enum transcoder cpu_transcoder)
040484af 1923{
8fb033d7 1924 u32 val, pipeconf_val;
8fb033d7
PZ
1925
1926 /* PCH only available on ILK+ */
55522f37 1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1928
8fb033d7 1929 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1932
223a6fdf
PZ
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
25f3ef11 1938 val = TRANS_ENABLE;
937bb610 1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1940
9a76b1c6
PZ
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
a35f2679 1943 val |= TRANS_INTERLACED;
8fb033d7
PZ
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
ab9412ba
DV
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1949 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1950}
1951
b8a4f404
PZ
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
040484af 1954{
23670b32
DV
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
040484af
JB
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
291906f1
JB
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
ab9412ba 1965 reg = PCH_TRANSCONF(pipe);
040484af
JB
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
040484af
JB
1980}
1981
ab4d966c 1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1983{
8fb033d7
PZ
1984 u32 val;
1985
ab9412ba 1986 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1987 val &= ~TRANS_ENABLE;
ab9412ba 1988 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1989 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1991 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1996 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1997}
1998
b24e7179 1999/**
309cfea8 2000 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2001 * @crtc: crtc responsible for the pipe
b24e7179 2002 *
0372264a 2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2005 */
e1fdc473 2006static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
0372264a
PZ
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
1a240d4d 2013 enum pipe pch_transcoder;
b24e7179
JB
2014 int reg;
2015 u32 val;
2016
58c6eaa2 2017 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2018 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2019 assert_sprites_disabled(dev_priv, pipe);
2020
681e5811 2021 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
b24e7179
JB
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
040484af 2036 else {
30421c4f 2037 if (crtc->config.has_pch_encoder) {
040484af 2038 /* if driving the PCH, we need FDI enabled */
cc391bbb 2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
040484af
JB
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
b24e7179 2045
702e7a56 2046 reg = PIPECONF(cpu_transcoder);
b24e7179 2047 val = I915_READ(reg);
7ad25d48 2048 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2051 return;
7ad25d48 2052 }
00d70b15
CW
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2055 POSTING_READ(reg);
b24e7179
JB
2056}
2057
2058/**
309cfea8 2059 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2060 * @crtc: crtc whose pipes is to be disabled
b24e7179 2061 *
575f7ab7
VS
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
b24e7179
JB
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
575f7ab7 2068static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2069{
575f7ab7
VS
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
b24e7179
JB
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2081 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2082 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
67adc644
VS
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2104}
2105
d74362c9
KP
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
1dba99f4
VS
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
d74362c9 2112{
3d13ef2e
DL
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
d74362c9
KP
2118}
2119
b24e7179 2120/**
262ca2b0 2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
b24e7179 2124 *
fdd508a6 2125 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2126 */
fdd508a6
VS
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
b24e7179 2129{
fdd508a6
VS
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2136
98ec7739
VS
2137 if (intel_crtc->primary_enabled)
2138 return;
0037f71c 2139
4c445e0e 2140 intel_crtc->primary_enabled = true;
939c2fe8 2141
fdd508a6
VS
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
33c3b0d1
VS
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2152}
2153
b24e7179 2154/**
262ca2b0 2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
b24e7179 2158 *
fdd508a6 2159 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2160 */
fdd508a6
VS
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
b24e7179 2163{
fdd508a6
VS
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2169
98ec7739
VS
2170 if (!intel_crtc->primary_enabled)
2171 return;
0037f71c 2172
4c445e0e 2173 intel_crtc->primary_enabled = false;
939c2fe8 2174
fdd508a6
VS
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
b24e7179
JB
2177}
2178
693db184
CW
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184#endif
2185 return false;
2186}
2187
a57ce0b2
JB
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194}
2195
127bd2ac 2196int
48b956c5 2197intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2198 struct drm_i915_gem_object *obj,
a4872ba6 2199 struct intel_engine_cs *pipelined)
6b95a207 2200{
ce453d81 2201 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2202 u32 alignment;
2203 int ret;
2204
ebcdd39e
MR
2205 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
05394f39 2207 switch (obj->tiling_mode) {
6b95a207 2208 case I915_TILING_NONE:
1fada4cc
DL
2209 if (INTEL_INFO(dev)->gen >= 9)
2210 alignment = 256 * 1024;
2211 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2212 alignment = 128 * 1024;
a6c45cf0 2213 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2214 alignment = 4 * 1024;
2215 else
2216 alignment = 64 * 1024;
6b95a207
KH
2217 break;
2218 case I915_TILING_X:
1fada4cc
DL
2219 if (INTEL_INFO(dev)->gen >= 9)
2220 alignment = 256 * 1024;
2221 else {
2222 /* pin() will align the object as required by fence */
2223 alignment = 0;
2224 }
6b95a207
KH
2225 break;
2226 case I915_TILING_Y:
80075d49 2227 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2228 return -EINVAL;
2229 default:
2230 BUG();
2231 }
2232
693db184
CW
2233 /* Note that the w/a also requires 64 PTE of padding following the
2234 * bo. We currently fill all unused PTE with the shadow page and so
2235 * we should always have valid PTE following the scanout preventing
2236 * the VT-d warning.
2237 */
2238 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239 alignment = 256 * 1024;
2240
d6dd6843
PZ
2241 /*
2242 * Global gtt pte registers are special registers which actually forward
2243 * writes to a chunk of system memory. Which means that there is no risk
2244 * that the register values disappear as soon as we call
2245 * intel_runtime_pm_put(), so it is correct to wrap only the
2246 * pin/unpin/fence and not more.
2247 */
2248 intel_runtime_pm_get(dev_priv);
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
d6dd6843 2267 intel_runtime_pm_put(dev_priv);
6b95a207 2268 return 0;
48b956c5
CW
2269
2270err_unpin:
cc98b413 2271 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2272err_interruptible:
2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
48b956c5 2275 return ret;
6b95a207
KH
2276}
2277
1690e1eb
CW
2278void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279{
ebcdd39e
MR
2280 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
1690e1eb 2282 i915_gem_object_unpin_fence(obj);
cc98b413 2283 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2284}
2285
c2c75131
DV
2286/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287 * is assumed to be a power-of-two. */
bc752862
CW
2288unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289 unsigned int tiling_mode,
2290 unsigned int cpp,
2291 unsigned int pitch)
c2c75131 2292{
bc752862
CW
2293 if (tiling_mode != I915_TILING_NONE) {
2294 unsigned int tile_rows, tiles;
c2c75131 2295
bc752862
CW
2296 tile_rows = *y / 8;
2297 *y %= 8;
c2c75131 2298
bc752862
CW
2299 tiles = *x / (512/cpp);
2300 *x %= 512/cpp;
2301
2302 return tile_rows * pitch * 8 + tiles * 4096;
2303 } else {
2304 unsigned int offset;
2305
2306 offset = *y * pitch + *x * cpp;
2307 *y = 0;
2308 *x = (offset & 4095) / cpp;
2309 return offset & -4096;
2310 }
c2c75131
DV
2311}
2312
46f297fb
JB
2313int intel_format_to_fourcc(int format)
2314{
2315 switch (format) {
2316 case DISPPLANE_8BPP:
2317 return DRM_FORMAT_C8;
2318 case DISPPLANE_BGRX555:
2319 return DRM_FORMAT_XRGB1555;
2320 case DISPPLANE_BGRX565:
2321 return DRM_FORMAT_RGB565;
2322 default:
2323 case DISPPLANE_BGRX888:
2324 return DRM_FORMAT_XRGB8888;
2325 case DISPPLANE_RGBX888:
2326 return DRM_FORMAT_XBGR8888;
2327 case DISPPLANE_BGRX101010:
2328 return DRM_FORMAT_XRGB2101010;
2329 case DISPPLANE_RGBX101010:
2330 return DRM_FORMAT_XBGR2101010;
2331 }
2332}
2333
484b41dd 2334static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2335 struct intel_plane_config *plane_config)
2336{
2337 struct drm_device *dev = crtc->base.dev;
2338 struct drm_i915_gem_object *obj = NULL;
2339 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340 u32 base = plane_config->base;
2341
ff2652ea
CW
2342 if (plane_config->size == 0)
2343 return false;
2344
46f297fb
JB
2345 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346 plane_config->size);
2347 if (!obj)
484b41dd 2348 return false;
46f297fb
JB
2349
2350 if (plane_config->tiled) {
2351 obj->tiling_mode = I915_TILING_X;
66e514c1 2352 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2353 }
2354
66e514c1
DA
2355 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356 mode_cmd.width = crtc->base.primary->fb->width;
2357 mode_cmd.height = crtc->base.primary->fb->height;
2358 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2359
2360 mutex_lock(&dev->struct_mutex);
2361
66e514c1 2362 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2363 &mode_cmd, obj)) {
46f297fb
JB
2364 DRM_DEBUG_KMS("intel fb init failed\n");
2365 goto out_unref_obj;
2366 }
2367
a071fa00 2368 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2369 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2370
2371 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372 return true;
46f297fb
JB
2373
2374out_unref_obj:
2375 drm_gem_object_unreference(&obj->base);
2376 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2377 return false;
2378}
2379
2380static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381 struct intel_plane_config *plane_config)
2382{
2383 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2384 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2385 struct drm_crtc *c;
2386 struct intel_crtc *i;
2ff8fde1 2387 struct drm_i915_gem_object *obj;
484b41dd 2388
66e514c1 2389 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2390 return;
2391
2392 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393 return;
2394
66e514c1
DA
2395 kfree(intel_crtc->base.primary->fb);
2396 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2397
2398 /*
2399 * Failed to alloc the obj, check to see if we should share
2400 * an fb with another CRTC instead
2401 */
70e1e0ec 2402 for_each_crtc(dev, c) {
484b41dd
JB
2403 i = to_intel_crtc(c);
2404
2405 if (c == &intel_crtc->base)
2406 continue;
2407
2ff8fde1
MR
2408 if (!i->active)
2409 continue;
2410
2411 obj = intel_fb_obj(c->primary->fb);
2412 if (obj == NULL)
484b41dd
JB
2413 continue;
2414
2ff8fde1 2415 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2416 if (obj->tiling_mode != I915_TILING_NONE)
2417 dev_priv->preserve_bios_swizzle = true;
2418
66e514c1
DA
2419 drm_framebuffer_reference(c->primary->fb);
2420 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2421 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2422 break;
2423 }
2424 }
46f297fb
JB
2425}
2426
29b9bde6
DV
2427static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428 struct drm_framebuffer *fb,
2429 int x, int y)
81255565
JB
2430{
2431 struct drm_device *dev = crtc->dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2434 struct drm_i915_gem_object *obj;
81255565 2435 int plane = intel_crtc->plane;
e506a0c6 2436 unsigned long linear_offset;
81255565 2437 u32 dspcntr;
f45651ba 2438 u32 reg = DSPCNTR(plane);
48404c1e 2439 int pixel_size;
f45651ba 2440
fdd508a6
VS
2441 if (!intel_crtc->primary_enabled) {
2442 I915_WRITE(reg, 0);
2443 if (INTEL_INFO(dev)->gen >= 4)
2444 I915_WRITE(DSPSURF(plane), 0);
2445 else
2446 I915_WRITE(DSPADDR(plane), 0);
2447 POSTING_READ(reg);
2448 return;
2449 }
2450
c9ba6fad
VS
2451 obj = intel_fb_obj(fb);
2452 if (WARN_ON(obj == NULL))
2453 return;
2454
2455 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
f45651ba
VS
2457 dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
fdd508a6 2459 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2460
2461 if (INTEL_INFO(dev)->gen < 4) {
2462 if (intel_crtc->pipe == PIPE_B)
2463 dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465 /* pipesrc and dspsize control the size that is scaled from,
2466 * which should always be the user's requested size.
2467 */
2468 I915_WRITE(DSPSIZE(plane),
2469 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470 (intel_crtc->config.pipe_src_w - 1));
2471 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2472 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473 I915_WRITE(PRIMSIZE(plane),
2474 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475 (intel_crtc->config.pipe_src_w - 1));
2476 I915_WRITE(PRIMPOS(plane), 0);
2477 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2478 }
81255565 2479
57779d06
VS
2480 switch (fb->pixel_format) {
2481 case DRM_FORMAT_C8:
81255565
JB
2482 dspcntr |= DISPPLANE_8BPP;
2483 break;
57779d06
VS
2484 case DRM_FORMAT_XRGB1555:
2485 case DRM_FORMAT_ARGB1555:
2486 dspcntr |= DISPPLANE_BGRX555;
81255565 2487 break;
57779d06
VS
2488 case DRM_FORMAT_RGB565:
2489 dspcntr |= DISPPLANE_BGRX565;
2490 break;
2491 case DRM_FORMAT_XRGB8888:
2492 case DRM_FORMAT_ARGB8888:
2493 dspcntr |= DISPPLANE_BGRX888;
2494 break;
2495 case DRM_FORMAT_XBGR8888:
2496 case DRM_FORMAT_ABGR8888:
2497 dspcntr |= DISPPLANE_RGBX888;
2498 break;
2499 case DRM_FORMAT_XRGB2101010:
2500 case DRM_FORMAT_ARGB2101010:
2501 dspcntr |= DISPPLANE_BGRX101010;
2502 break;
2503 case DRM_FORMAT_XBGR2101010:
2504 case DRM_FORMAT_ABGR2101010:
2505 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2506 break;
2507 default:
baba133a 2508 BUG();
81255565 2509 }
57779d06 2510
f45651ba
VS
2511 if (INTEL_INFO(dev)->gen >= 4 &&
2512 obj->tiling_mode != I915_TILING_NONE)
2513 dspcntr |= DISPPLANE_TILED;
81255565 2514
de1aa629
VS
2515 if (IS_G4X(dev))
2516 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
b9897127 2518 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2519
c2c75131
DV
2520 if (INTEL_INFO(dev)->gen >= 4) {
2521 intel_crtc->dspaddr_offset =
bc752862 2522 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2523 pixel_size,
bc752862 2524 fb->pitches[0]);
c2c75131
DV
2525 linear_offset -= intel_crtc->dspaddr_offset;
2526 } else {
e506a0c6 2527 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2528 }
e506a0c6 2529
48404c1e
SJ
2530 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533 x += (intel_crtc->config.pipe_src_w - 1);
2534 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536 /* Finding the last pixel of the last line of the display
2537 data and adding to linear_offset*/
2538 linear_offset +=
2539 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541 }
2542
2543 I915_WRITE(reg, dspcntr);
2544
f343c5f6
BW
2545 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547 fb->pitches[0]);
01f2c773 2548 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2549 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2550 I915_WRITE(DSPSURF(plane),
2551 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2552 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2553 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2554 } else
f343c5f6 2555 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2556 POSTING_READ(reg);
17638cd6
JB
2557}
2558
29b9bde6
DV
2559static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560 struct drm_framebuffer *fb,
2561 int x, int y)
17638cd6
JB
2562{
2563 struct drm_device *dev = crtc->dev;
2564 struct drm_i915_private *dev_priv = dev->dev_private;
2565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2566 struct drm_i915_gem_object *obj;
17638cd6 2567 int plane = intel_crtc->plane;
e506a0c6 2568 unsigned long linear_offset;
17638cd6 2569 u32 dspcntr;
f45651ba 2570 u32 reg = DSPCNTR(plane);
48404c1e 2571 int pixel_size;
f45651ba 2572
fdd508a6
VS
2573 if (!intel_crtc->primary_enabled) {
2574 I915_WRITE(reg, 0);
2575 I915_WRITE(DSPSURF(plane), 0);
2576 POSTING_READ(reg);
2577 return;
2578 }
2579
c9ba6fad
VS
2580 obj = intel_fb_obj(fb);
2581 if (WARN_ON(obj == NULL))
2582 return;
2583
2584 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
f45651ba
VS
2586 dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
fdd508a6 2588 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2589
2590 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2592
57779d06
VS
2593 switch (fb->pixel_format) {
2594 case DRM_FORMAT_C8:
17638cd6
JB
2595 dspcntr |= DISPPLANE_8BPP;
2596 break;
57779d06
VS
2597 case DRM_FORMAT_RGB565:
2598 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2599 break;
57779d06
VS
2600 case DRM_FORMAT_XRGB8888:
2601 case DRM_FORMAT_ARGB8888:
2602 dspcntr |= DISPPLANE_BGRX888;
2603 break;
2604 case DRM_FORMAT_XBGR8888:
2605 case DRM_FORMAT_ABGR8888:
2606 dspcntr |= DISPPLANE_RGBX888;
2607 break;
2608 case DRM_FORMAT_XRGB2101010:
2609 case DRM_FORMAT_ARGB2101010:
2610 dspcntr |= DISPPLANE_BGRX101010;
2611 break;
2612 case DRM_FORMAT_XBGR2101010:
2613 case DRM_FORMAT_ABGR2101010:
2614 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2615 break;
2616 default:
baba133a 2617 BUG();
17638cd6
JB
2618 }
2619
2620 if (obj->tiling_mode != I915_TILING_NONE)
2621 dspcntr |= DISPPLANE_TILED;
17638cd6 2622
f45651ba 2623 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2624 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2625
b9897127 2626 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2627 intel_crtc->dspaddr_offset =
bc752862 2628 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2629 pixel_size,
bc752862 2630 fb->pitches[0]);
c2c75131 2631 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2632 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636 x += (intel_crtc->config.pipe_src_w - 1);
2637 y += (intel_crtc->config.pipe_src_h - 1);
2638
2639 /* Finding the last pixel of the last line of the display
2640 data and adding to linear_offset*/
2641 linear_offset +=
2642 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644 }
2645 }
2646
2647 I915_WRITE(reg, dspcntr);
17638cd6 2648
f343c5f6
BW
2649 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651 fb->pitches[0]);
01f2c773 2652 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2653 I915_WRITE(DSPSURF(plane),
2654 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2655 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2656 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657 } else {
2658 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660 }
17638cd6 2661 POSTING_READ(reg);
17638cd6
JB
2662}
2663
70d21f0e
DL
2664static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665 struct drm_framebuffer *fb,
2666 int x, int y)
2667{
2668 struct drm_device *dev = crtc->dev;
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671 struct intel_framebuffer *intel_fb;
2672 struct drm_i915_gem_object *obj;
2673 int pipe = intel_crtc->pipe;
2674 u32 plane_ctl, stride;
2675
2676 if (!intel_crtc->primary_enabled) {
2677 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679 POSTING_READ(PLANE_CTL(pipe, 0));
2680 return;
2681 }
2682
2683 plane_ctl = PLANE_CTL_ENABLE |
2684 PLANE_CTL_PIPE_GAMMA_ENABLE |
2685 PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687 switch (fb->pixel_format) {
2688 case DRM_FORMAT_RGB565:
2689 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690 break;
2691 case DRM_FORMAT_XRGB8888:
2692 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693 break;
2694 case DRM_FORMAT_XBGR8888:
2695 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697 break;
2698 case DRM_FORMAT_XRGB2101010:
2699 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700 break;
2701 case DRM_FORMAT_XBGR2101010:
2702 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704 break;
2705 default:
2706 BUG();
2707 }
2708
2709 intel_fb = to_intel_framebuffer(fb);
2710 obj = intel_fb->obj;
2711
2712 /*
2713 * The stride is either expressed as a multiple of 64 bytes chunks for
2714 * linear buffers or in number of tiles for tiled buffers.
2715 */
2716 switch (obj->tiling_mode) {
2717 case I915_TILING_NONE:
2718 stride = fb->pitches[0] >> 6;
2719 break;
2720 case I915_TILING_X:
2721 plane_ctl |= PLANE_CTL_TILED_X;
2722 stride = fb->pitches[0] >> 9;
2723 break;
2724 default:
2725 BUG();
2726 }
2727
2728 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2729 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2731
2732 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735 i915_gem_obj_ggtt_offset(obj),
2736 x, y, fb->width, fb->height,
2737 fb->pitches[0]);
2738
2739 I915_WRITE(PLANE_POS(pipe, 0), 0);
2740 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741 I915_WRITE(PLANE_SIZE(pipe, 0),
2742 (intel_crtc->config.pipe_src_h - 1) << 16 |
2743 (intel_crtc->config.pipe_src_w - 1));
2744 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747 POSTING_READ(PLANE_SURF(pipe, 0));
2748}
2749
17638cd6
JB
2750/* Assume fb object is pinned & idle & fenced and just update base pointers */
2751static int
2752intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753 int x, int y, enum mode_set_atomic state)
2754{
2755 struct drm_device *dev = crtc->dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2757
6b8e6ed0
CW
2758 if (dev_priv->display.disable_fbc)
2759 dev_priv->display.disable_fbc(dev);
81255565 2760
29b9bde6
DV
2761 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763 return 0;
81255565
JB
2764}
2765
96a02917
VS
2766void intel_display_handle_reset(struct drm_device *dev)
2767{
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct drm_crtc *crtc;
2770
2771 /*
2772 * Flips in the rings have been nuked by the reset,
2773 * so complete all pending flips so that user space
2774 * will get its events and not get stuck.
2775 *
2776 * Also update the base address of all primary
2777 * planes to the the last fb to make sure we're
2778 * showing the correct fb after a reset.
2779 *
2780 * Need to make two loops over the crtcs so that we
2781 * don't try to grab a crtc mutex before the
2782 * pending_flip_queue really got woken up.
2783 */
2784
70e1e0ec 2785 for_each_crtc(dev, crtc) {
96a02917
VS
2786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787 enum plane plane = intel_crtc->plane;
2788
2789 intel_prepare_page_flip(dev, plane);
2790 intel_finish_page_flip_plane(dev, plane);
2791 }
2792
70e1e0ec 2793 for_each_crtc(dev, crtc) {
96a02917
VS
2794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
51fd371b 2796 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2797 /*
2798 * FIXME: Once we have proper support for primary planes (and
2799 * disabling them without disabling the entire crtc) allow again
66e514c1 2800 * a NULL crtc->primary->fb.
947fdaad 2801 */
f4510a27 2802 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2803 dev_priv->display.update_primary_plane(crtc,
66e514c1 2804 crtc->primary->fb,
262ca2b0
MR
2805 crtc->x,
2806 crtc->y);
51fd371b 2807 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2808 }
2809}
2810
14667a4b
CW
2811static int
2812intel_finish_fb(struct drm_framebuffer *old_fb)
2813{
2ff8fde1 2814 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2815 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816 bool was_interruptible = dev_priv->mm.interruptible;
2817 int ret;
2818
14667a4b
CW
2819 /* Big Hammer, we also need to ensure that any pending
2820 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821 * current scanout is retired before unpinning the old
2822 * framebuffer.
2823 *
2824 * This should only fail upon a hung GPU, in which case we
2825 * can safely continue.
2826 */
2827 dev_priv->mm.interruptible = false;
2828 ret = i915_gem_object_finish_gpu(obj);
2829 dev_priv->mm.interruptible = was_interruptible;
2830
2831 return ret;
2832}
2833
7d5e3799
CW
2834static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835{
2836 struct drm_device *dev = crtc->dev;
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
5e2d7afc 2845 spin_lock_irq(&dev->event_lock);
7d5e3799 2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2847 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2848
2849 return pending;
2850}
2851
e30e8f75
GP
2852static void intel_update_pipe_size(struct intel_crtc *crtc)
2853{
2854 struct drm_device *dev = crtc->base.dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856 const struct drm_display_mode *adjusted_mode;
2857
2858 if (!i915.fastboot)
2859 return;
2860
2861 /*
2862 * Update pipe size and adjust fitter if needed: the reason for this is
2863 * that in compute_mode_changes we check the native mode (not the pfit
2864 * mode) to see if we can flip rather than do a full mode set. In the
2865 * fastboot case, we'll flip, but if we don't update the pipesrc and
2866 * pfit state, we'll end up with a big fb scanned out into the wrong
2867 * sized surface.
2868 *
2869 * To fix this properly, we need to hoist the checks up into
2870 * compute_mode_changes (or above), check the actual pfit state and
2871 * whether the platform allows pfit disable with pipe active, and only
2872 * then update the pipesrc and pfit state, even on the flip path.
2873 */
2874
2875 adjusted_mode = &crtc->config.adjusted_mode;
2876
2877 I915_WRITE(PIPESRC(crtc->pipe),
2878 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879 (adjusted_mode->crtc_vdisplay - 1));
2880 if (!crtc->config.pch_pfit.enabled &&
409ee761
ACO
2881 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2883 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886 }
2887 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889}
2890
5c3b82e2 2891static int
3c4fdcfb 2892intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2893 struct drm_framebuffer *fb)
79e53945
JB
2894{
2895 struct drm_device *dev = crtc->dev;
6b8e6ed0 2896 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2898 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2899 struct drm_framebuffer *old_fb = crtc->primary->fb;
2900 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2902 int ret;
79e53945 2903
7d5e3799
CW
2904 if (intel_crtc_has_pending_flip(crtc)) {
2905 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906 return -EBUSY;
2907 }
2908
79e53945 2909 /* no fb bound */
94352cf9 2910 if (!fb) {
a5071c2f 2911 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2912 return 0;
2913 }
2914
7eb552ae 2915 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2916 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917 plane_name(intel_crtc->plane),
2918 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2919 return -EINVAL;
79e53945
JB
2920 }
2921
5c3b82e2 2922 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2923 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924 if (ret == 0)
91565c85 2925 i915_gem_track_fb(old_obj, obj,
a071fa00 2926 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2927 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2928 if (ret != 0) {
a5071c2f 2929 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2930 return ret;
2931 }
79e53945 2932
e30e8f75 2933 intel_update_pipe_size(intel_crtc);
4d6a3e63 2934
29b9bde6 2935 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2936
f99d7069
DV
2937 if (intel_crtc->active)
2938 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
f4510a27 2940 crtc->primary->fb = fb;
6c4c86f5
DV
2941 crtc->x = x;
2942 crtc->y = y;
94352cf9 2943
b7f1de28 2944 if (old_fb) {
d7697eea
DV
2945 if (intel_crtc->active && old_fb != fb)
2946 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2947 mutex_lock(&dev->struct_mutex);
2ff8fde1 2948 intel_unpin_fb_obj(old_obj);
8ac36ec1 2949 mutex_unlock(&dev->struct_mutex);
b7f1de28 2950 }
652c393a 2951
8ac36ec1 2952 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2953 intel_update_fbc(dev);
5c3b82e2 2954 mutex_unlock(&dev->struct_mutex);
79e53945 2955
5c3b82e2 2956 return 0;
79e53945
JB
2957}
2958
5e84e1a4
ZW
2959static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960{
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 int pipe = intel_crtc->pipe;
2965 u32 reg, temp;
2966
2967 /* enable normal train */
2968 reg = FDI_TX_CTL(pipe);
2969 temp = I915_READ(reg);
61e499bf 2970 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2971 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2973 } else {
2974 temp &= ~FDI_LINK_TRAIN_NONE;
2975 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2976 }
5e84e1a4
ZW
2977 I915_WRITE(reg, temp);
2978
2979 reg = FDI_RX_CTL(pipe);
2980 temp = I915_READ(reg);
2981 if (HAS_PCH_CPT(dev)) {
2982 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984 } else {
2985 temp &= ~FDI_LINK_TRAIN_NONE;
2986 temp |= FDI_LINK_TRAIN_NONE;
2987 }
2988 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990 /* wait one idle pattern time */
2991 POSTING_READ(reg);
2992 udelay(1000);
357555c0
JB
2993
2994 /* IVB wants error correction enabled */
2995 if (IS_IVYBRIDGE(dev))
2996 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2998}
2999
1fbc0d78 3000static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3001{
1fbc0d78
DV
3002 return crtc->base.enabled && crtc->active &&
3003 crtc->config.has_pch_encoder;
1e833f40
DV
3004}
3005
01a415fd
DV
3006static void ivb_modeset_global_resources(struct drm_device *dev)
3007{
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 struct intel_crtc *pipe_B_crtc =
3010 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011 struct intel_crtc *pipe_C_crtc =
3012 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013 uint32_t temp;
3014
1e833f40
DV
3015 /*
3016 * When everything is off disable fdi C so that we could enable fdi B
3017 * with all lanes. Note that we don't care about enabled pipes without
3018 * an enabled pch encoder.
3019 */
3020 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3022 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025 temp = I915_READ(SOUTH_CHICKEN1);
3026 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028 I915_WRITE(SOUTH_CHICKEN1, temp);
3029 }
3030}
3031
8db9d77b
ZW
3032/* The FDI link training functions for ILK/Ibexpeak. */
3033static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034{
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
5eddb70b 3039 u32 reg, temp, tries;
8db9d77b 3040
1c8562f6 3041 /* FDI needs bits from pipe first */
0fc932b8 3042 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3043
e1a44743
AJ
3044 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045 for train result */
5eddb70b
CW
3046 reg = FDI_RX_IMR(pipe);
3047 temp = I915_READ(reg);
e1a44743
AJ
3048 temp &= ~FDI_RX_SYMBOL_LOCK;
3049 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3050 I915_WRITE(reg, temp);
3051 I915_READ(reg);
e1a44743
AJ
3052 udelay(150);
3053
8db9d77b 3054 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3055 reg = FDI_TX_CTL(pipe);
3056 temp = I915_READ(reg);
627eb5a3
DV
3057 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3059 temp &= ~FDI_LINK_TRAIN_NONE;
3060 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3061 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3062
5eddb70b
CW
3063 reg = FDI_RX_CTL(pipe);
3064 temp = I915_READ(reg);
8db9d77b
ZW
3065 temp &= ~FDI_LINK_TRAIN_NONE;
3066 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3067 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069 POSTING_READ(reg);
8db9d77b
ZW
3070 udelay(150);
3071
5b2adf89 3072 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3073 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3076
5eddb70b 3077 reg = FDI_RX_IIR(pipe);
e1a44743 3078 for (tries = 0; tries < 5; tries++) {
5eddb70b 3079 temp = I915_READ(reg);
8db9d77b
ZW
3080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082 if ((temp & FDI_RX_BIT_LOCK)) {
3083 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3084 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3085 break;
3086 }
8db9d77b 3087 }
e1a44743 3088 if (tries == 5)
5eddb70b 3089 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3090
3091 /* Train 2 */
5eddb70b
CW
3092 reg = FDI_TX_CTL(pipe);
3093 temp = I915_READ(reg);
8db9d77b
ZW
3094 temp &= ~FDI_LINK_TRAIN_NONE;
3095 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3096 I915_WRITE(reg, temp);
8db9d77b 3097
5eddb70b
CW
3098 reg = FDI_RX_CTL(pipe);
3099 temp = I915_READ(reg);
8db9d77b
ZW
3100 temp &= ~FDI_LINK_TRAIN_NONE;
3101 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3102 I915_WRITE(reg, temp);
8db9d77b 3103
5eddb70b
CW
3104 POSTING_READ(reg);
3105 udelay(150);
8db9d77b 3106
5eddb70b 3107 reg = FDI_RX_IIR(pipe);
e1a44743 3108 for (tries = 0; tries < 5; tries++) {
5eddb70b 3109 temp = I915_READ(reg);
8db9d77b
ZW
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3113 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3114 DRM_DEBUG_KMS("FDI train 2 done.\n");
3115 break;
3116 }
8db9d77b 3117 }
e1a44743 3118 if (tries == 5)
5eddb70b 3119 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3120
3121 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3122
8db9d77b
ZW
3123}
3124
0206e353 3125static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3126 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130};
3131
3132/* The FDI link training functions for SNB/Cougarpoint. */
3133static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134{
3135 struct drm_device *dev = crtc->dev;
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138 int pipe = intel_crtc->pipe;
fa37d39e 3139 u32 reg, temp, i, retry;
8db9d77b 3140
e1a44743
AJ
3141 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142 for train result */
5eddb70b
CW
3143 reg = FDI_RX_IMR(pipe);
3144 temp = I915_READ(reg);
e1a44743
AJ
3145 temp &= ~FDI_RX_SYMBOL_LOCK;
3146 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3147 I915_WRITE(reg, temp);
3148
3149 POSTING_READ(reg);
e1a44743
AJ
3150 udelay(150);
3151
8db9d77b 3152 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3153 reg = FDI_TX_CTL(pipe);
3154 temp = I915_READ(reg);
627eb5a3
DV
3155 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_1;
3159 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160 /* SNB-B */
3161 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3162 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3163
d74cf324
DV
3164 I915_WRITE(FDI_RX_MISC(pipe),
3165 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
5eddb70b
CW
3167 reg = FDI_RX_CTL(pipe);
3168 temp = I915_READ(reg);
8db9d77b
ZW
3169 if (HAS_PCH_CPT(dev)) {
3170 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172 } else {
3173 temp &= ~FDI_LINK_TRAIN_NONE;
3174 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175 }
5eddb70b
CW
3176 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178 POSTING_READ(reg);
8db9d77b
ZW
3179 udelay(150);
3180
0206e353 3181 for (i = 0; i < 4; i++) {
5eddb70b
CW
3182 reg = FDI_TX_CTL(pipe);
3183 temp = I915_READ(reg);
8db9d77b
ZW
3184 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3186 I915_WRITE(reg, temp);
3187
3188 POSTING_READ(reg);
8db9d77b
ZW
3189 udelay(500);
3190
fa37d39e
SP
3191 for (retry = 0; retry < 5; retry++) {
3192 reg = FDI_RX_IIR(pipe);
3193 temp = I915_READ(reg);
3194 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195 if (temp & FDI_RX_BIT_LOCK) {
3196 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198 break;
3199 }
3200 udelay(50);
8db9d77b 3201 }
fa37d39e
SP
3202 if (retry < 5)
3203 break;
8db9d77b
ZW
3204 }
3205 if (i == 4)
5eddb70b 3206 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3207
3208 /* Train 2 */
5eddb70b
CW
3209 reg = FDI_TX_CTL(pipe);
3210 temp = I915_READ(reg);
8db9d77b
ZW
3211 temp &= ~FDI_LINK_TRAIN_NONE;
3212 temp |= FDI_LINK_TRAIN_PATTERN_2;
3213 if (IS_GEN6(dev)) {
3214 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215 /* SNB-B */
3216 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217 }
5eddb70b 3218 I915_WRITE(reg, temp);
8db9d77b 3219
5eddb70b
CW
3220 reg = FDI_RX_CTL(pipe);
3221 temp = I915_READ(reg);
8db9d77b
ZW
3222 if (HAS_PCH_CPT(dev)) {
3223 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225 } else {
3226 temp &= ~FDI_LINK_TRAIN_NONE;
3227 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228 }
5eddb70b
CW
3229 I915_WRITE(reg, temp);
3230
3231 POSTING_READ(reg);
8db9d77b
ZW
3232 udelay(150);
3233
0206e353 3234 for (i = 0; i < 4; i++) {
5eddb70b
CW
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
8db9d77b
ZW
3237 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3239 I915_WRITE(reg, temp);
3240
3241 POSTING_READ(reg);
8db9d77b
ZW
3242 udelay(500);
3243
fa37d39e
SP
3244 for (retry = 0; retry < 5; retry++) {
3245 reg = FDI_RX_IIR(pipe);
3246 temp = I915_READ(reg);
3247 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248 if (temp & FDI_RX_SYMBOL_LOCK) {
3249 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251 break;
3252 }
3253 udelay(50);
8db9d77b 3254 }
fa37d39e
SP
3255 if (retry < 5)
3256 break;
8db9d77b
ZW
3257 }
3258 if (i == 4)
5eddb70b 3259 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3260
3261 DRM_DEBUG_KMS("FDI train done.\n");
3262}
3263
357555c0
JB
3264/* Manual link training for Ivy Bridge A0 parts */
3265static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266{
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270 int pipe = intel_crtc->pipe;
139ccd3f 3271 u32 reg, temp, i, j;
357555c0
JB
3272
3273 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274 for train result */
3275 reg = FDI_RX_IMR(pipe);
3276 temp = I915_READ(reg);
3277 temp &= ~FDI_RX_SYMBOL_LOCK;
3278 temp &= ~FDI_RX_BIT_LOCK;
3279 I915_WRITE(reg, temp);
3280
3281 POSTING_READ(reg);
3282 udelay(150);
3283
01a415fd
DV
3284 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285 I915_READ(FDI_RX_IIR(pipe)));
3286
139ccd3f
JB
3287 /* Try each vswing and preemphasis setting twice before moving on */
3288 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289 /* disable first in case we need to retry */
3290 reg = FDI_TX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293 temp &= ~FDI_TX_ENABLE;
3294 I915_WRITE(reg, temp);
357555c0 3295
139ccd3f
JB
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~FDI_LINK_TRAIN_AUTO;
3299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300 temp &= ~FDI_RX_ENABLE;
3301 I915_WRITE(reg, temp);
357555c0 3302
139ccd3f 3303 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3304 reg = FDI_TX_CTL(pipe);
3305 temp = I915_READ(reg);
139ccd3f
JB
3306 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3309 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3310 temp |= snb_b_fdi_train_param[j/2];
3311 temp |= FDI_COMPOSITE_SYNC;
3312 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3313
139ccd3f
JB
3314 I915_WRITE(FDI_RX_MISC(pipe),
3315 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3316
139ccd3f 3317 reg = FDI_RX_CTL(pipe);
357555c0 3318 temp = I915_READ(reg);
139ccd3f
JB
3319 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320 temp |= FDI_COMPOSITE_SYNC;
3321 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3322
139ccd3f
JB
3323 POSTING_READ(reg);
3324 udelay(1); /* should be 0.5us */
357555c0 3325
139ccd3f
JB
3326 for (i = 0; i < 4; i++) {
3327 reg = FDI_RX_IIR(pipe);
3328 temp = I915_READ(reg);
3329 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3330
139ccd3f
JB
3331 if (temp & FDI_RX_BIT_LOCK ||
3332 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335 i);
3336 break;
3337 }
3338 udelay(1); /* should be 0.5us */
3339 }
3340 if (i == 4) {
3341 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342 continue;
3343 }
357555c0 3344
139ccd3f 3345 /* Train 2 */
357555c0
JB
3346 reg = FDI_TX_CTL(pipe);
3347 temp = I915_READ(reg);
139ccd3f
JB
3348 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350 I915_WRITE(reg, temp);
3351
3352 reg = FDI_RX_CTL(pipe);
3353 temp = I915_READ(reg);
3354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3356 I915_WRITE(reg, temp);
3357
3358 POSTING_READ(reg);
139ccd3f 3359 udelay(2); /* should be 1.5us */
357555c0 3360
139ccd3f
JB
3361 for (i = 0; i < 4; i++) {
3362 reg = FDI_RX_IIR(pipe);
3363 temp = I915_READ(reg);
3364 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3365
139ccd3f
JB
3366 if (temp & FDI_RX_SYMBOL_LOCK ||
3367 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370 i);
3371 goto train_done;
3372 }
3373 udelay(2); /* should be 1.5us */
357555c0 3374 }
139ccd3f
JB
3375 if (i == 4)
3376 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3377 }
357555c0 3378
139ccd3f 3379train_done:
357555c0
JB
3380 DRM_DEBUG_KMS("FDI train done.\n");
3381}
3382
88cefb6c 3383static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3384{
88cefb6c 3385 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3386 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3387 int pipe = intel_crtc->pipe;
5eddb70b 3388 u32 reg, temp;
79e53945 3389
c64e311e 3390
c98e9dcf 3391 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3392 reg = FDI_RX_CTL(pipe);
3393 temp = I915_READ(reg);
627eb5a3
DV
3394 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3396 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3397 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399 POSTING_READ(reg);
c98e9dcf
JB
3400 udelay(200);
3401
3402 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3403 temp = I915_READ(reg);
3404 I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406 POSTING_READ(reg);
c98e9dcf
JB
3407 udelay(200);
3408
20749730
PZ
3409 /* Enable CPU FDI TX PLL, always on for Ironlake */
3410 reg = FDI_TX_CTL(pipe);
3411 temp = I915_READ(reg);
3412 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3414
20749730
PZ
3415 POSTING_READ(reg);
3416 udelay(100);
6be4a607 3417 }
0e23b99d
JB
3418}
3419
88cefb6c
DV
3420static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421{
3422 struct drm_device *dev = intel_crtc->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 int pipe = intel_crtc->pipe;
3425 u32 reg, temp;
3426
3427 /* Switch from PCDclk to Rawclk */
3428 reg = FDI_RX_CTL(pipe);
3429 temp = I915_READ(reg);
3430 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432 /* Disable CPU FDI TX PLL */
3433 reg = FDI_TX_CTL(pipe);
3434 temp = I915_READ(reg);
3435 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437 POSTING_READ(reg);
3438 udelay(100);
3439
3440 reg = FDI_RX_CTL(pipe);
3441 temp = I915_READ(reg);
3442 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444 /* Wait for the clocks to turn off. */
3445 POSTING_READ(reg);
3446 udelay(100);
3447}
3448
0fc932b8
JB
3449static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450{
3451 struct drm_device *dev = crtc->dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454 int pipe = intel_crtc->pipe;
3455 u32 reg, temp;
3456
3457 /* disable CPU FDI tx and PCH FDI rx */
3458 reg = FDI_TX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461 POSTING_READ(reg);
3462
3463 reg = FDI_RX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 temp &= ~(0x7 << 16);
dfd07d72 3466 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3467 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469 POSTING_READ(reg);
3470 udelay(100);
3471
3472 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3473 if (HAS_PCH_IBX(dev))
6f06ce18 3474 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3475
3476 /* still set train pattern 1 */
3477 reg = FDI_TX_CTL(pipe);
3478 temp = I915_READ(reg);
3479 temp &= ~FDI_LINK_TRAIN_NONE;
3480 temp |= FDI_LINK_TRAIN_PATTERN_1;
3481 I915_WRITE(reg, temp);
3482
3483 reg = FDI_RX_CTL(pipe);
3484 temp = I915_READ(reg);
3485 if (HAS_PCH_CPT(dev)) {
3486 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488 } else {
3489 temp &= ~FDI_LINK_TRAIN_NONE;
3490 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491 }
3492 /* BPC in FDI rx is consistent with that in PIPECONF */
3493 temp &= ~(0x07 << 16);
dfd07d72 3494 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3495 I915_WRITE(reg, temp);
3496
3497 POSTING_READ(reg);
3498 udelay(100);
3499}
3500
5dce5b93
CW
3501bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502{
3503 struct intel_crtc *crtc;
3504
3505 /* Note that we don't need to be called with mode_config.lock here
3506 * as our list of CRTC objects is static for the lifetime of the
3507 * device and so cannot disappear as we iterate. Similarly, we can
3508 * happily treat the predicates as racy, atomic checks as userspace
3509 * cannot claim and pin a new fb without at least acquring the
3510 * struct_mutex and so serialising with us.
3511 */
d3fcc808 3512 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3513 if (atomic_read(&crtc->unpin_work_count) == 0)
3514 continue;
3515
3516 if (crtc->unpin_work)
3517 intel_wait_for_vblank(dev, crtc->pipe);
3518
3519 return true;
3520 }
3521
3522 return false;
3523}
3524
d6bbafa1
CW
3525static void page_flip_completed(struct intel_crtc *intel_crtc)
3526{
3527 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528 struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530 /* ensure that the unpin work is consistent wrt ->pending. */
3531 smp_rmb();
3532 intel_crtc->unpin_work = NULL;
3533
3534 if (work->event)
3535 drm_send_vblank_event(intel_crtc->base.dev,
3536 intel_crtc->pipe,
3537 work->event);
3538
3539 drm_crtc_vblank_put(&intel_crtc->base);
3540
3541 wake_up_all(&dev_priv->pending_flip_queue);
3542 queue_work(dev_priv->wq, &work->work);
3543
3544 trace_i915_flip_complete(intel_crtc->plane,
3545 work->pending_flip_obj);
3546}
3547
46a55d30 3548void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3549{
0f91128d 3550 struct drm_device *dev = crtc->dev;
5bb61643 3551 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3552
2c10d571 3553 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3554 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555 !intel_crtc_has_pending_flip(crtc),
3556 60*HZ) == 0)) {
3557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3558
5e2d7afc 3559 spin_lock_irq(&dev->event_lock);
9c787942
CW
3560 if (intel_crtc->unpin_work) {
3561 WARN_ONCE(1, "Removing stuck page flip\n");
3562 page_flip_completed(intel_crtc);
3563 }
5e2d7afc 3564 spin_unlock_irq(&dev->event_lock);
9c787942 3565 }
5bb61643 3566
975d568a
CW
3567 if (crtc->primary->fb) {
3568 mutex_lock(&dev->struct_mutex);
3569 intel_finish_fb(crtc->primary->fb);
3570 mutex_unlock(&dev->struct_mutex);
3571 }
e6c3a2a6
CW
3572}
3573
e615efe4
ED
3574/* Program iCLKIP clock to the desired frequency */
3575static void lpt_program_iclkip(struct drm_crtc *crtc)
3576{
3577 struct drm_device *dev = crtc->dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3579 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3580 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581 u32 temp;
3582
09153000
DV
3583 mutex_lock(&dev_priv->dpio_lock);
3584
e615efe4
ED
3585 /* It is necessary to ungate the pixclk gate prior to programming
3586 * the divisors, and gate it back when it is done.
3587 */
3588 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590 /* Disable SSCCTL */
3591 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3592 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593 SBI_SSCCTL_DISABLE,
3594 SBI_ICLK);
e615efe4
ED
3595
3596 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3597 if (clock == 20000) {
e615efe4
ED
3598 auxdiv = 1;
3599 divsel = 0x41;
3600 phaseinc = 0x20;
3601 } else {
3602 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3603 * but the adjusted_mode->crtc_clock in in KHz. To get the
3604 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3605 * convert the virtual clock precision to KHz here for higher
3606 * precision.
3607 */
3608 u32 iclk_virtual_root_freq = 172800 * 1000;
3609 u32 iclk_pi_range = 64;
3610 u32 desired_divisor, msb_divisor_value, pi_value;
3611
12d7ceed 3612 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3613 msb_divisor_value = desired_divisor / iclk_pi_range;
3614 pi_value = desired_divisor % iclk_pi_range;
3615
3616 auxdiv = 0;
3617 divsel = msb_divisor_value - 2;
3618 phaseinc = pi_value;
3619 }
3620
3621 /* This should not happen with any sane values */
3622 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3628 clock,
e615efe4
ED
3629 auxdiv,
3630 divsel,
3631 phasedir,
3632 phaseinc);
3633
3634 /* Program SSCDIVINTPHASE6 */
988d6ee8 3635 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3636 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3642 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3643
3644 /* Program SSCAUXDIV */
988d6ee8 3645 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3646 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3648 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3649
3650 /* Enable modulator and associated divider */
988d6ee8 3651 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3652 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3653 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3654
3655 /* Wait for initialization time */
3656 udelay(24);
3657
3658 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3659
3660 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3661}
3662
275f01b2
DV
3663static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664 enum pipe pch_transcoder)
3665{
3666 struct drm_device *dev = crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671 I915_READ(HTOTAL(cpu_transcoder)));
3672 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673 I915_READ(HBLANK(cpu_transcoder)));
3674 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675 I915_READ(HSYNC(cpu_transcoder)));
3676
3677 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678 I915_READ(VTOTAL(cpu_transcoder)));
3679 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680 I915_READ(VBLANK(cpu_transcoder)));
3681 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682 I915_READ(VSYNC(cpu_transcoder)));
3683 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685}
3686
1fbc0d78
DV
3687static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688{
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690 uint32_t temp;
3691
3692 temp = I915_READ(SOUTH_CHICKEN1);
3693 if (temp & FDI_BC_BIFURCATION_SELECT)
3694 return;
3695
3696 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699 temp |= FDI_BC_BIFURCATION_SELECT;
3700 DRM_DEBUG_KMS("enabling fdi C rx\n");
3701 I915_WRITE(SOUTH_CHICKEN1, temp);
3702 POSTING_READ(SOUTH_CHICKEN1);
3703}
3704
3705static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706{
3707 struct drm_device *dev = intel_crtc->base.dev;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710 switch (intel_crtc->pipe) {
3711 case PIPE_A:
3712 break;
3713 case PIPE_B:
3714 if (intel_crtc->config.fdi_lanes > 2)
3715 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716 else
3717 cpt_enable_fdi_bc_bifurcation(dev);
3718
3719 break;
3720 case PIPE_C:
3721 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723 break;
3724 default:
3725 BUG();
3726 }
3727}
3728
f67a559d
JB
3729/*
3730 * Enable PCH resources required for PCH ports:
3731 * - PCH PLLs
3732 * - FDI training & RX/TX
3733 * - update transcoder timings
3734 * - DP transcoding bits
3735 * - transcoder
3736 */
3737static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3738{
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 int pipe = intel_crtc->pipe;
ee7b9f93 3743 u32 reg, temp;
2c07245f 3744
ab9412ba 3745 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3746
1fbc0d78
DV
3747 if (IS_IVYBRIDGE(dev))
3748 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
cd986abb
DV
3750 /* Write the TU size bits before fdi link training, so that error
3751 * detection works. */
3752 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
c98e9dcf 3755 /* For PCH output, training FDI link */
674cf967 3756 dev_priv->display.fdi_link_train(crtc);
2c07245f 3757
3ad8a208
DV
3758 /* We need to program the right clock selection before writing the pixel
3759 * mutliplier into the DPLL. */
303b81e0 3760 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3761 u32 sel;
4b645f14 3762
c98e9dcf 3763 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3764 temp |= TRANS_DPLL_ENABLE(pipe);
3765 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3766 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3767 temp |= sel;
3768 else
3769 temp &= ~sel;
c98e9dcf 3770 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3771 }
5eddb70b 3772
3ad8a208
DV
3773 /* XXX: pch pll's can be enabled any time before we enable the PCH
3774 * transcoder, and we actually should do this to not upset any PCH
3775 * transcoder that already use the clock when we share it.
3776 *
3777 * Note that enable_shared_dpll tries to do the right thing, but
3778 * get_shared_dpll unconditionally resets the pll - we need that to have
3779 * the right LVDS enable sequence. */
85b3894f 3780 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3781
d9b6cb56
JB
3782 /* set transcoder timing, panel must allow it */
3783 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3784 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3785
303b81e0 3786 intel_fdi_normal_train(crtc);
5e84e1a4 3787
c98e9dcf 3788 /* For PCH DP, enable TRANS_DP_CTL */
0a88818d 3789 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
dfd07d72 3790 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3791 reg = TRANS_DP_CTL(pipe);
3792 temp = I915_READ(reg);
3793 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3794 TRANS_DP_SYNC_MASK |
3795 TRANS_DP_BPC_MASK);
5eddb70b
CW
3796 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797 TRANS_DP_ENH_FRAMING);
9325c9f0 3798 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3799
3800 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3801 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3802 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3803 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3804
3805 switch (intel_trans_dp_port_sel(crtc)) {
3806 case PCH_DP_B:
5eddb70b 3807 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3808 break;
3809 case PCH_DP_C:
5eddb70b 3810 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3811 break;
3812 case PCH_DP_D:
5eddb70b 3813 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3814 break;
3815 default:
e95d41e1 3816 BUG();
32f9d658 3817 }
2c07245f 3818
5eddb70b 3819 I915_WRITE(reg, temp);
6be4a607 3820 }
b52eb4dc 3821
b8a4f404 3822 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3823}
3824
1507e5bd
PZ
3825static void lpt_pch_enable(struct drm_crtc *crtc)
3826{
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3830 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3831
ab9412ba 3832 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3833
8c52b5e8 3834 lpt_program_iclkip(crtc);
1507e5bd 3835
0540e488 3836 /* Set transcoder timing. */
275f01b2 3837 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3838
937bb610 3839 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3840}
3841
716c2e55 3842void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3843{
e2b78267 3844 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3845
3846 if (pll == NULL)
3847 return;
3848
3e369b76 3849 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3850 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3851 return;
3852 }
3853
3e369b76
ACO
3854 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3855 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3856 WARN_ON(pll->on);
3857 WARN_ON(pll->active);
3858 }
3859
a43f6e0f 3860 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3861}
3862
716c2e55 3863struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3864{
e2b78267 3865 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3866 struct intel_shared_dpll *pll;
e2b78267 3867 enum intel_dpll_id i;
ee7b9f93 3868
98b6bd99
DV
3869 if (HAS_PCH_IBX(dev_priv->dev)) {
3870 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3871 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3872 pll = &dev_priv->shared_dplls[i];
98b6bd99 3873
46edb027
DV
3874 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3875 crtc->base.base.id, pll->name);
98b6bd99 3876
8bd31e67 3877 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3878
98b6bd99
DV
3879 goto found;
3880 }
3881
e72f9fbf
DV
3882 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3883 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3884
3885 /* Only want to check enabled timings first */
8bd31e67 3886 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3887 continue;
3888
8bd31e67
ACO
3889 if (memcmp(&crtc->new_config->dpll_hw_state,
3890 &pll->new_config->hw_state,
3891 sizeof(pll->new_config->hw_state)) == 0) {
3892 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3893 crtc->base.base.id, pll->name,
8bd31e67
ACO
3894 pll->new_config->crtc_mask,
3895 pll->active);
ee7b9f93
JB
3896 goto found;
3897 }
3898 }
3899
3900 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3901 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3902 pll = &dev_priv->shared_dplls[i];
8bd31e67 3903 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3904 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3905 crtc->base.base.id, pll->name);
ee7b9f93
JB
3906 goto found;
3907 }
3908 }
3909
3910 return NULL;
3911
3912found:
8bd31e67
ACO
3913 if (pll->new_config->crtc_mask == 0)
3914 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
f2a69f44 3915
8bd31e67 3916 crtc->new_config->shared_dpll = i;
46edb027
DV
3917 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3918 pipe_name(crtc->pipe));
ee7b9f93 3919
8bd31e67 3920 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3921
ee7b9f93
JB
3922 return pll;
3923}
3924
8bd31e67
ACO
3925/**
3926 * intel_shared_dpll_start_config - start a new PLL staged config
3927 * @dev_priv: DRM device
3928 * @clear_pipes: mask of pipes that will have their PLLs freed
3929 *
3930 * Starts a new PLL staged config, copying the current config but
3931 * releasing the references of pipes specified in clear_pipes.
3932 */
3933static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3934 unsigned clear_pipes)
3935{
3936 struct intel_shared_dpll *pll;
3937 enum intel_dpll_id i;
3938
3939 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3940 pll = &dev_priv->shared_dplls[i];
3941
3942 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3943 GFP_KERNEL);
3944 if (!pll->new_config)
3945 goto cleanup;
3946
3947 pll->new_config->crtc_mask &= ~clear_pipes;
3948 }
3949
3950 return 0;
3951
3952cleanup:
3953 while (--i >= 0) {
3954 pll = &dev_priv->shared_dplls[i];
3955 pll->new_config = NULL;
3956 }
3957
3958 return -ENOMEM;
3959}
3960
3961static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962{
3963 struct intel_shared_dpll *pll;
3964 enum intel_dpll_id i;
3965
3966 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967 pll = &dev_priv->shared_dplls[i];
3968
3969 WARN_ON(pll->new_config == &pll->config);
3970
3971 pll->config = *pll->new_config;
3972 kfree(pll->new_config);
3973 pll->new_config = NULL;
3974 }
3975}
3976
3977static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978{
3979 struct intel_shared_dpll *pll;
3980 enum intel_dpll_id i;
3981
3982 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983 pll = &dev_priv->shared_dplls[i];
3984
3985 WARN_ON(pll->new_config == &pll->config);
3986
3987 kfree(pll->new_config);
3988 pll->new_config = NULL;
3989 }
3990}
3991
a1520318 3992static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3993{
3994 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3995 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3996 u32 temp;
3997
3998 temp = I915_READ(dslreg);
3999 udelay(500);
4000 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4001 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4002 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4003 }
4004}
4005
b074cec8
JB
4006static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007{
4008 struct drm_device *dev = crtc->base.dev;
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 int pipe = crtc->pipe;
4011
fd4daa9c 4012 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
4013 /* Force use of hard-coded filter coefficients
4014 * as some pre-programmed values are broken,
4015 * e.g. x201.
4016 */
4017 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019 PF_PIPE_SEL_IVB(pipe));
4020 else
4021 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
4024 }
4025}
4026
bb53d4ae
VS
4027static void intel_enable_planes(struct drm_crtc *crtc)
4028{
4029 struct drm_device *dev = crtc->dev;
4030 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4031 struct drm_plane *plane;
bb53d4ae
VS
4032 struct intel_plane *intel_plane;
4033
af2b653b
MR
4034 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4036 if (intel_plane->pipe == pipe)
4037 intel_plane_restore(&intel_plane->base);
af2b653b 4038 }
bb53d4ae
VS
4039}
4040
4041static void intel_disable_planes(struct drm_crtc *crtc)
4042{
4043 struct drm_device *dev = crtc->dev;
4044 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4045 struct drm_plane *plane;
bb53d4ae
VS
4046 struct intel_plane *intel_plane;
4047
af2b653b
MR
4048 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4050 if (intel_plane->pipe == pipe)
4051 intel_plane_disable(&intel_plane->base);
af2b653b 4052 }
bb53d4ae
VS
4053}
4054
20bc8673 4055void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4056{
cea165c3
VS
4057 struct drm_device *dev = crtc->base.dev;
4058 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
4059
4060 if (!crtc->config.ips_enabled)
4061 return;
4062
cea165c3
VS
4063 /* We can only enable IPS after we enable a plane and wait for a vblank */
4064 intel_wait_for_vblank(dev, crtc->pipe);
4065
d77e4531 4066 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4067 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4068 mutex_lock(&dev_priv->rps.hw_lock);
4069 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070 mutex_unlock(&dev_priv->rps.hw_lock);
4071 /* Quoting Art Runyan: "its not safe to expect any particular
4072 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4073 * mailbox." Moreover, the mailbox may return a bogus state,
4074 * so we need to just enable it and continue on.
2a114cc1
BW
4075 */
4076 } else {
4077 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078 /* The bit only becomes 1 in the next vblank, so this wait here
4079 * is essentially intel_wait_for_vblank. If we don't have this
4080 * and don't wait for vblanks until the end of crtc_enable, then
4081 * the HW state readout code will complain that the expected
4082 * IPS_CTL value is not the one we read. */
4083 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084 DRM_ERROR("Timed out waiting for IPS enable\n");
4085 }
d77e4531
PZ
4086}
4087
20bc8673 4088void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4089{
4090 struct drm_device *dev = crtc->base.dev;
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093 if (!crtc->config.ips_enabled)
4094 return;
4095
4096 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4097 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4098 mutex_lock(&dev_priv->rps.hw_lock);
4099 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4101 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4104 } else {
2a114cc1 4105 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4106 POSTING_READ(IPS_CTL);
4107 }
d77e4531
PZ
4108
4109 /* We need to wait for a vblank before we can disable the plane. */
4110 intel_wait_for_vblank(dev, crtc->pipe);
4111}
4112
4113/** Loads the palette/gamma unit for the CRTC with the prepared values */
4114static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115{
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 enum pipe pipe = intel_crtc->pipe;
4120 int palreg = PALETTE(pipe);
4121 int i;
4122 bool reenable_ips = false;
4123
4124 /* The clocks have to be on to load the palette. */
4125 if (!crtc->enabled || !intel_crtc->active)
4126 return;
4127
4128 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4129 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4130 assert_dsi_pll_enabled(dev_priv);
4131 else
4132 assert_pll_enabled(dev_priv, pipe);
4133 }
4134
4135 /* use legacy palette for Ironlake */
7a1db49a 4136 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4137 palreg = LGC_PALETTE(pipe);
4138
4139 /* Workaround : Do not read or write the pipe palette/gamma data while
4140 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141 */
41e6fc4c 4142 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4143 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144 GAMMA_MODE_MODE_SPLIT)) {
4145 hsw_disable_ips(intel_crtc);
4146 reenable_ips = true;
4147 }
4148
4149 for (i = 0; i < 256; i++) {
4150 I915_WRITE(palreg + 4 * i,
4151 (intel_crtc->lut_r[i] << 16) |
4152 (intel_crtc->lut_g[i] << 8) |
4153 intel_crtc->lut_b[i]);
4154 }
4155
4156 if (reenable_ips)
4157 hsw_enable_ips(intel_crtc);
4158}
4159
d3eedb1a
VS
4160static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161{
4162 if (!enable && intel_crtc->overlay) {
4163 struct drm_device *dev = intel_crtc->base.dev;
4164 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166 mutex_lock(&dev->struct_mutex);
4167 dev_priv->mm.interruptible = false;
4168 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169 dev_priv->mm.interruptible = true;
4170 mutex_unlock(&dev->struct_mutex);
4171 }
4172
4173 /* Let userspace switch the overlay on again. In most cases userspace
4174 * has to recompute where to put it anyway.
4175 */
4176}
4177
d3eedb1a 4178static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4179{
4180 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182 int pipe = intel_crtc->pipe;
a5c4d7bc 4183
fdd508a6 4184 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4185 intel_enable_planes(crtc);
4186 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4187 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4188
4189 hsw_enable_ips(intel_crtc);
4190
4191 mutex_lock(&dev->struct_mutex);
4192 intel_update_fbc(dev);
4193 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4194
4195 /*
4196 * FIXME: Once we grow proper nuclear flip support out of this we need
4197 * to compute the mask of flip planes precisely. For the time being
4198 * consider this a flip from a NULL plane.
4199 */
4200 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4201}
4202
d3eedb1a 4203static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4204{
4205 struct drm_device *dev = crtc->dev;
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208 int pipe = intel_crtc->pipe;
4209 int plane = intel_crtc->plane;
4210
4211 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4212
4213 if (dev_priv->fbc.plane == plane)
4214 intel_disable_fbc(dev);
4215
4216 hsw_disable_ips(intel_crtc);
4217
d3eedb1a 4218 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4219 intel_crtc_update_cursor(crtc, false);
4220 intel_disable_planes(crtc);
fdd508a6 4221 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4222
f99d7069
DV
4223 /*
4224 * FIXME: Once we grow proper nuclear flip support out of this we need
4225 * to compute the mask of flip planes precisely. For the time being
4226 * consider this a flip to a NULL plane.
4227 */
4228 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4229}
4230
f67a559d
JB
4231static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232{
4233 struct drm_device *dev = crtc->dev;
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4236 struct intel_encoder *encoder;
f67a559d 4237 int pipe = intel_crtc->pipe;
f67a559d 4238
08a48469
DV
4239 WARN_ON(!crtc->enabled);
4240
f67a559d
JB
4241 if (intel_crtc->active)
4242 return;
4243
b14b1055
DV
4244 if (intel_crtc->config.has_pch_encoder)
4245 intel_prepare_shared_dpll(intel_crtc);
4246
29407aab
DV
4247 if (intel_crtc->config.has_dp_encoder)
4248 intel_dp_set_m_n(intel_crtc);
4249
4250 intel_set_pipe_timings(intel_crtc);
4251
4252 if (intel_crtc->config.has_pch_encoder) {
4253 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4254 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4255 }
4256
4257 ironlake_set_pipeconf(crtc);
4258
f67a559d 4259 intel_crtc->active = true;
8664281b 4260
a72e4c9f
DV
4261 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4263
f6736a1a 4264 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4265 if (encoder->pre_enable)
4266 encoder->pre_enable(encoder);
f67a559d 4267
5bfe2ac0 4268 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4269 /* Note: FDI PLL enabling _must_ be done before we enable the
4270 * cpu pipes, hence this is separate from all the other fdi/pch
4271 * enabling. */
88cefb6c 4272 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4273 } else {
4274 assert_fdi_tx_disabled(dev_priv, pipe);
4275 assert_fdi_rx_disabled(dev_priv, pipe);
4276 }
f67a559d 4277
b074cec8 4278 ironlake_pfit_enable(intel_crtc);
f67a559d 4279
9c54c0dd
JB
4280 /*
4281 * On ILK+ LUT must be loaded before the pipe is running but with
4282 * clocks enabled
4283 */
4284 intel_crtc_load_lut(crtc);
4285
f37fcc2a 4286 intel_update_watermarks(crtc);
e1fdc473 4287 intel_enable_pipe(intel_crtc);
f67a559d 4288
5bfe2ac0 4289 if (intel_crtc->config.has_pch_encoder)
f67a559d 4290 ironlake_pch_enable(crtc);
c98e9dcf 4291
fa5c73b1
DV
4292 for_each_encoder_on_crtc(dev, crtc, encoder)
4293 encoder->enable(encoder);
61b77ddd
DV
4294
4295 if (HAS_PCH_CPT(dev))
a1520318 4296 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4297
4b3a9526
VS
4298 assert_vblank_disabled(crtc);
4299 drm_crtc_vblank_on(crtc);
4300
d3eedb1a 4301 intel_crtc_enable_planes(crtc);
6be4a607
JB
4302}
4303
42db64ef
PZ
4304/* IPS only exists on ULT machines and is tied to pipe A. */
4305static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306{
f5adf94e 4307 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4308}
4309
e4916946
PZ
4310/*
4311 * This implements the workaround described in the "notes" section of the mode
4312 * set sequence documentation. When going from no pipes or single pipe to
4313 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315 */
4316static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317{
4318 struct drm_device *dev = crtc->base.dev;
4319 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321 /* We want to get the other_active_crtc only if there's only 1 other
4322 * active crtc. */
d3fcc808 4323 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4324 if (!crtc_it->active || crtc_it == crtc)
4325 continue;
4326
4327 if (other_active_crtc)
4328 return;
4329
4330 other_active_crtc = crtc_it;
4331 }
4332 if (!other_active_crtc)
4333 return;
4334
4335 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337}
4338
4f771f10
PZ
4339static void haswell_crtc_enable(struct drm_crtc *crtc)
4340{
4341 struct drm_device *dev = crtc->dev;
4342 struct drm_i915_private *dev_priv = dev->dev_private;
4343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344 struct intel_encoder *encoder;
4345 int pipe = intel_crtc->pipe;
4f771f10
PZ
4346
4347 WARN_ON(!crtc->enabled);
4348
4349 if (intel_crtc->active)
4350 return;
4351
df8ad70c
DV
4352 if (intel_crtc_to_shared_dpll(intel_crtc))
4353 intel_enable_shared_dpll(intel_crtc);
4354
229fca97
DV
4355 if (intel_crtc->config.has_dp_encoder)
4356 intel_dp_set_m_n(intel_crtc);
4357
4358 intel_set_pipe_timings(intel_crtc);
4359
ebb69c95
CT
4360 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362 intel_crtc->config.pixel_multiplier - 1);
4363 }
4364
229fca97
DV
4365 if (intel_crtc->config.has_pch_encoder) {
4366 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4367 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4368 }
4369
4370 haswell_set_pipeconf(crtc);
4371
4372 intel_set_pipe_csc(crtc);
4373
4f771f10 4374 intel_crtc->active = true;
8664281b 4375
a72e4c9f 4376 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4377 for_each_encoder_on_crtc(dev, crtc, encoder)
4378 if (encoder->pre_enable)
4379 encoder->pre_enable(encoder);
4380
4fe9467d 4381 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4382 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383 true);
4fe9467d
ID
4384 dev_priv->display.fdi_link_train(crtc);
4385 }
4386
1f544388 4387 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4388
b074cec8 4389 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4390
4391 /*
4392 * On ILK+ LUT must be loaded before the pipe is running but with
4393 * clocks enabled
4394 */
4395 intel_crtc_load_lut(crtc);
4396
1f544388 4397 intel_ddi_set_pipe_settings(crtc);
8228c251 4398 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4399
f37fcc2a 4400 intel_update_watermarks(crtc);
e1fdc473 4401 intel_enable_pipe(intel_crtc);
42db64ef 4402
5bfe2ac0 4403 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4404 lpt_pch_enable(crtc);
4f771f10 4405
0e32b39c
DA
4406 if (intel_crtc->config.dp_encoder_is_mst)
4407 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
8807e55b 4409 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4410 encoder->enable(encoder);
8807e55b
JN
4411 intel_opregion_notify_encoder(encoder, true);
4412 }
4f771f10 4413
4b3a9526
VS
4414 assert_vblank_disabled(crtc);
4415 drm_crtc_vblank_on(crtc);
4416
e4916946
PZ
4417 /* If we change the relative order between pipe/planes enabling, we need
4418 * to change the workaround. */
4419 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4420 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4421}
4422
3f8dce3a
DV
4423static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424{
4425 struct drm_device *dev = crtc->base.dev;
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 int pipe = crtc->pipe;
4428
4429 /* To avoid upsetting the power well on haswell only disable the pfit if
4430 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4431 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4432 I915_WRITE(PF_CTL(pipe), 0);
4433 I915_WRITE(PF_WIN_POS(pipe), 0);
4434 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435 }
4436}
4437
6be4a607
JB
4438static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439{
4440 struct drm_device *dev = crtc->dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4443 struct intel_encoder *encoder;
6be4a607 4444 int pipe = intel_crtc->pipe;
5eddb70b 4445 u32 reg, temp;
b52eb4dc 4446
f7abfe8b
CW
4447 if (!intel_crtc->active)
4448 return;
4449
d3eedb1a 4450 intel_crtc_disable_planes(crtc);
a5c4d7bc 4451
4b3a9526
VS
4452 drm_crtc_vblank_off(crtc);
4453 assert_vblank_disabled(crtc);
4454
ea9d758d
DV
4455 for_each_encoder_on_crtc(dev, crtc, encoder)
4456 encoder->disable(encoder);
4457
d925c59a 4458 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4459 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4460
575f7ab7 4461 intel_disable_pipe(intel_crtc);
32f9d658 4462
3f8dce3a 4463 ironlake_pfit_disable(intel_crtc);
2c07245f 4464
bf49ec8c
DV
4465 for_each_encoder_on_crtc(dev, crtc, encoder)
4466 if (encoder->post_disable)
4467 encoder->post_disable(encoder);
2c07245f 4468
d925c59a
DV
4469 if (intel_crtc->config.has_pch_encoder) {
4470 ironlake_fdi_disable(crtc);
913d8d11 4471
d925c59a 4472 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4473 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4474
d925c59a
DV
4475 if (HAS_PCH_CPT(dev)) {
4476 /* disable TRANS_DP_CTL */
4477 reg = TRANS_DP_CTL(pipe);
4478 temp = I915_READ(reg);
4479 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480 TRANS_DP_PORT_SEL_MASK);
4481 temp |= TRANS_DP_PORT_SEL_NONE;
4482 I915_WRITE(reg, temp);
4483
4484 /* disable DPLL_SEL */
4485 temp = I915_READ(PCH_DPLL_SEL);
11887397 4486 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4487 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4488 }
e3421a18 4489
d925c59a 4490 /* disable PCH DPLL */
e72f9fbf 4491 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4492
d925c59a
DV
4493 ironlake_fdi_pll_disable(intel_crtc);
4494 }
6b383a7f 4495
f7abfe8b 4496 intel_crtc->active = false;
46ba614c 4497 intel_update_watermarks(crtc);
d1ebd816
BW
4498
4499 mutex_lock(&dev->struct_mutex);
6b383a7f 4500 intel_update_fbc(dev);
d1ebd816 4501 mutex_unlock(&dev->struct_mutex);
6be4a607 4502}
1b3c7a47 4503
4f771f10 4504static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4505{
4f771f10
PZ
4506 struct drm_device *dev = crtc->dev;
4507 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4509 struct intel_encoder *encoder;
3b117c8f 4510 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4511
4f771f10
PZ
4512 if (!intel_crtc->active)
4513 return;
4514
d3eedb1a 4515 intel_crtc_disable_planes(crtc);
dda9a66a 4516
4b3a9526
VS
4517 drm_crtc_vblank_off(crtc);
4518 assert_vblank_disabled(crtc);
4519
8807e55b
JN
4520 for_each_encoder_on_crtc(dev, crtc, encoder) {
4521 intel_opregion_notify_encoder(encoder, false);
4f771f10 4522 encoder->disable(encoder);
8807e55b 4523 }
4f771f10 4524
8664281b 4525 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4526 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527 false);
575f7ab7 4528 intel_disable_pipe(intel_crtc);
4f771f10 4529
a4bf214f
VS
4530 if (intel_crtc->config.dp_encoder_is_mst)
4531 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
ad80a810 4533 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4534
3f8dce3a 4535 ironlake_pfit_disable(intel_crtc);
4f771f10 4536
1f544388 4537 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4538
88adfff1 4539 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4540 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4541 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542 true);
1ad960f2 4543 intel_ddi_fdi_disable(crtc);
83616634 4544 }
4f771f10 4545
97b040aa
ID
4546 for_each_encoder_on_crtc(dev, crtc, encoder)
4547 if (encoder->post_disable)
4548 encoder->post_disable(encoder);
4549
4f771f10 4550 intel_crtc->active = false;
46ba614c 4551 intel_update_watermarks(crtc);
4f771f10
PZ
4552
4553 mutex_lock(&dev->struct_mutex);
4554 intel_update_fbc(dev);
4555 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4556
4557 if (intel_crtc_to_shared_dpll(intel_crtc))
4558 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4559}
4560
ee7b9f93
JB
4561static void ironlake_crtc_off(struct drm_crtc *crtc)
4562{
4563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4564 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4565}
4566
6441ab5f 4567
2dd24552
JB
4568static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569{
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 struct intel_crtc_config *pipe_config = &crtc->config;
4573
328d8e82 4574 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4575 return;
4576
2dd24552 4577 /*
c0b03411
DV
4578 * The panel fitter should only be adjusted whilst the pipe is disabled,
4579 * according to register description and PRM.
2dd24552 4580 */
c0b03411
DV
4581 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4583
b074cec8
JB
4584 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4586
4587 /* Border color in case we don't scale up to the full screen. Black by
4588 * default, change to something else for debugging. */
4589 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4590}
4591
d05410f9
DA
4592static enum intel_display_power_domain port_to_power_domain(enum port port)
4593{
4594 switch (port) {
4595 case PORT_A:
4596 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597 case PORT_B:
4598 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599 case PORT_C:
4600 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601 case PORT_D:
4602 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603 default:
4604 WARN_ON_ONCE(1);
4605 return POWER_DOMAIN_PORT_OTHER;
4606 }
4607}
4608
77d22dca
ID
4609#define for_each_power_domain(domain, mask) \
4610 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4611 if ((1 << (domain)) & (mask))
4612
319be8ae
ID
4613enum intel_display_power_domain
4614intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615{
4616 struct drm_device *dev = intel_encoder->base.dev;
4617 struct intel_digital_port *intel_dig_port;
4618
4619 switch (intel_encoder->type) {
4620 case INTEL_OUTPUT_UNKNOWN:
4621 /* Only DDI platforms should ever use this output type */
4622 WARN_ON_ONCE(!HAS_DDI(dev));
4623 case INTEL_OUTPUT_DISPLAYPORT:
4624 case INTEL_OUTPUT_HDMI:
4625 case INTEL_OUTPUT_EDP:
4626 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4627 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4628 case INTEL_OUTPUT_DP_MST:
4629 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4631 case INTEL_OUTPUT_ANALOG:
4632 return POWER_DOMAIN_PORT_CRT;
4633 case INTEL_OUTPUT_DSI:
4634 return POWER_DOMAIN_PORT_DSI;
4635 default:
4636 return POWER_DOMAIN_PORT_OTHER;
4637 }
4638}
4639
4640static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4641{
319be8ae
ID
4642 struct drm_device *dev = crtc->dev;
4643 struct intel_encoder *intel_encoder;
4644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4646 unsigned long mask;
4647 enum transcoder transcoder;
4648
4649 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4653 if (intel_crtc->config.pch_pfit.enabled ||
4654 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4655 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
319be8ae
ID
4657 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
77d22dca
ID
4660 return mask;
4661}
4662
77d22dca
ID
4663static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664{
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667 struct intel_crtc *crtc;
4668
4669 /*
4670 * First get all needed power domains, then put all unneeded, to avoid
4671 * any unnecessary toggling of the power wells.
4672 */
d3fcc808 4673 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4674 enum intel_display_power_domain domain;
4675
4676 if (!crtc->base.enabled)
4677 continue;
4678
319be8ae 4679 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4680
4681 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682 intel_display_power_get(dev_priv, domain);
4683 }
4684
d3fcc808 4685 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4686 enum intel_display_power_domain domain;
4687
4688 for_each_power_domain(domain, crtc->enabled_power_domains)
4689 intel_display_power_put(dev_priv, domain);
4690
4691 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4692 }
4693
4694 intel_display_set_init_power(dev_priv, false);
4695}
4696
dfcab17e 4697/* returns HPLL frequency in kHz */
f8bf63fd 4698static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4699{
586f49dc 4700 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4701
586f49dc
JB
4702 /* Obtain SKU information */
4703 mutex_lock(&dev_priv->dpio_lock);
4704 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4705 CCK_FUSE_HPLL_FREQ_MASK;
4706 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4707
dfcab17e 4708 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4709}
4710
f8bf63fd
VS
4711static void vlv_update_cdclk(struct drm_device *dev)
4712{
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4716 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4717 dev_priv->vlv_cdclk_freq);
4718
4719 /*
4720 * Program the gmbus_freq based on the cdclk frequency.
4721 * BSpec erroneously claims we should aim for 4MHz, but
4722 * in fact 1MHz is the correct frequency.
4723 */
4724 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4725}
4726
30a970c6
JB
4727/* Adjust CDclk dividers to allow high res or save power if possible */
4728static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4729{
4730 struct drm_i915_private *dev_priv = dev->dev_private;
4731 u32 val, cmd;
4732
d197b7d3 4733 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4734
dfcab17e 4735 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4736 cmd = 2;
dfcab17e 4737 else if (cdclk == 266667)
30a970c6
JB
4738 cmd = 1;
4739 else
4740 cmd = 0;
4741
4742 mutex_lock(&dev_priv->rps.hw_lock);
4743 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4744 val &= ~DSPFREQGUAR_MASK;
4745 val |= (cmd << DSPFREQGUAR_SHIFT);
4746 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4747 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4748 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4749 50)) {
4750 DRM_ERROR("timed out waiting for CDclk change\n");
4751 }
4752 mutex_unlock(&dev_priv->rps.hw_lock);
4753
dfcab17e 4754 if (cdclk == 400000) {
30a970c6
JB
4755 u32 divider, vco;
4756
4757 vco = valleyview_get_vco(dev_priv);
dfcab17e 4758 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4759
4760 mutex_lock(&dev_priv->dpio_lock);
4761 /* adjust cdclk divider */
4762 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4763 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4764 val |= divider;
4765 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4766
4767 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4768 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4769 50))
4770 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4771 mutex_unlock(&dev_priv->dpio_lock);
4772 }
4773
4774 mutex_lock(&dev_priv->dpio_lock);
4775 /* adjust self-refresh exit latency value */
4776 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4777 val &= ~0x7f;
4778
4779 /*
4780 * For high bandwidth configs, we set a higher latency in the bunit
4781 * so that the core display fetch happens in time to avoid underruns.
4782 */
dfcab17e 4783 if (cdclk == 400000)
30a970c6
JB
4784 val |= 4500 / 250; /* 4.5 usec */
4785 else
4786 val |= 3000 / 250; /* 3.0 usec */
4787 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4788 mutex_unlock(&dev_priv->dpio_lock);
4789
f8bf63fd 4790 vlv_update_cdclk(dev);
30a970c6
JB
4791}
4792
383c5a6a
VS
4793static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4794{
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 u32 val, cmd;
4797
4798 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4799
4800 switch (cdclk) {
4801 case 400000:
4802 cmd = 3;
4803 break;
4804 case 333333:
4805 case 320000:
4806 cmd = 2;
4807 break;
4808 case 266667:
4809 cmd = 1;
4810 break;
4811 case 200000:
4812 cmd = 0;
4813 break;
4814 default:
4815 WARN_ON(1);
4816 return;
4817 }
4818
4819 mutex_lock(&dev_priv->rps.hw_lock);
4820 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4821 val &= ~DSPFREQGUAR_MASK_CHV;
4822 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4823 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4824 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4825 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4826 50)) {
4827 DRM_ERROR("timed out waiting for CDclk change\n");
4828 }
4829 mutex_unlock(&dev_priv->rps.hw_lock);
4830
4831 vlv_update_cdclk(dev);
4832}
4833
30a970c6
JB
4834static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4835 int max_pixclk)
4836{
29dc7ef3
VS
4837 int vco = valleyview_get_vco(dev_priv);
4838 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4839
d49a340d
VS
4840 /* FIXME: Punit isn't quite ready yet */
4841 if (IS_CHERRYVIEW(dev_priv->dev))
4842 return 400000;
4843
30a970c6
JB
4844 /*
4845 * Really only a few cases to deal with, as only 4 CDclks are supported:
4846 * 200MHz
4847 * 267MHz
29dc7ef3 4848 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4849 * 400MHz
4850 * So we check to see whether we're above 90% of the lower bin and
4851 * adjust if needed.
e37c67a1
VS
4852 *
4853 * We seem to get an unstable or solid color picture at 200MHz.
4854 * Not sure what's wrong. For now use 200MHz only when all pipes
4855 * are off.
30a970c6 4856 */
29dc7ef3 4857 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4858 return 400000;
4859 else if (max_pixclk > 266667*9/10)
29dc7ef3 4860 return freq_320;
e37c67a1 4861 else if (max_pixclk > 0)
dfcab17e 4862 return 266667;
e37c67a1
VS
4863 else
4864 return 200000;
30a970c6
JB
4865}
4866
2f2d7aa1
VS
4867/* compute the max pixel clock for new configuration */
4868static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4869{
4870 struct drm_device *dev = dev_priv->dev;
4871 struct intel_crtc *intel_crtc;
4872 int max_pixclk = 0;
4873
d3fcc808 4874 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4875 if (intel_crtc->new_enabled)
30a970c6 4876 max_pixclk = max(max_pixclk,
2f2d7aa1 4877 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4878 }
4879
4880 return max_pixclk;
4881}
4882
4883static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4884 unsigned *prepare_pipes)
30a970c6
JB
4885{
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887 struct intel_crtc *intel_crtc;
2f2d7aa1 4888 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4889
d60c4473
ID
4890 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4891 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4892 return;
4893
2f2d7aa1 4894 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4895 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4896 if (intel_crtc->base.enabled)
4897 *prepare_pipes |= (1 << intel_crtc->pipe);
4898}
4899
4900static void valleyview_modeset_global_resources(struct drm_device *dev)
4901{
4902 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4903 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4904 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4905
383c5a6a
VS
4906 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4907 if (IS_CHERRYVIEW(dev))
4908 cherryview_set_cdclk(dev, req_cdclk);
4909 else
4910 valleyview_set_cdclk(dev, req_cdclk);
4911 }
4912
77961eb9 4913 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4914}
4915
89b667f8
JB
4916static void valleyview_crtc_enable(struct drm_crtc *crtc)
4917{
4918 struct drm_device *dev = crtc->dev;
a72e4c9f 4919 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921 struct intel_encoder *encoder;
4922 int pipe = intel_crtc->pipe;
23538ef1 4923 bool is_dsi;
89b667f8
JB
4924
4925 WARN_ON(!crtc->enabled);
4926
4927 if (intel_crtc->active)
4928 return;
4929
409ee761 4930 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 4931
1ae0d137
VS
4932 if (!is_dsi) {
4933 if (IS_CHERRYVIEW(dev))
d288f65f 4934 chv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4935 else
d288f65f 4936 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4937 }
5b18e57c
DV
4938
4939 if (intel_crtc->config.has_dp_encoder)
4940 intel_dp_set_m_n(intel_crtc);
4941
4942 intel_set_pipe_timings(intel_crtc);
4943
c14b0485
VS
4944 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946
4947 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4948 I915_WRITE(CHV_CANVAS(pipe), 0);
4949 }
4950
5b18e57c
DV
4951 i9xx_set_pipeconf(intel_crtc);
4952
89b667f8 4953 intel_crtc->active = true;
89b667f8 4954
a72e4c9f 4955 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4956
89b667f8
JB
4957 for_each_encoder_on_crtc(dev, crtc, encoder)
4958 if (encoder->pre_pll_enable)
4959 encoder->pre_pll_enable(encoder);
4960
9d556c99
CML
4961 if (!is_dsi) {
4962 if (IS_CHERRYVIEW(dev))
d288f65f 4963 chv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4964 else
d288f65f 4965 vlv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4966 }
89b667f8
JB
4967
4968 for_each_encoder_on_crtc(dev, crtc, encoder)
4969 if (encoder->pre_enable)
4970 encoder->pre_enable(encoder);
4971
2dd24552
JB
4972 i9xx_pfit_enable(intel_crtc);
4973
63cbb074
VS
4974 intel_crtc_load_lut(crtc);
4975
f37fcc2a 4976 intel_update_watermarks(crtc);
e1fdc473 4977 intel_enable_pipe(intel_crtc);
be6a6f8e 4978
5004945f
JN
4979 for_each_encoder_on_crtc(dev, crtc, encoder)
4980 encoder->enable(encoder);
9ab0460b 4981
4b3a9526
VS
4982 assert_vblank_disabled(crtc);
4983 drm_crtc_vblank_on(crtc);
4984
9ab0460b 4985 intel_crtc_enable_planes(crtc);
d40d9187 4986
56b80e1f 4987 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4988 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
4989}
4990
f13c2ef3
DV
4991static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4992{
4993 struct drm_device *dev = crtc->base.dev;
4994 struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4997 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4998}
4999
0b8765c6 5000static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5001{
5002 struct drm_device *dev = crtc->dev;
a72e4c9f 5003 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5005 struct intel_encoder *encoder;
79e53945 5006 int pipe = intel_crtc->pipe;
79e53945 5007
08a48469
DV
5008 WARN_ON(!crtc->enabled);
5009
f7abfe8b
CW
5010 if (intel_crtc->active)
5011 return;
5012
f13c2ef3
DV
5013 i9xx_set_pll_dividers(intel_crtc);
5014
5b18e57c
DV
5015 if (intel_crtc->config.has_dp_encoder)
5016 intel_dp_set_m_n(intel_crtc);
5017
5018 intel_set_pipe_timings(intel_crtc);
5019
5b18e57c
DV
5020 i9xx_set_pipeconf(intel_crtc);
5021
f7abfe8b 5022 intel_crtc->active = true;
6b383a7f 5023
4a3436e8 5024 if (!IS_GEN2(dev))
a72e4c9f 5025 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5026
9d6d9f19
MK
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 if (encoder->pre_enable)
5029 encoder->pre_enable(encoder);
5030
f6736a1a
DV
5031 i9xx_enable_pll(intel_crtc);
5032
2dd24552
JB
5033 i9xx_pfit_enable(intel_crtc);
5034
63cbb074
VS
5035 intel_crtc_load_lut(crtc);
5036
f37fcc2a 5037 intel_update_watermarks(crtc);
e1fdc473 5038 intel_enable_pipe(intel_crtc);
be6a6f8e 5039
fa5c73b1
DV
5040 for_each_encoder_on_crtc(dev, crtc, encoder)
5041 encoder->enable(encoder);
9ab0460b 5042
4b3a9526
VS
5043 assert_vblank_disabled(crtc);
5044 drm_crtc_vblank_on(crtc);
5045
9ab0460b 5046 intel_crtc_enable_planes(crtc);
d40d9187 5047
4a3436e8
VS
5048 /*
5049 * Gen2 reports pipe underruns whenever all planes are disabled.
5050 * So don't enable underrun reporting before at least some planes
5051 * are enabled.
5052 * FIXME: Need to fix the logic to work when we turn off all planes
5053 * but leave the pipe running.
5054 */
5055 if (IS_GEN2(dev))
a72e4c9f 5056 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5057
56b80e1f 5058 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5059 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5060}
79e53945 5061
87476d63
DV
5062static void i9xx_pfit_disable(struct intel_crtc *crtc)
5063{
5064 struct drm_device *dev = crtc->base.dev;
5065 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5066
328d8e82
DV
5067 if (!crtc->config.gmch_pfit.control)
5068 return;
87476d63 5069
328d8e82 5070 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5071
328d8e82
DV
5072 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5073 I915_READ(PFIT_CONTROL));
5074 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5075}
5076
0b8765c6
JB
5077static void i9xx_crtc_disable(struct drm_crtc *crtc)
5078{
5079 struct drm_device *dev = crtc->dev;
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5082 struct intel_encoder *encoder;
0b8765c6 5083 int pipe = intel_crtc->pipe;
ef9c3aee 5084
f7abfe8b
CW
5085 if (!intel_crtc->active)
5086 return;
5087
4a3436e8
VS
5088 /*
5089 * Gen2 reports pipe underruns whenever all planes are disabled.
5090 * So diasble underrun reporting before all the planes get disabled.
5091 * FIXME: Need to fix the logic to work when we turn off all planes
5092 * but leave the pipe running.
5093 */
5094 if (IS_GEN2(dev))
a72e4c9f 5095 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5096
564ed191
ID
5097 /*
5098 * Vblank time updates from the shadow to live plane control register
5099 * are blocked if the memory self-refresh mode is active at that
5100 * moment. So to make sure the plane gets truly disabled, disable
5101 * first the self-refresh mode. The self-refresh enable bit in turn
5102 * will be checked/applied by the HW only at the next frame start
5103 * event which is after the vblank start event, so we need to have a
5104 * wait-for-vblank between disabling the plane and the pipe.
5105 */
5106 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5107 intel_crtc_disable_planes(crtc);
5108
6304cd91
VS
5109 /*
5110 * On gen2 planes are double buffered but the pipe isn't, so we must
5111 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5112 * We also need to wait on all gmch platforms because of the
5113 * self-refresh mode constraint explained above.
6304cd91 5114 */
564ed191 5115 intel_wait_for_vblank(dev, pipe);
6304cd91 5116
4b3a9526
VS
5117 drm_crtc_vblank_off(crtc);
5118 assert_vblank_disabled(crtc);
5119
5120 for_each_encoder_on_crtc(dev, crtc, encoder)
5121 encoder->disable(encoder);
5122
575f7ab7 5123 intel_disable_pipe(intel_crtc);
24a1f16d 5124
87476d63 5125 i9xx_pfit_disable(intel_crtc);
24a1f16d 5126
89b667f8
JB
5127 for_each_encoder_on_crtc(dev, crtc, encoder)
5128 if (encoder->post_disable)
5129 encoder->post_disable(encoder);
5130
409ee761 5131 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5132 if (IS_CHERRYVIEW(dev))
5133 chv_disable_pll(dev_priv, pipe);
5134 else if (IS_VALLEYVIEW(dev))
5135 vlv_disable_pll(dev_priv, pipe);
5136 else
1c4e0274 5137 i9xx_disable_pll(intel_crtc);
076ed3b2 5138 }
0b8765c6 5139
4a3436e8 5140 if (!IS_GEN2(dev))
a72e4c9f 5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5142
f7abfe8b 5143 intel_crtc->active = false;
46ba614c 5144 intel_update_watermarks(crtc);
f37fcc2a 5145
efa9624e 5146 mutex_lock(&dev->struct_mutex);
6b383a7f 5147 intel_update_fbc(dev);
efa9624e 5148 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5149}
5150
ee7b9f93
JB
5151static void i9xx_crtc_off(struct drm_crtc *crtc)
5152{
5153}
5154
976f8a20
DV
5155static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5156 bool enabled)
2c07245f
ZW
5157{
5158 struct drm_device *dev = crtc->dev;
5159 struct drm_i915_master_private *master_priv;
5160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161 int pipe = intel_crtc->pipe;
79e53945
JB
5162
5163 if (!dev->primary->master)
5164 return;
5165
5166 master_priv = dev->primary->master->driver_priv;
5167 if (!master_priv->sarea_priv)
5168 return;
5169
79e53945
JB
5170 switch (pipe) {
5171 case 0:
5172 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5173 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5174 break;
5175 case 1:
5176 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5177 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5178 break;
5179 default:
9db4a9c7 5180 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5181 break;
5182 }
79e53945
JB
5183}
5184
b04c5bd6
BF
5185/* Master function to enable/disable CRTC and corresponding power wells */
5186void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5187{
5188 struct drm_device *dev = crtc->dev;
5189 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5191 enum intel_display_power_domain domain;
5192 unsigned long domains;
976f8a20 5193
0e572fe7
DV
5194 if (enable) {
5195 if (!intel_crtc->active) {
e1e9fb84
DV
5196 domains = get_crtc_power_domains(crtc);
5197 for_each_power_domain(domain, domains)
5198 intel_display_power_get(dev_priv, domain);
5199 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5200
5201 dev_priv->display.crtc_enable(crtc);
5202 }
5203 } else {
5204 if (intel_crtc->active) {
5205 dev_priv->display.crtc_disable(crtc);
5206
e1e9fb84
DV
5207 domains = intel_crtc->enabled_power_domains;
5208 for_each_power_domain(domain, domains)
5209 intel_display_power_put(dev_priv, domain);
5210 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5211 }
5212 }
b04c5bd6
BF
5213}
5214
5215/**
5216 * Sets the power management mode of the pipe and plane.
5217 */
5218void intel_crtc_update_dpms(struct drm_crtc *crtc)
5219{
5220 struct drm_device *dev = crtc->dev;
5221 struct intel_encoder *intel_encoder;
5222 bool enable = false;
5223
5224 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225 enable |= intel_encoder->connectors_active;
5226
5227 intel_crtc_control(crtc, enable);
976f8a20
DV
5228
5229 intel_crtc_update_sarea(crtc, enable);
5230}
5231
cdd59983
CW
5232static void intel_crtc_disable(struct drm_crtc *crtc)
5233{
cdd59983 5234 struct drm_device *dev = crtc->dev;
976f8a20 5235 struct drm_connector *connector;
ee7b9f93 5236 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5237 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5238 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5239
976f8a20
DV
5240 /* crtc should still be enabled when we disable it. */
5241 WARN_ON(!crtc->enabled);
5242
5243 dev_priv->display.crtc_disable(crtc);
5244 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5245 dev_priv->display.off(crtc);
5246
f4510a27 5247 if (crtc->primary->fb) {
cdd59983 5248 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5249 intel_unpin_fb_obj(old_obj);
5250 i915_gem_track_fb(old_obj, NULL,
5251 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5252 mutex_unlock(&dev->struct_mutex);
f4510a27 5253 crtc->primary->fb = NULL;
976f8a20
DV
5254 }
5255
5256 /* Update computed state. */
5257 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258 if (!connector->encoder || !connector->encoder->crtc)
5259 continue;
5260
5261 if (connector->encoder->crtc != crtc)
5262 continue;
5263
5264 connector->dpms = DRM_MODE_DPMS_OFF;
5265 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5266 }
5267}
5268
ea5b213a 5269void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5270{
4ef69c7a 5271 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5272
ea5b213a
CW
5273 drm_encoder_cleanup(encoder);
5274 kfree(intel_encoder);
7e7d76c3
JB
5275}
5276
9237329d 5277/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5278 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279 * state of the entire output pipe. */
9237329d 5280static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5281{
5ab432ef
DV
5282 if (mode == DRM_MODE_DPMS_ON) {
5283 encoder->connectors_active = true;
5284
b2cabb0e 5285 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5286 } else {
5287 encoder->connectors_active = false;
5288
b2cabb0e 5289 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5290 }
79e53945
JB
5291}
5292
0a91ca29
DV
5293/* Cross check the actual hw state with our own modeset state tracking (and it's
5294 * internal consistency). */
b980514c 5295static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5296{
0a91ca29
DV
5297 if (connector->get_hw_state(connector)) {
5298 struct intel_encoder *encoder = connector->encoder;
5299 struct drm_crtc *crtc;
5300 bool encoder_enabled;
5301 enum pipe pipe;
5302
5303 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304 connector->base.base.id,
c23cc417 5305 connector->base.name);
0a91ca29 5306
0e32b39c
DA
5307 /* there is no real hw state for MST connectors */
5308 if (connector->mst_port)
5309 return;
5310
0a91ca29
DV
5311 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312 "wrong connector dpms state\n");
5313 WARN(connector->base.encoder != &encoder->base,
5314 "active connector not linked to encoder\n");
0a91ca29 5315
36cd7444
DA
5316 if (encoder) {
5317 WARN(!encoder->connectors_active,
5318 "encoder->connectors_active not set\n");
5319
5320 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321 WARN(!encoder_enabled, "encoder not enabled\n");
5322 if (WARN_ON(!encoder->base.crtc))
5323 return;
0a91ca29 5324
36cd7444 5325 crtc = encoder->base.crtc;
0a91ca29 5326
36cd7444
DA
5327 WARN(!crtc->enabled, "crtc not enabled\n");
5328 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329 WARN(pipe != to_intel_crtc(crtc)->pipe,
5330 "encoder active on the wrong pipe\n");
5331 }
0a91ca29 5332 }
79e53945
JB
5333}
5334
5ab432ef
DV
5335/* Even simpler default implementation, if there's really no special case to
5336 * consider. */
5337void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5338{
5ab432ef
DV
5339 /* All the simple cases only support two dpms states. */
5340 if (mode != DRM_MODE_DPMS_ON)
5341 mode = DRM_MODE_DPMS_OFF;
d4270e57 5342
5ab432ef
DV
5343 if (mode == connector->dpms)
5344 return;
5345
5346 connector->dpms = mode;
5347
5348 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5349 if (connector->encoder)
5350 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5351
b980514c 5352 intel_modeset_check_state(connector->dev);
79e53945
JB
5353}
5354
f0947c37
DV
5355/* Simple connector->get_hw_state implementation for encoders that support only
5356 * one connector and no cloning and hence the encoder state determines the state
5357 * of the connector. */
5358bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5359{
24929352 5360 enum pipe pipe = 0;
f0947c37 5361 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5362
f0947c37 5363 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5364}
5365
1857e1da
DV
5366static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367 struct intel_crtc_config *pipe_config)
5368{
5369 struct drm_i915_private *dev_priv = dev->dev_private;
5370 struct intel_crtc *pipe_B_crtc =
5371 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374 pipe_name(pipe), pipe_config->fdi_lanes);
5375 if (pipe_config->fdi_lanes > 4) {
5376 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377 pipe_name(pipe), pipe_config->fdi_lanes);
5378 return false;
5379 }
5380
bafb6553 5381 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5382 if (pipe_config->fdi_lanes > 2) {
5383 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384 pipe_config->fdi_lanes);
5385 return false;
5386 } else {
5387 return true;
5388 }
5389 }
5390
5391 if (INTEL_INFO(dev)->num_pipes == 2)
5392 return true;
5393
5394 /* Ivybridge 3 pipe is really complicated */
5395 switch (pipe) {
5396 case PIPE_A:
5397 return true;
5398 case PIPE_B:
5399 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400 pipe_config->fdi_lanes > 2) {
5401 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402 pipe_name(pipe), pipe_config->fdi_lanes);
5403 return false;
5404 }
5405 return true;
5406 case PIPE_C:
1e833f40 5407 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5408 pipe_B_crtc->config.fdi_lanes <= 2) {
5409 if (pipe_config->fdi_lanes > 2) {
5410 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411 pipe_name(pipe), pipe_config->fdi_lanes);
5412 return false;
5413 }
5414 } else {
5415 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416 return false;
5417 }
5418 return true;
5419 default:
5420 BUG();
5421 }
5422}
5423
e29c22c0
DV
5424#define RETRY 1
5425static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426 struct intel_crtc_config *pipe_config)
877d48d5 5427{
1857e1da 5428 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5429 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5430 int lane, link_bw, fdi_dotclock;
e29c22c0 5431 bool setup_ok, needs_recompute = false;
877d48d5 5432
e29c22c0 5433retry:
877d48d5
DV
5434 /* FDI is a binary signal running at ~2.7GHz, encoding
5435 * each output octet as 10 bits. The actual frequency
5436 * is stored as a divider into a 100MHz clock, and the
5437 * mode pixel clock is stored in units of 1KHz.
5438 * Hence the bw of each lane in terms of the mode signal
5439 * is:
5440 */
5441 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
241bfc38 5443 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5444
2bd89a07 5445 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5446 pipe_config->pipe_bpp);
5447
5448 pipe_config->fdi_lanes = lane;
5449
2bd89a07 5450 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5451 link_bw, &pipe_config->fdi_m_n);
1857e1da 5452
e29c22c0
DV
5453 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454 intel_crtc->pipe, pipe_config);
5455 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456 pipe_config->pipe_bpp -= 2*3;
5457 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458 pipe_config->pipe_bpp);
5459 needs_recompute = true;
5460 pipe_config->bw_constrained = true;
5461
5462 goto retry;
5463 }
5464
5465 if (needs_recompute)
5466 return RETRY;
5467
5468 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5469}
5470
42db64ef
PZ
5471static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472 struct intel_crtc_config *pipe_config)
5473{
d330a953 5474 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5475 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5476 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5477}
5478
a43f6e0f 5479static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5480 struct intel_crtc_config *pipe_config)
79e53945 5481{
a43f6e0f 5482 struct drm_device *dev = crtc->base.dev;
8bd31e67 5483 struct drm_i915_private *dev_priv = dev->dev_private;
b8cecdf5 5484 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5485
ad3a4479 5486 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5487 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5488 int clock_limit =
5489 dev_priv->display.get_display_clock_speed(dev);
5490
5491 /*
5492 * Enable pixel doubling when the dot clock
5493 * is > 90% of the (display) core speed.
5494 *
b397c96b
VS
5495 * GDG double wide on either pipe,
5496 * otherwise pipe A only.
cf532bb2 5497 */
b397c96b 5498 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5499 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5500 clock_limit *= 2;
cf532bb2 5501 pipe_config->double_wide = true;
ad3a4479
VS
5502 }
5503
241bfc38 5504 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5505 return -EINVAL;
2c07245f 5506 }
89749350 5507
1d1d0e27
VS
5508 /*
5509 * Pipe horizontal size must be even in:
5510 * - DVO ganged mode
5511 * - LVDS dual channel mode
5512 * - Double wide pipe
5513 */
409ee761 5514 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5515 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516 pipe_config->pipe_src_w &= ~1;
5517
8693a824
DL
5518 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5520 */
5521 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5523 return -EINVAL;
44f46b42 5524
bd080ee5 5525 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5526 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5527 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5528 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529 * for lvds. */
5530 pipe_config->pipe_bpp = 8*3;
5531 }
5532
f5adf94e 5533 if (HAS_IPS(dev))
a43f6e0f
DV
5534 hsw_compute_ips_config(crtc, pipe_config);
5535
12030431 5536 /*
8bd31e67
ACO
5537 * XXX: PCH/WRPLL clock sharing is done in ->mode_set if ->compute_clock is not
5538 * set, so make sure the old clock survives for now.
12030431 5539 */
8bd31e67
ACO
5540 if (dev_priv->display.crtc_compute_clock == NULL &&
5541 (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)))
a43f6e0f 5542 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5543
877d48d5 5544 if (pipe_config->has_pch_encoder)
a43f6e0f 5545 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5546
e29c22c0 5547 return 0;
79e53945
JB
5548}
5549
25eb05fc
JB
5550static int valleyview_get_display_clock_speed(struct drm_device *dev)
5551{
d197b7d3
VS
5552 struct drm_i915_private *dev_priv = dev->dev_private;
5553 int vco = valleyview_get_vco(dev_priv);
5554 u32 val;
5555 int divider;
5556
d49a340d
VS
5557 /* FIXME: Punit isn't quite ready yet */
5558 if (IS_CHERRYVIEW(dev))
5559 return 400000;
5560
d197b7d3
VS
5561 mutex_lock(&dev_priv->dpio_lock);
5562 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5563 mutex_unlock(&dev_priv->dpio_lock);
5564
5565 divider = val & DISPLAY_FREQUENCY_VALUES;
5566
7d007f40
VS
5567 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5568 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5569 "cdclk change in progress\n");
5570
d197b7d3 5571 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5572}
5573
e70236a8
JB
5574static int i945_get_display_clock_speed(struct drm_device *dev)
5575{
5576 return 400000;
5577}
79e53945 5578
e70236a8 5579static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5580{
e70236a8
JB
5581 return 333000;
5582}
79e53945 5583
e70236a8
JB
5584static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5585{
5586 return 200000;
5587}
79e53945 5588
257a7ffc
DV
5589static int pnv_get_display_clock_speed(struct drm_device *dev)
5590{
5591 u16 gcfgc = 0;
5592
5593 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5594
5595 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5596 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5597 return 267000;
5598 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5599 return 333000;
5600 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5601 return 444000;
5602 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5603 return 200000;
5604 default:
5605 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5606 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5607 return 133000;
5608 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5609 return 167000;
5610 }
5611}
5612
e70236a8
JB
5613static int i915gm_get_display_clock_speed(struct drm_device *dev)
5614{
5615 u16 gcfgc = 0;
79e53945 5616
e70236a8
JB
5617 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5618
5619 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5620 return 133000;
5621 else {
5622 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623 case GC_DISPLAY_CLOCK_333_MHZ:
5624 return 333000;
5625 default:
5626 case GC_DISPLAY_CLOCK_190_200_MHZ:
5627 return 190000;
79e53945 5628 }
e70236a8
JB
5629 }
5630}
5631
5632static int i865_get_display_clock_speed(struct drm_device *dev)
5633{
5634 return 266000;
5635}
5636
5637static int i855_get_display_clock_speed(struct drm_device *dev)
5638{
5639 u16 hpllcc = 0;
5640 /* Assume that the hardware is in the high speed state. This
5641 * should be the default.
5642 */
5643 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5644 case GC_CLOCK_133_200:
5645 case GC_CLOCK_100_200:
5646 return 200000;
5647 case GC_CLOCK_166_250:
5648 return 250000;
5649 case GC_CLOCK_100_133:
79e53945 5650 return 133000;
e70236a8 5651 }
79e53945 5652
e70236a8
JB
5653 /* Shouldn't happen */
5654 return 0;
5655}
79e53945 5656
e70236a8
JB
5657static int i830_get_display_clock_speed(struct drm_device *dev)
5658{
5659 return 133000;
79e53945
JB
5660}
5661
2c07245f 5662static void
a65851af 5663intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5664{
a65851af
VS
5665 while (*num > DATA_LINK_M_N_MASK ||
5666 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5667 *num >>= 1;
5668 *den >>= 1;
5669 }
5670}
5671
a65851af
VS
5672static void compute_m_n(unsigned int m, unsigned int n,
5673 uint32_t *ret_m, uint32_t *ret_n)
5674{
5675 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5676 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5677 intel_reduce_m_n_ratio(ret_m, ret_n);
5678}
5679
e69d0bc1
DV
5680void
5681intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5682 int pixel_clock, int link_clock,
5683 struct intel_link_m_n *m_n)
2c07245f 5684{
e69d0bc1 5685 m_n->tu = 64;
a65851af
VS
5686
5687 compute_m_n(bits_per_pixel * pixel_clock,
5688 link_clock * nlanes * 8,
5689 &m_n->gmch_m, &m_n->gmch_n);
5690
5691 compute_m_n(pixel_clock, link_clock,
5692 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5693}
5694
a7615030
CW
5695static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5696{
d330a953
JN
5697 if (i915.panel_use_ssc >= 0)
5698 return i915.panel_use_ssc != 0;
41aa3448 5699 return dev_priv->vbt.lvds_use_ssc
435793df 5700 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5701}
5702
409ee761 5703static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5704{
409ee761 5705 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5706 struct drm_i915_private *dev_priv = dev->dev_private;
5707 int refclk;
5708
a0c4da24 5709 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5710 refclk = 100000;
d0737e1d 5711 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5712 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5713 refclk = dev_priv->vbt.lvds_ssc_freq;
5714 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5715 } else if (!IS_GEN2(dev)) {
5716 refclk = 96000;
5717 } else {
5718 refclk = 48000;
5719 }
5720
5721 return refclk;
5722}
5723
7429e9d4 5724static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5725{
7df00d7a 5726 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5727}
f47709a9 5728
7429e9d4
DV
5729static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5730{
5731 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5732}
5733
f47709a9 5734static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5735 intel_clock_t *reduced_clock)
5736{
f47709a9 5737 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5738 u32 fp, fp2 = 0;
5739
5740 if (IS_PINEVIEW(dev)) {
7429e9d4 5741 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5742 if (reduced_clock)
7429e9d4 5743 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5744 } else {
7429e9d4 5745 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5746 if (reduced_clock)
7429e9d4 5747 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5748 }
5749
8bcc2795 5750 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5751
f47709a9 5752 crtc->lowfreq_avail = false;
409ee761 5753 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5754 reduced_clock && i915.powersave) {
8bcc2795 5755 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5756 crtc->lowfreq_avail = true;
a7516a05 5757 } else {
8bcc2795 5758 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5759 }
5760}
5761
5e69f97f
CML
5762static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5763 pipe)
89b667f8
JB
5764{
5765 u32 reg_val;
5766
5767 /*
5768 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5769 * and set it to a reasonable value instead.
5770 */
ab3c759a 5771 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5772 reg_val &= 0xffffff00;
5773 reg_val |= 0x00000030;
ab3c759a 5774 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5775
ab3c759a 5776 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5777 reg_val &= 0x8cffffff;
5778 reg_val = 0x8c000000;
ab3c759a 5779 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5780
ab3c759a 5781 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5782 reg_val &= 0xffffff00;
ab3c759a 5783 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5784
ab3c759a 5785 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5786 reg_val &= 0x00ffffff;
5787 reg_val |= 0xb0000000;
ab3c759a 5788 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5789}
5790
b551842d
DV
5791static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5792 struct intel_link_m_n *m_n)
5793{
5794 struct drm_device *dev = crtc->base.dev;
5795 struct drm_i915_private *dev_priv = dev->dev_private;
5796 int pipe = crtc->pipe;
5797
e3b95f1e
DV
5798 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5799 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5800 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5801 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5802}
5803
5804static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5805 struct intel_link_m_n *m_n,
5806 struct intel_link_m_n *m2_n2)
b551842d
DV
5807{
5808 struct drm_device *dev = crtc->base.dev;
5809 struct drm_i915_private *dev_priv = dev->dev_private;
5810 int pipe = crtc->pipe;
5811 enum transcoder transcoder = crtc->config.cpu_transcoder;
5812
5813 if (INTEL_INFO(dev)->gen >= 5) {
5814 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5815 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5816 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5817 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5818 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5819 * for gen < 8) and if DRRS is supported (to make sure the
5820 * registers are not unnecessarily accessed).
5821 */
5822 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5823 crtc->config.has_drrs) {
5824 I915_WRITE(PIPE_DATA_M2(transcoder),
5825 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5826 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5827 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5828 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5829 }
b551842d 5830 } else {
e3b95f1e
DV
5831 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5832 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5833 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5834 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5835 }
5836}
5837
f769cd24 5838void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5839{
5840 if (crtc->config.has_pch_encoder)
5841 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5842 else
f769cd24
VK
5843 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5844 &crtc->config.dp_m2_n2);
03afc4a2
DV
5845}
5846
d288f65f
VS
5847static void vlv_update_pll(struct intel_crtc *crtc,
5848 struct intel_crtc_config *pipe_config)
bdd4b6a6
DV
5849{
5850 u32 dpll, dpll_md;
5851
5852 /*
5853 * Enable DPIO clock input. We should never disable the reference
5854 * clock for pipe B, since VGA hotplug / manual detection depends
5855 * on it.
5856 */
5857 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5858 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5859 /* We should never disable this, set it here for state tracking */
5860 if (crtc->pipe == PIPE_B)
5861 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5862 dpll |= DPLL_VCO_ENABLE;
d288f65f 5863 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5864
d288f65f 5865 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5866 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5867 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5868}
5869
d288f65f
VS
5870static void vlv_prepare_pll(struct intel_crtc *crtc,
5871 const struct intel_crtc_config *pipe_config)
a0c4da24 5872{
f47709a9 5873 struct drm_device *dev = crtc->base.dev;
a0c4da24 5874 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5875 int pipe = crtc->pipe;
bdd4b6a6 5876 u32 mdiv;
a0c4da24 5877 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5878 u32 coreclk, reg_val;
a0c4da24 5879
09153000
DV
5880 mutex_lock(&dev_priv->dpio_lock);
5881
d288f65f
VS
5882 bestn = pipe_config->dpll.n;
5883 bestm1 = pipe_config->dpll.m1;
5884 bestm2 = pipe_config->dpll.m2;
5885 bestp1 = pipe_config->dpll.p1;
5886 bestp2 = pipe_config->dpll.p2;
a0c4da24 5887
89b667f8
JB
5888 /* See eDP HDMI DPIO driver vbios notes doc */
5889
5890 /* PLL B needs special handling */
bdd4b6a6 5891 if (pipe == PIPE_B)
5e69f97f 5892 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5893
5894 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5895 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5896
5897 /* Disable target IRef on PLL */
ab3c759a 5898 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5899 reg_val &= 0x00ffffff;
ab3c759a 5900 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5901
5902 /* Disable fast lock */
ab3c759a 5903 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5904
5905 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5906 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5907 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5908 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5909 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5910
5911 /*
5912 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5913 * but we don't support that).
5914 * Note: don't use the DAC post divider as it seems unstable.
5915 */
5916 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5917 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5918
a0c4da24 5919 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5920 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5921
89b667f8 5922 /* Set HBR and RBR LPF coefficients */
d288f65f 5923 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5924 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5925 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5926 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5927 0x009f0003);
89b667f8 5928 else
ab3c759a 5929 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5930 0x00d0000f);
5931
0a88818d 5932 if (crtc->config.has_dp_encoder) {
89b667f8 5933 /* Use SSC source */
bdd4b6a6 5934 if (pipe == PIPE_A)
ab3c759a 5935 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5936 0x0df40000);
5937 else
ab3c759a 5938 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5939 0x0df70000);
5940 } else { /* HDMI or VGA */
5941 /* Use bend source */
bdd4b6a6 5942 if (pipe == PIPE_A)
ab3c759a 5943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5944 0x0df70000);
5945 else
ab3c759a 5946 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5947 0x0df40000);
5948 }
a0c4da24 5949
ab3c759a 5950 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5951 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5952 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5953 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5954 coreclk |= 0x01000000;
ab3c759a 5955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5956
ab3c759a 5957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5958 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5959}
5960
d288f65f
VS
5961static void chv_update_pll(struct intel_crtc *crtc,
5962 struct intel_crtc_config *pipe_config)
1ae0d137 5963{
d288f65f 5964 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5965 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5966 DPLL_VCO_ENABLE;
5967 if (crtc->pipe != PIPE_A)
d288f65f 5968 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5969
d288f65f
VS
5970 pipe_config->dpll_hw_state.dpll_md =
5971 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
5972}
5973
d288f65f
VS
5974static void chv_prepare_pll(struct intel_crtc *crtc,
5975 const struct intel_crtc_config *pipe_config)
9d556c99
CML
5976{
5977 struct drm_device *dev = crtc->base.dev;
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 int pipe = crtc->pipe;
5980 int dpll_reg = DPLL(crtc->pipe);
5981 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5982 u32 loopfilter, intcoeff;
9d556c99
CML
5983 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5984 int refclk;
5985
d288f65f
VS
5986 bestn = pipe_config->dpll.n;
5987 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5988 bestm1 = pipe_config->dpll.m1;
5989 bestm2 = pipe_config->dpll.m2 >> 22;
5990 bestp1 = pipe_config->dpll.p1;
5991 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
5992
5993 /*
5994 * Enable Refclk and SSC
5995 */
a11b0703 5996 I915_WRITE(dpll_reg,
d288f65f 5997 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
5998
5999 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6000
9d556c99
CML
6001 /* p1 and p2 divider */
6002 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6003 5 << DPIO_CHV_S1_DIV_SHIFT |
6004 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6005 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6006 1 << DPIO_CHV_K_DIV_SHIFT);
6007
6008 /* Feedback post-divider - m2 */
6009 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6010
6011 /* Feedback refclk divider - n and m1 */
6012 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6013 DPIO_CHV_M1_DIV_BY_2 |
6014 1 << DPIO_CHV_N_DIV_SHIFT);
6015
6016 /* M2 fraction division */
6017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6018
6019 /* M2 fraction division enable */
6020 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6021 DPIO_CHV_FRAC_DIV_EN |
6022 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6023
6024 /* Loop filter */
409ee761 6025 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6026 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6027 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6028 if (refclk == 100000)
6029 intcoeff = 11;
6030 else if (refclk == 38400)
6031 intcoeff = 10;
6032 else
6033 intcoeff = 9;
6034 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6035 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6036
6037 /* AFC Recal */
6038 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6039 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6040 DPIO_AFC_RECAL);
6041
6042 mutex_unlock(&dev_priv->dpio_lock);
6043}
6044
d288f65f
VS
6045/**
6046 * vlv_force_pll_on - forcibly enable just the PLL
6047 * @dev_priv: i915 private structure
6048 * @pipe: pipe PLL to enable
6049 * @dpll: PLL configuration
6050 *
6051 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6052 * in cases where we need the PLL enabled even when @pipe is not going to
6053 * be enabled.
6054 */
6055void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6056 const struct dpll *dpll)
6057{
6058 struct intel_crtc *crtc =
6059 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6060 struct intel_crtc_config pipe_config = {
6061 .pixel_multiplier = 1,
6062 .dpll = *dpll,
6063 };
6064
6065 if (IS_CHERRYVIEW(dev)) {
6066 chv_update_pll(crtc, &pipe_config);
6067 chv_prepare_pll(crtc, &pipe_config);
6068 chv_enable_pll(crtc, &pipe_config);
6069 } else {
6070 vlv_update_pll(crtc, &pipe_config);
6071 vlv_prepare_pll(crtc, &pipe_config);
6072 vlv_enable_pll(crtc, &pipe_config);
6073 }
6074}
6075
6076/**
6077 * vlv_force_pll_off - forcibly disable just the PLL
6078 * @dev_priv: i915 private structure
6079 * @pipe: pipe PLL to disable
6080 *
6081 * Disable the PLL for @pipe. To be used in cases where we need
6082 * the PLL enabled even when @pipe is not going to be enabled.
6083 */
6084void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6085{
6086 if (IS_CHERRYVIEW(dev))
6087 chv_disable_pll(to_i915(dev), pipe);
6088 else
6089 vlv_disable_pll(to_i915(dev), pipe);
6090}
6091
f47709a9
DV
6092static void i9xx_update_pll(struct intel_crtc *crtc,
6093 intel_clock_t *reduced_clock,
eb1cbe48
DV
6094 int num_connectors)
6095{
f47709a9 6096 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6097 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6098 u32 dpll;
6099 bool is_sdvo;
d0737e1d 6100 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6101
f47709a9 6102 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6103
d0737e1d
ACO
6104 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6106
6107 dpll = DPLL_VGA_MODE_DIS;
6108
d0737e1d 6109 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6110 dpll |= DPLLB_MODE_LVDS;
6111 else
6112 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6113
ef1b460d 6114 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
d0737e1d 6115 dpll |= (crtc->new_config->pixel_multiplier - 1)
198a037f 6116 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6117 }
198a037f
DV
6118
6119 if (is_sdvo)
4a33e48d 6120 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6121
0a88818d 6122 if (crtc->new_config->has_dp_encoder)
4a33e48d 6123 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6124
6125 /* compute bitmask from p1 value */
6126 if (IS_PINEVIEW(dev))
6127 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128 else {
6129 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130 if (IS_G4X(dev) && reduced_clock)
6131 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132 }
6133 switch (clock->p2) {
6134 case 5:
6135 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136 break;
6137 case 7:
6138 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139 break;
6140 case 10:
6141 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142 break;
6143 case 14:
6144 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145 break;
6146 }
6147 if (INTEL_INFO(dev)->gen >= 4)
6148 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
d0737e1d 6150 if (crtc->new_config->sdvo_tv_clock)
eb1cbe48 6151 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6152 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6153 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155 else
6156 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6159 crtc->new_config->dpll_hw_state.dpll = dpll;
8bcc2795 6160
eb1cbe48 6161 if (INTEL_INFO(dev)->gen >= 4) {
d0737e1d 6162 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
ef1b460d 6163 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d0737e1d 6164 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6165 }
6166}
6167
f47709a9 6168static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6169 intel_clock_t *reduced_clock,
eb1cbe48
DV
6170 int num_connectors)
6171{
f47709a9 6172 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6173 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6174 u32 dpll;
d0737e1d 6175 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6176
f47709a9 6177 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6178
eb1cbe48
DV
6179 dpll = DPLL_VGA_MODE_DIS;
6180
d0737e1d 6181 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6182 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6183 } else {
6184 if (clock->p1 == 2)
6185 dpll |= PLL_P1_DIVIDE_BY_TWO;
6186 else
6187 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6188 if (clock->p2 == 4)
6189 dpll |= PLL_P2_DIVIDE_BY_4;
6190 }
6191
d0737e1d 6192 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6193 dpll |= DPLL_DVO_2X_MODE;
6194
d0737e1d 6195 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6196 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198 else
6199 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6202 crtc->new_config->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6203}
6204
8a654f3b 6205static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6206{
6207 struct drm_device *dev = intel_crtc->base.dev;
6208 struct drm_i915_private *dev_priv = dev->dev_private;
6209 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6210 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6211 struct drm_display_mode *adjusted_mode =
6212 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6213 uint32_t crtc_vtotal, crtc_vblank_end;
6214 int vsyncshift = 0;
4d8a62ea
DV
6215
6216 /* We need to be careful not to changed the adjusted mode, for otherwise
6217 * the hw state checker will get angry at the mismatch. */
6218 crtc_vtotal = adjusted_mode->crtc_vtotal;
6219 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6220
609aeaca 6221 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6222 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6223 crtc_vtotal -= 1;
6224 crtc_vblank_end -= 1;
609aeaca 6225
409ee761 6226 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6227 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6228 else
6229 vsyncshift = adjusted_mode->crtc_hsync_start -
6230 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6231 if (vsyncshift < 0)
6232 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6233 }
6234
6235 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6236 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6237
fe2b8f9d 6238 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6239 (adjusted_mode->crtc_hdisplay - 1) |
6240 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6241 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6242 (adjusted_mode->crtc_hblank_start - 1) |
6243 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6244 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6245 (adjusted_mode->crtc_hsync_start - 1) |
6246 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6247
fe2b8f9d 6248 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6249 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6250 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6251 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6252 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6253 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6254 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6255 (adjusted_mode->crtc_vsync_start - 1) |
6256 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6257
b5e508d4
PZ
6258 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6259 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6260 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6261 * bits. */
6262 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6263 (pipe == PIPE_B || pipe == PIPE_C))
6264 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6265
b0e77b9c
PZ
6266 /* pipesrc controls the size that is scaled from, which should
6267 * always be the user's requested size.
6268 */
6269 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6270 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6271 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6272}
6273
1bd1bd80
DV
6274static void intel_get_pipe_timings(struct intel_crtc *crtc,
6275 struct intel_crtc_config *pipe_config)
6276{
6277 struct drm_device *dev = crtc->base.dev;
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6279 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6280 uint32_t tmp;
6281
6282 tmp = I915_READ(HTOTAL(cpu_transcoder));
6283 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6284 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6285 tmp = I915_READ(HBLANK(cpu_transcoder));
6286 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6287 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6288 tmp = I915_READ(HSYNC(cpu_transcoder));
6289 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6290 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6291
6292 tmp = I915_READ(VTOTAL(cpu_transcoder));
6293 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6294 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6295 tmp = I915_READ(VBLANK(cpu_transcoder));
6296 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6297 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6298 tmp = I915_READ(VSYNC(cpu_transcoder));
6299 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6300 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6301
6302 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6303 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6304 pipe_config->adjusted_mode.crtc_vtotal += 1;
6305 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6306 }
6307
6308 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6309 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6310 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6311
6312 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6313 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6314}
6315
f6a83288
DV
6316void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6317 struct intel_crtc_config *pipe_config)
babea61d 6318{
f6a83288
DV
6319 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6320 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6321 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6322 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6323
f6a83288
DV
6324 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6325 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6326 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6327 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6328
f6a83288 6329 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6330
f6a83288
DV
6331 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6332 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6333}
6334
84b046f3
DV
6335static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6336{
6337 struct drm_device *dev = intel_crtc->base.dev;
6338 struct drm_i915_private *dev_priv = dev->dev_private;
6339 uint32_t pipeconf;
6340
9f11a9e4 6341 pipeconf = 0;
84b046f3 6342
b6b5d049
VS
6343 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6344 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6345 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6346
cf532bb2
VS
6347 if (intel_crtc->config.double_wide)
6348 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6349
ff9ce46e
DV
6350 /* only g4x and later have fancy bpc/dither controls */
6351 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6352 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6353 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6354 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6355 PIPECONF_DITHER_TYPE_SP;
84b046f3 6356
ff9ce46e
DV
6357 switch (intel_crtc->config.pipe_bpp) {
6358 case 18:
6359 pipeconf |= PIPECONF_6BPC;
6360 break;
6361 case 24:
6362 pipeconf |= PIPECONF_8BPC;
6363 break;
6364 case 30:
6365 pipeconf |= PIPECONF_10BPC;
6366 break;
6367 default:
6368 /* Case prevented by intel_choose_pipe_bpp_dither. */
6369 BUG();
84b046f3
DV
6370 }
6371 }
6372
6373 if (HAS_PIPE_CXSR(dev)) {
6374 if (intel_crtc->lowfreq_avail) {
6375 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6376 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6377 } else {
6378 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6379 }
6380 }
6381
efc2cfff
VS
6382 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6383 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6384 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6385 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6386 else
6387 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6388 } else
84b046f3
DV
6389 pipeconf |= PIPECONF_PROGRESSIVE;
6390
9f11a9e4
DV
6391 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6392 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6393
84b046f3
DV
6394 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6395 POSTING_READ(PIPECONF(intel_crtc->pipe));
6396}
6397
c7653199 6398static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
f564048e 6399 int x, int y,
94352cf9 6400 struct drm_framebuffer *fb)
79e53945 6401{
c7653199 6402 struct drm_device *dev = crtc->base.dev;
79e53945 6403 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6404 int refclk, num_connectors = 0;
652c393a 6405 intel_clock_t clock, reduced_clock;
a16af721 6406 bool ok, has_reduced_clock = false;
e9fd1c02 6407 bool is_lvds = false, is_dsi = false;
5eddb70b 6408 struct intel_encoder *encoder;
d4906093 6409 const intel_limit_t *limit;
79e53945 6410
d0737e1d
ACO
6411 for_each_intel_encoder(dev, encoder) {
6412 if (encoder->new_crtc != crtc)
6413 continue;
6414
5eddb70b 6415 switch (encoder->type) {
79e53945
JB
6416 case INTEL_OUTPUT_LVDS:
6417 is_lvds = true;
6418 break;
e9fd1c02
JN
6419 case INTEL_OUTPUT_DSI:
6420 is_dsi = true;
6421 break;
6847d71b
PZ
6422 default:
6423 break;
79e53945 6424 }
43565a06 6425
c751ce4f 6426 num_connectors++;
79e53945
JB
6427 }
6428
f2335330 6429 if (is_dsi)
5b18e57c 6430 return 0;
f2335330 6431
d0737e1d 6432 if (!crtc->new_config->clock_set) {
409ee761 6433 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6434
e9fd1c02
JN
6435 /*
6436 * Returns a set of divisors for the desired target clock with
6437 * the given refclk, or FALSE. The returned values represent
6438 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439 * 2) / p1 / p2.
6440 */
409ee761 6441 limit = intel_limit(crtc, refclk);
c7653199 6442 ok = dev_priv->display.find_dpll(limit, crtc,
d0737e1d 6443 crtc->new_config->port_clock,
e9fd1c02 6444 refclk, NULL, &clock);
f2335330 6445 if (!ok) {
e9fd1c02
JN
6446 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447 return -EINVAL;
6448 }
79e53945 6449
f2335330
JN
6450 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451 /*
6452 * Ensure we match the reduced clock's P to the target
6453 * clock. If the clocks don't match, we can't switch
6454 * the display clock by using the FP0/FP1. In such case
6455 * we will disable the LVDS downclock feature.
6456 */
6457 has_reduced_clock =
c7653199 6458 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6459 dev_priv->lvds_downclock,
6460 refclk, &clock,
6461 &reduced_clock);
6462 }
6463 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
6464 crtc->new_config->dpll.n = clock.n;
6465 crtc->new_config->dpll.m1 = clock.m1;
6466 crtc->new_config->dpll.m2 = clock.m2;
6467 crtc->new_config->dpll.p1 = clock.p1;
6468 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 6469 }
7026d4ac 6470
e9fd1c02 6471 if (IS_GEN2(dev)) {
c7653199 6472 i8xx_update_pll(crtc,
2a8f64ca
VP
6473 has_reduced_clock ? &reduced_clock : NULL,
6474 num_connectors);
9d556c99 6475 } else if (IS_CHERRYVIEW(dev)) {
d0737e1d 6476 chv_update_pll(crtc, crtc->new_config);
e9fd1c02 6477 } else if (IS_VALLEYVIEW(dev)) {
d0737e1d 6478 vlv_update_pll(crtc, crtc->new_config);
e9fd1c02 6479 } else {
c7653199 6480 i9xx_update_pll(crtc,
eb1cbe48 6481 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6482 num_connectors);
e9fd1c02 6483 }
79e53945 6484
c8f7a0db 6485 return 0;
f564048e
EA
6486}
6487
2fa2fe9a
DV
6488static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6489 struct intel_crtc_config *pipe_config)
6490{
6491 struct drm_device *dev = crtc->base.dev;
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 uint32_t tmp;
6494
dc9e7dec
VS
6495 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496 return;
6497
2fa2fe9a 6498 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6499 if (!(tmp & PFIT_ENABLE))
6500 return;
2fa2fe9a 6501
06922821 6502 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6503 if (INTEL_INFO(dev)->gen < 4) {
6504 if (crtc->pipe != PIPE_B)
6505 return;
2fa2fe9a
DV
6506 } else {
6507 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508 return;
6509 }
6510
06922821 6511 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6512 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513 if (INTEL_INFO(dev)->gen < 5)
6514 pipe_config->gmch_pfit.lvds_border_bits =
6515 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516}
6517
acbec814
JB
6518static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6519 struct intel_crtc_config *pipe_config)
6520{
6521 struct drm_device *dev = crtc->base.dev;
6522 struct drm_i915_private *dev_priv = dev->dev_private;
6523 int pipe = pipe_config->cpu_transcoder;
6524 intel_clock_t clock;
6525 u32 mdiv;
662c6ecb 6526 int refclk = 100000;
acbec814 6527
f573de5a
SK
6528 /* In case of MIPI DPLL will not even be used */
6529 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530 return;
6531
acbec814 6532 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6533 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6534 mutex_unlock(&dev_priv->dpio_lock);
6535
6536 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
f646628b 6542 vlv_clock(refclk, &clock);
acbec814 6543
f646628b
VS
6544 /* clock.dot is the fast clock */
6545 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6546}
6547
1ad292b5
JB
6548static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549 struct intel_plane_config *plane_config)
6550{
6551 struct drm_device *dev = crtc->base.dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 u32 val, base, offset;
6554 int pipe = crtc->pipe, plane = crtc->plane;
6555 int fourcc, pixel_format;
6556 int aligned_height;
6557
66e514c1
DA
6558 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6559 if (!crtc->base.primary->fb) {
1ad292b5
JB
6560 DRM_DEBUG_KMS("failed to alloc fb\n");
6561 return;
6562 }
6563
6564 val = I915_READ(DSPCNTR(plane));
6565
6566 if (INTEL_INFO(dev)->gen >= 4)
6567 if (val & DISPPLANE_TILED)
6568 plane_config->tiled = true;
6569
6570 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6571 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6572 crtc->base.primary->fb->pixel_format = fourcc;
6573 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6574 drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576 if (INTEL_INFO(dev)->gen >= 4) {
6577 if (plane_config->tiled)
6578 offset = I915_READ(DSPTILEOFF(plane));
6579 else
6580 offset = I915_READ(DSPLINOFF(plane));
6581 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582 } else {
6583 base = I915_READ(DSPADDR(plane));
6584 }
6585 plane_config->base = base;
6586
6587 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6588 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6589 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6590
6591 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6592 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6593
66e514c1 6594 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6595 plane_config->tiled);
6596
1267a26b
FF
6597 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6598 aligned_height);
1ad292b5
JB
6599
6600 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6601 pipe, plane, crtc->base.primary->fb->width,
6602 crtc->base.primary->fb->height,
6603 crtc->base.primary->fb->bits_per_pixel, base,
6604 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6605 plane_config->size);
6606
6607}
6608
70b23a98
VS
6609static void chv_crtc_clock_get(struct intel_crtc *crtc,
6610 struct intel_crtc_config *pipe_config)
6611{
6612 struct drm_device *dev = crtc->base.dev;
6613 struct drm_i915_private *dev_priv = dev->dev_private;
6614 int pipe = pipe_config->cpu_transcoder;
6615 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616 intel_clock_t clock;
6617 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6618 int refclk = 100000;
6619
6620 mutex_lock(&dev_priv->dpio_lock);
6621 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6622 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6623 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6624 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6625 mutex_unlock(&dev_priv->dpio_lock);
6626
6627 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6628 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6629 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6630 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6631 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6632
6633 chv_clock(refclk, &clock);
6634
6635 /* clock.dot is the fast clock */
6636 pipe_config->port_clock = clock.dot / 5;
6637}
6638
0e8ffe1b
DV
6639static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6640 struct intel_crtc_config *pipe_config)
6641{
6642 struct drm_device *dev = crtc->base.dev;
6643 struct drm_i915_private *dev_priv = dev->dev_private;
6644 uint32_t tmp;
6645
f458ebbc
DV
6646 if (!intel_display_power_is_enabled(dev_priv,
6647 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6648 return false;
6649
e143a21c 6650 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6651 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6652
0e8ffe1b
DV
6653 tmp = I915_READ(PIPECONF(crtc->pipe));
6654 if (!(tmp & PIPECONF_ENABLE))
6655 return false;
6656
42571aef
VS
6657 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6658 switch (tmp & PIPECONF_BPC_MASK) {
6659 case PIPECONF_6BPC:
6660 pipe_config->pipe_bpp = 18;
6661 break;
6662 case PIPECONF_8BPC:
6663 pipe_config->pipe_bpp = 24;
6664 break;
6665 case PIPECONF_10BPC:
6666 pipe_config->pipe_bpp = 30;
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672
b5a9fa09
DV
6673 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6674 pipe_config->limited_color_range = true;
6675
282740f7
VS
6676 if (INTEL_INFO(dev)->gen < 4)
6677 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6678
1bd1bd80
DV
6679 intel_get_pipe_timings(crtc, pipe_config);
6680
2fa2fe9a
DV
6681 i9xx_get_pfit_config(crtc, pipe_config);
6682
6c49f241
DV
6683 if (INTEL_INFO(dev)->gen >= 4) {
6684 tmp = I915_READ(DPLL_MD(crtc->pipe));
6685 pipe_config->pixel_multiplier =
6686 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6687 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6688 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6689 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6690 tmp = I915_READ(DPLL(crtc->pipe));
6691 pipe_config->pixel_multiplier =
6692 ((tmp & SDVO_MULTIPLIER_MASK)
6693 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6694 } else {
6695 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6696 * port and will be fixed up in the encoder->get_config
6697 * function. */
6698 pipe_config->pixel_multiplier = 1;
6699 }
8bcc2795
DV
6700 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6701 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6702 /*
6703 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6704 * on 830. Filter it out here so that we don't
6705 * report errors due to that.
6706 */
6707 if (IS_I830(dev))
6708 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6709
8bcc2795
DV
6710 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6711 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6712 } else {
6713 /* Mask out read-only status bits. */
6714 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6715 DPLL_PORTC_READY_MASK |
6716 DPLL_PORTB_READY_MASK);
8bcc2795 6717 }
6c49f241 6718
70b23a98
VS
6719 if (IS_CHERRYVIEW(dev))
6720 chv_crtc_clock_get(crtc, pipe_config);
6721 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6722 vlv_crtc_clock_get(crtc, pipe_config);
6723 else
6724 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6725
0e8ffe1b
DV
6726 return true;
6727}
6728
dde86e2d 6729static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6730{
6731 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6732 struct intel_encoder *encoder;
74cfd7ac 6733 u32 val, final;
13d83a67 6734 bool has_lvds = false;
199e5d79 6735 bool has_cpu_edp = false;
199e5d79 6736 bool has_panel = false;
99eb6a01
KP
6737 bool has_ck505 = false;
6738 bool can_ssc = false;
13d83a67
JB
6739
6740 /* We need to take the global config into account */
b2784e15 6741 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6742 switch (encoder->type) {
6743 case INTEL_OUTPUT_LVDS:
6744 has_panel = true;
6745 has_lvds = true;
6746 break;
6747 case INTEL_OUTPUT_EDP:
6748 has_panel = true;
2de6905f 6749 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6750 has_cpu_edp = true;
6751 break;
6847d71b
PZ
6752 default:
6753 break;
13d83a67
JB
6754 }
6755 }
6756
99eb6a01 6757 if (HAS_PCH_IBX(dev)) {
41aa3448 6758 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6759 can_ssc = has_ck505;
6760 } else {
6761 has_ck505 = false;
6762 can_ssc = true;
6763 }
6764
2de6905f
ID
6765 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6766 has_panel, has_lvds, has_ck505);
13d83a67
JB
6767
6768 /* Ironlake: try to setup display ref clock before DPLL
6769 * enabling. This is only under driver's control after
6770 * PCH B stepping, previous chipset stepping should be
6771 * ignoring this setting.
6772 */
74cfd7ac
CW
6773 val = I915_READ(PCH_DREF_CONTROL);
6774
6775 /* As we must carefully and slowly disable/enable each source in turn,
6776 * compute the final state we want first and check if we need to
6777 * make any changes at all.
6778 */
6779 final = val;
6780 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6781 if (has_ck505)
6782 final |= DREF_NONSPREAD_CK505_ENABLE;
6783 else
6784 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6785
6786 final &= ~DREF_SSC_SOURCE_MASK;
6787 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6788 final &= ~DREF_SSC1_ENABLE;
6789
6790 if (has_panel) {
6791 final |= DREF_SSC_SOURCE_ENABLE;
6792
6793 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6794 final |= DREF_SSC1_ENABLE;
6795
6796 if (has_cpu_edp) {
6797 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6798 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6799 else
6800 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6801 } else
6802 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803 } else {
6804 final |= DREF_SSC_SOURCE_DISABLE;
6805 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6806 }
6807
6808 if (final == val)
6809 return;
6810
13d83a67 6811 /* Always enable nonspread source */
74cfd7ac 6812 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6813
99eb6a01 6814 if (has_ck505)
74cfd7ac 6815 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6816 else
74cfd7ac 6817 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6818
199e5d79 6819 if (has_panel) {
74cfd7ac
CW
6820 val &= ~DREF_SSC_SOURCE_MASK;
6821 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6822
199e5d79 6823 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6824 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6825 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6826 val |= DREF_SSC1_ENABLE;
e77166b5 6827 } else
74cfd7ac 6828 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6829
6830 /* Get SSC going before enabling the outputs */
74cfd7ac 6831 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6832 POSTING_READ(PCH_DREF_CONTROL);
6833 udelay(200);
6834
74cfd7ac 6835 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6836
6837 /* Enable CPU source on CPU attached eDP */
199e5d79 6838 if (has_cpu_edp) {
99eb6a01 6839 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6840 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6841 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6842 } else
74cfd7ac 6843 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6844 } else
74cfd7ac 6845 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6846
74cfd7ac 6847 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6848 POSTING_READ(PCH_DREF_CONTROL);
6849 udelay(200);
6850 } else {
6851 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6852
74cfd7ac 6853 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6854
6855 /* Turn off CPU output */
74cfd7ac 6856 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6857
74cfd7ac 6858 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6859 POSTING_READ(PCH_DREF_CONTROL);
6860 udelay(200);
6861
6862 /* Turn off the SSC source */
74cfd7ac
CW
6863 val &= ~DREF_SSC_SOURCE_MASK;
6864 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6865
6866 /* Turn off SSC1 */
74cfd7ac 6867 val &= ~DREF_SSC1_ENABLE;
199e5d79 6868
74cfd7ac 6869 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6870 POSTING_READ(PCH_DREF_CONTROL);
6871 udelay(200);
6872 }
74cfd7ac
CW
6873
6874 BUG_ON(val != final);
13d83a67
JB
6875}
6876
f31f2d55 6877static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6878{
f31f2d55 6879 uint32_t tmp;
dde86e2d 6880
0ff066a9
PZ
6881 tmp = I915_READ(SOUTH_CHICKEN2);
6882 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6883 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6884
0ff066a9
PZ
6885 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6886 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6887 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6888
0ff066a9
PZ
6889 tmp = I915_READ(SOUTH_CHICKEN2);
6890 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6891 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6892
0ff066a9
PZ
6893 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6894 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6895 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6896}
6897
6898/* WaMPhyProgramming:hsw */
6899static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6900{
6901 uint32_t tmp;
dde86e2d
PZ
6902
6903 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6904 tmp &= ~(0xFF << 24);
6905 tmp |= (0x12 << 24);
6906 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6907
dde86e2d
PZ
6908 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6909 tmp |= (1 << 11);
6910 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6911
6912 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6913 tmp |= (1 << 11);
6914 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6915
dde86e2d
PZ
6916 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6917 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6918 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6919
6920 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6921 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6922 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6923
0ff066a9
PZ
6924 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6925 tmp &= ~(7 << 13);
6926 tmp |= (5 << 13);
6927 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6928
0ff066a9
PZ
6929 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6930 tmp &= ~(7 << 13);
6931 tmp |= (5 << 13);
6932 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6933
6934 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6935 tmp &= ~0xFF;
6936 tmp |= 0x1C;
6937 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6938
6939 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6940 tmp &= ~0xFF;
6941 tmp |= 0x1C;
6942 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6943
6944 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6945 tmp &= ~(0xFF << 16);
6946 tmp |= (0x1C << 16);
6947 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6948
6949 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6950 tmp &= ~(0xFF << 16);
6951 tmp |= (0x1C << 16);
6952 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6953
0ff066a9
PZ
6954 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6955 tmp |= (1 << 27);
6956 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6957
0ff066a9
PZ
6958 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6959 tmp |= (1 << 27);
6960 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6961
0ff066a9
PZ
6962 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6963 tmp &= ~(0xF << 28);
6964 tmp |= (4 << 28);
6965 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6966
0ff066a9
PZ
6967 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6968 tmp &= ~(0xF << 28);
6969 tmp |= (4 << 28);
6970 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6971}
6972
2fa86a1f
PZ
6973/* Implements 3 different sequences from BSpec chapter "Display iCLK
6974 * Programming" based on the parameters passed:
6975 * - Sequence to enable CLKOUT_DP
6976 * - Sequence to enable CLKOUT_DP without spread
6977 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6978 */
6979static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6980 bool with_fdi)
f31f2d55
PZ
6981{
6982 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6983 uint32_t reg, tmp;
6984
6985 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6986 with_spread = true;
6987 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6988 with_fdi, "LP PCH doesn't have FDI\n"))
6989 with_fdi = false;
f31f2d55
PZ
6990
6991 mutex_lock(&dev_priv->dpio_lock);
6992
6993 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994 tmp &= ~SBI_SSCCTL_DISABLE;
6995 tmp |= SBI_SSCCTL_PATHALT;
6996 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6997
6998 udelay(24);
6999
2fa86a1f
PZ
7000 if (with_spread) {
7001 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7002 tmp &= ~SBI_SSCCTL_PATHALT;
7003 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7004
2fa86a1f
PZ
7005 if (with_fdi) {
7006 lpt_reset_fdi_mphy(dev_priv);
7007 lpt_program_fdi_mphy(dev_priv);
7008 }
7009 }
dde86e2d 7010
2fa86a1f
PZ
7011 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7012 SBI_GEN0 : SBI_DBUFF0;
7013 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7014 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7015 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7016
7017 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7018}
7019
47701c3b
PZ
7020/* Sequence to disable CLKOUT_DP */
7021static void lpt_disable_clkout_dp(struct drm_device *dev)
7022{
7023 struct drm_i915_private *dev_priv = dev->dev_private;
7024 uint32_t reg, tmp;
7025
7026 mutex_lock(&dev_priv->dpio_lock);
7027
7028 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7029 SBI_GEN0 : SBI_DBUFF0;
7030 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7031 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7032 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7033
7034 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7035 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7036 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7037 tmp |= SBI_SSCCTL_PATHALT;
7038 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7039 udelay(32);
7040 }
7041 tmp |= SBI_SSCCTL_DISABLE;
7042 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7043 }
7044
7045 mutex_unlock(&dev_priv->dpio_lock);
7046}
7047
bf8fa3d3
PZ
7048static void lpt_init_pch_refclk(struct drm_device *dev)
7049{
bf8fa3d3
PZ
7050 struct intel_encoder *encoder;
7051 bool has_vga = false;
7052
b2784e15 7053 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7054 switch (encoder->type) {
7055 case INTEL_OUTPUT_ANALOG:
7056 has_vga = true;
7057 break;
6847d71b
PZ
7058 default:
7059 break;
bf8fa3d3
PZ
7060 }
7061 }
7062
47701c3b
PZ
7063 if (has_vga)
7064 lpt_enable_clkout_dp(dev, true, true);
7065 else
7066 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7067}
7068
dde86e2d
PZ
7069/*
7070 * Initialize reference clocks when the driver loads
7071 */
7072void intel_init_pch_refclk(struct drm_device *dev)
7073{
7074 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7075 ironlake_init_pch_refclk(dev);
7076 else if (HAS_PCH_LPT(dev))
7077 lpt_init_pch_refclk(dev);
7078}
7079
d9d444cb
JB
7080static int ironlake_get_refclk(struct drm_crtc *crtc)
7081{
7082 struct drm_device *dev = crtc->dev;
7083 struct drm_i915_private *dev_priv = dev->dev_private;
7084 struct intel_encoder *encoder;
d9d444cb
JB
7085 int num_connectors = 0;
7086 bool is_lvds = false;
7087
d0737e1d
ACO
7088 for_each_intel_encoder(dev, encoder) {
7089 if (encoder->new_crtc != to_intel_crtc(crtc))
7090 continue;
7091
d9d444cb
JB
7092 switch (encoder->type) {
7093 case INTEL_OUTPUT_LVDS:
7094 is_lvds = true;
7095 break;
6847d71b
PZ
7096 default:
7097 break;
d9d444cb
JB
7098 }
7099 num_connectors++;
7100 }
7101
7102 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7103 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7104 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7105 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7106 }
7107
7108 return 120000;
7109}
7110
6ff93609 7111static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7112{
c8203565 7113 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7115 int pipe = intel_crtc->pipe;
c8203565
PZ
7116 uint32_t val;
7117
78114071 7118 val = 0;
c8203565 7119
965e0c48 7120 switch (intel_crtc->config.pipe_bpp) {
c8203565 7121 case 18:
dfd07d72 7122 val |= PIPECONF_6BPC;
c8203565
PZ
7123 break;
7124 case 24:
dfd07d72 7125 val |= PIPECONF_8BPC;
c8203565
PZ
7126 break;
7127 case 30:
dfd07d72 7128 val |= PIPECONF_10BPC;
c8203565
PZ
7129 break;
7130 case 36:
dfd07d72 7131 val |= PIPECONF_12BPC;
c8203565
PZ
7132 break;
7133 default:
cc769b62
PZ
7134 /* Case prevented by intel_choose_pipe_bpp_dither. */
7135 BUG();
c8203565
PZ
7136 }
7137
d8b32247 7138 if (intel_crtc->config.dither)
c8203565
PZ
7139 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7140
6ff93609 7141 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7142 val |= PIPECONF_INTERLACED_ILK;
7143 else
7144 val |= PIPECONF_PROGRESSIVE;
7145
50f3b016 7146 if (intel_crtc->config.limited_color_range)
3685a8f3 7147 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7148
c8203565
PZ
7149 I915_WRITE(PIPECONF(pipe), val);
7150 POSTING_READ(PIPECONF(pipe));
7151}
7152
86d3efce
VS
7153/*
7154 * Set up the pipe CSC unit.
7155 *
7156 * Currently only full range RGB to limited range RGB conversion
7157 * is supported, but eventually this should handle various
7158 * RGB<->YCbCr scenarios as well.
7159 */
50f3b016 7160static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7161{
7162 struct drm_device *dev = crtc->dev;
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165 int pipe = intel_crtc->pipe;
7166 uint16_t coeff = 0x7800; /* 1.0 */
7167
7168 /*
7169 * TODO: Check what kind of values actually come out of the pipe
7170 * with these coeff/postoff values and adjust to get the best
7171 * accuracy. Perhaps we even need to take the bpc value into
7172 * consideration.
7173 */
7174
50f3b016 7175 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7176 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7177
7178 /*
7179 * GY/GU and RY/RU should be the other way around according
7180 * to BSpec, but reality doesn't agree. Just set them up in
7181 * a way that results in the correct picture.
7182 */
7183 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7184 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7185
7186 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7187 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7188
7189 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7190 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7191
7192 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7193 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7194 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7195
7196 if (INTEL_INFO(dev)->gen > 6) {
7197 uint16_t postoff = 0;
7198
50f3b016 7199 if (intel_crtc->config.limited_color_range)
32cf0cb0 7200 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7201
7202 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7203 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7204 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7205
7206 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7207 } else {
7208 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7209
50f3b016 7210 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7211 mode |= CSC_BLACK_SCREEN_OFFSET;
7212
7213 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7214 }
7215}
7216
6ff93609 7217static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7218{
756f85cf
PZ
7219 struct drm_device *dev = crtc->dev;
7220 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7222 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7223 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7224 uint32_t val;
7225
3eff4faa 7226 val = 0;
ee2b0b38 7227
756f85cf 7228 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7229 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7230
6ff93609 7231 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7232 val |= PIPECONF_INTERLACED_ILK;
7233 else
7234 val |= PIPECONF_PROGRESSIVE;
7235
702e7a56
PZ
7236 I915_WRITE(PIPECONF(cpu_transcoder), val);
7237 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7238
7239 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7240 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7241
3cdf122c 7242 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7243 val = 0;
7244
7245 switch (intel_crtc->config.pipe_bpp) {
7246 case 18:
7247 val |= PIPEMISC_DITHER_6_BPC;
7248 break;
7249 case 24:
7250 val |= PIPEMISC_DITHER_8_BPC;
7251 break;
7252 case 30:
7253 val |= PIPEMISC_DITHER_10_BPC;
7254 break;
7255 case 36:
7256 val |= PIPEMISC_DITHER_12_BPC;
7257 break;
7258 default:
7259 /* Case prevented by pipe_config_set_bpp. */
7260 BUG();
7261 }
7262
7263 if (intel_crtc->config.dither)
7264 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7265
7266 I915_WRITE(PIPEMISC(pipe), val);
7267 }
ee2b0b38
PZ
7268}
7269
6591c6e4 7270static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7271 intel_clock_t *clock,
7272 bool *has_reduced_clock,
7273 intel_clock_t *reduced_clock)
7274{
7275 struct drm_device *dev = crtc->dev;
7276 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7278 int refclk;
d4906093 7279 const intel_limit_t *limit;
a16af721 7280 bool ret, is_lvds = false;
79e53945 7281
d0737e1d 7282 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7283
d9d444cb 7284 refclk = ironlake_get_refclk(crtc);
79e53945 7285
d4906093
ML
7286 /*
7287 * Returns a set of divisors for the desired target clock with the given
7288 * refclk, or FALSE. The returned values represent the clock equation:
7289 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7290 */
409ee761 7291 limit = intel_limit(intel_crtc, refclk);
a919ff14 7292 ret = dev_priv->display.find_dpll(limit, intel_crtc,
d0737e1d 7293 intel_crtc->new_config->port_clock,
ee9300bb 7294 refclk, NULL, clock);
6591c6e4
PZ
7295 if (!ret)
7296 return false;
cda4b7d3 7297
ddc9003c 7298 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7299 /*
7300 * Ensure we match the reduced clock's P to the target clock.
7301 * If the clocks don't match, we can't switch the display clock
7302 * by using the FP0/FP1. In such case we will disable the LVDS
7303 * downclock feature.
7304 */
ee9300bb 7305 *has_reduced_clock =
a919ff14 7306 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7307 dev_priv->lvds_downclock,
7308 refclk, clock,
7309 reduced_clock);
652c393a 7310 }
61e9653f 7311
6591c6e4
PZ
7312 return true;
7313}
7314
d4b1931c
PZ
7315int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7316{
7317 /*
7318 * Account for spread spectrum to avoid
7319 * oversubscribing the link. Max center spread
7320 * is 2.5%; use 5% for safety's sake.
7321 */
7322 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7323 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7324}
7325
7429e9d4 7326static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7327{
7429e9d4 7328 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7329}
7330
de13a2e3 7331static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7332 u32 *fp,
9a7c7890 7333 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7334{
de13a2e3 7335 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7336 struct drm_device *dev = crtc->dev;
7337 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7338 struct intel_encoder *intel_encoder;
7339 uint32_t dpll;
6cc5f341 7340 int factor, num_connectors = 0;
09ede541 7341 bool is_lvds = false, is_sdvo = false;
79e53945 7342
d0737e1d
ACO
7343 for_each_intel_encoder(dev, intel_encoder) {
7344 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7345 continue;
7346
de13a2e3 7347 switch (intel_encoder->type) {
79e53945
JB
7348 case INTEL_OUTPUT_LVDS:
7349 is_lvds = true;
7350 break;
7351 case INTEL_OUTPUT_SDVO:
7d57382e 7352 case INTEL_OUTPUT_HDMI:
79e53945 7353 is_sdvo = true;
79e53945 7354 break;
6847d71b
PZ
7355 default:
7356 break;
79e53945 7357 }
43565a06 7358
c751ce4f 7359 num_connectors++;
79e53945 7360 }
79e53945 7361
c1858123 7362 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7363 factor = 21;
7364 if (is_lvds) {
7365 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7366 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7367 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7368 factor = 25;
d0737e1d 7369 } else if (intel_crtc->new_config->sdvo_tv_clock)
8febb297 7370 factor = 20;
c1858123 7371
d0737e1d 7372 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7d0ac5b7 7373 *fp |= FP_CB_TUNE;
2c07245f 7374
9a7c7890
DV
7375 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7376 *fp2 |= FP_CB_TUNE;
7377
5eddb70b 7378 dpll = 0;
2c07245f 7379
a07d6787
EA
7380 if (is_lvds)
7381 dpll |= DPLLB_MODE_LVDS;
7382 else
7383 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7384
d0737e1d 7385 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
ef1b460d 7386 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7387
7388 if (is_sdvo)
4a33e48d 7389 dpll |= DPLL_SDVO_HIGH_SPEED;
d0737e1d 7390 if (intel_crtc->new_config->has_dp_encoder)
4a33e48d 7391 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7392
a07d6787 7393 /* compute bitmask from p1 value */
d0737e1d 7394 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7395 /* also FPA1 */
d0737e1d 7396 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7397
d0737e1d 7398 switch (intel_crtc->new_config->dpll.p2) {
a07d6787
EA
7399 case 5:
7400 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7401 break;
7402 case 7:
7403 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7404 break;
7405 case 10:
7406 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7407 break;
7408 case 14:
7409 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7410 break;
79e53945
JB
7411 }
7412
b4c09f3b 7413 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7414 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7415 else
7416 dpll |= PLL_REF_INPUT_DREFCLK;
7417
959e16d6 7418 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7419}
7420
c7653199 7421static int ironlake_crtc_mode_set(struct intel_crtc *crtc,
de13a2e3
PZ
7422 int x, int y,
7423 struct drm_framebuffer *fb)
7424{
c7653199 7425 struct drm_device *dev = crtc->base.dev;
de13a2e3 7426 intel_clock_t clock, reduced_clock;
cbbab5bd 7427 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7428 bool ok, has_reduced_clock = false;
8b47047b 7429 bool is_lvds = false;
e2b78267 7430 struct intel_shared_dpll *pll;
de13a2e3 7431
409ee761 7432 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7433
5dc5298b
PZ
7434 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7435 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7436
c7653199 7437 ok = ironlake_compute_clocks(&crtc->base, &clock,
de13a2e3 7438 &has_reduced_clock, &reduced_clock);
d0737e1d 7439 if (!ok && !crtc->new_config->clock_set) {
de13a2e3
PZ
7440 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7441 return -EINVAL;
79e53945 7442 }
f47709a9 7443 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
7444 if (!crtc->new_config->clock_set) {
7445 crtc->new_config->dpll.n = clock.n;
7446 crtc->new_config->dpll.m1 = clock.m1;
7447 crtc->new_config->dpll.m2 = clock.m2;
7448 crtc->new_config->dpll.p1 = clock.p1;
7449 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 7450 }
79e53945 7451
5dc5298b 7452 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
d0737e1d
ACO
7453 if (crtc->new_config->has_pch_encoder) {
7454 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
cbbab5bd 7455 if (has_reduced_clock)
7429e9d4 7456 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7457
c7653199 7458 dpll = ironlake_compute_dpll(crtc,
cbbab5bd
DV
7459 &fp, &reduced_clock,
7460 has_reduced_clock ? &fp2 : NULL);
7461
d0737e1d
ACO
7462 crtc->new_config->dpll_hw_state.dpll = dpll;
7463 crtc->new_config->dpll_hw_state.fp0 = fp;
66e985c0 7464 if (has_reduced_clock)
d0737e1d 7465 crtc->new_config->dpll_hw_state.fp1 = fp2;
66e985c0 7466 else
d0737e1d 7467 crtc->new_config->dpll_hw_state.fp1 = fp;
66e985c0 7468
8bd31e67
ACO
7469 if (intel_crtc_to_shared_dpll(crtc))
7470 intel_put_shared_dpll(crtc);
7471
c7653199 7472 pll = intel_get_shared_dpll(crtc);
ee7b9f93 7473 if (pll == NULL) {
84f44ce7 7474 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7475 pipe_name(crtc->pipe));
4b645f14
JB
7476 return -EINVAL;
7477 }
ee7b9f93 7478 } else
c7653199 7479 intel_put_shared_dpll(crtc);
79e53945 7480
d330a953 7481 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7482 crtc->lowfreq_avail = true;
bcd644e0 7483 else
c7653199 7484 crtc->lowfreq_avail = false;
e2b78267 7485
c8f7a0db 7486 return 0;
79e53945
JB
7487}
7488
eb14cb74
VS
7489static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7490 struct intel_link_m_n *m_n)
7491{
7492 struct drm_device *dev = crtc->base.dev;
7493 struct drm_i915_private *dev_priv = dev->dev_private;
7494 enum pipe pipe = crtc->pipe;
7495
7496 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7497 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7498 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7499 & ~TU_SIZE_MASK;
7500 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7501 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7502 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7503}
7504
7505static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7506 enum transcoder transcoder,
b95af8be
VK
7507 struct intel_link_m_n *m_n,
7508 struct intel_link_m_n *m2_n2)
72419203
DV
7509{
7510 struct drm_device *dev = crtc->base.dev;
7511 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7512 enum pipe pipe = crtc->pipe;
72419203 7513
eb14cb74
VS
7514 if (INTEL_INFO(dev)->gen >= 5) {
7515 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7516 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7517 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7518 & ~TU_SIZE_MASK;
7519 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7520 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7521 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7522 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7523 * gen < 8) and if DRRS is supported (to make sure the
7524 * registers are not unnecessarily read).
7525 */
7526 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7527 crtc->config.has_drrs) {
7528 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7529 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7530 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7531 & ~TU_SIZE_MASK;
7532 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7533 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7534 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7535 }
eb14cb74
VS
7536 } else {
7537 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7538 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7539 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7540 & ~TU_SIZE_MASK;
7541 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7542 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7543 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7544 }
7545}
7546
7547void intel_dp_get_m_n(struct intel_crtc *crtc,
7548 struct intel_crtc_config *pipe_config)
7549{
7550 if (crtc->config.has_pch_encoder)
7551 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7552 else
7553 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7554 &pipe_config->dp_m_n,
7555 &pipe_config->dp_m2_n2);
eb14cb74 7556}
72419203 7557
eb14cb74
VS
7558static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7559 struct intel_crtc_config *pipe_config)
7560{
7561 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7562 &pipe_config->fdi_m_n, NULL);
72419203
DV
7563}
7564
2fa2fe9a
DV
7565static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7566 struct intel_crtc_config *pipe_config)
7567{
7568 struct drm_device *dev = crtc->base.dev;
7569 struct drm_i915_private *dev_priv = dev->dev_private;
7570 uint32_t tmp;
7571
7572 tmp = I915_READ(PF_CTL(crtc->pipe));
7573
7574 if (tmp & PF_ENABLE) {
fd4daa9c 7575 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7576 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7577 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7578
7579 /* We currently do not free assignements of panel fitters on
7580 * ivb/hsw (since we don't use the higher upscaling modes which
7581 * differentiates them) so just WARN about this case for now. */
7582 if (IS_GEN7(dev)) {
7583 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7584 PF_PIPE_SEL_IVB(crtc->pipe));
7585 }
2fa2fe9a 7586 }
79e53945
JB
7587}
7588
4c6baa59
JB
7589static void ironlake_get_plane_config(struct intel_crtc *crtc,
7590 struct intel_plane_config *plane_config)
7591{
7592 struct drm_device *dev = crtc->base.dev;
7593 struct drm_i915_private *dev_priv = dev->dev_private;
7594 u32 val, base, offset;
7595 int pipe = crtc->pipe, plane = crtc->plane;
7596 int fourcc, pixel_format;
7597 int aligned_height;
7598
66e514c1
DA
7599 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7600 if (!crtc->base.primary->fb) {
4c6baa59
JB
7601 DRM_DEBUG_KMS("failed to alloc fb\n");
7602 return;
7603 }
7604
7605 val = I915_READ(DSPCNTR(plane));
7606
7607 if (INTEL_INFO(dev)->gen >= 4)
7608 if (val & DISPPLANE_TILED)
7609 plane_config->tiled = true;
7610
7611 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7612 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7613 crtc->base.primary->fb->pixel_format = fourcc;
7614 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7615 drm_format_plane_cpp(fourcc, 0) * 8;
7616
7617 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7618 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7619 offset = I915_READ(DSPOFFSET(plane));
7620 } else {
7621 if (plane_config->tiled)
7622 offset = I915_READ(DSPTILEOFF(plane));
7623 else
7624 offset = I915_READ(DSPLINOFF(plane));
7625 }
7626 plane_config->base = base;
7627
7628 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7629 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7630 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7631
7632 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7633 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7634
66e514c1 7635 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7636 plane_config->tiled);
7637
1267a26b
FF
7638 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7639 aligned_height);
4c6baa59
JB
7640
7641 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7642 pipe, plane, crtc->base.primary->fb->width,
7643 crtc->base.primary->fb->height,
7644 crtc->base.primary->fb->bits_per_pixel, base,
7645 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7646 plane_config->size);
7647}
7648
0e8ffe1b
DV
7649static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7650 struct intel_crtc_config *pipe_config)
7651{
7652 struct drm_device *dev = crtc->base.dev;
7653 struct drm_i915_private *dev_priv = dev->dev_private;
7654 uint32_t tmp;
7655
f458ebbc
DV
7656 if (!intel_display_power_is_enabled(dev_priv,
7657 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7658 return false;
7659
e143a21c 7660 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7661 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7662
0e8ffe1b
DV
7663 tmp = I915_READ(PIPECONF(crtc->pipe));
7664 if (!(tmp & PIPECONF_ENABLE))
7665 return false;
7666
42571aef
VS
7667 switch (tmp & PIPECONF_BPC_MASK) {
7668 case PIPECONF_6BPC:
7669 pipe_config->pipe_bpp = 18;
7670 break;
7671 case PIPECONF_8BPC:
7672 pipe_config->pipe_bpp = 24;
7673 break;
7674 case PIPECONF_10BPC:
7675 pipe_config->pipe_bpp = 30;
7676 break;
7677 case PIPECONF_12BPC:
7678 pipe_config->pipe_bpp = 36;
7679 break;
7680 default:
7681 break;
7682 }
7683
b5a9fa09
DV
7684 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7685 pipe_config->limited_color_range = true;
7686
ab9412ba 7687 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7688 struct intel_shared_dpll *pll;
7689
88adfff1
DV
7690 pipe_config->has_pch_encoder = true;
7691
627eb5a3
DV
7692 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7693 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7694 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7695
7696 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7697
c0d43d62 7698 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7699 pipe_config->shared_dpll =
7700 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7701 } else {
7702 tmp = I915_READ(PCH_DPLL_SEL);
7703 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7704 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7705 else
7706 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7707 }
66e985c0
DV
7708
7709 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7710
7711 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7712 &pipe_config->dpll_hw_state));
c93f54cf
DV
7713
7714 tmp = pipe_config->dpll_hw_state.dpll;
7715 pipe_config->pixel_multiplier =
7716 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7717 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7718
7719 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7720 } else {
7721 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7722 }
7723
1bd1bd80
DV
7724 intel_get_pipe_timings(crtc, pipe_config);
7725
2fa2fe9a
DV
7726 ironlake_get_pfit_config(crtc, pipe_config);
7727
0e8ffe1b
DV
7728 return true;
7729}
7730
be256dc7
PZ
7731static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7732{
7733 struct drm_device *dev = dev_priv->dev;
be256dc7 7734 struct intel_crtc *crtc;
be256dc7 7735
d3fcc808 7736 for_each_intel_crtc(dev, crtc)
798183c5 7737 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7738 pipe_name(crtc->pipe));
7739
7740 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7741 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7742 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7743 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7744 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7745 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7746 "CPU PWM1 enabled\n");
c5107b87
PZ
7747 if (IS_HASWELL(dev))
7748 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7749 "CPU PWM2 enabled\n");
be256dc7
PZ
7750 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7751 "PCH PWM1 enabled\n");
7752 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7753 "Utility pin enabled\n");
7754 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7755
9926ada1
PZ
7756 /*
7757 * In theory we can still leave IRQs enabled, as long as only the HPD
7758 * interrupts remain enabled. We used to check for that, but since it's
7759 * gen-specific and since we only disable LCPLL after we fully disable
7760 * the interrupts, the check below should be enough.
7761 */
9df7575f 7762 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7763}
7764
9ccd5aeb
PZ
7765static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7766{
7767 struct drm_device *dev = dev_priv->dev;
7768
7769 if (IS_HASWELL(dev))
7770 return I915_READ(D_COMP_HSW);
7771 else
7772 return I915_READ(D_COMP_BDW);
7773}
7774
3c4c9b81
PZ
7775static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7776{
7777 struct drm_device *dev = dev_priv->dev;
7778
7779 if (IS_HASWELL(dev)) {
7780 mutex_lock(&dev_priv->rps.hw_lock);
7781 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7782 val))
f475dadf 7783 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7784 mutex_unlock(&dev_priv->rps.hw_lock);
7785 } else {
9ccd5aeb
PZ
7786 I915_WRITE(D_COMP_BDW, val);
7787 POSTING_READ(D_COMP_BDW);
3c4c9b81 7788 }
be256dc7
PZ
7789}
7790
7791/*
7792 * This function implements pieces of two sequences from BSpec:
7793 * - Sequence for display software to disable LCPLL
7794 * - Sequence for display software to allow package C8+
7795 * The steps implemented here are just the steps that actually touch the LCPLL
7796 * register. Callers should take care of disabling all the display engine
7797 * functions, doing the mode unset, fixing interrupts, etc.
7798 */
6ff58d53
PZ
7799static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7800 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7801{
7802 uint32_t val;
7803
7804 assert_can_disable_lcpll(dev_priv);
7805
7806 val = I915_READ(LCPLL_CTL);
7807
7808 if (switch_to_fclk) {
7809 val |= LCPLL_CD_SOURCE_FCLK;
7810 I915_WRITE(LCPLL_CTL, val);
7811
7812 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7813 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7814 DRM_ERROR("Switching to FCLK failed\n");
7815
7816 val = I915_READ(LCPLL_CTL);
7817 }
7818
7819 val |= LCPLL_PLL_DISABLE;
7820 I915_WRITE(LCPLL_CTL, val);
7821 POSTING_READ(LCPLL_CTL);
7822
7823 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7824 DRM_ERROR("LCPLL still locked\n");
7825
9ccd5aeb 7826 val = hsw_read_dcomp(dev_priv);
be256dc7 7827 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7828 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7829 ndelay(100);
7830
9ccd5aeb
PZ
7831 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7832 1))
be256dc7
PZ
7833 DRM_ERROR("D_COMP RCOMP still in progress\n");
7834
7835 if (allow_power_down) {
7836 val = I915_READ(LCPLL_CTL);
7837 val |= LCPLL_POWER_DOWN_ALLOW;
7838 I915_WRITE(LCPLL_CTL, val);
7839 POSTING_READ(LCPLL_CTL);
7840 }
7841}
7842
7843/*
7844 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7845 * source.
7846 */
6ff58d53 7847static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7848{
7849 uint32_t val;
7850
7851 val = I915_READ(LCPLL_CTL);
7852
7853 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7854 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7855 return;
7856
a8a8bd54
PZ
7857 /*
7858 * Make sure we're not on PC8 state before disabling PC8, otherwise
7859 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7860 *
7861 * The other problem is that hsw_restore_lcpll() is called as part of
7862 * the runtime PM resume sequence, so we can't just call
7863 * gen6_gt_force_wake_get() because that function calls
7864 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7865 * while we are on the resume sequence. So to solve this problem we have
7866 * to call special forcewake code that doesn't touch runtime PM and
7867 * doesn't enable the forcewake delayed work.
7868 */
d2e40e27 7869 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7870 if (dev_priv->uncore.forcewake_count++ == 0)
7871 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7872 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7873
be256dc7
PZ
7874 if (val & LCPLL_POWER_DOWN_ALLOW) {
7875 val &= ~LCPLL_POWER_DOWN_ALLOW;
7876 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7877 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7878 }
7879
9ccd5aeb 7880 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7881 val |= D_COMP_COMP_FORCE;
7882 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7883 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7884
7885 val = I915_READ(LCPLL_CTL);
7886 val &= ~LCPLL_PLL_DISABLE;
7887 I915_WRITE(LCPLL_CTL, val);
7888
7889 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7890 DRM_ERROR("LCPLL not locked yet\n");
7891
7892 if (val & LCPLL_CD_SOURCE_FCLK) {
7893 val = I915_READ(LCPLL_CTL);
7894 val &= ~LCPLL_CD_SOURCE_FCLK;
7895 I915_WRITE(LCPLL_CTL, val);
7896
7897 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7898 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7899 DRM_ERROR("Switching back to LCPLL failed\n");
7900 }
215733fa 7901
a8a8bd54 7902 /* See the big comment above. */
d2e40e27 7903 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7904 if (--dev_priv->uncore.forcewake_count == 0)
7905 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7906 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7907}
7908
765dab67
PZ
7909/*
7910 * Package states C8 and deeper are really deep PC states that can only be
7911 * reached when all the devices on the system allow it, so even if the graphics
7912 * device allows PC8+, it doesn't mean the system will actually get to these
7913 * states. Our driver only allows PC8+ when going into runtime PM.
7914 *
7915 * The requirements for PC8+ are that all the outputs are disabled, the power
7916 * well is disabled and most interrupts are disabled, and these are also
7917 * requirements for runtime PM. When these conditions are met, we manually do
7918 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7919 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7920 * hang the machine.
7921 *
7922 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7923 * the state of some registers, so when we come back from PC8+ we need to
7924 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7925 * need to take care of the registers kept by RC6. Notice that this happens even
7926 * if we don't put the device in PCI D3 state (which is what currently happens
7927 * because of the runtime PM support).
7928 *
7929 * For more, read "Display Sequences for Package C8" on the hardware
7930 * documentation.
7931 */
a14cb6fc 7932void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7933{
c67a470b
PZ
7934 struct drm_device *dev = dev_priv->dev;
7935 uint32_t val;
7936
c67a470b
PZ
7937 DRM_DEBUG_KMS("Enabling package C8+\n");
7938
c67a470b
PZ
7939 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7940 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7941 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7942 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7943 }
7944
7945 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7946 hsw_disable_lcpll(dev_priv, true, true);
7947}
7948
a14cb6fc 7949void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7950{
7951 struct drm_device *dev = dev_priv->dev;
7952 uint32_t val;
7953
c67a470b
PZ
7954 DRM_DEBUG_KMS("Disabling package C8+\n");
7955
7956 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7957 lpt_init_pch_refclk(dev);
7958
7959 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7960 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7961 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7962 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7963 }
7964
7965 intel_prepare_ddi(dev);
c67a470b
PZ
7966}
7967
9a952a0d
PZ
7968static void snb_modeset_global_resources(struct drm_device *dev)
7969{
7970 modeset_update_crtc_power_domains(dev);
7971}
7972
4f074129
ID
7973static void haswell_modeset_global_resources(struct drm_device *dev)
7974{
da723569 7975 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7976}
7977
797d0259 7978static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
09b4ddf9 7979{
c7653199 7980 if (!intel_ddi_pll_select(crtc))
6441ab5f 7981 return -EINVAL;
716c2e55 7982
c7653199 7983 crtc->lowfreq_avail = false;
644cef34 7984
c8f7a0db 7985 return 0;
79e53945
JB
7986}
7987
7d2c8175
DL
7988static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7989 enum port port,
7990 struct intel_crtc_config *pipe_config)
7991{
7992 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7993
7994 switch (pipe_config->ddi_pll_sel) {
7995 case PORT_CLK_SEL_WRPLL1:
7996 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7997 break;
7998 case PORT_CLK_SEL_WRPLL2:
7999 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8000 break;
8001 }
8002}
8003
26804afd
DV
8004static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8005 struct intel_crtc_config *pipe_config)
8006{
8007 struct drm_device *dev = crtc->base.dev;
8008 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8009 struct intel_shared_dpll *pll;
26804afd
DV
8010 enum port port;
8011 uint32_t tmp;
8012
8013 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8014
8015 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8016
7d2c8175 8017 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8018
d452c5b6
DV
8019 if (pipe_config->shared_dpll >= 0) {
8020 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8021
8022 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8023 &pipe_config->dpll_hw_state));
8024 }
8025
26804afd
DV
8026 /*
8027 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8028 * DDI E. So just check whether this pipe is wired to DDI E and whether
8029 * the PCH transcoder is on.
8030 */
ca370455
DL
8031 if (INTEL_INFO(dev)->gen < 9 &&
8032 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8033 pipe_config->has_pch_encoder = true;
8034
8035 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8036 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8037 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8038
8039 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8040 }
8041}
8042
0e8ffe1b
DV
8043static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8044 struct intel_crtc_config *pipe_config)
8045{
8046 struct drm_device *dev = crtc->base.dev;
8047 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8048 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8049 uint32_t tmp;
8050
f458ebbc 8051 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8052 POWER_DOMAIN_PIPE(crtc->pipe)))
8053 return false;
8054
e143a21c 8055 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8056 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8057
eccb140b
DV
8058 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8059 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8060 enum pipe trans_edp_pipe;
8061 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8062 default:
8063 WARN(1, "unknown pipe linked to edp transcoder\n");
8064 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8065 case TRANS_DDI_EDP_INPUT_A_ON:
8066 trans_edp_pipe = PIPE_A;
8067 break;
8068 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8069 trans_edp_pipe = PIPE_B;
8070 break;
8071 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8072 trans_edp_pipe = PIPE_C;
8073 break;
8074 }
8075
8076 if (trans_edp_pipe == crtc->pipe)
8077 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8078 }
8079
f458ebbc 8080 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8081 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8082 return false;
8083
eccb140b 8084 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8085 if (!(tmp & PIPECONF_ENABLE))
8086 return false;
8087
26804afd 8088 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8089
1bd1bd80
DV
8090 intel_get_pipe_timings(crtc, pipe_config);
8091
2fa2fe9a 8092 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
f458ebbc 8093 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
2fa2fe9a 8094 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 8095
e59150dc
JB
8096 if (IS_HASWELL(dev))
8097 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8098 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8099
ebb69c95
CT
8100 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8101 pipe_config->pixel_multiplier =
8102 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8103 } else {
8104 pipe_config->pixel_multiplier = 1;
8105 }
6c49f241 8106
0e8ffe1b
DV
8107 return true;
8108}
8109
560b85bb
CW
8110static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8111{
8112 struct drm_device *dev = crtc->dev;
8113 struct drm_i915_private *dev_priv = dev->dev_private;
8114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8115 uint32_t cntl = 0, size = 0;
560b85bb 8116
dc41c154
VS
8117 if (base) {
8118 unsigned int width = intel_crtc->cursor_width;
8119 unsigned int height = intel_crtc->cursor_height;
8120 unsigned int stride = roundup_pow_of_two(width) * 4;
8121
8122 switch (stride) {
8123 default:
8124 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8125 width, stride);
8126 stride = 256;
8127 /* fallthrough */
8128 case 256:
8129 case 512:
8130 case 1024:
8131 case 2048:
8132 break;
4b0e333e
CW
8133 }
8134
dc41c154
VS
8135 cntl |= CURSOR_ENABLE |
8136 CURSOR_GAMMA_ENABLE |
8137 CURSOR_FORMAT_ARGB |
8138 CURSOR_STRIDE(stride);
8139
8140 size = (height << 12) | width;
4b0e333e 8141 }
560b85bb 8142
dc41c154
VS
8143 if (intel_crtc->cursor_cntl != 0 &&
8144 (intel_crtc->cursor_base != base ||
8145 intel_crtc->cursor_size != size ||
8146 intel_crtc->cursor_cntl != cntl)) {
8147 /* On these chipsets we can only modify the base/size/stride
8148 * whilst the cursor is disabled.
8149 */
8150 I915_WRITE(_CURACNTR, 0);
4b0e333e 8151 POSTING_READ(_CURACNTR);
dc41c154 8152 intel_crtc->cursor_cntl = 0;
4b0e333e 8153 }
560b85bb 8154
99d1f387 8155 if (intel_crtc->cursor_base != base) {
9db4a9c7 8156 I915_WRITE(_CURABASE, base);
99d1f387
VS
8157 intel_crtc->cursor_base = base;
8158 }
4726e0b0 8159
dc41c154
VS
8160 if (intel_crtc->cursor_size != size) {
8161 I915_WRITE(CURSIZE, size);
8162 intel_crtc->cursor_size = size;
4b0e333e 8163 }
560b85bb 8164
4b0e333e 8165 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8166 I915_WRITE(_CURACNTR, cntl);
8167 POSTING_READ(_CURACNTR);
4b0e333e 8168 intel_crtc->cursor_cntl = cntl;
560b85bb 8169 }
560b85bb
CW
8170}
8171
560b85bb 8172static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8173{
8174 struct drm_device *dev = crtc->dev;
8175 struct drm_i915_private *dev_priv = dev->dev_private;
8176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8177 int pipe = intel_crtc->pipe;
4b0e333e
CW
8178 uint32_t cntl;
8179
8180 cntl = 0;
8181 if (base) {
8182 cntl = MCURSOR_GAMMA_ENABLE;
8183 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8184 case 64:
8185 cntl |= CURSOR_MODE_64_ARGB_AX;
8186 break;
8187 case 128:
8188 cntl |= CURSOR_MODE_128_ARGB_AX;
8189 break;
8190 case 256:
8191 cntl |= CURSOR_MODE_256_ARGB_AX;
8192 break;
8193 default:
8194 WARN_ON(1);
8195 return;
65a21cd6 8196 }
4b0e333e 8197 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8198
8199 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8200 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8201 }
65a21cd6 8202
4398ad45
VS
8203 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8204 cntl |= CURSOR_ROTATE_180;
8205
4b0e333e
CW
8206 if (intel_crtc->cursor_cntl != cntl) {
8207 I915_WRITE(CURCNTR(pipe), cntl);
8208 POSTING_READ(CURCNTR(pipe));
8209 intel_crtc->cursor_cntl = cntl;
65a21cd6 8210 }
4b0e333e 8211
65a21cd6 8212 /* and commit changes on next vblank */
5efb3e28
VS
8213 I915_WRITE(CURBASE(pipe), base);
8214 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8215
8216 intel_crtc->cursor_base = base;
65a21cd6
JB
8217}
8218
cda4b7d3 8219/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8220static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8221 bool on)
cda4b7d3
CW
8222{
8223 struct drm_device *dev = crtc->dev;
8224 struct drm_i915_private *dev_priv = dev->dev_private;
8225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8226 int pipe = intel_crtc->pipe;
3d7d6510
MR
8227 int x = crtc->cursor_x;
8228 int y = crtc->cursor_y;
d6e4db15 8229 u32 base = 0, pos = 0;
cda4b7d3 8230
d6e4db15 8231 if (on)
cda4b7d3 8232 base = intel_crtc->cursor_addr;
cda4b7d3 8233
d6e4db15
VS
8234 if (x >= intel_crtc->config.pipe_src_w)
8235 base = 0;
8236
8237 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8238 base = 0;
8239
8240 if (x < 0) {
efc9064e 8241 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8242 base = 0;
8243
8244 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8245 x = -x;
8246 }
8247 pos |= x << CURSOR_X_SHIFT;
8248
8249 if (y < 0) {
efc9064e 8250 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8251 base = 0;
8252
8253 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8254 y = -y;
8255 }
8256 pos |= y << CURSOR_Y_SHIFT;
8257
4b0e333e 8258 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8259 return;
8260
5efb3e28
VS
8261 I915_WRITE(CURPOS(pipe), pos);
8262
4398ad45
VS
8263 /* ILK+ do this automagically */
8264 if (HAS_GMCH_DISPLAY(dev) &&
8265 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8266 base += (intel_crtc->cursor_height *
8267 intel_crtc->cursor_width - 1) * 4;
8268 }
8269
8ac54669 8270 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8271 i845_update_cursor(crtc, base);
8272 else
8273 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8274}
8275
dc41c154
VS
8276static bool cursor_size_ok(struct drm_device *dev,
8277 uint32_t width, uint32_t height)
8278{
8279 if (width == 0 || height == 0)
8280 return false;
8281
8282 /*
8283 * 845g/865g are special in that they are only limited by
8284 * the width of their cursors, the height is arbitrary up to
8285 * the precision of the register. Everything else requires
8286 * square cursors, limited to a few power-of-two sizes.
8287 */
8288 if (IS_845G(dev) || IS_I865G(dev)) {
8289 if ((width & 63) != 0)
8290 return false;
8291
8292 if (width > (IS_845G(dev) ? 64 : 512))
8293 return false;
8294
8295 if (height > 1023)
8296 return false;
8297 } else {
8298 switch (width | height) {
8299 case 256:
8300 case 128:
8301 if (IS_GEN2(dev))
8302 return false;
8303 case 64:
8304 break;
8305 default:
8306 return false;
8307 }
8308 }
8309
8310 return true;
8311}
8312
e3287951
MR
8313static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8314 struct drm_i915_gem_object *obj,
8315 uint32_t width, uint32_t height)
79e53945
JB
8316{
8317 struct drm_device *dev = crtc->dev;
8318 struct drm_i915_private *dev_priv = dev->dev_private;
8319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8320 enum pipe pipe = intel_crtc->pipe;
757f9a3e 8321 unsigned old_width;
cda4b7d3 8322 uint32_t addr;
3f8bc370 8323 int ret;
79e53945 8324
79e53945 8325 /* if we want to turn off the cursor ignore width and height */
e3287951 8326 if (!obj) {
28c97730 8327 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8328 addr = 0;
5004417d 8329 mutex_lock(&dev->struct_mutex);
3f8bc370 8330 goto finish;
79e53945
JB
8331 }
8332
71acb5eb 8333 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8334 mutex_lock(&dev->struct_mutex);
3d13ef2e 8335 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8336 unsigned alignment;
8337
d6dd6843
PZ
8338 /*
8339 * Global gtt pte registers are special registers which actually
8340 * forward writes to a chunk of system memory. Which means that
8341 * there is no risk that the register values disappear as soon
8342 * as we call intel_runtime_pm_put(), so it is correct to wrap
8343 * only the pin/unpin/fence and not more.
8344 */
8345 intel_runtime_pm_get(dev_priv);
8346
693db184
CW
8347 /* Note that the w/a also requires 2 PTE of padding following
8348 * the bo. We currently fill all unused PTE with the shadow
8349 * page and so we should always have valid PTE following the
8350 * cursor preventing the VT-d warning.
8351 */
8352 alignment = 0;
8353 if (need_vtd_wa(dev))
8354 alignment = 64*1024;
8355
8356 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8357 if (ret) {
3b25b31f 8358 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8359 intel_runtime_pm_put(dev_priv);
2da3b9b9 8360 goto fail_locked;
e7b526bb
CW
8361 }
8362
d9e86c0e
CW
8363 ret = i915_gem_object_put_fence(obj);
8364 if (ret) {
3b25b31f 8365 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8366 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8367 goto fail_unpin;
8368 }
8369
f343c5f6 8370 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8371
8372 intel_runtime_pm_put(dev_priv);
71acb5eb 8373 } else {
6eeefaf3 8374 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8375 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8376 if (ret) {
3b25b31f 8377 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8378 goto fail_locked;
71acb5eb 8379 }
00731155 8380 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8381 }
8382
3f8bc370 8383 finish:
3f8bc370 8384 if (intel_crtc->cursor_bo) {
00731155 8385 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8386 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8387 }
80824003 8388
a071fa00
DV
8389 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8390 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8391 mutex_unlock(&dev->struct_mutex);
3f8bc370 8392
64f962e3
CW
8393 old_width = intel_crtc->cursor_width;
8394
3f8bc370 8395 intel_crtc->cursor_addr = addr;
05394f39 8396 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8397 intel_crtc->cursor_width = width;
8398 intel_crtc->cursor_height = height;
8399
64f962e3
CW
8400 if (intel_crtc->active) {
8401 if (old_width != width)
8402 intel_update_watermarks(crtc);
f2f5f771 8403 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3f8bc370 8404
3f20df98
GP
8405 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8406 }
f99d7069 8407
79e53945 8408 return 0;
e7b526bb 8409fail_unpin:
cc98b413 8410 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8411fail_locked:
34b8686e
DA
8412 mutex_unlock(&dev->struct_mutex);
8413 return ret;
79e53945
JB
8414}
8415
79e53945 8416static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8417 u16 *blue, uint32_t start, uint32_t size)
79e53945 8418{
7203425a 8419 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8421
7203425a 8422 for (i = start; i < end; i++) {
79e53945
JB
8423 intel_crtc->lut_r[i] = red[i] >> 8;
8424 intel_crtc->lut_g[i] = green[i] >> 8;
8425 intel_crtc->lut_b[i] = blue[i] >> 8;
8426 }
8427
8428 intel_crtc_load_lut(crtc);
8429}
8430
79e53945
JB
8431/* VESA 640x480x72Hz mode to set on the pipe */
8432static struct drm_display_mode load_detect_mode = {
8433 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8434 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8435};
8436
a8bb6818
DV
8437struct drm_framebuffer *
8438__intel_framebuffer_create(struct drm_device *dev,
8439 struct drm_mode_fb_cmd2 *mode_cmd,
8440 struct drm_i915_gem_object *obj)
d2dff872
CW
8441{
8442 struct intel_framebuffer *intel_fb;
8443 int ret;
8444
8445 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8446 if (!intel_fb) {
8447 drm_gem_object_unreference_unlocked(&obj->base);
8448 return ERR_PTR(-ENOMEM);
8449 }
8450
8451 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8452 if (ret)
8453 goto err;
d2dff872
CW
8454
8455 return &intel_fb->base;
dd4916c5
DV
8456err:
8457 drm_gem_object_unreference_unlocked(&obj->base);
8458 kfree(intel_fb);
8459
8460 return ERR_PTR(ret);
d2dff872
CW
8461}
8462
b5ea642a 8463static struct drm_framebuffer *
a8bb6818
DV
8464intel_framebuffer_create(struct drm_device *dev,
8465 struct drm_mode_fb_cmd2 *mode_cmd,
8466 struct drm_i915_gem_object *obj)
8467{
8468 struct drm_framebuffer *fb;
8469 int ret;
8470
8471 ret = i915_mutex_lock_interruptible(dev);
8472 if (ret)
8473 return ERR_PTR(ret);
8474 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8475 mutex_unlock(&dev->struct_mutex);
8476
8477 return fb;
8478}
8479
d2dff872
CW
8480static u32
8481intel_framebuffer_pitch_for_width(int width, int bpp)
8482{
8483 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8484 return ALIGN(pitch, 64);
8485}
8486
8487static u32
8488intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8489{
8490 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8491 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8492}
8493
8494static struct drm_framebuffer *
8495intel_framebuffer_create_for_mode(struct drm_device *dev,
8496 struct drm_display_mode *mode,
8497 int depth, int bpp)
8498{
8499 struct drm_i915_gem_object *obj;
0fed39bd 8500 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8501
8502 obj = i915_gem_alloc_object(dev,
8503 intel_framebuffer_size_for_mode(mode, bpp));
8504 if (obj == NULL)
8505 return ERR_PTR(-ENOMEM);
8506
8507 mode_cmd.width = mode->hdisplay;
8508 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8509 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8510 bpp);
5ca0c34a 8511 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8512
8513 return intel_framebuffer_create(dev, &mode_cmd, obj);
8514}
8515
8516static struct drm_framebuffer *
8517mode_fits_in_fbdev(struct drm_device *dev,
8518 struct drm_display_mode *mode)
8519{
4520f53a 8520#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8521 struct drm_i915_private *dev_priv = dev->dev_private;
8522 struct drm_i915_gem_object *obj;
8523 struct drm_framebuffer *fb;
8524
4c0e5528 8525 if (!dev_priv->fbdev)
d2dff872
CW
8526 return NULL;
8527
4c0e5528 8528 if (!dev_priv->fbdev->fb)
d2dff872
CW
8529 return NULL;
8530
4c0e5528
DV
8531 obj = dev_priv->fbdev->fb->obj;
8532 BUG_ON(!obj);
8533
8bcd4553 8534 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8535 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8536 fb->bits_per_pixel))
d2dff872
CW
8537 return NULL;
8538
01f2c773 8539 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8540 return NULL;
8541
8542 return fb;
4520f53a
DV
8543#else
8544 return NULL;
8545#endif
d2dff872
CW
8546}
8547
d2434ab7 8548bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8549 struct drm_display_mode *mode,
51fd371b
RC
8550 struct intel_load_detect_pipe *old,
8551 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8552{
8553 struct intel_crtc *intel_crtc;
d2434ab7
DV
8554 struct intel_encoder *intel_encoder =
8555 intel_attached_encoder(connector);
79e53945 8556 struct drm_crtc *possible_crtc;
4ef69c7a 8557 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8558 struct drm_crtc *crtc = NULL;
8559 struct drm_device *dev = encoder->dev;
94352cf9 8560 struct drm_framebuffer *fb;
51fd371b
RC
8561 struct drm_mode_config *config = &dev->mode_config;
8562 int ret, i = -1;
79e53945 8563
d2dff872 8564 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8565 connector->base.id, connector->name,
8e329a03 8566 encoder->base.id, encoder->name);
d2dff872 8567
51fd371b
RC
8568retry:
8569 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8570 if (ret)
8571 goto fail_unlock;
6e9f798d 8572
79e53945
JB
8573 /*
8574 * Algorithm gets a little messy:
7a5e4805 8575 *
79e53945
JB
8576 * - if the connector already has an assigned crtc, use it (but make
8577 * sure it's on first)
7a5e4805 8578 *
79e53945
JB
8579 * - try to find the first unused crtc that can drive this connector,
8580 * and use that if we find one
79e53945
JB
8581 */
8582
8583 /* See if we already have a CRTC for this connector */
8584 if (encoder->crtc) {
8585 crtc = encoder->crtc;
8261b191 8586
51fd371b
RC
8587 ret = drm_modeset_lock(&crtc->mutex, ctx);
8588 if (ret)
8589 goto fail_unlock;
7b24056b 8590
24218aac 8591 old->dpms_mode = connector->dpms;
8261b191
CW
8592 old->load_detect_temp = false;
8593
8594 /* Make sure the crtc and connector are running */
24218aac
DV
8595 if (connector->dpms != DRM_MODE_DPMS_ON)
8596 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8597
7173188d 8598 return true;
79e53945
JB
8599 }
8600
8601 /* Find an unused one (if possible) */
70e1e0ec 8602 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8603 i++;
8604 if (!(encoder->possible_crtcs & (1 << i)))
8605 continue;
a459249c
VS
8606 if (possible_crtc->enabled)
8607 continue;
8608 /* This can occur when applying the pipe A quirk on resume. */
8609 if (to_intel_crtc(possible_crtc)->new_enabled)
8610 continue;
8611
8612 crtc = possible_crtc;
8613 break;
79e53945
JB
8614 }
8615
8616 /*
8617 * If we didn't find an unused CRTC, don't use any.
8618 */
8619 if (!crtc) {
7173188d 8620 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8621 goto fail_unlock;
79e53945
JB
8622 }
8623
51fd371b
RC
8624 ret = drm_modeset_lock(&crtc->mutex, ctx);
8625 if (ret)
8626 goto fail_unlock;
fc303101
DV
8627 intel_encoder->new_crtc = to_intel_crtc(crtc);
8628 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8629
8630 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8631 intel_crtc->new_enabled = true;
8632 intel_crtc->new_config = &intel_crtc->config;
24218aac 8633 old->dpms_mode = connector->dpms;
8261b191 8634 old->load_detect_temp = true;
d2dff872 8635 old->release_fb = NULL;
79e53945 8636
6492711d
CW
8637 if (!mode)
8638 mode = &load_detect_mode;
79e53945 8639
d2dff872
CW
8640 /* We need a framebuffer large enough to accommodate all accesses
8641 * that the plane may generate whilst we perform load detection.
8642 * We can not rely on the fbcon either being present (we get called
8643 * during its initialisation to detect all boot displays, or it may
8644 * not even exist) or that it is large enough to satisfy the
8645 * requested mode.
8646 */
94352cf9
DV
8647 fb = mode_fits_in_fbdev(dev, mode);
8648 if (fb == NULL) {
d2dff872 8649 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8650 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8651 old->release_fb = fb;
d2dff872
CW
8652 } else
8653 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8654 if (IS_ERR(fb)) {
d2dff872 8655 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8656 goto fail;
79e53945 8657 }
79e53945 8658
c0c36b94 8659 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8660 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8661 if (old->release_fb)
8662 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8663 goto fail;
79e53945 8664 }
7173188d 8665
79e53945 8666 /* let the connector get through one full cycle before testing */
9d0498a2 8667 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8668 return true;
412b61d8
VS
8669
8670 fail:
8671 intel_crtc->new_enabled = crtc->enabled;
8672 if (intel_crtc->new_enabled)
8673 intel_crtc->new_config = &intel_crtc->config;
8674 else
8675 intel_crtc->new_config = NULL;
51fd371b
RC
8676fail_unlock:
8677 if (ret == -EDEADLK) {
8678 drm_modeset_backoff(ctx);
8679 goto retry;
8680 }
8681
412b61d8 8682 return false;
79e53945
JB
8683}
8684
d2434ab7 8685void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8686 struct intel_load_detect_pipe *old)
79e53945 8687{
d2434ab7
DV
8688 struct intel_encoder *intel_encoder =
8689 intel_attached_encoder(connector);
4ef69c7a 8690 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8691 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8693
d2dff872 8694 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8695 connector->base.id, connector->name,
8e329a03 8696 encoder->base.id, encoder->name);
d2dff872 8697
8261b191 8698 if (old->load_detect_temp) {
fc303101
DV
8699 to_intel_connector(connector)->new_encoder = NULL;
8700 intel_encoder->new_crtc = NULL;
412b61d8
VS
8701 intel_crtc->new_enabled = false;
8702 intel_crtc->new_config = NULL;
fc303101 8703 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8704
36206361
DV
8705 if (old->release_fb) {
8706 drm_framebuffer_unregister_private(old->release_fb);
8707 drm_framebuffer_unreference(old->release_fb);
8708 }
d2dff872 8709
0622a53c 8710 return;
79e53945
JB
8711 }
8712
c751ce4f 8713 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8714 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8715 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8716}
8717
da4a1efa
VS
8718static int i9xx_pll_refclk(struct drm_device *dev,
8719 const struct intel_crtc_config *pipe_config)
8720{
8721 struct drm_i915_private *dev_priv = dev->dev_private;
8722 u32 dpll = pipe_config->dpll_hw_state.dpll;
8723
8724 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8725 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8726 else if (HAS_PCH_SPLIT(dev))
8727 return 120000;
8728 else if (!IS_GEN2(dev))
8729 return 96000;
8730 else
8731 return 48000;
8732}
8733
79e53945 8734/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8735static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8736 struct intel_crtc_config *pipe_config)
79e53945 8737{
f1f644dc 8738 struct drm_device *dev = crtc->base.dev;
79e53945 8739 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8740 int pipe = pipe_config->cpu_transcoder;
293623f7 8741 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8742 u32 fp;
8743 intel_clock_t clock;
da4a1efa 8744 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8745
8746 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8747 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8748 else
293623f7 8749 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8750
8751 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8752 if (IS_PINEVIEW(dev)) {
8753 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8754 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8755 } else {
8756 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8757 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8758 }
8759
a6c45cf0 8760 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8761 if (IS_PINEVIEW(dev))
8762 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8763 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8764 else
8765 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8766 DPLL_FPA01_P1_POST_DIV_SHIFT);
8767
8768 switch (dpll & DPLL_MODE_MASK) {
8769 case DPLLB_MODE_DAC_SERIAL:
8770 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8771 5 : 10;
8772 break;
8773 case DPLLB_MODE_LVDS:
8774 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8775 7 : 14;
8776 break;
8777 default:
28c97730 8778 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8779 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8780 return;
79e53945
JB
8781 }
8782
ac58c3f0 8783 if (IS_PINEVIEW(dev))
da4a1efa 8784 pineview_clock(refclk, &clock);
ac58c3f0 8785 else
da4a1efa 8786 i9xx_clock(refclk, &clock);
79e53945 8787 } else {
0fb58223 8788 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8789 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8790
8791 if (is_lvds) {
8792 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8793 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8794
8795 if (lvds & LVDS_CLKB_POWER_UP)
8796 clock.p2 = 7;
8797 else
8798 clock.p2 = 14;
79e53945
JB
8799 } else {
8800 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8801 clock.p1 = 2;
8802 else {
8803 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8804 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8805 }
8806 if (dpll & PLL_P2_DIVIDE_BY_4)
8807 clock.p2 = 4;
8808 else
8809 clock.p2 = 2;
79e53945 8810 }
da4a1efa
VS
8811
8812 i9xx_clock(refclk, &clock);
79e53945
JB
8813 }
8814
18442d08
VS
8815 /*
8816 * This value includes pixel_multiplier. We will use
241bfc38 8817 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8818 * encoder's get_config() function.
8819 */
8820 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8821}
8822
6878da05
VS
8823int intel_dotclock_calculate(int link_freq,
8824 const struct intel_link_m_n *m_n)
f1f644dc 8825{
f1f644dc
JB
8826 /*
8827 * The calculation for the data clock is:
1041a02f 8828 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8829 * But we want to avoid losing precison if possible, so:
1041a02f 8830 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8831 *
8832 * and the link clock is simpler:
1041a02f 8833 * link_clock = (m * link_clock) / n
f1f644dc
JB
8834 */
8835
6878da05
VS
8836 if (!m_n->link_n)
8837 return 0;
f1f644dc 8838
6878da05
VS
8839 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8840}
f1f644dc 8841
18442d08
VS
8842static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8843 struct intel_crtc_config *pipe_config)
6878da05
VS
8844{
8845 struct drm_device *dev = crtc->base.dev;
79e53945 8846
18442d08
VS
8847 /* read out port_clock from the DPLL */
8848 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8849
f1f644dc 8850 /*
18442d08 8851 * This value does not include pixel_multiplier.
241bfc38 8852 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8853 * agree once we know their relationship in the encoder's
8854 * get_config() function.
79e53945 8855 */
241bfc38 8856 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8857 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8858 &pipe_config->fdi_m_n);
79e53945
JB
8859}
8860
8861/** Returns the currently programmed mode of the given pipe. */
8862struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8863 struct drm_crtc *crtc)
8864{
548f245b 8865 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8867 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8868 struct drm_display_mode *mode;
f1f644dc 8869 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8870 int htot = I915_READ(HTOTAL(cpu_transcoder));
8871 int hsync = I915_READ(HSYNC(cpu_transcoder));
8872 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8873 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8874 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8875
8876 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8877 if (!mode)
8878 return NULL;
8879
f1f644dc
JB
8880 /*
8881 * Construct a pipe_config sufficient for getting the clock info
8882 * back out of crtc_clock_get.
8883 *
8884 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8885 * to use a real value here instead.
8886 */
293623f7 8887 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8888 pipe_config.pixel_multiplier = 1;
293623f7
VS
8889 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8890 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8891 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8892 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8893
773ae034 8894 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8895 mode->hdisplay = (htot & 0xffff) + 1;
8896 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8897 mode->hsync_start = (hsync & 0xffff) + 1;
8898 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8899 mode->vdisplay = (vtot & 0xffff) + 1;
8900 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8901 mode->vsync_start = (vsync & 0xffff) + 1;
8902 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8903
8904 drm_mode_set_name(mode);
79e53945
JB
8905
8906 return mode;
8907}
8908
652c393a
JB
8909static void intel_decrease_pllclock(struct drm_crtc *crtc)
8910{
8911 struct drm_device *dev = crtc->dev;
fbee40df 8912 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8914
baff296c 8915 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8916 return;
8917
8918 if (!dev_priv->lvds_downclock_avail)
8919 return;
8920
8921 /*
8922 * Since this is called by a timer, we should never get here in
8923 * the manual case.
8924 */
8925 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8926 int pipe = intel_crtc->pipe;
8927 int dpll_reg = DPLL(pipe);
8928 int dpll;
f6e5b160 8929
44d98a61 8930 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8931
8ac5a6d5 8932 assert_panel_unlocked(dev_priv, pipe);
652c393a 8933
dc257cf1 8934 dpll = I915_READ(dpll_reg);
652c393a
JB
8935 dpll |= DISPLAY_RATE_SELECT_FPA1;
8936 I915_WRITE(dpll_reg, dpll);
9d0498a2 8937 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8938 dpll = I915_READ(dpll_reg);
8939 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8940 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8941 }
8942
8943}
8944
f047e395
CW
8945void intel_mark_busy(struct drm_device *dev)
8946{
c67a470b
PZ
8947 struct drm_i915_private *dev_priv = dev->dev_private;
8948
f62a0076
CW
8949 if (dev_priv->mm.busy)
8950 return;
8951
43694d69 8952 intel_runtime_pm_get(dev_priv);
c67a470b 8953 i915_update_gfx_val(dev_priv);
f62a0076 8954 dev_priv->mm.busy = true;
f047e395
CW
8955}
8956
8957void intel_mark_idle(struct drm_device *dev)
652c393a 8958{
c67a470b 8959 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8960 struct drm_crtc *crtc;
652c393a 8961
f62a0076
CW
8962 if (!dev_priv->mm.busy)
8963 return;
8964
8965 dev_priv->mm.busy = false;
8966
d330a953 8967 if (!i915.powersave)
bb4cdd53 8968 goto out;
652c393a 8969
70e1e0ec 8970 for_each_crtc(dev, crtc) {
f4510a27 8971 if (!crtc->primary->fb)
652c393a
JB
8972 continue;
8973
725a5b54 8974 intel_decrease_pllclock(crtc);
652c393a 8975 }
b29c19b6 8976
3d13ef2e 8977 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8978 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8979
8980out:
43694d69 8981 intel_runtime_pm_put(dev_priv);
652c393a
JB
8982}
8983
79e53945
JB
8984static void intel_crtc_destroy(struct drm_crtc *crtc)
8985{
8986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
8987 struct drm_device *dev = crtc->dev;
8988 struct intel_unpin_work *work;
67e77c5a 8989
5e2d7afc 8990 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
8991 work = intel_crtc->unpin_work;
8992 intel_crtc->unpin_work = NULL;
5e2d7afc 8993 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
8994
8995 if (work) {
8996 cancel_work_sync(&work->work);
8997 kfree(work);
8998 }
79e53945
JB
8999
9000 drm_crtc_cleanup(crtc);
67e77c5a 9001
79e53945
JB
9002 kfree(intel_crtc);
9003}
9004
6b95a207
KH
9005static void intel_unpin_work_fn(struct work_struct *__work)
9006{
9007 struct intel_unpin_work *work =
9008 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9009 struct drm_device *dev = work->crtc->dev;
f99d7069 9010 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9011
b4a98e57 9012 mutex_lock(&dev->struct_mutex);
1690e1eb 9013 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9014 drm_gem_object_unreference(&work->pending_flip_obj->base);
9015 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9016
b4a98e57
CW
9017 intel_update_fbc(dev);
9018 mutex_unlock(&dev->struct_mutex);
9019
f99d7069
DV
9020 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9021
b4a98e57
CW
9022 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9023 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9024
6b95a207
KH
9025 kfree(work);
9026}
9027
1afe3e9d 9028static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9029 struct drm_crtc *crtc)
6b95a207 9030{
6b95a207
KH
9031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9032 struct intel_unpin_work *work;
6b95a207
KH
9033 unsigned long flags;
9034
9035 /* Ignore early vblank irqs */
9036 if (intel_crtc == NULL)
9037 return;
9038
f326038a
DV
9039 /*
9040 * This is called both by irq handlers and the reset code (to complete
9041 * lost pageflips) so needs the full irqsave spinlocks.
9042 */
6b95a207
KH
9043 spin_lock_irqsave(&dev->event_lock, flags);
9044 work = intel_crtc->unpin_work;
e7d841ca
CW
9045
9046 /* Ensure we don't miss a work->pending update ... */
9047 smp_rmb();
9048
9049 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9050 spin_unlock_irqrestore(&dev->event_lock, flags);
9051 return;
9052 }
9053
d6bbafa1 9054 page_flip_completed(intel_crtc);
0af7e4df 9055
6b95a207 9056 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9057}
9058
1afe3e9d
JB
9059void intel_finish_page_flip(struct drm_device *dev, int pipe)
9060{
fbee40df 9061 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9062 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9063
49b14a5c 9064 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9065}
9066
9067void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9068{
fbee40df 9069 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9070 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9071
49b14a5c 9072 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9073}
9074
75f7f3ec
VS
9075/* Is 'a' after or equal to 'b'? */
9076static bool g4x_flip_count_after_eq(u32 a, u32 b)
9077{
9078 return !((a - b) & 0x80000000);
9079}
9080
9081static bool page_flip_finished(struct intel_crtc *crtc)
9082{
9083 struct drm_device *dev = crtc->base.dev;
9084 struct drm_i915_private *dev_priv = dev->dev_private;
9085
9086 /*
9087 * The relevant registers doen't exist on pre-ctg.
9088 * As the flip done interrupt doesn't trigger for mmio
9089 * flips on gmch platforms, a flip count check isn't
9090 * really needed there. But since ctg has the registers,
9091 * include it in the check anyway.
9092 */
9093 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9094 return true;
9095
9096 /*
9097 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9098 * used the same base address. In that case the mmio flip might
9099 * have completed, but the CS hasn't even executed the flip yet.
9100 *
9101 * A flip count check isn't enough as the CS might have updated
9102 * the base address just after start of vblank, but before we
9103 * managed to process the interrupt. This means we'd complete the
9104 * CS flip too soon.
9105 *
9106 * Combining both checks should get us a good enough result. It may
9107 * still happen that the CS flip has been executed, but has not
9108 * yet actually completed. But in case the base address is the same
9109 * anyway, we don't really care.
9110 */
9111 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9112 crtc->unpin_work->gtt_offset &&
9113 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9114 crtc->unpin_work->flip_count);
9115}
9116
6b95a207
KH
9117void intel_prepare_page_flip(struct drm_device *dev, int plane)
9118{
fbee40df 9119 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9120 struct intel_crtc *intel_crtc =
9121 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9122 unsigned long flags;
9123
f326038a
DV
9124
9125 /*
9126 * This is called both by irq handlers and the reset code (to complete
9127 * lost pageflips) so needs the full irqsave spinlocks.
9128 *
9129 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9130 * generate a page-flip completion irq, i.e. every modeset
9131 * is also accompanied by a spurious intel_prepare_page_flip().
9132 */
6b95a207 9133 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9134 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9135 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9136 spin_unlock_irqrestore(&dev->event_lock, flags);
9137}
9138
eba905b2 9139static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9140{
9141 /* Ensure that the work item is consistent when activating it ... */
9142 smp_wmb();
9143 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9144 /* and that it is marked active as soon as the irq could fire. */
9145 smp_wmb();
9146}
9147
8c9f3aaf
JB
9148static int intel_gen2_queue_flip(struct drm_device *dev,
9149 struct drm_crtc *crtc,
9150 struct drm_framebuffer *fb,
ed8d1975 9151 struct drm_i915_gem_object *obj,
a4872ba6 9152 struct intel_engine_cs *ring,
ed8d1975 9153 uint32_t flags)
8c9f3aaf 9154{
8c9f3aaf 9155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9156 u32 flip_mask;
9157 int ret;
9158
6d90c952 9159 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9160 if (ret)
4fa62c89 9161 return ret;
8c9f3aaf
JB
9162
9163 /* Can't queue multiple flips, so wait for the previous
9164 * one to finish before executing the next.
9165 */
9166 if (intel_crtc->plane)
9167 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9168 else
9169 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9170 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9171 intel_ring_emit(ring, MI_NOOP);
9172 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9173 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9174 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9175 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9176 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9177
9178 intel_mark_page_flip_active(intel_crtc);
09246732 9179 __intel_ring_advance(ring);
83d4092b 9180 return 0;
8c9f3aaf
JB
9181}
9182
9183static int intel_gen3_queue_flip(struct drm_device *dev,
9184 struct drm_crtc *crtc,
9185 struct drm_framebuffer *fb,
ed8d1975 9186 struct drm_i915_gem_object *obj,
a4872ba6 9187 struct intel_engine_cs *ring,
ed8d1975 9188 uint32_t flags)
8c9f3aaf 9189{
8c9f3aaf 9190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9191 u32 flip_mask;
9192 int ret;
9193
6d90c952 9194 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9195 if (ret)
4fa62c89 9196 return ret;
8c9f3aaf
JB
9197
9198 if (intel_crtc->plane)
9199 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9200 else
9201 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9202 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9203 intel_ring_emit(ring, MI_NOOP);
9204 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9205 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9206 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9207 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9208 intel_ring_emit(ring, MI_NOOP);
9209
e7d841ca 9210 intel_mark_page_flip_active(intel_crtc);
09246732 9211 __intel_ring_advance(ring);
83d4092b 9212 return 0;
8c9f3aaf
JB
9213}
9214
9215static int intel_gen4_queue_flip(struct drm_device *dev,
9216 struct drm_crtc *crtc,
9217 struct drm_framebuffer *fb,
ed8d1975 9218 struct drm_i915_gem_object *obj,
a4872ba6 9219 struct intel_engine_cs *ring,
ed8d1975 9220 uint32_t flags)
8c9f3aaf
JB
9221{
9222 struct drm_i915_private *dev_priv = dev->dev_private;
9223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9224 uint32_t pf, pipesrc;
9225 int ret;
9226
6d90c952 9227 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9228 if (ret)
4fa62c89 9229 return ret;
8c9f3aaf
JB
9230
9231 /* i965+ uses the linear or tiled offsets from the
9232 * Display Registers (which do not change across a page-flip)
9233 * so we need only reprogram the base address.
9234 */
6d90c952
DV
9235 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9236 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9237 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9238 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9239 obj->tiling_mode);
8c9f3aaf
JB
9240
9241 /* XXX Enabling the panel-fitter across page-flip is so far
9242 * untested on non-native modes, so ignore it for now.
9243 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9244 */
9245 pf = 0;
9246 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9247 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9248
9249 intel_mark_page_flip_active(intel_crtc);
09246732 9250 __intel_ring_advance(ring);
83d4092b 9251 return 0;
8c9f3aaf
JB
9252}
9253
9254static int intel_gen6_queue_flip(struct drm_device *dev,
9255 struct drm_crtc *crtc,
9256 struct drm_framebuffer *fb,
ed8d1975 9257 struct drm_i915_gem_object *obj,
a4872ba6 9258 struct intel_engine_cs *ring,
ed8d1975 9259 uint32_t flags)
8c9f3aaf
JB
9260{
9261 struct drm_i915_private *dev_priv = dev->dev_private;
9262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9263 uint32_t pf, pipesrc;
9264 int ret;
9265
6d90c952 9266 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9267 if (ret)
4fa62c89 9268 return ret;
8c9f3aaf 9269
6d90c952
DV
9270 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9271 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9272 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9273 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9274
dc257cf1
DV
9275 /* Contrary to the suggestions in the documentation,
9276 * "Enable Panel Fitter" does not seem to be required when page
9277 * flipping with a non-native mode, and worse causes a normal
9278 * modeset to fail.
9279 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9280 */
9281 pf = 0;
8c9f3aaf 9282 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9283 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9284
9285 intel_mark_page_flip_active(intel_crtc);
09246732 9286 __intel_ring_advance(ring);
83d4092b 9287 return 0;
8c9f3aaf
JB
9288}
9289
7c9017e5
JB
9290static int intel_gen7_queue_flip(struct drm_device *dev,
9291 struct drm_crtc *crtc,
9292 struct drm_framebuffer *fb,
ed8d1975 9293 struct drm_i915_gem_object *obj,
a4872ba6 9294 struct intel_engine_cs *ring,
ed8d1975 9295 uint32_t flags)
7c9017e5 9296{
7c9017e5 9297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9298 uint32_t plane_bit = 0;
ffe74d75
CW
9299 int len, ret;
9300
eba905b2 9301 switch (intel_crtc->plane) {
cb05d8de
DV
9302 case PLANE_A:
9303 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9304 break;
9305 case PLANE_B:
9306 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9307 break;
9308 case PLANE_C:
9309 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9310 break;
9311 default:
9312 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9313 return -ENODEV;
cb05d8de
DV
9314 }
9315
ffe74d75 9316 len = 4;
f476828a 9317 if (ring->id == RCS) {
ffe74d75 9318 len += 6;
f476828a
DL
9319 /*
9320 * On Gen 8, SRM is now taking an extra dword to accommodate
9321 * 48bits addresses, and we need a NOOP for the batch size to
9322 * stay even.
9323 */
9324 if (IS_GEN8(dev))
9325 len += 2;
9326 }
ffe74d75 9327
f66fab8e
VS
9328 /*
9329 * BSpec MI_DISPLAY_FLIP for IVB:
9330 * "The full packet must be contained within the same cache line."
9331 *
9332 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9333 * cacheline, if we ever start emitting more commands before
9334 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9335 * then do the cacheline alignment, and finally emit the
9336 * MI_DISPLAY_FLIP.
9337 */
9338 ret = intel_ring_cacheline_align(ring);
9339 if (ret)
4fa62c89 9340 return ret;
f66fab8e 9341
ffe74d75 9342 ret = intel_ring_begin(ring, len);
7c9017e5 9343 if (ret)
4fa62c89 9344 return ret;
7c9017e5 9345
ffe74d75
CW
9346 /* Unmask the flip-done completion message. Note that the bspec says that
9347 * we should do this for both the BCS and RCS, and that we must not unmask
9348 * more than one flip event at any time (or ensure that one flip message
9349 * can be sent by waiting for flip-done prior to queueing new flips).
9350 * Experimentation says that BCS works despite DERRMR masking all
9351 * flip-done completion events and that unmasking all planes at once
9352 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9353 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9354 */
9355 if (ring->id == RCS) {
9356 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9357 intel_ring_emit(ring, DERRMR);
9358 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9359 DERRMR_PIPEB_PRI_FLIP_DONE |
9360 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9361 if (IS_GEN8(dev))
9362 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9363 MI_SRM_LRM_GLOBAL_GTT);
9364 else
9365 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9366 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9367 intel_ring_emit(ring, DERRMR);
9368 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9369 if (IS_GEN8(dev)) {
9370 intel_ring_emit(ring, 0);
9371 intel_ring_emit(ring, MI_NOOP);
9372 }
ffe74d75
CW
9373 }
9374
cb05d8de 9375 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9376 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9377 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9378 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9379
9380 intel_mark_page_flip_active(intel_crtc);
09246732 9381 __intel_ring_advance(ring);
83d4092b 9382 return 0;
7c9017e5
JB
9383}
9384
84c33a64
SG
9385static bool use_mmio_flip(struct intel_engine_cs *ring,
9386 struct drm_i915_gem_object *obj)
9387{
9388 /*
9389 * This is not being used for older platforms, because
9390 * non-availability of flip done interrupt forces us to use
9391 * CS flips. Older platforms derive flip done using some clever
9392 * tricks involving the flip_pending status bits and vblank irqs.
9393 * So using MMIO flips there would disrupt this mechanism.
9394 */
9395
8e09bf83
CW
9396 if (ring == NULL)
9397 return true;
9398
84c33a64
SG
9399 if (INTEL_INFO(ring->dev)->gen < 5)
9400 return false;
9401
9402 if (i915.use_mmio_flip < 0)
9403 return false;
9404 else if (i915.use_mmio_flip > 0)
9405 return true;
14bf993e
OM
9406 else if (i915.enable_execlists)
9407 return true;
84c33a64
SG
9408 else
9409 return ring != obj->ring;
9410}
9411
9412static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9413{
9414 struct drm_device *dev = intel_crtc->base.dev;
9415 struct drm_i915_private *dev_priv = dev->dev_private;
9416 struct intel_framebuffer *intel_fb =
9417 to_intel_framebuffer(intel_crtc->base.primary->fb);
9418 struct drm_i915_gem_object *obj = intel_fb->obj;
9419 u32 dspcntr;
9420 u32 reg;
9421
9422 intel_mark_page_flip_active(intel_crtc);
9423
9424 reg = DSPCNTR(intel_crtc->plane);
9425 dspcntr = I915_READ(reg);
9426
c5d97472
DL
9427 if (obj->tiling_mode != I915_TILING_NONE)
9428 dspcntr |= DISPPLANE_TILED;
9429 else
9430 dspcntr &= ~DISPPLANE_TILED;
9431
84c33a64
SG
9432 I915_WRITE(reg, dspcntr);
9433
9434 I915_WRITE(DSPSURF(intel_crtc->plane),
9435 intel_crtc->unpin_work->gtt_offset);
9436 POSTING_READ(DSPSURF(intel_crtc->plane));
9437}
9438
9439static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9440{
9441 struct intel_engine_cs *ring;
9442 int ret;
9443
9444 lockdep_assert_held(&obj->base.dev->struct_mutex);
9445
9446 if (!obj->last_write_seqno)
9447 return 0;
9448
9449 ring = obj->ring;
9450
9451 if (i915_seqno_passed(ring->get_seqno(ring, true),
9452 obj->last_write_seqno))
9453 return 0;
9454
9455 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9456 if (ret)
9457 return ret;
9458
9459 if (WARN_ON(!ring->irq_get(ring)))
9460 return 0;
9461
9462 return 1;
9463}
9464
9465void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9466{
9467 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9468 struct intel_crtc *intel_crtc;
9469 unsigned long irq_flags;
9470 u32 seqno;
9471
9472 seqno = ring->get_seqno(ring, false);
9473
9474 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9475 for_each_intel_crtc(ring->dev, intel_crtc) {
9476 struct intel_mmio_flip *mmio_flip;
9477
9478 mmio_flip = &intel_crtc->mmio_flip;
9479 if (mmio_flip->seqno == 0)
9480 continue;
9481
9482 if (ring->id != mmio_flip->ring_id)
9483 continue;
9484
9485 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9486 intel_do_mmio_flip(intel_crtc);
9487 mmio_flip->seqno = 0;
9488 ring->irq_put(ring);
9489 }
9490 }
9491 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9492}
9493
9494static int intel_queue_mmio_flip(struct drm_device *dev,
9495 struct drm_crtc *crtc,
9496 struct drm_framebuffer *fb,
9497 struct drm_i915_gem_object *obj,
9498 struct intel_engine_cs *ring,
9499 uint32_t flags)
9500{
9501 struct drm_i915_private *dev_priv = dev->dev_private;
9502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64
SG
9503 int ret;
9504
9505 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9506 return -EBUSY;
9507
9508 ret = intel_postpone_flip(obj);
9509 if (ret < 0)
9510 return ret;
9511 if (ret == 0) {
9512 intel_do_mmio_flip(intel_crtc);
9513 return 0;
9514 }
9515
24955f24 9516 spin_lock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9517 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9518 intel_crtc->mmio_flip.ring_id = obj->ring->id;
24955f24 9519 spin_unlock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9520
9521 /*
9522 * Double check to catch cases where irq fired before
9523 * mmio flip data was ready
9524 */
9525 intel_notify_mmio_flip(obj->ring);
9526 return 0;
9527}
9528
8c9f3aaf
JB
9529static int intel_default_queue_flip(struct drm_device *dev,
9530 struct drm_crtc *crtc,
9531 struct drm_framebuffer *fb,
ed8d1975 9532 struct drm_i915_gem_object *obj,
a4872ba6 9533 struct intel_engine_cs *ring,
ed8d1975 9534 uint32_t flags)
8c9f3aaf
JB
9535{
9536 return -ENODEV;
9537}
9538
d6bbafa1
CW
9539static bool __intel_pageflip_stall_check(struct drm_device *dev,
9540 struct drm_crtc *crtc)
9541{
9542 struct drm_i915_private *dev_priv = dev->dev_private;
9543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9544 struct intel_unpin_work *work = intel_crtc->unpin_work;
9545 u32 addr;
9546
9547 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9548 return true;
9549
9550 if (!work->enable_stall_check)
9551 return false;
9552
9553 if (work->flip_ready_vblank == 0) {
9554 if (work->flip_queued_ring &&
9555 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9556 work->flip_queued_seqno))
9557 return false;
9558
9559 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9560 }
9561
9562 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9563 return false;
9564
9565 /* Potential stall - if we see that the flip has happened,
9566 * assume a missed interrupt. */
9567 if (INTEL_INFO(dev)->gen >= 4)
9568 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9569 else
9570 addr = I915_READ(DSPADDR(intel_crtc->plane));
9571
9572 /* There is a potential issue here with a false positive after a flip
9573 * to the same address. We could address this by checking for a
9574 * non-incrementing frame counter.
9575 */
9576 return addr == work->gtt_offset;
9577}
9578
9579void intel_check_page_flip(struct drm_device *dev, int pipe)
9580{
9581 struct drm_i915_private *dev_priv = dev->dev_private;
9582 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9584
9585 WARN_ON(!in_irq());
d6bbafa1
CW
9586
9587 if (crtc == NULL)
9588 return;
9589
f326038a 9590 spin_lock(&dev->event_lock);
d6bbafa1
CW
9591 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9592 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9593 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9594 page_flip_completed(intel_crtc);
9595 }
f326038a 9596 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9597}
9598
6b95a207
KH
9599static int intel_crtc_page_flip(struct drm_crtc *crtc,
9600 struct drm_framebuffer *fb,
ed8d1975
KP
9601 struct drm_pending_vblank_event *event,
9602 uint32_t page_flip_flags)
6b95a207
KH
9603{
9604 struct drm_device *dev = crtc->dev;
9605 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9606 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9607 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9609 enum pipe pipe = intel_crtc->pipe;
6b95a207 9610 struct intel_unpin_work *work;
a4872ba6 9611 struct intel_engine_cs *ring;
52e68630 9612 int ret;
6b95a207 9613
2ff8fde1
MR
9614 /*
9615 * drm_mode_page_flip_ioctl() should already catch this, but double
9616 * check to be safe. In the future we may enable pageflipping from
9617 * a disabled primary plane.
9618 */
9619 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9620 return -EBUSY;
9621
e6a595d2 9622 /* Can't change pixel format via MI display flips. */
f4510a27 9623 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9624 return -EINVAL;
9625
9626 /*
9627 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9628 * Note that pitch changes could also affect these register.
9629 */
9630 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9631 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9632 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9633 return -EINVAL;
9634
f900db47
CW
9635 if (i915_terminally_wedged(&dev_priv->gpu_error))
9636 goto out_hang;
9637
b14c5679 9638 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9639 if (work == NULL)
9640 return -ENOMEM;
9641
6b95a207 9642 work->event = event;
b4a98e57 9643 work->crtc = crtc;
2ff8fde1 9644 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9645 INIT_WORK(&work->work, intel_unpin_work_fn);
9646
87b6b101 9647 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9648 if (ret)
9649 goto free_work;
9650
6b95a207 9651 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9652 spin_lock_irq(&dev->event_lock);
6b95a207 9653 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9654 /* Before declaring the flip queue wedged, check if
9655 * the hardware completed the operation behind our backs.
9656 */
9657 if (__intel_pageflip_stall_check(dev, crtc)) {
9658 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9659 page_flip_completed(intel_crtc);
9660 } else {
9661 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9662 spin_unlock_irq(&dev->event_lock);
468f0b44 9663
d6bbafa1
CW
9664 drm_crtc_vblank_put(crtc);
9665 kfree(work);
9666 return -EBUSY;
9667 }
6b95a207
KH
9668 }
9669 intel_crtc->unpin_work = work;
5e2d7afc 9670 spin_unlock_irq(&dev->event_lock);
6b95a207 9671
b4a98e57
CW
9672 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9673 flush_workqueue(dev_priv->wq);
9674
79158103
CW
9675 ret = i915_mutex_lock_interruptible(dev);
9676 if (ret)
9677 goto cleanup;
6b95a207 9678
75dfca80 9679 /* Reference the objects for the scheduled work. */
05394f39
CW
9680 drm_gem_object_reference(&work->old_fb_obj->base);
9681 drm_gem_object_reference(&obj->base);
6b95a207 9682
f4510a27 9683 crtc->primary->fb = fb;
96b099fd 9684
e1f99ce6 9685 work->pending_flip_obj = obj;
e1f99ce6 9686
b4a98e57 9687 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9688 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9689
75f7f3ec 9690 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9691 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9692
4fa62c89
VS
9693 if (IS_VALLEYVIEW(dev)) {
9694 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9695 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9696 /* vlv: DISPLAY_FLIP fails to change tiling */
9697 ring = NULL;
2a92d5bc
CW
9698 } else if (IS_IVYBRIDGE(dev)) {
9699 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9700 } else if (INTEL_INFO(dev)->gen >= 7) {
9701 ring = obj->ring;
9702 if (ring == NULL || ring->id != RCS)
9703 ring = &dev_priv->ring[BCS];
9704 } else {
9705 ring = &dev_priv->ring[RCS];
9706 }
9707
9708 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9709 if (ret)
9710 goto cleanup_pending;
6b95a207 9711
4fa62c89
VS
9712 work->gtt_offset =
9713 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9714
d6bbafa1 9715 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9716 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9717 page_flip_flags);
d6bbafa1
CW
9718 if (ret)
9719 goto cleanup_unpin;
9720
9721 work->flip_queued_seqno = obj->last_write_seqno;
9722 work->flip_queued_ring = obj->ring;
9723 } else {
84c33a64 9724 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9725 page_flip_flags);
9726 if (ret)
9727 goto cleanup_unpin;
9728
9729 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9730 work->flip_queued_ring = ring;
9731 }
9732
9733 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9734 work->enable_stall_check = true;
4fa62c89 9735
a071fa00
DV
9736 i915_gem_track_fb(work->old_fb_obj, obj,
9737 INTEL_FRONTBUFFER_PRIMARY(pipe));
9738
7782de3b 9739 intel_disable_fbc(dev);
f99d7069 9740 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9741 mutex_unlock(&dev->struct_mutex);
9742
e5510fac
JB
9743 trace_i915_flip_request(intel_crtc->plane, obj);
9744
6b95a207 9745 return 0;
96b099fd 9746
4fa62c89
VS
9747cleanup_unpin:
9748 intel_unpin_fb_obj(obj);
8c9f3aaf 9749cleanup_pending:
b4a98e57 9750 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9751 crtc->primary->fb = old_fb;
05394f39
CW
9752 drm_gem_object_unreference(&work->old_fb_obj->base);
9753 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9754 mutex_unlock(&dev->struct_mutex);
9755
79158103 9756cleanup:
5e2d7afc 9757 spin_lock_irq(&dev->event_lock);
96b099fd 9758 intel_crtc->unpin_work = NULL;
5e2d7afc 9759 spin_unlock_irq(&dev->event_lock);
96b099fd 9760
87b6b101 9761 drm_crtc_vblank_put(crtc);
7317c75e 9762free_work:
96b099fd
CW
9763 kfree(work);
9764
f900db47
CW
9765 if (ret == -EIO) {
9766out_hang:
9767 intel_crtc_wait_for_pending_flips(crtc);
9768 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9769 if (ret == 0 && event) {
5e2d7afc 9770 spin_lock_irq(&dev->event_lock);
a071fa00 9771 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9772 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9773 }
f900db47 9774 }
96b099fd 9775 return ret;
6b95a207
KH
9776}
9777
f6e5b160 9778static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9779 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9780 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9781};
9782
9a935856
DV
9783/**
9784 * intel_modeset_update_staged_output_state
9785 *
9786 * Updates the staged output configuration state, e.g. after we've read out the
9787 * current hw state.
9788 */
9789static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9790{
7668851f 9791 struct intel_crtc *crtc;
9a935856
DV
9792 struct intel_encoder *encoder;
9793 struct intel_connector *connector;
f6e5b160 9794
9a935856
DV
9795 list_for_each_entry(connector, &dev->mode_config.connector_list,
9796 base.head) {
9797 connector->new_encoder =
9798 to_intel_encoder(connector->base.encoder);
9799 }
f6e5b160 9800
b2784e15 9801 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9802 encoder->new_crtc =
9803 to_intel_crtc(encoder->base.crtc);
9804 }
7668851f 9805
d3fcc808 9806 for_each_intel_crtc(dev, crtc) {
7668851f 9807 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9808
9809 if (crtc->new_enabled)
9810 crtc->new_config = &crtc->config;
9811 else
9812 crtc->new_config = NULL;
7668851f 9813 }
f6e5b160
CW
9814}
9815
9a935856
DV
9816/**
9817 * intel_modeset_commit_output_state
9818 *
9819 * This function copies the stage display pipe configuration to the real one.
9820 */
9821static void intel_modeset_commit_output_state(struct drm_device *dev)
9822{
7668851f 9823 struct intel_crtc *crtc;
9a935856
DV
9824 struct intel_encoder *encoder;
9825 struct intel_connector *connector;
f6e5b160 9826
9a935856
DV
9827 list_for_each_entry(connector, &dev->mode_config.connector_list,
9828 base.head) {
9829 connector->base.encoder = &connector->new_encoder->base;
9830 }
f6e5b160 9831
b2784e15 9832 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9833 encoder->base.crtc = &encoder->new_crtc->base;
9834 }
7668851f 9835
d3fcc808 9836 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9837 crtc->base.enabled = crtc->new_enabled;
9838 }
9a935856
DV
9839}
9840
050f7aeb 9841static void
eba905b2 9842connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9843 struct intel_crtc_config *pipe_config)
9844{
9845 int bpp = pipe_config->pipe_bpp;
9846
9847 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9848 connector->base.base.id,
c23cc417 9849 connector->base.name);
050f7aeb
DV
9850
9851 /* Don't use an invalid EDID bpc value */
9852 if (connector->base.display_info.bpc &&
9853 connector->base.display_info.bpc * 3 < bpp) {
9854 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9855 bpp, connector->base.display_info.bpc*3);
9856 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9857 }
9858
9859 /* Clamp bpp to 8 on screens without EDID 1.4 */
9860 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9861 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9862 bpp);
9863 pipe_config->pipe_bpp = 24;
9864 }
9865}
9866
4e53c2e0 9867static int
050f7aeb
DV
9868compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9869 struct drm_framebuffer *fb,
9870 struct intel_crtc_config *pipe_config)
4e53c2e0 9871{
050f7aeb
DV
9872 struct drm_device *dev = crtc->base.dev;
9873 struct intel_connector *connector;
4e53c2e0
DV
9874 int bpp;
9875
d42264b1
DV
9876 switch (fb->pixel_format) {
9877 case DRM_FORMAT_C8:
4e53c2e0
DV
9878 bpp = 8*3; /* since we go through a colormap */
9879 break;
d42264b1
DV
9880 case DRM_FORMAT_XRGB1555:
9881 case DRM_FORMAT_ARGB1555:
9882 /* checked in intel_framebuffer_init already */
9883 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9884 return -EINVAL;
9885 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9886 bpp = 6*3; /* min is 18bpp */
9887 break;
d42264b1
DV
9888 case DRM_FORMAT_XBGR8888:
9889 case DRM_FORMAT_ABGR8888:
9890 /* checked in intel_framebuffer_init already */
9891 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9892 return -EINVAL;
9893 case DRM_FORMAT_XRGB8888:
9894 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9895 bpp = 8*3;
9896 break;
d42264b1
DV
9897 case DRM_FORMAT_XRGB2101010:
9898 case DRM_FORMAT_ARGB2101010:
9899 case DRM_FORMAT_XBGR2101010:
9900 case DRM_FORMAT_ABGR2101010:
9901 /* checked in intel_framebuffer_init already */
9902 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9903 return -EINVAL;
4e53c2e0
DV
9904 bpp = 10*3;
9905 break;
baba133a 9906 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9907 default:
9908 DRM_DEBUG_KMS("unsupported depth\n");
9909 return -EINVAL;
9910 }
9911
4e53c2e0
DV
9912 pipe_config->pipe_bpp = bpp;
9913
9914 /* Clamp display bpp to EDID value */
9915 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9916 base.head) {
1b829e05
DV
9917 if (!connector->new_encoder ||
9918 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9919 continue;
9920
050f7aeb 9921 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9922 }
9923
9924 return bpp;
9925}
9926
644db711
DV
9927static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9928{
9929 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9930 "type: 0x%x flags: 0x%x\n",
1342830c 9931 mode->crtc_clock,
644db711
DV
9932 mode->crtc_hdisplay, mode->crtc_hsync_start,
9933 mode->crtc_hsync_end, mode->crtc_htotal,
9934 mode->crtc_vdisplay, mode->crtc_vsync_start,
9935 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9936}
9937
c0b03411
DV
9938static void intel_dump_pipe_config(struct intel_crtc *crtc,
9939 struct intel_crtc_config *pipe_config,
9940 const char *context)
9941{
9942 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9943 context, pipe_name(crtc->pipe));
9944
9945 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9946 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9947 pipe_config->pipe_bpp, pipe_config->dither);
9948 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9949 pipe_config->has_pch_encoder,
9950 pipe_config->fdi_lanes,
9951 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9952 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9953 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9954 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9955 pipe_config->has_dp_encoder,
9956 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9957 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9958 pipe_config->dp_m_n.tu);
b95af8be
VK
9959
9960 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9961 pipe_config->has_dp_encoder,
9962 pipe_config->dp_m2_n2.gmch_m,
9963 pipe_config->dp_m2_n2.gmch_n,
9964 pipe_config->dp_m2_n2.link_m,
9965 pipe_config->dp_m2_n2.link_n,
9966 pipe_config->dp_m2_n2.tu);
9967
c0b03411
DV
9968 DRM_DEBUG_KMS("requested mode:\n");
9969 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9970 DRM_DEBUG_KMS("adjusted mode:\n");
9971 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9972 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9973 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9974 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9975 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9976 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9977 pipe_config->gmch_pfit.control,
9978 pipe_config->gmch_pfit.pgm_ratios,
9979 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9980 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9981 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9982 pipe_config->pch_pfit.size,
9983 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9984 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9985 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9986}
9987
bc079e8b
VS
9988static bool encoders_cloneable(const struct intel_encoder *a,
9989 const struct intel_encoder *b)
accfc0c5 9990{
bc079e8b
VS
9991 /* masks could be asymmetric, so check both ways */
9992 return a == b || (a->cloneable & (1 << b->type) &&
9993 b->cloneable & (1 << a->type));
9994}
9995
9996static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9997 struct intel_encoder *encoder)
9998{
9999 struct drm_device *dev = crtc->base.dev;
10000 struct intel_encoder *source_encoder;
10001
b2784e15 10002 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10003 if (source_encoder->new_crtc != crtc)
10004 continue;
10005
10006 if (!encoders_cloneable(encoder, source_encoder))
10007 return false;
10008 }
10009
10010 return true;
10011}
10012
10013static bool check_encoder_cloning(struct intel_crtc *crtc)
10014{
10015 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10016 struct intel_encoder *encoder;
10017
b2784e15 10018 for_each_intel_encoder(dev, encoder) {
bc079e8b 10019 if (encoder->new_crtc != crtc)
accfc0c5
DV
10020 continue;
10021
bc079e8b
VS
10022 if (!check_single_encoder_cloning(crtc, encoder))
10023 return false;
accfc0c5
DV
10024 }
10025
bc079e8b 10026 return true;
accfc0c5
DV
10027}
10028
b8cecdf5
DV
10029static struct intel_crtc_config *
10030intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10031 struct drm_framebuffer *fb,
b8cecdf5 10032 struct drm_display_mode *mode)
ee7b9f93 10033{
7758a113 10034 struct drm_device *dev = crtc->dev;
7758a113 10035 struct intel_encoder *encoder;
b8cecdf5 10036 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10037 int plane_bpp, ret = -EINVAL;
10038 bool retry = true;
ee7b9f93 10039
bc079e8b 10040 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10041 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10042 return ERR_PTR(-EINVAL);
10043 }
10044
b8cecdf5
DV
10045 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10046 if (!pipe_config)
7758a113
DV
10047 return ERR_PTR(-ENOMEM);
10048
b8cecdf5
DV
10049 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10050 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10051
e143a21c
DV
10052 pipe_config->cpu_transcoder =
10053 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10054 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10055
2960bc9c
ID
10056 /*
10057 * Sanitize sync polarity flags based on requested ones. If neither
10058 * positive or negative polarity is requested, treat this as meaning
10059 * negative polarity.
10060 */
10061 if (!(pipe_config->adjusted_mode.flags &
10062 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10063 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10064
10065 if (!(pipe_config->adjusted_mode.flags &
10066 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10067 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10068
050f7aeb
DV
10069 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10070 * plane pixel format and any sink constraints into account. Returns the
10071 * source plane bpp so that dithering can be selected on mismatches
10072 * after encoders and crtc also have had their say. */
10073 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10074 fb, pipe_config);
4e53c2e0
DV
10075 if (plane_bpp < 0)
10076 goto fail;
10077
e41a56be
VS
10078 /*
10079 * Determine the real pipe dimensions. Note that stereo modes can
10080 * increase the actual pipe size due to the frame doubling and
10081 * insertion of additional space for blanks between the frame. This
10082 * is stored in the crtc timings. We use the requested mode to do this
10083 * computation to clearly distinguish it from the adjusted mode, which
10084 * can be changed by the connectors in the below retry loop.
10085 */
10086 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10087 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10088 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10089
e29c22c0 10090encoder_retry:
ef1b460d 10091 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10092 pipe_config->port_clock = 0;
ef1b460d 10093 pipe_config->pixel_multiplier = 1;
ff9a6750 10094
135c81b8 10095 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10096 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10097
7758a113
DV
10098 /* Pass our mode to the connectors and the CRTC to give them a chance to
10099 * adjust it according to limitations or connector properties, and also
10100 * a chance to reject the mode entirely.
47f1c6c9 10101 */
b2784e15 10102 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10103
7758a113
DV
10104 if (&encoder->new_crtc->base != crtc)
10105 continue;
7ae89233 10106
efea6e8e
DV
10107 if (!(encoder->compute_config(encoder, pipe_config))) {
10108 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10109 goto fail;
10110 }
ee7b9f93 10111 }
47f1c6c9 10112
ff9a6750
DV
10113 /* Set default port clock if not overwritten by the encoder. Needs to be
10114 * done afterwards in case the encoder adjusts the mode. */
10115 if (!pipe_config->port_clock)
241bfc38
DL
10116 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10117 * pipe_config->pixel_multiplier;
ff9a6750 10118
a43f6e0f 10119 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10120 if (ret < 0) {
7758a113
DV
10121 DRM_DEBUG_KMS("CRTC fixup failed\n");
10122 goto fail;
ee7b9f93 10123 }
e29c22c0
DV
10124
10125 if (ret == RETRY) {
10126 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10127 ret = -EINVAL;
10128 goto fail;
10129 }
10130
10131 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10132 retry = false;
10133 goto encoder_retry;
10134 }
10135
4e53c2e0
DV
10136 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10137 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10138 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10139
b8cecdf5 10140 return pipe_config;
7758a113 10141fail:
b8cecdf5 10142 kfree(pipe_config);
e29c22c0 10143 return ERR_PTR(ret);
ee7b9f93 10144}
47f1c6c9 10145
e2e1ed41
DV
10146/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10147 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10148static void
10149intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10150 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10151{
10152 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10153 struct drm_device *dev = crtc->dev;
10154 struct intel_encoder *encoder;
10155 struct intel_connector *connector;
10156 struct drm_crtc *tmp_crtc;
79e53945 10157
e2e1ed41 10158 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10159
e2e1ed41
DV
10160 /* Check which crtcs have changed outputs connected to them, these need
10161 * to be part of the prepare_pipes mask. We don't (yet) support global
10162 * modeset across multiple crtcs, so modeset_pipes will only have one
10163 * bit set at most. */
10164 list_for_each_entry(connector, &dev->mode_config.connector_list,
10165 base.head) {
10166 if (connector->base.encoder == &connector->new_encoder->base)
10167 continue;
79e53945 10168
e2e1ed41
DV
10169 if (connector->base.encoder) {
10170 tmp_crtc = connector->base.encoder->crtc;
10171
10172 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10173 }
10174
10175 if (connector->new_encoder)
10176 *prepare_pipes |=
10177 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10178 }
10179
b2784e15 10180 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10181 if (encoder->base.crtc == &encoder->new_crtc->base)
10182 continue;
10183
10184 if (encoder->base.crtc) {
10185 tmp_crtc = encoder->base.crtc;
10186
10187 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10188 }
10189
10190 if (encoder->new_crtc)
10191 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10192 }
10193
7668851f 10194 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10195 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10196 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10197 continue;
7e7d76c3 10198
7668851f 10199 if (!intel_crtc->new_enabled)
e2e1ed41 10200 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10201 else
10202 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10203 }
10204
e2e1ed41
DV
10205
10206 /* set_mode is also used to update properties on life display pipes. */
10207 intel_crtc = to_intel_crtc(crtc);
7668851f 10208 if (intel_crtc->new_enabled)
e2e1ed41
DV
10209 *prepare_pipes |= 1 << intel_crtc->pipe;
10210
b6c5164d
DV
10211 /*
10212 * For simplicity do a full modeset on any pipe where the output routing
10213 * changed. We could be more clever, but that would require us to be
10214 * more careful with calling the relevant encoder->mode_set functions.
10215 */
e2e1ed41
DV
10216 if (*prepare_pipes)
10217 *modeset_pipes = *prepare_pipes;
10218
10219 /* ... and mask these out. */
10220 *modeset_pipes &= ~(*disable_pipes);
10221 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10222
10223 /*
10224 * HACK: We don't (yet) fully support global modesets. intel_set_config
10225 * obies this rule, but the modeset restore mode of
10226 * intel_modeset_setup_hw_state does not.
10227 */
10228 *modeset_pipes &= 1 << intel_crtc->pipe;
10229 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10230
10231 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10232 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10233}
79e53945 10234
ea9d758d 10235static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10236{
ea9d758d 10237 struct drm_encoder *encoder;
f6e5b160 10238 struct drm_device *dev = crtc->dev;
f6e5b160 10239
ea9d758d
DV
10240 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10241 if (encoder->crtc == crtc)
10242 return true;
10243
10244 return false;
10245}
10246
10247static void
10248intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10249{
10250 struct intel_encoder *intel_encoder;
10251 struct intel_crtc *intel_crtc;
10252 struct drm_connector *connector;
10253
b2784e15 10254 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10255 if (!intel_encoder->base.crtc)
10256 continue;
10257
10258 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10259
10260 if (prepare_pipes & (1 << intel_crtc->pipe))
10261 intel_encoder->connectors_active = false;
10262 }
10263
10264 intel_modeset_commit_output_state(dev);
10265
7668851f 10266 /* Double check state. */
d3fcc808 10267 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10268 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10269 WARN_ON(intel_crtc->new_config &&
10270 intel_crtc->new_config != &intel_crtc->config);
10271 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10272 }
10273
10274 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10275 if (!connector->encoder || !connector->encoder->crtc)
10276 continue;
10277
10278 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10279
10280 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10281 struct drm_property *dpms_property =
10282 dev->mode_config.dpms_property;
10283
ea9d758d 10284 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10285 drm_object_property_set_value(&connector->base,
68d34720
DV
10286 dpms_property,
10287 DRM_MODE_DPMS_ON);
ea9d758d
DV
10288
10289 intel_encoder = to_intel_encoder(connector->encoder);
10290 intel_encoder->connectors_active = true;
10291 }
10292 }
10293
10294}
10295
3bd26263 10296static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10297{
3bd26263 10298 int diff;
f1f644dc
JB
10299
10300 if (clock1 == clock2)
10301 return true;
10302
10303 if (!clock1 || !clock2)
10304 return false;
10305
10306 diff = abs(clock1 - clock2);
10307
10308 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10309 return true;
10310
10311 return false;
10312}
10313
25c5b266
DV
10314#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10315 list_for_each_entry((intel_crtc), \
10316 &(dev)->mode_config.crtc_list, \
10317 base.head) \
0973f18f 10318 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10319
0e8ffe1b 10320static bool
2fa2fe9a
DV
10321intel_pipe_config_compare(struct drm_device *dev,
10322 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10323 struct intel_crtc_config *pipe_config)
10324{
66e985c0
DV
10325#define PIPE_CONF_CHECK_X(name) \
10326 if (current_config->name != pipe_config->name) { \
10327 DRM_ERROR("mismatch in " #name " " \
10328 "(expected 0x%08x, found 0x%08x)\n", \
10329 current_config->name, \
10330 pipe_config->name); \
10331 return false; \
10332 }
10333
08a24034
DV
10334#define PIPE_CONF_CHECK_I(name) \
10335 if (current_config->name != pipe_config->name) { \
10336 DRM_ERROR("mismatch in " #name " " \
10337 "(expected %i, found %i)\n", \
10338 current_config->name, \
10339 pipe_config->name); \
10340 return false; \
88adfff1
DV
10341 }
10342
b95af8be
VK
10343/* This is required for BDW+ where there is only one set of registers for
10344 * switching between high and low RR.
10345 * This macro can be used whenever a comparison has to be made between one
10346 * hw state and multiple sw state variables.
10347 */
10348#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10349 if ((current_config->name != pipe_config->name) && \
10350 (current_config->alt_name != pipe_config->name)) { \
10351 DRM_ERROR("mismatch in " #name " " \
10352 "(expected %i or %i, found %i)\n", \
10353 current_config->name, \
10354 current_config->alt_name, \
10355 pipe_config->name); \
10356 return false; \
10357 }
10358
1bd1bd80
DV
10359#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10360 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10361 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10362 "(expected %i, found %i)\n", \
10363 current_config->name & (mask), \
10364 pipe_config->name & (mask)); \
10365 return false; \
10366 }
10367
5e550656
VS
10368#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10369 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10370 DRM_ERROR("mismatch in " #name " " \
10371 "(expected %i, found %i)\n", \
10372 current_config->name, \
10373 pipe_config->name); \
10374 return false; \
10375 }
10376
bb760063
DV
10377#define PIPE_CONF_QUIRK(quirk) \
10378 ((current_config->quirks | pipe_config->quirks) & (quirk))
10379
eccb140b
DV
10380 PIPE_CONF_CHECK_I(cpu_transcoder);
10381
08a24034
DV
10382 PIPE_CONF_CHECK_I(has_pch_encoder);
10383 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10384 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10385 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10386 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10387 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10388 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10389
eb14cb74 10390 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10391
10392 if (INTEL_INFO(dev)->gen < 8) {
10393 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10394 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10395 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10396 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10397 PIPE_CONF_CHECK_I(dp_m_n.tu);
10398
10399 if (current_config->has_drrs) {
10400 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10401 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10402 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10403 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10404 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10405 }
10406 } else {
10407 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10408 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10409 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10410 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10411 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10412 }
eb14cb74 10413
1bd1bd80
DV
10414 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10415 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10416 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10417 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10418 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10419 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10420
10421 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10422 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10423 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10424 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10425 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10426 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10427
c93f54cf 10428 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10429 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10430 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10431 IS_VALLEYVIEW(dev))
10432 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10433
9ed109a7
DV
10434 PIPE_CONF_CHECK_I(has_audio);
10435
1bd1bd80
DV
10436 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10437 DRM_MODE_FLAG_INTERLACE);
10438
bb760063
DV
10439 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10440 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10441 DRM_MODE_FLAG_PHSYNC);
10442 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10443 DRM_MODE_FLAG_NHSYNC);
10444 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10445 DRM_MODE_FLAG_PVSYNC);
10446 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10447 DRM_MODE_FLAG_NVSYNC);
10448 }
045ac3b5 10449
37327abd
VS
10450 PIPE_CONF_CHECK_I(pipe_src_w);
10451 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10452
9953599b
DV
10453 /*
10454 * FIXME: BIOS likes to set up a cloned config with lvds+external
10455 * screen. Since we don't yet re-compute the pipe config when moving
10456 * just the lvds port away to another pipe the sw tracking won't match.
10457 *
10458 * Proper atomic modesets with recomputed global state will fix this.
10459 * Until then just don't check gmch state for inherited modes.
10460 */
10461 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10462 PIPE_CONF_CHECK_I(gmch_pfit.control);
10463 /* pfit ratios are autocomputed by the hw on gen4+ */
10464 if (INTEL_INFO(dev)->gen < 4)
10465 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10466 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10467 }
10468
fd4daa9c
CW
10469 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10470 if (current_config->pch_pfit.enabled) {
10471 PIPE_CONF_CHECK_I(pch_pfit.pos);
10472 PIPE_CONF_CHECK_I(pch_pfit.size);
10473 }
2fa2fe9a 10474
e59150dc
JB
10475 /* BDW+ don't expose a synchronous way to read the state */
10476 if (IS_HASWELL(dev))
10477 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10478
282740f7
VS
10479 PIPE_CONF_CHECK_I(double_wide);
10480
26804afd
DV
10481 PIPE_CONF_CHECK_X(ddi_pll_sel);
10482
c0d43d62 10483 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10484 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10485 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10486 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10487 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10488 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10489
42571aef
VS
10490 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10491 PIPE_CONF_CHECK_I(pipe_bpp);
10492
a9a7e98a
JB
10493 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10494 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10495
66e985c0 10496#undef PIPE_CONF_CHECK_X
08a24034 10497#undef PIPE_CONF_CHECK_I
b95af8be 10498#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10499#undef PIPE_CONF_CHECK_FLAGS
5e550656 10500#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10501#undef PIPE_CONF_QUIRK
88adfff1 10502
0e8ffe1b
DV
10503 return true;
10504}
10505
91d1b4bd
DV
10506static void
10507check_connector_state(struct drm_device *dev)
8af6cf88 10508{
8af6cf88
DV
10509 struct intel_connector *connector;
10510
10511 list_for_each_entry(connector, &dev->mode_config.connector_list,
10512 base.head) {
10513 /* This also checks the encoder/connector hw state with the
10514 * ->get_hw_state callbacks. */
10515 intel_connector_check_state(connector);
10516
10517 WARN(&connector->new_encoder->base != connector->base.encoder,
10518 "connector's staged encoder doesn't match current encoder\n");
10519 }
91d1b4bd
DV
10520}
10521
10522static void
10523check_encoder_state(struct drm_device *dev)
10524{
10525 struct intel_encoder *encoder;
10526 struct intel_connector *connector;
8af6cf88 10527
b2784e15 10528 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10529 bool enabled = false;
10530 bool active = false;
10531 enum pipe pipe, tracked_pipe;
10532
10533 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10534 encoder->base.base.id,
8e329a03 10535 encoder->base.name);
8af6cf88
DV
10536
10537 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10538 "encoder's stage crtc doesn't match current crtc\n");
10539 WARN(encoder->connectors_active && !encoder->base.crtc,
10540 "encoder's active_connectors set, but no crtc\n");
10541
10542 list_for_each_entry(connector, &dev->mode_config.connector_list,
10543 base.head) {
10544 if (connector->base.encoder != &encoder->base)
10545 continue;
10546 enabled = true;
10547 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10548 active = true;
10549 }
0e32b39c
DA
10550 /*
10551 * for MST connectors if we unplug the connector is gone
10552 * away but the encoder is still connected to a crtc
10553 * until a modeset happens in response to the hotplug.
10554 */
10555 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10556 continue;
10557
8af6cf88
DV
10558 WARN(!!encoder->base.crtc != enabled,
10559 "encoder's enabled state mismatch "
10560 "(expected %i, found %i)\n",
10561 !!encoder->base.crtc, enabled);
10562 WARN(active && !encoder->base.crtc,
10563 "active encoder with no crtc\n");
10564
10565 WARN(encoder->connectors_active != active,
10566 "encoder's computed active state doesn't match tracked active state "
10567 "(expected %i, found %i)\n", active, encoder->connectors_active);
10568
10569 active = encoder->get_hw_state(encoder, &pipe);
10570 WARN(active != encoder->connectors_active,
10571 "encoder's hw state doesn't match sw tracking "
10572 "(expected %i, found %i)\n",
10573 encoder->connectors_active, active);
10574
10575 if (!encoder->base.crtc)
10576 continue;
10577
10578 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10579 WARN(active && pipe != tracked_pipe,
10580 "active encoder's pipe doesn't match"
10581 "(expected %i, found %i)\n",
10582 tracked_pipe, pipe);
10583
10584 }
91d1b4bd
DV
10585}
10586
10587static void
10588check_crtc_state(struct drm_device *dev)
10589{
fbee40df 10590 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10591 struct intel_crtc *crtc;
10592 struct intel_encoder *encoder;
10593 struct intel_crtc_config pipe_config;
8af6cf88 10594
d3fcc808 10595 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10596 bool enabled = false;
10597 bool active = false;
10598
045ac3b5
JB
10599 memset(&pipe_config, 0, sizeof(pipe_config));
10600
8af6cf88
DV
10601 DRM_DEBUG_KMS("[CRTC:%d]\n",
10602 crtc->base.base.id);
10603
10604 WARN(crtc->active && !crtc->base.enabled,
10605 "active crtc, but not enabled in sw tracking\n");
10606
b2784e15 10607 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10608 if (encoder->base.crtc != &crtc->base)
10609 continue;
10610 enabled = true;
10611 if (encoder->connectors_active)
10612 active = true;
10613 }
6c49f241 10614
8af6cf88
DV
10615 WARN(active != crtc->active,
10616 "crtc's computed active state doesn't match tracked active state "
10617 "(expected %i, found %i)\n", active, crtc->active);
10618 WARN(enabled != crtc->base.enabled,
10619 "crtc's computed enabled state doesn't match tracked enabled state "
10620 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10621
0e8ffe1b
DV
10622 active = dev_priv->display.get_pipe_config(crtc,
10623 &pipe_config);
d62cf62a 10624
b6b5d049
VS
10625 /* hw state is inconsistent with the pipe quirk */
10626 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10627 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10628 active = crtc->active;
10629
b2784e15 10630 for_each_intel_encoder(dev, encoder) {
3eaba51c 10631 enum pipe pipe;
6c49f241
DV
10632 if (encoder->base.crtc != &crtc->base)
10633 continue;
1d37b689 10634 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10635 encoder->get_config(encoder, &pipe_config);
10636 }
10637
0e8ffe1b
DV
10638 WARN(crtc->active != active,
10639 "crtc active state doesn't match with hw state "
10640 "(expected %i, found %i)\n", crtc->active, active);
10641
c0b03411
DV
10642 if (active &&
10643 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10644 WARN(1, "pipe state doesn't match!\n");
10645 intel_dump_pipe_config(crtc, &pipe_config,
10646 "[hw state]");
10647 intel_dump_pipe_config(crtc, &crtc->config,
10648 "[sw state]");
10649 }
8af6cf88
DV
10650 }
10651}
10652
91d1b4bd
DV
10653static void
10654check_shared_dpll_state(struct drm_device *dev)
10655{
fbee40df 10656 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10657 struct intel_crtc *crtc;
10658 struct intel_dpll_hw_state dpll_hw_state;
10659 int i;
5358901f
DV
10660
10661 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10662 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10663 int enabled_crtcs = 0, active_crtcs = 0;
10664 bool active;
10665
10666 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10667
10668 DRM_DEBUG_KMS("%s\n", pll->name);
10669
10670 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10671
3e369b76 10672 WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10673 "more active pll users than references: %i vs %i\n",
3e369b76 10674 pll->active, hweight32(pll->config.crtc_mask));
5358901f
DV
10675 WARN(pll->active && !pll->on,
10676 "pll in active use but not on in sw tracking\n");
35c95375
DV
10677 WARN(pll->on && !pll->active,
10678 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10679 WARN(pll->on != active,
10680 "pll on state mismatch (expected %i, found %i)\n",
10681 pll->on, active);
10682
d3fcc808 10683 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10684 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10685 enabled_crtcs++;
10686 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10687 active_crtcs++;
10688 }
10689 WARN(pll->active != active_crtcs,
10690 "pll active crtcs mismatch (expected %i, found %i)\n",
10691 pll->active, active_crtcs);
3e369b76 10692 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10693 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10694 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10695
3e369b76 10696 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10697 sizeof(dpll_hw_state)),
10698 "pll hw state mismatch\n");
5358901f 10699 }
8af6cf88
DV
10700}
10701
91d1b4bd
DV
10702void
10703intel_modeset_check_state(struct drm_device *dev)
10704{
10705 check_connector_state(dev);
10706 check_encoder_state(dev);
10707 check_crtc_state(dev);
10708 check_shared_dpll_state(dev);
10709}
10710
18442d08
VS
10711void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10712 int dotclock)
10713{
10714 /*
10715 * FDI already provided one idea for the dotclock.
10716 * Yell if the encoder disagrees.
10717 */
241bfc38 10718 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10719 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10720 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10721}
10722
80715b2f
VS
10723static void update_scanline_offset(struct intel_crtc *crtc)
10724{
10725 struct drm_device *dev = crtc->base.dev;
10726
10727 /*
10728 * The scanline counter increments at the leading edge of hsync.
10729 *
10730 * On most platforms it starts counting from vtotal-1 on the
10731 * first active line. That means the scanline counter value is
10732 * always one less than what we would expect. Ie. just after
10733 * start of vblank, which also occurs at start of hsync (on the
10734 * last active line), the scanline counter will read vblank_start-1.
10735 *
10736 * On gen2 the scanline counter starts counting from 1 instead
10737 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10738 * to keep the value positive), instead of adding one.
10739 *
10740 * On HSW+ the behaviour of the scanline counter depends on the output
10741 * type. For DP ports it behaves like most other platforms, but on HDMI
10742 * there's an extra 1 line difference. So we need to add two instead of
10743 * one to the value.
10744 */
10745 if (IS_GEN2(dev)) {
10746 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10747 int vtotal;
10748
10749 vtotal = mode->crtc_vtotal;
10750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10751 vtotal /= 2;
10752
10753 crtc->scanline_offset = vtotal - 1;
10754 } else if (HAS_DDI(dev) &&
409ee761 10755 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10756 crtc->scanline_offset = 2;
10757 } else
10758 crtc->scanline_offset = 1;
10759}
10760
f30da187
DV
10761static int __intel_set_mode(struct drm_crtc *crtc,
10762 struct drm_display_mode *mode,
10763 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10764{
10765 struct drm_device *dev = crtc->dev;
fbee40df 10766 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10767 struct drm_display_mode *saved_mode;
b8cecdf5 10768 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10769 struct intel_crtc *intel_crtc;
10770 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10771 int ret = 0;
a6778b3c 10772
4b4b9238 10773 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10774 if (!saved_mode)
10775 return -ENOMEM;
a6778b3c 10776
e2e1ed41 10777 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10778 &prepare_pipes, &disable_pipes);
10779
3ac18232 10780 *saved_mode = crtc->mode;
a6778b3c 10781
25c5b266
DV
10782 /* Hack: Because we don't (yet) support global modeset on multiple
10783 * crtcs, we don't keep track of the new mode for more than one crtc.
10784 * Hence simply check whether any bit is set in modeset_pipes in all the
10785 * pieces of code that are not yet converted to deal with mutliple crtcs
10786 * changing their mode at the same time. */
25c5b266 10787 if (modeset_pipes) {
4e53c2e0 10788 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10789 if (IS_ERR(pipe_config)) {
10790 ret = PTR_ERR(pipe_config);
10791 pipe_config = NULL;
10792
3ac18232 10793 goto out;
25c5b266 10794 }
c0b03411
DV
10795 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10796 "[modeset]");
50741abc 10797 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10798 }
a6778b3c 10799
30a970c6
JB
10800 /*
10801 * See if the config requires any additional preparation, e.g.
10802 * to adjust global state with pipes off. We need to do this
10803 * here so we can get the modeset_pipe updated config for the new
10804 * mode set on this crtc. For other crtcs we need to use the
10805 * adjusted_mode bits in the crtc directly.
10806 */
c164f833 10807 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10808 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10809
c164f833
VS
10810 /* may have added more to prepare_pipes than we should */
10811 prepare_pipes &= ~disable_pipes;
10812 }
10813
8bd31e67
ACO
10814 if (dev_priv->display.crtc_compute_clock) {
10815 unsigned clear_pipes = modeset_pipes | disable_pipes;
10816
10817 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10818 if (ret)
10819 goto done;
10820
10821 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10822 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10823 if (ret) {
10824 intel_shared_dpll_abort_config(dev_priv);
10825 goto done;
10826 }
10827 }
10828 }
10829
460da916
DV
10830 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10831 intel_crtc_disable(&intel_crtc->base);
10832
ea9d758d
DV
10833 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10834 if (intel_crtc->base.enabled)
10835 dev_priv->display.crtc_disable(&intel_crtc->base);
10836 }
a6778b3c 10837
6c4c86f5
DV
10838 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10839 * to set it here already despite that we pass it down the callchain.
f6e5b160 10840 */
b8cecdf5 10841 if (modeset_pipes) {
25c5b266 10842 crtc->mode = *mode;
b8cecdf5
DV
10843 /* mode_set/enable/disable functions rely on a correct pipe
10844 * config. */
10845 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10846 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10847
10848 /*
10849 * Calculate and store various constants which
10850 * are later needed by vblank and swap-completion
10851 * timestamping. They are derived from true hwmode.
10852 */
10853 drm_calc_timestamping_constants(crtc,
10854 &pipe_config->adjusted_mode);
b8cecdf5 10855 }
7758a113 10856
8bd31e67
ACO
10857 if (dev_priv->display.crtc_compute_clock)
10858 intel_shared_dpll_commit(dev_priv);
10859
ea9d758d
DV
10860 /* Only after disabling all output pipelines that will be changed can we
10861 * update the the output configuration. */
10862 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10863
47fab737
DV
10864 if (dev_priv->display.modeset_global_resources)
10865 dev_priv->display.modeset_global_resources(dev);
10866
a6778b3c
DV
10867 /* Set up the DPLL and any encoders state that needs to adjust or depend
10868 * on the DPLL.
f6e5b160 10869 */
25c5b266 10870 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10871 struct drm_framebuffer *old_fb = crtc->primary->fb;
10872 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10873 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10874
10875 mutex_lock(&dev->struct_mutex);
10876 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10877 obj,
4c10794f
DV
10878 NULL);
10879 if (ret != 0) {
10880 DRM_ERROR("pin & fence failed\n");
10881 mutex_unlock(&dev->struct_mutex);
10882 goto done;
10883 }
2ff8fde1 10884 if (old_fb)
a071fa00 10885 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10886 i915_gem_track_fb(old_obj, obj,
10887 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10888 mutex_unlock(&dev->struct_mutex);
10889
10890 crtc->primary->fb = fb;
10891 crtc->x = x;
10892 crtc->y = y;
10893
8bd31e67
ACO
10894 if (dev_priv->display.crtc_mode_set) {
10895 ret = dev_priv->display.crtc_mode_set(intel_crtc,
10896 x, y, fb);
10897 if (ret)
10898 goto done;
10899 }
a6778b3c
DV
10900 }
10901
10902 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10903 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10904 update_scanline_offset(intel_crtc);
10905
25c5b266 10906 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10907 }
a6778b3c 10908
a6778b3c
DV
10909 /* FIXME: add subpixel order */
10910done:
4b4b9238 10911 if (ret && crtc->enabled)
3ac18232 10912 crtc->mode = *saved_mode;
a6778b3c 10913
3ac18232 10914out:
b8cecdf5 10915 kfree(pipe_config);
3ac18232 10916 kfree(saved_mode);
a6778b3c 10917 return ret;
f6e5b160
CW
10918}
10919
e7457a9a
DL
10920static int intel_set_mode(struct drm_crtc *crtc,
10921 struct drm_display_mode *mode,
10922 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10923{
10924 int ret;
10925
10926 ret = __intel_set_mode(crtc, mode, x, y, fb);
10927
10928 if (ret == 0)
10929 intel_modeset_check_state(crtc->dev);
10930
10931 return ret;
10932}
10933
c0c36b94
CW
10934void intel_crtc_restore_mode(struct drm_crtc *crtc)
10935{
f4510a27 10936 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10937}
10938
25c5b266
DV
10939#undef for_each_intel_crtc_masked
10940
d9e55608
DV
10941static void intel_set_config_free(struct intel_set_config *config)
10942{
10943 if (!config)
10944 return;
10945
1aa4b628
DV
10946 kfree(config->save_connector_encoders);
10947 kfree(config->save_encoder_crtcs);
7668851f 10948 kfree(config->save_crtc_enabled);
d9e55608
DV
10949 kfree(config);
10950}
10951
85f9eb71
DV
10952static int intel_set_config_save_state(struct drm_device *dev,
10953 struct intel_set_config *config)
10954{
7668851f 10955 struct drm_crtc *crtc;
85f9eb71
DV
10956 struct drm_encoder *encoder;
10957 struct drm_connector *connector;
10958 int count;
10959
7668851f
VS
10960 config->save_crtc_enabled =
10961 kcalloc(dev->mode_config.num_crtc,
10962 sizeof(bool), GFP_KERNEL);
10963 if (!config->save_crtc_enabled)
10964 return -ENOMEM;
10965
1aa4b628
DV
10966 config->save_encoder_crtcs =
10967 kcalloc(dev->mode_config.num_encoder,
10968 sizeof(struct drm_crtc *), GFP_KERNEL);
10969 if (!config->save_encoder_crtcs)
85f9eb71
DV
10970 return -ENOMEM;
10971
1aa4b628
DV
10972 config->save_connector_encoders =
10973 kcalloc(dev->mode_config.num_connector,
10974 sizeof(struct drm_encoder *), GFP_KERNEL);
10975 if (!config->save_connector_encoders)
85f9eb71
DV
10976 return -ENOMEM;
10977
10978 /* Copy data. Note that driver private data is not affected.
10979 * Should anything bad happen only the expected state is
10980 * restored, not the drivers personal bookkeeping.
10981 */
7668851f 10982 count = 0;
70e1e0ec 10983 for_each_crtc(dev, crtc) {
7668851f
VS
10984 config->save_crtc_enabled[count++] = crtc->enabled;
10985 }
10986
85f9eb71
DV
10987 count = 0;
10988 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10989 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10990 }
10991
10992 count = 0;
10993 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10994 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10995 }
10996
10997 return 0;
10998}
10999
11000static void intel_set_config_restore_state(struct drm_device *dev,
11001 struct intel_set_config *config)
11002{
7668851f 11003 struct intel_crtc *crtc;
9a935856
DV
11004 struct intel_encoder *encoder;
11005 struct intel_connector *connector;
85f9eb71
DV
11006 int count;
11007
7668851f 11008 count = 0;
d3fcc808 11009 for_each_intel_crtc(dev, crtc) {
7668851f 11010 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11011
11012 if (crtc->new_enabled)
11013 crtc->new_config = &crtc->config;
11014 else
11015 crtc->new_config = NULL;
7668851f
VS
11016 }
11017
85f9eb71 11018 count = 0;
b2784e15 11019 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11020 encoder->new_crtc =
11021 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11022 }
11023
11024 count = 0;
9a935856
DV
11025 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11026 connector->new_encoder =
11027 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11028 }
11029}
11030
e3de42b6 11031static bool
2e57f47d 11032is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11033{
11034 int i;
11035
2e57f47d
CW
11036 if (set->num_connectors == 0)
11037 return false;
11038
11039 if (WARN_ON(set->connectors == NULL))
11040 return false;
11041
11042 for (i = 0; i < set->num_connectors; i++)
11043 if (set->connectors[i]->encoder &&
11044 set->connectors[i]->encoder->crtc == set->crtc &&
11045 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11046 return true;
11047
11048 return false;
11049}
11050
5e2b584e
DV
11051static void
11052intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11053 struct intel_set_config *config)
11054{
11055
11056 /* We should be able to check here if the fb has the same properties
11057 * and then just flip_or_move it */
2e57f47d
CW
11058 if (is_crtc_connector_off(set)) {
11059 config->mode_changed = true;
f4510a27 11060 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11061 /*
11062 * If we have no fb, we can only flip as long as the crtc is
11063 * active, otherwise we need a full mode set. The crtc may
11064 * be active if we've only disabled the primary plane, or
11065 * in fastboot situations.
11066 */
f4510a27 11067 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11068 struct intel_crtc *intel_crtc =
11069 to_intel_crtc(set->crtc);
11070
3b150f08 11071 if (intel_crtc->active) {
319d9827
JB
11072 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11073 config->fb_changed = true;
11074 } else {
11075 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11076 config->mode_changed = true;
11077 }
5e2b584e
DV
11078 } else if (set->fb == NULL) {
11079 config->mode_changed = true;
72f4901e 11080 } else if (set->fb->pixel_format !=
f4510a27 11081 set->crtc->primary->fb->pixel_format) {
5e2b584e 11082 config->mode_changed = true;
e3de42b6 11083 } else {
5e2b584e 11084 config->fb_changed = true;
e3de42b6 11085 }
5e2b584e
DV
11086 }
11087
835c5873 11088 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11089 config->fb_changed = true;
11090
11091 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11092 DRM_DEBUG_KMS("modes are different, full mode set\n");
11093 drm_mode_debug_printmodeline(&set->crtc->mode);
11094 drm_mode_debug_printmodeline(set->mode);
11095 config->mode_changed = true;
11096 }
a1d95703
CW
11097
11098 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11099 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11100}
11101
2e431051 11102static int
9a935856
DV
11103intel_modeset_stage_output_state(struct drm_device *dev,
11104 struct drm_mode_set *set,
11105 struct intel_set_config *config)
50f56119 11106{
9a935856
DV
11107 struct intel_connector *connector;
11108 struct intel_encoder *encoder;
7668851f 11109 struct intel_crtc *crtc;
f3f08572 11110 int ro;
50f56119 11111
9abdda74 11112 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11113 * of connectors. For paranoia, double-check this. */
11114 WARN_ON(!set->fb && (set->num_connectors != 0));
11115 WARN_ON(set->fb && (set->num_connectors == 0));
11116
9a935856
DV
11117 list_for_each_entry(connector, &dev->mode_config.connector_list,
11118 base.head) {
11119 /* Otherwise traverse passed in connector list and get encoders
11120 * for them. */
50f56119 11121 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11122 if (set->connectors[ro] == &connector->base) {
0e32b39c 11123 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11124 break;
11125 }
11126 }
11127
9a935856
DV
11128 /* If we disable the crtc, disable all its connectors. Also, if
11129 * the connector is on the changing crtc but not on the new
11130 * connector list, disable it. */
11131 if ((!set->fb || ro == set->num_connectors) &&
11132 connector->base.encoder &&
11133 connector->base.encoder->crtc == set->crtc) {
11134 connector->new_encoder = NULL;
11135
11136 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11137 connector->base.base.id,
c23cc417 11138 connector->base.name);
9a935856
DV
11139 }
11140
11141
11142 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11143 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11144 config->mode_changed = true;
50f56119
DV
11145 }
11146 }
9a935856 11147 /* connector->new_encoder is now updated for all connectors. */
50f56119 11148
9a935856 11149 /* Update crtc of enabled connectors. */
9a935856
DV
11150 list_for_each_entry(connector, &dev->mode_config.connector_list,
11151 base.head) {
7668851f
VS
11152 struct drm_crtc *new_crtc;
11153
9a935856 11154 if (!connector->new_encoder)
50f56119
DV
11155 continue;
11156
9a935856 11157 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11158
11159 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11160 if (set->connectors[ro] == &connector->base)
50f56119
DV
11161 new_crtc = set->crtc;
11162 }
11163
11164 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11165 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11166 new_crtc)) {
5e2b584e 11167 return -EINVAL;
50f56119 11168 }
0e32b39c 11169 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11170
11171 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11172 connector->base.base.id,
c23cc417 11173 connector->base.name,
9a935856
DV
11174 new_crtc->base.id);
11175 }
11176
11177 /* Check for any encoders that needs to be disabled. */
b2784e15 11178 for_each_intel_encoder(dev, encoder) {
5a65f358 11179 int num_connectors = 0;
9a935856
DV
11180 list_for_each_entry(connector,
11181 &dev->mode_config.connector_list,
11182 base.head) {
11183 if (connector->new_encoder == encoder) {
11184 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11185 num_connectors++;
9a935856
DV
11186 }
11187 }
5a65f358
PZ
11188
11189 if (num_connectors == 0)
11190 encoder->new_crtc = NULL;
11191 else if (num_connectors > 1)
11192 return -EINVAL;
11193
9a935856
DV
11194 /* Only now check for crtc changes so we don't miss encoders
11195 * that will be disabled. */
11196 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11197 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11198 config->mode_changed = true;
50f56119
DV
11199 }
11200 }
9a935856 11201 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11202 list_for_each_entry(connector, &dev->mode_config.connector_list,
11203 base.head) {
11204 if (connector->new_encoder)
11205 if (connector->new_encoder != connector->encoder)
11206 connector->encoder = connector->new_encoder;
11207 }
d3fcc808 11208 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11209 crtc->new_enabled = false;
11210
b2784e15 11211 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11212 if (encoder->new_crtc == crtc) {
11213 crtc->new_enabled = true;
11214 break;
11215 }
11216 }
11217
11218 if (crtc->new_enabled != crtc->base.enabled) {
11219 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11220 crtc->new_enabled ? "en" : "dis");
11221 config->mode_changed = true;
11222 }
7bd0a8e7
VS
11223
11224 if (crtc->new_enabled)
11225 crtc->new_config = &crtc->config;
11226 else
11227 crtc->new_config = NULL;
7668851f
VS
11228 }
11229
2e431051
DV
11230 return 0;
11231}
11232
7d00a1f5
VS
11233static void disable_crtc_nofb(struct intel_crtc *crtc)
11234{
11235 struct drm_device *dev = crtc->base.dev;
11236 struct intel_encoder *encoder;
11237 struct intel_connector *connector;
11238
11239 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11240 pipe_name(crtc->pipe));
11241
11242 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11243 if (connector->new_encoder &&
11244 connector->new_encoder->new_crtc == crtc)
11245 connector->new_encoder = NULL;
11246 }
11247
b2784e15 11248 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11249 if (encoder->new_crtc == crtc)
11250 encoder->new_crtc = NULL;
11251 }
11252
11253 crtc->new_enabled = false;
7bd0a8e7 11254 crtc->new_config = NULL;
7d00a1f5
VS
11255}
11256
2e431051
DV
11257static int intel_crtc_set_config(struct drm_mode_set *set)
11258{
11259 struct drm_device *dev;
2e431051
DV
11260 struct drm_mode_set save_set;
11261 struct intel_set_config *config;
11262 int ret;
2e431051 11263
8d3e375e
DV
11264 BUG_ON(!set);
11265 BUG_ON(!set->crtc);
11266 BUG_ON(!set->crtc->helper_private);
2e431051 11267
7e53f3a4
DV
11268 /* Enforce sane interface api - has been abused by the fb helper. */
11269 BUG_ON(!set->mode && set->fb);
11270 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11271
2e431051
DV
11272 if (set->fb) {
11273 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11274 set->crtc->base.id, set->fb->base.id,
11275 (int)set->num_connectors, set->x, set->y);
11276 } else {
11277 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11278 }
11279
11280 dev = set->crtc->dev;
11281
11282 ret = -ENOMEM;
11283 config = kzalloc(sizeof(*config), GFP_KERNEL);
11284 if (!config)
11285 goto out_config;
11286
11287 ret = intel_set_config_save_state(dev, config);
11288 if (ret)
11289 goto out_config;
11290
11291 save_set.crtc = set->crtc;
11292 save_set.mode = &set->crtc->mode;
11293 save_set.x = set->crtc->x;
11294 save_set.y = set->crtc->y;
f4510a27 11295 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11296
11297 /* Compute whether we need a full modeset, only an fb base update or no
11298 * change at all. In the future we might also check whether only the
11299 * mode changed, e.g. for LVDS where we only change the panel fitter in
11300 * such cases. */
11301 intel_set_config_compute_mode_changes(set, config);
11302
9a935856 11303 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11304 if (ret)
11305 goto fail;
11306
5e2b584e 11307 if (config->mode_changed) {
c0c36b94
CW
11308 ret = intel_set_mode(set->crtc, set->mode,
11309 set->x, set->y, set->fb);
5e2b584e 11310 } else if (config->fb_changed) {
3b150f08
MR
11311 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11312
4878cae2
VS
11313 intel_crtc_wait_for_pending_flips(set->crtc);
11314
4f660f49 11315 ret = intel_pipe_set_base(set->crtc,
94352cf9 11316 set->x, set->y, set->fb);
3b150f08
MR
11317
11318 /*
11319 * We need to make sure the primary plane is re-enabled if it
11320 * has previously been turned off.
11321 */
11322 if (!intel_crtc->primary_enabled && ret == 0) {
11323 WARN_ON(!intel_crtc->active);
fdd508a6 11324 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11325 }
11326
7ca51a3a
JB
11327 /*
11328 * In the fastboot case this may be our only check of the
11329 * state after boot. It would be better to only do it on
11330 * the first update, but we don't have a nice way of doing that
11331 * (and really, set_config isn't used much for high freq page
11332 * flipping, so increasing its cost here shouldn't be a big
11333 * deal).
11334 */
d330a953 11335 if (i915.fastboot && ret == 0)
7ca51a3a 11336 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11337 }
11338
2d05eae1 11339 if (ret) {
bf67dfeb
DV
11340 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11341 set->crtc->base.id, ret);
50f56119 11342fail:
2d05eae1 11343 intel_set_config_restore_state(dev, config);
50f56119 11344
7d00a1f5
VS
11345 /*
11346 * HACK: if the pipe was on, but we didn't have a framebuffer,
11347 * force the pipe off to avoid oopsing in the modeset code
11348 * due to fb==NULL. This should only happen during boot since
11349 * we don't yet reconstruct the FB from the hardware state.
11350 */
11351 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11352 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11353
2d05eae1
CW
11354 /* Try to restore the config */
11355 if (config->mode_changed &&
11356 intel_set_mode(save_set.crtc, save_set.mode,
11357 save_set.x, save_set.y, save_set.fb))
11358 DRM_ERROR("failed to restore config after modeset failure\n");
11359 }
50f56119 11360
d9e55608
DV
11361out_config:
11362 intel_set_config_free(config);
50f56119
DV
11363 return ret;
11364}
f6e5b160
CW
11365
11366static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11367 .gamma_set = intel_crtc_gamma_set,
50f56119 11368 .set_config = intel_crtc_set_config,
f6e5b160
CW
11369 .destroy = intel_crtc_destroy,
11370 .page_flip = intel_crtc_page_flip,
11371};
11372
5358901f
DV
11373static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11374 struct intel_shared_dpll *pll,
11375 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11376{
5358901f 11377 uint32_t val;
ee7b9f93 11378
f458ebbc 11379 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11380 return false;
11381
5358901f 11382 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11383 hw_state->dpll = val;
11384 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11385 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11386
11387 return val & DPLL_VCO_ENABLE;
11388}
11389
15bdd4cf
DV
11390static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11391 struct intel_shared_dpll *pll)
11392{
3e369b76
ACO
11393 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11394 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11395}
11396
e7b903d2
DV
11397static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11398 struct intel_shared_dpll *pll)
11399{
e7b903d2 11400 /* PCH refclock must be enabled first */
89eff4be 11401 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11402
3e369b76 11403 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11404
11405 /* Wait for the clocks to stabilize. */
11406 POSTING_READ(PCH_DPLL(pll->id));
11407 udelay(150);
11408
11409 /* The pixel multiplier can only be updated once the
11410 * DPLL is enabled and the clocks are stable.
11411 *
11412 * So write it again.
11413 */
3e369b76 11414 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11415 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11416 udelay(200);
11417}
11418
11419static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11420 struct intel_shared_dpll *pll)
11421{
11422 struct drm_device *dev = dev_priv->dev;
11423 struct intel_crtc *crtc;
e7b903d2
DV
11424
11425 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11426 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11427 if (intel_crtc_to_shared_dpll(crtc) == pll)
11428 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11429 }
11430
15bdd4cf
DV
11431 I915_WRITE(PCH_DPLL(pll->id), 0);
11432 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11433 udelay(200);
11434}
11435
46edb027
DV
11436static char *ibx_pch_dpll_names[] = {
11437 "PCH DPLL A",
11438 "PCH DPLL B",
11439};
11440
7c74ade1 11441static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11442{
e7b903d2 11443 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11444 int i;
11445
7c74ade1 11446 dev_priv->num_shared_dpll = 2;
ee7b9f93 11447
e72f9fbf 11448 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11449 dev_priv->shared_dplls[i].id = i;
11450 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11451 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11452 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11453 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11454 dev_priv->shared_dplls[i].get_hw_state =
11455 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11456 }
11457}
11458
7c74ade1
DV
11459static void intel_shared_dpll_init(struct drm_device *dev)
11460{
e7b903d2 11461 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11462
9cd86933
DV
11463 if (HAS_DDI(dev))
11464 intel_ddi_pll_init(dev);
11465 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11466 ibx_pch_dpll_init(dev);
11467 else
11468 dev_priv->num_shared_dpll = 0;
11469
11470 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11471}
11472
465c120c
MR
11473static int
11474intel_primary_plane_disable(struct drm_plane *plane)
11475{
11476 struct drm_device *dev = plane->dev;
465c120c
MR
11477 struct intel_crtc *intel_crtc;
11478
11479 if (!plane->fb)
11480 return 0;
11481
11482 BUG_ON(!plane->crtc);
11483
11484 intel_crtc = to_intel_crtc(plane->crtc);
11485
11486 /*
11487 * Even though we checked plane->fb above, it's still possible that
11488 * the primary plane has been implicitly disabled because the crtc
11489 * coordinates given weren't visible, or because we detected
11490 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11491 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11492 * In either case, we need to unpin the FB and let the fb pointer get
11493 * updated, but otherwise we don't need to touch the hardware.
11494 */
11495 if (!intel_crtc->primary_enabled)
11496 goto disable_unpin;
11497
11498 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11499 intel_disable_primary_hw_plane(plane, plane->crtc);
11500
465c120c 11501disable_unpin:
4c34574f 11502 mutex_lock(&dev->struct_mutex);
2ff8fde1 11503 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11504 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11505 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11506 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11507 plane->fb = NULL;
11508
11509 return 0;
11510}
11511
11512static int
3c692a41
GP
11513intel_check_primary_plane(struct drm_plane *plane,
11514 struct intel_plane_state *state)
11515{
11516 struct drm_crtc *crtc = state->crtc;
11517 struct drm_framebuffer *fb = state->fb;
11518 struct drm_rect *dest = &state->dst;
11519 struct drm_rect *src = &state->src;
11520 const struct drm_rect *clip = &state->clip;
ccc759dc 11521
3ead8bb2
GP
11522 return drm_plane_helper_check_update(plane, crtc, fb,
11523 src, dest, clip,
11524 DRM_PLANE_HELPER_NO_SCALING,
11525 DRM_PLANE_HELPER_NO_SCALING,
11526 false, true, &state->visible);
3c692a41
GP
11527}
11528
11529static int
14af293f
GP
11530intel_prepare_primary_plane(struct drm_plane *plane,
11531 struct intel_plane_state *state)
465c120c 11532{
3c692a41
GP
11533 struct drm_crtc *crtc = state->crtc;
11534 struct drm_framebuffer *fb = state->fb;
465c120c 11535 struct drm_device *dev = crtc->dev;
465c120c 11536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc 11537 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
11538 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11539 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11540 int ret;
11541
465c120c
MR
11542 intel_crtc_wait_for_pending_flips(crtc);
11543
ccc759dc
GP
11544 if (intel_crtc_has_pending_flip(crtc)) {
11545 DRM_ERROR("pipe is still busy with an old pageflip\n");
11546 return -EBUSY;
11547 }
11548
14af293f 11549 if (old_obj != obj) {
4c34574f 11550 mutex_lock(&dev->struct_mutex);
ccc759dc
GP
11551 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11552 if (ret == 0)
11553 i915_gem_track_fb(old_obj, obj,
11554 INTEL_FRONTBUFFER_PRIMARY(pipe));
11555 mutex_unlock(&dev->struct_mutex);
11556 if (ret != 0) {
11557 DRM_DEBUG_KMS("pin & fence failed\n");
11558 return ret;
11559 }
11560 }
11561
14af293f
GP
11562 return 0;
11563}
11564
11565static void
11566intel_commit_primary_plane(struct drm_plane *plane,
11567 struct intel_plane_state *state)
11568{
11569 struct drm_crtc *crtc = state->crtc;
11570 struct drm_framebuffer *fb = state->fb;
11571 struct drm_device *dev = crtc->dev;
11572 struct drm_i915_private *dev_priv = dev->dev_private;
11573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11574 enum pipe pipe = intel_crtc->pipe;
11575 struct drm_framebuffer *old_fb = plane->fb;
11576 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11577 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11578 struct intel_plane *intel_plane = to_intel_plane(plane);
11579 struct drm_rect *src = &state->src;
11580
ccc759dc
GP
11581 crtc->primary->fb = fb;
11582 crtc->x = src->x1;
11583 crtc->y = src->y1;
11584
11585 intel_plane->crtc_x = state->orig_dst.x1;
11586 intel_plane->crtc_y = state->orig_dst.y1;
11587 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11588 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11589 intel_plane->src_x = state->orig_src.x1;
11590 intel_plane->src_y = state->orig_src.y1;
11591 intel_plane->src_w = drm_rect_width(&state->orig_src);
11592 intel_plane->src_h = drm_rect_height(&state->orig_src);
11593 intel_plane->obj = obj;
4c34574f 11594
ccc759dc 11595 if (intel_crtc->active) {
465c120c 11596 /*
ccc759dc
GP
11597 * FBC does not work on some platforms for rotated
11598 * planes, so disable it when rotation is not 0 and
11599 * update it when rotation is set back to 0.
11600 *
11601 * FIXME: This is redundant with the fbc update done in
11602 * the primary plane enable function except that that
11603 * one is done too late. We eventually need to unify
11604 * this.
465c120c 11605 */
ccc759dc
GP
11606 if (intel_crtc->primary_enabled &&
11607 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11608 dev_priv->fbc.plane == intel_crtc->plane &&
11609 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11610 intel_disable_fbc(dev);
465c120c
MR
11611 }
11612
ccc759dc
GP
11613 if (state->visible) {
11614 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11615
ccc759dc
GP
11616 /* FIXME: kill this fastboot hack */
11617 intel_update_pipe_size(intel_crtc);
465c120c 11618
ccc759dc 11619 intel_crtc->primary_enabled = true;
465c120c 11620
ccc759dc
GP
11621 dev_priv->display.update_primary_plane(crtc, plane->fb,
11622 crtc->x, crtc->y);
4c34574f 11623
48404c1e 11624 /*
ccc759dc
GP
11625 * BDW signals flip done immediately if the plane
11626 * is disabled, even if the plane enable is already
11627 * armed to occur at the next vblank :(
48404c1e 11628 */
ccc759dc
GP
11629 if (IS_BROADWELL(dev) && !was_enabled)
11630 intel_wait_for_vblank(dev, intel_crtc->pipe);
11631 } else {
11632 /*
11633 * If clipping results in a non-visible primary plane,
11634 * we'll disable the primary plane. Note that this is
11635 * a bit different than what happens if userspace
11636 * explicitly disables the plane by passing fb=0
11637 * because plane->fb still gets set and pinned.
11638 */
11639 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11640 }
465c120c 11641
ccc759dc
GP
11642 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11643
11644 mutex_lock(&dev->struct_mutex);
11645 intel_update_fbc(dev);
11646 mutex_unlock(&dev->struct_mutex);
ce54d85a 11647 }
465c120c 11648
ccc759dc
GP
11649 if (old_fb && old_fb != fb) {
11650 if (intel_crtc->active)
11651 intel_wait_for_vblank(dev, intel_crtc->pipe);
11652
11653 mutex_lock(&dev->struct_mutex);
11654 intel_unpin_fb_obj(old_obj);
11655 mutex_unlock(&dev->struct_mutex);
11656 }
465c120c
MR
11657}
11658
3c692a41
GP
11659static int
11660intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11661 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11662 unsigned int crtc_w, unsigned int crtc_h,
11663 uint32_t src_x, uint32_t src_y,
11664 uint32_t src_w, uint32_t src_h)
11665{
11666 struct intel_plane_state state;
11667 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11668 int ret;
11669
11670 state.crtc = crtc;
11671 state.fb = fb;
11672
11673 /* sample coordinates in 16.16 fixed point */
11674 state.src.x1 = src_x;
11675 state.src.x2 = src_x + src_w;
11676 state.src.y1 = src_y;
11677 state.src.y2 = src_y + src_h;
11678
11679 /* integer pixels */
11680 state.dst.x1 = crtc_x;
11681 state.dst.x2 = crtc_x + crtc_w;
11682 state.dst.y1 = crtc_y;
11683 state.dst.y2 = crtc_y + crtc_h;
11684
11685 state.clip.x1 = 0;
11686 state.clip.y1 = 0;
11687 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11688 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11689
11690 state.orig_src = state.src;
11691 state.orig_dst = state.dst;
11692
11693 ret = intel_check_primary_plane(plane, &state);
11694 if (ret)
14af293f
GP
11695 return ret;
11696
11697 ret = intel_prepare_primary_plane(plane, &state);
11698 if (ret)
3c692a41
GP
11699 return ret;
11700
11701 intel_commit_primary_plane(plane, &state);
11702
11703 return 0;
11704}
11705
3d7d6510
MR
11706/* Common destruction function for both primary and cursor planes */
11707static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11708{
11709 struct intel_plane *intel_plane = to_intel_plane(plane);
11710 drm_plane_cleanup(plane);
11711 kfree(intel_plane);
11712}
11713
11714static const struct drm_plane_funcs intel_primary_plane_funcs = {
11715 .update_plane = intel_primary_plane_setplane,
11716 .disable_plane = intel_primary_plane_disable,
3d7d6510 11717 .destroy = intel_plane_destroy,
48404c1e 11718 .set_property = intel_plane_set_property
465c120c
MR
11719};
11720
11721static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11722 int pipe)
11723{
11724 struct intel_plane *primary;
11725 const uint32_t *intel_primary_formats;
11726 int num_formats;
11727
11728 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11729 if (primary == NULL)
11730 return NULL;
11731
11732 primary->can_scale = false;
11733 primary->max_downscale = 1;
11734 primary->pipe = pipe;
11735 primary->plane = pipe;
48404c1e 11736 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11737 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11738 primary->plane = !pipe;
11739
11740 if (INTEL_INFO(dev)->gen <= 3) {
11741 intel_primary_formats = intel_primary_formats_gen2;
11742 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11743 } else {
11744 intel_primary_formats = intel_primary_formats_gen4;
11745 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11746 }
11747
11748 drm_universal_plane_init(dev, &primary->base, 0,
11749 &intel_primary_plane_funcs,
11750 intel_primary_formats, num_formats,
11751 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11752
11753 if (INTEL_INFO(dev)->gen >= 4) {
11754 if (!dev->mode_config.rotation_property)
11755 dev->mode_config.rotation_property =
11756 drm_mode_create_rotation_property(dev,
11757 BIT(DRM_ROTATE_0) |
11758 BIT(DRM_ROTATE_180));
11759 if (dev->mode_config.rotation_property)
11760 drm_object_attach_property(&primary->base.base,
11761 dev->mode_config.rotation_property,
11762 primary->rotation);
11763 }
11764
465c120c
MR
11765 return &primary->base;
11766}
11767
3d7d6510
MR
11768static int
11769intel_cursor_plane_disable(struct drm_plane *plane)
11770{
11771 if (!plane->fb)
11772 return 0;
11773
11774 BUG_ON(!plane->crtc);
11775
11776 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11777}
11778
11779static int
852e787c
GP
11780intel_check_cursor_plane(struct drm_plane *plane,
11781 struct intel_plane_state *state)
3d7d6510 11782{
852e787c 11783 struct drm_crtc *crtc = state->crtc;
757f9a3e 11784 struct drm_device *dev = crtc->dev;
852e787c
GP
11785 struct drm_framebuffer *fb = state->fb;
11786 struct drm_rect *dest = &state->dst;
11787 struct drm_rect *src = &state->src;
11788 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
11789 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11790 int crtc_w, crtc_h;
11791 unsigned stride;
11792 int ret;
3d7d6510 11793
757f9a3e 11794 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 11795 src, dest, clip,
3d7d6510
MR
11796 DRM_PLANE_HELPER_NO_SCALING,
11797 DRM_PLANE_HELPER_NO_SCALING,
852e787c 11798 true, true, &state->visible);
757f9a3e
GP
11799 if (ret)
11800 return ret;
11801
11802
11803 /* if we want to turn off the cursor ignore width and height */
11804 if (!obj)
11805 return 0;
11806
757f9a3e
GP
11807 /* Check for which cursor types we support */
11808 crtc_w = drm_rect_width(&state->orig_dst);
11809 crtc_h = drm_rect_height(&state->orig_dst);
11810 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11811 DRM_DEBUG("Cursor dimension not supported\n");
11812 return -EINVAL;
11813 }
11814
11815 stride = roundup_pow_of_two(crtc_w) * 4;
11816 if (obj->base.size < stride * crtc_h) {
11817 DRM_DEBUG_KMS("buffer is too small\n");
11818 return -ENOMEM;
11819 }
11820
e391ea88
GP
11821 if (fb == crtc->cursor->fb)
11822 return 0;
11823
757f9a3e
GP
11824 /* we only need to pin inside GTT if cursor is non-phy */
11825 mutex_lock(&dev->struct_mutex);
11826 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11827 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11828 ret = -EINVAL;
11829 }
11830 mutex_unlock(&dev->struct_mutex);
11831
11832 return ret;
852e787c 11833}
3d7d6510 11834
852e787c
GP
11835static int
11836intel_commit_cursor_plane(struct drm_plane *plane,
11837 struct intel_plane_state *state)
11838{
11839 struct drm_crtc *crtc = state->crtc;
11840 struct drm_framebuffer *fb = state->fb;
11841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a919db90 11842 struct intel_plane *intel_plane = to_intel_plane(plane);
852e787c
GP
11843 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11844 struct drm_i915_gem_object *obj = intel_fb->obj;
11845 int crtc_w, crtc_h;
11846
11847 crtc->cursor_x = state->orig_dst.x1;
11848 crtc->cursor_y = state->orig_dst.y1;
a919db90
SJ
11849
11850 intel_plane->crtc_x = state->orig_dst.x1;
11851 intel_plane->crtc_y = state->orig_dst.y1;
11852 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11853 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11854 intel_plane->src_x = state->orig_src.x1;
11855 intel_plane->src_y = state->orig_src.y1;
11856 intel_plane->src_w = drm_rect_width(&state->orig_src);
11857 intel_plane->src_h = drm_rect_height(&state->orig_src);
11858 intel_plane->obj = obj;
11859
3d7d6510 11860 if (fb != crtc->cursor->fb) {
852e787c
GP
11861 crtc_w = drm_rect_width(&state->orig_dst);
11862 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
11863 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11864 } else {
852e787c 11865 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
11866
11867 intel_frontbuffer_flip(crtc->dev,
11868 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11869
3d7d6510
MR
11870 return 0;
11871 }
11872}
852e787c
GP
11873
11874static int
11875intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11876 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11877 unsigned int crtc_w, unsigned int crtc_h,
11878 uint32_t src_x, uint32_t src_y,
11879 uint32_t src_w, uint32_t src_h)
11880{
11881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11882 struct intel_plane_state state;
11883 int ret;
11884
11885 state.crtc = crtc;
11886 state.fb = fb;
11887
11888 /* sample coordinates in 16.16 fixed point */
11889 state.src.x1 = src_x;
11890 state.src.x2 = src_x + src_w;
11891 state.src.y1 = src_y;
11892 state.src.y2 = src_y + src_h;
11893
11894 /* integer pixels */
11895 state.dst.x1 = crtc_x;
11896 state.dst.x2 = crtc_x + crtc_w;
11897 state.dst.y1 = crtc_y;
11898 state.dst.y2 = crtc_y + crtc_h;
11899
11900 state.clip.x1 = 0;
11901 state.clip.y1 = 0;
11902 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11903 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11904
11905 state.orig_src = state.src;
11906 state.orig_dst = state.dst;
11907
11908 ret = intel_check_cursor_plane(plane, &state);
11909 if (ret)
11910 return ret;
11911
11912 return intel_commit_cursor_plane(plane, &state);
11913}
11914
3d7d6510
MR
11915static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11916 .update_plane = intel_cursor_plane_update,
11917 .disable_plane = intel_cursor_plane_disable,
11918 .destroy = intel_plane_destroy,
4398ad45 11919 .set_property = intel_plane_set_property,
3d7d6510
MR
11920};
11921
11922static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11923 int pipe)
11924{
11925 struct intel_plane *cursor;
11926
11927 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11928 if (cursor == NULL)
11929 return NULL;
11930
11931 cursor->can_scale = false;
11932 cursor->max_downscale = 1;
11933 cursor->pipe = pipe;
11934 cursor->plane = pipe;
4398ad45 11935 cursor->rotation = BIT(DRM_ROTATE_0);
3d7d6510
MR
11936
11937 drm_universal_plane_init(dev, &cursor->base, 0,
11938 &intel_cursor_plane_funcs,
11939 intel_cursor_formats,
11940 ARRAY_SIZE(intel_cursor_formats),
11941 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
11942
11943 if (INTEL_INFO(dev)->gen >= 4) {
11944 if (!dev->mode_config.rotation_property)
11945 dev->mode_config.rotation_property =
11946 drm_mode_create_rotation_property(dev,
11947 BIT(DRM_ROTATE_0) |
11948 BIT(DRM_ROTATE_180));
11949 if (dev->mode_config.rotation_property)
11950 drm_object_attach_property(&cursor->base.base,
11951 dev->mode_config.rotation_property,
11952 cursor->rotation);
11953 }
11954
3d7d6510
MR
11955 return &cursor->base;
11956}
11957
b358d0a6 11958static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11959{
fbee40df 11960 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11961 struct intel_crtc *intel_crtc;
3d7d6510
MR
11962 struct drm_plane *primary = NULL;
11963 struct drm_plane *cursor = NULL;
465c120c 11964 int i, ret;
79e53945 11965
955382f3 11966 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11967 if (intel_crtc == NULL)
11968 return;
11969
465c120c 11970 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11971 if (!primary)
11972 goto fail;
11973
11974 cursor = intel_cursor_plane_create(dev, pipe);
11975 if (!cursor)
11976 goto fail;
11977
465c120c 11978 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11979 cursor, &intel_crtc_funcs);
11980 if (ret)
11981 goto fail;
79e53945
JB
11982
11983 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11984 for (i = 0; i < 256; i++) {
11985 intel_crtc->lut_r[i] = i;
11986 intel_crtc->lut_g[i] = i;
11987 intel_crtc->lut_b[i] = i;
11988 }
11989
1f1c2e24
VS
11990 /*
11991 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11992 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11993 */
80824003
JB
11994 intel_crtc->pipe = pipe;
11995 intel_crtc->plane = pipe;
3a77c4c4 11996 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11997 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11998 intel_crtc->plane = !pipe;
80824003
JB
11999 }
12000
4b0e333e
CW
12001 intel_crtc->cursor_base = ~0;
12002 intel_crtc->cursor_cntl = ~0;
dc41c154 12003 intel_crtc->cursor_size = ~0;
8d7849db 12004
22fd0fab
JB
12005 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12006 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12007 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12008 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12009
79e53945 12010 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12011
12012 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12013 return;
12014
12015fail:
12016 if (primary)
12017 drm_plane_cleanup(primary);
12018 if (cursor)
12019 drm_plane_cleanup(cursor);
12020 kfree(intel_crtc);
79e53945
JB
12021}
12022
752aa88a
JB
12023enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12024{
12025 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12026 struct drm_device *dev = connector->base.dev;
752aa88a 12027
51fd371b 12028 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12029
12030 if (!encoder)
12031 return INVALID_PIPE;
12032
12033 return to_intel_crtc(encoder->crtc)->pipe;
12034}
12035
08d7b3d1 12036int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12037 struct drm_file *file)
08d7b3d1 12038{
08d7b3d1 12039 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12040 struct drm_crtc *drmmode_crtc;
c05422d5 12041 struct intel_crtc *crtc;
08d7b3d1 12042
1cff8f6b
DV
12043 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12044 return -ENODEV;
08d7b3d1 12045
7707e653 12046 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12047
7707e653 12048 if (!drmmode_crtc) {
08d7b3d1 12049 DRM_ERROR("no such CRTC id\n");
3f2c2057 12050 return -ENOENT;
08d7b3d1
CW
12051 }
12052
7707e653 12053 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12054 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12055
c05422d5 12056 return 0;
08d7b3d1
CW
12057}
12058
66a9278e 12059static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12060{
66a9278e
DV
12061 struct drm_device *dev = encoder->base.dev;
12062 struct intel_encoder *source_encoder;
79e53945 12063 int index_mask = 0;
79e53945
JB
12064 int entry = 0;
12065
b2784e15 12066 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12067 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12068 index_mask |= (1 << entry);
12069
79e53945
JB
12070 entry++;
12071 }
4ef69c7a 12072
79e53945
JB
12073 return index_mask;
12074}
12075
4d302442
CW
12076static bool has_edp_a(struct drm_device *dev)
12077{
12078 struct drm_i915_private *dev_priv = dev->dev_private;
12079
12080 if (!IS_MOBILE(dev))
12081 return false;
12082
12083 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12084 return false;
12085
e3589908 12086 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12087 return false;
12088
12089 return true;
12090}
12091
ba0fbca4
DL
12092const char *intel_output_name(int output)
12093{
12094 static const char *names[] = {
12095 [INTEL_OUTPUT_UNUSED] = "Unused",
12096 [INTEL_OUTPUT_ANALOG] = "Analog",
12097 [INTEL_OUTPUT_DVO] = "DVO",
12098 [INTEL_OUTPUT_SDVO] = "SDVO",
12099 [INTEL_OUTPUT_LVDS] = "LVDS",
12100 [INTEL_OUTPUT_TVOUT] = "TV",
12101 [INTEL_OUTPUT_HDMI] = "HDMI",
12102 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12103 [INTEL_OUTPUT_EDP] = "eDP",
12104 [INTEL_OUTPUT_DSI] = "DSI",
12105 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12106 };
12107
12108 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12109 return "Invalid";
12110
12111 return names[output];
12112}
12113
84b4e042
JB
12114static bool intel_crt_present(struct drm_device *dev)
12115{
12116 struct drm_i915_private *dev_priv = dev->dev_private;
12117
884497ed
DL
12118 if (INTEL_INFO(dev)->gen >= 9)
12119 return false;
12120
cf404ce4 12121 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12122 return false;
12123
12124 if (IS_CHERRYVIEW(dev))
12125 return false;
12126
12127 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12128 return false;
12129
12130 return true;
12131}
12132
79e53945
JB
12133static void intel_setup_outputs(struct drm_device *dev)
12134{
725e30ad 12135 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12136 struct intel_encoder *encoder;
cb0953d7 12137 bool dpd_is_edp = false;
79e53945 12138
c9093354 12139 intel_lvds_init(dev);
79e53945 12140
84b4e042 12141 if (intel_crt_present(dev))
79935fca 12142 intel_crt_init(dev);
cb0953d7 12143
affa9354 12144 if (HAS_DDI(dev)) {
0e72a5b5
ED
12145 int found;
12146
12147 /* Haswell uses DDI functions to detect digital outputs */
12148 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12149 /* DDI A only supports eDP */
12150 if (found)
12151 intel_ddi_init(dev, PORT_A);
12152
12153 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12154 * register */
12155 found = I915_READ(SFUSE_STRAP);
12156
12157 if (found & SFUSE_STRAP_DDIB_DETECTED)
12158 intel_ddi_init(dev, PORT_B);
12159 if (found & SFUSE_STRAP_DDIC_DETECTED)
12160 intel_ddi_init(dev, PORT_C);
12161 if (found & SFUSE_STRAP_DDID_DETECTED)
12162 intel_ddi_init(dev, PORT_D);
12163 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12164 int found;
5d8a7752 12165 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12166
12167 if (has_edp_a(dev))
12168 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12169
dc0fa718 12170 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12171 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12172 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12173 if (!found)
e2debe91 12174 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12175 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12176 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12177 }
12178
dc0fa718 12179 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12180 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12181
dc0fa718 12182 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12183 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12184
5eb08b69 12185 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12186 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12187
270b3042 12188 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12189 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12190 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12191 /*
12192 * The DP_DETECTED bit is the latched state of the DDC
12193 * SDA pin at boot. However since eDP doesn't require DDC
12194 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12195 * eDP ports may have been muxed to an alternate function.
12196 * Thus we can't rely on the DP_DETECTED bit alone to detect
12197 * eDP ports. Consult the VBT as well as DP_DETECTED to
12198 * detect eDP ports.
12199 */
12200 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12201 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12202 PORT_B);
e17ac6db
VS
12203 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12204 intel_dp_is_edp(dev, PORT_B))
12205 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12206
e17ac6db 12207 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12208 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12209 PORT_C);
e17ac6db
VS
12210 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12211 intel_dp_is_edp(dev, PORT_C))
12212 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12213
9418c1f1 12214 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12215 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12216 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12217 PORT_D);
e17ac6db
VS
12218 /* eDP not supported on port D, so don't check VBT */
12219 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12220 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12221 }
12222
3cfca973 12223 intel_dsi_init(dev);
103a196f 12224 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12225 bool found = false;
7d57382e 12226
e2debe91 12227 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12228 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12229 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12230 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12231 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12232 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12233 }
27185ae1 12234
e7281eab 12235 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12236 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12237 }
13520b05
KH
12238
12239 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12240
e2debe91 12241 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12242 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12243 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12244 }
27185ae1 12245
e2debe91 12246 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12247
b01f2c3a
JB
12248 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12249 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12250 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12251 }
e7281eab 12252 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12253 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12254 }
27185ae1 12255
b01f2c3a 12256 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12257 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12258 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12259 } else if (IS_GEN2(dev))
79e53945
JB
12260 intel_dvo_init(dev);
12261
103a196f 12262 if (SUPPORTS_TV(dev))
79e53945
JB
12263 intel_tv_init(dev);
12264
7c8f8a70
RV
12265 intel_edp_psr_init(dev);
12266
b2784e15 12267 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12268 encoder->base.possible_crtcs = encoder->crtc_mask;
12269 encoder->base.possible_clones =
66a9278e 12270 intel_encoder_clones(encoder);
79e53945 12271 }
47356eb6 12272
dde86e2d 12273 intel_init_pch_refclk(dev);
270b3042
DV
12274
12275 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12276}
12277
12278static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12279{
60a5ca01 12280 struct drm_device *dev = fb->dev;
79e53945 12281 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12282
ef2d633e 12283 drm_framebuffer_cleanup(fb);
60a5ca01 12284 mutex_lock(&dev->struct_mutex);
ef2d633e 12285 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12286 drm_gem_object_unreference(&intel_fb->obj->base);
12287 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12288 kfree(intel_fb);
12289}
12290
12291static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12292 struct drm_file *file,
79e53945
JB
12293 unsigned int *handle)
12294{
12295 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12296 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12297
05394f39 12298 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12299}
12300
12301static const struct drm_framebuffer_funcs intel_fb_funcs = {
12302 .destroy = intel_user_framebuffer_destroy,
12303 .create_handle = intel_user_framebuffer_create_handle,
12304};
12305
b5ea642a
DV
12306static int intel_framebuffer_init(struct drm_device *dev,
12307 struct intel_framebuffer *intel_fb,
12308 struct drm_mode_fb_cmd2 *mode_cmd,
12309 struct drm_i915_gem_object *obj)
79e53945 12310{
a57ce0b2 12311 int aligned_height;
a35cdaa0 12312 int pitch_limit;
79e53945
JB
12313 int ret;
12314
dd4916c5
DV
12315 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12316
c16ed4be
CW
12317 if (obj->tiling_mode == I915_TILING_Y) {
12318 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12319 return -EINVAL;
c16ed4be 12320 }
57cd6508 12321
c16ed4be
CW
12322 if (mode_cmd->pitches[0] & 63) {
12323 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12324 mode_cmd->pitches[0]);
57cd6508 12325 return -EINVAL;
c16ed4be 12326 }
57cd6508 12327
a35cdaa0
CW
12328 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12329 pitch_limit = 32*1024;
12330 } else if (INTEL_INFO(dev)->gen >= 4) {
12331 if (obj->tiling_mode)
12332 pitch_limit = 16*1024;
12333 else
12334 pitch_limit = 32*1024;
12335 } else if (INTEL_INFO(dev)->gen >= 3) {
12336 if (obj->tiling_mode)
12337 pitch_limit = 8*1024;
12338 else
12339 pitch_limit = 16*1024;
12340 } else
12341 /* XXX DSPC is limited to 4k tiled */
12342 pitch_limit = 8*1024;
12343
12344 if (mode_cmd->pitches[0] > pitch_limit) {
12345 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12346 obj->tiling_mode ? "tiled" : "linear",
12347 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12348 return -EINVAL;
c16ed4be 12349 }
5d7bd705
VS
12350
12351 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12352 mode_cmd->pitches[0] != obj->stride) {
12353 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12354 mode_cmd->pitches[0], obj->stride);
5d7bd705 12355 return -EINVAL;
c16ed4be 12356 }
5d7bd705 12357
57779d06 12358 /* Reject formats not supported by any plane early. */
308e5bcb 12359 switch (mode_cmd->pixel_format) {
57779d06 12360 case DRM_FORMAT_C8:
04b3924d
VS
12361 case DRM_FORMAT_RGB565:
12362 case DRM_FORMAT_XRGB8888:
12363 case DRM_FORMAT_ARGB8888:
57779d06
VS
12364 break;
12365 case DRM_FORMAT_XRGB1555:
12366 case DRM_FORMAT_ARGB1555:
c16ed4be 12367 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12368 DRM_DEBUG("unsupported pixel format: %s\n",
12369 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12370 return -EINVAL;
c16ed4be 12371 }
57779d06
VS
12372 break;
12373 case DRM_FORMAT_XBGR8888:
12374 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12375 case DRM_FORMAT_XRGB2101010:
12376 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12377 case DRM_FORMAT_XBGR2101010:
12378 case DRM_FORMAT_ABGR2101010:
c16ed4be 12379 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12380 DRM_DEBUG("unsupported pixel format: %s\n",
12381 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12382 return -EINVAL;
c16ed4be 12383 }
b5626747 12384 break;
04b3924d
VS
12385 case DRM_FORMAT_YUYV:
12386 case DRM_FORMAT_UYVY:
12387 case DRM_FORMAT_YVYU:
12388 case DRM_FORMAT_VYUY:
c16ed4be 12389 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12390 DRM_DEBUG("unsupported pixel format: %s\n",
12391 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12392 return -EINVAL;
c16ed4be 12393 }
57cd6508
CW
12394 break;
12395 default:
4ee62c76
VS
12396 DRM_DEBUG("unsupported pixel format: %s\n",
12397 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12398 return -EINVAL;
12399 }
12400
90f9a336
VS
12401 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12402 if (mode_cmd->offsets[0] != 0)
12403 return -EINVAL;
12404
a57ce0b2
JB
12405 aligned_height = intel_align_height(dev, mode_cmd->height,
12406 obj->tiling_mode);
53155c0a
DV
12407 /* FIXME drm helper for size checks (especially planar formats)? */
12408 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12409 return -EINVAL;
12410
c7d73f6a
DV
12411 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12412 intel_fb->obj = obj;
80075d49 12413 intel_fb->obj->framebuffer_references++;
c7d73f6a 12414
79e53945
JB
12415 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12416 if (ret) {
12417 DRM_ERROR("framebuffer init failed %d\n", ret);
12418 return ret;
12419 }
12420
79e53945
JB
12421 return 0;
12422}
12423
79e53945
JB
12424static struct drm_framebuffer *
12425intel_user_framebuffer_create(struct drm_device *dev,
12426 struct drm_file *filp,
308e5bcb 12427 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12428{
05394f39 12429 struct drm_i915_gem_object *obj;
79e53945 12430
308e5bcb
JB
12431 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12432 mode_cmd->handles[0]));
c8725226 12433 if (&obj->base == NULL)
cce13ff7 12434 return ERR_PTR(-ENOENT);
79e53945 12435
d2dff872 12436 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12437}
12438
4520f53a 12439#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12440static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12441{
12442}
12443#endif
12444
79e53945 12445static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12446 .fb_create = intel_user_framebuffer_create,
0632fef6 12447 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12448};
12449
e70236a8
JB
12450/* Set up chip specific display functions */
12451static void intel_init_display(struct drm_device *dev)
12452{
12453 struct drm_i915_private *dev_priv = dev->dev_private;
12454
ee9300bb
DV
12455 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12456 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12457 else if (IS_CHERRYVIEW(dev))
12458 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12459 else if (IS_VALLEYVIEW(dev))
12460 dev_priv->display.find_dpll = vlv_find_best_dpll;
12461 else if (IS_PINEVIEW(dev))
12462 dev_priv->display.find_dpll = pnv_find_best_dpll;
12463 else
12464 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12465
affa9354 12466 if (HAS_DDI(dev)) {
0e8ffe1b 12467 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12468 dev_priv->display.get_plane_config = ironlake_get_plane_config;
797d0259
ACO
12469 dev_priv->display.crtc_compute_clock =
12470 haswell_crtc_compute_clock;
4f771f10
PZ
12471 dev_priv->display.crtc_enable = haswell_crtc_enable;
12472 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12473 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12474 if (INTEL_INFO(dev)->gen >= 9)
12475 dev_priv->display.update_primary_plane =
12476 skylake_update_primary_plane;
12477 else
12478 dev_priv->display.update_primary_plane =
12479 ironlake_update_primary_plane;
09b4ddf9 12480 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12481 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12482 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12483 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12484 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12485 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12486 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12487 dev_priv->display.update_primary_plane =
12488 ironlake_update_primary_plane;
89b667f8
JB
12489 } else if (IS_VALLEYVIEW(dev)) {
12490 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12491 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12492 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12493 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12494 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12495 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12496 dev_priv->display.update_primary_plane =
12497 i9xx_update_primary_plane;
f564048e 12498 } else {
0e8ffe1b 12499 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12500 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12501 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12502 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12503 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12504 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12505 dev_priv->display.update_primary_plane =
12506 i9xx_update_primary_plane;
f564048e 12507 }
e70236a8 12508
e70236a8 12509 /* Returns the core display clock speed */
25eb05fc
JB
12510 if (IS_VALLEYVIEW(dev))
12511 dev_priv->display.get_display_clock_speed =
12512 valleyview_get_display_clock_speed;
12513 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12514 dev_priv->display.get_display_clock_speed =
12515 i945_get_display_clock_speed;
12516 else if (IS_I915G(dev))
12517 dev_priv->display.get_display_clock_speed =
12518 i915_get_display_clock_speed;
257a7ffc 12519 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12520 dev_priv->display.get_display_clock_speed =
12521 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12522 else if (IS_PINEVIEW(dev))
12523 dev_priv->display.get_display_clock_speed =
12524 pnv_get_display_clock_speed;
e70236a8
JB
12525 else if (IS_I915GM(dev))
12526 dev_priv->display.get_display_clock_speed =
12527 i915gm_get_display_clock_speed;
12528 else if (IS_I865G(dev))
12529 dev_priv->display.get_display_clock_speed =
12530 i865_get_display_clock_speed;
f0f8a9ce 12531 else if (IS_I85X(dev))
e70236a8
JB
12532 dev_priv->display.get_display_clock_speed =
12533 i855_get_display_clock_speed;
12534 else /* 852, 830 */
12535 dev_priv->display.get_display_clock_speed =
12536 i830_get_display_clock_speed;
12537
7c10a2b5 12538 if (IS_GEN5(dev)) {
3bb11b53 12539 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12540 } else if (IS_GEN6(dev)) {
12541 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12542 dev_priv->display.modeset_global_resources =
12543 snb_modeset_global_resources;
12544 } else if (IS_IVYBRIDGE(dev)) {
12545 /* FIXME: detect B0+ stepping and use auto training */
12546 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12547 dev_priv->display.modeset_global_resources =
12548 ivb_modeset_global_resources;
059b2fe9 12549 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12550 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
3bb11b53
SJ
12551 dev_priv->display.modeset_global_resources =
12552 haswell_modeset_global_resources;
30a970c6
JB
12553 } else if (IS_VALLEYVIEW(dev)) {
12554 dev_priv->display.modeset_global_resources =
12555 valleyview_modeset_global_resources;
02c29259 12556 } else if (INTEL_INFO(dev)->gen >= 9) {
02c29259
S
12557 dev_priv->display.modeset_global_resources =
12558 haswell_modeset_global_resources;
e70236a8 12559 }
8c9f3aaf
JB
12560
12561 /* Default just returns -ENODEV to indicate unsupported */
12562 dev_priv->display.queue_flip = intel_default_queue_flip;
12563
12564 switch (INTEL_INFO(dev)->gen) {
12565 case 2:
12566 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12567 break;
12568
12569 case 3:
12570 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12571 break;
12572
12573 case 4:
12574 case 5:
12575 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12576 break;
12577
12578 case 6:
12579 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12580 break;
7c9017e5 12581 case 7:
4e0bbc31 12582 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12583 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12584 break;
8c9f3aaf 12585 }
7bd688cd
JN
12586
12587 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12588
12589 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12590}
12591
b690e96c
JB
12592/*
12593 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12594 * resume, or other times. This quirk makes sure that's the case for
12595 * affected systems.
12596 */
0206e353 12597static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12598{
12599 struct drm_i915_private *dev_priv = dev->dev_private;
12600
12601 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12602 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12603}
12604
b6b5d049
VS
12605static void quirk_pipeb_force(struct drm_device *dev)
12606{
12607 struct drm_i915_private *dev_priv = dev->dev_private;
12608
12609 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12610 DRM_INFO("applying pipe b force quirk\n");
12611}
12612
435793df
KP
12613/*
12614 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12615 */
12616static void quirk_ssc_force_disable(struct drm_device *dev)
12617{
12618 struct drm_i915_private *dev_priv = dev->dev_private;
12619 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12620 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12621}
12622
4dca20ef 12623/*
5a15ab5b
CE
12624 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12625 * brightness value
4dca20ef
CE
12626 */
12627static void quirk_invert_brightness(struct drm_device *dev)
12628{
12629 struct drm_i915_private *dev_priv = dev->dev_private;
12630 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12631 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12632}
12633
9c72cc6f
SD
12634/* Some VBT's incorrectly indicate no backlight is present */
12635static void quirk_backlight_present(struct drm_device *dev)
12636{
12637 struct drm_i915_private *dev_priv = dev->dev_private;
12638 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12639 DRM_INFO("applying backlight present quirk\n");
12640}
12641
b690e96c
JB
12642struct intel_quirk {
12643 int device;
12644 int subsystem_vendor;
12645 int subsystem_device;
12646 void (*hook)(struct drm_device *dev);
12647};
12648
5f85f176
EE
12649/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12650struct intel_dmi_quirk {
12651 void (*hook)(struct drm_device *dev);
12652 const struct dmi_system_id (*dmi_id_list)[];
12653};
12654
12655static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12656{
12657 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12658 return 1;
12659}
12660
12661static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12662 {
12663 .dmi_id_list = &(const struct dmi_system_id[]) {
12664 {
12665 .callback = intel_dmi_reverse_brightness,
12666 .ident = "NCR Corporation",
12667 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12668 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12669 },
12670 },
12671 { } /* terminating entry */
12672 },
12673 .hook = quirk_invert_brightness,
12674 },
12675};
12676
c43b5634 12677static struct intel_quirk intel_quirks[] = {
b690e96c 12678 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12679 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12680
b690e96c
JB
12681 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12682 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12683
b690e96c
JB
12684 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12685 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12686
5f080c0f
VS
12687 /* 830 needs to leave pipe A & dpll A up */
12688 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12689
b6b5d049
VS
12690 /* 830 needs to leave pipe B & dpll B up */
12691 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12692
435793df
KP
12693 /* Lenovo U160 cannot use SSC on LVDS */
12694 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12695
12696 /* Sony Vaio Y cannot use SSC on LVDS */
12697 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12698
be505f64
AH
12699 /* Acer Aspire 5734Z must invert backlight brightness */
12700 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12701
12702 /* Acer/eMachines G725 */
12703 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12704
12705 /* Acer/eMachines e725 */
12706 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12707
12708 /* Acer/Packard Bell NCL20 */
12709 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12710
12711 /* Acer Aspire 4736Z */
12712 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12713
12714 /* Acer Aspire 5336 */
12715 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12716
12717 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12718 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12719
dfb3d47b
SD
12720 /* Acer C720 Chromebook (Core i3 4005U) */
12721 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12722
d4967d8c
SD
12723 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12724 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12725
12726 /* HP Chromebook 14 (Celeron 2955U) */
12727 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12728};
12729
12730static void intel_init_quirks(struct drm_device *dev)
12731{
12732 struct pci_dev *d = dev->pdev;
12733 int i;
12734
12735 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12736 struct intel_quirk *q = &intel_quirks[i];
12737
12738 if (d->device == q->device &&
12739 (d->subsystem_vendor == q->subsystem_vendor ||
12740 q->subsystem_vendor == PCI_ANY_ID) &&
12741 (d->subsystem_device == q->subsystem_device ||
12742 q->subsystem_device == PCI_ANY_ID))
12743 q->hook(dev);
12744 }
5f85f176
EE
12745 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12746 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12747 intel_dmi_quirks[i].hook(dev);
12748 }
b690e96c
JB
12749}
12750
9cce37f4
JB
12751/* Disable the VGA plane that we never use */
12752static void i915_disable_vga(struct drm_device *dev)
12753{
12754 struct drm_i915_private *dev_priv = dev->dev_private;
12755 u8 sr1;
766aa1c4 12756 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12757
2b37c616 12758 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12759 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12760 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12761 sr1 = inb(VGA_SR_DATA);
12762 outb(sr1 | 1<<5, VGA_SR_DATA);
12763 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12764 udelay(300);
12765
69769f9a
VS
12766 /*
12767 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12768 * from S3 without preserving (some of?) the other bits.
12769 */
12770 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12771 POSTING_READ(vga_reg);
12772}
12773
f817586c
DV
12774void intel_modeset_init_hw(struct drm_device *dev)
12775{
a8f78b58
ED
12776 intel_prepare_ddi(dev);
12777
f8bf63fd
VS
12778 if (IS_VALLEYVIEW(dev))
12779 vlv_update_cdclk(dev);
12780
f817586c
DV
12781 intel_init_clock_gating(dev);
12782
8090c6b9 12783 intel_enable_gt_powersave(dev);
f817586c
DV
12784}
12785
79e53945
JB
12786void intel_modeset_init(struct drm_device *dev)
12787{
652c393a 12788 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12789 int sprite, ret;
8cc87b75 12790 enum pipe pipe;
46f297fb 12791 struct intel_crtc *crtc;
79e53945
JB
12792
12793 drm_mode_config_init(dev);
12794
12795 dev->mode_config.min_width = 0;
12796 dev->mode_config.min_height = 0;
12797
019d96cb
DA
12798 dev->mode_config.preferred_depth = 24;
12799 dev->mode_config.prefer_shadow = 1;
12800
e6ecefaa 12801 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12802
b690e96c
JB
12803 intel_init_quirks(dev);
12804
1fa61106
ED
12805 intel_init_pm(dev);
12806
e3c74757
BW
12807 if (INTEL_INFO(dev)->num_pipes == 0)
12808 return;
12809
e70236a8 12810 intel_init_display(dev);
7c10a2b5 12811 intel_init_audio(dev);
e70236a8 12812
a6c45cf0
CW
12813 if (IS_GEN2(dev)) {
12814 dev->mode_config.max_width = 2048;
12815 dev->mode_config.max_height = 2048;
12816 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12817 dev->mode_config.max_width = 4096;
12818 dev->mode_config.max_height = 4096;
79e53945 12819 } else {
a6c45cf0
CW
12820 dev->mode_config.max_width = 8192;
12821 dev->mode_config.max_height = 8192;
79e53945 12822 }
068be561 12823
dc41c154
VS
12824 if (IS_845G(dev) || IS_I865G(dev)) {
12825 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12826 dev->mode_config.cursor_height = 1023;
12827 } else if (IS_GEN2(dev)) {
068be561
DL
12828 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12829 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12830 } else {
12831 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12832 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12833 }
12834
5d4545ae 12835 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12836
28c97730 12837 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12838 INTEL_INFO(dev)->num_pipes,
12839 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12840
055e393f 12841 for_each_pipe(dev_priv, pipe) {
8cc87b75 12842 intel_crtc_init(dev, pipe);
1fe47785
DL
12843 for_each_sprite(pipe, sprite) {
12844 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12845 if (ret)
06da8da2 12846 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12847 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12848 }
79e53945
JB
12849 }
12850
f42bb70d
JB
12851 intel_init_dpio(dev);
12852
e72f9fbf 12853 intel_shared_dpll_init(dev);
ee7b9f93 12854
69769f9a
VS
12855 /* save the BIOS value before clobbering it */
12856 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12857 /* Just disable it once at startup */
12858 i915_disable_vga(dev);
79e53945 12859 intel_setup_outputs(dev);
11be49eb
CW
12860
12861 /* Just in case the BIOS is doing something questionable. */
12862 intel_disable_fbc(dev);
fa9fa083 12863
6e9f798d 12864 drm_modeset_lock_all(dev);
fa9fa083 12865 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12866 drm_modeset_unlock_all(dev);
46f297fb 12867
d3fcc808 12868 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12869 if (!crtc->active)
12870 continue;
12871
46f297fb 12872 /*
46f297fb
JB
12873 * Note that reserving the BIOS fb up front prevents us
12874 * from stuffing other stolen allocations like the ring
12875 * on top. This prevents some ugliness at boot time, and
12876 * can even allow for smooth boot transitions if the BIOS
12877 * fb is large enough for the active pipe configuration.
12878 */
12879 if (dev_priv->display.get_plane_config) {
12880 dev_priv->display.get_plane_config(crtc,
12881 &crtc->plane_config);
12882 /*
12883 * If the fb is shared between multiple heads, we'll
12884 * just get the first one.
12885 */
484b41dd 12886 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12887 }
46f297fb 12888 }
2c7111db
CW
12889}
12890
7fad798e
DV
12891static void intel_enable_pipe_a(struct drm_device *dev)
12892{
12893 struct intel_connector *connector;
12894 struct drm_connector *crt = NULL;
12895 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12896 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12897
12898 /* We can't just switch on the pipe A, we need to set things up with a
12899 * proper mode and output configuration. As a gross hack, enable pipe A
12900 * by enabling the load detect pipe once. */
12901 list_for_each_entry(connector,
12902 &dev->mode_config.connector_list,
12903 base.head) {
12904 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12905 crt = &connector->base;
12906 break;
12907 }
12908 }
12909
12910 if (!crt)
12911 return;
12912
208bf9fd
VS
12913 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12914 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12915}
12916
fa555837
DV
12917static bool
12918intel_check_plane_mapping(struct intel_crtc *crtc)
12919{
7eb552ae
BW
12920 struct drm_device *dev = crtc->base.dev;
12921 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12922 u32 reg, val;
12923
7eb552ae 12924 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12925 return true;
12926
12927 reg = DSPCNTR(!crtc->plane);
12928 val = I915_READ(reg);
12929
12930 if ((val & DISPLAY_PLANE_ENABLE) &&
12931 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12932 return false;
12933
12934 return true;
12935}
12936
24929352
DV
12937static void intel_sanitize_crtc(struct intel_crtc *crtc)
12938{
12939 struct drm_device *dev = crtc->base.dev;
12940 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12941 u32 reg;
24929352 12942
24929352 12943 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12944 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12945 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12946
d3eaf884 12947 /* restore vblank interrupts to correct state */
d297e103
VS
12948 if (crtc->active) {
12949 update_scanline_offset(crtc);
d3eaf884 12950 drm_vblank_on(dev, crtc->pipe);
d297e103 12951 } else
d3eaf884
VS
12952 drm_vblank_off(dev, crtc->pipe);
12953
24929352 12954 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12955 * disable the crtc (and hence change the state) if it is wrong. Note
12956 * that gen4+ has a fixed plane -> pipe mapping. */
12957 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12958 struct intel_connector *connector;
12959 bool plane;
12960
24929352
DV
12961 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12962 crtc->base.base.id);
12963
12964 /* Pipe has the wrong plane attached and the plane is active.
12965 * Temporarily change the plane mapping and disable everything
12966 * ... */
12967 plane = crtc->plane;
12968 crtc->plane = !plane;
9c8958bc 12969 crtc->primary_enabled = true;
24929352
DV
12970 dev_priv->display.crtc_disable(&crtc->base);
12971 crtc->plane = plane;
12972
12973 /* ... and break all links. */
12974 list_for_each_entry(connector, &dev->mode_config.connector_list,
12975 base.head) {
12976 if (connector->encoder->base.crtc != &crtc->base)
12977 continue;
12978
7f1950fb
EE
12979 connector->base.dpms = DRM_MODE_DPMS_OFF;
12980 connector->base.encoder = NULL;
24929352 12981 }
7f1950fb
EE
12982 /* multiple connectors may have the same encoder:
12983 * handle them and break crtc link separately */
12984 list_for_each_entry(connector, &dev->mode_config.connector_list,
12985 base.head)
12986 if (connector->encoder->base.crtc == &crtc->base) {
12987 connector->encoder->base.crtc = NULL;
12988 connector->encoder->connectors_active = false;
12989 }
24929352
DV
12990
12991 WARN_ON(crtc->active);
12992 crtc->base.enabled = false;
12993 }
24929352 12994
7fad798e
DV
12995 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12996 crtc->pipe == PIPE_A && !crtc->active) {
12997 /* BIOS forgot to enable pipe A, this mostly happens after
12998 * resume. Force-enable the pipe to fix this, the update_dpms
12999 * call below we restore the pipe to the right state, but leave
13000 * the required bits on. */
13001 intel_enable_pipe_a(dev);
13002 }
13003
24929352
DV
13004 /* Adjust the state of the output pipe according to whether we
13005 * have active connectors/encoders. */
13006 intel_crtc_update_dpms(&crtc->base);
13007
13008 if (crtc->active != crtc->base.enabled) {
13009 struct intel_encoder *encoder;
13010
13011 /* This can happen either due to bugs in the get_hw_state
13012 * functions or because the pipe is force-enabled due to the
13013 * pipe A quirk. */
13014 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13015 crtc->base.base.id,
13016 crtc->base.enabled ? "enabled" : "disabled",
13017 crtc->active ? "enabled" : "disabled");
13018
13019 crtc->base.enabled = crtc->active;
13020
13021 /* Because we only establish the connector -> encoder ->
13022 * crtc links if something is active, this means the
13023 * crtc is now deactivated. Break the links. connector
13024 * -> encoder links are only establish when things are
13025 * actually up, hence no need to break them. */
13026 WARN_ON(crtc->active);
13027
13028 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13029 WARN_ON(encoder->connectors_active);
13030 encoder->base.crtc = NULL;
13031 }
13032 }
c5ab3bc0 13033
a3ed6aad 13034 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13035 /*
13036 * We start out with underrun reporting disabled to avoid races.
13037 * For correct bookkeeping mark this on active crtcs.
13038 *
c5ab3bc0
DV
13039 * Also on gmch platforms we dont have any hardware bits to
13040 * disable the underrun reporting. Which means we need to start
13041 * out with underrun reporting disabled also on inactive pipes,
13042 * since otherwise we'll complain about the garbage we read when
13043 * e.g. coming up after runtime pm.
13044 *
4cc31489
DV
13045 * No protection against concurrent access is required - at
13046 * worst a fifo underrun happens which also sets this to false.
13047 */
13048 crtc->cpu_fifo_underrun_disabled = true;
13049 crtc->pch_fifo_underrun_disabled = true;
13050 }
24929352
DV
13051}
13052
13053static void intel_sanitize_encoder(struct intel_encoder *encoder)
13054{
13055 struct intel_connector *connector;
13056 struct drm_device *dev = encoder->base.dev;
13057
13058 /* We need to check both for a crtc link (meaning that the
13059 * encoder is active and trying to read from a pipe) and the
13060 * pipe itself being active. */
13061 bool has_active_crtc = encoder->base.crtc &&
13062 to_intel_crtc(encoder->base.crtc)->active;
13063
13064 if (encoder->connectors_active && !has_active_crtc) {
13065 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13066 encoder->base.base.id,
8e329a03 13067 encoder->base.name);
24929352
DV
13068
13069 /* Connector is active, but has no active pipe. This is
13070 * fallout from our resume register restoring. Disable
13071 * the encoder manually again. */
13072 if (encoder->base.crtc) {
13073 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13074 encoder->base.base.id,
8e329a03 13075 encoder->base.name);
24929352 13076 encoder->disable(encoder);
a62d1497
VS
13077 if (encoder->post_disable)
13078 encoder->post_disable(encoder);
24929352 13079 }
7f1950fb
EE
13080 encoder->base.crtc = NULL;
13081 encoder->connectors_active = false;
24929352
DV
13082
13083 /* Inconsistent output/port/pipe state happens presumably due to
13084 * a bug in one of the get_hw_state functions. Or someplace else
13085 * in our code, like the register restore mess on resume. Clamp
13086 * things to off as a safer default. */
13087 list_for_each_entry(connector,
13088 &dev->mode_config.connector_list,
13089 base.head) {
13090 if (connector->encoder != encoder)
13091 continue;
7f1950fb
EE
13092 connector->base.dpms = DRM_MODE_DPMS_OFF;
13093 connector->base.encoder = NULL;
24929352
DV
13094 }
13095 }
13096 /* Enabled encoders without active connectors will be fixed in
13097 * the crtc fixup. */
13098}
13099
04098753 13100void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13101{
13102 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13103 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13104
04098753
ID
13105 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13106 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13107 i915_disable_vga(dev);
13108 }
13109}
13110
13111void i915_redisable_vga(struct drm_device *dev)
13112{
13113 struct drm_i915_private *dev_priv = dev->dev_private;
13114
8dc8a27c
PZ
13115 /* This function can be called both from intel_modeset_setup_hw_state or
13116 * at a very early point in our resume sequence, where the power well
13117 * structures are not yet restored. Since this function is at a very
13118 * paranoid "someone might have enabled VGA while we were not looking"
13119 * level, just check if the power well is enabled instead of trying to
13120 * follow the "don't touch the power well if we don't need it" policy
13121 * the rest of the driver uses. */
f458ebbc 13122 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13123 return;
13124
04098753 13125 i915_redisable_vga_power_on(dev);
0fde901f
KM
13126}
13127
98ec7739
VS
13128static bool primary_get_hw_state(struct intel_crtc *crtc)
13129{
13130 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13131
13132 if (!crtc->active)
13133 return false;
13134
13135 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13136}
13137
30e984df 13138static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13139{
13140 struct drm_i915_private *dev_priv = dev->dev_private;
13141 enum pipe pipe;
24929352
DV
13142 struct intel_crtc *crtc;
13143 struct intel_encoder *encoder;
13144 struct intel_connector *connector;
5358901f 13145 int i;
24929352 13146
d3fcc808 13147 for_each_intel_crtc(dev, crtc) {
88adfff1 13148 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13149
9953599b
DV
13150 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13151
0e8ffe1b
DV
13152 crtc->active = dev_priv->display.get_pipe_config(crtc,
13153 &crtc->config);
24929352
DV
13154
13155 crtc->base.enabled = crtc->active;
98ec7739 13156 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13157
13158 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13159 crtc->base.base.id,
13160 crtc->active ? "enabled" : "disabled");
13161 }
13162
5358901f
DV
13163 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13164 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13165
3e369b76
ACO
13166 pll->on = pll->get_hw_state(dev_priv, pll,
13167 &pll->config.hw_state);
5358901f 13168 pll->active = 0;
3e369b76 13169 pll->config.crtc_mask = 0;
d3fcc808 13170 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13171 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13172 pll->active++;
3e369b76 13173 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13174 }
5358901f 13175 }
5358901f 13176
1e6f2ddc 13177 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13178 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13179
3e369b76 13180 if (pll->config.crtc_mask)
bd2bb1b9 13181 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13182 }
13183
b2784e15 13184 for_each_intel_encoder(dev, encoder) {
24929352
DV
13185 pipe = 0;
13186
13187 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13188 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13189 encoder->base.crtc = &crtc->base;
1d37b689 13190 encoder->get_config(encoder, &crtc->config);
24929352
DV
13191 } else {
13192 encoder->base.crtc = NULL;
13193 }
13194
13195 encoder->connectors_active = false;
6f2bcceb 13196 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13197 encoder->base.base.id,
8e329a03 13198 encoder->base.name,
24929352 13199 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13200 pipe_name(pipe));
24929352
DV
13201 }
13202
13203 list_for_each_entry(connector, &dev->mode_config.connector_list,
13204 base.head) {
13205 if (connector->get_hw_state(connector)) {
13206 connector->base.dpms = DRM_MODE_DPMS_ON;
13207 connector->encoder->connectors_active = true;
13208 connector->base.encoder = &connector->encoder->base;
13209 } else {
13210 connector->base.dpms = DRM_MODE_DPMS_OFF;
13211 connector->base.encoder = NULL;
13212 }
13213 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13214 connector->base.base.id,
c23cc417 13215 connector->base.name,
24929352
DV
13216 connector->base.encoder ? "enabled" : "disabled");
13217 }
30e984df
DV
13218}
13219
13220/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13221 * and i915 state tracking structures. */
13222void intel_modeset_setup_hw_state(struct drm_device *dev,
13223 bool force_restore)
13224{
13225 struct drm_i915_private *dev_priv = dev->dev_private;
13226 enum pipe pipe;
30e984df
DV
13227 struct intel_crtc *crtc;
13228 struct intel_encoder *encoder;
35c95375 13229 int i;
30e984df
DV
13230
13231 intel_modeset_readout_hw_state(dev);
24929352 13232
babea61d
JB
13233 /*
13234 * Now that we have the config, copy it to each CRTC struct
13235 * Note that this could go away if we move to using crtc_config
13236 * checking everywhere.
13237 */
d3fcc808 13238 for_each_intel_crtc(dev, crtc) {
d330a953 13239 if (crtc->active && i915.fastboot) {
f6a83288 13240 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13241 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13242 crtc->base.base.id);
13243 drm_mode_debug_printmodeline(&crtc->base.mode);
13244 }
13245 }
13246
24929352 13247 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13248 for_each_intel_encoder(dev, encoder) {
24929352
DV
13249 intel_sanitize_encoder(encoder);
13250 }
13251
055e393f 13252 for_each_pipe(dev_priv, pipe) {
24929352
DV
13253 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13254 intel_sanitize_crtc(crtc);
c0b03411 13255 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13256 }
9a935856 13257
35c95375
DV
13258 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13259 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13260
13261 if (!pll->on || pll->active)
13262 continue;
13263
13264 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13265
13266 pll->disable(dev_priv, pll);
13267 pll->on = false;
13268 }
13269
96f90c54 13270 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13271 ilk_wm_get_hw_state(dev);
13272
45e2b5f6 13273 if (force_restore) {
7d0bc1ea
VS
13274 i915_redisable_vga(dev);
13275
f30da187
DV
13276 /*
13277 * We need to use raw interfaces for restoring state to avoid
13278 * checking (bogus) intermediate states.
13279 */
055e393f 13280 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13281 struct drm_crtc *crtc =
13282 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13283
13284 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13285 crtc->primary->fb);
45e2b5f6
DV
13286 }
13287 } else {
13288 intel_modeset_update_staged_output_state(dev);
13289 }
8af6cf88
DV
13290
13291 intel_modeset_check_state(dev);
2c7111db
CW
13292}
13293
13294void intel_modeset_gem_init(struct drm_device *dev)
13295{
484b41dd 13296 struct drm_crtc *c;
2ff8fde1 13297 struct drm_i915_gem_object *obj;
484b41dd 13298
ae48434c
ID
13299 mutex_lock(&dev->struct_mutex);
13300 intel_init_gt_powersave(dev);
13301 mutex_unlock(&dev->struct_mutex);
13302
1833b134 13303 intel_modeset_init_hw(dev);
02e792fb
DV
13304
13305 intel_setup_overlay(dev);
484b41dd
JB
13306
13307 /*
13308 * Make sure any fbs we allocated at startup are properly
13309 * pinned & fenced. When we do the allocation it's too early
13310 * for this.
13311 */
13312 mutex_lock(&dev->struct_mutex);
70e1e0ec 13313 for_each_crtc(dev, c) {
2ff8fde1
MR
13314 obj = intel_fb_obj(c->primary->fb);
13315 if (obj == NULL)
484b41dd
JB
13316 continue;
13317
2ff8fde1 13318 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13319 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13320 to_intel_crtc(c)->pipe);
66e514c1
DA
13321 drm_framebuffer_unreference(c->primary->fb);
13322 c->primary->fb = NULL;
484b41dd
JB
13323 }
13324 }
13325 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13326}
13327
4932e2c3
ID
13328void intel_connector_unregister(struct intel_connector *intel_connector)
13329{
13330 struct drm_connector *connector = &intel_connector->base;
13331
13332 intel_panel_destroy_backlight(connector);
34ea3d38 13333 drm_connector_unregister(connector);
4932e2c3
ID
13334}
13335
79e53945
JB
13336void intel_modeset_cleanup(struct drm_device *dev)
13337{
652c393a 13338 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13339 struct drm_connector *connector;
652c393a 13340
fd0c0642
DV
13341 /*
13342 * Interrupts and polling as the first thing to avoid creating havoc.
13343 * Too much stuff here (turning of rps, connectors, ...) would
13344 * experience fancy races otherwise.
13345 */
2aeb7d3a 13346 intel_irq_uninstall(dev_priv);
eb21b92b 13347
fd0c0642
DV
13348 /*
13349 * Due to the hpd irq storm handling the hotplug work can re-arm the
13350 * poll handlers. Hence disable polling after hpd handling is shut down.
13351 */
f87ea761 13352 drm_kms_helper_poll_fini(dev);
fd0c0642 13353
652c393a
JB
13354 mutex_lock(&dev->struct_mutex);
13355
723bfd70
JB
13356 intel_unregister_dsm_handler();
13357
973d04f9 13358 intel_disable_fbc(dev);
e70236a8 13359
8090c6b9 13360 intel_disable_gt_powersave(dev);
0cdab21f 13361
930ebb46
DV
13362 ironlake_teardown_rc6(dev);
13363
69341a5e
KH
13364 mutex_unlock(&dev->struct_mutex);
13365
1630fe75
CW
13366 /* flush any delayed tasks or pending work */
13367 flush_scheduled_work();
13368
db31af1d
JN
13369 /* destroy the backlight and sysfs files before encoders/connectors */
13370 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13371 struct intel_connector *intel_connector;
13372
13373 intel_connector = to_intel_connector(connector);
13374 intel_connector->unregister(intel_connector);
db31af1d 13375 }
d9255d57 13376
79e53945 13377 drm_mode_config_cleanup(dev);
4d7bb011
DV
13378
13379 intel_cleanup_overlay(dev);
ae48434c
ID
13380
13381 mutex_lock(&dev->struct_mutex);
13382 intel_cleanup_gt_powersave(dev);
13383 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13384}
13385
f1c79df3
ZW
13386/*
13387 * Return which encoder is currently attached for connector.
13388 */
df0e9248 13389struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13390{
df0e9248
CW
13391 return &intel_attached_encoder(connector)->base;
13392}
f1c79df3 13393
df0e9248
CW
13394void intel_connector_attach_encoder(struct intel_connector *connector,
13395 struct intel_encoder *encoder)
13396{
13397 connector->encoder = encoder;
13398 drm_mode_connector_attach_encoder(&connector->base,
13399 &encoder->base);
79e53945 13400}
28d52043
DA
13401
13402/*
13403 * set vga decode state - true == enable VGA decode
13404 */
13405int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13406{
13407 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13408 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13409 u16 gmch_ctrl;
13410
75fa041d
CW
13411 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13412 DRM_ERROR("failed to read control word\n");
13413 return -EIO;
13414 }
13415
c0cc8a55
CW
13416 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13417 return 0;
13418
28d52043
DA
13419 if (state)
13420 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13421 else
13422 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13423
13424 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13425 DRM_ERROR("failed to write control word\n");
13426 return -EIO;
13427 }
13428
28d52043
DA
13429 return 0;
13430}
c4a1d9e4 13431
c4a1d9e4 13432struct intel_display_error_state {
ff57f1b0
PZ
13433
13434 u32 power_well_driver;
13435
63b66e5b
CW
13436 int num_transcoders;
13437
c4a1d9e4
CW
13438 struct intel_cursor_error_state {
13439 u32 control;
13440 u32 position;
13441 u32 base;
13442 u32 size;
52331309 13443 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13444
13445 struct intel_pipe_error_state {
ddf9c536 13446 bool power_domain_on;
c4a1d9e4 13447 u32 source;
f301b1e1 13448 u32 stat;
52331309 13449 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13450
13451 struct intel_plane_error_state {
13452 u32 control;
13453 u32 stride;
13454 u32 size;
13455 u32 pos;
13456 u32 addr;
13457 u32 surface;
13458 u32 tile_offset;
52331309 13459 } plane[I915_MAX_PIPES];
63b66e5b
CW
13460
13461 struct intel_transcoder_error_state {
ddf9c536 13462 bool power_domain_on;
63b66e5b
CW
13463 enum transcoder cpu_transcoder;
13464
13465 u32 conf;
13466
13467 u32 htotal;
13468 u32 hblank;
13469 u32 hsync;
13470 u32 vtotal;
13471 u32 vblank;
13472 u32 vsync;
13473 } transcoder[4];
c4a1d9e4
CW
13474};
13475
13476struct intel_display_error_state *
13477intel_display_capture_error_state(struct drm_device *dev)
13478{
fbee40df 13479 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13480 struct intel_display_error_state *error;
63b66e5b
CW
13481 int transcoders[] = {
13482 TRANSCODER_A,
13483 TRANSCODER_B,
13484 TRANSCODER_C,
13485 TRANSCODER_EDP,
13486 };
c4a1d9e4
CW
13487 int i;
13488
63b66e5b
CW
13489 if (INTEL_INFO(dev)->num_pipes == 0)
13490 return NULL;
13491
9d1cb914 13492 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13493 if (error == NULL)
13494 return NULL;
13495
190be112 13496 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13497 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13498
055e393f 13499 for_each_pipe(dev_priv, i) {
ddf9c536 13500 error->pipe[i].power_domain_on =
f458ebbc
DV
13501 __intel_display_power_is_enabled(dev_priv,
13502 POWER_DOMAIN_PIPE(i));
ddf9c536 13503 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13504 continue;
13505
5efb3e28
VS
13506 error->cursor[i].control = I915_READ(CURCNTR(i));
13507 error->cursor[i].position = I915_READ(CURPOS(i));
13508 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13509
13510 error->plane[i].control = I915_READ(DSPCNTR(i));
13511 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13512 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13513 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13514 error->plane[i].pos = I915_READ(DSPPOS(i));
13515 }
ca291363
PZ
13516 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13517 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13518 if (INTEL_INFO(dev)->gen >= 4) {
13519 error->plane[i].surface = I915_READ(DSPSURF(i));
13520 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13521 }
13522
c4a1d9e4 13523 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13524
3abfce77 13525 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13526 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13527 }
13528
13529 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13530 if (HAS_DDI(dev_priv->dev))
13531 error->num_transcoders++; /* Account for eDP. */
13532
13533 for (i = 0; i < error->num_transcoders; i++) {
13534 enum transcoder cpu_transcoder = transcoders[i];
13535
ddf9c536 13536 error->transcoder[i].power_domain_on =
f458ebbc 13537 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13538 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13539 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13540 continue;
13541
63b66e5b
CW
13542 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13543
13544 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13545 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13546 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13547 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13548 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13549 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13550 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13551 }
13552
13553 return error;
13554}
13555
edc3d884
MK
13556#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13557
c4a1d9e4 13558void
edc3d884 13559intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13560 struct drm_device *dev,
13561 struct intel_display_error_state *error)
13562{
055e393f 13563 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13564 int i;
13565
63b66e5b
CW
13566 if (!error)
13567 return;
13568
edc3d884 13569 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13570 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13571 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13572 error->power_well_driver);
055e393f 13573 for_each_pipe(dev_priv, i) {
edc3d884 13574 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13575 err_printf(m, " Power: %s\n",
13576 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13577 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13578 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13579
13580 err_printf(m, "Plane [%d]:\n", i);
13581 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13582 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13583 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13584 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13585 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13586 }
4b71a570 13587 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13588 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13589 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13590 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13591 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13592 }
13593
edc3d884
MK
13594 err_printf(m, "Cursor [%d]:\n", i);
13595 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13596 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13597 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13598 }
63b66e5b
CW
13599
13600 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13601 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13602 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13603 err_printf(m, " Power: %s\n",
13604 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13605 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13606 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13607 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13608 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13609 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13610 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13611 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13612 }
c4a1d9e4 13613}
e2fcdaa9
VS
13614
13615void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13616{
13617 struct intel_crtc *crtc;
13618
13619 for_each_intel_crtc(dev, crtc) {
13620 struct intel_unpin_work *work;
e2fcdaa9 13621
5e2d7afc 13622 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13623
13624 work = crtc->unpin_work;
13625
13626 if (work && work->event &&
13627 work->event->base.file_priv == file) {
13628 kfree(work->event);
13629 work->event = NULL;
13630 }
13631
5e2d7afc 13632 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13633 }
13634}