]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915/bdw: Make sure error capture keeps working with Execlists
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 903 WARN(1, "vblank wait timed out\n");
a928d536
PZ
904}
905
9d0498a2
JB
906/**
907 * intel_wait_for_vblank - wait for vblank on a given pipe
908 * @dev: drm device
909 * @pipe: pipe to wait for
910 *
911 * Wait for vblank to occur on a given pipe. Needed for various bits of
912 * mode setting code.
913 */
914void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 915{
9d0498a2 916 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 917 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 918
57e22f4a
VS
919 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
920 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
921 return;
922 }
923
300387c0
CW
924 /* Clear existing vblank status. Note this will clear any other
925 * sticky status fields as well.
926 *
927 * This races with i915_driver_irq_handler() with the result
928 * that either function could miss a vblank event. Here it is not
929 * fatal, as we will either wait upon the next vblank interrupt or
930 * timeout. Generally speaking intel_wait_for_vblank() is only
931 * called during modeset at which time the GPU should be idle and
932 * should *not* be performing page flips and thus not waiting on
933 * vblanks...
934 * Currently, the result of us stealing a vblank from the irq
935 * handler is that a single frame will be skipped during swapbuffers.
936 */
937 I915_WRITE(pipestat_reg,
938 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
939
9d0498a2 940 /* Wait for vblank interrupt bit to set */
481b6af3
CW
941 if (wait_for(I915_READ(pipestat_reg) &
942 PIPE_VBLANK_INTERRUPT_STATUS,
943 50))
9d0498a2
JB
944 DRM_DEBUG_KMS("vblank wait timed out\n");
945}
946
fbf49ea2
VS
947static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
948{
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 reg = PIPEDSL(pipe);
951 u32 line1, line2;
952 u32 line_mask;
953
954 if (IS_GEN2(dev))
955 line_mask = DSL_LINEMASK_GEN2;
956 else
957 line_mask = DSL_LINEMASK_GEN3;
958
959 line1 = I915_READ(reg) & line_mask;
960 mdelay(5);
961 line2 = I915_READ(reg) & line_mask;
962
963 return line1 == line2;
964}
965
ab7ad7f6
KP
966/*
967 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
968 * @dev: drm device
969 * @pipe: pipe to wait for
970 *
971 * After disabling a pipe, we can't wait for vblank in the usual way,
972 * spinning on the vblank interrupt status bit, since we won't actually
973 * see an interrupt when the pipe is disabled.
974 *
ab7ad7f6
KP
975 * On Gen4 and above:
976 * wait for the pipe register state bit to turn off
977 *
978 * Otherwise:
979 * wait for the display line value to settle (it usually
980 * ends up stopping at the start of the next frame).
58e10eb9 981 *
9d0498a2 982 */
58e10eb9 983void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
984{
985 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
986 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
987 pipe);
ab7ad7f6
KP
988
989 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 990 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
991
992 /* Wait for the Pipe State to go off */
58e10eb9
CW
993 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
994 100))
284637d9 995 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 996 } else {
ab7ad7f6 997 /* Wait for the display line to settle */
fbf49ea2 998 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 999 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1000 }
79e53945
JB
1001}
1002
b0ea7d37
DL
1003/*
1004 * ibx_digital_port_connected - is the specified port connected?
1005 * @dev_priv: i915 private structure
1006 * @port: the port to test
1007 *
1008 * Returns true if @port is connected, false otherwise.
1009 */
1010bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1011 struct intel_digital_port *port)
1012{
1013 u32 bit;
1014
c36346e3 1015 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1016 switch (port->port) {
c36346e3
DL
1017 case PORT_B:
1018 bit = SDE_PORTB_HOTPLUG;
1019 break;
1020 case PORT_C:
1021 bit = SDE_PORTC_HOTPLUG;
1022 break;
1023 case PORT_D:
1024 bit = SDE_PORTD_HOTPLUG;
1025 break;
1026 default:
1027 return true;
1028 }
1029 } else {
eba905b2 1030 switch (port->port) {
c36346e3
DL
1031 case PORT_B:
1032 bit = SDE_PORTB_HOTPLUG_CPT;
1033 break;
1034 case PORT_C:
1035 bit = SDE_PORTC_HOTPLUG_CPT;
1036 break;
1037 case PORT_D:
1038 bit = SDE_PORTD_HOTPLUG_CPT;
1039 break;
1040 default:
1041 return true;
1042 }
b0ea7d37
DL
1043 }
1044
1045 return I915_READ(SDEISR) & bit;
1046}
1047
b24e7179
JB
1048static const char *state_string(bool enabled)
1049{
1050 return enabled ? "on" : "off";
1051}
1052
1053/* Only for pre-ILK configs */
55607e8a
DV
1054void assert_pll(struct drm_i915_private *dev_priv,
1055 enum pipe pipe, bool state)
b24e7179
JB
1056{
1057 int reg;
1058 u32 val;
1059 bool cur_state;
1060
1061 reg = DPLL(pipe);
1062 val = I915_READ(reg);
1063 cur_state = !!(val & DPLL_VCO_ENABLE);
1064 WARN(cur_state != state,
1065 "PLL state assertion failure (expected %s, current %s)\n",
1066 state_string(state), state_string(cur_state));
1067}
b24e7179 1068
23538ef1
JN
1069/* XXX: the dsi pll is shared between MIPI DSI ports */
1070static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1071{
1072 u32 val;
1073 bool cur_state;
1074
1075 mutex_lock(&dev_priv->dpio_lock);
1076 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1077 mutex_unlock(&dev_priv->dpio_lock);
1078
1079 cur_state = val & DSI_PLL_VCO_EN;
1080 WARN(cur_state != state,
1081 "DSI PLL state assertion failure (expected %s, current %s)\n",
1082 state_string(state), state_string(cur_state));
1083}
1084#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1085#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1086
55607e8a 1087struct intel_shared_dpll *
e2b78267
DV
1088intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1089{
1090 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1091
a43f6e0f 1092 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1093 return NULL;
1094
a43f6e0f 1095 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1096}
1097
040484af 1098/* For ILK+ */
55607e8a
DV
1099void assert_shared_dpll(struct drm_i915_private *dev_priv,
1100 struct intel_shared_dpll *pll,
1101 bool state)
040484af 1102{
040484af 1103 bool cur_state;
5358901f 1104 struct intel_dpll_hw_state hw_state;
040484af 1105
92b27b08 1106 if (WARN (!pll,
46edb027 1107 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1108 return;
ee7b9f93 1109
5358901f 1110 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1111 WARN(cur_state != state,
5358901f
DV
1112 "%s assertion failure (expected %s, current %s)\n",
1113 pll->name, state_string(state), state_string(cur_state));
040484af 1114}
040484af
JB
1115
1116static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1117 enum pipe pipe, bool state)
1118{
1119 int reg;
1120 u32 val;
1121 bool cur_state;
ad80a810
PZ
1122 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1123 pipe);
040484af 1124
affa9354
PZ
1125 if (HAS_DDI(dev_priv->dev)) {
1126 /* DDI does not have a specific FDI_TX register */
ad80a810 1127 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1128 val = I915_READ(reg);
ad80a810 1129 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1130 } else {
1131 reg = FDI_TX_CTL(pipe);
1132 val = I915_READ(reg);
1133 cur_state = !!(val & FDI_TX_ENABLE);
1134 }
040484af
JB
1135 WARN(cur_state != state,
1136 "FDI TX state assertion failure (expected %s, current %s)\n",
1137 state_string(state), state_string(cur_state));
1138}
1139#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1140#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1141
1142static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1143 enum pipe pipe, bool state)
1144{
1145 int reg;
1146 u32 val;
1147 bool cur_state;
1148
d63fa0dc
PZ
1149 reg = FDI_RX_CTL(pipe);
1150 val = I915_READ(reg);
1151 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1152 WARN(cur_state != state,
1153 "FDI RX state assertion failure (expected %s, current %s)\n",
1154 state_string(state), state_string(cur_state));
1155}
1156#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161{
1162 int reg;
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
3d13ef2e 1166 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1167 return;
1168
bf507ef7 1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1170 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1171 return;
1172
040484af
JB
1173 reg = FDI_TX_CTL(pipe);
1174 val = I915_READ(reg);
1175 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1176}
1177
55607e8a
DV
1178void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1179 enum pipe pipe, bool state)
040484af
JB
1180{
1181 int reg;
1182 u32 val;
55607e8a 1183 bool cur_state;
040484af
JB
1184
1185 reg = FDI_RX_CTL(pipe);
1186 val = I915_READ(reg);
55607e8a
DV
1187 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1188 WARN(cur_state != state,
1189 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1190 state_string(state), state_string(cur_state));
040484af
JB
1191}
1192
ea0760cf
JB
1193static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195{
1196 int pp_reg, lvds_reg;
1197 u32 val;
1198 enum pipe panel_pipe = PIPE_A;
0de3b485 1199 bool locked = true;
ea0760cf
JB
1200
1201 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1202 pp_reg = PCH_PP_CONTROL;
1203 lvds_reg = PCH_LVDS;
1204 } else {
1205 pp_reg = PP_CONTROL;
1206 lvds_reg = LVDS;
1207 }
1208
1209 val = I915_READ(pp_reg);
1210 if (!(val & PANEL_POWER_ON) ||
1211 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1212 locked = false;
1213
1214 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216
1217 WARN(panel_pipe == pipe && locked,
1218 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1219 pipe_name(pipe));
ea0760cf
JB
1220}
1221
93ce0ba6
JN
1222static void assert_cursor(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
1224{
1225 struct drm_device *dev = dev_priv->dev;
1226 bool cur_state;
1227
d9d82081 1228 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1229 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1230 else
5efb3e28 1231 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1232
1233 WARN(cur_state != state,
1234 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1235 pipe_name(pipe), state_string(state), state_string(cur_state));
1236}
1237#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1238#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1239
b840d907
JB
1240void assert_pipe(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, bool state)
b24e7179
JB
1242{
1243 int reg;
1244 u32 val;
63d7bbe9 1245 bool cur_state;
702e7a56
PZ
1246 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1247 pipe);
b24e7179 1248
8e636784
DV
1249 /* if we need the pipe A quirk it must be always on */
1250 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1251 state = true;
1252
da7e29bd 1253 if (!intel_display_power_enabled(dev_priv,
b97186f0 1254 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1255 cur_state = false;
1256 } else {
1257 reg = PIPECONF(cpu_transcoder);
1258 val = I915_READ(reg);
1259 cur_state = !!(val & PIPECONF_ENABLE);
1260 }
1261
63d7bbe9
JB
1262 WARN(cur_state != state,
1263 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1264 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1265}
1266
931872fc
CW
1267static void assert_plane(struct drm_i915_private *dev_priv,
1268 enum plane plane, bool state)
b24e7179
JB
1269{
1270 int reg;
1271 u32 val;
931872fc 1272 bool cur_state;
b24e7179
JB
1273
1274 reg = DSPCNTR(plane);
1275 val = I915_READ(reg);
931872fc
CW
1276 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1277 WARN(cur_state != state,
1278 "plane %c assertion failure (expected %s, current %s)\n",
1279 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1280}
1281
931872fc
CW
1282#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1283#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1284
b24e7179
JB
1285static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1286 enum pipe pipe)
1287{
653e1026 1288 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1289 int reg, i;
1290 u32 val;
1291 int cur_pipe;
1292
653e1026
VS
1293 /* Primary planes are fixed to pipes on gen4+ */
1294 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1295 reg = DSPCNTR(pipe);
1296 val = I915_READ(reg);
83f26f16 1297 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1298 "plane %c assertion failure, should be disabled but not\n",
1299 plane_name(pipe));
19ec1358 1300 return;
28c05794 1301 }
19ec1358 1302
b24e7179 1303 /* Need to check both planes against the pipe */
08e2a7de 1304 for_each_pipe(i) {
b24e7179
JB
1305 reg = DSPCNTR(i);
1306 val = I915_READ(reg);
1307 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1308 DISPPLANE_SEL_PIPE_SHIFT;
1309 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1310 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1311 plane_name(i), pipe_name(pipe));
b24e7179
JB
1312 }
1313}
1314
19332d7a
JB
1315static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1316 enum pipe pipe)
1317{
20674eef 1318 struct drm_device *dev = dev_priv->dev;
1fe47785 1319 int reg, sprite;
19332d7a
JB
1320 u32 val;
1321
20674eef 1322 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1323 for_each_sprite(pipe, sprite) {
1324 reg = SPCNTR(pipe, sprite);
20674eef 1325 val = I915_READ(reg);
83f26f16 1326 WARN(val & SP_ENABLE,
20674eef 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1328 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1329 }
1330 } else if (INTEL_INFO(dev)->gen >= 7) {
1331 reg = SPRCTL(pipe);
19332d7a 1332 val = I915_READ(reg);
83f26f16 1333 WARN(val & SPRITE_ENABLE,
06da8da2 1334 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1335 plane_name(pipe), pipe_name(pipe));
1336 } else if (INTEL_INFO(dev)->gen >= 5) {
1337 reg = DVSCNTR(pipe);
19332d7a 1338 val = I915_READ(reg);
83f26f16 1339 WARN(val & DVS_ENABLE,
06da8da2 1340 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1341 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1342 }
1343}
1344
89eff4be 1345static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1346{
1347 u32 val;
1348 bool enabled;
1349
89eff4be 1350 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1351
92f2584a
JB
1352 val = I915_READ(PCH_DREF_CONTROL);
1353 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1354 DREF_SUPERSPREAD_SOURCE_MASK));
1355 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1356}
1357
ab9412ba
DV
1358static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
92f2584a
JB
1360{
1361 int reg;
1362 u32 val;
1363 bool enabled;
1364
ab9412ba 1365 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1366 val = I915_READ(reg);
1367 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1368 WARN(enabled,
1369 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1370 pipe_name(pipe));
92f2584a
JB
1371}
1372
4e634389
KP
1373static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1375{
1376 if ((val & DP_PORT_EN) == 0)
1377 return false;
1378
1379 if (HAS_PCH_CPT(dev_priv->dev)) {
1380 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1381 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1382 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1383 return false;
44f37d1f
CML
1384 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1385 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1386 return false;
f0575e92
KP
1387 } else {
1388 if ((val & DP_PIPE_MASK) != (pipe << 30))
1389 return false;
1390 }
1391 return true;
1392}
1393
1519b995
KP
1394static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe, u32 val)
1396{
dc0fa718 1397 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1398 return false;
1399
1400 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1401 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1402 return false;
44f37d1f
CML
1403 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1404 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1405 return false;
1519b995 1406 } else {
dc0fa718 1407 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1408 return false;
1409 }
1410 return true;
1411}
1412
1413static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe, u32 val)
1415{
1416 if ((val & LVDS_PORT_EN) == 0)
1417 return false;
1418
1419 if (HAS_PCH_CPT(dev_priv->dev)) {
1420 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1421 return false;
1422 } else {
1423 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1424 return false;
1425 }
1426 return true;
1427}
1428
1429static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1430 enum pipe pipe, u32 val)
1431{
1432 if ((val & ADPA_DAC_ENABLE) == 0)
1433 return false;
1434 if (HAS_PCH_CPT(dev_priv->dev)) {
1435 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 return false;
1437 } else {
1438 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1439 return false;
1440 }
1441 return true;
1442}
1443
291906f1 1444static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1445 enum pipe pipe, int reg, u32 port_sel)
291906f1 1446{
47a05eca 1447 u32 val = I915_READ(reg);
4e634389 1448 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1449 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1450 reg, pipe_name(pipe));
de9a35ab 1451
75c5da27
DV
1452 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1453 && (val & DP_PIPEB_SELECT),
de9a35ab 1454 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1455}
1456
1457static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1458 enum pipe pipe, int reg)
1459{
47a05eca 1460 u32 val = I915_READ(reg);
b70ad586 1461 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1462 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1463 reg, pipe_name(pipe));
de9a35ab 1464
dc0fa718 1465 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1466 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1467 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1468}
1469
1470static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1471 enum pipe pipe)
1472{
1473 int reg;
1474 u32 val;
291906f1 1475
f0575e92
KP
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1478 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1479
1480 reg = PCH_ADPA;
1481 val = I915_READ(reg);
b70ad586 1482 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1483 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1484 pipe_name(pipe));
291906f1
JB
1485
1486 reg = PCH_LVDS;
1487 val = I915_READ(reg);
b70ad586 1488 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1489 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1490 pipe_name(pipe));
291906f1 1491
e2debe91
PZ
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1494 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1495}
1496
40e9cf64
JB
1497static void intel_init_dpio(struct drm_device *dev)
1498{
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500
1501 if (!IS_VALLEYVIEW(dev))
1502 return;
1503
a09caddd
CML
1504 /*
1505 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1506 * CHV x1 PHY (DP/HDMI D)
1507 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1508 */
1509 if (IS_CHERRYVIEW(dev)) {
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1511 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1512 } else {
1513 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1514 }
5382f5f3
JB
1515}
1516
426115cf 1517static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1518{
426115cf
DV
1519 struct drm_device *dev = crtc->base.dev;
1520 struct drm_i915_private *dev_priv = dev->dev_private;
1521 int reg = DPLL(crtc->pipe);
1522 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1523
426115cf 1524 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1525
1526 /* No really, not for ILK+ */
1527 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1528
1529 /* PLL is protected by panel, make sure we can write it */
1530 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1531 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1532
426115cf
DV
1533 I915_WRITE(reg, dpll);
1534 POSTING_READ(reg);
1535 udelay(150);
1536
1537 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1538 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1539
1540 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1541 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1542
1543 /* We do this three times for luck */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
426115cf 1547 I915_WRITE(reg, dpll);
87442f73
DV
1548 POSTING_READ(reg);
1549 udelay(150); /* wait for warmup */
426115cf 1550 I915_WRITE(reg, dpll);
87442f73
DV
1551 POSTING_READ(reg);
1552 udelay(150); /* wait for warmup */
1553}
1554
9d556c99
CML
1555static void chv_enable_pll(struct intel_crtc *crtc)
1556{
1557 struct drm_device *dev = crtc->base.dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 int pipe = crtc->pipe;
1560 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1561 u32 tmp;
1562
1563 assert_pipe_disabled(dev_priv, crtc->pipe);
1564
1565 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1566
1567 mutex_lock(&dev_priv->dpio_lock);
1568
1569 /* Enable back the 10bit clock to display controller */
1570 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1571 tmp |= DPIO_DCLKP_EN;
1572 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1573
1574 /*
1575 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1576 */
1577 udelay(1);
1578
1579 /* Enable PLL */
a11b0703 1580 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1581
1582 /* Check PLL is locked */
a11b0703 1583 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1584 DRM_ERROR("PLL %d failed to lock\n", pipe);
1585
a11b0703
VS
1586 /* not sure when this should be written */
1587 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1588 POSTING_READ(DPLL_MD(pipe));
1589
9d556c99
CML
1590 mutex_unlock(&dev_priv->dpio_lock);
1591}
1592
66e3d5c0 1593static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1594{
66e3d5c0
DV
1595 struct drm_device *dev = crtc->base.dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 int reg = DPLL(crtc->pipe);
1598 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1599
66e3d5c0 1600 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1601
63d7bbe9 1602 /* No really, not for ILK+ */
3d13ef2e 1603 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1604
1605 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1606 if (IS_MOBILE(dev) && !IS_I830(dev))
1607 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1608
66e3d5c0
DV
1609 I915_WRITE(reg, dpll);
1610
1611 /* Wait for the clocks to stabilize. */
1612 POSTING_READ(reg);
1613 udelay(150);
1614
1615 if (INTEL_INFO(dev)->gen >= 4) {
1616 I915_WRITE(DPLL_MD(crtc->pipe),
1617 crtc->config.dpll_hw_state.dpll_md);
1618 } else {
1619 /* The pixel multiplier can only be updated once the
1620 * DPLL is enabled and the clocks are stable.
1621 *
1622 * So write it again.
1623 */
1624 I915_WRITE(reg, dpll);
1625 }
63d7bbe9
JB
1626
1627 /* We do this three times for luck */
66e3d5c0 1628 I915_WRITE(reg, dpll);
63d7bbe9
JB
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
66e3d5c0 1631 I915_WRITE(reg, dpll);
63d7bbe9
JB
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
66e3d5c0 1634 I915_WRITE(reg, dpll);
63d7bbe9
JB
1635 POSTING_READ(reg);
1636 udelay(150); /* wait for warmup */
1637}
1638
1639/**
50b44a44 1640 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1641 * @dev_priv: i915 private structure
1642 * @pipe: pipe PLL to disable
1643 *
1644 * Disable the PLL for @pipe, making sure the pipe is off first.
1645 *
1646 * Note! This is for pre-ILK only.
1647 */
50b44a44 1648static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1649{
63d7bbe9
JB
1650 /* Don't disable pipe A or pipe A PLLs if needed */
1651 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1652 return;
1653
1654 /* Make sure the pipe isn't still relying on us */
1655 assert_pipe_disabled(dev_priv, pipe);
1656
50b44a44
DV
1657 I915_WRITE(DPLL(pipe), 0);
1658 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1659}
1660
f6071166
JB
1661static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1662{
1663 u32 val = 0;
1664
1665 /* Make sure the pipe isn't still relying on us */
1666 assert_pipe_disabled(dev_priv, pipe);
1667
e5cbfbfb
ID
1668 /*
1669 * Leave integrated clock source and reference clock enabled for pipe B.
1670 * The latter is needed for VGA hotplug / manual detection.
1671 */
f6071166 1672 if (pipe == PIPE_B)
e5cbfbfb 1673 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1674 I915_WRITE(DPLL(pipe), val);
1675 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1676
1677}
1678
1679static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1680{
d752048d 1681 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1682 u32 val;
1683
a11b0703
VS
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1686
a11b0703 1687 /* Set PLL en = 0 */
d17ec4ce 1688 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1689 if (pipe != PIPE_A)
1690 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1691 I915_WRITE(DPLL(pipe), val);
1692 POSTING_READ(DPLL(pipe));
d752048d
VS
1693
1694 mutex_lock(&dev_priv->dpio_lock);
1695
1696 /* Disable 10bit clock to display controller */
1697 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1698 val &= ~DPIO_DCLKP_EN;
1699 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1700
61407f6d
VS
1701 /* disable left/right clock distribution */
1702 if (pipe != PIPE_B) {
1703 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1704 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1705 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1706 } else {
1707 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1708 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1709 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1710 }
1711
d752048d 1712 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1713}
1714
e4607fcf
CML
1715void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1716 struct intel_digital_port *dport)
89b667f8
JB
1717{
1718 u32 port_mask;
00fc31b7 1719 int dpll_reg;
89b667f8 1720
e4607fcf
CML
1721 switch (dport->port) {
1722 case PORT_B:
89b667f8 1723 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1724 dpll_reg = DPLL(0);
e4607fcf
CML
1725 break;
1726 case PORT_C:
89b667f8 1727 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1728 dpll_reg = DPLL(0);
1729 break;
1730 case PORT_D:
1731 port_mask = DPLL_PORTD_READY_MASK;
1732 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1733 break;
1734 default:
1735 BUG();
1736 }
89b667f8 1737
00fc31b7 1738 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1739 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1740 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1741}
1742
b14b1055
DV
1743static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1744{
1745 struct drm_device *dev = crtc->base.dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1748
be19f0ff
CW
1749 if (WARN_ON(pll == NULL))
1750 return;
1751
b14b1055
DV
1752 WARN_ON(!pll->refcount);
1753 if (pll->active == 0) {
1754 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1755 WARN_ON(pll->on);
1756 assert_shared_dpll_disabled(dev_priv, pll);
1757
1758 pll->mode_set(dev_priv, pll);
1759 }
1760}
1761
92f2584a 1762/**
85b3894f 1763 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1764 * @dev_priv: i915 private structure
1765 * @pipe: pipe PLL to enable
1766 *
1767 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1768 * drives the transcoder clock.
1769 */
85b3894f 1770static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1771{
3d13ef2e
DL
1772 struct drm_device *dev = crtc->base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1774 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1775
87a875bb 1776 if (WARN_ON(pll == NULL))
48da64a8
CW
1777 return;
1778
1779 if (WARN_ON(pll->refcount == 0))
1780 return;
ee7b9f93 1781
74dd6928 1782 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1783 pll->name, pll->active, pll->on,
e2b78267 1784 crtc->base.base.id);
92f2584a 1785
cdbd2316
DV
1786 if (pll->active++) {
1787 WARN_ON(!pll->on);
e9d6944e 1788 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1789 return;
1790 }
f4a091c7 1791 WARN_ON(pll->on);
ee7b9f93 1792
bd2bb1b9
PZ
1793 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1794
46edb027 1795 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1796 pll->enable(dev_priv, pll);
ee7b9f93 1797 pll->on = true;
92f2584a
JB
1798}
1799
f6daaec2 1800static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1805
92f2584a 1806 /* PCH only available on ILK+ */
3d13ef2e 1807 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1808 if (WARN_ON(pll == NULL))
ee7b9f93 1809 return;
92f2584a 1810
48da64a8
CW
1811 if (WARN_ON(pll->refcount == 0))
1812 return;
7a419866 1813
46edb027
DV
1814 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1815 pll->name, pll->active, pll->on,
e2b78267 1816 crtc->base.base.id);
7a419866 1817
48da64a8 1818 if (WARN_ON(pll->active == 0)) {
e9d6944e 1819 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1820 return;
1821 }
1822
e9d6944e 1823 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1824 WARN_ON(!pll->on);
cdbd2316 1825 if (--pll->active)
7a419866 1826 return;
ee7b9f93 1827
46edb027 1828 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1829 pll->disable(dev_priv, pll);
ee7b9f93 1830 pll->on = false;
bd2bb1b9
PZ
1831
1832 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1833}
1834
b8a4f404
PZ
1835static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1836 enum pipe pipe)
040484af 1837{
23670b32 1838 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1839 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1841 uint32_t reg, val, pipeconf_val;
040484af
JB
1842
1843 /* PCH only available on ILK+ */
3d13ef2e 1844 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1845
1846 /* Make sure PCH DPLL is enabled */
e72f9fbf 1847 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1848 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1849
1850 /* FDI must be feeding us bits for PCH ports */
1851 assert_fdi_tx_enabled(dev_priv, pipe);
1852 assert_fdi_rx_enabled(dev_priv, pipe);
1853
23670b32
DV
1854 if (HAS_PCH_CPT(dev)) {
1855 /* Workaround: Set the timing override bit before enabling the
1856 * pch transcoder. */
1857 reg = TRANS_CHICKEN2(pipe);
1858 val = I915_READ(reg);
1859 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1860 I915_WRITE(reg, val);
59c859d6 1861 }
23670b32 1862
ab9412ba 1863 reg = PCH_TRANSCONF(pipe);
040484af 1864 val = I915_READ(reg);
5f7f726d 1865 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1866
1867 if (HAS_PCH_IBX(dev_priv->dev)) {
1868 /*
1869 * make the BPC in transcoder be consistent with
1870 * that in pipeconf reg.
1871 */
dfd07d72
DV
1872 val &= ~PIPECONF_BPC_MASK;
1873 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1874 }
5f7f726d
PZ
1875
1876 val &= ~TRANS_INTERLACE_MASK;
1877 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1878 if (HAS_PCH_IBX(dev_priv->dev) &&
1879 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1880 val |= TRANS_LEGACY_INTERLACED_ILK;
1881 else
1882 val |= TRANS_INTERLACED;
5f7f726d
PZ
1883 else
1884 val |= TRANS_PROGRESSIVE;
1885
040484af
JB
1886 I915_WRITE(reg, val | TRANS_ENABLE);
1887 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1888 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1889}
1890
8fb033d7 1891static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1892 enum transcoder cpu_transcoder)
040484af 1893{
8fb033d7 1894 u32 val, pipeconf_val;
8fb033d7
PZ
1895
1896 /* PCH only available on ILK+ */
3d13ef2e 1897 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1898
8fb033d7 1899 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1900 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1901 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1902
223a6fdf
PZ
1903 /* Workaround: set timing override bit. */
1904 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1905 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1906 I915_WRITE(_TRANSA_CHICKEN2, val);
1907
25f3ef11 1908 val = TRANS_ENABLE;
937bb610 1909 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1910
9a76b1c6
PZ
1911 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1912 PIPECONF_INTERLACED_ILK)
a35f2679 1913 val |= TRANS_INTERLACED;
8fb033d7
PZ
1914 else
1915 val |= TRANS_PROGRESSIVE;
1916
ab9412ba
DV
1917 I915_WRITE(LPT_TRANSCONF, val);
1918 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1919 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1920}
1921
b8a4f404
PZ
1922static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1923 enum pipe pipe)
040484af 1924{
23670b32
DV
1925 struct drm_device *dev = dev_priv->dev;
1926 uint32_t reg, val;
040484af
JB
1927
1928 /* FDI relies on the transcoder */
1929 assert_fdi_tx_disabled(dev_priv, pipe);
1930 assert_fdi_rx_disabled(dev_priv, pipe);
1931
291906f1
JB
1932 /* Ports must be off as well */
1933 assert_pch_ports_disabled(dev_priv, pipe);
1934
ab9412ba 1935 reg = PCH_TRANSCONF(pipe);
040484af
JB
1936 val = I915_READ(reg);
1937 val &= ~TRANS_ENABLE;
1938 I915_WRITE(reg, val);
1939 /* wait for PCH transcoder off, transcoder state */
1940 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1941 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1942
1943 if (!HAS_PCH_IBX(dev)) {
1944 /* Workaround: Clear the timing override chicken bit again. */
1945 reg = TRANS_CHICKEN2(pipe);
1946 val = I915_READ(reg);
1947 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1948 I915_WRITE(reg, val);
1949 }
040484af
JB
1950}
1951
ab4d966c 1952static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1953{
8fb033d7
PZ
1954 u32 val;
1955
ab9412ba 1956 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1957 val &= ~TRANS_ENABLE;
ab9412ba 1958 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1959 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1960 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1961 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1962
1963 /* Workaround: clear timing override bit. */
1964 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1965 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1966 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1967}
1968
b24e7179 1969/**
309cfea8 1970 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1971 * @crtc: crtc responsible for the pipe
b24e7179 1972 *
0372264a 1973 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1974 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1975 */
e1fdc473 1976static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1977{
0372264a
PZ
1978 struct drm_device *dev = crtc->base.dev;
1979 struct drm_i915_private *dev_priv = dev->dev_private;
1980 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1981 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1982 pipe);
1a240d4d 1983 enum pipe pch_transcoder;
b24e7179
JB
1984 int reg;
1985 u32 val;
1986
58c6eaa2 1987 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1988 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1989 assert_sprites_disabled(dev_priv, pipe);
1990
681e5811 1991 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1992 pch_transcoder = TRANSCODER_A;
1993 else
1994 pch_transcoder = pipe;
1995
b24e7179
JB
1996 /*
1997 * A pipe without a PLL won't actually be able to drive bits from
1998 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1999 * need the check.
2000 */
2001 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2002 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2003 assert_dsi_pll_enabled(dev_priv);
2004 else
2005 assert_pll_enabled(dev_priv, pipe);
040484af 2006 else {
30421c4f 2007 if (crtc->config.has_pch_encoder) {
040484af 2008 /* if driving the PCH, we need FDI enabled */
cc391bbb 2009 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2010 assert_fdi_tx_pll_enabled(dev_priv,
2011 (enum pipe) cpu_transcoder);
040484af
JB
2012 }
2013 /* FIXME: assert CPU port conditions for SNB+ */
2014 }
b24e7179 2015
702e7a56 2016 reg = PIPECONF(cpu_transcoder);
b24e7179 2017 val = I915_READ(reg);
7ad25d48
PZ
2018 if (val & PIPECONF_ENABLE) {
2019 WARN_ON(!(pipe == PIPE_A &&
2020 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2021 return;
7ad25d48 2022 }
00d70b15
CW
2023
2024 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2025 POSTING_READ(reg);
b24e7179
JB
2026}
2027
2028/**
309cfea8 2029 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2030 * @dev_priv: i915 private structure
2031 * @pipe: pipe to disable
2032 *
2033 * Disable @pipe, making sure that various hardware specific requirements
2034 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2035 *
2036 * @pipe should be %PIPE_A or %PIPE_B.
2037 *
2038 * Will wait until the pipe has shut down before returning.
2039 */
2040static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2041 enum pipe pipe)
2042{
702e7a56
PZ
2043 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2044 pipe);
b24e7179
JB
2045 int reg;
2046 u32 val;
2047
2048 /*
2049 * Make sure planes won't keep trying to pump pixels to us,
2050 * or we might hang the display.
2051 */
2052 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2053 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2054 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2055
2056 /* Don't disable pipe A or pipe A PLLs if needed */
2057 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2058 return;
2059
702e7a56 2060 reg = PIPECONF(cpu_transcoder);
b24e7179 2061 val = I915_READ(reg);
00d70b15
CW
2062 if ((val & PIPECONF_ENABLE) == 0)
2063 return;
2064
2065 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2066 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2067}
2068
d74362c9
KP
2069/*
2070 * Plane regs are double buffered, going from enabled->disabled needs a
2071 * trigger in order to latch. The display address reg provides this.
2072 */
1dba99f4
VS
2073void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2074 enum plane plane)
d74362c9 2075{
3d13ef2e
DL
2076 struct drm_device *dev = dev_priv->dev;
2077 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2078
2079 I915_WRITE(reg, I915_READ(reg));
2080 POSTING_READ(reg);
d74362c9
KP
2081}
2082
b24e7179 2083/**
262ca2b0 2084 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2085 * @plane: plane to be enabled
2086 * @crtc: crtc for the plane
b24e7179 2087 *
fdd508a6 2088 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2089 */
fdd508a6
VS
2090static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2091 struct drm_crtc *crtc)
b24e7179 2092{
fdd508a6
VS
2093 struct drm_device *dev = plane->dev;
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2096
2097 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2098 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2099
98ec7739
VS
2100 if (intel_crtc->primary_enabled)
2101 return;
0037f71c 2102
4c445e0e 2103 intel_crtc->primary_enabled = true;
939c2fe8 2104
fdd508a6
VS
2105 dev_priv->display.update_primary_plane(crtc, plane->fb,
2106 crtc->x, crtc->y);
33c3b0d1
VS
2107
2108 /*
2109 * BDW signals flip done immediately if the plane
2110 * is disabled, even if the plane enable is already
2111 * armed to occur at the next vblank :(
2112 */
2113 if (IS_BROADWELL(dev))
2114 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2115}
2116
b24e7179 2117/**
262ca2b0 2118 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2119 * @plane: plane to be disabled
2120 * @crtc: crtc for the plane
b24e7179 2121 *
fdd508a6 2122 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2123 */
fdd508a6
VS
2124static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2125 struct drm_crtc *crtc)
b24e7179 2126{
fdd508a6
VS
2127 struct drm_device *dev = plane->dev;
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2130
2131 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2132
98ec7739
VS
2133 if (!intel_crtc->primary_enabled)
2134 return;
0037f71c 2135
4c445e0e 2136 intel_crtc->primary_enabled = false;
939c2fe8 2137
fdd508a6
VS
2138 dev_priv->display.update_primary_plane(crtc, plane->fb,
2139 crtc->x, crtc->y);
b24e7179
JB
2140}
2141
693db184
CW
2142static bool need_vtd_wa(struct drm_device *dev)
2143{
2144#ifdef CONFIG_INTEL_IOMMU
2145 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2146 return true;
2147#endif
2148 return false;
2149}
2150
a57ce0b2
JB
2151static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2152{
2153 int tile_height;
2154
2155 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2156 return ALIGN(height, tile_height);
2157}
2158
127bd2ac 2159int
48b956c5 2160intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2161 struct drm_i915_gem_object *obj,
a4872ba6 2162 struct intel_engine_cs *pipelined)
6b95a207 2163{
ce453d81 2164 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2165 u32 alignment;
2166 int ret;
2167
ebcdd39e
MR
2168 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2169
05394f39 2170 switch (obj->tiling_mode) {
6b95a207 2171 case I915_TILING_NONE:
534843da
CW
2172 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2173 alignment = 128 * 1024;
a6c45cf0 2174 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2175 alignment = 4 * 1024;
2176 else
2177 alignment = 64 * 1024;
6b95a207
KH
2178 break;
2179 case I915_TILING_X:
2180 /* pin() will align the object as required by fence */
2181 alignment = 0;
2182 break;
2183 case I915_TILING_Y:
80075d49 2184 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2185 return -EINVAL;
2186 default:
2187 BUG();
2188 }
2189
693db184
CW
2190 /* Note that the w/a also requires 64 PTE of padding following the
2191 * bo. We currently fill all unused PTE with the shadow page and so
2192 * we should always have valid PTE following the scanout preventing
2193 * the VT-d warning.
2194 */
2195 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2196 alignment = 256 * 1024;
2197
ce453d81 2198 dev_priv->mm.interruptible = false;
2da3b9b9 2199 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2200 if (ret)
ce453d81 2201 goto err_interruptible;
6b95a207
KH
2202
2203 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2204 * fence, whereas 965+ only requires a fence if using
2205 * framebuffer compression. For simplicity, we always install
2206 * a fence as the cost is not that onerous.
2207 */
06d98131 2208 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2209 if (ret)
2210 goto err_unpin;
1690e1eb 2211
9a5a53b3 2212 i915_gem_object_pin_fence(obj);
6b95a207 2213
ce453d81 2214 dev_priv->mm.interruptible = true;
6b95a207 2215 return 0;
48b956c5
CW
2216
2217err_unpin:
cc98b413 2218 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2219err_interruptible:
2220 dev_priv->mm.interruptible = true;
48b956c5 2221 return ret;
6b95a207
KH
2222}
2223
1690e1eb
CW
2224void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2225{
ebcdd39e
MR
2226 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2227
1690e1eb 2228 i915_gem_object_unpin_fence(obj);
cc98b413 2229 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2230}
2231
c2c75131
DV
2232/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2233 * is assumed to be a power-of-two. */
bc752862
CW
2234unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2235 unsigned int tiling_mode,
2236 unsigned int cpp,
2237 unsigned int pitch)
c2c75131 2238{
bc752862
CW
2239 if (tiling_mode != I915_TILING_NONE) {
2240 unsigned int tile_rows, tiles;
c2c75131 2241
bc752862
CW
2242 tile_rows = *y / 8;
2243 *y %= 8;
c2c75131 2244
bc752862
CW
2245 tiles = *x / (512/cpp);
2246 *x %= 512/cpp;
2247
2248 return tile_rows * pitch * 8 + tiles * 4096;
2249 } else {
2250 unsigned int offset;
2251
2252 offset = *y * pitch + *x * cpp;
2253 *y = 0;
2254 *x = (offset & 4095) / cpp;
2255 return offset & -4096;
2256 }
c2c75131
DV
2257}
2258
46f297fb
JB
2259int intel_format_to_fourcc(int format)
2260{
2261 switch (format) {
2262 case DISPPLANE_8BPP:
2263 return DRM_FORMAT_C8;
2264 case DISPPLANE_BGRX555:
2265 return DRM_FORMAT_XRGB1555;
2266 case DISPPLANE_BGRX565:
2267 return DRM_FORMAT_RGB565;
2268 default:
2269 case DISPPLANE_BGRX888:
2270 return DRM_FORMAT_XRGB8888;
2271 case DISPPLANE_RGBX888:
2272 return DRM_FORMAT_XBGR8888;
2273 case DISPPLANE_BGRX101010:
2274 return DRM_FORMAT_XRGB2101010;
2275 case DISPPLANE_RGBX101010:
2276 return DRM_FORMAT_XBGR2101010;
2277 }
2278}
2279
484b41dd 2280static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2281 struct intel_plane_config *plane_config)
2282{
2283 struct drm_device *dev = crtc->base.dev;
2284 struct drm_i915_gem_object *obj = NULL;
2285 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2286 u32 base = plane_config->base;
2287
ff2652ea
CW
2288 if (plane_config->size == 0)
2289 return false;
2290
46f297fb
JB
2291 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2292 plane_config->size);
2293 if (!obj)
484b41dd 2294 return false;
46f297fb
JB
2295
2296 if (plane_config->tiled) {
2297 obj->tiling_mode = I915_TILING_X;
66e514c1 2298 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2299 }
2300
66e514c1
DA
2301 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2302 mode_cmd.width = crtc->base.primary->fb->width;
2303 mode_cmd.height = crtc->base.primary->fb->height;
2304 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2305
2306 mutex_lock(&dev->struct_mutex);
2307
66e514c1 2308 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2309 &mode_cmd, obj)) {
46f297fb
JB
2310 DRM_DEBUG_KMS("intel fb init failed\n");
2311 goto out_unref_obj;
2312 }
2313
a071fa00 2314 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2315 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2316
2317 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2318 return true;
46f297fb
JB
2319
2320out_unref_obj:
2321 drm_gem_object_unreference(&obj->base);
2322 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2323 return false;
2324}
2325
2326static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2327 struct intel_plane_config *plane_config)
2328{
2329 struct drm_device *dev = intel_crtc->base.dev;
2330 struct drm_crtc *c;
2331 struct intel_crtc *i;
2ff8fde1 2332 struct drm_i915_gem_object *obj;
484b41dd 2333
66e514c1 2334 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2335 return;
2336
2337 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2338 return;
2339
66e514c1
DA
2340 kfree(intel_crtc->base.primary->fb);
2341 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2342
2343 /*
2344 * Failed to alloc the obj, check to see if we should share
2345 * an fb with another CRTC instead
2346 */
70e1e0ec 2347 for_each_crtc(dev, c) {
484b41dd
JB
2348 i = to_intel_crtc(c);
2349
2350 if (c == &intel_crtc->base)
2351 continue;
2352
2ff8fde1
MR
2353 if (!i->active)
2354 continue;
2355
2356 obj = intel_fb_obj(c->primary->fb);
2357 if (obj == NULL)
484b41dd
JB
2358 continue;
2359
2ff8fde1 2360 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2361 drm_framebuffer_reference(c->primary->fb);
2362 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2363 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2364 break;
2365 }
2366 }
46f297fb
JB
2367}
2368
29b9bde6
DV
2369static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2370 struct drm_framebuffer *fb,
2371 int x, int y)
81255565
JB
2372{
2373 struct drm_device *dev = crtc->dev;
2374 struct drm_i915_private *dev_priv = dev->dev_private;
2375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2376 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2377 int plane = intel_crtc->plane;
e506a0c6 2378 unsigned long linear_offset;
81255565 2379 u32 dspcntr;
f45651ba 2380 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2381 int pixel_size;
2382
2383 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2384
fdd508a6
VS
2385 if (!intel_crtc->primary_enabled) {
2386 I915_WRITE(reg, 0);
2387 if (INTEL_INFO(dev)->gen >= 4)
2388 I915_WRITE(DSPSURF(plane), 0);
2389 else
2390 I915_WRITE(DSPADDR(plane), 0);
2391 POSTING_READ(reg);
2392 return;
2393 }
2394
f45651ba
VS
2395 dspcntr = DISPPLANE_GAMMA_ENABLE;
2396
fdd508a6 2397 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2398
2399 if (INTEL_INFO(dev)->gen < 4) {
2400 if (intel_crtc->pipe == PIPE_B)
2401 dspcntr |= DISPPLANE_SEL_PIPE_B;
2402
2403 /* pipesrc and dspsize control the size that is scaled from,
2404 * which should always be the user's requested size.
2405 */
2406 I915_WRITE(DSPSIZE(plane),
2407 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2408 (intel_crtc->config.pipe_src_w - 1));
2409 I915_WRITE(DSPPOS(plane), 0);
2410 }
81255565 2411
57779d06
VS
2412 switch (fb->pixel_format) {
2413 case DRM_FORMAT_C8:
81255565
JB
2414 dspcntr |= DISPPLANE_8BPP;
2415 break;
57779d06
VS
2416 case DRM_FORMAT_XRGB1555:
2417 case DRM_FORMAT_ARGB1555:
2418 dspcntr |= DISPPLANE_BGRX555;
81255565 2419 break;
57779d06
VS
2420 case DRM_FORMAT_RGB565:
2421 dspcntr |= DISPPLANE_BGRX565;
2422 break;
2423 case DRM_FORMAT_XRGB8888:
2424 case DRM_FORMAT_ARGB8888:
2425 dspcntr |= DISPPLANE_BGRX888;
2426 break;
2427 case DRM_FORMAT_XBGR8888:
2428 case DRM_FORMAT_ABGR8888:
2429 dspcntr |= DISPPLANE_RGBX888;
2430 break;
2431 case DRM_FORMAT_XRGB2101010:
2432 case DRM_FORMAT_ARGB2101010:
2433 dspcntr |= DISPPLANE_BGRX101010;
2434 break;
2435 case DRM_FORMAT_XBGR2101010:
2436 case DRM_FORMAT_ABGR2101010:
2437 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2438 break;
2439 default:
baba133a 2440 BUG();
81255565 2441 }
57779d06 2442
f45651ba
VS
2443 if (INTEL_INFO(dev)->gen >= 4 &&
2444 obj->tiling_mode != I915_TILING_NONE)
2445 dspcntr |= DISPPLANE_TILED;
81255565 2446
de1aa629
VS
2447 if (IS_G4X(dev))
2448 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2449
e506a0c6 2450 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2451
c2c75131
DV
2452 if (INTEL_INFO(dev)->gen >= 4) {
2453 intel_crtc->dspaddr_offset =
bc752862
CW
2454 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2455 fb->bits_per_pixel / 8,
2456 fb->pitches[0]);
c2c75131
DV
2457 linear_offset -= intel_crtc->dspaddr_offset;
2458 } else {
e506a0c6 2459 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2460 }
e506a0c6 2461
48404c1e
SJ
2462 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2463 dspcntr |= DISPPLANE_ROTATE_180;
2464
2465 x += (intel_crtc->config.pipe_src_w - 1);
2466 y += (intel_crtc->config.pipe_src_h - 1);
2467
2468 /* Finding the last pixel of the last line of the display
2469 data and adding to linear_offset*/
2470 linear_offset +=
2471 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2472 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2473 }
2474
2475 I915_WRITE(reg, dspcntr);
2476
f343c5f6
BW
2477 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2478 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2479 fb->pitches[0]);
01f2c773 2480 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2481 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2482 I915_WRITE(DSPSURF(plane),
2483 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2484 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2485 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2486 } else
f343c5f6 2487 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2488 POSTING_READ(reg);
17638cd6
JB
2489}
2490
29b9bde6
DV
2491static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2492 struct drm_framebuffer *fb,
2493 int x, int y)
17638cd6
JB
2494{
2495 struct drm_device *dev = crtc->dev;
2496 struct drm_i915_private *dev_priv = dev->dev_private;
2497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2498 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2499 int plane = intel_crtc->plane;
e506a0c6 2500 unsigned long linear_offset;
17638cd6 2501 u32 dspcntr;
f45651ba 2502 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2503 int pixel_size;
2504
2505 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2506
fdd508a6
VS
2507 if (!intel_crtc->primary_enabled) {
2508 I915_WRITE(reg, 0);
2509 I915_WRITE(DSPSURF(plane), 0);
2510 POSTING_READ(reg);
2511 return;
2512 }
2513
f45651ba
VS
2514 dspcntr = DISPPLANE_GAMMA_ENABLE;
2515
fdd508a6 2516 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2517
2518 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2519 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2520
57779d06
VS
2521 switch (fb->pixel_format) {
2522 case DRM_FORMAT_C8:
17638cd6
JB
2523 dspcntr |= DISPPLANE_8BPP;
2524 break;
57779d06
VS
2525 case DRM_FORMAT_RGB565:
2526 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2527 break;
57779d06
VS
2528 case DRM_FORMAT_XRGB8888:
2529 case DRM_FORMAT_ARGB8888:
2530 dspcntr |= DISPPLANE_BGRX888;
2531 break;
2532 case DRM_FORMAT_XBGR8888:
2533 case DRM_FORMAT_ABGR8888:
2534 dspcntr |= DISPPLANE_RGBX888;
2535 break;
2536 case DRM_FORMAT_XRGB2101010:
2537 case DRM_FORMAT_ARGB2101010:
2538 dspcntr |= DISPPLANE_BGRX101010;
2539 break;
2540 case DRM_FORMAT_XBGR2101010:
2541 case DRM_FORMAT_ABGR2101010:
2542 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2543 break;
2544 default:
baba133a 2545 BUG();
17638cd6
JB
2546 }
2547
2548 if (obj->tiling_mode != I915_TILING_NONE)
2549 dspcntr |= DISPPLANE_TILED;
17638cd6 2550
f45651ba 2551 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2552 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2553
e506a0c6 2554 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2555 intel_crtc->dspaddr_offset =
bc752862
CW
2556 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2557 fb->bits_per_pixel / 8,
2558 fb->pitches[0]);
c2c75131 2559 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2560 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2561 dspcntr |= DISPPLANE_ROTATE_180;
2562
2563 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2564 x += (intel_crtc->config.pipe_src_w - 1);
2565 y += (intel_crtc->config.pipe_src_h - 1);
2566
2567 /* Finding the last pixel of the last line of the display
2568 data and adding to linear_offset*/
2569 linear_offset +=
2570 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2571 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2572 }
2573 }
2574
2575 I915_WRITE(reg, dspcntr);
17638cd6 2576
f343c5f6
BW
2577 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2578 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2579 fb->pitches[0]);
01f2c773 2580 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2581 I915_WRITE(DSPSURF(plane),
2582 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2583 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2584 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2585 } else {
2586 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2587 I915_WRITE(DSPLINOFF(plane), linear_offset);
2588 }
17638cd6 2589 POSTING_READ(reg);
17638cd6
JB
2590}
2591
2592/* Assume fb object is pinned & idle & fenced and just update base pointers */
2593static int
2594intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2595 int x, int y, enum mode_set_atomic state)
2596{
2597 struct drm_device *dev = crtc->dev;
2598 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2599
6b8e6ed0
CW
2600 if (dev_priv->display.disable_fbc)
2601 dev_priv->display.disable_fbc(dev);
cc36513c 2602 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2603
29b9bde6
DV
2604 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2605
2606 return 0;
81255565
JB
2607}
2608
96a02917
VS
2609void intel_display_handle_reset(struct drm_device *dev)
2610{
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 struct drm_crtc *crtc;
2613
2614 /*
2615 * Flips in the rings have been nuked by the reset,
2616 * so complete all pending flips so that user space
2617 * will get its events and not get stuck.
2618 *
2619 * Also update the base address of all primary
2620 * planes to the the last fb to make sure we're
2621 * showing the correct fb after a reset.
2622 *
2623 * Need to make two loops over the crtcs so that we
2624 * don't try to grab a crtc mutex before the
2625 * pending_flip_queue really got woken up.
2626 */
2627
70e1e0ec 2628 for_each_crtc(dev, crtc) {
96a02917
VS
2629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630 enum plane plane = intel_crtc->plane;
2631
2632 intel_prepare_page_flip(dev, plane);
2633 intel_finish_page_flip_plane(dev, plane);
2634 }
2635
70e1e0ec 2636 for_each_crtc(dev, crtc) {
96a02917
VS
2637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638
51fd371b 2639 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2640 /*
2641 * FIXME: Once we have proper support for primary planes (and
2642 * disabling them without disabling the entire crtc) allow again
66e514c1 2643 * a NULL crtc->primary->fb.
947fdaad 2644 */
f4510a27 2645 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2646 dev_priv->display.update_primary_plane(crtc,
66e514c1 2647 crtc->primary->fb,
262ca2b0
MR
2648 crtc->x,
2649 crtc->y);
51fd371b 2650 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2651 }
2652}
2653
14667a4b
CW
2654static int
2655intel_finish_fb(struct drm_framebuffer *old_fb)
2656{
2ff8fde1 2657 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2658 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2659 bool was_interruptible = dev_priv->mm.interruptible;
2660 int ret;
2661
14667a4b
CW
2662 /* Big Hammer, we also need to ensure that any pending
2663 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2664 * current scanout is retired before unpinning the old
2665 * framebuffer.
2666 *
2667 * This should only fail upon a hung GPU, in which case we
2668 * can safely continue.
2669 */
2670 dev_priv->mm.interruptible = false;
2671 ret = i915_gem_object_finish_gpu(obj);
2672 dev_priv->mm.interruptible = was_interruptible;
2673
2674 return ret;
2675}
2676
7d5e3799
CW
2677static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2678{
2679 struct drm_device *dev = crtc->dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682 unsigned long flags;
2683 bool pending;
2684
2685 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2686 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2687 return false;
2688
2689 spin_lock_irqsave(&dev->event_lock, flags);
2690 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2691 spin_unlock_irqrestore(&dev->event_lock, flags);
2692
2693 return pending;
2694}
2695
5c3b82e2 2696static int
3c4fdcfb 2697intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2698 struct drm_framebuffer *fb)
79e53945
JB
2699{
2700 struct drm_device *dev = crtc->dev;
6b8e6ed0 2701 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2703 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2704 struct drm_framebuffer *old_fb = crtc->primary->fb;
2705 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2706 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2707 int ret;
79e53945 2708
7d5e3799
CW
2709 if (intel_crtc_has_pending_flip(crtc)) {
2710 DRM_ERROR("pipe is still busy with an old pageflip\n");
2711 return -EBUSY;
2712 }
2713
79e53945 2714 /* no fb bound */
94352cf9 2715 if (!fb) {
a5071c2f 2716 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2717 return 0;
2718 }
2719
7eb552ae 2720 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2721 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2722 plane_name(intel_crtc->plane),
2723 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2724 return -EINVAL;
79e53945
JB
2725 }
2726
5c3b82e2 2727 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2728 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2729 if (ret == 0)
91565c85 2730 i915_gem_track_fb(old_obj, obj,
a071fa00 2731 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2732 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2733 if (ret != 0) {
a5071c2f 2734 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2735 return ret;
2736 }
79e53945 2737
bb2043de
DL
2738 /*
2739 * Update pipe size and adjust fitter if needed: the reason for this is
2740 * that in compute_mode_changes we check the native mode (not the pfit
2741 * mode) to see if we can flip rather than do a full mode set. In the
2742 * fastboot case, we'll flip, but if we don't update the pipesrc and
2743 * pfit state, we'll end up with a big fb scanned out into the wrong
2744 * sized surface.
2745 *
2746 * To fix this properly, we need to hoist the checks up into
2747 * compute_mode_changes (or above), check the actual pfit state and
2748 * whether the platform allows pfit disable with pipe active, and only
2749 * then update the pipesrc and pfit state, even on the flip path.
2750 */
d330a953 2751 if (i915.fastboot) {
d7bf63f2
DL
2752 const struct drm_display_mode *adjusted_mode =
2753 &intel_crtc->config.adjusted_mode;
2754
4d6a3e63 2755 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2756 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2757 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2758 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2759 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2760 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2761 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2762 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2763 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2764 }
0637d60d
JB
2765 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2766 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2767 }
2768
29b9bde6 2769 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2770
f99d7069
DV
2771 if (intel_crtc->active)
2772 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2773
f4510a27 2774 crtc->primary->fb = fb;
6c4c86f5
DV
2775 crtc->x = x;
2776 crtc->y = y;
94352cf9 2777
b7f1de28 2778 if (old_fb) {
d7697eea
DV
2779 if (intel_crtc->active && old_fb != fb)
2780 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2781 mutex_lock(&dev->struct_mutex);
2ff8fde1 2782 intel_unpin_fb_obj(old_obj);
8ac36ec1 2783 mutex_unlock(&dev->struct_mutex);
b7f1de28 2784 }
652c393a 2785
8ac36ec1 2786 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2787 intel_update_fbc(dev);
5c3b82e2 2788 mutex_unlock(&dev->struct_mutex);
79e53945 2789
5c3b82e2 2790 return 0;
79e53945
JB
2791}
2792
5e84e1a4
ZW
2793static void intel_fdi_normal_train(struct drm_crtc *crtc)
2794{
2795 struct drm_device *dev = crtc->dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2798 int pipe = intel_crtc->pipe;
2799 u32 reg, temp;
2800
2801 /* enable normal train */
2802 reg = FDI_TX_CTL(pipe);
2803 temp = I915_READ(reg);
61e499bf 2804 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2805 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2806 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2807 } else {
2808 temp &= ~FDI_LINK_TRAIN_NONE;
2809 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2810 }
5e84e1a4
ZW
2811 I915_WRITE(reg, temp);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 if (HAS_PCH_CPT(dev)) {
2816 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2818 } else {
2819 temp &= ~FDI_LINK_TRAIN_NONE;
2820 temp |= FDI_LINK_TRAIN_NONE;
2821 }
2822 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2823
2824 /* wait one idle pattern time */
2825 POSTING_READ(reg);
2826 udelay(1000);
357555c0
JB
2827
2828 /* IVB wants error correction enabled */
2829 if (IS_IVYBRIDGE(dev))
2830 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2831 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2832}
2833
1fbc0d78 2834static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2835{
1fbc0d78
DV
2836 return crtc->base.enabled && crtc->active &&
2837 crtc->config.has_pch_encoder;
1e833f40
DV
2838}
2839
01a415fd
DV
2840static void ivb_modeset_global_resources(struct drm_device *dev)
2841{
2842 struct drm_i915_private *dev_priv = dev->dev_private;
2843 struct intel_crtc *pipe_B_crtc =
2844 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2845 struct intel_crtc *pipe_C_crtc =
2846 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2847 uint32_t temp;
2848
1e833f40
DV
2849 /*
2850 * When everything is off disable fdi C so that we could enable fdi B
2851 * with all lanes. Note that we don't care about enabled pipes without
2852 * an enabled pch encoder.
2853 */
2854 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2855 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2856 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2857 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2858
2859 temp = I915_READ(SOUTH_CHICKEN1);
2860 temp &= ~FDI_BC_BIFURCATION_SELECT;
2861 DRM_DEBUG_KMS("disabling fdi C rx\n");
2862 I915_WRITE(SOUTH_CHICKEN1, temp);
2863 }
2864}
2865
8db9d77b
ZW
2866/* The FDI link training functions for ILK/Ibexpeak. */
2867static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2868{
2869 struct drm_device *dev = crtc->dev;
2870 struct drm_i915_private *dev_priv = dev->dev_private;
2871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2872 int pipe = intel_crtc->pipe;
5eddb70b 2873 u32 reg, temp, tries;
8db9d77b 2874
1c8562f6 2875 /* FDI needs bits from pipe first */
0fc932b8 2876 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2877
e1a44743
AJ
2878 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2879 for train result */
5eddb70b
CW
2880 reg = FDI_RX_IMR(pipe);
2881 temp = I915_READ(reg);
e1a44743
AJ
2882 temp &= ~FDI_RX_SYMBOL_LOCK;
2883 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2884 I915_WRITE(reg, temp);
2885 I915_READ(reg);
e1a44743
AJ
2886 udelay(150);
2887
8db9d77b 2888 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2889 reg = FDI_TX_CTL(pipe);
2890 temp = I915_READ(reg);
627eb5a3
DV
2891 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2892 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2893 temp &= ~FDI_LINK_TRAIN_NONE;
2894 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2895 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2896
5eddb70b
CW
2897 reg = FDI_RX_CTL(pipe);
2898 temp = I915_READ(reg);
8db9d77b
ZW
2899 temp &= ~FDI_LINK_TRAIN_NONE;
2900 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2901 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2902
2903 POSTING_READ(reg);
8db9d77b
ZW
2904 udelay(150);
2905
5b2adf89 2906 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2907 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2908 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2909 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2910
5eddb70b 2911 reg = FDI_RX_IIR(pipe);
e1a44743 2912 for (tries = 0; tries < 5; tries++) {
5eddb70b 2913 temp = I915_READ(reg);
8db9d77b
ZW
2914 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2915
2916 if ((temp & FDI_RX_BIT_LOCK)) {
2917 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2918 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2919 break;
2920 }
8db9d77b 2921 }
e1a44743 2922 if (tries == 5)
5eddb70b 2923 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2924
2925 /* Train 2 */
5eddb70b
CW
2926 reg = FDI_TX_CTL(pipe);
2927 temp = I915_READ(reg);
8db9d77b
ZW
2928 temp &= ~FDI_LINK_TRAIN_NONE;
2929 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2930 I915_WRITE(reg, temp);
8db9d77b 2931
5eddb70b
CW
2932 reg = FDI_RX_CTL(pipe);
2933 temp = I915_READ(reg);
8db9d77b
ZW
2934 temp &= ~FDI_LINK_TRAIN_NONE;
2935 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2936 I915_WRITE(reg, temp);
8db9d77b 2937
5eddb70b
CW
2938 POSTING_READ(reg);
2939 udelay(150);
8db9d77b 2940
5eddb70b 2941 reg = FDI_RX_IIR(pipe);
e1a44743 2942 for (tries = 0; tries < 5; tries++) {
5eddb70b 2943 temp = I915_READ(reg);
8db9d77b
ZW
2944 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2945
2946 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2947 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2948 DRM_DEBUG_KMS("FDI train 2 done.\n");
2949 break;
2950 }
8db9d77b 2951 }
e1a44743 2952 if (tries == 5)
5eddb70b 2953 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2954
2955 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2956
8db9d77b
ZW
2957}
2958
0206e353 2959static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2960 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2961 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2962 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2963 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2964};
2965
2966/* The FDI link training functions for SNB/Cougarpoint. */
2967static void gen6_fdi_link_train(struct drm_crtc *crtc)
2968{
2969 struct drm_device *dev = crtc->dev;
2970 struct drm_i915_private *dev_priv = dev->dev_private;
2971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2972 int pipe = intel_crtc->pipe;
fa37d39e 2973 u32 reg, temp, i, retry;
8db9d77b 2974
e1a44743
AJ
2975 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2976 for train result */
5eddb70b
CW
2977 reg = FDI_RX_IMR(pipe);
2978 temp = I915_READ(reg);
e1a44743
AJ
2979 temp &= ~FDI_RX_SYMBOL_LOCK;
2980 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2981 I915_WRITE(reg, temp);
2982
2983 POSTING_READ(reg);
e1a44743
AJ
2984 udelay(150);
2985
8db9d77b 2986 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2987 reg = FDI_TX_CTL(pipe);
2988 temp = I915_READ(reg);
627eb5a3
DV
2989 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2990 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2991 temp &= ~FDI_LINK_TRAIN_NONE;
2992 temp |= FDI_LINK_TRAIN_PATTERN_1;
2993 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2994 /* SNB-B */
2995 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2996 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2997
d74cf324
DV
2998 I915_WRITE(FDI_RX_MISC(pipe),
2999 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3000
5eddb70b
CW
3001 reg = FDI_RX_CTL(pipe);
3002 temp = I915_READ(reg);
8db9d77b
ZW
3003 if (HAS_PCH_CPT(dev)) {
3004 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3005 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3006 } else {
3007 temp &= ~FDI_LINK_TRAIN_NONE;
3008 temp |= FDI_LINK_TRAIN_PATTERN_1;
3009 }
5eddb70b
CW
3010 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3011
3012 POSTING_READ(reg);
8db9d77b
ZW
3013 udelay(150);
3014
0206e353 3015 for (i = 0; i < 4; i++) {
5eddb70b
CW
3016 reg = FDI_TX_CTL(pipe);
3017 temp = I915_READ(reg);
8db9d77b
ZW
3018 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3019 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3020 I915_WRITE(reg, temp);
3021
3022 POSTING_READ(reg);
8db9d77b
ZW
3023 udelay(500);
3024
fa37d39e
SP
3025 for (retry = 0; retry < 5; retry++) {
3026 reg = FDI_RX_IIR(pipe);
3027 temp = I915_READ(reg);
3028 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3029 if (temp & FDI_RX_BIT_LOCK) {
3030 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3031 DRM_DEBUG_KMS("FDI train 1 done.\n");
3032 break;
3033 }
3034 udelay(50);
8db9d77b 3035 }
fa37d39e
SP
3036 if (retry < 5)
3037 break;
8db9d77b
ZW
3038 }
3039 if (i == 4)
5eddb70b 3040 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3041
3042 /* Train 2 */
5eddb70b
CW
3043 reg = FDI_TX_CTL(pipe);
3044 temp = I915_READ(reg);
8db9d77b
ZW
3045 temp &= ~FDI_LINK_TRAIN_NONE;
3046 temp |= FDI_LINK_TRAIN_PATTERN_2;
3047 if (IS_GEN6(dev)) {
3048 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3049 /* SNB-B */
3050 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3051 }
5eddb70b 3052 I915_WRITE(reg, temp);
8db9d77b 3053
5eddb70b
CW
3054 reg = FDI_RX_CTL(pipe);
3055 temp = I915_READ(reg);
8db9d77b
ZW
3056 if (HAS_PCH_CPT(dev)) {
3057 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3058 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3059 } else {
3060 temp &= ~FDI_LINK_TRAIN_NONE;
3061 temp |= FDI_LINK_TRAIN_PATTERN_2;
3062 }
5eddb70b
CW
3063 I915_WRITE(reg, temp);
3064
3065 POSTING_READ(reg);
8db9d77b
ZW
3066 udelay(150);
3067
0206e353 3068 for (i = 0; i < 4; i++) {
5eddb70b
CW
3069 reg = FDI_TX_CTL(pipe);
3070 temp = I915_READ(reg);
8db9d77b
ZW
3071 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3072 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3073 I915_WRITE(reg, temp);
3074
3075 POSTING_READ(reg);
8db9d77b
ZW
3076 udelay(500);
3077
fa37d39e
SP
3078 for (retry = 0; retry < 5; retry++) {
3079 reg = FDI_RX_IIR(pipe);
3080 temp = I915_READ(reg);
3081 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3082 if (temp & FDI_RX_SYMBOL_LOCK) {
3083 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3084 DRM_DEBUG_KMS("FDI train 2 done.\n");
3085 break;
3086 }
3087 udelay(50);
8db9d77b 3088 }
fa37d39e
SP
3089 if (retry < 5)
3090 break;
8db9d77b
ZW
3091 }
3092 if (i == 4)
5eddb70b 3093 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3094
3095 DRM_DEBUG_KMS("FDI train done.\n");
3096}
3097
357555c0
JB
3098/* Manual link training for Ivy Bridge A0 parts */
3099static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3100{
3101 struct drm_device *dev = crtc->dev;
3102 struct drm_i915_private *dev_priv = dev->dev_private;
3103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104 int pipe = intel_crtc->pipe;
139ccd3f 3105 u32 reg, temp, i, j;
357555c0
JB
3106
3107 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108 for train result */
3109 reg = FDI_RX_IMR(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~FDI_RX_SYMBOL_LOCK;
3112 temp &= ~FDI_RX_BIT_LOCK;
3113 I915_WRITE(reg, temp);
3114
3115 POSTING_READ(reg);
3116 udelay(150);
3117
01a415fd
DV
3118 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3119 I915_READ(FDI_RX_IIR(pipe)));
3120
139ccd3f
JB
3121 /* Try each vswing and preemphasis setting twice before moving on */
3122 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3123 /* disable first in case we need to retry */
3124 reg = FDI_TX_CTL(pipe);
3125 temp = I915_READ(reg);
3126 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3127 temp &= ~FDI_TX_ENABLE;
3128 I915_WRITE(reg, temp);
357555c0 3129
139ccd3f
JB
3130 reg = FDI_RX_CTL(pipe);
3131 temp = I915_READ(reg);
3132 temp &= ~FDI_LINK_TRAIN_AUTO;
3133 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3134 temp &= ~FDI_RX_ENABLE;
3135 I915_WRITE(reg, temp);
357555c0 3136
139ccd3f 3137 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3138 reg = FDI_TX_CTL(pipe);
3139 temp = I915_READ(reg);
139ccd3f
JB
3140 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3141 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3142 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3143 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3144 temp |= snb_b_fdi_train_param[j/2];
3145 temp |= FDI_COMPOSITE_SYNC;
3146 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3147
139ccd3f
JB
3148 I915_WRITE(FDI_RX_MISC(pipe),
3149 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3150
139ccd3f 3151 reg = FDI_RX_CTL(pipe);
357555c0 3152 temp = I915_READ(reg);
139ccd3f
JB
3153 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3154 temp |= FDI_COMPOSITE_SYNC;
3155 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3156
139ccd3f
JB
3157 POSTING_READ(reg);
3158 udelay(1); /* should be 0.5us */
357555c0 3159
139ccd3f
JB
3160 for (i = 0; i < 4; i++) {
3161 reg = FDI_RX_IIR(pipe);
3162 temp = I915_READ(reg);
3163 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3164
139ccd3f
JB
3165 if (temp & FDI_RX_BIT_LOCK ||
3166 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3167 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3168 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3169 i);
3170 break;
3171 }
3172 udelay(1); /* should be 0.5us */
3173 }
3174 if (i == 4) {
3175 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3176 continue;
3177 }
357555c0 3178
139ccd3f 3179 /* Train 2 */
357555c0
JB
3180 reg = FDI_TX_CTL(pipe);
3181 temp = I915_READ(reg);
139ccd3f
JB
3182 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3183 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3184 I915_WRITE(reg, temp);
3185
3186 reg = FDI_RX_CTL(pipe);
3187 temp = I915_READ(reg);
3188 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3189 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3190 I915_WRITE(reg, temp);
3191
3192 POSTING_READ(reg);
139ccd3f 3193 udelay(2); /* should be 1.5us */
357555c0 3194
139ccd3f
JB
3195 for (i = 0; i < 4; i++) {
3196 reg = FDI_RX_IIR(pipe);
3197 temp = I915_READ(reg);
3198 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3199
139ccd3f
JB
3200 if (temp & FDI_RX_SYMBOL_LOCK ||
3201 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3202 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3203 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3204 i);
3205 goto train_done;
3206 }
3207 udelay(2); /* should be 1.5us */
357555c0 3208 }
139ccd3f
JB
3209 if (i == 4)
3210 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3211 }
357555c0 3212
139ccd3f 3213train_done:
357555c0
JB
3214 DRM_DEBUG_KMS("FDI train done.\n");
3215}
3216
88cefb6c 3217static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3218{
88cefb6c 3219 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3220 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3221 int pipe = intel_crtc->pipe;
5eddb70b 3222 u32 reg, temp;
79e53945 3223
c64e311e 3224
c98e9dcf 3225 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3226 reg = FDI_RX_CTL(pipe);
3227 temp = I915_READ(reg);
627eb5a3
DV
3228 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3229 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3230 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3231 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3232
3233 POSTING_READ(reg);
c98e9dcf
JB
3234 udelay(200);
3235
3236 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3237 temp = I915_READ(reg);
3238 I915_WRITE(reg, temp | FDI_PCDCLK);
3239
3240 POSTING_READ(reg);
c98e9dcf
JB
3241 udelay(200);
3242
20749730
PZ
3243 /* Enable CPU FDI TX PLL, always on for Ironlake */
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
3246 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3247 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3248
20749730
PZ
3249 POSTING_READ(reg);
3250 udelay(100);
6be4a607 3251 }
0e23b99d
JB
3252}
3253
88cefb6c
DV
3254static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3255{
3256 struct drm_device *dev = intel_crtc->base.dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 int pipe = intel_crtc->pipe;
3259 u32 reg, temp;
3260
3261 /* Switch from PCDclk to Rawclk */
3262 reg = FDI_RX_CTL(pipe);
3263 temp = I915_READ(reg);
3264 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3265
3266 /* Disable CPU FDI TX PLL */
3267 reg = FDI_TX_CTL(pipe);
3268 temp = I915_READ(reg);
3269 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3270
3271 POSTING_READ(reg);
3272 udelay(100);
3273
3274 reg = FDI_RX_CTL(pipe);
3275 temp = I915_READ(reg);
3276 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3277
3278 /* Wait for the clocks to turn off. */
3279 POSTING_READ(reg);
3280 udelay(100);
3281}
3282
0fc932b8
JB
3283static void ironlake_fdi_disable(struct drm_crtc *crtc)
3284{
3285 struct drm_device *dev = crtc->dev;
3286 struct drm_i915_private *dev_priv = dev->dev_private;
3287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3288 int pipe = intel_crtc->pipe;
3289 u32 reg, temp;
3290
3291 /* disable CPU FDI tx and PCH FDI rx */
3292 reg = FDI_TX_CTL(pipe);
3293 temp = I915_READ(reg);
3294 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3295 POSTING_READ(reg);
3296
3297 reg = FDI_RX_CTL(pipe);
3298 temp = I915_READ(reg);
3299 temp &= ~(0x7 << 16);
dfd07d72 3300 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3301 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3302
3303 POSTING_READ(reg);
3304 udelay(100);
3305
3306 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3307 if (HAS_PCH_IBX(dev))
6f06ce18 3308 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3309
3310 /* still set train pattern 1 */
3311 reg = FDI_TX_CTL(pipe);
3312 temp = I915_READ(reg);
3313 temp &= ~FDI_LINK_TRAIN_NONE;
3314 temp |= FDI_LINK_TRAIN_PATTERN_1;
3315 I915_WRITE(reg, temp);
3316
3317 reg = FDI_RX_CTL(pipe);
3318 temp = I915_READ(reg);
3319 if (HAS_PCH_CPT(dev)) {
3320 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3321 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3322 } else {
3323 temp &= ~FDI_LINK_TRAIN_NONE;
3324 temp |= FDI_LINK_TRAIN_PATTERN_1;
3325 }
3326 /* BPC in FDI rx is consistent with that in PIPECONF */
3327 temp &= ~(0x07 << 16);
dfd07d72 3328 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3329 I915_WRITE(reg, temp);
3330
3331 POSTING_READ(reg);
3332 udelay(100);
3333}
3334
5dce5b93
CW
3335bool intel_has_pending_fb_unpin(struct drm_device *dev)
3336{
3337 struct intel_crtc *crtc;
3338
3339 /* Note that we don't need to be called with mode_config.lock here
3340 * as our list of CRTC objects is static for the lifetime of the
3341 * device and so cannot disappear as we iterate. Similarly, we can
3342 * happily treat the predicates as racy, atomic checks as userspace
3343 * cannot claim and pin a new fb without at least acquring the
3344 * struct_mutex and so serialising with us.
3345 */
d3fcc808 3346 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3347 if (atomic_read(&crtc->unpin_work_count) == 0)
3348 continue;
3349
3350 if (crtc->unpin_work)
3351 intel_wait_for_vblank(dev, crtc->pipe);
3352
3353 return true;
3354 }
3355
3356 return false;
3357}
3358
46a55d30 3359void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3360{
0f91128d 3361 struct drm_device *dev = crtc->dev;
5bb61643 3362 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3363
f4510a27 3364 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3365 return;
3366
2c10d571
DV
3367 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3368
eed6d67d
DV
3369 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3370 !intel_crtc_has_pending_flip(crtc),
3371 60*HZ) == 0);
5bb61643 3372
0f91128d 3373 mutex_lock(&dev->struct_mutex);
f4510a27 3374 intel_finish_fb(crtc->primary->fb);
0f91128d 3375 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3376}
3377
e615efe4
ED
3378/* Program iCLKIP clock to the desired frequency */
3379static void lpt_program_iclkip(struct drm_crtc *crtc)
3380{
3381 struct drm_device *dev = crtc->dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3383 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3384 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3385 u32 temp;
3386
09153000
DV
3387 mutex_lock(&dev_priv->dpio_lock);
3388
e615efe4
ED
3389 /* It is necessary to ungate the pixclk gate prior to programming
3390 * the divisors, and gate it back when it is done.
3391 */
3392 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3393
3394 /* Disable SSCCTL */
3395 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3396 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3397 SBI_SSCCTL_DISABLE,
3398 SBI_ICLK);
e615efe4
ED
3399
3400 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3401 if (clock == 20000) {
e615efe4
ED
3402 auxdiv = 1;
3403 divsel = 0x41;
3404 phaseinc = 0x20;
3405 } else {
3406 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3407 * but the adjusted_mode->crtc_clock in in KHz. To get the
3408 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3409 * convert the virtual clock precision to KHz here for higher
3410 * precision.
3411 */
3412 u32 iclk_virtual_root_freq = 172800 * 1000;
3413 u32 iclk_pi_range = 64;
3414 u32 desired_divisor, msb_divisor_value, pi_value;
3415
12d7ceed 3416 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3417 msb_divisor_value = desired_divisor / iclk_pi_range;
3418 pi_value = desired_divisor % iclk_pi_range;
3419
3420 auxdiv = 0;
3421 divsel = msb_divisor_value - 2;
3422 phaseinc = pi_value;
3423 }
3424
3425 /* This should not happen with any sane values */
3426 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3427 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3428 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3429 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3430
3431 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3432 clock,
e615efe4
ED
3433 auxdiv,
3434 divsel,
3435 phasedir,
3436 phaseinc);
3437
3438 /* Program SSCDIVINTPHASE6 */
988d6ee8 3439 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3440 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3441 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3442 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3443 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3444 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3445 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3446 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3447
3448 /* Program SSCAUXDIV */
988d6ee8 3449 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3450 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3451 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3452 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3453
3454 /* Enable modulator and associated divider */
988d6ee8 3455 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3456 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3457 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3458
3459 /* Wait for initialization time */
3460 udelay(24);
3461
3462 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3463
3464 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3465}
3466
275f01b2
DV
3467static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3468 enum pipe pch_transcoder)
3469{
3470 struct drm_device *dev = crtc->base.dev;
3471 struct drm_i915_private *dev_priv = dev->dev_private;
3472 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3473
3474 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3475 I915_READ(HTOTAL(cpu_transcoder)));
3476 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3477 I915_READ(HBLANK(cpu_transcoder)));
3478 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3479 I915_READ(HSYNC(cpu_transcoder)));
3480
3481 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3482 I915_READ(VTOTAL(cpu_transcoder)));
3483 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3484 I915_READ(VBLANK(cpu_transcoder)));
3485 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3486 I915_READ(VSYNC(cpu_transcoder)));
3487 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3488 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3489}
3490
1fbc0d78
DV
3491static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3492{
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494 uint32_t temp;
3495
3496 temp = I915_READ(SOUTH_CHICKEN1);
3497 if (temp & FDI_BC_BIFURCATION_SELECT)
3498 return;
3499
3500 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3501 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3502
3503 temp |= FDI_BC_BIFURCATION_SELECT;
3504 DRM_DEBUG_KMS("enabling fdi C rx\n");
3505 I915_WRITE(SOUTH_CHICKEN1, temp);
3506 POSTING_READ(SOUTH_CHICKEN1);
3507}
3508
3509static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3510{
3511 struct drm_device *dev = intel_crtc->base.dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513
3514 switch (intel_crtc->pipe) {
3515 case PIPE_A:
3516 break;
3517 case PIPE_B:
3518 if (intel_crtc->config.fdi_lanes > 2)
3519 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3520 else
3521 cpt_enable_fdi_bc_bifurcation(dev);
3522
3523 break;
3524 case PIPE_C:
3525 cpt_enable_fdi_bc_bifurcation(dev);
3526
3527 break;
3528 default:
3529 BUG();
3530 }
3531}
3532
f67a559d
JB
3533/*
3534 * Enable PCH resources required for PCH ports:
3535 * - PCH PLLs
3536 * - FDI training & RX/TX
3537 * - update transcoder timings
3538 * - DP transcoding bits
3539 * - transcoder
3540 */
3541static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3542{
3543 struct drm_device *dev = crtc->dev;
3544 struct drm_i915_private *dev_priv = dev->dev_private;
3545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546 int pipe = intel_crtc->pipe;
ee7b9f93 3547 u32 reg, temp;
2c07245f 3548
ab9412ba 3549 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3550
1fbc0d78
DV
3551 if (IS_IVYBRIDGE(dev))
3552 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3553
cd986abb
DV
3554 /* Write the TU size bits before fdi link training, so that error
3555 * detection works. */
3556 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3557 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3558
c98e9dcf 3559 /* For PCH output, training FDI link */
674cf967 3560 dev_priv->display.fdi_link_train(crtc);
2c07245f 3561
3ad8a208
DV
3562 /* We need to program the right clock selection before writing the pixel
3563 * mutliplier into the DPLL. */
303b81e0 3564 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3565 u32 sel;
4b645f14 3566
c98e9dcf 3567 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3568 temp |= TRANS_DPLL_ENABLE(pipe);
3569 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3570 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3571 temp |= sel;
3572 else
3573 temp &= ~sel;
c98e9dcf 3574 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3575 }
5eddb70b 3576
3ad8a208
DV
3577 /* XXX: pch pll's can be enabled any time before we enable the PCH
3578 * transcoder, and we actually should do this to not upset any PCH
3579 * transcoder that already use the clock when we share it.
3580 *
3581 * Note that enable_shared_dpll tries to do the right thing, but
3582 * get_shared_dpll unconditionally resets the pll - we need that to have
3583 * the right LVDS enable sequence. */
85b3894f 3584 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3585
d9b6cb56
JB
3586 /* set transcoder timing, panel must allow it */
3587 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3588 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3589
303b81e0 3590 intel_fdi_normal_train(crtc);
5e84e1a4 3591
c98e9dcf
JB
3592 /* For PCH DP, enable TRANS_DP_CTL */
3593 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3594 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3595 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3596 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3597 reg = TRANS_DP_CTL(pipe);
3598 temp = I915_READ(reg);
3599 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3600 TRANS_DP_SYNC_MASK |
3601 TRANS_DP_BPC_MASK);
5eddb70b
CW
3602 temp |= (TRANS_DP_OUTPUT_ENABLE |
3603 TRANS_DP_ENH_FRAMING);
9325c9f0 3604 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3605
3606 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3607 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3608 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3609 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3610
3611 switch (intel_trans_dp_port_sel(crtc)) {
3612 case PCH_DP_B:
5eddb70b 3613 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3614 break;
3615 case PCH_DP_C:
5eddb70b 3616 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3617 break;
3618 case PCH_DP_D:
5eddb70b 3619 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3620 break;
3621 default:
e95d41e1 3622 BUG();
32f9d658 3623 }
2c07245f 3624
5eddb70b 3625 I915_WRITE(reg, temp);
6be4a607 3626 }
b52eb4dc 3627
b8a4f404 3628 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3629}
3630
1507e5bd
PZ
3631static void lpt_pch_enable(struct drm_crtc *crtc)
3632{
3633 struct drm_device *dev = crtc->dev;
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3636 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3637
ab9412ba 3638 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3639
8c52b5e8 3640 lpt_program_iclkip(crtc);
1507e5bd 3641
0540e488 3642 /* Set transcoder timing. */
275f01b2 3643 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3644
937bb610 3645 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3646}
3647
716c2e55 3648void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3649{
e2b78267 3650 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3651
3652 if (pll == NULL)
3653 return;
3654
3655 if (pll->refcount == 0) {
46edb027 3656 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3657 return;
3658 }
3659
f4a091c7
DV
3660 if (--pll->refcount == 0) {
3661 WARN_ON(pll->on);
3662 WARN_ON(pll->active);
3663 }
3664
a43f6e0f 3665 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3666}
3667
716c2e55 3668struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3669{
e2b78267
DV
3670 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3671 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3672 enum intel_dpll_id i;
ee7b9f93 3673
ee7b9f93 3674 if (pll) {
46edb027
DV
3675 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3676 crtc->base.base.id, pll->name);
e2b78267 3677 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3678 }
3679
98b6bd99
DV
3680 if (HAS_PCH_IBX(dev_priv->dev)) {
3681 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3682 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3683 pll = &dev_priv->shared_dplls[i];
98b6bd99 3684
46edb027
DV
3685 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3686 crtc->base.base.id, pll->name);
98b6bd99 3687
f2a69f44
DV
3688 WARN_ON(pll->refcount);
3689
98b6bd99
DV
3690 goto found;
3691 }
3692
e72f9fbf
DV
3693 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3694 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3695
3696 /* Only want to check enabled timings first */
3697 if (pll->refcount == 0)
3698 continue;
3699
b89a1d39
DV
3700 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3701 sizeof(pll->hw_state)) == 0) {
46edb027 3702 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3703 crtc->base.base.id,
46edb027 3704 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3705
3706 goto found;
3707 }
3708 }
3709
3710 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3711 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3712 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3713 if (pll->refcount == 0) {
46edb027
DV
3714 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3715 crtc->base.base.id, pll->name);
ee7b9f93
JB
3716 goto found;
3717 }
3718 }
3719
3720 return NULL;
3721
3722found:
f2a69f44
DV
3723 if (pll->refcount == 0)
3724 pll->hw_state = crtc->config.dpll_hw_state;
3725
a43f6e0f 3726 crtc->config.shared_dpll = i;
46edb027
DV
3727 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3728 pipe_name(crtc->pipe));
ee7b9f93 3729
cdbd2316 3730 pll->refcount++;
e04c7350 3731
ee7b9f93
JB
3732 return pll;
3733}
3734
a1520318 3735static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3736{
3737 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3738 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3739 u32 temp;
3740
3741 temp = I915_READ(dslreg);
3742 udelay(500);
3743 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3744 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3745 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3746 }
3747}
3748
b074cec8
JB
3749static void ironlake_pfit_enable(struct intel_crtc *crtc)
3750{
3751 struct drm_device *dev = crtc->base.dev;
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 int pipe = crtc->pipe;
3754
fd4daa9c 3755 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3756 /* Force use of hard-coded filter coefficients
3757 * as some pre-programmed values are broken,
3758 * e.g. x201.
3759 */
3760 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3761 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3762 PF_PIPE_SEL_IVB(pipe));
3763 else
3764 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3765 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3766 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3767 }
3768}
3769
bb53d4ae
VS
3770static void intel_enable_planes(struct drm_crtc *crtc)
3771{
3772 struct drm_device *dev = crtc->dev;
3773 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3774 struct drm_plane *plane;
bb53d4ae
VS
3775 struct intel_plane *intel_plane;
3776
af2b653b
MR
3777 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3778 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3779 if (intel_plane->pipe == pipe)
3780 intel_plane_restore(&intel_plane->base);
af2b653b 3781 }
bb53d4ae
VS
3782}
3783
3784static void intel_disable_planes(struct drm_crtc *crtc)
3785{
3786 struct drm_device *dev = crtc->dev;
3787 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3788 struct drm_plane *plane;
bb53d4ae
VS
3789 struct intel_plane *intel_plane;
3790
af2b653b
MR
3791 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3792 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3793 if (intel_plane->pipe == pipe)
3794 intel_plane_disable(&intel_plane->base);
af2b653b 3795 }
bb53d4ae
VS
3796}
3797
20bc8673 3798void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3799{
cea165c3
VS
3800 struct drm_device *dev = crtc->base.dev;
3801 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3802
3803 if (!crtc->config.ips_enabled)
3804 return;
3805
cea165c3
VS
3806 /* We can only enable IPS after we enable a plane and wait for a vblank */
3807 intel_wait_for_vblank(dev, crtc->pipe);
3808
d77e4531 3809 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3810 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3811 mutex_lock(&dev_priv->rps.hw_lock);
3812 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3813 mutex_unlock(&dev_priv->rps.hw_lock);
3814 /* Quoting Art Runyan: "its not safe to expect any particular
3815 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3816 * mailbox." Moreover, the mailbox may return a bogus state,
3817 * so we need to just enable it and continue on.
2a114cc1
BW
3818 */
3819 } else {
3820 I915_WRITE(IPS_CTL, IPS_ENABLE);
3821 /* The bit only becomes 1 in the next vblank, so this wait here
3822 * is essentially intel_wait_for_vblank. If we don't have this
3823 * and don't wait for vblanks until the end of crtc_enable, then
3824 * the HW state readout code will complain that the expected
3825 * IPS_CTL value is not the one we read. */
3826 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3827 DRM_ERROR("Timed out waiting for IPS enable\n");
3828 }
d77e4531
PZ
3829}
3830
20bc8673 3831void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3832{
3833 struct drm_device *dev = crtc->base.dev;
3834 struct drm_i915_private *dev_priv = dev->dev_private;
3835
3836 if (!crtc->config.ips_enabled)
3837 return;
3838
3839 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3840 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3841 mutex_lock(&dev_priv->rps.hw_lock);
3842 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3843 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3844 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3845 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3846 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3847 } else {
2a114cc1 3848 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3849 POSTING_READ(IPS_CTL);
3850 }
d77e4531
PZ
3851
3852 /* We need to wait for a vblank before we can disable the plane. */
3853 intel_wait_for_vblank(dev, crtc->pipe);
3854}
3855
3856/** Loads the palette/gamma unit for the CRTC with the prepared values */
3857static void intel_crtc_load_lut(struct drm_crtc *crtc)
3858{
3859 struct drm_device *dev = crtc->dev;
3860 struct drm_i915_private *dev_priv = dev->dev_private;
3861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3862 enum pipe pipe = intel_crtc->pipe;
3863 int palreg = PALETTE(pipe);
3864 int i;
3865 bool reenable_ips = false;
3866
3867 /* The clocks have to be on to load the palette. */
3868 if (!crtc->enabled || !intel_crtc->active)
3869 return;
3870
3871 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3872 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3873 assert_dsi_pll_enabled(dev_priv);
3874 else
3875 assert_pll_enabled(dev_priv, pipe);
3876 }
3877
3878 /* use legacy palette for Ironlake */
7a1db49a 3879 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3880 palreg = LGC_PALETTE(pipe);
3881
3882 /* Workaround : Do not read or write the pipe palette/gamma data while
3883 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3884 */
41e6fc4c 3885 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3886 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3887 GAMMA_MODE_MODE_SPLIT)) {
3888 hsw_disable_ips(intel_crtc);
3889 reenable_ips = true;
3890 }
3891
3892 for (i = 0; i < 256; i++) {
3893 I915_WRITE(palreg + 4 * i,
3894 (intel_crtc->lut_r[i] << 16) |
3895 (intel_crtc->lut_g[i] << 8) |
3896 intel_crtc->lut_b[i]);
3897 }
3898
3899 if (reenable_ips)
3900 hsw_enable_ips(intel_crtc);
3901}
3902
d3eedb1a
VS
3903static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3904{
3905 if (!enable && intel_crtc->overlay) {
3906 struct drm_device *dev = intel_crtc->base.dev;
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 mutex_lock(&dev->struct_mutex);
3910 dev_priv->mm.interruptible = false;
3911 (void) intel_overlay_switch_off(intel_crtc->overlay);
3912 dev_priv->mm.interruptible = true;
3913 mutex_unlock(&dev->struct_mutex);
3914 }
3915
3916 /* Let userspace switch the overlay on again. In most cases userspace
3917 * has to recompute where to put it anyway.
3918 */
3919}
3920
d3eedb1a 3921static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3922{
3923 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
3924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3925 int pipe = intel_crtc->pipe;
a5c4d7bc 3926
f98551ae
VS
3927 drm_vblank_on(dev, pipe);
3928
fdd508a6 3929 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
3930 intel_enable_planes(crtc);
3931 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3932 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3933
3934 hsw_enable_ips(intel_crtc);
3935
3936 mutex_lock(&dev->struct_mutex);
3937 intel_update_fbc(dev);
3938 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3939
3940 /*
3941 * FIXME: Once we grow proper nuclear flip support out of this we need
3942 * to compute the mask of flip planes precisely. For the time being
3943 * consider this a flip from a NULL plane.
3944 */
3945 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3946}
3947
d3eedb1a 3948static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3949{
3950 struct drm_device *dev = crtc->dev;
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3953 int pipe = intel_crtc->pipe;
3954 int plane = intel_crtc->plane;
3955
3956 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3957
3958 if (dev_priv->fbc.plane == plane)
3959 intel_disable_fbc(dev);
3960
3961 hsw_disable_ips(intel_crtc);
3962
d3eedb1a 3963 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3964 intel_crtc_update_cursor(crtc, false);
3965 intel_disable_planes(crtc);
fdd508a6 3966 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 3967
f99d7069
DV
3968 /*
3969 * FIXME: Once we grow proper nuclear flip support out of this we need
3970 * to compute the mask of flip planes precisely. For the time being
3971 * consider this a flip to a NULL plane.
3972 */
3973 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3974
f98551ae 3975 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3976}
3977
f67a559d
JB
3978static void ironlake_crtc_enable(struct drm_crtc *crtc)
3979{
3980 struct drm_device *dev = crtc->dev;
3981 struct drm_i915_private *dev_priv = dev->dev_private;
3982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3983 struct intel_encoder *encoder;
f67a559d 3984 int pipe = intel_crtc->pipe;
f67a559d 3985
08a48469
DV
3986 WARN_ON(!crtc->enabled);
3987
f67a559d
JB
3988 if (intel_crtc->active)
3989 return;
3990
b14b1055
DV
3991 if (intel_crtc->config.has_pch_encoder)
3992 intel_prepare_shared_dpll(intel_crtc);
3993
29407aab
DV
3994 if (intel_crtc->config.has_dp_encoder)
3995 intel_dp_set_m_n(intel_crtc);
3996
3997 intel_set_pipe_timings(intel_crtc);
3998
3999 if (intel_crtc->config.has_pch_encoder) {
4000 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4001 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4002 }
4003
4004 ironlake_set_pipeconf(crtc);
4005
f67a559d 4006 intel_crtc->active = true;
8664281b
PZ
4007
4008 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4009 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4010
f6736a1a 4011 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4012 if (encoder->pre_enable)
4013 encoder->pre_enable(encoder);
f67a559d 4014
5bfe2ac0 4015 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4016 /* Note: FDI PLL enabling _must_ be done before we enable the
4017 * cpu pipes, hence this is separate from all the other fdi/pch
4018 * enabling. */
88cefb6c 4019 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4020 } else {
4021 assert_fdi_tx_disabled(dev_priv, pipe);
4022 assert_fdi_rx_disabled(dev_priv, pipe);
4023 }
f67a559d 4024
b074cec8 4025 ironlake_pfit_enable(intel_crtc);
f67a559d 4026
9c54c0dd
JB
4027 /*
4028 * On ILK+ LUT must be loaded before the pipe is running but with
4029 * clocks enabled
4030 */
4031 intel_crtc_load_lut(crtc);
4032
f37fcc2a 4033 intel_update_watermarks(crtc);
e1fdc473 4034 intel_enable_pipe(intel_crtc);
f67a559d 4035
5bfe2ac0 4036 if (intel_crtc->config.has_pch_encoder)
f67a559d 4037 ironlake_pch_enable(crtc);
c98e9dcf 4038
fa5c73b1
DV
4039 for_each_encoder_on_crtc(dev, crtc, encoder)
4040 encoder->enable(encoder);
61b77ddd
DV
4041
4042 if (HAS_PCH_CPT(dev))
a1520318 4043 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4044
d3eedb1a 4045 intel_crtc_enable_planes(crtc);
6be4a607
JB
4046}
4047
42db64ef
PZ
4048/* IPS only exists on ULT machines and is tied to pipe A. */
4049static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4050{
f5adf94e 4051 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4052}
4053
e4916946
PZ
4054/*
4055 * This implements the workaround described in the "notes" section of the mode
4056 * set sequence documentation. When going from no pipes or single pipe to
4057 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4058 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4059 */
4060static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4061{
4062 struct drm_device *dev = crtc->base.dev;
4063 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4064
4065 /* We want to get the other_active_crtc only if there's only 1 other
4066 * active crtc. */
d3fcc808 4067 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4068 if (!crtc_it->active || crtc_it == crtc)
4069 continue;
4070
4071 if (other_active_crtc)
4072 return;
4073
4074 other_active_crtc = crtc_it;
4075 }
4076 if (!other_active_crtc)
4077 return;
4078
4079 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4080 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4081}
4082
4f771f10
PZ
4083static void haswell_crtc_enable(struct drm_crtc *crtc)
4084{
4085 struct drm_device *dev = crtc->dev;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4088 struct intel_encoder *encoder;
4089 int pipe = intel_crtc->pipe;
4f771f10
PZ
4090
4091 WARN_ON(!crtc->enabled);
4092
4093 if (intel_crtc->active)
4094 return;
4095
df8ad70c
DV
4096 if (intel_crtc_to_shared_dpll(intel_crtc))
4097 intel_enable_shared_dpll(intel_crtc);
4098
229fca97
DV
4099 if (intel_crtc->config.has_dp_encoder)
4100 intel_dp_set_m_n(intel_crtc);
4101
4102 intel_set_pipe_timings(intel_crtc);
4103
4104 if (intel_crtc->config.has_pch_encoder) {
4105 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4106 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4107 }
4108
4109 haswell_set_pipeconf(crtc);
4110
4111 intel_set_pipe_csc(crtc);
4112
4f771f10 4113 intel_crtc->active = true;
8664281b
PZ
4114
4115 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4116 for_each_encoder_on_crtc(dev, crtc, encoder)
4117 if (encoder->pre_enable)
4118 encoder->pre_enable(encoder);
4119
4fe9467d
ID
4120 if (intel_crtc->config.has_pch_encoder) {
4121 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4122 dev_priv->display.fdi_link_train(crtc);
4123 }
4124
1f544388 4125 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4126
b074cec8 4127 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4128
4129 /*
4130 * On ILK+ LUT must be loaded before the pipe is running but with
4131 * clocks enabled
4132 */
4133 intel_crtc_load_lut(crtc);
4134
1f544388 4135 intel_ddi_set_pipe_settings(crtc);
8228c251 4136 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4137
f37fcc2a 4138 intel_update_watermarks(crtc);
e1fdc473 4139 intel_enable_pipe(intel_crtc);
42db64ef 4140
5bfe2ac0 4141 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4142 lpt_pch_enable(crtc);
4f771f10 4143
0e32b39c
DA
4144 if (intel_crtc->config.dp_encoder_is_mst)
4145 intel_ddi_set_vc_payload_alloc(crtc, true);
4146
8807e55b 4147 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4148 encoder->enable(encoder);
8807e55b
JN
4149 intel_opregion_notify_encoder(encoder, true);
4150 }
4f771f10 4151
e4916946
PZ
4152 /* If we change the relative order between pipe/planes enabling, we need
4153 * to change the workaround. */
4154 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4155 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4156}
4157
3f8dce3a
DV
4158static void ironlake_pfit_disable(struct intel_crtc *crtc)
4159{
4160 struct drm_device *dev = crtc->base.dev;
4161 struct drm_i915_private *dev_priv = dev->dev_private;
4162 int pipe = crtc->pipe;
4163
4164 /* To avoid upsetting the power well on haswell only disable the pfit if
4165 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4166 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4167 I915_WRITE(PF_CTL(pipe), 0);
4168 I915_WRITE(PF_WIN_POS(pipe), 0);
4169 I915_WRITE(PF_WIN_SZ(pipe), 0);
4170 }
4171}
4172
6be4a607
JB
4173static void ironlake_crtc_disable(struct drm_crtc *crtc)
4174{
4175 struct drm_device *dev = crtc->dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4178 struct intel_encoder *encoder;
6be4a607 4179 int pipe = intel_crtc->pipe;
5eddb70b 4180 u32 reg, temp;
b52eb4dc 4181
f7abfe8b
CW
4182 if (!intel_crtc->active)
4183 return;
4184
d3eedb1a 4185 intel_crtc_disable_planes(crtc);
a5c4d7bc 4186
ea9d758d
DV
4187 for_each_encoder_on_crtc(dev, crtc, encoder)
4188 encoder->disable(encoder);
4189
d925c59a
DV
4190 if (intel_crtc->config.has_pch_encoder)
4191 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4192
b24e7179 4193 intel_disable_pipe(dev_priv, pipe);
32f9d658 4194
0e32b39c
DA
4195 if (intel_crtc->config.dp_encoder_is_mst)
4196 intel_ddi_set_vc_payload_alloc(crtc, false);
4197
3f8dce3a 4198 ironlake_pfit_disable(intel_crtc);
2c07245f 4199
bf49ec8c
DV
4200 for_each_encoder_on_crtc(dev, crtc, encoder)
4201 if (encoder->post_disable)
4202 encoder->post_disable(encoder);
2c07245f 4203
d925c59a
DV
4204 if (intel_crtc->config.has_pch_encoder) {
4205 ironlake_fdi_disable(crtc);
913d8d11 4206
d925c59a
DV
4207 ironlake_disable_pch_transcoder(dev_priv, pipe);
4208 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4209
d925c59a
DV
4210 if (HAS_PCH_CPT(dev)) {
4211 /* disable TRANS_DP_CTL */
4212 reg = TRANS_DP_CTL(pipe);
4213 temp = I915_READ(reg);
4214 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4215 TRANS_DP_PORT_SEL_MASK);
4216 temp |= TRANS_DP_PORT_SEL_NONE;
4217 I915_WRITE(reg, temp);
4218
4219 /* disable DPLL_SEL */
4220 temp = I915_READ(PCH_DPLL_SEL);
11887397 4221 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4222 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4223 }
e3421a18 4224
d925c59a 4225 /* disable PCH DPLL */
e72f9fbf 4226 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4227
d925c59a
DV
4228 ironlake_fdi_pll_disable(intel_crtc);
4229 }
6b383a7f 4230
f7abfe8b 4231 intel_crtc->active = false;
46ba614c 4232 intel_update_watermarks(crtc);
d1ebd816
BW
4233
4234 mutex_lock(&dev->struct_mutex);
6b383a7f 4235 intel_update_fbc(dev);
d1ebd816 4236 mutex_unlock(&dev->struct_mutex);
6be4a607 4237}
1b3c7a47 4238
4f771f10 4239static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4240{
4f771f10
PZ
4241 struct drm_device *dev = crtc->dev;
4242 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4244 struct intel_encoder *encoder;
4245 int pipe = intel_crtc->pipe;
3b117c8f 4246 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4247
4f771f10
PZ
4248 if (!intel_crtc->active)
4249 return;
4250
d3eedb1a 4251 intel_crtc_disable_planes(crtc);
dda9a66a 4252
8807e55b
JN
4253 for_each_encoder_on_crtc(dev, crtc, encoder) {
4254 intel_opregion_notify_encoder(encoder, false);
4f771f10 4255 encoder->disable(encoder);
8807e55b 4256 }
4f771f10 4257
8664281b
PZ
4258 if (intel_crtc->config.has_pch_encoder)
4259 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4260 intel_disable_pipe(dev_priv, pipe);
4261
ad80a810 4262 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4263
3f8dce3a 4264 ironlake_pfit_disable(intel_crtc);
4f771f10 4265
1f544388 4266 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4267
88adfff1 4268 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4269 lpt_disable_pch_transcoder(dev_priv);
8664281b 4270 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4271 intel_ddi_fdi_disable(crtc);
83616634 4272 }
4f771f10 4273
97b040aa
ID
4274 for_each_encoder_on_crtc(dev, crtc, encoder)
4275 if (encoder->post_disable)
4276 encoder->post_disable(encoder);
4277
4f771f10 4278 intel_crtc->active = false;
46ba614c 4279 intel_update_watermarks(crtc);
4f771f10
PZ
4280
4281 mutex_lock(&dev->struct_mutex);
4282 intel_update_fbc(dev);
4283 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4284
4285 if (intel_crtc_to_shared_dpll(intel_crtc))
4286 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4287}
4288
ee7b9f93
JB
4289static void ironlake_crtc_off(struct drm_crtc *crtc)
4290{
4291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4292 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4293}
4294
6441ab5f 4295
2dd24552
JB
4296static void i9xx_pfit_enable(struct intel_crtc *crtc)
4297{
4298 struct drm_device *dev = crtc->base.dev;
4299 struct drm_i915_private *dev_priv = dev->dev_private;
4300 struct intel_crtc_config *pipe_config = &crtc->config;
4301
328d8e82 4302 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4303 return;
4304
2dd24552 4305 /*
c0b03411
DV
4306 * The panel fitter should only be adjusted whilst the pipe is disabled,
4307 * according to register description and PRM.
2dd24552 4308 */
c0b03411
DV
4309 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4310 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4311
b074cec8
JB
4312 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4313 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4314
4315 /* Border color in case we don't scale up to the full screen. Black by
4316 * default, change to something else for debugging. */
4317 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4318}
4319
d05410f9
DA
4320static enum intel_display_power_domain port_to_power_domain(enum port port)
4321{
4322 switch (port) {
4323 case PORT_A:
4324 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4325 case PORT_B:
4326 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4327 case PORT_C:
4328 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4329 case PORT_D:
4330 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4331 default:
4332 WARN_ON_ONCE(1);
4333 return POWER_DOMAIN_PORT_OTHER;
4334 }
4335}
4336
77d22dca
ID
4337#define for_each_power_domain(domain, mask) \
4338 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4339 if ((1 << (domain)) & (mask))
4340
319be8ae
ID
4341enum intel_display_power_domain
4342intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4343{
4344 struct drm_device *dev = intel_encoder->base.dev;
4345 struct intel_digital_port *intel_dig_port;
4346
4347 switch (intel_encoder->type) {
4348 case INTEL_OUTPUT_UNKNOWN:
4349 /* Only DDI platforms should ever use this output type */
4350 WARN_ON_ONCE(!HAS_DDI(dev));
4351 case INTEL_OUTPUT_DISPLAYPORT:
4352 case INTEL_OUTPUT_HDMI:
4353 case INTEL_OUTPUT_EDP:
4354 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4355 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4356 case INTEL_OUTPUT_DP_MST:
4357 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4358 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4359 case INTEL_OUTPUT_ANALOG:
4360 return POWER_DOMAIN_PORT_CRT;
4361 case INTEL_OUTPUT_DSI:
4362 return POWER_DOMAIN_PORT_DSI;
4363 default:
4364 return POWER_DOMAIN_PORT_OTHER;
4365 }
4366}
4367
4368static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4369{
319be8ae
ID
4370 struct drm_device *dev = crtc->dev;
4371 struct intel_encoder *intel_encoder;
4372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4373 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4374 unsigned long mask;
4375 enum transcoder transcoder;
4376
4377 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4378
4379 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4380 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4381 if (intel_crtc->config.pch_pfit.enabled ||
4382 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4383 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4384
319be8ae
ID
4385 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4386 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4387
77d22dca
ID
4388 return mask;
4389}
4390
4391void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4392 bool enable)
4393{
4394 if (dev_priv->power_domains.init_power_on == enable)
4395 return;
4396
4397 if (enable)
4398 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4399 else
4400 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4401
4402 dev_priv->power_domains.init_power_on = enable;
4403}
4404
4405static void modeset_update_crtc_power_domains(struct drm_device *dev)
4406{
4407 struct drm_i915_private *dev_priv = dev->dev_private;
4408 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4409 struct intel_crtc *crtc;
4410
4411 /*
4412 * First get all needed power domains, then put all unneeded, to avoid
4413 * any unnecessary toggling of the power wells.
4414 */
d3fcc808 4415 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4416 enum intel_display_power_domain domain;
4417
4418 if (!crtc->base.enabled)
4419 continue;
4420
319be8ae 4421 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4422
4423 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4424 intel_display_power_get(dev_priv, domain);
4425 }
4426
d3fcc808 4427 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4428 enum intel_display_power_domain domain;
4429
4430 for_each_power_domain(domain, crtc->enabled_power_domains)
4431 intel_display_power_put(dev_priv, domain);
4432
4433 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4434 }
4435
4436 intel_display_set_init_power(dev_priv, false);
4437}
4438
dfcab17e 4439/* returns HPLL frequency in kHz */
f8bf63fd 4440static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4441{
586f49dc 4442 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4443
586f49dc
JB
4444 /* Obtain SKU information */
4445 mutex_lock(&dev_priv->dpio_lock);
4446 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4447 CCK_FUSE_HPLL_FREQ_MASK;
4448 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4449
dfcab17e 4450 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4451}
4452
f8bf63fd
VS
4453static void vlv_update_cdclk(struct drm_device *dev)
4454{
4455 struct drm_i915_private *dev_priv = dev->dev_private;
4456
4457 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4458 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4459 dev_priv->vlv_cdclk_freq);
4460
4461 /*
4462 * Program the gmbus_freq based on the cdclk frequency.
4463 * BSpec erroneously claims we should aim for 4MHz, but
4464 * in fact 1MHz is the correct frequency.
4465 */
4466 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4467}
4468
30a970c6
JB
4469/* Adjust CDclk dividers to allow high res or save power if possible */
4470static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4471{
4472 struct drm_i915_private *dev_priv = dev->dev_private;
4473 u32 val, cmd;
4474
d197b7d3 4475 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4476
dfcab17e 4477 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4478 cmd = 2;
dfcab17e 4479 else if (cdclk == 266667)
30a970c6
JB
4480 cmd = 1;
4481 else
4482 cmd = 0;
4483
4484 mutex_lock(&dev_priv->rps.hw_lock);
4485 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4486 val &= ~DSPFREQGUAR_MASK;
4487 val |= (cmd << DSPFREQGUAR_SHIFT);
4488 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4489 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4490 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4491 50)) {
4492 DRM_ERROR("timed out waiting for CDclk change\n");
4493 }
4494 mutex_unlock(&dev_priv->rps.hw_lock);
4495
dfcab17e 4496 if (cdclk == 400000) {
30a970c6
JB
4497 u32 divider, vco;
4498
4499 vco = valleyview_get_vco(dev_priv);
dfcab17e 4500 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4501
4502 mutex_lock(&dev_priv->dpio_lock);
4503 /* adjust cdclk divider */
4504 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4505 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4506 val |= divider;
4507 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4508
4509 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4510 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4511 50))
4512 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4513 mutex_unlock(&dev_priv->dpio_lock);
4514 }
4515
4516 mutex_lock(&dev_priv->dpio_lock);
4517 /* adjust self-refresh exit latency value */
4518 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4519 val &= ~0x7f;
4520
4521 /*
4522 * For high bandwidth configs, we set a higher latency in the bunit
4523 * so that the core display fetch happens in time to avoid underruns.
4524 */
dfcab17e 4525 if (cdclk == 400000)
30a970c6
JB
4526 val |= 4500 / 250; /* 4.5 usec */
4527 else
4528 val |= 3000 / 250; /* 3.0 usec */
4529 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4530 mutex_unlock(&dev_priv->dpio_lock);
4531
f8bf63fd 4532 vlv_update_cdclk(dev);
30a970c6
JB
4533}
4534
383c5a6a
VS
4535static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4536{
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 u32 val, cmd;
4539
4540 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4541
4542 switch (cdclk) {
4543 case 400000:
4544 cmd = 3;
4545 break;
4546 case 333333:
4547 case 320000:
4548 cmd = 2;
4549 break;
4550 case 266667:
4551 cmd = 1;
4552 break;
4553 case 200000:
4554 cmd = 0;
4555 break;
4556 default:
4557 WARN_ON(1);
4558 return;
4559 }
4560
4561 mutex_lock(&dev_priv->rps.hw_lock);
4562 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4563 val &= ~DSPFREQGUAR_MASK_CHV;
4564 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4565 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4566 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4567 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4568 50)) {
4569 DRM_ERROR("timed out waiting for CDclk change\n");
4570 }
4571 mutex_unlock(&dev_priv->rps.hw_lock);
4572
4573 vlv_update_cdclk(dev);
4574}
4575
30a970c6
JB
4576static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4577 int max_pixclk)
4578{
29dc7ef3
VS
4579 int vco = valleyview_get_vco(dev_priv);
4580 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4581
d49a340d
VS
4582 /* FIXME: Punit isn't quite ready yet */
4583 if (IS_CHERRYVIEW(dev_priv->dev))
4584 return 400000;
4585
30a970c6
JB
4586 /*
4587 * Really only a few cases to deal with, as only 4 CDclks are supported:
4588 * 200MHz
4589 * 267MHz
29dc7ef3 4590 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4591 * 400MHz
4592 * So we check to see whether we're above 90% of the lower bin and
4593 * adjust if needed.
e37c67a1
VS
4594 *
4595 * We seem to get an unstable or solid color picture at 200MHz.
4596 * Not sure what's wrong. For now use 200MHz only when all pipes
4597 * are off.
30a970c6 4598 */
29dc7ef3 4599 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4600 return 400000;
4601 else if (max_pixclk > 266667*9/10)
29dc7ef3 4602 return freq_320;
e37c67a1 4603 else if (max_pixclk > 0)
dfcab17e 4604 return 266667;
e37c67a1
VS
4605 else
4606 return 200000;
30a970c6
JB
4607}
4608
2f2d7aa1
VS
4609/* compute the max pixel clock for new configuration */
4610static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4611{
4612 struct drm_device *dev = dev_priv->dev;
4613 struct intel_crtc *intel_crtc;
4614 int max_pixclk = 0;
4615
d3fcc808 4616 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4617 if (intel_crtc->new_enabled)
30a970c6 4618 max_pixclk = max(max_pixclk,
2f2d7aa1 4619 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4620 }
4621
4622 return max_pixclk;
4623}
4624
4625static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4626 unsigned *prepare_pipes)
30a970c6
JB
4627{
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 struct intel_crtc *intel_crtc;
2f2d7aa1 4630 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4631
d60c4473
ID
4632 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4633 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4634 return;
4635
2f2d7aa1 4636 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4637 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4638 if (intel_crtc->base.enabled)
4639 *prepare_pipes |= (1 << intel_crtc->pipe);
4640}
4641
4642static void valleyview_modeset_global_resources(struct drm_device *dev)
4643{
4644 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4645 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4646 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4647
383c5a6a
VS
4648 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4649 if (IS_CHERRYVIEW(dev))
4650 cherryview_set_cdclk(dev, req_cdclk);
4651 else
4652 valleyview_set_cdclk(dev, req_cdclk);
4653 }
4654
77961eb9 4655 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4656}
4657
89b667f8
JB
4658static void valleyview_crtc_enable(struct drm_crtc *crtc)
4659{
4660 struct drm_device *dev = crtc->dev;
89b667f8
JB
4661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4662 struct intel_encoder *encoder;
4663 int pipe = intel_crtc->pipe;
23538ef1 4664 bool is_dsi;
89b667f8
JB
4665
4666 WARN_ON(!crtc->enabled);
4667
4668 if (intel_crtc->active)
4669 return;
4670
8525a235
SK
4671 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4672
1ae0d137
VS
4673 if (!is_dsi) {
4674 if (IS_CHERRYVIEW(dev))
4675 chv_prepare_pll(intel_crtc);
4676 else
4677 vlv_prepare_pll(intel_crtc);
4678 }
bdd4b6a6 4679
5b18e57c
DV
4680 if (intel_crtc->config.has_dp_encoder)
4681 intel_dp_set_m_n(intel_crtc);
4682
4683 intel_set_pipe_timings(intel_crtc);
4684
5b18e57c
DV
4685 i9xx_set_pipeconf(intel_crtc);
4686
89b667f8 4687 intel_crtc->active = true;
89b667f8 4688
4a3436e8
VS
4689 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4690
89b667f8
JB
4691 for_each_encoder_on_crtc(dev, crtc, encoder)
4692 if (encoder->pre_pll_enable)
4693 encoder->pre_pll_enable(encoder);
4694
9d556c99
CML
4695 if (!is_dsi) {
4696 if (IS_CHERRYVIEW(dev))
4697 chv_enable_pll(intel_crtc);
4698 else
4699 vlv_enable_pll(intel_crtc);
4700 }
89b667f8
JB
4701
4702 for_each_encoder_on_crtc(dev, crtc, encoder)
4703 if (encoder->pre_enable)
4704 encoder->pre_enable(encoder);
4705
2dd24552
JB
4706 i9xx_pfit_enable(intel_crtc);
4707
63cbb074
VS
4708 intel_crtc_load_lut(crtc);
4709
f37fcc2a 4710 intel_update_watermarks(crtc);
e1fdc473 4711 intel_enable_pipe(intel_crtc);
be6a6f8e 4712
5004945f
JN
4713 for_each_encoder_on_crtc(dev, crtc, encoder)
4714 encoder->enable(encoder);
9ab0460b
VS
4715
4716 intel_crtc_enable_planes(crtc);
d40d9187 4717
56b80e1f
VS
4718 /* Underruns don't raise interrupts, so check manually. */
4719 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4720}
4721
f13c2ef3
DV
4722static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4723{
4724 struct drm_device *dev = crtc->base.dev;
4725 struct drm_i915_private *dev_priv = dev->dev_private;
4726
4727 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4728 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4729}
4730
0b8765c6 4731static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4732{
4733 struct drm_device *dev = crtc->dev;
79e53945 4734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4735 struct intel_encoder *encoder;
79e53945 4736 int pipe = intel_crtc->pipe;
79e53945 4737
08a48469
DV
4738 WARN_ON(!crtc->enabled);
4739
f7abfe8b
CW
4740 if (intel_crtc->active)
4741 return;
4742
f13c2ef3
DV
4743 i9xx_set_pll_dividers(intel_crtc);
4744
5b18e57c
DV
4745 if (intel_crtc->config.has_dp_encoder)
4746 intel_dp_set_m_n(intel_crtc);
4747
4748 intel_set_pipe_timings(intel_crtc);
4749
5b18e57c
DV
4750 i9xx_set_pipeconf(intel_crtc);
4751
f7abfe8b 4752 intel_crtc->active = true;
6b383a7f 4753
4a3436e8
VS
4754 if (!IS_GEN2(dev))
4755 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4756
9d6d9f19
MK
4757 for_each_encoder_on_crtc(dev, crtc, encoder)
4758 if (encoder->pre_enable)
4759 encoder->pre_enable(encoder);
4760
f6736a1a
DV
4761 i9xx_enable_pll(intel_crtc);
4762
2dd24552
JB
4763 i9xx_pfit_enable(intel_crtc);
4764
63cbb074
VS
4765 intel_crtc_load_lut(crtc);
4766
f37fcc2a 4767 intel_update_watermarks(crtc);
e1fdc473 4768 intel_enable_pipe(intel_crtc);
be6a6f8e 4769
fa5c73b1
DV
4770 for_each_encoder_on_crtc(dev, crtc, encoder)
4771 encoder->enable(encoder);
9ab0460b
VS
4772
4773 intel_crtc_enable_planes(crtc);
d40d9187 4774
4a3436e8
VS
4775 /*
4776 * Gen2 reports pipe underruns whenever all planes are disabled.
4777 * So don't enable underrun reporting before at least some planes
4778 * are enabled.
4779 * FIXME: Need to fix the logic to work when we turn off all planes
4780 * but leave the pipe running.
4781 */
4782 if (IS_GEN2(dev))
4783 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4784
56b80e1f
VS
4785 /* Underruns don't raise interrupts, so check manually. */
4786 i9xx_check_fifo_underruns(dev);
0b8765c6 4787}
79e53945 4788
87476d63
DV
4789static void i9xx_pfit_disable(struct intel_crtc *crtc)
4790{
4791 struct drm_device *dev = crtc->base.dev;
4792 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4793
328d8e82
DV
4794 if (!crtc->config.gmch_pfit.control)
4795 return;
87476d63 4796
328d8e82 4797 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4798
328d8e82
DV
4799 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4800 I915_READ(PFIT_CONTROL));
4801 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4802}
4803
0b8765c6
JB
4804static void i9xx_crtc_disable(struct drm_crtc *crtc)
4805{
4806 struct drm_device *dev = crtc->dev;
4807 struct drm_i915_private *dev_priv = dev->dev_private;
4808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4809 struct intel_encoder *encoder;
0b8765c6 4810 int pipe = intel_crtc->pipe;
ef9c3aee 4811
f7abfe8b
CW
4812 if (!intel_crtc->active)
4813 return;
4814
4a3436e8
VS
4815 /*
4816 * Gen2 reports pipe underruns whenever all planes are disabled.
4817 * So diasble underrun reporting before all the planes get disabled.
4818 * FIXME: Need to fix the logic to work when we turn off all planes
4819 * but leave the pipe running.
4820 */
4821 if (IS_GEN2(dev))
4822 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4823
564ed191
ID
4824 /*
4825 * Vblank time updates from the shadow to live plane control register
4826 * are blocked if the memory self-refresh mode is active at that
4827 * moment. So to make sure the plane gets truly disabled, disable
4828 * first the self-refresh mode. The self-refresh enable bit in turn
4829 * will be checked/applied by the HW only at the next frame start
4830 * event which is after the vblank start event, so we need to have a
4831 * wait-for-vblank between disabling the plane and the pipe.
4832 */
4833 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4834 intel_crtc_disable_planes(crtc);
4835
ea9d758d
DV
4836 for_each_encoder_on_crtc(dev, crtc, encoder)
4837 encoder->disable(encoder);
4838
6304cd91
VS
4839 /*
4840 * On gen2 planes are double buffered but the pipe isn't, so we must
4841 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4842 * We also need to wait on all gmch platforms because of the
4843 * self-refresh mode constraint explained above.
6304cd91 4844 */
564ed191 4845 intel_wait_for_vblank(dev, pipe);
6304cd91 4846
b24e7179 4847 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4848
87476d63 4849 i9xx_pfit_disable(intel_crtc);
24a1f16d 4850
89b667f8
JB
4851 for_each_encoder_on_crtc(dev, crtc, encoder)
4852 if (encoder->post_disable)
4853 encoder->post_disable(encoder);
4854
076ed3b2
CML
4855 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4856 if (IS_CHERRYVIEW(dev))
4857 chv_disable_pll(dev_priv, pipe);
4858 else if (IS_VALLEYVIEW(dev))
4859 vlv_disable_pll(dev_priv, pipe);
4860 else
4861 i9xx_disable_pll(dev_priv, pipe);
4862 }
0b8765c6 4863
4a3436e8
VS
4864 if (!IS_GEN2(dev))
4865 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4866
f7abfe8b 4867 intel_crtc->active = false;
46ba614c 4868 intel_update_watermarks(crtc);
f37fcc2a 4869
efa9624e 4870 mutex_lock(&dev->struct_mutex);
6b383a7f 4871 intel_update_fbc(dev);
efa9624e 4872 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4873}
4874
ee7b9f93
JB
4875static void i9xx_crtc_off(struct drm_crtc *crtc)
4876{
4877}
4878
976f8a20
DV
4879static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4880 bool enabled)
2c07245f
ZW
4881{
4882 struct drm_device *dev = crtc->dev;
4883 struct drm_i915_master_private *master_priv;
4884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4885 int pipe = intel_crtc->pipe;
79e53945
JB
4886
4887 if (!dev->primary->master)
4888 return;
4889
4890 master_priv = dev->primary->master->driver_priv;
4891 if (!master_priv->sarea_priv)
4892 return;
4893
79e53945
JB
4894 switch (pipe) {
4895 case 0:
4896 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4897 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4898 break;
4899 case 1:
4900 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4901 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4902 break;
4903 default:
9db4a9c7 4904 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4905 break;
4906 }
79e53945
JB
4907}
4908
b04c5bd6
BF
4909/* Master function to enable/disable CRTC and corresponding power wells */
4910void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4911{
4912 struct drm_device *dev = crtc->dev;
4913 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4915 enum intel_display_power_domain domain;
4916 unsigned long domains;
976f8a20 4917
0e572fe7
DV
4918 if (enable) {
4919 if (!intel_crtc->active) {
e1e9fb84
DV
4920 domains = get_crtc_power_domains(crtc);
4921 for_each_power_domain(domain, domains)
4922 intel_display_power_get(dev_priv, domain);
4923 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4924
4925 dev_priv->display.crtc_enable(crtc);
4926 }
4927 } else {
4928 if (intel_crtc->active) {
4929 dev_priv->display.crtc_disable(crtc);
4930
e1e9fb84
DV
4931 domains = intel_crtc->enabled_power_domains;
4932 for_each_power_domain(domain, domains)
4933 intel_display_power_put(dev_priv, domain);
4934 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4935 }
4936 }
b04c5bd6
BF
4937}
4938
4939/**
4940 * Sets the power management mode of the pipe and plane.
4941 */
4942void intel_crtc_update_dpms(struct drm_crtc *crtc)
4943{
4944 struct drm_device *dev = crtc->dev;
4945 struct intel_encoder *intel_encoder;
4946 bool enable = false;
4947
4948 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4949 enable |= intel_encoder->connectors_active;
4950
4951 intel_crtc_control(crtc, enable);
976f8a20
DV
4952
4953 intel_crtc_update_sarea(crtc, enable);
4954}
4955
cdd59983
CW
4956static void intel_crtc_disable(struct drm_crtc *crtc)
4957{
cdd59983 4958 struct drm_device *dev = crtc->dev;
976f8a20 4959 struct drm_connector *connector;
ee7b9f93 4960 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4961 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4962 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4963
976f8a20
DV
4964 /* crtc should still be enabled when we disable it. */
4965 WARN_ON(!crtc->enabled);
4966
4967 dev_priv->display.crtc_disable(crtc);
4968 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4969 dev_priv->display.off(crtc);
4970
f4510a27 4971 if (crtc->primary->fb) {
cdd59983 4972 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4973 intel_unpin_fb_obj(old_obj);
4974 i915_gem_track_fb(old_obj, NULL,
4975 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4976 mutex_unlock(&dev->struct_mutex);
f4510a27 4977 crtc->primary->fb = NULL;
976f8a20
DV
4978 }
4979
4980 /* Update computed state. */
4981 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4982 if (!connector->encoder || !connector->encoder->crtc)
4983 continue;
4984
4985 if (connector->encoder->crtc != crtc)
4986 continue;
4987
4988 connector->dpms = DRM_MODE_DPMS_OFF;
4989 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4990 }
4991}
4992
ea5b213a 4993void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4994{
4ef69c7a 4995 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4996
ea5b213a
CW
4997 drm_encoder_cleanup(encoder);
4998 kfree(intel_encoder);
7e7d76c3
JB
4999}
5000
9237329d 5001/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5002 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5003 * state of the entire output pipe. */
9237329d 5004static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5005{
5ab432ef
DV
5006 if (mode == DRM_MODE_DPMS_ON) {
5007 encoder->connectors_active = true;
5008
b2cabb0e 5009 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5010 } else {
5011 encoder->connectors_active = false;
5012
b2cabb0e 5013 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5014 }
79e53945
JB
5015}
5016
0a91ca29
DV
5017/* Cross check the actual hw state with our own modeset state tracking (and it's
5018 * internal consistency). */
b980514c 5019static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5020{
0a91ca29
DV
5021 if (connector->get_hw_state(connector)) {
5022 struct intel_encoder *encoder = connector->encoder;
5023 struct drm_crtc *crtc;
5024 bool encoder_enabled;
5025 enum pipe pipe;
5026
5027 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5028 connector->base.base.id,
c23cc417 5029 connector->base.name);
0a91ca29 5030
0e32b39c
DA
5031 /* there is no real hw state for MST connectors */
5032 if (connector->mst_port)
5033 return;
5034
0a91ca29
DV
5035 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5036 "wrong connector dpms state\n");
5037 WARN(connector->base.encoder != &encoder->base,
5038 "active connector not linked to encoder\n");
0a91ca29 5039
36cd7444
DA
5040 if (encoder) {
5041 WARN(!encoder->connectors_active,
5042 "encoder->connectors_active not set\n");
5043
5044 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5045 WARN(!encoder_enabled, "encoder not enabled\n");
5046 if (WARN_ON(!encoder->base.crtc))
5047 return;
0a91ca29 5048
36cd7444 5049 crtc = encoder->base.crtc;
0a91ca29 5050
36cd7444
DA
5051 WARN(!crtc->enabled, "crtc not enabled\n");
5052 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5053 WARN(pipe != to_intel_crtc(crtc)->pipe,
5054 "encoder active on the wrong pipe\n");
5055 }
0a91ca29 5056 }
79e53945
JB
5057}
5058
5ab432ef
DV
5059/* Even simpler default implementation, if there's really no special case to
5060 * consider. */
5061void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5062{
5ab432ef
DV
5063 /* All the simple cases only support two dpms states. */
5064 if (mode != DRM_MODE_DPMS_ON)
5065 mode = DRM_MODE_DPMS_OFF;
d4270e57 5066
5ab432ef
DV
5067 if (mode == connector->dpms)
5068 return;
5069
5070 connector->dpms = mode;
5071
5072 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5073 if (connector->encoder)
5074 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5075
b980514c 5076 intel_modeset_check_state(connector->dev);
79e53945
JB
5077}
5078
f0947c37
DV
5079/* Simple connector->get_hw_state implementation for encoders that support only
5080 * one connector and no cloning and hence the encoder state determines the state
5081 * of the connector. */
5082bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5083{
24929352 5084 enum pipe pipe = 0;
f0947c37 5085 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5086
f0947c37 5087 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5088}
5089
1857e1da
DV
5090static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5091 struct intel_crtc_config *pipe_config)
5092{
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 struct intel_crtc *pipe_B_crtc =
5095 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5096
5097 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5098 pipe_name(pipe), pipe_config->fdi_lanes);
5099 if (pipe_config->fdi_lanes > 4) {
5100 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5101 pipe_name(pipe), pipe_config->fdi_lanes);
5102 return false;
5103 }
5104
bafb6553 5105 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5106 if (pipe_config->fdi_lanes > 2) {
5107 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5108 pipe_config->fdi_lanes);
5109 return false;
5110 } else {
5111 return true;
5112 }
5113 }
5114
5115 if (INTEL_INFO(dev)->num_pipes == 2)
5116 return true;
5117
5118 /* Ivybridge 3 pipe is really complicated */
5119 switch (pipe) {
5120 case PIPE_A:
5121 return true;
5122 case PIPE_B:
5123 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5124 pipe_config->fdi_lanes > 2) {
5125 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5126 pipe_name(pipe), pipe_config->fdi_lanes);
5127 return false;
5128 }
5129 return true;
5130 case PIPE_C:
1e833f40 5131 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5132 pipe_B_crtc->config.fdi_lanes <= 2) {
5133 if (pipe_config->fdi_lanes > 2) {
5134 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5135 pipe_name(pipe), pipe_config->fdi_lanes);
5136 return false;
5137 }
5138 } else {
5139 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5140 return false;
5141 }
5142 return true;
5143 default:
5144 BUG();
5145 }
5146}
5147
e29c22c0
DV
5148#define RETRY 1
5149static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5150 struct intel_crtc_config *pipe_config)
877d48d5 5151{
1857e1da 5152 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5153 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5154 int lane, link_bw, fdi_dotclock;
e29c22c0 5155 bool setup_ok, needs_recompute = false;
877d48d5 5156
e29c22c0 5157retry:
877d48d5
DV
5158 /* FDI is a binary signal running at ~2.7GHz, encoding
5159 * each output octet as 10 bits. The actual frequency
5160 * is stored as a divider into a 100MHz clock, and the
5161 * mode pixel clock is stored in units of 1KHz.
5162 * Hence the bw of each lane in terms of the mode signal
5163 * is:
5164 */
5165 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5166
241bfc38 5167 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5168
2bd89a07 5169 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5170 pipe_config->pipe_bpp);
5171
5172 pipe_config->fdi_lanes = lane;
5173
2bd89a07 5174 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5175 link_bw, &pipe_config->fdi_m_n);
1857e1da 5176
e29c22c0
DV
5177 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5178 intel_crtc->pipe, pipe_config);
5179 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5180 pipe_config->pipe_bpp -= 2*3;
5181 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5182 pipe_config->pipe_bpp);
5183 needs_recompute = true;
5184 pipe_config->bw_constrained = true;
5185
5186 goto retry;
5187 }
5188
5189 if (needs_recompute)
5190 return RETRY;
5191
5192 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5193}
5194
42db64ef
PZ
5195static void hsw_compute_ips_config(struct intel_crtc *crtc,
5196 struct intel_crtc_config *pipe_config)
5197{
d330a953 5198 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5199 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5200 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5201}
5202
a43f6e0f 5203static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5204 struct intel_crtc_config *pipe_config)
79e53945 5205{
a43f6e0f 5206 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5207 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5208
ad3a4479 5209 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5210 if (INTEL_INFO(dev)->gen < 4) {
5211 struct drm_i915_private *dev_priv = dev->dev_private;
5212 int clock_limit =
5213 dev_priv->display.get_display_clock_speed(dev);
5214
5215 /*
5216 * Enable pixel doubling when the dot clock
5217 * is > 90% of the (display) core speed.
5218 *
b397c96b
VS
5219 * GDG double wide on either pipe,
5220 * otherwise pipe A only.
cf532bb2 5221 */
b397c96b 5222 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5223 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5224 clock_limit *= 2;
cf532bb2 5225 pipe_config->double_wide = true;
ad3a4479
VS
5226 }
5227
241bfc38 5228 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5229 return -EINVAL;
2c07245f 5230 }
89749350 5231
1d1d0e27
VS
5232 /*
5233 * Pipe horizontal size must be even in:
5234 * - DVO ganged mode
5235 * - LVDS dual channel mode
5236 * - Double wide pipe
5237 */
5238 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5239 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5240 pipe_config->pipe_src_w &= ~1;
5241
8693a824
DL
5242 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5243 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5244 */
5245 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5246 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5247 return -EINVAL;
44f46b42 5248
bd080ee5 5249 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5250 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5251 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5252 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5253 * for lvds. */
5254 pipe_config->pipe_bpp = 8*3;
5255 }
5256
f5adf94e 5257 if (HAS_IPS(dev))
a43f6e0f
DV
5258 hsw_compute_ips_config(crtc, pipe_config);
5259
12030431
DV
5260 /*
5261 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5262 * old clock survives for now.
5263 */
5264 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5265 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5266
877d48d5 5267 if (pipe_config->has_pch_encoder)
a43f6e0f 5268 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5269
e29c22c0 5270 return 0;
79e53945
JB
5271}
5272
25eb05fc
JB
5273static int valleyview_get_display_clock_speed(struct drm_device *dev)
5274{
d197b7d3
VS
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 int vco = valleyview_get_vco(dev_priv);
5277 u32 val;
5278 int divider;
5279
d49a340d
VS
5280 /* FIXME: Punit isn't quite ready yet */
5281 if (IS_CHERRYVIEW(dev))
5282 return 400000;
5283
d197b7d3
VS
5284 mutex_lock(&dev_priv->dpio_lock);
5285 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5286 mutex_unlock(&dev_priv->dpio_lock);
5287
5288 divider = val & DISPLAY_FREQUENCY_VALUES;
5289
7d007f40
VS
5290 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5291 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5292 "cdclk change in progress\n");
5293
d197b7d3 5294 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5295}
5296
e70236a8
JB
5297static int i945_get_display_clock_speed(struct drm_device *dev)
5298{
5299 return 400000;
5300}
79e53945 5301
e70236a8 5302static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5303{
e70236a8
JB
5304 return 333000;
5305}
79e53945 5306
e70236a8
JB
5307static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5308{
5309 return 200000;
5310}
79e53945 5311
257a7ffc
DV
5312static int pnv_get_display_clock_speed(struct drm_device *dev)
5313{
5314 u16 gcfgc = 0;
5315
5316 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5317
5318 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5319 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5320 return 267000;
5321 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5322 return 333000;
5323 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5324 return 444000;
5325 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5326 return 200000;
5327 default:
5328 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5329 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5330 return 133000;
5331 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5332 return 167000;
5333 }
5334}
5335
e70236a8
JB
5336static int i915gm_get_display_clock_speed(struct drm_device *dev)
5337{
5338 u16 gcfgc = 0;
79e53945 5339
e70236a8
JB
5340 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5341
5342 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5343 return 133000;
5344 else {
5345 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5346 case GC_DISPLAY_CLOCK_333_MHZ:
5347 return 333000;
5348 default:
5349 case GC_DISPLAY_CLOCK_190_200_MHZ:
5350 return 190000;
79e53945 5351 }
e70236a8
JB
5352 }
5353}
5354
5355static int i865_get_display_clock_speed(struct drm_device *dev)
5356{
5357 return 266000;
5358}
5359
5360static int i855_get_display_clock_speed(struct drm_device *dev)
5361{
5362 u16 hpllcc = 0;
5363 /* Assume that the hardware is in the high speed state. This
5364 * should be the default.
5365 */
5366 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5367 case GC_CLOCK_133_200:
5368 case GC_CLOCK_100_200:
5369 return 200000;
5370 case GC_CLOCK_166_250:
5371 return 250000;
5372 case GC_CLOCK_100_133:
79e53945 5373 return 133000;
e70236a8 5374 }
79e53945 5375
e70236a8
JB
5376 /* Shouldn't happen */
5377 return 0;
5378}
79e53945 5379
e70236a8
JB
5380static int i830_get_display_clock_speed(struct drm_device *dev)
5381{
5382 return 133000;
79e53945
JB
5383}
5384
2c07245f 5385static void
a65851af 5386intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5387{
a65851af
VS
5388 while (*num > DATA_LINK_M_N_MASK ||
5389 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5390 *num >>= 1;
5391 *den >>= 1;
5392 }
5393}
5394
a65851af
VS
5395static void compute_m_n(unsigned int m, unsigned int n,
5396 uint32_t *ret_m, uint32_t *ret_n)
5397{
5398 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5399 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5400 intel_reduce_m_n_ratio(ret_m, ret_n);
5401}
5402
e69d0bc1
DV
5403void
5404intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5405 int pixel_clock, int link_clock,
5406 struct intel_link_m_n *m_n)
2c07245f 5407{
e69d0bc1 5408 m_n->tu = 64;
a65851af
VS
5409
5410 compute_m_n(bits_per_pixel * pixel_clock,
5411 link_clock * nlanes * 8,
5412 &m_n->gmch_m, &m_n->gmch_n);
5413
5414 compute_m_n(pixel_clock, link_clock,
5415 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5416}
5417
a7615030
CW
5418static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5419{
d330a953
JN
5420 if (i915.panel_use_ssc >= 0)
5421 return i915.panel_use_ssc != 0;
41aa3448 5422 return dev_priv->vbt.lvds_use_ssc
435793df 5423 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5424}
5425
c65d77d8
JB
5426static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5427{
5428 struct drm_device *dev = crtc->dev;
5429 struct drm_i915_private *dev_priv = dev->dev_private;
5430 int refclk;
5431
a0c4da24 5432 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5433 refclk = 100000;
a0c4da24 5434 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5435 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5436 refclk = dev_priv->vbt.lvds_ssc_freq;
5437 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5438 } else if (!IS_GEN2(dev)) {
5439 refclk = 96000;
5440 } else {
5441 refclk = 48000;
5442 }
5443
5444 return refclk;
5445}
5446
7429e9d4 5447static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5448{
7df00d7a 5449 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5450}
f47709a9 5451
7429e9d4
DV
5452static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5453{
5454 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5455}
5456
f47709a9 5457static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5458 intel_clock_t *reduced_clock)
5459{
f47709a9 5460 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5461 u32 fp, fp2 = 0;
5462
5463 if (IS_PINEVIEW(dev)) {
7429e9d4 5464 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5465 if (reduced_clock)
7429e9d4 5466 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5467 } else {
7429e9d4 5468 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5469 if (reduced_clock)
7429e9d4 5470 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5471 }
5472
8bcc2795 5473 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5474
f47709a9
DV
5475 crtc->lowfreq_avail = false;
5476 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5477 reduced_clock && i915.powersave) {
8bcc2795 5478 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5479 crtc->lowfreq_avail = true;
a7516a05 5480 } else {
8bcc2795 5481 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5482 }
5483}
5484
5e69f97f
CML
5485static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5486 pipe)
89b667f8
JB
5487{
5488 u32 reg_val;
5489
5490 /*
5491 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5492 * and set it to a reasonable value instead.
5493 */
ab3c759a 5494 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5495 reg_val &= 0xffffff00;
5496 reg_val |= 0x00000030;
ab3c759a 5497 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5498
ab3c759a 5499 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5500 reg_val &= 0x8cffffff;
5501 reg_val = 0x8c000000;
ab3c759a 5502 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5503
ab3c759a 5504 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5505 reg_val &= 0xffffff00;
ab3c759a 5506 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5507
ab3c759a 5508 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5509 reg_val &= 0x00ffffff;
5510 reg_val |= 0xb0000000;
ab3c759a 5511 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5512}
5513
b551842d
DV
5514static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5515 struct intel_link_m_n *m_n)
5516{
5517 struct drm_device *dev = crtc->base.dev;
5518 struct drm_i915_private *dev_priv = dev->dev_private;
5519 int pipe = crtc->pipe;
5520
e3b95f1e
DV
5521 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5522 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5523 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5524 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5525}
5526
5527static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5528 struct intel_link_m_n *m_n,
5529 struct intel_link_m_n *m2_n2)
b551842d
DV
5530{
5531 struct drm_device *dev = crtc->base.dev;
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533 int pipe = crtc->pipe;
5534 enum transcoder transcoder = crtc->config.cpu_transcoder;
5535
5536 if (INTEL_INFO(dev)->gen >= 5) {
5537 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5538 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5539 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5540 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5541 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5542 * for gen < 8) and if DRRS is supported (to make sure the
5543 * registers are not unnecessarily accessed).
5544 */
5545 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5546 crtc->config.has_drrs) {
5547 I915_WRITE(PIPE_DATA_M2(transcoder),
5548 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5549 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5550 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5551 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5552 }
b551842d 5553 } else {
e3b95f1e
DV
5554 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5555 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5556 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5557 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5558 }
5559}
5560
f769cd24 5561void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5562{
5563 if (crtc->config.has_pch_encoder)
5564 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5565 else
f769cd24
VK
5566 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5567 &crtc->config.dp_m2_n2);
03afc4a2
DV
5568}
5569
f47709a9 5570static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5571{
5572 u32 dpll, dpll_md;
5573
5574 /*
5575 * Enable DPIO clock input. We should never disable the reference
5576 * clock for pipe B, since VGA hotplug / manual detection depends
5577 * on it.
5578 */
5579 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5580 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5581 /* We should never disable this, set it here for state tracking */
5582 if (crtc->pipe == PIPE_B)
5583 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5584 dpll |= DPLL_VCO_ENABLE;
5585 crtc->config.dpll_hw_state.dpll = dpll;
5586
5587 dpll_md = (crtc->config.pixel_multiplier - 1)
5588 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5589 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5590}
5591
5592static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5593{
f47709a9 5594 struct drm_device *dev = crtc->base.dev;
a0c4da24 5595 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5596 int pipe = crtc->pipe;
bdd4b6a6 5597 u32 mdiv;
a0c4da24 5598 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5599 u32 coreclk, reg_val;
a0c4da24 5600
09153000
DV
5601 mutex_lock(&dev_priv->dpio_lock);
5602
f47709a9
DV
5603 bestn = crtc->config.dpll.n;
5604 bestm1 = crtc->config.dpll.m1;
5605 bestm2 = crtc->config.dpll.m2;
5606 bestp1 = crtc->config.dpll.p1;
5607 bestp2 = crtc->config.dpll.p2;
a0c4da24 5608
89b667f8
JB
5609 /* See eDP HDMI DPIO driver vbios notes doc */
5610
5611 /* PLL B needs special handling */
bdd4b6a6 5612 if (pipe == PIPE_B)
5e69f97f 5613 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5614
5615 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5616 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5617
5618 /* Disable target IRef on PLL */
ab3c759a 5619 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5620 reg_val &= 0x00ffffff;
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5622
5623 /* Disable fast lock */
ab3c759a 5624 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5625
5626 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5627 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5628 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5629 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5630 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5631
5632 /*
5633 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5634 * but we don't support that).
5635 * Note: don't use the DAC post divider as it seems unstable.
5636 */
5637 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5638 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5639
a0c4da24 5640 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5641 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5642
89b667f8 5643 /* Set HBR and RBR LPF coefficients */
ff9a6750 5644 if (crtc->config.port_clock == 162000 ||
99750bd4 5645 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5646 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5647 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5648 0x009f0003);
89b667f8 5649 else
ab3c759a 5650 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5651 0x00d0000f);
5652
5653 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5654 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5655 /* Use SSC source */
bdd4b6a6 5656 if (pipe == PIPE_A)
ab3c759a 5657 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5658 0x0df40000);
5659 else
ab3c759a 5660 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5661 0x0df70000);
5662 } else { /* HDMI or VGA */
5663 /* Use bend source */
bdd4b6a6 5664 if (pipe == PIPE_A)
ab3c759a 5665 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5666 0x0df70000);
5667 else
ab3c759a 5668 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5669 0x0df40000);
5670 }
a0c4da24 5671
ab3c759a 5672 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5673 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5674 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5675 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5676 coreclk |= 0x01000000;
ab3c759a 5677 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5678
ab3c759a 5679 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5680 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5681}
5682
9d556c99 5683static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5684{
5685 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5686 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5687 DPLL_VCO_ENABLE;
5688 if (crtc->pipe != PIPE_A)
5689 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5690
5691 crtc->config.dpll_hw_state.dpll_md =
5692 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5693}
5694
5695static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5696{
5697 struct drm_device *dev = crtc->base.dev;
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699 int pipe = crtc->pipe;
5700 int dpll_reg = DPLL(crtc->pipe);
5701 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5702 u32 loopfilter, intcoeff;
9d556c99
CML
5703 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5704 int refclk;
5705
9d556c99
CML
5706 bestn = crtc->config.dpll.n;
5707 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5708 bestm1 = crtc->config.dpll.m1;
5709 bestm2 = crtc->config.dpll.m2 >> 22;
5710 bestp1 = crtc->config.dpll.p1;
5711 bestp2 = crtc->config.dpll.p2;
5712
5713 /*
5714 * Enable Refclk and SSC
5715 */
a11b0703
VS
5716 I915_WRITE(dpll_reg,
5717 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5718
5719 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5720
9d556c99
CML
5721 /* p1 and p2 divider */
5722 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5723 5 << DPIO_CHV_S1_DIV_SHIFT |
5724 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5725 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5726 1 << DPIO_CHV_K_DIV_SHIFT);
5727
5728 /* Feedback post-divider - m2 */
5729 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5730
5731 /* Feedback refclk divider - n and m1 */
5732 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5733 DPIO_CHV_M1_DIV_BY_2 |
5734 1 << DPIO_CHV_N_DIV_SHIFT);
5735
5736 /* M2 fraction division */
5737 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5738
5739 /* M2 fraction division enable */
5740 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5741 DPIO_CHV_FRAC_DIV_EN |
5742 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5743
5744 /* Loop filter */
5745 refclk = i9xx_get_refclk(&crtc->base, 0);
5746 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5747 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5748 if (refclk == 100000)
5749 intcoeff = 11;
5750 else if (refclk == 38400)
5751 intcoeff = 10;
5752 else
5753 intcoeff = 9;
5754 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5755 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5756
5757 /* AFC Recal */
5758 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5759 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5760 DPIO_AFC_RECAL);
5761
5762 mutex_unlock(&dev_priv->dpio_lock);
5763}
5764
f47709a9
DV
5765static void i9xx_update_pll(struct intel_crtc *crtc,
5766 intel_clock_t *reduced_clock,
eb1cbe48
DV
5767 int num_connectors)
5768{
f47709a9 5769 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5770 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5771 u32 dpll;
5772 bool is_sdvo;
f47709a9 5773 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5774
f47709a9 5775 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5776
f47709a9
DV
5777 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5778 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5779
5780 dpll = DPLL_VGA_MODE_DIS;
5781
f47709a9 5782 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5783 dpll |= DPLLB_MODE_LVDS;
5784 else
5785 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5786
ef1b460d 5787 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5788 dpll |= (crtc->config.pixel_multiplier - 1)
5789 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5790 }
198a037f
DV
5791
5792 if (is_sdvo)
4a33e48d 5793 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5794
f47709a9 5795 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5796 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5797
5798 /* compute bitmask from p1 value */
5799 if (IS_PINEVIEW(dev))
5800 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5801 else {
5802 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5803 if (IS_G4X(dev) && reduced_clock)
5804 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5805 }
5806 switch (clock->p2) {
5807 case 5:
5808 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5809 break;
5810 case 7:
5811 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5812 break;
5813 case 10:
5814 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5815 break;
5816 case 14:
5817 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5818 break;
5819 }
5820 if (INTEL_INFO(dev)->gen >= 4)
5821 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5822
09ede541 5823 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5824 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5825 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5826 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5827 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5828 else
5829 dpll |= PLL_REF_INPUT_DREFCLK;
5830
5831 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5832 crtc->config.dpll_hw_state.dpll = dpll;
5833
eb1cbe48 5834 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5835 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5836 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5837 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5838 }
5839}
5840
f47709a9 5841static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5842 intel_clock_t *reduced_clock,
eb1cbe48
DV
5843 int num_connectors)
5844{
f47709a9 5845 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5846 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5847 u32 dpll;
f47709a9 5848 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5849
f47709a9 5850 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5851
eb1cbe48
DV
5852 dpll = DPLL_VGA_MODE_DIS;
5853
f47709a9 5854 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5855 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5856 } else {
5857 if (clock->p1 == 2)
5858 dpll |= PLL_P1_DIVIDE_BY_TWO;
5859 else
5860 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5861 if (clock->p2 == 4)
5862 dpll |= PLL_P2_DIVIDE_BY_4;
5863 }
5864
4a33e48d
DV
5865 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5866 dpll |= DPLL_DVO_2X_MODE;
5867
f47709a9 5868 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5869 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5870 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5871 else
5872 dpll |= PLL_REF_INPUT_DREFCLK;
5873
5874 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5875 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5876}
5877
8a654f3b 5878static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5879{
5880 struct drm_device *dev = intel_crtc->base.dev;
5881 struct drm_i915_private *dev_priv = dev->dev_private;
5882 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5883 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5884 struct drm_display_mode *adjusted_mode =
5885 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5886 uint32_t crtc_vtotal, crtc_vblank_end;
5887 int vsyncshift = 0;
4d8a62ea
DV
5888
5889 /* We need to be careful not to changed the adjusted mode, for otherwise
5890 * the hw state checker will get angry at the mismatch. */
5891 crtc_vtotal = adjusted_mode->crtc_vtotal;
5892 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5893
609aeaca 5894 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5895 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5896 crtc_vtotal -= 1;
5897 crtc_vblank_end -= 1;
609aeaca
VS
5898
5899 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5900 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5901 else
5902 vsyncshift = adjusted_mode->crtc_hsync_start -
5903 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5904 if (vsyncshift < 0)
5905 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5906 }
5907
5908 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5909 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5910
fe2b8f9d 5911 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5912 (adjusted_mode->crtc_hdisplay - 1) |
5913 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5914 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5915 (adjusted_mode->crtc_hblank_start - 1) |
5916 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5917 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5918 (adjusted_mode->crtc_hsync_start - 1) |
5919 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5920
fe2b8f9d 5921 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5922 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5923 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5924 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5925 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5926 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5927 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5928 (adjusted_mode->crtc_vsync_start - 1) |
5929 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5930
b5e508d4
PZ
5931 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5932 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5933 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5934 * bits. */
5935 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5936 (pipe == PIPE_B || pipe == PIPE_C))
5937 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5938
b0e77b9c
PZ
5939 /* pipesrc controls the size that is scaled from, which should
5940 * always be the user's requested size.
5941 */
5942 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5943 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5944 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5945}
5946
1bd1bd80
DV
5947static void intel_get_pipe_timings(struct intel_crtc *crtc,
5948 struct intel_crtc_config *pipe_config)
5949{
5950 struct drm_device *dev = crtc->base.dev;
5951 struct drm_i915_private *dev_priv = dev->dev_private;
5952 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5953 uint32_t tmp;
5954
5955 tmp = I915_READ(HTOTAL(cpu_transcoder));
5956 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5957 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5958 tmp = I915_READ(HBLANK(cpu_transcoder));
5959 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5960 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5961 tmp = I915_READ(HSYNC(cpu_transcoder));
5962 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5963 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5964
5965 tmp = I915_READ(VTOTAL(cpu_transcoder));
5966 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5967 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5968 tmp = I915_READ(VBLANK(cpu_transcoder));
5969 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5970 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5971 tmp = I915_READ(VSYNC(cpu_transcoder));
5972 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5973 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5974
5975 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5976 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5977 pipe_config->adjusted_mode.crtc_vtotal += 1;
5978 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5979 }
5980
5981 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5982 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5983 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5984
5985 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5986 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5987}
5988
f6a83288
DV
5989void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5990 struct intel_crtc_config *pipe_config)
babea61d 5991{
f6a83288
DV
5992 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5993 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5994 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5995 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5996
f6a83288
DV
5997 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5998 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5999 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6000 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6001
f6a83288 6002 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6003
f6a83288
DV
6004 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6005 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6006}
6007
84b046f3
DV
6008static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6009{
6010 struct drm_device *dev = intel_crtc->base.dev;
6011 struct drm_i915_private *dev_priv = dev->dev_private;
6012 uint32_t pipeconf;
6013
9f11a9e4 6014 pipeconf = 0;
84b046f3 6015
67c72a12
DV
6016 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6017 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6018 pipeconf |= PIPECONF_ENABLE;
6019
cf532bb2
VS
6020 if (intel_crtc->config.double_wide)
6021 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6022
ff9ce46e
DV
6023 /* only g4x and later have fancy bpc/dither controls */
6024 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6025 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6026 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6027 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6028 PIPECONF_DITHER_TYPE_SP;
84b046f3 6029
ff9ce46e
DV
6030 switch (intel_crtc->config.pipe_bpp) {
6031 case 18:
6032 pipeconf |= PIPECONF_6BPC;
6033 break;
6034 case 24:
6035 pipeconf |= PIPECONF_8BPC;
6036 break;
6037 case 30:
6038 pipeconf |= PIPECONF_10BPC;
6039 break;
6040 default:
6041 /* Case prevented by intel_choose_pipe_bpp_dither. */
6042 BUG();
84b046f3
DV
6043 }
6044 }
6045
6046 if (HAS_PIPE_CXSR(dev)) {
6047 if (intel_crtc->lowfreq_avail) {
6048 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6049 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6050 } else {
6051 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6052 }
6053 }
6054
efc2cfff
VS
6055 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6056 if (INTEL_INFO(dev)->gen < 4 ||
6057 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6058 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6059 else
6060 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6061 } else
84b046f3
DV
6062 pipeconf |= PIPECONF_PROGRESSIVE;
6063
9f11a9e4
DV
6064 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6065 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6066
84b046f3
DV
6067 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6068 POSTING_READ(PIPECONF(intel_crtc->pipe));
6069}
6070
f564048e 6071static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6072 int x, int y,
94352cf9 6073 struct drm_framebuffer *fb)
79e53945
JB
6074{
6075 struct drm_device *dev = crtc->dev;
6076 struct drm_i915_private *dev_priv = dev->dev_private;
6077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6078 int refclk, num_connectors = 0;
652c393a 6079 intel_clock_t clock, reduced_clock;
a16af721 6080 bool ok, has_reduced_clock = false;
e9fd1c02 6081 bool is_lvds = false, is_dsi = false;
5eddb70b 6082 struct intel_encoder *encoder;
d4906093 6083 const intel_limit_t *limit;
79e53945 6084
6c2b7c12 6085 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6086 switch (encoder->type) {
79e53945
JB
6087 case INTEL_OUTPUT_LVDS:
6088 is_lvds = true;
6089 break;
e9fd1c02
JN
6090 case INTEL_OUTPUT_DSI:
6091 is_dsi = true;
6092 break;
79e53945 6093 }
43565a06 6094
c751ce4f 6095 num_connectors++;
79e53945
JB
6096 }
6097
f2335330 6098 if (is_dsi)
5b18e57c 6099 return 0;
f2335330
JN
6100
6101 if (!intel_crtc->config.clock_set) {
6102 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6103
e9fd1c02
JN
6104 /*
6105 * Returns a set of divisors for the desired target clock with
6106 * the given refclk, or FALSE. The returned values represent
6107 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6108 * 2) / p1 / p2.
6109 */
6110 limit = intel_limit(crtc, refclk);
6111 ok = dev_priv->display.find_dpll(limit, crtc,
6112 intel_crtc->config.port_clock,
6113 refclk, NULL, &clock);
f2335330 6114 if (!ok) {
e9fd1c02
JN
6115 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6116 return -EINVAL;
6117 }
79e53945 6118
f2335330
JN
6119 if (is_lvds && dev_priv->lvds_downclock_avail) {
6120 /*
6121 * Ensure we match the reduced clock's P to the target
6122 * clock. If the clocks don't match, we can't switch
6123 * the display clock by using the FP0/FP1. In such case
6124 * we will disable the LVDS downclock feature.
6125 */
6126 has_reduced_clock =
6127 dev_priv->display.find_dpll(limit, crtc,
6128 dev_priv->lvds_downclock,
6129 refclk, &clock,
6130 &reduced_clock);
6131 }
6132 /* Compat-code for transition, will disappear. */
f47709a9
DV
6133 intel_crtc->config.dpll.n = clock.n;
6134 intel_crtc->config.dpll.m1 = clock.m1;
6135 intel_crtc->config.dpll.m2 = clock.m2;
6136 intel_crtc->config.dpll.p1 = clock.p1;
6137 intel_crtc->config.dpll.p2 = clock.p2;
6138 }
7026d4ac 6139
e9fd1c02 6140 if (IS_GEN2(dev)) {
8a654f3b 6141 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6142 has_reduced_clock ? &reduced_clock : NULL,
6143 num_connectors);
9d556c99
CML
6144 } else if (IS_CHERRYVIEW(dev)) {
6145 chv_update_pll(intel_crtc);
e9fd1c02 6146 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6147 vlv_update_pll(intel_crtc);
e9fd1c02 6148 } else {
f47709a9 6149 i9xx_update_pll(intel_crtc,
eb1cbe48 6150 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6151 num_connectors);
e9fd1c02 6152 }
79e53945 6153
c8f7a0db 6154 return 0;
f564048e
EA
6155}
6156
2fa2fe9a
DV
6157static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6158 struct intel_crtc_config *pipe_config)
6159{
6160 struct drm_device *dev = crtc->base.dev;
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 uint32_t tmp;
6163
dc9e7dec
VS
6164 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6165 return;
6166
2fa2fe9a 6167 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6168 if (!(tmp & PFIT_ENABLE))
6169 return;
2fa2fe9a 6170
06922821 6171 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6172 if (INTEL_INFO(dev)->gen < 4) {
6173 if (crtc->pipe != PIPE_B)
6174 return;
2fa2fe9a
DV
6175 } else {
6176 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6177 return;
6178 }
6179
06922821 6180 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6181 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6182 if (INTEL_INFO(dev)->gen < 5)
6183 pipe_config->gmch_pfit.lvds_border_bits =
6184 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6185}
6186
acbec814
JB
6187static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6188 struct intel_crtc_config *pipe_config)
6189{
6190 struct drm_device *dev = crtc->base.dev;
6191 struct drm_i915_private *dev_priv = dev->dev_private;
6192 int pipe = pipe_config->cpu_transcoder;
6193 intel_clock_t clock;
6194 u32 mdiv;
662c6ecb 6195 int refclk = 100000;
acbec814 6196
f573de5a
SK
6197 /* In case of MIPI DPLL will not even be used */
6198 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6199 return;
6200
acbec814 6201 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6202 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6203 mutex_unlock(&dev_priv->dpio_lock);
6204
6205 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6206 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6207 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6208 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6209 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6210
f646628b 6211 vlv_clock(refclk, &clock);
acbec814 6212
f646628b
VS
6213 /* clock.dot is the fast clock */
6214 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6215}
6216
1ad292b5
JB
6217static void i9xx_get_plane_config(struct intel_crtc *crtc,
6218 struct intel_plane_config *plane_config)
6219{
6220 struct drm_device *dev = crtc->base.dev;
6221 struct drm_i915_private *dev_priv = dev->dev_private;
6222 u32 val, base, offset;
6223 int pipe = crtc->pipe, plane = crtc->plane;
6224 int fourcc, pixel_format;
6225 int aligned_height;
6226
66e514c1
DA
6227 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6228 if (!crtc->base.primary->fb) {
1ad292b5
JB
6229 DRM_DEBUG_KMS("failed to alloc fb\n");
6230 return;
6231 }
6232
6233 val = I915_READ(DSPCNTR(plane));
6234
6235 if (INTEL_INFO(dev)->gen >= 4)
6236 if (val & DISPPLANE_TILED)
6237 plane_config->tiled = true;
6238
6239 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6240 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6241 crtc->base.primary->fb->pixel_format = fourcc;
6242 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6243 drm_format_plane_cpp(fourcc, 0) * 8;
6244
6245 if (INTEL_INFO(dev)->gen >= 4) {
6246 if (plane_config->tiled)
6247 offset = I915_READ(DSPTILEOFF(plane));
6248 else
6249 offset = I915_READ(DSPLINOFF(plane));
6250 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6251 } else {
6252 base = I915_READ(DSPADDR(plane));
6253 }
6254 plane_config->base = base;
6255
6256 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6257 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6258 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6259
6260 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6261 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6262
66e514c1 6263 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6264 plane_config->tiled);
6265
1267a26b
FF
6266 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6267 aligned_height);
1ad292b5
JB
6268
6269 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6270 pipe, plane, crtc->base.primary->fb->width,
6271 crtc->base.primary->fb->height,
6272 crtc->base.primary->fb->bits_per_pixel, base,
6273 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6274 plane_config->size);
6275
6276}
6277
70b23a98
VS
6278static void chv_crtc_clock_get(struct intel_crtc *crtc,
6279 struct intel_crtc_config *pipe_config)
6280{
6281 struct drm_device *dev = crtc->base.dev;
6282 struct drm_i915_private *dev_priv = dev->dev_private;
6283 int pipe = pipe_config->cpu_transcoder;
6284 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6285 intel_clock_t clock;
6286 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6287 int refclk = 100000;
6288
6289 mutex_lock(&dev_priv->dpio_lock);
6290 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6291 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6292 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6293 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6294 mutex_unlock(&dev_priv->dpio_lock);
6295
6296 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6297 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6298 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6299 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6300 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6301
6302 chv_clock(refclk, &clock);
6303
6304 /* clock.dot is the fast clock */
6305 pipe_config->port_clock = clock.dot / 5;
6306}
6307
0e8ffe1b
DV
6308static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6309 struct intel_crtc_config *pipe_config)
6310{
6311 struct drm_device *dev = crtc->base.dev;
6312 struct drm_i915_private *dev_priv = dev->dev_private;
6313 uint32_t tmp;
6314
b5482bd0
ID
6315 if (!intel_display_power_enabled(dev_priv,
6316 POWER_DOMAIN_PIPE(crtc->pipe)))
6317 return false;
6318
e143a21c 6319 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6320 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6321
0e8ffe1b
DV
6322 tmp = I915_READ(PIPECONF(crtc->pipe));
6323 if (!(tmp & PIPECONF_ENABLE))
6324 return false;
6325
42571aef
VS
6326 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6327 switch (tmp & PIPECONF_BPC_MASK) {
6328 case PIPECONF_6BPC:
6329 pipe_config->pipe_bpp = 18;
6330 break;
6331 case PIPECONF_8BPC:
6332 pipe_config->pipe_bpp = 24;
6333 break;
6334 case PIPECONF_10BPC:
6335 pipe_config->pipe_bpp = 30;
6336 break;
6337 default:
6338 break;
6339 }
6340 }
6341
b5a9fa09
DV
6342 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6343 pipe_config->limited_color_range = true;
6344
282740f7
VS
6345 if (INTEL_INFO(dev)->gen < 4)
6346 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6347
1bd1bd80
DV
6348 intel_get_pipe_timings(crtc, pipe_config);
6349
2fa2fe9a
DV
6350 i9xx_get_pfit_config(crtc, pipe_config);
6351
6c49f241
DV
6352 if (INTEL_INFO(dev)->gen >= 4) {
6353 tmp = I915_READ(DPLL_MD(crtc->pipe));
6354 pipe_config->pixel_multiplier =
6355 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6356 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6357 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6358 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6359 tmp = I915_READ(DPLL(crtc->pipe));
6360 pipe_config->pixel_multiplier =
6361 ((tmp & SDVO_MULTIPLIER_MASK)
6362 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6363 } else {
6364 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6365 * port and will be fixed up in the encoder->get_config
6366 * function. */
6367 pipe_config->pixel_multiplier = 1;
6368 }
8bcc2795
DV
6369 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6370 if (!IS_VALLEYVIEW(dev)) {
6371 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6372 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6373 } else {
6374 /* Mask out read-only status bits. */
6375 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6376 DPLL_PORTC_READY_MASK |
6377 DPLL_PORTB_READY_MASK);
8bcc2795 6378 }
6c49f241 6379
70b23a98
VS
6380 if (IS_CHERRYVIEW(dev))
6381 chv_crtc_clock_get(crtc, pipe_config);
6382 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6383 vlv_crtc_clock_get(crtc, pipe_config);
6384 else
6385 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6386
0e8ffe1b
DV
6387 return true;
6388}
6389
dde86e2d 6390static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6391{
6392 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6393 struct intel_encoder *encoder;
74cfd7ac 6394 u32 val, final;
13d83a67 6395 bool has_lvds = false;
199e5d79 6396 bool has_cpu_edp = false;
199e5d79 6397 bool has_panel = false;
99eb6a01
KP
6398 bool has_ck505 = false;
6399 bool can_ssc = false;
13d83a67
JB
6400
6401 /* We need to take the global config into account */
b2784e15 6402 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6403 switch (encoder->type) {
6404 case INTEL_OUTPUT_LVDS:
6405 has_panel = true;
6406 has_lvds = true;
6407 break;
6408 case INTEL_OUTPUT_EDP:
6409 has_panel = true;
2de6905f 6410 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6411 has_cpu_edp = true;
6412 break;
13d83a67
JB
6413 }
6414 }
6415
99eb6a01 6416 if (HAS_PCH_IBX(dev)) {
41aa3448 6417 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6418 can_ssc = has_ck505;
6419 } else {
6420 has_ck505 = false;
6421 can_ssc = true;
6422 }
6423
2de6905f
ID
6424 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6425 has_panel, has_lvds, has_ck505);
13d83a67
JB
6426
6427 /* Ironlake: try to setup display ref clock before DPLL
6428 * enabling. This is only under driver's control after
6429 * PCH B stepping, previous chipset stepping should be
6430 * ignoring this setting.
6431 */
74cfd7ac
CW
6432 val = I915_READ(PCH_DREF_CONTROL);
6433
6434 /* As we must carefully and slowly disable/enable each source in turn,
6435 * compute the final state we want first and check if we need to
6436 * make any changes at all.
6437 */
6438 final = val;
6439 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6440 if (has_ck505)
6441 final |= DREF_NONSPREAD_CK505_ENABLE;
6442 else
6443 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6444
6445 final &= ~DREF_SSC_SOURCE_MASK;
6446 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6447 final &= ~DREF_SSC1_ENABLE;
6448
6449 if (has_panel) {
6450 final |= DREF_SSC_SOURCE_ENABLE;
6451
6452 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6453 final |= DREF_SSC1_ENABLE;
6454
6455 if (has_cpu_edp) {
6456 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6457 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6458 else
6459 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6460 } else
6461 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6462 } else {
6463 final |= DREF_SSC_SOURCE_DISABLE;
6464 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6465 }
6466
6467 if (final == val)
6468 return;
6469
13d83a67 6470 /* Always enable nonspread source */
74cfd7ac 6471 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6472
99eb6a01 6473 if (has_ck505)
74cfd7ac 6474 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6475 else
74cfd7ac 6476 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6477
199e5d79 6478 if (has_panel) {
74cfd7ac
CW
6479 val &= ~DREF_SSC_SOURCE_MASK;
6480 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6481
199e5d79 6482 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6483 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6484 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6485 val |= DREF_SSC1_ENABLE;
e77166b5 6486 } else
74cfd7ac 6487 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6488
6489 /* Get SSC going before enabling the outputs */
74cfd7ac 6490 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6491 POSTING_READ(PCH_DREF_CONTROL);
6492 udelay(200);
6493
74cfd7ac 6494 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6495
6496 /* Enable CPU source on CPU attached eDP */
199e5d79 6497 if (has_cpu_edp) {
99eb6a01 6498 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6499 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6500 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6501 } else
74cfd7ac 6502 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6503 } else
74cfd7ac 6504 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6505
74cfd7ac 6506 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6507 POSTING_READ(PCH_DREF_CONTROL);
6508 udelay(200);
6509 } else {
6510 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6511
74cfd7ac 6512 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6513
6514 /* Turn off CPU output */
74cfd7ac 6515 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6516
74cfd7ac 6517 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6518 POSTING_READ(PCH_DREF_CONTROL);
6519 udelay(200);
6520
6521 /* Turn off the SSC source */
74cfd7ac
CW
6522 val &= ~DREF_SSC_SOURCE_MASK;
6523 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6524
6525 /* Turn off SSC1 */
74cfd7ac 6526 val &= ~DREF_SSC1_ENABLE;
199e5d79 6527
74cfd7ac 6528 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6529 POSTING_READ(PCH_DREF_CONTROL);
6530 udelay(200);
6531 }
74cfd7ac
CW
6532
6533 BUG_ON(val != final);
13d83a67
JB
6534}
6535
f31f2d55 6536static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6537{
f31f2d55 6538 uint32_t tmp;
dde86e2d 6539
0ff066a9
PZ
6540 tmp = I915_READ(SOUTH_CHICKEN2);
6541 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6542 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6543
0ff066a9
PZ
6544 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6545 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6546 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6547
0ff066a9
PZ
6548 tmp = I915_READ(SOUTH_CHICKEN2);
6549 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6550 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6551
0ff066a9
PZ
6552 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6553 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6554 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6555}
6556
6557/* WaMPhyProgramming:hsw */
6558static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6559{
6560 uint32_t tmp;
dde86e2d
PZ
6561
6562 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6563 tmp &= ~(0xFF << 24);
6564 tmp |= (0x12 << 24);
6565 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6566
dde86e2d
PZ
6567 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6568 tmp |= (1 << 11);
6569 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6570
6571 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6572 tmp |= (1 << 11);
6573 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6574
dde86e2d
PZ
6575 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6576 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6577 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6578
6579 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6580 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6581 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6582
0ff066a9
PZ
6583 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6584 tmp &= ~(7 << 13);
6585 tmp |= (5 << 13);
6586 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6587
0ff066a9
PZ
6588 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6589 tmp &= ~(7 << 13);
6590 tmp |= (5 << 13);
6591 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6592
6593 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6594 tmp &= ~0xFF;
6595 tmp |= 0x1C;
6596 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6597
6598 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6599 tmp &= ~0xFF;
6600 tmp |= 0x1C;
6601 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6602
6603 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6604 tmp &= ~(0xFF << 16);
6605 tmp |= (0x1C << 16);
6606 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6607
6608 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6609 tmp &= ~(0xFF << 16);
6610 tmp |= (0x1C << 16);
6611 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6612
0ff066a9
PZ
6613 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6614 tmp |= (1 << 27);
6615 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6616
0ff066a9
PZ
6617 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6618 tmp |= (1 << 27);
6619 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6620
0ff066a9
PZ
6621 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6622 tmp &= ~(0xF << 28);
6623 tmp |= (4 << 28);
6624 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6625
0ff066a9
PZ
6626 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6627 tmp &= ~(0xF << 28);
6628 tmp |= (4 << 28);
6629 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6630}
6631
2fa86a1f
PZ
6632/* Implements 3 different sequences from BSpec chapter "Display iCLK
6633 * Programming" based on the parameters passed:
6634 * - Sequence to enable CLKOUT_DP
6635 * - Sequence to enable CLKOUT_DP without spread
6636 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6637 */
6638static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6639 bool with_fdi)
f31f2d55
PZ
6640{
6641 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6642 uint32_t reg, tmp;
6643
6644 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6645 with_spread = true;
6646 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6647 with_fdi, "LP PCH doesn't have FDI\n"))
6648 with_fdi = false;
f31f2d55
PZ
6649
6650 mutex_lock(&dev_priv->dpio_lock);
6651
6652 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6653 tmp &= ~SBI_SSCCTL_DISABLE;
6654 tmp |= SBI_SSCCTL_PATHALT;
6655 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6656
6657 udelay(24);
6658
2fa86a1f
PZ
6659 if (with_spread) {
6660 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6661 tmp &= ~SBI_SSCCTL_PATHALT;
6662 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6663
2fa86a1f
PZ
6664 if (with_fdi) {
6665 lpt_reset_fdi_mphy(dev_priv);
6666 lpt_program_fdi_mphy(dev_priv);
6667 }
6668 }
dde86e2d 6669
2fa86a1f
PZ
6670 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6671 SBI_GEN0 : SBI_DBUFF0;
6672 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6673 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6674 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6675
6676 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6677}
6678
47701c3b
PZ
6679/* Sequence to disable CLKOUT_DP */
6680static void lpt_disable_clkout_dp(struct drm_device *dev)
6681{
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 uint32_t reg, tmp;
6684
6685 mutex_lock(&dev_priv->dpio_lock);
6686
6687 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6688 SBI_GEN0 : SBI_DBUFF0;
6689 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6690 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6691 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6692
6693 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6694 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6695 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6696 tmp |= SBI_SSCCTL_PATHALT;
6697 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6698 udelay(32);
6699 }
6700 tmp |= SBI_SSCCTL_DISABLE;
6701 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6702 }
6703
6704 mutex_unlock(&dev_priv->dpio_lock);
6705}
6706
bf8fa3d3
PZ
6707static void lpt_init_pch_refclk(struct drm_device *dev)
6708{
bf8fa3d3
PZ
6709 struct intel_encoder *encoder;
6710 bool has_vga = false;
6711
b2784e15 6712 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6713 switch (encoder->type) {
6714 case INTEL_OUTPUT_ANALOG:
6715 has_vga = true;
6716 break;
6717 }
6718 }
6719
47701c3b
PZ
6720 if (has_vga)
6721 lpt_enable_clkout_dp(dev, true, true);
6722 else
6723 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6724}
6725
dde86e2d
PZ
6726/*
6727 * Initialize reference clocks when the driver loads
6728 */
6729void intel_init_pch_refclk(struct drm_device *dev)
6730{
6731 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6732 ironlake_init_pch_refclk(dev);
6733 else if (HAS_PCH_LPT(dev))
6734 lpt_init_pch_refclk(dev);
6735}
6736
d9d444cb
JB
6737static int ironlake_get_refclk(struct drm_crtc *crtc)
6738{
6739 struct drm_device *dev = crtc->dev;
6740 struct drm_i915_private *dev_priv = dev->dev_private;
6741 struct intel_encoder *encoder;
d9d444cb
JB
6742 int num_connectors = 0;
6743 bool is_lvds = false;
6744
6c2b7c12 6745 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6746 switch (encoder->type) {
6747 case INTEL_OUTPUT_LVDS:
6748 is_lvds = true;
6749 break;
d9d444cb
JB
6750 }
6751 num_connectors++;
6752 }
6753
6754 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6755 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6756 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6757 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6758 }
6759
6760 return 120000;
6761}
6762
6ff93609 6763static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6764{
c8203565 6765 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6767 int pipe = intel_crtc->pipe;
c8203565
PZ
6768 uint32_t val;
6769
78114071 6770 val = 0;
c8203565 6771
965e0c48 6772 switch (intel_crtc->config.pipe_bpp) {
c8203565 6773 case 18:
dfd07d72 6774 val |= PIPECONF_6BPC;
c8203565
PZ
6775 break;
6776 case 24:
dfd07d72 6777 val |= PIPECONF_8BPC;
c8203565
PZ
6778 break;
6779 case 30:
dfd07d72 6780 val |= PIPECONF_10BPC;
c8203565
PZ
6781 break;
6782 case 36:
dfd07d72 6783 val |= PIPECONF_12BPC;
c8203565
PZ
6784 break;
6785 default:
cc769b62
PZ
6786 /* Case prevented by intel_choose_pipe_bpp_dither. */
6787 BUG();
c8203565
PZ
6788 }
6789
d8b32247 6790 if (intel_crtc->config.dither)
c8203565
PZ
6791 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6792
6ff93609 6793 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6794 val |= PIPECONF_INTERLACED_ILK;
6795 else
6796 val |= PIPECONF_PROGRESSIVE;
6797
50f3b016 6798 if (intel_crtc->config.limited_color_range)
3685a8f3 6799 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6800
c8203565
PZ
6801 I915_WRITE(PIPECONF(pipe), val);
6802 POSTING_READ(PIPECONF(pipe));
6803}
6804
86d3efce
VS
6805/*
6806 * Set up the pipe CSC unit.
6807 *
6808 * Currently only full range RGB to limited range RGB conversion
6809 * is supported, but eventually this should handle various
6810 * RGB<->YCbCr scenarios as well.
6811 */
50f3b016 6812static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6813{
6814 struct drm_device *dev = crtc->dev;
6815 struct drm_i915_private *dev_priv = dev->dev_private;
6816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6817 int pipe = intel_crtc->pipe;
6818 uint16_t coeff = 0x7800; /* 1.0 */
6819
6820 /*
6821 * TODO: Check what kind of values actually come out of the pipe
6822 * with these coeff/postoff values and adjust to get the best
6823 * accuracy. Perhaps we even need to take the bpc value into
6824 * consideration.
6825 */
6826
50f3b016 6827 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6828 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6829
6830 /*
6831 * GY/GU and RY/RU should be the other way around according
6832 * to BSpec, but reality doesn't agree. Just set them up in
6833 * a way that results in the correct picture.
6834 */
6835 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6836 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6837
6838 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6839 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6840
6841 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6842 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6843
6844 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6845 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6846 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6847
6848 if (INTEL_INFO(dev)->gen > 6) {
6849 uint16_t postoff = 0;
6850
50f3b016 6851 if (intel_crtc->config.limited_color_range)
32cf0cb0 6852 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6853
6854 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6855 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6856 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6857
6858 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6859 } else {
6860 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6861
50f3b016 6862 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6863 mode |= CSC_BLACK_SCREEN_OFFSET;
6864
6865 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6866 }
6867}
6868
6ff93609 6869static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6870{
756f85cf
PZ
6871 struct drm_device *dev = crtc->dev;
6872 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6874 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6875 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6876 uint32_t val;
6877
3eff4faa 6878 val = 0;
ee2b0b38 6879
756f85cf 6880 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6881 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6882
6ff93609 6883 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6884 val |= PIPECONF_INTERLACED_ILK;
6885 else
6886 val |= PIPECONF_PROGRESSIVE;
6887
702e7a56
PZ
6888 I915_WRITE(PIPECONF(cpu_transcoder), val);
6889 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6890
6891 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6892 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6893
6894 if (IS_BROADWELL(dev)) {
6895 val = 0;
6896
6897 switch (intel_crtc->config.pipe_bpp) {
6898 case 18:
6899 val |= PIPEMISC_DITHER_6_BPC;
6900 break;
6901 case 24:
6902 val |= PIPEMISC_DITHER_8_BPC;
6903 break;
6904 case 30:
6905 val |= PIPEMISC_DITHER_10_BPC;
6906 break;
6907 case 36:
6908 val |= PIPEMISC_DITHER_12_BPC;
6909 break;
6910 default:
6911 /* Case prevented by pipe_config_set_bpp. */
6912 BUG();
6913 }
6914
6915 if (intel_crtc->config.dither)
6916 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6917
6918 I915_WRITE(PIPEMISC(pipe), val);
6919 }
ee2b0b38
PZ
6920}
6921
6591c6e4 6922static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6923 intel_clock_t *clock,
6924 bool *has_reduced_clock,
6925 intel_clock_t *reduced_clock)
6926{
6927 struct drm_device *dev = crtc->dev;
6928 struct drm_i915_private *dev_priv = dev->dev_private;
6929 struct intel_encoder *intel_encoder;
6930 int refclk;
d4906093 6931 const intel_limit_t *limit;
a16af721 6932 bool ret, is_lvds = false;
79e53945 6933
6591c6e4
PZ
6934 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6935 switch (intel_encoder->type) {
79e53945
JB
6936 case INTEL_OUTPUT_LVDS:
6937 is_lvds = true;
6938 break;
79e53945
JB
6939 }
6940 }
6941
d9d444cb 6942 refclk = ironlake_get_refclk(crtc);
79e53945 6943
d4906093
ML
6944 /*
6945 * Returns a set of divisors for the desired target clock with the given
6946 * refclk, or FALSE. The returned values represent the clock equation:
6947 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6948 */
1b894b59 6949 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6950 ret = dev_priv->display.find_dpll(limit, crtc,
6951 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6952 refclk, NULL, clock);
6591c6e4
PZ
6953 if (!ret)
6954 return false;
cda4b7d3 6955
ddc9003c 6956 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6957 /*
6958 * Ensure we match the reduced clock's P to the target clock.
6959 * If the clocks don't match, we can't switch the display clock
6960 * by using the FP0/FP1. In such case we will disable the LVDS
6961 * downclock feature.
6962 */
ee9300bb
DV
6963 *has_reduced_clock =
6964 dev_priv->display.find_dpll(limit, crtc,
6965 dev_priv->lvds_downclock,
6966 refclk, clock,
6967 reduced_clock);
652c393a 6968 }
61e9653f 6969
6591c6e4
PZ
6970 return true;
6971}
6972
d4b1931c
PZ
6973int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6974{
6975 /*
6976 * Account for spread spectrum to avoid
6977 * oversubscribing the link. Max center spread
6978 * is 2.5%; use 5% for safety's sake.
6979 */
6980 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6981 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6982}
6983
7429e9d4 6984static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6985{
7429e9d4 6986 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6987}
6988
de13a2e3 6989static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6990 u32 *fp,
9a7c7890 6991 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6992{
de13a2e3 6993 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6994 struct drm_device *dev = crtc->dev;
6995 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6996 struct intel_encoder *intel_encoder;
6997 uint32_t dpll;
6cc5f341 6998 int factor, num_connectors = 0;
09ede541 6999 bool is_lvds = false, is_sdvo = false;
79e53945 7000
de13a2e3
PZ
7001 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7002 switch (intel_encoder->type) {
79e53945
JB
7003 case INTEL_OUTPUT_LVDS:
7004 is_lvds = true;
7005 break;
7006 case INTEL_OUTPUT_SDVO:
7d57382e 7007 case INTEL_OUTPUT_HDMI:
79e53945 7008 is_sdvo = true;
79e53945 7009 break;
79e53945 7010 }
43565a06 7011
c751ce4f 7012 num_connectors++;
79e53945 7013 }
79e53945 7014
c1858123 7015 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7016 factor = 21;
7017 if (is_lvds) {
7018 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7019 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7020 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7021 factor = 25;
09ede541 7022 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7023 factor = 20;
c1858123 7024
7429e9d4 7025 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7026 *fp |= FP_CB_TUNE;
2c07245f 7027
9a7c7890
DV
7028 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7029 *fp2 |= FP_CB_TUNE;
7030
5eddb70b 7031 dpll = 0;
2c07245f 7032
a07d6787
EA
7033 if (is_lvds)
7034 dpll |= DPLLB_MODE_LVDS;
7035 else
7036 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7037
ef1b460d
DV
7038 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7039 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7040
7041 if (is_sdvo)
4a33e48d 7042 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7043 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7044 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7045
a07d6787 7046 /* compute bitmask from p1 value */
7429e9d4 7047 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7048 /* also FPA1 */
7429e9d4 7049 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7050
7429e9d4 7051 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7052 case 5:
7053 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7054 break;
7055 case 7:
7056 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7057 break;
7058 case 10:
7059 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7060 break;
7061 case 14:
7062 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7063 break;
79e53945
JB
7064 }
7065
b4c09f3b 7066 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7067 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7068 else
7069 dpll |= PLL_REF_INPUT_DREFCLK;
7070
959e16d6 7071 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7072}
7073
7074static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7075 int x, int y,
7076 struct drm_framebuffer *fb)
7077{
7078 struct drm_device *dev = crtc->dev;
de13a2e3 7079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7080 int num_connectors = 0;
7081 intel_clock_t clock, reduced_clock;
cbbab5bd 7082 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7083 bool ok, has_reduced_clock = false;
8b47047b 7084 bool is_lvds = false;
de13a2e3 7085 struct intel_encoder *encoder;
e2b78267 7086 struct intel_shared_dpll *pll;
de13a2e3
PZ
7087
7088 for_each_encoder_on_crtc(dev, crtc, encoder) {
7089 switch (encoder->type) {
7090 case INTEL_OUTPUT_LVDS:
7091 is_lvds = true;
7092 break;
de13a2e3
PZ
7093 }
7094
7095 num_connectors++;
a07d6787 7096 }
79e53945 7097
5dc5298b
PZ
7098 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7099 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7100
ff9a6750 7101 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7102 &has_reduced_clock, &reduced_clock);
ee9300bb 7103 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7104 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7105 return -EINVAL;
79e53945 7106 }
f47709a9
DV
7107 /* Compat-code for transition, will disappear. */
7108 if (!intel_crtc->config.clock_set) {
7109 intel_crtc->config.dpll.n = clock.n;
7110 intel_crtc->config.dpll.m1 = clock.m1;
7111 intel_crtc->config.dpll.m2 = clock.m2;
7112 intel_crtc->config.dpll.p1 = clock.p1;
7113 intel_crtc->config.dpll.p2 = clock.p2;
7114 }
79e53945 7115
5dc5298b 7116 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7117 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7118 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7119 if (has_reduced_clock)
7429e9d4 7120 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7121
7429e9d4 7122 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7123 &fp, &reduced_clock,
7124 has_reduced_clock ? &fp2 : NULL);
7125
959e16d6 7126 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7127 intel_crtc->config.dpll_hw_state.fp0 = fp;
7128 if (has_reduced_clock)
7129 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7130 else
7131 intel_crtc->config.dpll_hw_state.fp1 = fp;
7132
b89a1d39 7133 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7134 if (pll == NULL) {
84f44ce7 7135 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7136 pipe_name(intel_crtc->pipe));
4b645f14
JB
7137 return -EINVAL;
7138 }
ee7b9f93 7139 } else
e72f9fbf 7140 intel_put_shared_dpll(intel_crtc);
79e53945 7141
d330a953 7142 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7143 intel_crtc->lowfreq_avail = true;
7144 else
7145 intel_crtc->lowfreq_avail = false;
e2b78267 7146
c8f7a0db 7147 return 0;
79e53945
JB
7148}
7149
eb14cb74
VS
7150static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7151 struct intel_link_m_n *m_n)
7152{
7153 struct drm_device *dev = crtc->base.dev;
7154 struct drm_i915_private *dev_priv = dev->dev_private;
7155 enum pipe pipe = crtc->pipe;
7156
7157 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7158 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7159 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7160 & ~TU_SIZE_MASK;
7161 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7162 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7163 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7164}
7165
7166static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7167 enum transcoder transcoder,
b95af8be
VK
7168 struct intel_link_m_n *m_n,
7169 struct intel_link_m_n *m2_n2)
72419203
DV
7170{
7171 struct drm_device *dev = crtc->base.dev;
7172 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7173 enum pipe pipe = crtc->pipe;
72419203 7174
eb14cb74
VS
7175 if (INTEL_INFO(dev)->gen >= 5) {
7176 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7177 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7178 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7179 & ~TU_SIZE_MASK;
7180 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7181 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7182 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7183 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7184 * gen < 8) and if DRRS is supported (to make sure the
7185 * registers are not unnecessarily read).
7186 */
7187 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7188 crtc->config.has_drrs) {
7189 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7190 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7191 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7192 & ~TU_SIZE_MASK;
7193 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7194 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7195 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7196 }
eb14cb74
VS
7197 } else {
7198 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7199 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7200 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7201 & ~TU_SIZE_MASK;
7202 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7203 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7204 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7205 }
7206}
7207
7208void intel_dp_get_m_n(struct intel_crtc *crtc,
7209 struct intel_crtc_config *pipe_config)
7210{
7211 if (crtc->config.has_pch_encoder)
7212 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7213 else
7214 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7215 &pipe_config->dp_m_n,
7216 &pipe_config->dp_m2_n2);
eb14cb74 7217}
72419203 7218
eb14cb74
VS
7219static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7220 struct intel_crtc_config *pipe_config)
7221{
7222 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7223 &pipe_config->fdi_m_n, NULL);
72419203
DV
7224}
7225
2fa2fe9a
DV
7226static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7227 struct intel_crtc_config *pipe_config)
7228{
7229 struct drm_device *dev = crtc->base.dev;
7230 struct drm_i915_private *dev_priv = dev->dev_private;
7231 uint32_t tmp;
7232
7233 tmp = I915_READ(PF_CTL(crtc->pipe));
7234
7235 if (tmp & PF_ENABLE) {
fd4daa9c 7236 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7237 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7238 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7239
7240 /* We currently do not free assignements of panel fitters on
7241 * ivb/hsw (since we don't use the higher upscaling modes which
7242 * differentiates them) so just WARN about this case for now. */
7243 if (IS_GEN7(dev)) {
7244 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7245 PF_PIPE_SEL_IVB(crtc->pipe));
7246 }
2fa2fe9a 7247 }
79e53945
JB
7248}
7249
4c6baa59
JB
7250static void ironlake_get_plane_config(struct intel_crtc *crtc,
7251 struct intel_plane_config *plane_config)
7252{
7253 struct drm_device *dev = crtc->base.dev;
7254 struct drm_i915_private *dev_priv = dev->dev_private;
7255 u32 val, base, offset;
7256 int pipe = crtc->pipe, plane = crtc->plane;
7257 int fourcc, pixel_format;
7258 int aligned_height;
7259
66e514c1
DA
7260 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7261 if (!crtc->base.primary->fb) {
4c6baa59
JB
7262 DRM_DEBUG_KMS("failed to alloc fb\n");
7263 return;
7264 }
7265
7266 val = I915_READ(DSPCNTR(plane));
7267
7268 if (INTEL_INFO(dev)->gen >= 4)
7269 if (val & DISPPLANE_TILED)
7270 plane_config->tiled = true;
7271
7272 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7273 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7274 crtc->base.primary->fb->pixel_format = fourcc;
7275 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7276 drm_format_plane_cpp(fourcc, 0) * 8;
7277
7278 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7279 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7280 offset = I915_READ(DSPOFFSET(plane));
7281 } else {
7282 if (plane_config->tiled)
7283 offset = I915_READ(DSPTILEOFF(plane));
7284 else
7285 offset = I915_READ(DSPLINOFF(plane));
7286 }
7287 plane_config->base = base;
7288
7289 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7290 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7291 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7292
7293 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7294 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7295
66e514c1 7296 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7297 plane_config->tiled);
7298
1267a26b
FF
7299 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7300 aligned_height);
4c6baa59
JB
7301
7302 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7303 pipe, plane, crtc->base.primary->fb->width,
7304 crtc->base.primary->fb->height,
7305 crtc->base.primary->fb->bits_per_pixel, base,
7306 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7307 plane_config->size);
7308}
7309
0e8ffe1b
DV
7310static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7311 struct intel_crtc_config *pipe_config)
7312{
7313 struct drm_device *dev = crtc->base.dev;
7314 struct drm_i915_private *dev_priv = dev->dev_private;
7315 uint32_t tmp;
7316
930e8c9e
PZ
7317 if (!intel_display_power_enabled(dev_priv,
7318 POWER_DOMAIN_PIPE(crtc->pipe)))
7319 return false;
7320
e143a21c 7321 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7322 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7323
0e8ffe1b
DV
7324 tmp = I915_READ(PIPECONF(crtc->pipe));
7325 if (!(tmp & PIPECONF_ENABLE))
7326 return false;
7327
42571aef
VS
7328 switch (tmp & PIPECONF_BPC_MASK) {
7329 case PIPECONF_6BPC:
7330 pipe_config->pipe_bpp = 18;
7331 break;
7332 case PIPECONF_8BPC:
7333 pipe_config->pipe_bpp = 24;
7334 break;
7335 case PIPECONF_10BPC:
7336 pipe_config->pipe_bpp = 30;
7337 break;
7338 case PIPECONF_12BPC:
7339 pipe_config->pipe_bpp = 36;
7340 break;
7341 default:
7342 break;
7343 }
7344
b5a9fa09
DV
7345 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7346 pipe_config->limited_color_range = true;
7347
ab9412ba 7348 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7349 struct intel_shared_dpll *pll;
7350
88adfff1
DV
7351 pipe_config->has_pch_encoder = true;
7352
627eb5a3
DV
7353 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7354 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7355 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7356
7357 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7358
c0d43d62 7359 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7360 pipe_config->shared_dpll =
7361 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7362 } else {
7363 tmp = I915_READ(PCH_DPLL_SEL);
7364 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7365 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7366 else
7367 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7368 }
66e985c0
DV
7369
7370 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7371
7372 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7373 &pipe_config->dpll_hw_state));
c93f54cf
DV
7374
7375 tmp = pipe_config->dpll_hw_state.dpll;
7376 pipe_config->pixel_multiplier =
7377 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7378 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7379
7380 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7381 } else {
7382 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7383 }
7384
1bd1bd80
DV
7385 intel_get_pipe_timings(crtc, pipe_config);
7386
2fa2fe9a
DV
7387 ironlake_get_pfit_config(crtc, pipe_config);
7388
0e8ffe1b
DV
7389 return true;
7390}
7391
be256dc7
PZ
7392static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7393{
7394 struct drm_device *dev = dev_priv->dev;
be256dc7 7395 struct intel_crtc *crtc;
be256dc7 7396
d3fcc808 7397 for_each_intel_crtc(dev, crtc)
798183c5 7398 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7399 pipe_name(crtc->pipe));
7400
7401 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7402 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7403 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7404 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7405 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7406 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7407 "CPU PWM1 enabled\n");
c5107b87
PZ
7408 if (IS_HASWELL(dev))
7409 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7410 "CPU PWM2 enabled\n");
be256dc7
PZ
7411 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7412 "PCH PWM1 enabled\n");
7413 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7414 "Utility pin enabled\n");
7415 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7416
9926ada1
PZ
7417 /*
7418 * In theory we can still leave IRQs enabled, as long as only the HPD
7419 * interrupts remain enabled. We used to check for that, but since it's
7420 * gen-specific and since we only disable LCPLL after we fully disable
7421 * the interrupts, the check below should be enough.
7422 */
9df7575f 7423 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7424}
7425
9ccd5aeb
PZ
7426static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7427{
7428 struct drm_device *dev = dev_priv->dev;
7429
7430 if (IS_HASWELL(dev))
7431 return I915_READ(D_COMP_HSW);
7432 else
7433 return I915_READ(D_COMP_BDW);
7434}
7435
3c4c9b81
PZ
7436static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7437{
7438 struct drm_device *dev = dev_priv->dev;
7439
7440 if (IS_HASWELL(dev)) {
7441 mutex_lock(&dev_priv->rps.hw_lock);
7442 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7443 val))
f475dadf 7444 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7445 mutex_unlock(&dev_priv->rps.hw_lock);
7446 } else {
9ccd5aeb
PZ
7447 I915_WRITE(D_COMP_BDW, val);
7448 POSTING_READ(D_COMP_BDW);
3c4c9b81 7449 }
be256dc7
PZ
7450}
7451
7452/*
7453 * This function implements pieces of two sequences from BSpec:
7454 * - Sequence for display software to disable LCPLL
7455 * - Sequence for display software to allow package C8+
7456 * The steps implemented here are just the steps that actually touch the LCPLL
7457 * register. Callers should take care of disabling all the display engine
7458 * functions, doing the mode unset, fixing interrupts, etc.
7459 */
6ff58d53
PZ
7460static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7461 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7462{
7463 uint32_t val;
7464
7465 assert_can_disable_lcpll(dev_priv);
7466
7467 val = I915_READ(LCPLL_CTL);
7468
7469 if (switch_to_fclk) {
7470 val |= LCPLL_CD_SOURCE_FCLK;
7471 I915_WRITE(LCPLL_CTL, val);
7472
7473 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7474 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7475 DRM_ERROR("Switching to FCLK failed\n");
7476
7477 val = I915_READ(LCPLL_CTL);
7478 }
7479
7480 val |= LCPLL_PLL_DISABLE;
7481 I915_WRITE(LCPLL_CTL, val);
7482 POSTING_READ(LCPLL_CTL);
7483
7484 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7485 DRM_ERROR("LCPLL still locked\n");
7486
9ccd5aeb 7487 val = hsw_read_dcomp(dev_priv);
be256dc7 7488 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7489 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7490 ndelay(100);
7491
9ccd5aeb
PZ
7492 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7493 1))
be256dc7
PZ
7494 DRM_ERROR("D_COMP RCOMP still in progress\n");
7495
7496 if (allow_power_down) {
7497 val = I915_READ(LCPLL_CTL);
7498 val |= LCPLL_POWER_DOWN_ALLOW;
7499 I915_WRITE(LCPLL_CTL, val);
7500 POSTING_READ(LCPLL_CTL);
7501 }
7502}
7503
7504/*
7505 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7506 * source.
7507 */
6ff58d53 7508static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7509{
7510 uint32_t val;
a8a8bd54 7511 unsigned long irqflags;
be256dc7
PZ
7512
7513 val = I915_READ(LCPLL_CTL);
7514
7515 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7516 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7517 return;
7518
a8a8bd54
PZ
7519 /*
7520 * Make sure we're not on PC8 state before disabling PC8, otherwise
7521 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7522 *
7523 * The other problem is that hsw_restore_lcpll() is called as part of
7524 * the runtime PM resume sequence, so we can't just call
7525 * gen6_gt_force_wake_get() because that function calls
7526 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7527 * while we are on the resume sequence. So to solve this problem we have
7528 * to call special forcewake code that doesn't touch runtime PM and
7529 * doesn't enable the forcewake delayed work.
7530 */
7531 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7532 if (dev_priv->uncore.forcewake_count++ == 0)
7533 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7534 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7535
be256dc7
PZ
7536 if (val & LCPLL_POWER_DOWN_ALLOW) {
7537 val &= ~LCPLL_POWER_DOWN_ALLOW;
7538 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7539 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7540 }
7541
9ccd5aeb 7542 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7543 val |= D_COMP_COMP_FORCE;
7544 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7545 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7546
7547 val = I915_READ(LCPLL_CTL);
7548 val &= ~LCPLL_PLL_DISABLE;
7549 I915_WRITE(LCPLL_CTL, val);
7550
7551 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7552 DRM_ERROR("LCPLL not locked yet\n");
7553
7554 if (val & LCPLL_CD_SOURCE_FCLK) {
7555 val = I915_READ(LCPLL_CTL);
7556 val &= ~LCPLL_CD_SOURCE_FCLK;
7557 I915_WRITE(LCPLL_CTL, val);
7558
7559 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7560 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7561 DRM_ERROR("Switching back to LCPLL failed\n");
7562 }
215733fa 7563
a8a8bd54
PZ
7564 /* See the big comment above. */
7565 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7566 if (--dev_priv->uncore.forcewake_count == 0)
7567 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7568 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7569}
7570
765dab67
PZ
7571/*
7572 * Package states C8 and deeper are really deep PC states that can only be
7573 * reached when all the devices on the system allow it, so even if the graphics
7574 * device allows PC8+, it doesn't mean the system will actually get to these
7575 * states. Our driver only allows PC8+ when going into runtime PM.
7576 *
7577 * The requirements for PC8+ are that all the outputs are disabled, the power
7578 * well is disabled and most interrupts are disabled, and these are also
7579 * requirements for runtime PM. When these conditions are met, we manually do
7580 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7581 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7582 * hang the machine.
7583 *
7584 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7585 * the state of some registers, so when we come back from PC8+ we need to
7586 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7587 * need to take care of the registers kept by RC6. Notice that this happens even
7588 * if we don't put the device in PCI D3 state (which is what currently happens
7589 * because of the runtime PM support).
7590 *
7591 * For more, read "Display Sequences for Package C8" on the hardware
7592 * documentation.
7593 */
a14cb6fc 7594void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7595{
c67a470b
PZ
7596 struct drm_device *dev = dev_priv->dev;
7597 uint32_t val;
7598
c67a470b
PZ
7599 DRM_DEBUG_KMS("Enabling package C8+\n");
7600
c67a470b
PZ
7601 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7602 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7603 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7604 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7605 }
7606
7607 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7608 hsw_disable_lcpll(dev_priv, true, true);
7609}
7610
a14cb6fc 7611void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7612{
7613 struct drm_device *dev = dev_priv->dev;
7614 uint32_t val;
7615
c67a470b
PZ
7616 DRM_DEBUG_KMS("Disabling package C8+\n");
7617
7618 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7619 lpt_init_pch_refclk(dev);
7620
7621 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7622 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7623 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7624 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7625 }
7626
7627 intel_prepare_ddi(dev);
c67a470b
PZ
7628}
7629
9a952a0d
PZ
7630static void snb_modeset_global_resources(struct drm_device *dev)
7631{
7632 modeset_update_crtc_power_domains(dev);
7633}
7634
4f074129
ID
7635static void haswell_modeset_global_resources(struct drm_device *dev)
7636{
da723569 7637 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7638}
7639
09b4ddf9 7640static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7641 int x, int y,
7642 struct drm_framebuffer *fb)
7643{
09b4ddf9 7644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7645
566b734a 7646 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7647 return -EINVAL;
716c2e55 7648
644cef34
DV
7649 intel_crtc->lowfreq_avail = false;
7650
c8f7a0db 7651 return 0;
79e53945
JB
7652}
7653
7d2c8175
DL
7654static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7655 enum port port,
7656 struct intel_crtc_config *pipe_config)
7657{
7658 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7659
7660 switch (pipe_config->ddi_pll_sel) {
7661 case PORT_CLK_SEL_WRPLL1:
7662 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7663 break;
7664 case PORT_CLK_SEL_WRPLL2:
7665 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7666 break;
7667 }
7668}
7669
26804afd
DV
7670static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7671 struct intel_crtc_config *pipe_config)
7672{
7673 struct drm_device *dev = crtc->base.dev;
7674 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7675 struct intel_shared_dpll *pll;
26804afd
DV
7676 enum port port;
7677 uint32_t tmp;
7678
7679 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7680
7681 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7682
7d2c8175 7683 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7684
d452c5b6
DV
7685 if (pipe_config->shared_dpll >= 0) {
7686 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7687
7688 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7689 &pipe_config->dpll_hw_state));
7690 }
7691
26804afd
DV
7692 /*
7693 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7694 * DDI E. So just check whether this pipe is wired to DDI E and whether
7695 * the PCH transcoder is on.
7696 */
7697 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7698 pipe_config->has_pch_encoder = true;
7699
7700 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7701 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7702 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7703
7704 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7705 }
7706}
7707
0e8ffe1b
DV
7708static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7709 struct intel_crtc_config *pipe_config)
7710{
7711 struct drm_device *dev = crtc->base.dev;
7712 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7713 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7714 uint32_t tmp;
7715
b5482bd0
ID
7716 if (!intel_display_power_enabled(dev_priv,
7717 POWER_DOMAIN_PIPE(crtc->pipe)))
7718 return false;
7719
e143a21c 7720 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7721 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7722
eccb140b
DV
7723 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7724 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7725 enum pipe trans_edp_pipe;
7726 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7727 default:
7728 WARN(1, "unknown pipe linked to edp transcoder\n");
7729 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7730 case TRANS_DDI_EDP_INPUT_A_ON:
7731 trans_edp_pipe = PIPE_A;
7732 break;
7733 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7734 trans_edp_pipe = PIPE_B;
7735 break;
7736 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7737 trans_edp_pipe = PIPE_C;
7738 break;
7739 }
7740
7741 if (trans_edp_pipe == crtc->pipe)
7742 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7743 }
7744
da7e29bd 7745 if (!intel_display_power_enabled(dev_priv,
eccb140b 7746 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7747 return false;
7748
eccb140b 7749 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7750 if (!(tmp & PIPECONF_ENABLE))
7751 return false;
7752
26804afd 7753 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7754
1bd1bd80
DV
7755 intel_get_pipe_timings(crtc, pipe_config);
7756
2fa2fe9a 7757 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7758 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7759 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7760
e59150dc
JB
7761 if (IS_HASWELL(dev))
7762 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7763 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7764
6c49f241
DV
7765 pipe_config->pixel_multiplier = 1;
7766
0e8ffe1b
DV
7767 return true;
7768}
7769
1a91510d
JN
7770static struct {
7771 int clock;
7772 u32 config;
7773} hdmi_audio_clock[] = {
7774 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7775 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7776 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7777 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7778 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7779 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7780 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7781 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7782 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7783 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7784};
7785
7786/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7787static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7788{
7789 int i;
7790
7791 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7792 if (mode->clock == hdmi_audio_clock[i].clock)
7793 break;
7794 }
7795
7796 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7797 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7798 i = 1;
7799 }
7800
7801 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7802 hdmi_audio_clock[i].clock,
7803 hdmi_audio_clock[i].config);
7804
7805 return hdmi_audio_clock[i].config;
7806}
7807
3a9627f4
WF
7808static bool intel_eld_uptodate(struct drm_connector *connector,
7809 int reg_eldv, uint32_t bits_eldv,
7810 int reg_elda, uint32_t bits_elda,
7811 int reg_edid)
7812{
7813 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7814 uint8_t *eld = connector->eld;
7815 uint32_t i;
7816
7817 i = I915_READ(reg_eldv);
7818 i &= bits_eldv;
7819
7820 if (!eld[0])
7821 return !i;
7822
7823 if (!i)
7824 return false;
7825
7826 i = I915_READ(reg_elda);
7827 i &= ~bits_elda;
7828 I915_WRITE(reg_elda, i);
7829
7830 for (i = 0; i < eld[2]; i++)
7831 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7832 return false;
7833
7834 return true;
7835}
7836
e0dac65e 7837static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7838 struct drm_crtc *crtc,
7839 struct drm_display_mode *mode)
e0dac65e
WF
7840{
7841 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7842 uint8_t *eld = connector->eld;
7843 uint32_t eldv;
7844 uint32_t len;
7845 uint32_t i;
7846
7847 i = I915_READ(G4X_AUD_VID_DID);
7848
7849 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7850 eldv = G4X_ELDV_DEVCL_DEVBLC;
7851 else
7852 eldv = G4X_ELDV_DEVCTG;
7853
3a9627f4
WF
7854 if (intel_eld_uptodate(connector,
7855 G4X_AUD_CNTL_ST, eldv,
7856 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7857 G4X_HDMIW_HDMIEDID))
7858 return;
7859
e0dac65e
WF
7860 i = I915_READ(G4X_AUD_CNTL_ST);
7861 i &= ~(eldv | G4X_ELD_ADDR);
7862 len = (i >> 9) & 0x1f; /* ELD buffer size */
7863 I915_WRITE(G4X_AUD_CNTL_ST, i);
7864
7865 if (!eld[0])
7866 return;
7867
7868 len = min_t(uint8_t, eld[2], len);
7869 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7870 for (i = 0; i < len; i++)
7871 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7872
7873 i = I915_READ(G4X_AUD_CNTL_ST);
7874 i |= eldv;
7875 I915_WRITE(G4X_AUD_CNTL_ST, i);
7876}
7877
83358c85 7878static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7879 struct drm_crtc *crtc,
7880 struct drm_display_mode *mode)
83358c85
WX
7881{
7882 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7883 uint8_t *eld = connector->eld;
83358c85
WX
7884 uint32_t eldv;
7885 uint32_t i;
7886 int len;
7887 int pipe = to_intel_crtc(crtc)->pipe;
7888 int tmp;
7889
7890 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7891 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7892 int aud_config = HSW_AUD_CFG(pipe);
7893 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7894
83358c85
WX
7895 /* Audio output enable */
7896 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7897 tmp = I915_READ(aud_cntrl_st2);
7898 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7899 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7900 POSTING_READ(aud_cntrl_st2);
83358c85 7901
c7905792 7902 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7903
7904 /* Set ELD valid state */
7905 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7906 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7907 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7908 I915_WRITE(aud_cntrl_st2, tmp);
7909 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7910 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7911
7912 /* Enable HDMI mode */
7913 tmp = I915_READ(aud_config);
7e7cb34f 7914 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7915 /* clear N_programing_enable and N_value_index */
7916 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7917 I915_WRITE(aud_config, tmp);
7918
7919 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7920
7921 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7922
7923 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7924 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7925 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7926 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7927 } else {
7928 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7929 }
83358c85
WX
7930
7931 if (intel_eld_uptodate(connector,
7932 aud_cntrl_st2, eldv,
7933 aud_cntl_st, IBX_ELD_ADDRESS,
7934 hdmiw_hdmiedid))
7935 return;
7936
7937 i = I915_READ(aud_cntrl_st2);
7938 i &= ~eldv;
7939 I915_WRITE(aud_cntrl_st2, i);
7940
7941 if (!eld[0])
7942 return;
7943
7944 i = I915_READ(aud_cntl_st);
7945 i &= ~IBX_ELD_ADDRESS;
7946 I915_WRITE(aud_cntl_st, i);
7947 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7948 DRM_DEBUG_DRIVER("port num:%d\n", i);
7949
7950 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7951 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7952 for (i = 0; i < len; i++)
7953 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7954
7955 i = I915_READ(aud_cntrl_st2);
7956 i |= eldv;
7957 I915_WRITE(aud_cntrl_st2, i);
7958
7959}
7960
e0dac65e 7961static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7962 struct drm_crtc *crtc,
7963 struct drm_display_mode *mode)
e0dac65e
WF
7964{
7965 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7966 uint8_t *eld = connector->eld;
7967 uint32_t eldv;
7968 uint32_t i;
7969 int len;
7970 int hdmiw_hdmiedid;
b6daa025 7971 int aud_config;
e0dac65e
WF
7972 int aud_cntl_st;
7973 int aud_cntrl_st2;
9b138a83 7974 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7975
b3f33cbf 7976 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7977 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7978 aud_config = IBX_AUD_CFG(pipe);
7979 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7980 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7981 } else if (IS_VALLEYVIEW(connector->dev)) {
7982 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7983 aud_config = VLV_AUD_CFG(pipe);
7984 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7985 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7986 } else {
9b138a83
WX
7987 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7988 aud_config = CPT_AUD_CFG(pipe);
7989 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7990 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7991 }
7992
9b138a83 7993 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7994
9ca2fe73
ML
7995 if (IS_VALLEYVIEW(connector->dev)) {
7996 struct intel_encoder *intel_encoder;
7997 struct intel_digital_port *intel_dig_port;
7998
7999 intel_encoder = intel_attached_encoder(connector);
8000 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8001 i = intel_dig_port->port;
8002 } else {
8003 i = I915_READ(aud_cntl_st);
8004 i = (i >> 29) & DIP_PORT_SEL_MASK;
8005 /* DIP_Port_Select, 0x1 = PortB */
8006 }
8007
e0dac65e
WF
8008 if (!i) {
8009 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8010 /* operate blindly on all ports */
1202b4c6
WF
8011 eldv = IBX_ELD_VALIDB;
8012 eldv |= IBX_ELD_VALIDB << 4;
8013 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8014 } else {
2582a850 8015 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8016 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8017 }
8018
3a9627f4
WF
8019 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8020 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8021 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8022 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8023 } else {
8024 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8025 }
e0dac65e 8026
3a9627f4
WF
8027 if (intel_eld_uptodate(connector,
8028 aud_cntrl_st2, eldv,
8029 aud_cntl_st, IBX_ELD_ADDRESS,
8030 hdmiw_hdmiedid))
8031 return;
8032
e0dac65e
WF
8033 i = I915_READ(aud_cntrl_st2);
8034 i &= ~eldv;
8035 I915_WRITE(aud_cntrl_st2, i);
8036
8037 if (!eld[0])
8038 return;
8039
e0dac65e 8040 i = I915_READ(aud_cntl_st);
1202b4c6 8041 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8042 I915_WRITE(aud_cntl_st, i);
8043
8044 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8045 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8046 for (i = 0; i < len; i++)
8047 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8048
8049 i = I915_READ(aud_cntrl_st2);
8050 i |= eldv;
8051 I915_WRITE(aud_cntrl_st2, i);
8052}
8053
8054void intel_write_eld(struct drm_encoder *encoder,
8055 struct drm_display_mode *mode)
8056{
8057 struct drm_crtc *crtc = encoder->crtc;
8058 struct drm_connector *connector;
8059 struct drm_device *dev = encoder->dev;
8060 struct drm_i915_private *dev_priv = dev->dev_private;
8061
8062 connector = drm_select_eld(encoder, mode);
8063 if (!connector)
8064 return;
8065
8066 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8067 connector->base.id,
c23cc417 8068 connector->name,
e0dac65e 8069 connector->encoder->base.id,
8e329a03 8070 connector->encoder->name);
e0dac65e
WF
8071
8072 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8073
8074 if (dev_priv->display.write_eld)
34427052 8075 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8076}
8077
560b85bb
CW
8078static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8079{
8080 struct drm_device *dev = crtc->dev;
8081 struct drm_i915_private *dev_priv = dev->dev_private;
8082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8083 uint32_t cntl = 0, size = 0;
560b85bb 8084
dc41c154
VS
8085 if (base) {
8086 unsigned int width = intel_crtc->cursor_width;
8087 unsigned int height = intel_crtc->cursor_height;
8088 unsigned int stride = roundup_pow_of_two(width) * 4;
8089
8090 switch (stride) {
8091 default:
8092 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8093 width, stride);
8094 stride = 256;
8095 /* fallthrough */
8096 case 256:
8097 case 512:
8098 case 1024:
8099 case 2048:
8100 break;
4b0e333e
CW
8101 }
8102
dc41c154
VS
8103 cntl |= CURSOR_ENABLE |
8104 CURSOR_GAMMA_ENABLE |
8105 CURSOR_FORMAT_ARGB |
8106 CURSOR_STRIDE(stride);
8107
8108 size = (height << 12) | width;
4b0e333e 8109 }
560b85bb 8110
dc41c154
VS
8111 if (intel_crtc->cursor_cntl != 0 &&
8112 (intel_crtc->cursor_base != base ||
8113 intel_crtc->cursor_size != size ||
8114 intel_crtc->cursor_cntl != cntl)) {
8115 /* On these chipsets we can only modify the base/size/stride
8116 * whilst the cursor is disabled.
8117 */
8118 I915_WRITE(_CURACNTR, 0);
4b0e333e 8119 POSTING_READ(_CURACNTR);
dc41c154 8120 intel_crtc->cursor_cntl = 0;
4b0e333e 8121 }
560b85bb 8122
dc41c154 8123 if (intel_crtc->cursor_base != base)
9db4a9c7 8124 I915_WRITE(_CURABASE, base);
4726e0b0 8125
dc41c154
VS
8126 if (intel_crtc->cursor_size != size) {
8127 I915_WRITE(CURSIZE, size);
8128 intel_crtc->cursor_size = size;
4b0e333e 8129 }
560b85bb 8130
4b0e333e 8131 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8132 I915_WRITE(_CURACNTR, cntl);
8133 POSTING_READ(_CURACNTR);
4b0e333e 8134 intel_crtc->cursor_cntl = cntl;
560b85bb 8135 }
560b85bb
CW
8136}
8137
560b85bb 8138static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8139{
8140 struct drm_device *dev = crtc->dev;
8141 struct drm_i915_private *dev_priv = dev->dev_private;
8142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8143 int pipe = intel_crtc->pipe;
4b0e333e
CW
8144 uint32_t cntl;
8145
8146 cntl = 0;
8147 if (base) {
8148 cntl = MCURSOR_GAMMA_ENABLE;
8149 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8150 case 64:
8151 cntl |= CURSOR_MODE_64_ARGB_AX;
8152 break;
8153 case 128:
8154 cntl |= CURSOR_MODE_128_ARGB_AX;
8155 break;
8156 case 256:
8157 cntl |= CURSOR_MODE_256_ARGB_AX;
8158 break;
8159 default:
8160 WARN_ON(1);
8161 return;
65a21cd6 8162 }
4b0e333e 8163 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8164 }
8165 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8166 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8167
4b0e333e
CW
8168 if (intel_crtc->cursor_cntl != cntl) {
8169 I915_WRITE(CURCNTR(pipe), cntl);
8170 POSTING_READ(CURCNTR(pipe));
8171 intel_crtc->cursor_cntl = cntl;
65a21cd6 8172 }
4b0e333e 8173
65a21cd6 8174 /* and commit changes on next vblank */
5efb3e28
VS
8175 I915_WRITE(CURBASE(pipe), base);
8176 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8177}
8178
cda4b7d3 8179/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8180static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8181 bool on)
cda4b7d3
CW
8182{
8183 struct drm_device *dev = crtc->dev;
8184 struct drm_i915_private *dev_priv = dev->dev_private;
8185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8186 int pipe = intel_crtc->pipe;
3d7d6510
MR
8187 int x = crtc->cursor_x;
8188 int y = crtc->cursor_y;
d6e4db15 8189 u32 base = 0, pos = 0;
cda4b7d3 8190
d6e4db15 8191 if (on)
cda4b7d3 8192 base = intel_crtc->cursor_addr;
cda4b7d3 8193
d6e4db15
VS
8194 if (x >= intel_crtc->config.pipe_src_w)
8195 base = 0;
8196
8197 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8198 base = 0;
8199
8200 if (x < 0) {
efc9064e 8201 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8202 base = 0;
8203
8204 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8205 x = -x;
8206 }
8207 pos |= x << CURSOR_X_SHIFT;
8208
8209 if (y < 0) {
efc9064e 8210 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8211 base = 0;
8212
8213 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8214 y = -y;
8215 }
8216 pos |= y << CURSOR_Y_SHIFT;
8217
4b0e333e 8218 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8219 return;
8220
5efb3e28
VS
8221 I915_WRITE(CURPOS(pipe), pos);
8222
8ac54669 8223 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8224 i845_update_cursor(crtc, base);
8225 else
8226 i9xx_update_cursor(crtc, base);
4b0e333e 8227 intel_crtc->cursor_base = base;
cda4b7d3
CW
8228}
8229
dc41c154
VS
8230static bool cursor_size_ok(struct drm_device *dev,
8231 uint32_t width, uint32_t height)
8232{
8233 if (width == 0 || height == 0)
8234 return false;
8235
8236 /*
8237 * 845g/865g are special in that they are only limited by
8238 * the width of their cursors, the height is arbitrary up to
8239 * the precision of the register. Everything else requires
8240 * square cursors, limited to a few power-of-two sizes.
8241 */
8242 if (IS_845G(dev) || IS_I865G(dev)) {
8243 if ((width & 63) != 0)
8244 return false;
8245
8246 if (width > (IS_845G(dev) ? 64 : 512))
8247 return false;
8248
8249 if (height > 1023)
8250 return false;
8251 } else {
8252 switch (width | height) {
8253 case 256:
8254 case 128:
8255 if (IS_GEN2(dev))
8256 return false;
8257 case 64:
8258 break;
8259 default:
8260 return false;
8261 }
8262 }
8263
8264 return true;
8265}
8266
e3287951
MR
8267/*
8268 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8269 *
8270 * Note that the object's reference will be consumed if the update fails. If
8271 * the update succeeds, the reference of the old object (if any) will be
8272 * consumed.
8273 */
8274static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8275 struct drm_i915_gem_object *obj,
8276 uint32_t width, uint32_t height)
79e53945
JB
8277{
8278 struct drm_device *dev = crtc->dev;
79e53945 8279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8280 enum pipe pipe = intel_crtc->pipe;
dc41c154 8281 unsigned old_width, stride;
cda4b7d3 8282 uint32_t addr;
3f8bc370 8283 int ret;
79e53945 8284
79e53945 8285 /* if we want to turn off the cursor ignore width and height */
e3287951 8286 if (!obj) {
28c97730 8287 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8288 addr = 0;
05394f39 8289 obj = NULL;
5004417d 8290 mutex_lock(&dev->struct_mutex);
3f8bc370 8291 goto finish;
79e53945
JB
8292 }
8293
4726e0b0 8294 /* Check for which cursor types we support */
dc41c154 8295 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8296 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8297 return -EINVAL;
8298 }
8299
dc41c154
VS
8300 stride = roundup_pow_of_two(width) * 4;
8301 if (obj->base.size < stride * height) {
e3287951 8302 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8303 ret = -ENOMEM;
8304 goto fail;
79e53945
JB
8305 }
8306
71acb5eb 8307 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8308 mutex_lock(&dev->struct_mutex);
3d13ef2e 8309 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8310 unsigned alignment;
8311
d9e86c0e 8312 if (obj->tiling_mode) {
3b25b31f 8313 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8314 ret = -EINVAL;
8315 goto fail_locked;
8316 }
8317
693db184
CW
8318 /* Note that the w/a also requires 2 PTE of padding following
8319 * the bo. We currently fill all unused PTE with the shadow
8320 * page and so we should always have valid PTE following the
8321 * cursor preventing the VT-d warning.
8322 */
8323 alignment = 0;
8324 if (need_vtd_wa(dev))
8325 alignment = 64*1024;
8326
8327 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8328 if (ret) {
3b25b31f 8329 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8330 goto fail_locked;
e7b526bb
CW
8331 }
8332
d9e86c0e
CW
8333 ret = i915_gem_object_put_fence(obj);
8334 if (ret) {
3b25b31f 8335 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8336 goto fail_unpin;
8337 }
8338
f343c5f6 8339 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8340 } else {
6eeefaf3 8341 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8342 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8343 if (ret) {
3b25b31f 8344 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8345 goto fail_locked;
71acb5eb 8346 }
00731155 8347 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8348 }
8349
3f8bc370 8350 finish:
3f8bc370 8351 if (intel_crtc->cursor_bo) {
00731155 8352 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8353 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8354 }
80824003 8355
a071fa00
DV
8356 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8357 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8358 mutex_unlock(&dev->struct_mutex);
3f8bc370 8359
64f962e3
CW
8360 old_width = intel_crtc->cursor_width;
8361
3f8bc370 8362 intel_crtc->cursor_addr = addr;
05394f39 8363 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8364 intel_crtc->cursor_width = width;
8365 intel_crtc->cursor_height = height;
8366
64f962e3
CW
8367 if (intel_crtc->active) {
8368 if (old_width != width)
8369 intel_update_watermarks(crtc);
f2f5f771 8370 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8371 }
3f8bc370 8372
f99d7069
DV
8373 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8374
79e53945 8375 return 0;
e7b526bb 8376fail_unpin:
cc98b413 8377 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8378fail_locked:
34b8686e 8379 mutex_unlock(&dev->struct_mutex);
bc9025bd 8380fail:
05394f39 8381 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8382 return ret;
79e53945
JB
8383}
8384
79e53945 8385static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8386 u16 *blue, uint32_t start, uint32_t size)
79e53945 8387{
7203425a 8388 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8389 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8390
7203425a 8391 for (i = start; i < end; i++) {
79e53945
JB
8392 intel_crtc->lut_r[i] = red[i] >> 8;
8393 intel_crtc->lut_g[i] = green[i] >> 8;
8394 intel_crtc->lut_b[i] = blue[i] >> 8;
8395 }
8396
8397 intel_crtc_load_lut(crtc);
8398}
8399
79e53945
JB
8400/* VESA 640x480x72Hz mode to set on the pipe */
8401static struct drm_display_mode load_detect_mode = {
8402 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8403 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8404};
8405
a8bb6818
DV
8406struct drm_framebuffer *
8407__intel_framebuffer_create(struct drm_device *dev,
8408 struct drm_mode_fb_cmd2 *mode_cmd,
8409 struct drm_i915_gem_object *obj)
d2dff872
CW
8410{
8411 struct intel_framebuffer *intel_fb;
8412 int ret;
8413
8414 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8415 if (!intel_fb) {
8416 drm_gem_object_unreference_unlocked(&obj->base);
8417 return ERR_PTR(-ENOMEM);
8418 }
8419
8420 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8421 if (ret)
8422 goto err;
d2dff872
CW
8423
8424 return &intel_fb->base;
dd4916c5
DV
8425err:
8426 drm_gem_object_unreference_unlocked(&obj->base);
8427 kfree(intel_fb);
8428
8429 return ERR_PTR(ret);
d2dff872
CW
8430}
8431
b5ea642a 8432static struct drm_framebuffer *
a8bb6818
DV
8433intel_framebuffer_create(struct drm_device *dev,
8434 struct drm_mode_fb_cmd2 *mode_cmd,
8435 struct drm_i915_gem_object *obj)
8436{
8437 struct drm_framebuffer *fb;
8438 int ret;
8439
8440 ret = i915_mutex_lock_interruptible(dev);
8441 if (ret)
8442 return ERR_PTR(ret);
8443 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8444 mutex_unlock(&dev->struct_mutex);
8445
8446 return fb;
8447}
8448
d2dff872
CW
8449static u32
8450intel_framebuffer_pitch_for_width(int width, int bpp)
8451{
8452 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8453 return ALIGN(pitch, 64);
8454}
8455
8456static u32
8457intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8458{
8459 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8460 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8461}
8462
8463static struct drm_framebuffer *
8464intel_framebuffer_create_for_mode(struct drm_device *dev,
8465 struct drm_display_mode *mode,
8466 int depth, int bpp)
8467{
8468 struct drm_i915_gem_object *obj;
0fed39bd 8469 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8470
8471 obj = i915_gem_alloc_object(dev,
8472 intel_framebuffer_size_for_mode(mode, bpp));
8473 if (obj == NULL)
8474 return ERR_PTR(-ENOMEM);
8475
8476 mode_cmd.width = mode->hdisplay;
8477 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8478 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8479 bpp);
5ca0c34a 8480 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8481
8482 return intel_framebuffer_create(dev, &mode_cmd, obj);
8483}
8484
8485static struct drm_framebuffer *
8486mode_fits_in_fbdev(struct drm_device *dev,
8487 struct drm_display_mode *mode)
8488{
4520f53a 8489#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8490 struct drm_i915_private *dev_priv = dev->dev_private;
8491 struct drm_i915_gem_object *obj;
8492 struct drm_framebuffer *fb;
8493
4c0e5528 8494 if (!dev_priv->fbdev)
d2dff872
CW
8495 return NULL;
8496
4c0e5528 8497 if (!dev_priv->fbdev->fb)
d2dff872
CW
8498 return NULL;
8499
4c0e5528
DV
8500 obj = dev_priv->fbdev->fb->obj;
8501 BUG_ON(!obj);
8502
8bcd4553 8503 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8504 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8505 fb->bits_per_pixel))
d2dff872
CW
8506 return NULL;
8507
01f2c773 8508 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8509 return NULL;
8510
8511 return fb;
4520f53a
DV
8512#else
8513 return NULL;
8514#endif
d2dff872
CW
8515}
8516
d2434ab7 8517bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8518 struct drm_display_mode *mode,
51fd371b
RC
8519 struct intel_load_detect_pipe *old,
8520 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8521{
8522 struct intel_crtc *intel_crtc;
d2434ab7
DV
8523 struct intel_encoder *intel_encoder =
8524 intel_attached_encoder(connector);
79e53945 8525 struct drm_crtc *possible_crtc;
4ef69c7a 8526 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8527 struct drm_crtc *crtc = NULL;
8528 struct drm_device *dev = encoder->dev;
94352cf9 8529 struct drm_framebuffer *fb;
51fd371b
RC
8530 struct drm_mode_config *config = &dev->mode_config;
8531 int ret, i = -1;
79e53945 8532
d2dff872 8533 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8534 connector->base.id, connector->name,
8e329a03 8535 encoder->base.id, encoder->name);
d2dff872 8536
51fd371b
RC
8537retry:
8538 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8539 if (ret)
8540 goto fail_unlock;
6e9f798d 8541
79e53945
JB
8542 /*
8543 * Algorithm gets a little messy:
7a5e4805 8544 *
79e53945
JB
8545 * - if the connector already has an assigned crtc, use it (but make
8546 * sure it's on first)
7a5e4805 8547 *
79e53945
JB
8548 * - try to find the first unused crtc that can drive this connector,
8549 * and use that if we find one
79e53945
JB
8550 */
8551
8552 /* See if we already have a CRTC for this connector */
8553 if (encoder->crtc) {
8554 crtc = encoder->crtc;
8261b191 8555
51fd371b
RC
8556 ret = drm_modeset_lock(&crtc->mutex, ctx);
8557 if (ret)
8558 goto fail_unlock;
7b24056b 8559
24218aac 8560 old->dpms_mode = connector->dpms;
8261b191
CW
8561 old->load_detect_temp = false;
8562
8563 /* Make sure the crtc and connector are running */
24218aac
DV
8564 if (connector->dpms != DRM_MODE_DPMS_ON)
8565 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8566
7173188d 8567 return true;
79e53945
JB
8568 }
8569
8570 /* Find an unused one (if possible) */
70e1e0ec 8571 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8572 i++;
8573 if (!(encoder->possible_crtcs & (1 << i)))
8574 continue;
a459249c
VS
8575 if (possible_crtc->enabled)
8576 continue;
8577 /* This can occur when applying the pipe A quirk on resume. */
8578 if (to_intel_crtc(possible_crtc)->new_enabled)
8579 continue;
8580
8581 crtc = possible_crtc;
8582 break;
79e53945
JB
8583 }
8584
8585 /*
8586 * If we didn't find an unused CRTC, don't use any.
8587 */
8588 if (!crtc) {
7173188d 8589 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8590 goto fail_unlock;
79e53945
JB
8591 }
8592
51fd371b
RC
8593 ret = drm_modeset_lock(&crtc->mutex, ctx);
8594 if (ret)
8595 goto fail_unlock;
fc303101
DV
8596 intel_encoder->new_crtc = to_intel_crtc(crtc);
8597 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8598
8599 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8600 intel_crtc->new_enabled = true;
8601 intel_crtc->new_config = &intel_crtc->config;
24218aac 8602 old->dpms_mode = connector->dpms;
8261b191 8603 old->load_detect_temp = true;
d2dff872 8604 old->release_fb = NULL;
79e53945 8605
6492711d
CW
8606 if (!mode)
8607 mode = &load_detect_mode;
79e53945 8608
d2dff872
CW
8609 /* We need a framebuffer large enough to accommodate all accesses
8610 * that the plane may generate whilst we perform load detection.
8611 * We can not rely on the fbcon either being present (we get called
8612 * during its initialisation to detect all boot displays, or it may
8613 * not even exist) or that it is large enough to satisfy the
8614 * requested mode.
8615 */
94352cf9
DV
8616 fb = mode_fits_in_fbdev(dev, mode);
8617 if (fb == NULL) {
d2dff872 8618 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8619 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8620 old->release_fb = fb;
d2dff872
CW
8621 } else
8622 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8623 if (IS_ERR(fb)) {
d2dff872 8624 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8625 goto fail;
79e53945 8626 }
79e53945 8627
c0c36b94 8628 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8629 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8630 if (old->release_fb)
8631 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8632 goto fail;
79e53945 8633 }
7173188d 8634
79e53945 8635 /* let the connector get through one full cycle before testing */
9d0498a2 8636 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8637 return true;
412b61d8
VS
8638
8639 fail:
8640 intel_crtc->new_enabled = crtc->enabled;
8641 if (intel_crtc->new_enabled)
8642 intel_crtc->new_config = &intel_crtc->config;
8643 else
8644 intel_crtc->new_config = NULL;
51fd371b
RC
8645fail_unlock:
8646 if (ret == -EDEADLK) {
8647 drm_modeset_backoff(ctx);
8648 goto retry;
8649 }
8650
412b61d8 8651 return false;
79e53945
JB
8652}
8653
d2434ab7 8654void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8655 struct intel_load_detect_pipe *old)
79e53945 8656{
d2434ab7
DV
8657 struct intel_encoder *intel_encoder =
8658 intel_attached_encoder(connector);
4ef69c7a 8659 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8660 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8662
d2dff872 8663 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8664 connector->base.id, connector->name,
8e329a03 8665 encoder->base.id, encoder->name);
d2dff872 8666
8261b191 8667 if (old->load_detect_temp) {
fc303101
DV
8668 to_intel_connector(connector)->new_encoder = NULL;
8669 intel_encoder->new_crtc = NULL;
412b61d8
VS
8670 intel_crtc->new_enabled = false;
8671 intel_crtc->new_config = NULL;
fc303101 8672 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8673
36206361
DV
8674 if (old->release_fb) {
8675 drm_framebuffer_unregister_private(old->release_fb);
8676 drm_framebuffer_unreference(old->release_fb);
8677 }
d2dff872 8678
0622a53c 8679 return;
79e53945
JB
8680 }
8681
c751ce4f 8682 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8683 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8684 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8685}
8686
da4a1efa
VS
8687static int i9xx_pll_refclk(struct drm_device *dev,
8688 const struct intel_crtc_config *pipe_config)
8689{
8690 struct drm_i915_private *dev_priv = dev->dev_private;
8691 u32 dpll = pipe_config->dpll_hw_state.dpll;
8692
8693 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8694 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8695 else if (HAS_PCH_SPLIT(dev))
8696 return 120000;
8697 else if (!IS_GEN2(dev))
8698 return 96000;
8699 else
8700 return 48000;
8701}
8702
79e53945 8703/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8704static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8705 struct intel_crtc_config *pipe_config)
79e53945 8706{
f1f644dc 8707 struct drm_device *dev = crtc->base.dev;
79e53945 8708 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8709 int pipe = pipe_config->cpu_transcoder;
293623f7 8710 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8711 u32 fp;
8712 intel_clock_t clock;
da4a1efa 8713 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8714
8715 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8716 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8717 else
293623f7 8718 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8719
8720 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8721 if (IS_PINEVIEW(dev)) {
8722 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8723 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8724 } else {
8725 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8726 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8727 }
8728
a6c45cf0 8729 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8730 if (IS_PINEVIEW(dev))
8731 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8732 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8733 else
8734 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8735 DPLL_FPA01_P1_POST_DIV_SHIFT);
8736
8737 switch (dpll & DPLL_MODE_MASK) {
8738 case DPLLB_MODE_DAC_SERIAL:
8739 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8740 5 : 10;
8741 break;
8742 case DPLLB_MODE_LVDS:
8743 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8744 7 : 14;
8745 break;
8746 default:
28c97730 8747 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8748 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8749 return;
79e53945
JB
8750 }
8751
ac58c3f0 8752 if (IS_PINEVIEW(dev))
da4a1efa 8753 pineview_clock(refclk, &clock);
ac58c3f0 8754 else
da4a1efa 8755 i9xx_clock(refclk, &clock);
79e53945 8756 } else {
0fb58223 8757 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8758 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8759
8760 if (is_lvds) {
8761 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8762 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8763
8764 if (lvds & LVDS_CLKB_POWER_UP)
8765 clock.p2 = 7;
8766 else
8767 clock.p2 = 14;
79e53945
JB
8768 } else {
8769 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8770 clock.p1 = 2;
8771 else {
8772 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8773 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8774 }
8775 if (dpll & PLL_P2_DIVIDE_BY_4)
8776 clock.p2 = 4;
8777 else
8778 clock.p2 = 2;
79e53945 8779 }
da4a1efa
VS
8780
8781 i9xx_clock(refclk, &clock);
79e53945
JB
8782 }
8783
18442d08
VS
8784 /*
8785 * This value includes pixel_multiplier. We will use
241bfc38 8786 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8787 * encoder's get_config() function.
8788 */
8789 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8790}
8791
6878da05
VS
8792int intel_dotclock_calculate(int link_freq,
8793 const struct intel_link_m_n *m_n)
f1f644dc 8794{
f1f644dc
JB
8795 /*
8796 * The calculation for the data clock is:
1041a02f 8797 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8798 * But we want to avoid losing precison if possible, so:
1041a02f 8799 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8800 *
8801 * and the link clock is simpler:
1041a02f 8802 * link_clock = (m * link_clock) / n
f1f644dc
JB
8803 */
8804
6878da05
VS
8805 if (!m_n->link_n)
8806 return 0;
f1f644dc 8807
6878da05
VS
8808 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8809}
f1f644dc 8810
18442d08
VS
8811static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8812 struct intel_crtc_config *pipe_config)
6878da05
VS
8813{
8814 struct drm_device *dev = crtc->base.dev;
79e53945 8815
18442d08
VS
8816 /* read out port_clock from the DPLL */
8817 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8818
f1f644dc 8819 /*
18442d08 8820 * This value does not include pixel_multiplier.
241bfc38 8821 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8822 * agree once we know their relationship in the encoder's
8823 * get_config() function.
79e53945 8824 */
241bfc38 8825 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8826 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8827 &pipe_config->fdi_m_n);
79e53945
JB
8828}
8829
8830/** Returns the currently programmed mode of the given pipe. */
8831struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8832 struct drm_crtc *crtc)
8833{
548f245b 8834 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8836 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8837 struct drm_display_mode *mode;
f1f644dc 8838 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8839 int htot = I915_READ(HTOTAL(cpu_transcoder));
8840 int hsync = I915_READ(HSYNC(cpu_transcoder));
8841 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8842 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8843 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8844
8845 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8846 if (!mode)
8847 return NULL;
8848
f1f644dc
JB
8849 /*
8850 * Construct a pipe_config sufficient for getting the clock info
8851 * back out of crtc_clock_get.
8852 *
8853 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8854 * to use a real value here instead.
8855 */
293623f7 8856 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8857 pipe_config.pixel_multiplier = 1;
293623f7
VS
8858 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8859 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8860 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8861 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8862
773ae034 8863 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8864 mode->hdisplay = (htot & 0xffff) + 1;
8865 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8866 mode->hsync_start = (hsync & 0xffff) + 1;
8867 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8868 mode->vdisplay = (vtot & 0xffff) + 1;
8869 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8870 mode->vsync_start = (vsync & 0xffff) + 1;
8871 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8872
8873 drm_mode_set_name(mode);
79e53945
JB
8874
8875 return mode;
8876}
8877
cc36513c
DV
8878static void intel_increase_pllclock(struct drm_device *dev,
8879 enum pipe pipe)
652c393a 8880{
fbee40df 8881 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8882 int dpll_reg = DPLL(pipe);
8883 int dpll;
652c393a 8884
baff296c 8885 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8886 return;
8887
8888 if (!dev_priv->lvds_downclock_avail)
8889 return;
8890
dbdc6479 8891 dpll = I915_READ(dpll_reg);
652c393a 8892 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8893 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8894
8ac5a6d5 8895 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8896
8897 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8898 I915_WRITE(dpll_reg, dpll);
9d0498a2 8899 intel_wait_for_vblank(dev, pipe);
dbdc6479 8900
652c393a
JB
8901 dpll = I915_READ(dpll_reg);
8902 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8903 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8904 }
652c393a
JB
8905}
8906
8907static void intel_decrease_pllclock(struct drm_crtc *crtc)
8908{
8909 struct drm_device *dev = crtc->dev;
fbee40df 8910 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8912
baff296c 8913 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8914 return;
8915
8916 if (!dev_priv->lvds_downclock_avail)
8917 return;
8918
8919 /*
8920 * Since this is called by a timer, we should never get here in
8921 * the manual case.
8922 */
8923 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8924 int pipe = intel_crtc->pipe;
8925 int dpll_reg = DPLL(pipe);
8926 int dpll;
f6e5b160 8927
44d98a61 8928 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8929
8ac5a6d5 8930 assert_panel_unlocked(dev_priv, pipe);
652c393a 8931
dc257cf1 8932 dpll = I915_READ(dpll_reg);
652c393a
JB
8933 dpll |= DISPLAY_RATE_SELECT_FPA1;
8934 I915_WRITE(dpll_reg, dpll);
9d0498a2 8935 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8936 dpll = I915_READ(dpll_reg);
8937 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8938 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8939 }
8940
8941}
8942
f047e395
CW
8943void intel_mark_busy(struct drm_device *dev)
8944{
c67a470b
PZ
8945 struct drm_i915_private *dev_priv = dev->dev_private;
8946
f62a0076
CW
8947 if (dev_priv->mm.busy)
8948 return;
8949
43694d69 8950 intel_runtime_pm_get(dev_priv);
c67a470b 8951 i915_update_gfx_val(dev_priv);
f62a0076 8952 dev_priv->mm.busy = true;
f047e395
CW
8953}
8954
8955void intel_mark_idle(struct drm_device *dev)
652c393a 8956{
c67a470b 8957 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8958 struct drm_crtc *crtc;
652c393a 8959
f62a0076
CW
8960 if (!dev_priv->mm.busy)
8961 return;
8962
8963 dev_priv->mm.busy = false;
8964
d330a953 8965 if (!i915.powersave)
bb4cdd53 8966 goto out;
652c393a 8967
70e1e0ec 8968 for_each_crtc(dev, crtc) {
f4510a27 8969 if (!crtc->primary->fb)
652c393a
JB
8970 continue;
8971
725a5b54 8972 intel_decrease_pllclock(crtc);
652c393a 8973 }
b29c19b6 8974
3d13ef2e 8975 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8976 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8977
8978out:
43694d69 8979 intel_runtime_pm_put(dev_priv);
652c393a
JB
8980}
8981
7c8f8a70 8982
f99d7069
DV
8983/**
8984 * intel_mark_fb_busy - mark given planes as busy
8985 * @dev: DRM device
8986 * @frontbuffer_bits: bits for the affected planes
8987 * @ring: optional ring for asynchronous commands
8988 *
8989 * This function gets called every time the screen contents change. It can be
8990 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8991 */
8992static void intel_mark_fb_busy(struct drm_device *dev,
8993 unsigned frontbuffer_bits,
8994 struct intel_engine_cs *ring)
652c393a 8995{
cc36513c 8996 enum pipe pipe;
652c393a 8997
d330a953 8998 if (!i915.powersave)
acb87dfb
CW
8999 return;
9000
cc36513c 9001 for_each_pipe(pipe) {
f99d7069 9002 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9003 continue;
9004
cc36513c 9005 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9006 if (ring && intel_fbc_enabled(dev))
9007 ring->fbc_dirty = true;
652c393a
JB
9008 }
9009}
9010
f99d7069
DV
9011/**
9012 * intel_fb_obj_invalidate - invalidate frontbuffer object
9013 * @obj: GEM object to invalidate
9014 * @ring: set for asynchronous rendering
9015 *
9016 * This function gets called every time rendering on the given object starts and
9017 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9018 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9019 * until the rendering completes or a flip on this frontbuffer plane is
9020 * scheduled.
9021 */
9022void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9023 struct intel_engine_cs *ring)
9024{
9025 struct drm_device *dev = obj->base.dev;
9026 struct drm_i915_private *dev_priv = dev->dev_private;
9027
9028 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9029
9030 if (!obj->frontbuffer_bits)
9031 return;
9032
9033 if (ring) {
9034 mutex_lock(&dev_priv->fb_tracking.lock);
9035 dev_priv->fb_tracking.busy_bits
9036 |= obj->frontbuffer_bits;
9037 dev_priv->fb_tracking.flip_bits
9038 &= ~obj->frontbuffer_bits;
9039 mutex_unlock(&dev_priv->fb_tracking.lock);
9040 }
9041
9042 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9043
9ca15301 9044 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9045}
9046
9047/**
9048 * intel_frontbuffer_flush - flush frontbuffer
9049 * @dev: DRM device
9050 * @frontbuffer_bits: frontbuffer plane tracking bits
9051 *
9052 * This function gets called every time rendering on the given planes has
9053 * completed and frontbuffer caching can be started again. Flushes will get
9054 * delayed if they're blocked by some oustanding asynchronous rendering.
9055 *
9056 * Can be called without any locks held.
9057 */
9058void intel_frontbuffer_flush(struct drm_device *dev,
9059 unsigned frontbuffer_bits)
9060{
9061 struct drm_i915_private *dev_priv = dev->dev_private;
9062
9063 /* Delay flushing when rings are still busy.*/
9064 mutex_lock(&dev_priv->fb_tracking.lock);
9065 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9066 mutex_unlock(&dev_priv->fb_tracking.lock);
9067
9068 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9069
9ca15301 9070 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9071}
9072
9073/**
9074 * intel_fb_obj_flush - flush frontbuffer object
9075 * @obj: GEM object to flush
9076 * @retire: set when retiring asynchronous rendering
9077 *
9078 * This function gets called every time rendering on the given object has
9079 * completed and frontbuffer caching can be started again. If @retire is true
9080 * then any delayed flushes will be unblocked.
9081 */
9082void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9083 bool retire)
9084{
9085 struct drm_device *dev = obj->base.dev;
9086 struct drm_i915_private *dev_priv = dev->dev_private;
9087 unsigned frontbuffer_bits;
9088
9089 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9090
9091 if (!obj->frontbuffer_bits)
9092 return;
9093
9094 frontbuffer_bits = obj->frontbuffer_bits;
9095
9096 if (retire) {
9097 mutex_lock(&dev_priv->fb_tracking.lock);
9098 /* Filter out new bits since rendering started. */
9099 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9100
9101 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9102 mutex_unlock(&dev_priv->fb_tracking.lock);
9103 }
9104
9105 intel_frontbuffer_flush(dev, frontbuffer_bits);
9106}
9107
9108/**
9109 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9110 * @dev: DRM device
9111 * @frontbuffer_bits: frontbuffer plane tracking bits
9112 *
9113 * This function gets called after scheduling a flip on @obj. The actual
9114 * frontbuffer flushing will be delayed until completion is signalled with
9115 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9116 * flush will be cancelled.
9117 *
9118 * Can be called without any locks held.
9119 */
9120void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9121 unsigned frontbuffer_bits)
9122{
9123 struct drm_i915_private *dev_priv = dev->dev_private;
9124
9125 mutex_lock(&dev_priv->fb_tracking.lock);
9126 dev_priv->fb_tracking.flip_bits
9127 |= frontbuffer_bits;
9128 mutex_unlock(&dev_priv->fb_tracking.lock);
9129}
9130
9131/**
9132 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9133 * @dev: DRM device
9134 * @frontbuffer_bits: frontbuffer plane tracking bits
9135 *
9136 * This function gets called after the flip has been latched and will complete
9137 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9138 *
9139 * Can be called without any locks held.
9140 */
9141void intel_frontbuffer_flip_complete(struct drm_device *dev,
9142 unsigned frontbuffer_bits)
9143{
9144 struct drm_i915_private *dev_priv = dev->dev_private;
9145
9146 mutex_lock(&dev_priv->fb_tracking.lock);
9147 /* Mask any cancelled flips. */
9148 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9149 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9150 mutex_unlock(&dev_priv->fb_tracking.lock);
9151
9152 intel_frontbuffer_flush(dev, frontbuffer_bits);
9153}
9154
79e53945
JB
9155static void intel_crtc_destroy(struct drm_crtc *crtc)
9156{
9157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9158 struct drm_device *dev = crtc->dev;
9159 struct intel_unpin_work *work;
9160 unsigned long flags;
9161
9162 spin_lock_irqsave(&dev->event_lock, flags);
9163 work = intel_crtc->unpin_work;
9164 intel_crtc->unpin_work = NULL;
9165 spin_unlock_irqrestore(&dev->event_lock, flags);
9166
9167 if (work) {
9168 cancel_work_sync(&work->work);
9169 kfree(work);
9170 }
79e53945
JB
9171
9172 drm_crtc_cleanup(crtc);
67e77c5a 9173
79e53945
JB
9174 kfree(intel_crtc);
9175}
9176
6b95a207
KH
9177static void intel_unpin_work_fn(struct work_struct *__work)
9178{
9179 struct intel_unpin_work *work =
9180 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9181 struct drm_device *dev = work->crtc->dev;
f99d7069 9182 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9183
b4a98e57 9184 mutex_lock(&dev->struct_mutex);
1690e1eb 9185 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9186 drm_gem_object_unreference(&work->pending_flip_obj->base);
9187 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9188
b4a98e57
CW
9189 intel_update_fbc(dev);
9190 mutex_unlock(&dev->struct_mutex);
9191
f99d7069
DV
9192 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9193
b4a98e57
CW
9194 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9195 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9196
6b95a207
KH
9197 kfree(work);
9198}
9199
1afe3e9d 9200static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9201 struct drm_crtc *crtc)
6b95a207 9202{
fbee40df 9203 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9205 struct intel_unpin_work *work;
6b95a207
KH
9206 unsigned long flags;
9207
9208 /* Ignore early vblank irqs */
9209 if (intel_crtc == NULL)
9210 return;
9211
9212 spin_lock_irqsave(&dev->event_lock, flags);
9213 work = intel_crtc->unpin_work;
e7d841ca
CW
9214
9215 /* Ensure we don't miss a work->pending update ... */
9216 smp_rmb();
9217
9218 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9219 spin_unlock_irqrestore(&dev->event_lock, flags);
9220 return;
9221 }
9222
e7d841ca
CW
9223 /* and that the unpin work is consistent wrt ->pending. */
9224 smp_rmb();
9225
6b95a207 9226 intel_crtc->unpin_work = NULL;
6b95a207 9227
45a066eb
RC
9228 if (work->event)
9229 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9230
87b6b101 9231 drm_crtc_vblank_put(crtc);
0af7e4df 9232
6b95a207
KH
9233 spin_unlock_irqrestore(&dev->event_lock, flags);
9234
2c10d571 9235 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9236
9237 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9238
9239 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9240}
9241
1afe3e9d
JB
9242void intel_finish_page_flip(struct drm_device *dev, int pipe)
9243{
fbee40df 9244 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9245 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9246
49b14a5c 9247 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9248}
9249
9250void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9251{
fbee40df 9252 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9253 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9254
49b14a5c 9255 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9256}
9257
75f7f3ec
VS
9258/* Is 'a' after or equal to 'b'? */
9259static bool g4x_flip_count_after_eq(u32 a, u32 b)
9260{
9261 return !((a - b) & 0x80000000);
9262}
9263
9264static bool page_flip_finished(struct intel_crtc *crtc)
9265{
9266 struct drm_device *dev = crtc->base.dev;
9267 struct drm_i915_private *dev_priv = dev->dev_private;
9268
9269 /*
9270 * The relevant registers doen't exist on pre-ctg.
9271 * As the flip done interrupt doesn't trigger for mmio
9272 * flips on gmch platforms, a flip count check isn't
9273 * really needed there. But since ctg has the registers,
9274 * include it in the check anyway.
9275 */
9276 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9277 return true;
9278
9279 /*
9280 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9281 * used the same base address. In that case the mmio flip might
9282 * have completed, but the CS hasn't even executed the flip yet.
9283 *
9284 * A flip count check isn't enough as the CS might have updated
9285 * the base address just after start of vblank, but before we
9286 * managed to process the interrupt. This means we'd complete the
9287 * CS flip too soon.
9288 *
9289 * Combining both checks should get us a good enough result. It may
9290 * still happen that the CS flip has been executed, but has not
9291 * yet actually completed. But in case the base address is the same
9292 * anyway, we don't really care.
9293 */
9294 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9295 crtc->unpin_work->gtt_offset &&
9296 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9297 crtc->unpin_work->flip_count);
9298}
9299
6b95a207
KH
9300void intel_prepare_page_flip(struct drm_device *dev, int plane)
9301{
fbee40df 9302 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9303 struct intel_crtc *intel_crtc =
9304 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9305 unsigned long flags;
9306
e7d841ca
CW
9307 /* NB: An MMIO update of the plane base pointer will also
9308 * generate a page-flip completion irq, i.e. every modeset
9309 * is also accompanied by a spurious intel_prepare_page_flip().
9310 */
6b95a207 9311 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9312 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9313 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9314 spin_unlock_irqrestore(&dev->event_lock, flags);
9315}
9316
eba905b2 9317static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9318{
9319 /* Ensure that the work item is consistent when activating it ... */
9320 smp_wmb();
9321 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9322 /* and that it is marked active as soon as the irq could fire. */
9323 smp_wmb();
9324}
9325
8c9f3aaf
JB
9326static int intel_gen2_queue_flip(struct drm_device *dev,
9327 struct drm_crtc *crtc,
9328 struct drm_framebuffer *fb,
ed8d1975 9329 struct drm_i915_gem_object *obj,
a4872ba6 9330 struct intel_engine_cs *ring,
ed8d1975 9331 uint32_t flags)
8c9f3aaf 9332{
8c9f3aaf 9333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9334 u32 flip_mask;
9335 int ret;
9336
6d90c952 9337 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9338 if (ret)
4fa62c89 9339 return ret;
8c9f3aaf
JB
9340
9341 /* Can't queue multiple flips, so wait for the previous
9342 * one to finish before executing the next.
9343 */
9344 if (intel_crtc->plane)
9345 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9346 else
9347 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9348 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9349 intel_ring_emit(ring, MI_NOOP);
9350 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9351 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9352 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9353 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9354 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9355
9356 intel_mark_page_flip_active(intel_crtc);
09246732 9357 __intel_ring_advance(ring);
83d4092b 9358 return 0;
8c9f3aaf
JB
9359}
9360
9361static int intel_gen3_queue_flip(struct drm_device *dev,
9362 struct drm_crtc *crtc,
9363 struct drm_framebuffer *fb,
ed8d1975 9364 struct drm_i915_gem_object *obj,
a4872ba6 9365 struct intel_engine_cs *ring,
ed8d1975 9366 uint32_t flags)
8c9f3aaf 9367{
8c9f3aaf 9368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9369 u32 flip_mask;
9370 int ret;
9371
6d90c952 9372 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9373 if (ret)
4fa62c89 9374 return ret;
8c9f3aaf
JB
9375
9376 if (intel_crtc->plane)
9377 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9378 else
9379 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9380 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9381 intel_ring_emit(ring, MI_NOOP);
9382 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9383 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9384 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9385 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9386 intel_ring_emit(ring, MI_NOOP);
9387
e7d841ca 9388 intel_mark_page_flip_active(intel_crtc);
09246732 9389 __intel_ring_advance(ring);
83d4092b 9390 return 0;
8c9f3aaf
JB
9391}
9392
9393static int intel_gen4_queue_flip(struct drm_device *dev,
9394 struct drm_crtc *crtc,
9395 struct drm_framebuffer *fb,
ed8d1975 9396 struct drm_i915_gem_object *obj,
a4872ba6 9397 struct intel_engine_cs *ring,
ed8d1975 9398 uint32_t flags)
8c9f3aaf
JB
9399{
9400 struct drm_i915_private *dev_priv = dev->dev_private;
9401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9402 uint32_t pf, pipesrc;
9403 int ret;
9404
6d90c952 9405 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9406 if (ret)
4fa62c89 9407 return ret;
8c9f3aaf
JB
9408
9409 /* i965+ uses the linear or tiled offsets from the
9410 * Display Registers (which do not change across a page-flip)
9411 * so we need only reprogram the base address.
9412 */
6d90c952
DV
9413 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9414 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9415 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9416 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9417 obj->tiling_mode);
8c9f3aaf
JB
9418
9419 /* XXX Enabling the panel-fitter across page-flip is so far
9420 * untested on non-native modes, so ignore it for now.
9421 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9422 */
9423 pf = 0;
9424 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9425 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9426
9427 intel_mark_page_flip_active(intel_crtc);
09246732 9428 __intel_ring_advance(ring);
83d4092b 9429 return 0;
8c9f3aaf
JB
9430}
9431
9432static int intel_gen6_queue_flip(struct drm_device *dev,
9433 struct drm_crtc *crtc,
9434 struct drm_framebuffer *fb,
ed8d1975 9435 struct drm_i915_gem_object *obj,
a4872ba6 9436 struct intel_engine_cs *ring,
ed8d1975 9437 uint32_t flags)
8c9f3aaf
JB
9438{
9439 struct drm_i915_private *dev_priv = dev->dev_private;
9440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9441 uint32_t pf, pipesrc;
9442 int ret;
9443
6d90c952 9444 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9445 if (ret)
4fa62c89 9446 return ret;
8c9f3aaf 9447
6d90c952
DV
9448 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9449 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9450 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9451 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9452
dc257cf1
DV
9453 /* Contrary to the suggestions in the documentation,
9454 * "Enable Panel Fitter" does not seem to be required when page
9455 * flipping with a non-native mode, and worse causes a normal
9456 * modeset to fail.
9457 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9458 */
9459 pf = 0;
8c9f3aaf 9460 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9461 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9462
9463 intel_mark_page_flip_active(intel_crtc);
09246732 9464 __intel_ring_advance(ring);
83d4092b 9465 return 0;
8c9f3aaf
JB
9466}
9467
7c9017e5
JB
9468static int intel_gen7_queue_flip(struct drm_device *dev,
9469 struct drm_crtc *crtc,
9470 struct drm_framebuffer *fb,
ed8d1975 9471 struct drm_i915_gem_object *obj,
a4872ba6 9472 struct intel_engine_cs *ring,
ed8d1975 9473 uint32_t flags)
7c9017e5 9474{
7c9017e5 9475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9476 uint32_t plane_bit = 0;
ffe74d75
CW
9477 int len, ret;
9478
eba905b2 9479 switch (intel_crtc->plane) {
cb05d8de
DV
9480 case PLANE_A:
9481 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9482 break;
9483 case PLANE_B:
9484 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9485 break;
9486 case PLANE_C:
9487 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9488 break;
9489 default:
9490 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9491 return -ENODEV;
cb05d8de
DV
9492 }
9493
ffe74d75 9494 len = 4;
f476828a 9495 if (ring->id == RCS) {
ffe74d75 9496 len += 6;
f476828a
DL
9497 /*
9498 * On Gen 8, SRM is now taking an extra dword to accommodate
9499 * 48bits addresses, and we need a NOOP for the batch size to
9500 * stay even.
9501 */
9502 if (IS_GEN8(dev))
9503 len += 2;
9504 }
ffe74d75 9505
f66fab8e
VS
9506 /*
9507 * BSpec MI_DISPLAY_FLIP for IVB:
9508 * "The full packet must be contained within the same cache line."
9509 *
9510 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9511 * cacheline, if we ever start emitting more commands before
9512 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9513 * then do the cacheline alignment, and finally emit the
9514 * MI_DISPLAY_FLIP.
9515 */
9516 ret = intel_ring_cacheline_align(ring);
9517 if (ret)
4fa62c89 9518 return ret;
f66fab8e 9519
ffe74d75 9520 ret = intel_ring_begin(ring, len);
7c9017e5 9521 if (ret)
4fa62c89 9522 return ret;
7c9017e5 9523
ffe74d75
CW
9524 /* Unmask the flip-done completion message. Note that the bspec says that
9525 * we should do this for both the BCS and RCS, and that we must not unmask
9526 * more than one flip event at any time (or ensure that one flip message
9527 * can be sent by waiting for flip-done prior to queueing new flips).
9528 * Experimentation says that BCS works despite DERRMR masking all
9529 * flip-done completion events and that unmasking all planes at once
9530 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9531 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9532 */
9533 if (ring->id == RCS) {
9534 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9535 intel_ring_emit(ring, DERRMR);
9536 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9537 DERRMR_PIPEB_PRI_FLIP_DONE |
9538 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9539 if (IS_GEN8(dev))
9540 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9541 MI_SRM_LRM_GLOBAL_GTT);
9542 else
9543 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9544 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9545 intel_ring_emit(ring, DERRMR);
9546 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9547 if (IS_GEN8(dev)) {
9548 intel_ring_emit(ring, 0);
9549 intel_ring_emit(ring, MI_NOOP);
9550 }
ffe74d75
CW
9551 }
9552
cb05d8de 9553 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9554 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9555 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9556 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9557
9558 intel_mark_page_flip_active(intel_crtc);
09246732 9559 __intel_ring_advance(ring);
83d4092b 9560 return 0;
7c9017e5
JB
9561}
9562
84c33a64
SG
9563static bool use_mmio_flip(struct intel_engine_cs *ring,
9564 struct drm_i915_gem_object *obj)
9565{
9566 /*
9567 * This is not being used for older platforms, because
9568 * non-availability of flip done interrupt forces us to use
9569 * CS flips. Older platforms derive flip done using some clever
9570 * tricks involving the flip_pending status bits and vblank irqs.
9571 * So using MMIO flips there would disrupt this mechanism.
9572 */
9573
8e09bf83
CW
9574 if (ring == NULL)
9575 return true;
9576
84c33a64
SG
9577 if (INTEL_INFO(ring->dev)->gen < 5)
9578 return false;
9579
9580 if (i915.use_mmio_flip < 0)
9581 return false;
9582 else if (i915.use_mmio_flip > 0)
9583 return true;
14bf993e
OM
9584 else if (i915.enable_execlists)
9585 return true;
84c33a64
SG
9586 else
9587 return ring != obj->ring;
9588}
9589
9590static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9591{
9592 struct drm_device *dev = intel_crtc->base.dev;
9593 struct drm_i915_private *dev_priv = dev->dev_private;
9594 struct intel_framebuffer *intel_fb =
9595 to_intel_framebuffer(intel_crtc->base.primary->fb);
9596 struct drm_i915_gem_object *obj = intel_fb->obj;
9597 u32 dspcntr;
9598 u32 reg;
9599
9600 intel_mark_page_flip_active(intel_crtc);
9601
9602 reg = DSPCNTR(intel_crtc->plane);
9603 dspcntr = I915_READ(reg);
9604
9605 if (INTEL_INFO(dev)->gen >= 4) {
9606 if (obj->tiling_mode != I915_TILING_NONE)
9607 dspcntr |= DISPPLANE_TILED;
9608 else
9609 dspcntr &= ~DISPPLANE_TILED;
9610 }
9611 I915_WRITE(reg, dspcntr);
9612
9613 I915_WRITE(DSPSURF(intel_crtc->plane),
9614 intel_crtc->unpin_work->gtt_offset);
9615 POSTING_READ(DSPSURF(intel_crtc->plane));
9616}
9617
9618static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9619{
9620 struct intel_engine_cs *ring;
9621 int ret;
9622
9623 lockdep_assert_held(&obj->base.dev->struct_mutex);
9624
9625 if (!obj->last_write_seqno)
9626 return 0;
9627
9628 ring = obj->ring;
9629
9630 if (i915_seqno_passed(ring->get_seqno(ring, true),
9631 obj->last_write_seqno))
9632 return 0;
9633
9634 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9635 if (ret)
9636 return ret;
9637
9638 if (WARN_ON(!ring->irq_get(ring)))
9639 return 0;
9640
9641 return 1;
9642}
9643
9644void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9645{
9646 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9647 struct intel_crtc *intel_crtc;
9648 unsigned long irq_flags;
9649 u32 seqno;
9650
9651 seqno = ring->get_seqno(ring, false);
9652
9653 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9654 for_each_intel_crtc(ring->dev, intel_crtc) {
9655 struct intel_mmio_flip *mmio_flip;
9656
9657 mmio_flip = &intel_crtc->mmio_flip;
9658 if (mmio_flip->seqno == 0)
9659 continue;
9660
9661 if (ring->id != mmio_flip->ring_id)
9662 continue;
9663
9664 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9665 intel_do_mmio_flip(intel_crtc);
9666 mmio_flip->seqno = 0;
9667 ring->irq_put(ring);
9668 }
9669 }
9670 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9671}
9672
9673static int intel_queue_mmio_flip(struct drm_device *dev,
9674 struct drm_crtc *crtc,
9675 struct drm_framebuffer *fb,
9676 struct drm_i915_gem_object *obj,
9677 struct intel_engine_cs *ring,
9678 uint32_t flags)
9679{
9680 struct drm_i915_private *dev_priv = dev->dev_private;
9681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9682 unsigned long irq_flags;
9683 int ret;
9684
9685 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9686 return -EBUSY;
9687
9688 ret = intel_postpone_flip(obj);
9689 if (ret < 0)
9690 return ret;
9691 if (ret == 0) {
9692 intel_do_mmio_flip(intel_crtc);
9693 return 0;
9694 }
9695
9696 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9697 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9698 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9699 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9700
9701 /*
9702 * Double check to catch cases where irq fired before
9703 * mmio flip data was ready
9704 */
9705 intel_notify_mmio_flip(obj->ring);
9706 return 0;
9707}
9708
8c9f3aaf
JB
9709static int intel_default_queue_flip(struct drm_device *dev,
9710 struct drm_crtc *crtc,
9711 struct drm_framebuffer *fb,
ed8d1975 9712 struct drm_i915_gem_object *obj,
a4872ba6 9713 struct intel_engine_cs *ring,
ed8d1975 9714 uint32_t flags)
8c9f3aaf
JB
9715{
9716 return -ENODEV;
9717}
9718
6b95a207
KH
9719static int intel_crtc_page_flip(struct drm_crtc *crtc,
9720 struct drm_framebuffer *fb,
ed8d1975
KP
9721 struct drm_pending_vblank_event *event,
9722 uint32_t page_flip_flags)
6b95a207
KH
9723{
9724 struct drm_device *dev = crtc->dev;
9725 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9726 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9727 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9729 enum pipe pipe = intel_crtc->pipe;
6b95a207 9730 struct intel_unpin_work *work;
a4872ba6 9731 struct intel_engine_cs *ring;
8c9f3aaf 9732 unsigned long flags;
52e68630 9733 int ret;
6b95a207 9734
2ff8fde1
MR
9735 /*
9736 * drm_mode_page_flip_ioctl() should already catch this, but double
9737 * check to be safe. In the future we may enable pageflipping from
9738 * a disabled primary plane.
9739 */
9740 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9741 return -EBUSY;
9742
e6a595d2 9743 /* Can't change pixel format via MI display flips. */
f4510a27 9744 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9745 return -EINVAL;
9746
9747 /*
9748 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9749 * Note that pitch changes could also affect these register.
9750 */
9751 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9752 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9753 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9754 return -EINVAL;
9755
f900db47
CW
9756 if (i915_terminally_wedged(&dev_priv->gpu_error))
9757 goto out_hang;
9758
b14c5679 9759 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9760 if (work == NULL)
9761 return -ENOMEM;
9762
6b95a207 9763 work->event = event;
b4a98e57 9764 work->crtc = crtc;
2ff8fde1 9765 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9766 INIT_WORK(&work->work, intel_unpin_work_fn);
9767
87b6b101 9768 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9769 if (ret)
9770 goto free_work;
9771
6b95a207
KH
9772 /* We borrow the event spin lock for protecting unpin_work */
9773 spin_lock_irqsave(&dev->event_lock, flags);
9774 if (intel_crtc->unpin_work) {
9775 spin_unlock_irqrestore(&dev->event_lock, flags);
9776 kfree(work);
87b6b101 9777 drm_crtc_vblank_put(crtc);
468f0b44
CW
9778
9779 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9780 return -EBUSY;
9781 }
9782 intel_crtc->unpin_work = work;
9783 spin_unlock_irqrestore(&dev->event_lock, flags);
9784
b4a98e57
CW
9785 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9786 flush_workqueue(dev_priv->wq);
9787
79158103
CW
9788 ret = i915_mutex_lock_interruptible(dev);
9789 if (ret)
9790 goto cleanup;
6b95a207 9791
75dfca80 9792 /* Reference the objects for the scheduled work. */
05394f39
CW
9793 drm_gem_object_reference(&work->old_fb_obj->base);
9794 drm_gem_object_reference(&obj->base);
6b95a207 9795
f4510a27 9796 crtc->primary->fb = fb;
96b099fd 9797
e1f99ce6 9798 work->pending_flip_obj = obj;
e1f99ce6 9799
4e5359cd
SF
9800 work->enable_stall_check = true;
9801
b4a98e57 9802 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9803 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9804
75f7f3ec 9805 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9806 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9807
4fa62c89
VS
9808 if (IS_VALLEYVIEW(dev)) {
9809 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9810 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9811 /* vlv: DISPLAY_FLIP fails to change tiling */
9812 ring = NULL;
2a92d5bc
CW
9813 } else if (IS_IVYBRIDGE(dev)) {
9814 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9815 } else if (INTEL_INFO(dev)->gen >= 7) {
9816 ring = obj->ring;
9817 if (ring == NULL || ring->id != RCS)
9818 ring = &dev_priv->ring[BCS];
9819 } else {
9820 ring = &dev_priv->ring[RCS];
9821 }
9822
9823 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9824 if (ret)
9825 goto cleanup_pending;
6b95a207 9826
4fa62c89
VS
9827 work->gtt_offset =
9828 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9829
84c33a64
SG
9830 if (use_mmio_flip(ring, obj))
9831 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9832 page_flip_flags);
9833 else
9834 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9835 page_flip_flags);
4fa62c89
VS
9836 if (ret)
9837 goto cleanup_unpin;
9838
a071fa00
DV
9839 i915_gem_track_fb(work->old_fb_obj, obj,
9840 INTEL_FRONTBUFFER_PRIMARY(pipe));
9841
7782de3b 9842 intel_disable_fbc(dev);
f99d7069 9843 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9844 mutex_unlock(&dev->struct_mutex);
9845
e5510fac
JB
9846 trace_i915_flip_request(intel_crtc->plane, obj);
9847
6b95a207 9848 return 0;
96b099fd 9849
4fa62c89
VS
9850cleanup_unpin:
9851 intel_unpin_fb_obj(obj);
8c9f3aaf 9852cleanup_pending:
b4a98e57 9853 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9854 crtc->primary->fb = old_fb;
05394f39
CW
9855 drm_gem_object_unreference(&work->old_fb_obj->base);
9856 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9857 mutex_unlock(&dev->struct_mutex);
9858
79158103 9859cleanup:
96b099fd
CW
9860 spin_lock_irqsave(&dev->event_lock, flags);
9861 intel_crtc->unpin_work = NULL;
9862 spin_unlock_irqrestore(&dev->event_lock, flags);
9863
87b6b101 9864 drm_crtc_vblank_put(crtc);
7317c75e 9865free_work:
96b099fd
CW
9866 kfree(work);
9867
f900db47
CW
9868 if (ret == -EIO) {
9869out_hang:
9870 intel_crtc_wait_for_pending_flips(crtc);
9871 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9872 if (ret == 0 && event)
a071fa00 9873 drm_send_vblank_event(dev, pipe, event);
f900db47 9874 }
96b099fd 9875 return ret;
6b95a207
KH
9876}
9877
f6e5b160 9878static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9879 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9880 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9881};
9882
9a935856
DV
9883/**
9884 * intel_modeset_update_staged_output_state
9885 *
9886 * Updates the staged output configuration state, e.g. after we've read out the
9887 * current hw state.
9888 */
9889static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9890{
7668851f 9891 struct intel_crtc *crtc;
9a935856
DV
9892 struct intel_encoder *encoder;
9893 struct intel_connector *connector;
f6e5b160 9894
9a935856
DV
9895 list_for_each_entry(connector, &dev->mode_config.connector_list,
9896 base.head) {
9897 connector->new_encoder =
9898 to_intel_encoder(connector->base.encoder);
9899 }
f6e5b160 9900
b2784e15 9901 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9902 encoder->new_crtc =
9903 to_intel_crtc(encoder->base.crtc);
9904 }
7668851f 9905
d3fcc808 9906 for_each_intel_crtc(dev, crtc) {
7668851f 9907 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9908
9909 if (crtc->new_enabled)
9910 crtc->new_config = &crtc->config;
9911 else
9912 crtc->new_config = NULL;
7668851f 9913 }
f6e5b160
CW
9914}
9915
9a935856
DV
9916/**
9917 * intel_modeset_commit_output_state
9918 *
9919 * This function copies the stage display pipe configuration to the real one.
9920 */
9921static void intel_modeset_commit_output_state(struct drm_device *dev)
9922{
7668851f 9923 struct intel_crtc *crtc;
9a935856
DV
9924 struct intel_encoder *encoder;
9925 struct intel_connector *connector;
f6e5b160 9926
9a935856
DV
9927 list_for_each_entry(connector, &dev->mode_config.connector_list,
9928 base.head) {
9929 connector->base.encoder = &connector->new_encoder->base;
9930 }
f6e5b160 9931
b2784e15 9932 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9933 encoder->base.crtc = &encoder->new_crtc->base;
9934 }
7668851f 9935
d3fcc808 9936 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9937 crtc->base.enabled = crtc->new_enabled;
9938 }
9a935856
DV
9939}
9940
050f7aeb 9941static void
eba905b2 9942connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9943 struct intel_crtc_config *pipe_config)
9944{
9945 int bpp = pipe_config->pipe_bpp;
9946
9947 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9948 connector->base.base.id,
c23cc417 9949 connector->base.name);
050f7aeb
DV
9950
9951 /* Don't use an invalid EDID bpc value */
9952 if (connector->base.display_info.bpc &&
9953 connector->base.display_info.bpc * 3 < bpp) {
9954 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9955 bpp, connector->base.display_info.bpc*3);
9956 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9957 }
9958
9959 /* Clamp bpp to 8 on screens without EDID 1.4 */
9960 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9961 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9962 bpp);
9963 pipe_config->pipe_bpp = 24;
9964 }
9965}
9966
4e53c2e0 9967static int
050f7aeb
DV
9968compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9969 struct drm_framebuffer *fb,
9970 struct intel_crtc_config *pipe_config)
4e53c2e0 9971{
050f7aeb
DV
9972 struct drm_device *dev = crtc->base.dev;
9973 struct intel_connector *connector;
4e53c2e0
DV
9974 int bpp;
9975
d42264b1
DV
9976 switch (fb->pixel_format) {
9977 case DRM_FORMAT_C8:
4e53c2e0
DV
9978 bpp = 8*3; /* since we go through a colormap */
9979 break;
d42264b1
DV
9980 case DRM_FORMAT_XRGB1555:
9981 case DRM_FORMAT_ARGB1555:
9982 /* checked in intel_framebuffer_init already */
9983 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9984 return -EINVAL;
9985 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9986 bpp = 6*3; /* min is 18bpp */
9987 break;
d42264b1
DV
9988 case DRM_FORMAT_XBGR8888:
9989 case DRM_FORMAT_ABGR8888:
9990 /* checked in intel_framebuffer_init already */
9991 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9992 return -EINVAL;
9993 case DRM_FORMAT_XRGB8888:
9994 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9995 bpp = 8*3;
9996 break;
d42264b1
DV
9997 case DRM_FORMAT_XRGB2101010:
9998 case DRM_FORMAT_ARGB2101010:
9999 case DRM_FORMAT_XBGR2101010:
10000 case DRM_FORMAT_ABGR2101010:
10001 /* checked in intel_framebuffer_init already */
10002 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10003 return -EINVAL;
4e53c2e0
DV
10004 bpp = 10*3;
10005 break;
baba133a 10006 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10007 default:
10008 DRM_DEBUG_KMS("unsupported depth\n");
10009 return -EINVAL;
10010 }
10011
4e53c2e0
DV
10012 pipe_config->pipe_bpp = bpp;
10013
10014 /* Clamp display bpp to EDID value */
10015 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10016 base.head) {
1b829e05
DV
10017 if (!connector->new_encoder ||
10018 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10019 continue;
10020
050f7aeb 10021 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10022 }
10023
10024 return bpp;
10025}
10026
644db711
DV
10027static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10028{
10029 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10030 "type: 0x%x flags: 0x%x\n",
1342830c 10031 mode->crtc_clock,
644db711
DV
10032 mode->crtc_hdisplay, mode->crtc_hsync_start,
10033 mode->crtc_hsync_end, mode->crtc_htotal,
10034 mode->crtc_vdisplay, mode->crtc_vsync_start,
10035 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10036}
10037
c0b03411
DV
10038static void intel_dump_pipe_config(struct intel_crtc *crtc,
10039 struct intel_crtc_config *pipe_config,
10040 const char *context)
10041{
10042 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10043 context, pipe_name(crtc->pipe));
10044
10045 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10046 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10047 pipe_config->pipe_bpp, pipe_config->dither);
10048 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10049 pipe_config->has_pch_encoder,
10050 pipe_config->fdi_lanes,
10051 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10052 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10053 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10054 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10055 pipe_config->has_dp_encoder,
10056 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10057 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10058 pipe_config->dp_m_n.tu);
b95af8be
VK
10059
10060 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10061 pipe_config->has_dp_encoder,
10062 pipe_config->dp_m2_n2.gmch_m,
10063 pipe_config->dp_m2_n2.gmch_n,
10064 pipe_config->dp_m2_n2.link_m,
10065 pipe_config->dp_m2_n2.link_n,
10066 pipe_config->dp_m2_n2.tu);
10067
c0b03411
DV
10068 DRM_DEBUG_KMS("requested mode:\n");
10069 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10070 DRM_DEBUG_KMS("adjusted mode:\n");
10071 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10072 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10073 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10074 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10075 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10076 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10077 pipe_config->gmch_pfit.control,
10078 pipe_config->gmch_pfit.pgm_ratios,
10079 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10080 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10081 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10082 pipe_config->pch_pfit.size,
10083 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10084 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10085 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10086}
10087
bc079e8b
VS
10088static bool encoders_cloneable(const struct intel_encoder *a,
10089 const struct intel_encoder *b)
accfc0c5 10090{
bc079e8b
VS
10091 /* masks could be asymmetric, so check both ways */
10092 return a == b || (a->cloneable & (1 << b->type) &&
10093 b->cloneable & (1 << a->type));
10094}
10095
10096static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10097 struct intel_encoder *encoder)
10098{
10099 struct drm_device *dev = crtc->base.dev;
10100 struct intel_encoder *source_encoder;
10101
b2784e15 10102 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10103 if (source_encoder->new_crtc != crtc)
10104 continue;
10105
10106 if (!encoders_cloneable(encoder, source_encoder))
10107 return false;
10108 }
10109
10110 return true;
10111}
10112
10113static bool check_encoder_cloning(struct intel_crtc *crtc)
10114{
10115 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10116 struct intel_encoder *encoder;
10117
b2784e15 10118 for_each_intel_encoder(dev, encoder) {
bc079e8b 10119 if (encoder->new_crtc != crtc)
accfc0c5
DV
10120 continue;
10121
bc079e8b
VS
10122 if (!check_single_encoder_cloning(crtc, encoder))
10123 return false;
accfc0c5
DV
10124 }
10125
bc079e8b 10126 return true;
accfc0c5
DV
10127}
10128
b8cecdf5
DV
10129static struct intel_crtc_config *
10130intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10131 struct drm_framebuffer *fb,
b8cecdf5 10132 struct drm_display_mode *mode)
ee7b9f93 10133{
7758a113 10134 struct drm_device *dev = crtc->dev;
7758a113 10135 struct intel_encoder *encoder;
b8cecdf5 10136 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10137 int plane_bpp, ret = -EINVAL;
10138 bool retry = true;
ee7b9f93 10139
bc079e8b 10140 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10141 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10142 return ERR_PTR(-EINVAL);
10143 }
10144
b8cecdf5
DV
10145 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10146 if (!pipe_config)
7758a113
DV
10147 return ERR_PTR(-ENOMEM);
10148
b8cecdf5
DV
10149 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10150 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10151
e143a21c
DV
10152 pipe_config->cpu_transcoder =
10153 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10154 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10155
2960bc9c
ID
10156 /*
10157 * Sanitize sync polarity flags based on requested ones. If neither
10158 * positive or negative polarity is requested, treat this as meaning
10159 * negative polarity.
10160 */
10161 if (!(pipe_config->adjusted_mode.flags &
10162 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10163 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10164
10165 if (!(pipe_config->adjusted_mode.flags &
10166 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10167 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10168
050f7aeb
DV
10169 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10170 * plane pixel format and any sink constraints into account. Returns the
10171 * source plane bpp so that dithering can be selected on mismatches
10172 * after encoders and crtc also have had their say. */
10173 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10174 fb, pipe_config);
4e53c2e0
DV
10175 if (plane_bpp < 0)
10176 goto fail;
10177
e41a56be
VS
10178 /*
10179 * Determine the real pipe dimensions. Note that stereo modes can
10180 * increase the actual pipe size due to the frame doubling and
10181 * insertion of additional space for blanks between the frame. This
10182 * is stored in the crtc timings. We use the requested mode to do this
10183 * computation to clearly distinguish it from the adjusted mode, which
10184 * can be changed by the connectors in the below retry loop.
10185 */
10186 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10187 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10188 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10189
e29c22c0 10190encoder_retry:
ef1b460d 10191 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10192 pipe_config->port_clock = 0;
ef1b460d 10193 pipe_config->pixel_multiplier = 1;
ff9a6750 10194
135c81b8 10195 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10196 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10197
7758a113
DV
10198 /* Pass our mode to the connectors and the CRTC to give them a chance to
10199 * adjust it according to limitations or connector properties, and also
10200 * a chance to reject the mode entirely.
47f1c6c9 10201 */
b2784e15 10202 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10203
7758a113
DV
10204 if (&encoder->new_crtc->base != crtc)
10205 continue;
7ae89233 10206
efea6e8e
DV
10207 if (!(encoder->compute_config(encoder, pipe_config))) {
10208 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10209 goto fail;
10210 }
ee7b9f93 10211 }
47f1c6c9 10212
ff9a6750
DV
10213 /* Set default port clock if not overwritten by the encoder. Needs to be
10214 * done afterwards in case the encoder adjusts the mode. */
10215 if (!pipe_config->port_clock)
241bfc38
DL
10216 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10217 * pipe_config->pixel_multiplier;
ff9a6750 10218
a43f6e0f 10219 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10220 if (ret < 0) {
7758a113
DV
10221 DRM_DEBUG_KMS("CRTC fixup failed\n");
10222 goto fail;
ee7b9f93 10223 }
e29c22c0
DV
10224
10225 if (ret == RETRY) {
10226 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10227 ret = -EINVAL;
10228 goto fail;
10229 }
10230
10231 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10232 retry = false;
10233 goto encoder_retry;
10234 }
10235
4e53c2e0
DV
10236 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10237 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10238 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10239
b8cecdf5 10240 return pipe_config;
7758a113 10241fail:
b8cecdf5 10242 kfree(pipe_config);
e29c22c0 10243 return ERR_PTR(ret);
ee7b9f93 10244}
47f1c6c9 10245
e2e1ed41
DV
10246/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10247 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10248static void
10249intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10250 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10251{
10252 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10253 struct drm_device *dev = crtc->dev;
10254 struct intel_encoder *encoder;
10255 struct intel_connector *connector;
10256 struct drm_crtc *tmp_crtc;
79e53945 10257
e2e1ed41 10258 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10259
e2e1ed41
DV
10260 /* Check which crtcs have changed outputs connected to them, these need
10261 * to be part of the prepare_pipes mask. We don't (yet) support global
10262 * modeset across multiple crtcs, so modeset_pipes will only have one
10263 * bit set at most. */
10264 list_for_each_entry(connector, &dev->mode_config.connector_list,
10265 base.head) {
10266 if (connector->base.encoder == &connector->new_encoder->base)
10267 continue;
79e53945 10268
e2e1ed41
DV
10269 if (connector->base.encoder) {
10270 tmp_crtc = connector->base.encoder->crtc;
10271
10272 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10273 }
10274
10275 if (connector->new_encoder)
10276 *prepare_pipes |=
10277 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10278 }
10279
b2784e15 10280 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10281 if (encoder->base.crtc == &encoder->new_crtc->base)
10282 continue;
10283
10284 if (encoder->base.crtc) {
10285 tmp_crtc = encoder->base.crtc;
10286
10287 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10288 }
10289
10290 if (encoder->new_crtc)
10291 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10292 }
10293
7668851f 10294 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10295 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10296 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10297 continue;
7e7d76c3 10298
7668851f 10299 if (!intel_crtc->new_enabled)
e2e1ed41 10300 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10301 else
10302 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10303 }
10304
e2e1ed41
DV
10305
10306 /* set_mode is also used to update properties on life display pipes. */
10307 intel_crtc = to_intel_crtc(crtc);
7668851f 10308 if (intel_crtc->new_enabled)
e2e1ed41
DV
10309 *prepare_pipes |= 1 << intel_crtc->pipe;
10310
b6c5164d
DV
10311 /*
10312 * For simplicity do a full modeset on any pipe where the output routing
10313 * changed. We could be more clever, but that would require us to be
10314 * more careful with calling the relevant encoder->mode_set functions.
10315 */
e2e1ed41
DV
10316 if (*prepare_pipes)
10317 *modeset_pipes = *prepare_pipes;
10318
10319 /* ... and mask these out. */
10320 *modeset_pipes &= ~(*disable_pipes);
10321 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10322
10323 /*
10324 * HACK: We don't (yet) fully support global modesets. intel_set_config
10325 * obies this rule, but the modeset restore mode of
10326 * intel_modeset_setup_hw_state does not.
10327 */
10328 *modeset_pipes &= 1 << intel_crtc->pipe;
10329 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10330
10331 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10332 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10333}
79e53945 10334
ea9d758d 10335static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10336{
ea9d758d 10337 struct drm_encoder *encoder;
f6e5b160 10338 struct drm_device *dev = crtc->dev;
f6e5b160 10339
ea9d758d
DV
10340 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10341 if (encoder->crtc == crtc)
10342 return true;
10343
10344 return false;
10345}
10346
10347static void
10348intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10349{
10350 struct intel_encoder *intel_encoder;
10351 struct intel_crtc *intel_crtc;
10352 struct drm_connector *connector;
10353
b2784e15 10354 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10355 if (!intel_encoder->base.crtc)
10356 continue;
10357
10358 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10359
10360 if (prepare_pipes & (1 << intel_crtc->pipe))
10361 intel_encoder->connectors_active = false;
10362 }
10363
10364 intel_modeset_commit_output_state(dev);
10365
7668851f 10366 /* Double check state. */
d3fcc808 10367 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10368 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10369 WARN_ON(intel_crtc->new_config &&
10370 intel_crtc->new_config != &intel_crtc->config);
10371 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10372 }
10373
10374 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10375 if (!connector->encoder || !connector->encoder->crtc)
10376 continue;
10377
10378 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10379
10380 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10381 struct drm_property *dpms_property =
10382 dev->mode_config.dpms_property;
10383
ea9d758d 10384 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10385 drm_object_property_set_value(&connector->base,
68d34720
DV
10386 dpms_property,
10387 DRM_MODE_DPMS_ON);
ea9d758d
DV
10388
10389 intel_encoder = to_intel_encoder(connector->encoder);
10390 intel_encoder->connectors_active = true;
10391 }
10392 }
10393
10394}
10395
3bd26263 10396static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10397{
3bd26263 10398 int diff;
f1f644dc
JB
10399
10400 if (clock1 == clock2)
10401 return true;
10402
10403 if (!clock1 || !clock2)
10404 return false;
10405
10406 diff = abs(clock1 - clock2);
10407
10408 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10409 return true;
10410
10411 return false;
10412}
10413
25c5b266
DV
10414#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10415 list_for_each_entry((intel_crtc), \
10416 &(dev)->mode_config.crtc_list, \
10417 base.head) \
0973f18f 10418 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10419
0e8ffe1b 10420static bool
2fa2fe9a
DV
10421intel_pipe_config_compare(struct drm_device *dev,
10422 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10423 struct intel_crtc_config *pipe_config)
10424{
66e985c0
DV
10425#define PIPE_CONF_CHECK_X(name) \
10426 if (current_config->name != pipe_config->name) { \
10427 DRM_ERROR("mismatch in " #name " " \
10428 "(expected 0x%08x, found 0x%08x)\n", \
10429 current_config->name, \
10430 pipe_config->name); \
10431 return false; \
10432 }
10433
08a24034
DV
10434#define PIPE_CONF_CHECK_I(name) \
10435 if (current_config->name != pipe_config->name) { \
10436 DRM_ERROR("mismatch in " #name " " \
10437 "(expected %i, found %i)\n", \
10438 current_config->name, \
10439 pipe_config->name); \
10440 return false; \
88adfff1
DV
10441 }
10442
b95af8be
VK
10443/* This is required for BDW+ where there is only one set of registers for
10444 * switching between high and low RR.
10445 * This macro can be used whenever a comparison has to be made between one
10446 * hw state and multiple sw state variables.
10447 */
10448#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10449 if ((current_config->name != pipe_config->name) && \
10450 (current_config->alt_name != pipe_config->name)) { \
10451 DRM_ERROR("mismatch in " #name " " \
10452 "(expected %i or %i, found %i)\n", \
10453 current_config->name, \
10454 current_config->alt_name, \
10455 pipe_config->name); \
10456 return false; \
10457 }
10458
1bd1bd80
DV
10459#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10460 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10461 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10462 "(expected %i, found %i)\n", \
10463 current_config->name & (mask), \
10464 pipe_config->name & (mask)); \
10465 return false; \
10466 }
10467
5e550656
VS
10468#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10469 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10470 DRM_ERROR("mismatch in " #name " " \
10471 "(expected %i, found %i)\n", \
10472 current_config->name, \
10473 pipe_config->name); \
10474 return false; \
10475 }
10476
bb760063
DV
10477#define PIPE_CONF_QUIRK(quirk) \
10478 ((current_config->quirks | pipe_config->quirks) & (quirk))
10479
eccb140b
DV
10480 PIPE_CONF_CHECK_I(cpu_transcoder);
10481
08a24034
DV
10482 PIPE_CONF_CHECK_I(has_pch_encoder);
10483 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10484 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10485 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10486 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10487 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10488 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10489
eb14cb74 10490 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10491
10492 if (INTEL_INFO(dev)->gen < 8) {
10493 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10494 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10495 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10496 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10497 PIPE_CONF_CHECK_I(dp_m_n.tu);
10498
10499 if (current_config->has_drrs) {
10500 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10501 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10502 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10503 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10504 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10505 }
10506 } else {
10507 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10508 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10509 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10510 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10511 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10512 }
eb14cb74 10513
1bd1bd80
DV
10514 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10515 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10516 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10517 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10518 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10519 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10520
10521 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10522 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10523 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10524 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10525 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10526 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10527
c93f54cf 10528 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10529 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10530 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10531 IS_VALLEYVIEW(dev))
10532 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10533
9ed109a7
DV
10534 PIPE_CONF_CHECK_I(has_audio);
10535
1bd1bd80
DV
10536 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10537 DRM_MODE_FLAG_INTERLACE);
10538
bb760063
DV
10539 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10540 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10541 DRM_MODE_FLAG_PHSYNC);
10542 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10543 DRM_MODE_FLAG_NHSYNC);
10544 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10545 DRM_MODE_FLAG_PVSYNC);
10546 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10547 DRM_MODE_FLAG_NVSYNC);
10548 }
045ac3b5 10549
37327abd
VS
10550 PIPE_CONF_CHECK_I(pipe_src_w);
10551 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10552
9953599b
DV
10553 /*
10554 * FIXME: BIOS likes to set up a cloned config with lvds+external
10555 * screen. Since we don't yet re-compute the pipe config when moving
10556 * just the lvds port away to another pipe the sw tracking won't match.
10557 *
10558 * Proper atomic modesets with recomputed global state will fix this.
10559 * Until then just don't check gmch state for inherited modes.
10560 */
10561 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10562 PIPE_CONF_CHECK_I(gmch_pfit.control);
10563 /* pfit ratios are autocomputed by the hw on gen4+ */
10564 if (INTEL_INFO(dev)->gen < 4)
10565 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10566 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10567 }
10568
fd4daa9c
CW
10569 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10570 if (current_config->pch_pfit.enabled) {
10571 PIPE_CONF_CHECK_I(pch_pfit.pos);
10572 PIPE_CONF_CHECK_I(pch_pfit.size);
10573 }
2fa2fe9a 10574
e59150dc
JB
10575 /* BDW+ don't expose a synchronous way to read the state */
10576 if (IS_HASWELL(dev))
10577 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10578
282740f7
VS
10579 PIPE_CONF_CHECK_I(double_wide);
10580
26804afd
DV
10581 PIPE_CONF_CHECK_X(ddi_pll_sel);
10582
c0d43d62 10583 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10584 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10585 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10586 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10587 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10588 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10589
42571aef
VS
10590 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10591 PIPE_CONF_CHECK_I(pipe_bpp);
10592
a9a7e98a
JB
10593 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10594 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10595
66e985c0 10596#undef PIPE_CONF_CHECK_X
08a24034 10597#undef PIPE_CONF_CHECK_I
b95af8be 10598#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10599#undef PIPE_CONF_CHECK_FLAGS
5e550656 10600#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10601#undef PIPE_CONF_QUIRK
88adfff1 10602
0e8ffe1b
DV
10603 return true;
10604}
10605
91d1b4bd
DV
10606static void
10607check_connector_state(struct drm_device *dev)
8af6cf88 10608{
8af6cf88
DV
10609 struct intel_connector *connector;
10610
10611 list_for_each_entry(connector, &dev->mode_config.connector_list,
10612 base.head) {
10613 /* This also checks the encoder/connector hw state with the
10614 * ->get_hw_state callbacks. */
10615 intel_connector_check_state(connector);
10616
10617 WARN(&connector->new_encoder->base != connector->base.encoder,
10618 "connector's staged encoder doesn't match current encoder\n");
10619 }
91d1b4bd
DV
10620}
10621
10622static void
10623check_encoder_state(struct drm_device *dev)
10624{
10625 struct intel_encoder *encoder;
10626 struct intel_connector *connector;
8af6cf88 10627
b2784e15 10628 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10629 bool enabled = false;
10630 bool active = false;
10631 enum pipe pipe, tracked_pipe;
10632
10633 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10634 encoder->base.base.id,
8e329a03 10635 encoder->base.name);
8af6cf88
DV
10636
10637 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10638 "encoder's stage crtc doesn't match current crtc\n");
10639 WARN(encoder->connectors_active && !encoder->base.crtc,
10640 "encoder's active_connectors set, but no crtc\n");
10641
10642 list_for_each_entry(connector, &dev->mode_config.connector_list,
10643 base.head) {
10644 if (connector->base.encoder != &encoder->base)
10645 continue;
10646 enabled = true;
10647 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10648 active = true;
10649 }
0e32b39c
DA
10650 /*
10651 * for MST connectors if we unplug the connector is gone
10652 * away but the encoder is still connected to a crtc
10653 * until a modeset happens in response to the hotplug.
10654 */
10655 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10656 continue;
10657
8af6cf88
DV
10658 WARN(!!encoder->base.crtc != enabled,
10659 "encoder's enabled state mismatch "
10660 "(expected %i, found %i)\n",
10661 !!encoder->base.crtc, enabled);
10662 WARN(active && !encoder->base.crtc,
10663 "active encoder with no crtc\n");
10664
10665 WARN(encoder->connectors_active != active,
10666 "encoder's computed active state doesn't match tracked active state "
10667 "(expected %i, found %i)\n", active, encoder->connectors_active);
10668
10669 active = encoder->get_hw_state(encoder, &pipe);
10670 WARN(active != encoder->connectors_active,
10671 "encoder's hw state doesn't match sw tracking "
10672 "(expected %i, found %i)\n",
10673 encoder->connectors_active, active);
10674
10675 if (!encoder->base.crtc)
10676 continue;
10677
10678 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10679 WARN(active && pipe != tracked_pipe,
10680 "active encoder's pipe doesn't match"
10681 "(expected %i, found %i)\n",
10682 tracked_pipe, pipe);
10683
10684 }
91d1b4bd
DV
10685}
10686
10687static void
10688check_crtc_state(struct drm_device *dev)
10689{
fbee40df 10690 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10691 struct intel_crtc *crtc;
10692 struct intel_encoder *encoder;
10693 struct intel_crtc_config pipe_config;
8af6cf88 10694
d3fcc808 10695 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10696 bool enabled = false;
10697 bool active = false;
10698
045ac3b5
JB
10699 memset(&pipe_config, 0, sizeof(pipe_config));
10700
8af6cf88
DV
10701 DRM_DEBUG_KMS("[CRTC:%d]\n",
10702 crtc->base.base.id);
10703
10704 WARN(crtc->active && !crtc->base.enabled,
10705 "active crtc, but not enabled in sw tracking\n");
10706
b2784e15 10707 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10708 if (encoder->base.crtc != &crtc->base)
10709 continue;
10710 enabled = true;
10711 if (encoder->connectors_active)
10712 active = true;
10713 }
6c49f241 10714
8af6cf88
DV
10715 WARN(active != crtc->active,
10716 "crtc's computed active state doesn't match tracked active state "
10717 "(expected %i, found %i)\n", active, crtc->active);
10718 WARN(enabled != crtc->base.enabled,
10719 "crtc's computed enabled state doesn't match tracked enabled state "
10720 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10721
0e8ffe1b
DV
10722 active = dev_priv->display.get_pipe_config(crtc,
10723 &pipe_config);
d62cf62a
DV
10724
10725 /* hw state is inconsistent with the pipe A quirk */
10726 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10727 active = crtc->active;
10728
b2784e15 10729 for_each_intel_encoder(dev, encoder) {
3eaba51c 10730 enum pipe pipe;
6c49f241
DV
10731 if (encoder->base.crtc != &crtc->base)
10732 continue;
1d37b689 10733 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10734 encoder->get_config(encoder, &pipe_config);
10735 }
10736
0e8ffe1b
DV
10737 WARN(crtc->active != active,
10738 "crtc active state doesn't match with hw state "
10739 "(expected %i, found %i)\n", crtc->active, active);
10740
c0b03411
DV
10741 if (active &&
10742 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10743 WARN(1, "pipe state doesn't match!\n");
10744 intel_dump_pipe_config(crtc, &pipe_config,
10745 "[hw state]");
10746 intel_dump_pipe_config(crtc, &crtc->config,
10747 "[sw state]");
10748 }
8af6cf88
DV
10749 }
10750}
10751
91d1b4bd
DV
10752static void
10753check_shared_dpll_state(struct drm_device *dev)
10754{
fbee40df 10755 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10756 struct intel_crtc *crtc;
10757 struct intel_dpll_hw_state dpll_hw_state;
10758 int i;
5358901f
DV
10759
10760 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10761 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10762 int enabled_crtcs = 0, active_crtcs = 0;
10763 bool active;
10764
10765 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10766
10767 DRM_DEBUG_KMS("%s\n", pll->name);
10768
10769 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10770
10771 WARN(pll->active > pll->refcount,
10772 "more active pll users than references: %i vs %i\n",
10773 pll->active, pll->refcount);
10774 WARN(pll->active && !pll->on,
10775 "pll in active use but not on in sw tracking\n");
35c95375
DV
10776 WARN(pll->on && !pll->active,
10777 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10778 WARN(pll->on != active,
10779 "pll on state mismatch (expected %i, found %i)\n",
10780 pll->on, active);
10781
d3fcc808 10782 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10783 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10784 enabled_crtcs++;
10785 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10786 active_crtcs++;
10787 }
10788 WARN(pll->active != active_crtcs,
10789 "pll active crtcs mismatch (expected %i, found %i)\n",
10790 pll->active, active_crtcs);
10791 WARN(pll->refcount != enabled_crtcs,
10792 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10793 pll->refcount, enabled_crtcs);
66e985c0
DV
10794
10795 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10796 sizeof(dpll_hw_state)),
10797 "pll hw state mismatch\n");
5358901f 10798 }
8af6cf88
DV
10799}
10800
91d1b4bd
DV
10801void
10802intel_modeset_check_state(struct drm_device *dev)
10803{
10804 check_connector_state(dev);
10805 check_encoder_state(dev);
10806 check_crtc_state(dev);
10807 check_shared_dpll_state(dev);
10808}
10809
18442d08
VS
10810void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10811 int dotclock)
10812{
10813 /*
10814 * FDI already provided one idea for the dotclock.
10815 * Yell if the encoder disagrees.
10816 */
241bfc38 10817 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10818 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10819 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10820}
10821
80715b2f
VS
10822static void update_scanline_offset(struct intel_crtc *crtc)
10823{
10824 struct drm_device *dev = crtc->base.dev;
10825
10826 /*
10827 * The scanline counter increments at the leading edge of hsync.
10828 *
10829 * On most platforms it starts counting from vtotal-1 on the
10830 * first active line. That means the scanline counter value is
10831 * always one less than what we would expect. Ie. just after
10832 * start of vblank, which also occurs at start of hsync (on the
10833 * last active line), the scanline counter will read vblank_start-1.
10834 *
10835 * On gen2 the scanline counter starts counting from 1 instead
10836 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10837 * to keep the value positive), instead of adding one.
10838 *
10839 * On HSW+ the behaviour of the scanline counter depends on the output
10840 * type. For DP ports it behaves like most other platforms, but on HDMI
10841 * there's an extra 1 line difference. So we need to add two instead of
10842 * one to the value.
10843 */
10844 if (IS_GEN2(dev)) {
10845 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10846 int vtotal;
10847
10848 vtotal = mode->crtc_vtotal;
10849 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10850 vtotal /= 2;
10851
10852 crtc->scanline_offset = vtotal - 1;
10853 } else if (HAS_DDI(dev) &&
10854 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10855 crtc->scanline_offset = 2;
10856 } else
10857 crtc->scanline_offset = 1;
10858}
10859
f30da187
DV
10860static int __intel_set_mode(struct drm_crtc *crtc,
10861 struct drm_display_mode *mode,
10862 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10863{
10864 struct drm_device *dev = crtc->dev;
fbee40df 10865 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10866 struct drm_display_mode *saved_mode;
b8cecdf5 10867 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10868 struct intel_crtc *intel_crtc;
10869 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10870 int ret = 0;
a6778b3c 10871
4b4b9238 10872 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10873 if (!saved_mode)
10874 return -ENOMEM;
a6778b3c 10875
e2e1ed41 10876 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10877 &prepare_pipes, &disable_pipes);
10878
3ac18232 10879 *saved_mode = crtc->mode;
a6778b3c 10880
25c5b266
DV
10881 /* Hack: Because we don't (yet) support global modeset on multiple
10882 * crtcs, we don't keep track of the new mode for more than one crtc.
10883 * Hence simply check whether any bit is set in modeset_pipes in all the
10884 * pieces of code that are not yet converted to deal with mutliple crtcs
10885 * changing their mode at the same time. */
25c5b266 10886 if (modeset_pipes) {
4e53c2e0 10887 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10888 if (IS_ERR(pipe_config)) {
10889 ret = PTR_ERR(pipe_config);
10890 pipe_config = NULL;
10891
3ac18232 10892 goto out;
25c5b266 10893 }
c0b03411
DV
10894 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10895 "[modeset]");
50741abc 10896 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10897 }
a6778b3c 10898
30a970c6
JB
10899 /*
10900 * See if the config requires any additional preparation, e.g.
10901 * to adjust global state with pipes off. We need to do this
10902 * here so we can get the modeset_pipe updated config for the new
10903 * mode set on this crtc. For other crtcs we need to use the
10904 * adjusted_mode bits in the crtc directly.
10905 */
c164f833 10906 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10907 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10908
c164f833
VS
10909 /* may have added more to prepare_pipes than we should */
10910 prepare_pipes &= ~disable_pipes;
10911 }
10912
460da916
DV
10913 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10914 intel_crtc_disable(&intel_crtc->base);
10915
ea9d758d
DV
10916 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10917 if (intel_crtc->base.enabled)
10918 dev_priv->display.crtc_disable(&intel_crtc->base);
10919 }
a6778b3c 10920
6c4c86f5
DV
10921 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10922 * to set it here already despite that we pass it down the callchain.
f6e5b160 10923 */
b8cecdf5 10924 if (modeset_pipes) {
25c5b266 10925 crtc->mode = *mode;
b8cecdf5
DV
10926 /* mode_set/enable/disable functions rely on a correct pipe
10927 * config. */
10928 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10929 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10930
10931 /*
10932 * Calculate and store various constants which
10933 * are later needed by vblank and swap-completion
10934 * timestamping. They are derived from true hwmode.
10935 */
10936 drm_calc_timestamping_constants(crtc,
10937 &pipe_config->adjusted_mode);
b8cecdf5 10938 }
7758a113 10939
ea9d758d
DV
10940 /* Only after disabling all output pipelines that will be changed can we
10941 * update the the output configuration. */
10942 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10943
47fab737
DV
10944 if (dev_priv->display.modeset_global_resources)
10945 dev_priv->display.modeset_global_resources(dev);
10946
a6778b3c
DV
10947 /* Set up the DPLL and any encoders state that needs to adjust or depend
10948 * on the DPLL.
f6e5b160 10949 */
25c5b266 10950 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10951 struct drm_framebuffer *old_fb = crtc->primary->fb;
10952 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10953 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10954
10955 mutex_lock(&dev->struct_mutex);
10956 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10957 obj,
4c10794f
DV
10958 NULL);
10959 if (ret != 0) {
10960 DRM_ERROR("pin & fence failed\n");
10961 mutex_unlock(&dev->struct_mutex);
10962 goto done;
10963 }
2ff8fde1 10964 if (old_fb)
a071fa00 10965 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10966 i915_gem_track_fb(old_obj, obj,
10967 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10968 mutex_unlock(&dev->struct_mutex);
10969
10970 crtc->primary->fb = fb;
10971 crtc->x = x;
10972 crtc->y = y;
10973
4271b753
DV
10974 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10975 x, y, fb);
c0c36b94
CW
10976 if (ret)
10977 goto done;
a6778b3c
DV
10978 }
10979
10980 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10981 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10982 update_scanline_offset(intel_crtc);
10983
25c5b266 10984 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10985 }
a6778b3c 10986
a6778b3c
DV
10987 /* FIXME: add subpixel order */
10988done:
4b4b9238 10989 if (ret && crtc->enabled)
3ac18232 10990 crtc->mode = *saved_mode;
a6778b3c 10991
3ac18232 10992out:
b8cecdf5 10993 kfree(pipe_config);
3ac18232 10994 kfree(saved_mode);
a6778b3c 10995 return ret;
f6e5b160
CW
10996}
10997
e7457a9a
DL
10998static int intel_set_mode(struct drm_crtc *crtc,
10999 struct drm_display_mode *mode,
11000 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11001{
11002 int ret;
11003
11004 ret = __intel_set_mode(crtc, mode, x, y, fb);
11005
11006 if (ret == 0)
11007 intel_modeset_check_state(crtc->dev);
11008
11009 return ret;
11010}
11011
c0c36b94
CW
11012void intel_crtc_restore_mode(struct drm_crtc *crtc)
11013{
f4510a27 11014 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11015}
11016
25c5b266
DV
11017#undef for_each_intel_crtc_masked
11018
d9e55608
DV
11019static void intel_set_config_free(struct intel_set_config *config)
11020{
11021 if (!config)
11022 return;
11023
1aa4b628
DV
11024 kfree(config->save_connector_encoders);
11025 kfree(config->save_encoder_crtcs);
7668851f 11026 kfree(config->save_crtc_enabled);
d9e55608
DV
11027 kfree(config);
11028}
11029
85f9eb71
DV
11030static int intel_set_config_save_state(struct drm_device *dev,
11031 struct intel_set_config *config)
11032{
7668851f 11033 struct drm_crtc *crtc;
85f9eb71
DV
11034 struct drm_encoder *encoder;
11035 struct drm_connector *connector;
11036 int count;
11037
7668851f
VS
11038 config->save_crtc_enabled =
11039 kcalloc(dev->mode_config.num_crtc,
11040 sizeof(bool), GFP_KERNEL);
11041 if (!config->save_crtc_enabled)
11042 return -ENOMEM;
11043
1aa4b628
DV
11044 config->save_encoder_crtcs =
11045 kcalloc(dev->mode_config.num_encoder,
11046 sizeof(struct drm_crtc *), GFP_KERNEL);
11047 if (!config->save_encoder_crtcs)
85f9eb71
DV
11048 return -ENOMEM;
11049
1aa4b628
DV
11050 config->save_connector_encoders =
11051 kcalloc(dev->mode_config.num_connector,
11052 sizeof(struct drm_encoder *), GFP_KERNEL);
11053 if (!config->save_connector_encoders)
85f9eb71
DV
11054 return -ENOMEM;
11055
11056 /* Copy data. Note that driver private data is not affected.
11057 * Should anything bad happen only the expected state is
11058 * restored, not the drivers personal bookkeeping.
11059 */
7668851f 11060 count = 0;
70e1e0ec 11061 for_each_crtc(dev, crtc) {
7668851f
VS
11062 config->save_crtc_enabled[count++] = crtc->enabled;
11063 }
11064
85f9eb71
DV
11065 count = 0;
11066 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11067 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11068 }
11069
11070 count = 0;
11071 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11072 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11073 }
11074
11075 return 0;
11076}
11077
11078static void intel_set_config_restore_state(struct drm_device *dev,
11079 struct intel_set_config *config)
11080{
7668851f 11081 struct intel_crtc *crtc;
9a935856
DV
11082 struct intel_encoder *encoder;
11083 struct intel_connector *connector;
85f9eb71
DV
11084 int count;
11085
7668851f 11086 count = 0;
d3fcc808 11087 for_each_intel_crtc(dev, crtc) {
7668851f 11088 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11089
11090 if (crtc->new_enabled)
11091 crtc->new_config = &crtc->config;
11092 else
11093 crtc->new_config = NULL;
7668851f
VS
11094 }
11095
85f9eb71 11096 count = 0;
b2784e15 11097 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11098 encoder->new_crtc =
11099 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11100 }
11101
11102 count = 0;
9a935856
DV
11103 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11104 connector->new_encoder =
11105 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11106 }
11107}
11108
e3de42b6 11109static bool
2e57f47d 11110is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11111{
11112 int i;
11113
2e57f47d
CW
11114 if (set->num_connectors == 0)
11115 return false;
11116
11117 if (WARN_ON(set->connectors == NULL))
11118 return false;
11119
11120 for (i = 0; i < set->num_connectors; i++)
11121 if (set->connectors[i]->encoder &&
11122 set->connectors[i]->encoder->crtc == set->crtc &&
11123 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11124 return true;
11125
11126 return false;
11127}
11128
5e2b584e
DV
11129static void
11130intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11131 struct intel_set_config *config)
11132{
11133
11134 /* We should be able to check here if the fb has the same properties
11135 * and then just flip_or_move it */
2e57f47d
CW
11136 if (is_crtc_connector_off(set)) {
11137 config->mode_changed = true;
f4510a27 11138 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11139 /*
11140 * If we have no fb, we can only flip as long as the crtc is
11141 * active, otherwise we need a full mode set. The crtc may
11142 * be active if we've only disabled the primary plane, or
11143 * in fastboot situations.
11144 */
f4510a27 11145 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11146 struct intel_crtc *intel_crtc =
11147 to_intel_crtc(set->crtc);
11148
3b150f08 11149 if (intel_crtc->active) {
319d9827
JB
11150 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11151 config->fb_changed = true;
11152 } else {
11153 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11154 config->mode_changed = true;
11155 }
5e2b584e
DV
11156 } else if (set->fb == NULL) {
11157 config->mode_changed = true;
72f4901e 11158 } else if (set->fb->pixel_format !=
f4510a27 11159 set->crtc->primary->fb->pixel_format) {
5e2b584e 11160 config->mode_changed = true;
e3de42b6 11161 } else {
5e2b584e 11162 config->fb_changed = true;
e3de42b6 11163 }
5e2b584e
DV
11164 }
11165
835c5873 11166 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11167 config->fb_changed = true;
11168
11169 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11170 DRM_DEBUG_KMS("modes are different, full mode set\n");
11171 drm_mode_debug_printmodeline(&set->crtc->mode);
11172 drm_mode_debug_printmodeline(set->mode);
11173 config->mode_changed = true;
11174 }
a1d95703
CW
11175
11176 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11177 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11178}
11179
2e431051 11180static int
9a935856
DV
11181intel_modeset_stage_output_state(struct drm_device *dev,
11182 struct drm_mode_set *set,
11183 struct intel_set_config *config)
50f56119 11184{
9a935856
DV
11185 struct intel_connector *connector;
11186 struct intel_encoder *encoder;
7668851f 11187 struct intel_crtc *crtc;
f3f08572 11188 int ro;
50f56119 11189
9abdda74 11190 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11191 * of connectors. For paranoia, double-check this. */
11192 WARN_ON(!set->fb && (set->num_connectors != 0));
11193 WARN_ON(set->fb && (set->num_connectors == 0));
11194
9a935856
DV
11195 list_for_each_entry(connector, &dev->mode_config.connector_list,
11196 base.head) {
11197 /* Otherwise traverse passed in connector list and get encoders
11198 * for them. */
50f56119 11199 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11200 if (set->connectors[ro] == &connector->base) {
0e32b39c 11201 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11202 break;
11203 }
11204 }
11205
9a935856
DV
11206 /* If we disable the crtc, disable all its connectors. Also, if
11207 * the connector is on the changing crtc but not on the new
11208 * connector list, disable it. */
11209 if ((!set->fb || ro == set->num_connectors) &&
11210 connector->base.encoder &&
11211 connector->base.encoder->crtc == set->crtc) {
11212 connector->new_encoder = NULL;
11213
11214 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11215 connector->base.base.id,
c23cc417 11216 connector->base.name);
9a935856
DV
11217 }
11218
11219
11220 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11221 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11222 config->mode_changed = true;
50f56119
DV
11223 }
11224 }
9a935856 11225 /* connector->new_encoder is now updated for all connectors. */
50f56119 11226
9a935856 11227 /* Update crtc of enabled connectors. */
9a935856
DV
11228 list_for_each_entry(connector, &dev->mode_config.connector_list,
11229 base.head) {
7668851f
VS
11230 struct drm_crtc *new_crtc;
11231
9a935856 11232 if (!connector->new_encoder)
50f56119
DV
11233 continue;
11234
9a935856 11235 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11236
11237 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11238 if (set->connectors[ro] == &connector->base)
50f56119
DV
11239 new_crtc = set->crtc;
11240 }
11241
11242 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11243 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11244 new_crtc)) {
5e2b584e 11245 return -EINVAL;
50f56119 11246 }
0e32b39c 11247 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11248
11249 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11250 connector->base.base.id,
c23cc417 11251 connector->base.name,
9a935856
DV
11252 new_crtc->base.id);
11253 }
11254
11255 /* Check for any encoders that needs to be disabled. */
b2784e15 11256 for_each_intel_encoder(dev, encoder) {
5a65f358 11257 int num_connectors = 0;
9a935856
DV
11258 list_for_each_entry(connector,
11259 &dev->mode_config.connector_list,
11260 base.head) {
11261 if (connector->new_encoder == encoder) {
11262 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11263 num_connectors++;
9a935856
DV
11264 }
11265 }
5a65f358
PZ
11266
11267 if (num_connectors == 0)
11268 encoder->new_crtc = NULL;
11269 else if (num_connectors > 1)
11270 return -EINVAL;
11271
9a935856
DV
11272 /* Only now check for crtc changes so we don't miss encoders
11273 * that will be disabled. */
11274 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11275 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11276 config->mode_changed = true;
50f56119
DV
11277 }
11278 }
9a935856 11279 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11280 list_for_each_entry(connector, &dev->mode_config.connector_list,
11281 base.head) {
11282 if (connector->new_encoder)
11283 if (connector->new_encoder != connector->encoder)
11284 connector->encoder = connector->new_encoder;
11285 }
d3fcc808 11286 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11287 crtc->new_enabled = false;
11288
b2784e15 11289 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11290 if (encoder->new_crtc == crtc) {
11291 crtc->new_enabled = true;
11292 break;
11293 }
11294 }
11295
11296 if (crtc->new_enabled != crtc->base.enabled) {
11297 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11298 crtc->new_enabled ? "en" : "dis");
11299 config->mode_changed = true;
11300 }
7bd0a8e7
VS
11301
11302 if (crtc->new_enabled)
11303 crtc->new_config = &crtc->config;
11304 else
11305 crtc->new_config = NULL;
7668851f
VS
11306 }
11307
2e431051
DV
11308 return 0;
11309}
11310
7d00a1f5
VS
11311static void disable_crtc_nofb(struct intel_crtc *crtc)
11312{
11313 struct drm_device *dev = crtc->base.dev;
11314 struct intel_encoder *encoder;
11315 struct intel_connector *connector;
11316
11317 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11318 pipe_name(crtc->pipe));
11319
11320 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11321 if (connector->new_encoder &&
11322 connector->new_encoder->new_crtc == crtc)
11323 connector->new_encoder = NULL;
11324 }
11325
b2784e15 11326 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11327 if (encoder->new_crtc == crtc)
11328 encoder->new_crtc = NULL;
11329 }
11330
11331 crtc->new_enabled = false;
7bd0a8e7 11332 crtc->new_config = NULL;
7d00a1f5
VS
11333}
11334
2e431051
DV
11335static int intel_crtc_set_config(struct drm_mode_set *set)
11336{
11337 struct drm_device *dev;
2e431051
DV
11338 struct drm_mode_set save_set;
11339 struct intel_set_config *config;
11340 int ret;
2e431051 11341
8d3e375e
DV
11342 BUG_ON(!set);
11343 BUG_ON(!set->crtc);
11344 BUG_ON(!set->crtc->helper_private);
2e431051 11345
7e53f3a4
DV
11346 /* Enforce sane interface api - has been abused by the fb helper. */
11347 BUG_ON(!set->mode && set->fb);
11348 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11349
2e431051
DV
11350 if (set->fb) {
11351 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11352 set->crtc->base.id, set->fb->base.id,
11353 (int)set->num_connectors, set->x, set->y);
11354 } else {
11355 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11356 }
11357
11358 dev = set->crtc->dev;
11359
11360 ret = -ENOMEM;
11361 config = kzalloc(sizeof(*config), GFP_KERNEL);
11362 if (!config)
11363 goto out_config;
11364
11365 ret = intel_set_config_save_state(dev, config);
11366 if (ret)
11367 goto out_config;
11368
11369 save_set.crtc = set->crtc;
11370 save_set.mode = &set->crtc->mode;
11371 save_set.x = set->crtc->x;
11372 save_set.y = set->crtc->y;
f4510a27 11373 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11374
11375 /* Compute whether we need a full modeset, only an fb base update or no
11376 * change at all. In the future we might also check whether only the
11377 * mode changed, e.g. for LVDS where we only change the panel fitter in
11378 * such cases. */
11379 intel_set_config_compute_mode_changes(set, config);
11380
9a935856 11381 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11382 if (ret)
11383 goto fail;
11384
5e2b584e 11385 if (config->mode_changed) {
c0c36b94
CW
11386 ret = intel_set_mode(set->crtc, set->mode,
11387 set->x, set->y, set->fb);
5e2b584e 11388 } else if (config->fb_changed) {
3b150f08
MR
11389 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11390
4878cae2
VS
11391 intel_crtc_wait_for_pending_flips(set->crtc);
11392
4f660f49 11393 ret = intel_pipe_set_base(set->crtc,
94352cf9 11394 set->x, set->y, set->fb);
3b150f08
MR
11395
11396 /*
11397 * We need to make sure the primary plane is re-enabled if it
11398 * has previously been turned off.
11399 */
11400 if (!intel_crtc->primary_enabled && ret == 0) {
11401 WARN_ON(!intel_crtc->active);
fdd508a6 11402 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11403 }
11404
7ca51a3a
JB
11405 /*
11406 * In the fastboot case this may be our only check of the
11407 * state after boot. It would be better to only do it on
11408 * the first update, but we don't have a nice way of doing that
11409 * (and really, set_config isn't used much for high freq page
11410 * flipping, so increasing its cost here shouldn't be a big
11411 * deal).
11412 */
d330a953 11413 if (i915.fastboot && ret == 0)
7ca51a3a 11414 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11415 }
11416
2d05eae1 11417 if (ret) {
bf67dfeb
DV
11418 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11419 set->crtc->base.id, ret);
50f56119 11420fail:
2d05eae1 11421 intel_set_config_restore_state(dev, config);
50f56119 11422
7d00a1f5
VS
11423 /*
11424 * HACK: if the pipe was on, but we didn't have a framebuffer,
11425 * force the pipe off to avoid oopsing in the modeset code
11426 * due to fb==NULL. This should only happen during boot since
11427 * we don't yet reconstruct the FB from the hardware state.
11428 */
11429 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11430 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11431
2d05eae1
CW
11432 /* Try to restore the config */
11433 if (config->mode_changed &&
11434 intel_set_mode(save_set.crtc, save_set.mode,
11435 save_set.x, save_set.y, save_set.fb))
11436 DRM_ERROR("failed to restore config after modeset failure\n");
11437 }
50f56119 11438
d9e55608
DV
11439out_config:
11440 intel_set_config_free(config);
50f56119
DV
11441 return ret;
11442}
f6e5b160
CW
11443
11444static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11445 .gamma_set = intel_crtc_gamma_set,
50f56119 11446 .set_config = intel_crtc_set_config,
f6e5b160
CW
11447 .destroy = intel_crtc_destroy,
11448 .page_flip = intel_crtc_page_flip,
11449};
11450
5358901f
DV
11451static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11452 struct intel_shared_dpll *pll,
11453 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11454{
5358901f 11455 uint32_t val;
ee7b9f93 11456
bd2bb1b9
PZ
11457 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11458 return false;
11459
5358901f 11460 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11461 hw_state->dpll = val;
11462 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11463 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11464
11465 return val & DPLL_VCO_ENABLE;
11466}
11467
15bdd4cf
DV
11468static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11469 struct intel_shared_dpll *pll)
11470{
11471 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11472 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11473}
11474
e7b903d2
DV
11475static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11476 struct intel_shared_dpll *pll)
11477{
e7b903d2 11478 /* PCH refclock must be enabled first */
89eff4be 11479 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11480
15bdd4cf
DV
11481 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11482
11483 /* Wait for the clocks to stabilize. */
11484 POSTING_READ(PCH_DPLL(pll->id));
11485 udelay(150);
11486
11487 /* The pixel multiplier can only be updated once the
11488 * DPLL is enabled and the clocks are stable.
11489 *
11490 * So write it again.
11491 */
11492 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11493 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11494 udelay(200);
11495}
11496
11497static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11498 struct intel_shared_dpll *pll)
11499{
11500 struct drm_device *dev = dev_priv->dev;
11501 struct intel_crtc *crtc;
e7b903d2
DV
11502
11503 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11504 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11505 if (intel_crtc_to_shared_dpll(crtc) == pll)
11506 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11507 }
11508
15bdd4cf
DV
11509 I915_WRITE(PCH_DPLL(pll->id), 0);
11510 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11511 udelay(200);
11512}
11513
46edb027
DV
11514static char *ibx_pch_dpll_names[] = {
11515 "PCH DPLL A",
11516 "PCH DPLL B",
11517};
11518
7c74ade1 11519static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11520{
e7b903d2 11521 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11522 int i;
11523
7c74ade1 11524 dev_priv->num_shared_dpll = 2;
ee7b9f93 11525
e72f9fbf 11526 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11527 dev_priv->shared_dplls[i].id = i;
11528 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11529 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11530 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11531 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11532 dev_priv->shared_dplls[i].get_hw_state =
11533 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11534 }
11535}
11536
7c74ade1
DV
11537static void intel_shared_dpll_init(struct drm_device *dev)
11538{
e7b903d2 11539 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11540
9cd86933
DV
11541 if (HAS_DDI(dev))
11542 intel_ddi_pll_init(dev);
11543 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11544 ibx_pch_dpll_init(dev);
11545 else
11546 dev_priv->num_shared_dpll = 0;
11547
11548 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11549}
11550
465c120c
MR
11551static int
11552intel_primary_plane_disable(struct drm_plane *plane)
11553{
11554 struct drm_device *dev = plane->dev;
465c120c
MR
11555 struct intel_crtc *intel_crtc;
11556
11557 if (!plane->fb)
11558 return 0;
11559
11560 BUG_ON(!plane->crtc);
11561
11562 intel_crtc = to_intel_crtc(plane->crtc);
11563
11564 /*
11565 * Even though we checked plane->fb above, it's still possible that
11566 * the primary plane has been implicitly disabled because the crtc
11567 * coordinates given weren't visible, or because we detected
11568 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11569 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11570 * In either case, we need to unpin the FB and let the fb pointer get
11571 * updated, but otherwise we don't need to touch the hardware.
11572 */
11573 if (!intel_crtc->primary_enabled)
11574 goto disable_unpin;
11575
11576 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11577 intel_disable_primary_hw_plane(plane, plane->crtc);
11578
465c120c 11579disable_unpin:
4c34574f 11580 mutex_lock(&dev->struct_mutex);
2ff8fde1 11581 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11582 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11583 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11584 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11585 plane->fb = NULL;
11586
11587 return 0;
11588}
11589
11590static int
11591intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11592 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11593 unsigned int crtc_w, unsigned int crtc_h,
11594 uint32_t src_x, uint32_t src_y,
11595 uint32_t src_w, uint32_t src_h)
11596{
11597 struct drm_device *dev = crtc->dev;
48404c1e 11598 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11600 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11601 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11602 struct drm_rect dest = {
11603 /* integer pixels */
11604 .x1 = crtc_x,
11605 .y1 = crtc_y,
11606 .x2 = crtc_x + crtc_w,
11607 .y2 = crtc_y + crtc_h,
11608 };
11609 struct drm_rect src = {
11610 /* 16.16 fixed point */
11611 .x1 = src_x,
11612 .y1 = src_y,
11613 .x2 = src_x + src_w,
11614 .y2 = src_y + src_h,
11615 };
11616 const struct drm_rect clip = {
11617 /* integer pixels */
11618 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11619 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11620 };
ce54d85a
SJ
11621 const struct {
11622 int crtc_x, crtc_y;
11623 unsigned int crtc_w, crtc_h;
11624 uint32_t src_x, src_y, src_w, src_h;
11625 } orig = {
11626 .crtc_x = crtc_x,
11627 .crtc_y = crtc_y,
11628 .crtc_w = crtc_w,
11629 .crtc_h = crtc_h,
11630 .src_x = src_x,
11631 .src_y = src_y,
11632 .src_w = src_w,
11633 .src_h = src_h,
11634 };
11635 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11636 bool visible;
11637 int ret;
11638
11639 ret = drm_plane_helper_check_update(plane, crtc, fb,
11640 &src, &dest, &clip,
11641 DRM_PLANE_HELPER_NO_SCALING,
11642 DRM_PLANE_HELPER_NO_SCALING,
11643 false, true, &visible);
11644
11645 if (ret)
11646 return ret;
11647
11648 /*
11649 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11650 * updating the fb pointer, and returning without touching the
11651 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11652 * turn on the display with all planes setup as desired.
11653 */
11654 if (!crtc->enabled) {
4c34574f
MR
11655 mutex_lock(&dev->struct_mutex);
11656
465c120c
MR
11657 /*
11658 * If we already called setplane while the crtc was disabled,
11659 * we may have an fb pinned; unpin it.
11660 */
11661 if (plane->fb)
a071fa00
DV
11662 intel_unpin_fb_obj(old_obj);
11663
11664 i915_gem_track_fb(old_obj, obj,
11665 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11666
11667 /* Pin and return without programming hardware */
4c34574f
MR
11668 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11669 mutex_unlock(&dev->struct_mutex);
11670
11671 return ret;
465c120c
MR
11672 }
11673
11674 intel_crtc_wait_for_pending_flips(crtc);
11675
11676 /*
11677 * If clipping results in a non-visible primary plane, we'll disable
11678 * the primary plane. Note that this is a bit different than what
11679 * happens if userspace explicitly disables the plane by passing fb=0
11680 * because plane->fb still gets set and pinned.
11681 */
11682 if (!visible) {
4c34574f
MR
11683 mutex_lock(&dev->struct_mutex);
11684
465c120c
MR
11685 /*
11686 * Try to pin the new fb first so that we can bail out if we
11687 * fail.
11688 */
11689 if (plane->fb != fb) {
a071fa00 11690 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11691 if (ret) {
11692 mutex_unlock(&dev->struct_mutex);
465c120c 11693 return ret;
4c34574f 11694 }
465c120c
MR
11695 }
11696
a071fa00
DV
11697 i915_gem_track_fb(old_obj, obj,
11698 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11699
465c120c 11700 if (intel_crtc->primary_enabled)
fdd508a6 11701 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11702
11703
11704 if (plane->fb != fb)
11705 if (plane->fb)
a071fa00 11706 intel_unpin_fb_obj(old_obj);
465c120c 11707
4c34574f
MR
11708 mutex_unlock(&dev->struct_mutex);
11709
ce54d85a 11710 } else {
48404c1e
SJ
11711 if (intel_crtc && intel_crtc->active &&
11712 intel_crtc->primary_enabled) {
11713 /*
11714 * FBC does not work on some platforms for rotated
11715 * planes, so disable it when rotation is not 0 and
11716 * update it when rotation is set back to 0.
11717 *
11718 * FIXME: This is redundant with the fbc update done in
11719 * the primary plane enable function except that that
11720 * one is done too late. We eventually need to unify
11721 * this.
11722 */
11723 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11724 dev_priv->fbc.plane == intel_crtc->plane &&
11725 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11726 intel_disable_fbc(dev);
11727 }
11728 }
ce54d85a
SJ
11729 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11730 if (ret)
11731 return ret;
465c120c 11732
ce54d85a
SJ
11733 if (!intel_crtc->primary_enabled)
11734 intel_enable_primary_hw_plane(plane, crtc);
11735 }
465c120c 11736
ce54d85a
SJ
11737 intel_plane->crtc_x = orig.crtc_x;
11738 intel_plane->crtc_y = orig.crtc_y;
11739 intel_plane->crtc_w = orig.crtc_w;
11740 intel_plane->crtc_h = orig.crtc_h;
11741 intel_plane->src_x = orig.src_x;
11742 intel_plane->src_y = orig.src_y;
11743 intel_plane->src_w = orig.src_w;
11744 intel_plane->src_h = orig.src_h;
11745 intel_plane->obj = obj;
465c120c
MR
11746
11747 return 0;
11748}
11749
3d7d6510
MR
11750/* Common destruction function for both primary and cursor planes */
11751static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11752{
11753 struct intel_plane *intel_plane = to_intel_plane(plane);
11754 drm_plane_cleanup(plane);
11755 kfree(intel_plane);
11756}
11757
11758static const struct drm_plane_funcs intel_primary_plane_funcs = {
11759 .update_plane = intel_primary_plane_setplane,
11760 .disable_plane = intel_primary_plane_disable,
3d7d6510 11761 .destroy = intel_plane_destroy,
48404c1e 11762 .set_property = intel_plane_set_property
465c120c
MR
11763};
11764
11765static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11766 int pipe)
11767{
11768 struct intel_plane *primary;
11769 const uint32_t *intel_primary_formats;
11770 int num_formats;
11771
11772 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11773 if (primary == NULL)
11774 return NULL;
11775
11776 primary->can_scale = false;
11777 primary->max_downscale = 1;
11778 primary->pipe = pipe;
11779 primary->plane = pipe;
48404c1e 11780 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11781 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11782 primary->plane = !pipe;
11783
11784 if (INTEL_INFO(dev)->gen <= 3) {
11785 intel_primary_formats = intel_primary_formats_gen2;
11786 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11787 } else {
11788 intel_primary_formats = intel_primary_formats_gen4;
11789 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11790 }
11791
11792 drm_universal_plane_init(dev, &primary->base, 0,
11793 &intel_primary_plane_funcs,
11794 intel_primary_formats, num_formats,
11795 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11796
11797 if (INTEL_INFO(dev)->gen >= 4) {
11798 if (!dev->mode_config.rotation_property)
11799 dev->mode_config.rotation_property =
11800 drm_mode_create_rotation_property(dev,
11801 BIT(DRM_ROTATE_0) |
11802 BIT(DRM_ROTATE_180));
11803 if (dev->mode_config.rotation_property)
11804 drm_object_attach_property(&primary->base.base,
11805 dev->mode_config.rotation_property,
11806 primary->rotation);
11807 }
11808
465c120c
MR
11809 return &primary->base;
11810}
11811
3d7d6510
MR
11812static int
11813intel_cursor_plane_disable(struct drm_plane *plane)
11814{
11815 if (!plane->fb)
11816 return 0;
11817
11818 BUG_ON(!plane->crtc);
11819
11820 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11821}
11822
11823static int
11824intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11825 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11826 unsigned int crtc_w, unsigned int crtc_h,
11827 uint32_t src_x, uint32_t src_y,
11828 uint32_t src_w, uint32_t src_h)
11829{
11830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11831 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11832 struct drm_i915_gem_object *obj = intel_fb->obj;
11833 struct drm_rect dest = {
11834 /* integer pixels */
11835 .x1 = crtc_x,
11836 .y1 = crtc_y,
11837 .x2 = crtc_x + crtc_w,
11838 .y2 = crtc_y + crtc_h,
11839 };
11840 struct drm_rect src = {
11841 /* 16.16 fixed point */
11842 .x1 = src_x,
11843 .y1 = src_y,
11844 .x2 = src_x + src_w,
11845 .y2 = src_y + src_h,
11846 };
11847 const struct drm_rect clip = {
11848 /* integer pixels */
1add143c
VS
11849 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11850 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
3d7d6510
MR
11851 };
11852 bool visible;
11853 int ret;
11854
11855 ret = drm_plane_helper_check_update(plane, crtc, fb,
11856 &src, &dest, &clip,
11857 DRM_PLANE_HELPER_NO_SCALING,
11858 DRM_PLANE_HELPER_NO_SCALING,
11859 true, true, &visible);
11860 if (ret)
11861 return ret;
11862
11863 crtc->cursor_x = crtc_x;
11864 crtc->cursor_y = crtc_y;
11865 if (fb != crtc->cursor->fb) {
11866 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11867 } else {
11868 intel_crtc_update_cursor(crtc, visible);
4ed91096
DV
11869
11870 intel_frontbuffer_flip(crtc->dev,
11871 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11872
3d7d6510
MR
11873 return 0;
11874 }
11875}
11876static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11877 .update_plane = intel_cursor_plane_update,
11878 .disable_plane = intel_cursor_plane_disable,
11879 .destroy = intel_plane_destroy,
11880};
11881
11882static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11883 int pipe)
11884{
11885 struct intel_plane *cursor;
11886
11887 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11888 if (cursor == NULL)
11889 return NULL;
11890
11891 cursor->can_scale = false;
11892 cursor->max_downscale = 1;
11893 cursor->pipe = pipe;
11894 cursor->plane = pipe;
11895
11896 drm_universal_plane_init(dev, &cursor->base, 0,
11897 &intel_cursor_plane_funcs,
11898 intel_cursor_formats,
11899 ARRAY_SIZE(intel_cursor_formats),
11900 DRM_PLANE_TYPE_CURSOR);
11901 return &cursor->base;
11902}
11903
b358d0a6 11904static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11905{
fbee40df 11906 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11907 struct intel_crtc *intel_crtc;
3d7d6510
MR
11908 struct drm_plane *primary = NULL;
11909 struct drm_plane *cursor = NULL;
465c120c 11910 int i, ret;
79e53945 11911
955382f3 11912 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11913 if (intel_crtc == NULL)
11914 return;
11915
465c120c 11916 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11917 if (!primary)
11918 goto fail;
11919
11920 cursor = intel_cursor_plane_create(dev, pipe);
11921 if (!cursor)
11922 goto fail;
11923
465c120c 11924 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11925 cursor, &intel_crtc_funcs);
11926 if (ret)
11927 goto fail;
79e53945
JB
11928
11929 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11930 for (i = 0; i < 256; i++) {
11931 intel_crtc->lut_r[i] = i;
11932 intel_crtc->lut_g[i] = i;
11933 intel_crtc->lut_b[i] = i;
11934 }
11935
1f1c2e24
VS
11936 /*
11937 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11938 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11939 */
80824003
JB
11940 intel_crtc->pipe = pipe;
11941 intel_crtc->plane = pipe;
3a77c4c4 11942 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11943 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11944 intel_crtc->plane = !pipe;
80824003
JB
11945 }
11946
4b0e333e
CW
11947 intel_crtc->cursor_base = ~0;
11948 intel_crtc->cursor_cntl = ~0;
dc41c154 11949 intel_crtc->cursor_size = ~0;
4b0e333e 11950
22fd0fab
JB
11951 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11952 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11953 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11954 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11955
79e53945 11956 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11957
11958 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11959 return;
11960
11961fail:
11962 if (primary)
11963 drm_plane_cleanup(primary);
11964 if (cursor)
11965 drm_plane_cleanup(cursor);
11966 kfree(intel_crtc);
79e53945
JB
11967}
11968
752aa88a
JB
11969enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11970{
11971 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11972 struct drm_device *dev = connector->base.dev;
752aa88a 11973
51fd371b 11974 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11975
11976 if (!encoder)
11977 return INVALID_PIPE;
11978
11979 return to_intel_crtc(encoder->crtc)->pipe;
11980}
11981
08d7b3d1 11982int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11983 struct drm_file *file)
08d7b3d1 11984{
08d7b3d1 11985 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11986 struct drm_crtc *drmmode_crtc;
c05422d5 11987 struct intel_crtc *crtc;
08d7b3d1 11988
1cff8f6b
DV
11989 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11990 return -ENODEV;
08d7b3d1 11991
7707e653 11992 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11993
7707e653 11994 if (!drmmode_crtc) {
08d7b3d1 11995 DRM_ERROR("no such CRTC id\n");
3f2c2057 11996 return -ENOENT;
08d7b3d1
CW
11997 }
11998
7707e653 11999 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12000 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12001
c05422d5 12002 return 0;
08d7b3d1
CW
12003}
12004
66a9278e 12005static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12006{
66a9278e
DV
12007 struct drm_device *dev = encoder->base.dev;
12008 struct intel_encoder *source_encoder;
79e53945 12009 int index_mask = 0;
79e53945
JB
12010 int entry = 0;
12011
b2784e15 12012 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12013 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12014 index_mask |= (1 << entry);
12015
79e53945
JB
12016 entry++;
12017 }
4ef69c7a 12018
79e53945
JB
12019 return index_mask;
12020}
12021
4d302442
CW
12022static bool has_edp_a(struct drm_device *dev)
12023{
12024 struct drm_i915_private *dev_priv = dev->dev_private;
12025
12026 if (!IS_MOBILE(dev))
12027 return false;
12028
12029 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12030 return false;
12031
e3589908 12032 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12033 return false;
12034
12035 return true;
12036}
12037
ba0fbca4
DL
12038const char *intel_output_name(int output)
12039{
12040 static const char *names[] = {
12041 [INTEL_OUTPUT_UNUSED] = "Unused",
12042 [INTEL_OUTPUT_ANALOG] = "Analog",
12043 [INTEL_OUTPUT_DVO] = "DVO",
12044 [INTEL_OUTPUT_SDVO] = "SDVO",
12045 [INTEL_OUTPUT_LVDS] = "LVDS",
12046 [INTEL_OUTPUT_TVOUT] = "TV",
12047 [INTEL_OUTPUT_HDMI] = "HDMI",
12048 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12049 [INTEL_OUTPUT_EDP] = "eDP",
12050 [INTEL_OUTPUT_DSI] = "DSI",
12051 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12052 };
12053
12054 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12055 return "Invalid";
12056
12057 return names[output];
12058}
12059
84b4e042
JB
12060static bool intel_crt_present(struct drm_device *dev)
12061{
12062 struct drm_i915_private *dev_priv = dev->dev_private;
12063
12064 if (IS_ULT(dev))
12065 return false;
12066
12067 if (IS_CHERRYVIEW(dev))
12068 return false;
12069
12070 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12071 return false;
12072
12073 return true;
12074}
12075
79e53945
JB
12076static void intel_setup_outputs(struct drm_device *dev)
12077{
725e30ad 12078 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12079 struct intel_encoder *encoder;
cb0953d7 12080 bool dpd_is_edp = false;
79e53945 12081
c9093354 12082 intel_lvds_init(dev);
79e53945 12083
84b4e042 12084 if (intel_crt_present(dev))
79935fca 12085 intel_crt_init(dev);
cb0953d7 12086
affa9354 12087 if (HAS_DDI(dev)) {
0e72a5b5
ED
12088 int found;
12089
12090 /* Haswell uses DDI functions to detect digital outputs */
12091 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12092 /* DDI A only supports eDP */
12093 if (found)
12094 intel_ddi_init(dev, PORT_A);
12095
12096 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12097 * register */
12098 found = I915_READ(SFUSE_STRAP);
12099
12100 if (found & SFUSE_STRAP_DDIB_DETECTED)
12101 intel_ddi_init(dev, PORT_B);
12102 if (found & SFUSE_STRAP_DDIC_DETECTED)
12103 intel_ddi_init(dev, PORT_C);
12104 if (found & SFUSE_STRAP_DDID_DETECTED)
12105 intel_ddi_init(dev, PORT_D);
12106 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12107 int found;
5d8a7752 12108 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12109
12110 if (has_edp_a(dev))
12111 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12112
dc0fa718 12113 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12114 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12115 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12116 if (!found)
e2debe91 12117 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12118 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12119 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12120 }
12121
dc0fa718 12122 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12123 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12124
dc0fa718 12125 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12126 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12127
5eb08b69 12128 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12129 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12130
270b3042 12131 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12132 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12133 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12134 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12135 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12136 PORT_B);
12137 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12138 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12139 }
12140
6f6005a5
JB
12141 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12142 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12143 PORT_C);
12144 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12145 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12146 }
19c03924 12147
9418c1f1
VS
12148 if (IS_CHERRYVIEW(dev)) {
12149 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12150 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12151 PORT_D);
12152 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12153 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12154 }
12155 }
12156
3cfca973 12157 intel_dsi_init(dev);
103a196f 12158 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12159 bool found = false;
7d57382e 12160
e2debe91 12161 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12162 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12163 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12164 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12165 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12166 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12167 }
27185ae1 12168
e7281eab 12169 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12170 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12171 }
13520b05
KH
12172
12173 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12174
e2debe91 12175 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12176 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12177 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12178 }
27185ae1 12179
e2debe91 12180 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12181
b01f2c3a
JB
12182 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12183 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12184 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12185 }
e7281eab 12186 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12187 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12188 }
27185ae1 12189
b01f2c3a 12190 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12191 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12192 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12193 } else if (IS_GEN2(dev))
79e53945
JB
12194 intel_dvo_init(dev);
12195
103a196f 12196 if (SUPPORTS_TV(dev))
79e53945
JB
12197 intel_tv_init(dev);
12198
7c8f8a70
RV
12199 intel_edp_psr_init(dev);
12200
b2784e15 12201 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12202 encoder->base.possible_crtcs = encoder->crtc_mask;
12203 encoder->base.possible_clones =
66a9278e 12204 intel_encoder_clones(encoder);
79e53945 12205 }
47356eb6 12206
dde86e2d 12207 intel_init_pch_refclk(dev);
270b3042
DV
12208
12209 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12210}
12211
12212static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12213{
60a5ca01 12214 struct drm_device *dev = fb->dev;
79e53945 12215 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12216
ef2d633e 12217 drm_framebuffer_cleanup(fb);
60a5ca01 12218 mutex_lock(&dev->struct_mutex);
ef2d633e 12219 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12220 drm_gem_object_unreference(&intel_fb->obj->base);
12221 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12222 kfree(intel_fb);
12223}
12224
12225static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12226 struct drm_file *file,
79e53945
JB
12227 unsigned int *handle)
12228{
12229 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12230 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12231
05394f39 12232 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12233}
12234
12235static const struct drm_framebuffer_funcs intel_fb_funcs = {
12236 .destroy = intel_user_framebuffer_destroy,
12237 .create_handle = intel_user_framebuffer_create_handle,
12238};
12239
b5ea642a
DV
12240static int intel_framebuffer_init(struct drm_device *dev,
12241 struct intel_framebuffer *intel_fb,
12242 struct drm_mode_fb_cmd2 *mode_cmd,
12243 struct drm_i915_gem_object *obj)
79e53945 12244{
a57ce0b2 12245 int aligned_height;
a35cdaa0 12246 int pitch_limit;
79e53945
JB
12247 int ret;
12248
dd4916c5
DV
12249 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12250
c16ed4be
CW
12251 if (obj->tiling_mode == I915_TILING_Y) {
12252 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12253 return -EINVAL;
c16ed4be 12254 }
57cd6508 12255
c16ed4be
CW
12256 if (mode_cmd->pitches[0] & 63) {
12257 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12258 mode_cmd->pitches[0]);
57cd6508 12259 return -EINVAL;
c16ed4be 12260 }
57cd6508 12261
a35cdaa0
CW
12262 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12263 pitch_limit = 32*1024;
12264 } else if (INTEL_INFO(dev)->gen >= 4) {
12265 if (obj->tiling_mode)
12266 pitch_limit = 16*1024;
12267 else
12268 pitch_limit = 32*1024;
12269 } else if (INTEL_INFO(dev)->gen >= 3) {
12270 if (obj->tiling_mode)
12271 pitch_limit = 8*1024;
12272 else
12273 pitch_limit = 16*1024;
12274 } else
12275 /* XXX DSPC is limited to 4k tiled */
12276 pitch_limit = 8*1024;
12277
12278 if (mode_cmd->pitches[0] > pitch_limit) {
12279 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12280 obj->tiling_mode ? "tiled" : "linear",
12281 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12282 return -EINVAL;
c16ed4be 12283 }
5d7bd705
VS
12284
12285 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12286 mode_cmd->pitches[0] != obj->stride) {
12287 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12288 mode_cmd->pitches[0], obj->stride);
5d7bd705 12289 return -EINVAL;
c16ed4be 12290 }
5d7bd705 12291
57779d06 12292 /* Reject formats not supported by any plane early. */
308e5bcb 12293 switch (mode_cmd->pixel_format) {
57779d06 12294 case DRM_FORMAT_C8:
04b3924d
VS
12295 case DRM_FORMAT_RGB565:
12296 case DRM_FORMAT_XRGB8888:
12297 case DRM_FORMAT_ARGB8888:
57779d06
VS
12298 break;
12299 case DRM_FORMAT_XRGB1555:
12300 case DRM_FORMAT_ARGB1555:
c16ed4be 12301 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12302 DRM_DEBUG("unsupported pixel format: %s\n",
12303 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12304 return -EINVAL;
c16ed4be 12305 }
57779d06
VS
12306 break;
12307 case DRM_FORMAT_XBGR8888:
12308 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12309 case DRM_FORMAT_XRGB2101010:
12310 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12311 case DRM_FORMAT_XBGR2101010:
12312 case DRM_FORMAT_ABGR2101010:
c16ed4be 12313 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12314 DRM_DEBUG("unsupported pixel format: %s\n",
12315 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12316 return -EINVAL;
c16ed4be 12317 }
b5626747 12318 break;
04b3924d
VS
12319 case DRM_FORMAT_YUYV:
12320 case DRM_FORMAT_UYVY:
12321 case DRM_FORMAT_YVYU:
12322 case DRM_FORMAT_VYUY:
c16ed4be 12323 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12324 DRM_DEBUG("unsupported pixel format: %s\n",
12325 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12326 return -EINVAL;
c16ed4be 12327 }
57cd6508
CW
12328 break;
12329 default:
4ee62c76
VS
12330 DRM_DEBUG("unsupported pixel format: %s\n",
12331 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12332 return -EINVAL;
12333 }
12334
90f9a336
VS
12335 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12336 if (mode_cmd->offsets[0] != 0)
12337 return -EINVAL;
12338
a57ce0b2
JB
12339 aligned_height = intel_align_height(dev, mode_cmd->height,
12340 obj->tiling_mode);
53155c0a
DV
12341 /* FIXME drm helper for size checks (especially planar formats)? */
12342 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12343 return -EINVAL;
12344
c7d73f6a
DV
12345 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12346 intel_fb->obj = obj;
80075d49 12347 intel_fb->obj->framebuffer_references++;
c7d73f6a 12348
79e53945
JB
12349 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12350 if (ret) {
12351 DRM_ERROR("framebuffer init failed %d\n", ret);
12352 return ret;
12353 }
12354
79e53945
JB
12355 return 0;
12356}
12357
79e53945
JB
12358static struct drm_framebuffer *
12359intel_user_framebuffer_create(struct drm_device *dev,
12360 struct drm_file *filp,
308e5bcb 12361 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12362{
05394f39 12363 struct drm_i915_gem_object *obj;
79e53945 12364
308e5bcb
JB
12365 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12366 mode_cmd->handles[0]));
c8725226 12367 if (&obj->base == NULL)
cce13ff7 12368 return ERR_PTR(-ENOENT);
79e53945 12369
d2dff872 12370 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12371}
12372
4520f53a 12373#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12374static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12375{
12376}
12377#endif
12378
79e53945 12379static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12380 .fb_create = intel_user_framebuffer_create,
0632fef6 12381 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12382};
12383
e70236a8
JB
12384/* Set up chip specific display functions */
12385static void intel_init_display(struct drm_device *dev)
12386{
12387 struct drm_i915_private *dev_priv = dev->dev_private;
12388
ee9300bb
DV
12389 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12390 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12391 else if (IS_CHERRYVIEW(dev))
12392 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12393 else if (IS_VALLEYVIEW(dev))
12394 dev_priv->display.find_dpll = vlv_find_best_dpll;
12395 else if (IS_PINEVIEW(dev))
12396 dev_priv->display.find_dpll = pnv_find_best_dpll;
12397 else
12398 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12399
affa9354 12400 if (HAS_DDI(dev)) {
0e8ffe1b 12401 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12402 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12403 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12404 dev_priv->display.crtc_enable = haswell_crtc_enable;
12405 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12406 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12407 dev_priv->display.update_primary_plane =
12408 ironlake_update_primary_plane;
09b4ddf9 12409 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12410 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12411 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12412 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12413 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12414 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12415 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12416 dev_priv->display.update_primary_plane =
12417 ironlake_update_primary_plane;
89b667f8
JB
12418 } else if (IS_VALLEYVIEW(dev)) {
12419 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12420 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12421 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12422 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12423 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12424 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12425 dev_priv->display.update_primary_plane =
12426 i9xx_update_primary_plane;
f564048e 12427 } else {
0e8ffe1b 12428 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12429 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12430 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12431 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12432 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12433 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12434 dev_priv->display.update_primary_plane =
12435 i9xx_update_primary_plane;
f564048e 12436 }
e70236a8 12437
e70236a8 12438 /* Returns the core display clock speed */
25eb05fc
JB
12439 if (IS_VALLEYVIEW(dev))
12440 dev_priv->display.get_display_clock_speed =
12441 valleyview_get_display_clock_speed;
12442 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12443 dev_priv->display.get_display_clock_speed =
12444 i945_get_display_clock_speed;
12445 else if (IS_I915G(dev))
12446 dev_priv->display.get_display_clock_speed =
12447 i915_get_display_clock_speed;
257a7ffc 12448 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12449 dev_priv->display.get_display_clock_speed =
12450 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12451 else if (IS_PINEVIEW(dev))
12452 dev_priv->display.get_display_clock_speed =
12453 pnv_get_display_clock_speed;
e70236a8
JB
12454 else if (IS_I915GM(dev))
12455 dev_priv->display.get_display_clock_speed =
12456 i915gm_get_display_clock_speed;
12457 else if (IS_I865G(dev))
12458 dev_priv->display.get_display_clock_speed =
12459 i865_get_display_clock_speed;
f0f8a9ce 12460 else if (IS_I85X(dev))
e70236a8
JB
12461 dev_priv->display.get_display_clock_speed =
12462 i855_get_display_clock_speed;
12463 else /* 852, 830 */
12464 dev_priv->display.get_display_clock_speed =
12465 i830_get_display_clock_speed;
12466
3bb11b53 12467 if (IS_G4X(dev)) {
e0dac65e 12468 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12469 } else if (IS_GEN5(dev)) {
12470 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12471 dev_priv->display.write_eld = ironlake_write_eld;
12472 } else if (IS_GEN6(dev)) {
12473 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12474 dev_priv->display.write_eld = ironlake_write_eld;
12475 dev_priv->display.modeset_global_resources =
12476 snb_modeset_global_resources;
12477 } else if (IS_IVYBRIDGE(dev)) {
12478 /* FIXME: detect B0+ stepping and use auto training */
12479 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12480 dev_priv->display.write_eld = ironlake_write_eld;
12481 dev_priv->display.modeset_global_resources =
12482 ivb_modeset_global_resources;
12483 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12484 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12485 dev_priv->display.write_eld = haswell_write_eld;
12486 dev_priv->display.modeset_global_resources =
12487 haswell_modeset_global_resources;
30a970c6
JB
12488 } else if (IS_VALLEYVIEW(dev)) {
12489 dev_priv->display.modeset_global_resources =
12490 valleyview_modeset_global_resources;
9ca2fe73 12491 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12492 }
8c9f3aaf
JB
12493
12494 /* Default just returns -ENODEV to indicate unsupported */
12495 dev_priv->display.queue_flip = intel_default_queue_flip;
12496
12497 switch (INTEL_INFO(dev)->gen) {
12498 case 2:
12499 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12500 break;
12501
12502 case 3:
12503 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12504 break;
12505
12506 case 4:
12507 case 5:
12508 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12509 break;
12510
12511 case 6:
12512 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12513 break;
7c9017e5 12514 case 7:
4e0bbc31 12515 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12516 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12517 break;
8c9f3aaf 12518 }
7bd688cd
JN
12519
12520 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12521}
12522
b690e96c
JB
12523/*
12524 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12525 * resume, or other times. This quirk makes sure that's the case for
12526 * affected systems.
12527 */
0206e353 12528static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12529{
12530 struct drm_i915_private *dev_priv = dev->dev_private;
12531
12532 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12533 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12534}
12535
435793df
KP
12536/*
12537 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12538 */
12539static void quirk_ssc_force_disable(struct drm_device *dev)
12540{
12541 struct drm_i915_private *dev_priv = dev->dev_private;
12542 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12543 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12544}
12545
4dca20ef 12546/*
5a15ab5b
CE
12547 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12548 * brightness value
4dca20ef
CE
12549 */
12550static void quirk_invert_brightness(struct drm_device *dev)
12551{
12552 struct drm_i915_private *dev_priv = dev->dev_private;
12553 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12554 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12555}
12556
9c72cc6f
SD
12557/* Some VBT's incorrectly indicate no backlight is present */
12558static void quirk_backlight_present(struct drm_device *dev)
12559{
12560 struct drm_i915_private *dev_priv = dev->dev_private;
12561 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12562 DRM_INFO("applying backlight present quirk\n");
12563}
12564
b690e96c
JB
12565struct intel_quirk {
12566 int device;
12567 int subsystem_vendor;
12568 int subsystem_device;
12569 void (*hook)(struct drm_device *dev);
12570};
12571
5f85f176
EE
12572/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12573struct intel_dmi_quirk {
12574 void (*hook)(struct drm_device *dev);
12575 const struct dmi_system_id (*dmi_id_list)[];
12576};
12577
12578static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12579{
12580 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12581 return 1;
12582}
12583
12584static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12585 {
12586 .dmi_id_list = &(const struct dmi_system_id[]) {
12587 {
12588 .callback = intel_dmi_reverse_brightness,
12589 .ident = "NCR Corporation",
12590 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12591 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12592 },
12593 },
12594 { } /* terminating entry */
12595 },
12596 .hook = quirk_invert_brightness,
12597 },
12598};
12599
c43b5634 12600static struct intel_quirk intel_quirks[] = {
b690e96c 12601 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12602 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12603
b690e96c
JB
12604 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12605 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12606
b690e96c
JB
12607 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12608 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12609
435793df
KP
12610 /* Lenovo U160 cannot use SSC on LVDS */
12611 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12612
12613 /* Sony Vaio Y cannot use SSC on LVDS */
12614 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12615
be505f64
AH
12616 /* Acer Aspire 5734Z must invert backlight brightness */
12617 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12618
12619 /* Acer/eMachines G725 */
12620 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12621
12622 /* Acer/eMachines e725 */
12623 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12624
12625 /* Acer/Packard Bell NCL20 */
12626 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12627
12628 /* Acer Aspire 4736Z */
12629 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12630
12631 /* Acer Aspire 5336 */
12632 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12633
12634 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12635 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12636
12637 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12638 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12639
12640 /* HP Chromebook 14 (Celeron 2955U) */
12641 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12642};
12643
12644static void intel_init_quirks(struct drm_device *dev)
12645{
12646 struct pci_dev *d = dev->pdev;
12647 int i;
12648
12649 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12650 struct intel_quirk *q = &intel_quirks[i];
12651
12652 if (d->device == q->device &&
12653 (d->subsystem_vendor == q->subsystem_vendor ||
12654 q->subsystem_vendor == PCI_ANY_ID) &&
12655 (d->subsystem_device == q->subsystem_device ||
12656 q->subsystem_device == PCI_ANY_ID))
12657 q->hook(dev);
12658 }
5f85f176
EE
12659 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12660 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12661 intel_dmi_quirks[i].hook(dev);
12662 }
b690e96c
JB
12663}
12664
9cce37f4
JB
12665/* Disable the VGA plane that we never use */
12666static void i915_disable_vga(struct drm_device *dev)
12667{
12668 struct drm_i915_private *dev_priv = dev->dev_private;
12669 u8 sr1;
766aa1c4 12670 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12671
2b37c616 12672 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12673 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12674 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12675 sr1 = inb(VGA_SR_DATA);
12676 outb(sr1 | 1<<5, VGA_SR_DATA);
12677 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12678 udelay(300);
12679
12680 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12681 POSTING_READ(vga_reg);
12682}
12683
f817586c
DV
12684void intel_modeset_init_hw(struct drm_device *dev)
12685{
a8f78b58
ED
12686 intel_prepare_ddi(dev);
12687
f8bf63fd
VS
12688 if (IS_VALLEYVIEW(dev))
12689 vlv_update_cdclk(dev);
12690
f817586c
DV
12691 intel_init_clock_gating(dev);
12692
8090c6b9 12693 intel_enable_gt_powersave(dev);
f817586c
DV
12694}
12695
7d708ee4
ID
12696void intel_modeset_suspend_hw(struct drm_device *dev)
12697{
12698 intel_suspend_hw(dev);
12699}
12700
79e53945
JB
12701void intel_modeset_init(struct drm_device *dev)
12702{
652c393a 12703 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12704 int sprite, ret;
8cc87b75 12705 enum pipe pipe;
46f297fb 12706 struct intel_crtc *crtc;
79e53945
JB
12707
12708 drm_mode_config_init(dev);
12709
12710 dev->mode_config.min_width = 0;
12711 dev->mode_config.min_height = 0;
12712
019d96cb
DA
12713 dev->mode_config.preferred_depth = 24;
12714 dev->mode_config.prefer_shadow = 1;
12715
e6ecefaa 12716 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12717
b690e96c
JB
12718 intel_init_quirks(dev);
12719
1fa61106
ED
12720 intel_init_pm(dev);
12721
e3c74757
BW
12722 if (INTEL_INFO(dev)->num_pipes == 0)
12723 return;
12724
e70236a8
JB
12725 intel_init_display(dev);
12726
a6c45cf0
CW
12727 if (IS_GEN2(dev)) {
12728 dev->mode_config.max_width = 2048;
12729 dev->mode_config.max_height = 2048;
12730 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12731 dev->mode_config.max_width = 4096;
12732 dev->mode_config.max_height = 4096;
79e53945 12733 } else {
a6c45cf0
CW
12734 dev->mode_config.max_width = 8192;
12735 dev->mode_config.max_height = 8192;
79e53945 12736 }
068be561 12737
dc41c154
VS
12738 if (IS_845G(dev) || IS_I865G(dev)) {
12739 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12740 dev->mode_config.cursor_height = 1023;
12741 } else if (IS_GEN2(dev)) {
068be561
DL
12742 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12743 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12744 } else {
12745 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12746 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12747 }
12748
5d4545ae 12749 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12750
28c97730 12751 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12752 INTEL_INFO(dev)->num_pipes,
12753 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12754
8cc87b75
DL
12755 for_each_pipe(pipe) {
12756 intel_crtc_init(dev, pipe);
1fe47785
DL
12757 for_each_sprite(pipe, sprite) {
12758 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12759 if (ret)
06da8da2 12760 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12761 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12762 }
79e53945
JB
12763 }
12764
f42bb70d
JB
12765 intel_init_dpio(dev);
12766
e72f9fbf 12767 intel_shared_dpll_init(dev);
ee7b9f93 12768
9cce37f4
JB
12769 /* Just disable it once at startup */
12770 i915_disable_vga(dev);
79e53945 12771 intel_setup_outputs(dev);
11be49eb
CW
12772
12773 /* Just in case the BIOS is doing something questionable. */
12774 intel_disable_fbc(dev);
fa9fa083 12775
6e9f798d 12776 drm_modeset_lock_all(dev);
fa9fa083 12777 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12778 drm_modeset_unlock_all(dev);
46f297fb 12779
d3fcc808 12780 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12781 if (!crtc->active)
12782 continue;
12783
46f297fb 12784 /*
46f297fb
JB
12785 * Note that reserving the BIOS fb up front prevents us
12786 * from stuffing other stolen allocations like the ring
12787 * on top. This prevents some ugliness at boot time, and
12788 * can even allow for smooth boot transitions if the BIOS
12789 * fb is large enough for the active pipe configuration.
12790 */
12791 if (dev_priv->display.get_plane_config) {
12792 dev_priv->display.get_plane_config(crtc,
12793 &crtc->plane_config);
12794 /*
12795 * If the fb is shared between multiple heads, we'll
12796 * just get the first one.
12797 */
484b41dd 12798 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12799 }
46f297fb 12800 }
2c7111db
CW
12801}
12802
7fad798e
DV
12803static void intel_enable_pipe_a(struct drm_device *dev)
12804{
12805 struct intel_connector *connector;
12806 struct drm_connector *crt = NULL;
12807 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12808 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12809
12810 /* We can't just switch on the pipe A, we need to set things up with a
12811 * proper mode and output configuration. As a gross hack, enable pipe A
12812 * by enabling the load detect pipe once. */
12813 list_for_each_entry(connector,
12814 &dev->mode_config.connector_list,
12815 base.head) {
12816 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12817 crt = &connector->base;
12818 break;
12819 }
12820 }
12821
12822 if (!crt)
12823 return;
12824
208bf9fd
VS
12825 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12826 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12827}
12828
fa555837
DV
12829static bool
12830intel_check_plane_mapping(struct intel_crtc *crtc)
12831{
7eb552ae
BW
12832 struct drm_device *dev = crtc->base.dev;
12833 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12834 u32 reg, val;
12835
7eb552ae 12836 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12837 return true;
12838
12839 reg = DSPCNTR(!crtc->plane);
12840 val = I915_READ(reg);
12841
12842 if ((val & DISPLAY_PLANE_ENABLE) &&
12843 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12844 return false;
12845
12846 return true;
12847}
12848
24929352
DV
12849static void intel_sanitize_crtc(struct intel_crtc *crtc)
12850{
12851 struct drm_device *dev = crtc->base.dev;
12852 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12853 u32 reg;
24929352 12854
24929352 12855 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12856 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12857 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12858
d3eaf884
VS
12859 /* restore vblank interrupts to correct state */
12860 if (crtc->active)
12861 drm_vblank_on(dev, crtc->pipe);
12862 else
12863 drm_vblank_off(dev, crtc->pipe);
12864
24929352 12865 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12866 * disable the crtc (and hence change the state) if it is wrong. Note
12867 * that gen4+ has a fixed plane -> pipe mapping. */
12868 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12869 struct intel_connector *connector;
12870 bool plane;
12871
24929352
DV
12872 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12873 crtc->base.base.id);
12874
12875 /* Pipe has the wrong plane attached and the plane is active.
12876 * Temporarily change the plane mapping and disable everything
12877 * ... */
12878 plane = crtc->plane;
12879 crtc->plane = !plane;
9c8958bc 12880 crtc->primary_enabled = true;
24929352
DV
12881 dev_priv->display.crtc_disable(&crtc->base);
12882 crtc->plane = plane;
12883
12884 /* ... and break all links. */
12885 list_for_each_entry(connector, &dev->mode_config.connector_list,
12886 base.head) {
12887 if (connector->encoder->base.crtc != &crtc->base)
12888 continue;
12889
7f1950fb
EE
12890 connector->base.dpms = DRM_MODE_DPMS_OFF;
12891 connector->base.encoder = NULL;
24929352 12892 }
7f1950fb
EE
12893 /* multiple connectors may have the same encoder:
12894 * handle them and break crtc link separately */
12895 list_for_each_entry(connector, &dev->mode_config.connector_list,
12896 base.head)
12897 if (connector->encoder->base.crtc == &crtc->base) {
12898 connector->encoder->base.crtc = NULL;
12899 connector->encoder->connectors_active = false;
12900 }
24929352
DV
12901
12902 WARN_ON(crtc->active);
12903 crtc->base.enabled = false;
12904 }
24929352 12905
7fad798e
DV
12906 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12907 crtc->pipe == PIPE_A && !crtc->active) {
12908 /* BIOS forgot to enable pipe A, this mostly happens after
12909 * resume. Force-enable the pipe to fix this, the update_dpms
12910 * call below we restore the pipe to the right state, but leave
12911 * the required bits on. */
12912 intel_enable_pipe_a(dev);
12913 }
12914
24929352
DV
12915 /* Adjust the state of the output pipe according to whether we
12916 * have active connectors/encoders. */
12917 intel_crtc_update_dpms(&crtc->base);
12918
12919 if (crtc->active != crtc->base.enabled) {
12920 struct intel_encoder *encoder;
12921
12922 /* This can happen either due to bugs in the get_hw_state
12923 * functions or because the pipe is force-enabled due to the
12924 * pipe A quirk. */
12925 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12926 crtc->base.base.id,
12927 crtc->base.enabled ? "enabled" : "disabled",
12928 crtc->active ? "enabled" : "disabled");
12929
12930 crtc->base.enabled = crtc->active;
12931
12932 /* Because we only establish the connector -> encoder ->
12933 * crtc links if something is active, this means the
12934 * crtc is now deactivated. Break the links. connector
12935 * -> encoder links are only establish when things are
12936 * actually up, hence no need to break them. */
12937 WARN_ON(crtc->active);
12938
12939 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12940 WARN_ON(encoder->connectors_active);
12941 encoder->base.crtc = NULL;
12942 }
12943 }
c5ab3bc0
DV
12944
12945 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12946 /*
12947 * We start out with underrun reporting disabled to avoid races.
12948 * For correct bookkeeping mark this on active crtcs.
12949 *
c5ab3bc0
DV
12950 * Also on gmch platforms we dont have any hardware bits to
12951 * disable the underrun reporting. Which means we need to start
12952 * out with underrun reporting disabled also on inactive pipes,
12953 * since otherwise we'll complain about the garbage we read when
12954 * e.g. coming up after runtime pm.
12955 *
4cc31489
DV
12956 * No protection against concurrent access is required - at
12957 * worst a fifo underrun happens which also sets this to false.
12958 */
12959 crtc->cpu_fifo_underrun_disabled = true;
12960 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12961
12962 update_scanline_offset(crtc);
4cc31489 12963 }
24929352
DV
12964}
12965
12966static void intel_sanitize_encoder(struct intel_encoder *encoder)
12967{
12968 struct intel_connector *connector;
12969 struct drm_device *dev = encoder->base.dev;
12970
12971 /* We need to check both for a crtc link (meaning that the
12972 * encoder is active and trying to read from a pipe) and the
12973 * pipe itself being active. */
12974 bool has_active_crtc = encoder->base.crtc &&
12975 to_intel_crtc(encoder->base.crtc)->active;
12976
12977 if (encoder->connectors_active && !has_active_crtc) {
12978 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12979 encoder->base.base.id,
8e329a03 12980 encoder->base.name);
24929352
DV
12981
12982 /* Connector is active, but has no active pipe. This is
12983 * fallout from our resume register restoring. Disable
12984 * the encoder manually again. */
12985 if (encoder->base.crtc) {
12986 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12987 encoder->base.base.id,
8e329a03 12988 encoder->base.name);
24929352 12989 encoder->disable(encoder);
a62d1497
VS
12990 if (encoder->post_disable)
12991 encoder->post_disable(encoder);
24929352 12992 }
7f1950fb
EE
12993 encoder->base.crtc = NULL;
12994 encoder->connectors_active = false;
24929352
DV
12995
12996 /* Inconsistent output/port/pipe state happens presumably due to
12997 * a bug in one of the get_hw_state functions. Or someplace else
12998 * in our code, like the register restore mess on resume. Clamp
12999 * things to off as a safer default. */
13000 list_for_each_entry(connector,
13001 &dev->mode_config.connector_list,
13002 base.head) {
13003 if (connector->encoder != encoder)
13004 continue;
7f1950fb
EE
13005 connector->base.dpms = DRM_MODE_DPMS_OFF;
13006 connector->base.encoder = NULL;
24929352
DV
13007 }
13008 }
13009 /* Enabled encoders without active connectors will be fixed in
13010 * the crtc fixup. */
13011}
13012
04098753 13013void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13014{
13015 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13016 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13017
04098753
ID
13018 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13019 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13020 i915_disable_vga(dev);
13021 }
13022}
13023
13024void i915_redisable_vga(struct drm_device *dev)
13025{
13026 struct drm_i915_private *dev_priv = dev->dev_private;
13027
8dc8a27c
PZ
13028 /* This function can be called both from intel_modeset_setup_hw_state or
13029 * at a very early point in our resume sequence, where the power well
13030 * structures are not yet restored. Since this function is at a very
13031 * paranoid "someone might have enabled VGA while we were not looking"
13032 * level, just check if the power well is enabled instead of trying to
13033 * follow the "don't touch the power well if we don't need it" policy
13034 * the rest of the driver uses. */
04098753 13035 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13036 return;
13037
04098753 13038 i915_redisable_vga_power_on(dev);
0fde901f
KM
13039}
13040
98ec7739
VS
13041static bool primary_get_hw_state(struct intel_crtc *crtc)
13042{
13043 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13044
13045 if (!crtc->active)
13046 return false;
13047
13048 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13049}
13050
30e984df 13051static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13052{
13053 struct drm_i915_private *dev_priv = dev->dev_private;
13054 enum pipe pipe;
24929352
DV
13055 struct intel_crtc *crtc;
13056 struct intel_encoder *encoder;
13057 struct intel_connector *connector;
5358901f 13058 int i;
24929352 13059
d3fcc808 13060 for_each_intel_crtc(dev, crtc) {
88adfff1 13061 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13062
9953599b
DV
13063 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13064
0e8ffe1b
DV
13065 crtc->active = dev_priv->display.get_pipe_config(crtc,
13066 &crtc->config);
24929352
DV
13067
13068 crtc->base.enabled = crtc->active;
98ec7739 13069 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13070
13071 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13072 crtc->base.base.id,
13073 crtc->active ? "enabled" : "disabled");
13074 }
13075
5358901f
DV
13076 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13077 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13078
13079 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13080 pll->active = 0;
d3fcc808 13081 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13082 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13083 pll->active++;
13084 }
13085 pll->refcount = pll->active;
13086
35c95375
DV
13087 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13088 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13089
13090 if (pll->refcount)
13091 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13092 }
13093
b2784e15 13094 for_each_intel_encoder(dev, encoder) {
24929352
DV
13095 pipe = 0;
13096
13097 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13098 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13099 encoder->base.crtc = &crtc->base;
1d37b689 13100 encoder->get_config(encoder, &crtc->config);
24929352
DV
13101 } else {
13102 encoder->base.crtc = NULL;
13103 }
13104
13105 encoder->connectors_active = false;
6f2bcceb 13106 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13107 encoder->base.base.id,
8e329a03 13108 encoder->base.name,
24929352 13109 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13110 pipe_name(pipe));
24929352
DV
13111 }
13112
13113 list_for_each_entry(connector, &dev->mode_config.connector_list,
13114 base.head) {
13115 if (connector->get_hw_state(connector)) {
13116 connector->base.dpms = DRM_MODE_DPMS_ON;
13117 connector->encoder->connectors_active = true;
13118 connector->base.encoder = &connector->encoder->base;
13119 } else {
13120 connector->base.dpms = DRM_MODE_DPMS_OFF;
13121 connector->base.encoder = NULL;
13122 }
13123 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13124 connector->base.base.id,
c23cc417 13125 connector->base.name,
24929352
DV
13126 connector->base.encoder ? "enabled" : "disabled");
13127 }
30e984df
DV
13128}
13129
13130/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13131 * and i915 state tracking structures. */
13132void intel_modeset_setup_hw_state(struct drm_device *dev,
13133 bool force_restore)
13134{
13135 struct drm_i915_private *dev_priv = dev->dev_private;
13136 enum pipe pipe;
30e984df
DV
13137 struct intel_crtc *crtc;
13138 struct intel_encoder *encoder;
35c95375 13139 int i;
30e984df
DV
13140
13141 intel_modeset_readout_hw_state(dev);
24929352 13142
babea61d
JB
13143 /*
13144 * Now that we have the config, copy it to each CRTC struct
13145 * Note that this could go away if we move to using crtc_config
13146 * checking everywhere.
13147 */
d3fcc808 13148 for_each_intel_crtc(dev, crtc) {
d330a953 13149 if (crtc->active && i915.fastboot) {
f6a83288 13150 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13151 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13152 crtc->base.base.id);
13153 drm_mode_debug_printmodeline(&crtc->base.mode);
13154 }
13155 }
13156
24929352 13157 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13158 for_each_intel_encoder(dev, encoder) {
24929352
DV
13159 intel_sanitize_encoder(encoder);
13160 }
13161
13162 for_each_pipe(pipe) {
13163 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13164 intel_sanitize_crtc(crtc);
c0b03411 13165 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13166 }
9a935856 13167
35c95375
DV
13168 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13169 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13170
13171 if (!pll->on || pll->active)
13172 continue;
13173
13174 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13175
13176 pll->disable(dev_priv, pll);
13177 pll->on = false;
13178 }
13179
96f90c54 13180 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13181 ilk_wm_get_hw_state(dev);
13182
45e2b5f6 13183 if (force_restore) {
7d0bc1ea
VS
13184 i915_redisable_vga(dev);
13185
f30da187
DV
13186 /*
13187 * We need to use raw interfaces for restoring state to avoid
13188 * checking (bogus) intermediate states.
13189 */
45e2b5f6 13190 for_each_pipe(pipe) {
b5644d05
JB
13191 struct drm_crtc *crtc =
13192 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13193
13194 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13195 crtc->primary->fb);
45e2b5f6
DV
13196 }
13197 } else {
13198 intel_modeset_update_staged_output_state(dev);
13199 }
8af6cf88
DV
13200
13201 intel_modeset_check_state(dev);
2c7111db
CW
13202}
13203
13204void intel_modeset_gem_init(struct drm_device *dev)
13205{
484b41dd 13206 struct drm_crtc *c;
2ff8fde1 13207 struct drm_i915_gem_object *obj;
484b41dd 13208
ae48434c
ID
13209 mutex_lock(&dev->struct_mutex);
13210 intel_init_gt_powersave(dev);
13211 mutex_unlock(&dev->struct_mutex);
13212
1833b134 13213 intel_modeset_init_hw(dev);
02e792fb
DV
13214
13215 intel_setup_overlay(dev);
484b41dd
JB
13216
13217 /*
13218 * Make sure any fbs we allocated at startup are properly
13219 * pinned & fenced. When we do the allocation it's too early
13220 * for this.
13221 */
13222 mutex_lock(&dev->struct_mutex);
70e1e0ec 13223 for_each_crtc(dev, c) {
2ff8fde1
MR
13224 obj = intel_fb_obj(c->primary->fb);
13225 if (obj == NULL)
484b41dd
JB
13226 continue;
13227
2ff8fde1 13228 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13229 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13230 to_intel_crtc(c)->pipe);
66e514c1
DA
13231 drm_framebuffer_unreference(c->primary->fb);
13232 c->primary->fb = NULL;
484b41dd
JB
13233 }
13234 }
13235 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13236}
13237
4932e2c3
ID
13238void intel_connector_unregister(struct intel_connector *intel_connector)
13239{
13240 struct drm_connector *connector = &intel_connector->base;
13241
13242 intel_panel_destroy_backlight(connector);
34ea3d38 13243 drm_connector_unregister(connector);
4932e2c3
ID
13244}
13245
79e53945
JB
13246void intel_modeset_cleanup(struct drm_device *dev)
13247{
652c393a 13248 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13249 struct drm_connector *connector;
652c393a 13250
fd0c0642
DV
13251 /*
13252 * Interrupts and polling as the first thing to avoid creating havoc.
13253 * Too much stuff here (turning of rps, connectors, ...) would
13254 * experience fancy races otherwise.
13255 */
13256 drm_irq_uninstall(dev);
1d0d343a 13257 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13258 dev_priv->pm._irqs_disabled = true;
13259
fd0c0642
DV
13260 /*
13261 * Due to the hpd irq storm handling the hotplug work can re-arm the
13262 * poll handlers. Hence disable polling after hpd handling is shut down.
13263 */
f87ea761 13264 drm_kms_helper_poll_fini(dev);
fd0c0642 13265
652c393a
JB
13266 mutex_lock(&dev->struct_mutex);
13267
723bfd70
JB
13268 intel_unregister_dsm_handler();
13269
973d04f9 13270 intel_disable_fbc(dev);
e70236a8 13271
8090c6b9 13272 intel_disable_gt_powersave(dev);
0cdab21f 13273
930ebb46
DV
13274 ironlake_teardown_rc6(dev);
13275
69341a5e
KH
13276 mutex_unlock(&dev->struct_mutex);
13277
1630fe75
CW
13278 /* flush any delayed tasks or pending work */
13279 flush_scheduled_work();
13280
db31af1d
JN
13281 /* destroy the backlight and sysfs files before encoders/connectors */
13282 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13283 struct intel_connector *intel_connector;
13284
13285 intel_connector = to_intel_connector(connector);
13286 intel_connector->unregister(intel_connector);
db31af1d 13287 }
d9255d57 13288
79e53945 13289 drm_mode_config_cleanup(dev);
4d7bb011
DV
13290
13291 intel_cleanup_overlay(dev);
ae48434c
ID
13292
13293 mutex_lock(&dev->struct_mutex);
13294 intel_cleanup_gt_powersave(dev);
13295 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13296}
13297
f1c79df3
ZW
13298/*
13299 * Return which encoder is currently attached for connector.
13300 */
df0e9248 13301struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13302{
df0e9248
CW
13303 return &intel_attached_encoder(connector)->base;
13304}
f1c79df3 13305
df0e9248
CW
13306void intel_connector_attach_encoder(struct intel_connector *connector,
13307 struct intel_encoder *encoder)
13308{
13309 connector->encoder = encoder;
13310 drm_mode_connector_attach_encoder(&connector->base,
13311 &encoder->base);
79e53945 13312}
28d52043
DA
13313
13314/*
13315 * set vga decode state - true == enable VGA decode
13316 */
13317int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13318{
13319 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13320 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13321 u16 gmch_ctrl;
13322
75fa041d
CW
13323 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13324 DRM_ERROR("failed to read control word\n");
13325 return -EIO;
13326 }
13327
c0cc8a55
CW
13328 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13329 return 0;
13330
28d52043
DA
13331 if (state)
13332 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13333 else
13334 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13335
13336 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13337 DRM_ERROR("failed to write control word\n");
13338 return -EIO;
13339 }
13340
28d52043
DA
13341 return 0;
13342}
c4a1d9e4 13343
c4a1d9e4 13344struct intel_display_error_state {
ff57f1b0
PZ
13345
13346 u32 power_well_driver;
13347
63b66e5b
CW
13348 int num_transcoders;
13349
c4a1d9e4
CW
13350 struct intel_cursor_error_state {
13351 u32 control;
13352 u32 position;
13353 u32 base;
13354 u32 size;
52331309 13355 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13356
13357 struct intel_pipe_error_state {
ddf9c536 13358 bool power_domain_on;
c4a1d9e4 13359 u32 source;
f301b1e1 13360 u32 stat;
52331309 13361 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13362
13363 struct intel_plane_error_state {
13364 u32 control;
13365 u32 stride;
13366 u32 size;
13367 u32 pos;
13368 u32 addr;
13369 u32 surface;
13370 u32 tile_offset;
52331309 13371 } plane[I915_MAX_PIPES];
63b66e5b
CW
13372
13373 struct intel_transcoder_error_state {
ddf9c536 13374 bool power_domain_on;
63b66e5b
CW
13375 enum transcoder cpu_transcoder;
13376
13377 u32 conf;
13378
13379 u32 htotal;
13380 u32 hblank;
13381 u32 hsync;
13382 u32 vtotal;
13383 u32 vblank;
13384 u32 vsync;
13385 } transcoder[4];
c4a1d9e4
CW
13386};
13387
13388struct intel_display_error_state *
13389intel_display_capture_error_state(struct drm_device *dev)
13390{
fbee40df 13391 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13392 struct intel_display_error_state *error;
63b66e5b
CW
13393 int transcoders[] = {
13394 TRANSCODER_A,
13395 TRANSCODER_B,
13396 TRANSCODER_C,
13397 TRANSCODER_EDP,
13398 };
c4a1d9e4
CW
13399 int i;
13400
63b66e5b
CW
13401 if (INTEL_INFO(dev)->num_pipes == 0)
13402 return NULL;
13403
9d1cb914 13404 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13405 if (error == NULL)
13406 return NULL;
13407
190be112 13408 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13409 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13410
52331309 13411 for_each_pipe(i) {
ddf9c536 13412 error->pipe[i].power_domain_on =
bfafe93a
ID
13413 intel_display_power_enabled_unlocked(dev_priv,
13414 POWER_DOMAIN_PIPE(i));
ddf9c536 13415 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13416 continue;
13417
5efb3e28
VS
13418 error->cursor[i].control = I915_READ(CURCNTR(i));
13419 error->cursor[i].position = I915_READ(CURPOS(i));
13420 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13421
13422 error->plane[i].control = I915_READ(DSPCNTR(i));
13423 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13424 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13425 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13426 error->plane[i].pos = I915_READ(DSPPOS(i));
13427 }
ca291363
PZ
13428 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13429 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13430 if (INTEL_INFO(dev)->gen >= 4) {
13431 error->plane[i].surface = I915_READ(DSPSURF(i));
13432 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13433 }
13434
c4a1d9e4 13435 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13436
3abfce77 13437 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13438 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13439 }
13440
13441 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13442 if (HAS_DDI(dev_priv->dev))
13443 error->num_transcoders++; /* Account for eDP. */
13444
13445 for (i = 0; i < error->num_transcoders; i++) {
13446 enum transcoder cpu_transcoder = transcoders[i];
13447
ddf9c536 13448 error->transcoder[i].power_domain_on =
bfafe93a 13449 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13450 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13451 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13452 continue;
13453
63b66e5b
CW
13454 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13455
13456 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13457 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13458 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13459 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13460 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13461 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13462 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13463 }
13464
13465 return error;
13466}
13467
edc3d884
MK
13468#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13469
c4a1d9e4 13470void
edc3d884 13471intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13472 struct drm_device *dev,
13473 struct intel_display_error_state *error)
13474{
13475 int i;
13476
63b66e5b
CW
13477 if (!error)
13478 return;
13479
edc3d884 13480 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13481 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13482 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13483 error->power_well_driver);
52331309 13484 for_each_pipe(i) {
edc3d884 13485 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13486 err_printf(m, " Power: %s\n",
13487 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13488 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13489 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13490
13491 err_printf(m, "Plane [%d]:\n", i);
13492 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13493 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13494 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13495 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13496 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13497 }
4b71a570 13498 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13499 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13500 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13501 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13502 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13503 }
13504
edc3d884
MK
13505 err_printf(m, "Cursor [%d]:\n", i);
13506 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13507 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13508 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13509 }
63b66e5b
CW
13510
13511 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13512 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13513 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13514 err_printf(m, " Power: %s\n",
13515 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13516 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13517 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13518 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13519 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13520 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13521 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13522 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13523 }
c4a1d9e4 13524}
e2fcdaa9
VS
13525
13526void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13527{
13528 struct intel_crtc *crtc;
13529
13530 for_each_intel_crtc(dev, crtc) {
13531 struct intel_unpin_work *work;
13532 unsigned long irqflags;
13533
13534 spin_lock_irqsave(&dev->event_lock, irqflags);
13535
13536 work = crtc->unpin_work;
13537
13538 if (work && work->event &&
13539 work->event->base.file_priv == file) {
13540 kfree(work->event);
13541 work->event = NULL;
13542 }
13543
13544 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13545 }
13546}