]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Copy the staged connector config to the legacy atomic state
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
56static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
63static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
e7457a9a 85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
83a57153
ACO
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
eb1bfe80
JB
88static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
5b18e57c
DV
92static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 94static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
29407aab 97static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
98static void haswell_set_pipeconf(struct drm_crtc *crtc);
99static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 100static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
d288f65f 102static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 103 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
104static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 106
0e32b39c
DA
107static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108{
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113}
114
79e53945 115typedef struct {
0206e353 116 int min, max;
79e53945
JB
117} intel_range_t;
118
119typedef struct {
0206e353
AJ
120 int dot_limit;
121 int p2_slow, p2_fast;
79e53945
JB
122} intel_p2_t;
123
d4906093
ML
124typedef struct intel_limit intel_limit_t;
125struct intel_limit {
0206e353
AJ
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
d4906093 128};
79e53945 129
d2acd215
DV
130int
131intel_pch_rawclk(struct drm_device *dev)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138}
139
021357ac
CW
140static inline u32 /* units of 100MHz */
141intel_fdi_link_freq(struct drm_device *dev)
142{
8b99e68c
CW
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
021357ac
CW
148}
149
5d536e28 150static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 151 .dot = { .min = 25000, .max = 350000 },
9c333719 152 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 153 .n = { .min = 2, .max = 16 },
0206e353
AJ
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
161};
162
5d536e28
DV
163static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
9c333719 165 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 166 .n = { .min = 2, .max = 16 },
5d536e28
DV
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174};
175
e4b36699 176static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 177 .dot = { .min = 25000, .max = 350000 },
9c333719 178 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 179 .n = { .min = 2, .max = 16 },
0206e353
AJ
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
e4b36699 187};
273e27ca 188
e4b36699 189static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
200};
201
202static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
213};
214
273e27ca 215
e4b36699 216static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
044c7c41 228 },
e4b36699
KP
229};
230
231static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
242};
243
244static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
044c7c41 255 },
e4b36699
KP
256};
257
258static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
044c7c41 269 },
e4b36699
KP
270};
271
f2b115e6 272static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 275 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
273e27ca 278 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
285};
286
f2b115e6 287static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
298};
299
273e27ca
EA
300/* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
b91ad0ec 305static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
316};
317
b91ad0ec 318static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
342};
343
273e27ca 344/* LVDS 100mhz refclk limits. */
b91ad0ec 345static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
0206e353 353 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
356};
357
358static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
0206e353 366 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
369};
370
dc730512 371static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 379 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 380 .n = { .min = 1, .max = 7 },
a0c4da24
JB
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
b99ab663 383 .p1 = { .min = 2, .max = 3 },
5fdc9c49 384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
385};
386
ef9348c8
CML
387static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 395 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401};
402
6b4bf1c4
VS
403static void vlv_clock(int refclk, intel_clock_t *clock)
404{
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
fb03ac01
VS
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
411}
412
e0638cdf
PZ
413/**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
4093561b 416bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 417{
409ee761 418 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
419 struct intel_encoder *encoder;
420
409ee761 421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
422 if (encoder->type == type)
423 return true;
424
425 return false;
426}
427
d0737e1d
ACO
428/**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
434static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
435{
436 struct drm_device *dev = crtc->base.dev;
437 struct intel_encoder *encoder;
438
439 for_each_intel_encoder(dev, encoder)
440 if (encoder->new_crtc == crtc && encoder->type == type)
441 return true;
442
443 return false;
444}
445
409ee761 446static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 447 int refclk)
2c07245f 448{
409ee761 449 struct drm_device *dev = crtc->base.dev;
2c07245f 450 const intel_limit_t *limit;
b91ad0ec 451
d0737e1d 452 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 453 if (intel_is_dual_link_lvds(dev)) {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_dual_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_dual_lvds;
458 } else {
1b894b59 459 if (refclk == 100000)
b91ad0ec
ZW
460 limit = &intel_limits_ironlake_single_lvds_100m;
461 else
462 limit = &intel_limits_ironlake_single_lvds;
463 }
c6bb3538 464 } else
b91ad0ec 465 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
466
467 return limit;
468}
469
409ee761 470static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 471{
409ee761 472 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
473 const intel_limit_t *limit;
474
d0737e1d 475 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 476 if (intel_is_dual_link_lvds(dev))
e4b36699 477 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 478 else
e4b36699 479 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
481 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 482 limit = &intel_limits_g4x_hdmi;
d0737e1d 483 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 484 limit = &intel_limits_g4x_sdvo;
044c7c41 485 } else /* The option is for other outputs */
e4b36699 486 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
487
488 return limit;
489}
490
409ee761 491static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 492{
409ee761 493 struct drm_device *dev = crtc->base.dev;
79e53945
JB
494 const intel_limit_t *limit;
495
bad720ff 496 if (HAS_PCH_SPLIT(dev))
1b894b59 497 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 498 else if (IS_G4X(dev)) {
044c7c41 499 limit = intel_g4x_limit(crtc);
f2b115e6 500 } else if (IS_PINEVIEW(dev)) {
d0737e1d 501 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 502 limit = &intel_limits_pineview_lvds;
2177832f 503 else
f2b115e6 504 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
505 } else if (IS_CHERRYVIEW(dev)) {
506 limit = &intel_limits_chv;
a0c4da24 507 } else if (IS_VALLEYVIEW(dev)) {
dc730512 508 limit = &intel_limits_vlv;
a6c45cf0 509 } else if (!IS_GEN2(dev)) {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
511 limit = &intel_limits_i9xx_lvds;
512 else
513 limit = &intel_limits_i9xx_sdvo;
79e53945 514 } else {
d0737e1d 515 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 516 limit = &intel_limits_i8xx_lvds;
d0737e1d 517 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 518 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
519 else
520 limit = &intel_limits_i8xx_dac;
79e53945
JB
521 }
522 return limit;
523}
524
f2b115e6
AJ
525/* m1 is reserved as 0 in Pineview, n is a ring counter */
526static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 527{
2177832f
SL
528 clock->m = clock->m2 + 2;
529 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
530 if (WARN_ON(clock->n == 0 || clock->p == 0))
531 return;
fb03ac01
VS
532 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
533 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
534}
535
7429e9d4
DV
536static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
537{
538 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
539}
540
ac58c3f0 541static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 542{
7429e9d4 543 clock->m = i9xx_dpll_compute_m(clock);
79e53945 544 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
545 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
546 return;
fb03ac01
VS
547 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
548 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
549}
550
ef9348c8
CML
551static void chv_clock(int refclk, intel_clock_t *clock)
552{
553 clock->m = clock->m1 * clock->m2;
554 clock->p = clock->p1 * clock->p2;
555 if (WARN_ON(clock->n == 0 || clock->p == 0))
556 return;
557 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
558 clock->n << 22);
559 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
560}
561
7c04d1d9 562#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
563/**
564 * Returns whether the given set of divisors are valid for a given refclk with
565 * the given connectors.
566 */
567
1b894b59
CW
568static bool intel_PLL_is_valid(struct drm_device *dev,
569 const intel_limit_t *limit,
570 const intel_clock_t *clock)
79e53945 571{
f01b7962
VS
572 if (clock->n < limit->n.min || limit->n.max < clock->n)
573 INTELPllInvalid("n out of range\n");
79e53945 574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 575 INTELPllInvalid("p1 out of range\n");
79e53945 576 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 577 INTELPllInvalid("m2 out of range\n");
79e53945 578 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 579 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
580
581 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
582 if (clock->m1 <= clock->m2)
583 INTELPllInvalid("m1 <= m2\n");
584
585 if (!IS_VALLEYVIEW(dev)) {
586 if (clock->p < limit->p.min || limit->p.max < clock->p)
587 INTELPllInvalid("p out of range\n");
588 if (clock->m < limit->m.min || limit->m.max < clock->m)
589 INTELPllInvalid("m out of range\n");
590 }
591
79e53945 592 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 593 INTELPllInvalid("vco out of range\n");
79e53945
JB
594 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
595 * connector, etc., rather than just a single range.
596 */
597 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 598 INTELPllInvalid("dot out of range\n");
79e53945
JB
599
600 return true;
601}
602
d4906093 603static bool
a919ff14 604i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
605 int target, int refclk, intel_clock_t *match_clock,
606 intel_clock_t *best_clock)
79e53945 607{
a919ff14 608 struct drm_device *dev = crtc->base.dev;
79e53945 609 intel_clock_t clock;
79e53945
JB
610 int err = target;
611
d0737e1d 612 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 613 /*
a210b028
DV
614 * For LVDS just rely on its current settings for dual-channel.
615 * We haven't figured out how to reliably set up different
616 * single/dual channel state, if we even can.
79e53945 617 */
1974cad0 618 if (intel_is_dual_link_lvds(dev))
79e53945
JB
619 clock.p2 = limit->p2.p2_fast;
620 else
621 clock.p2 = limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 clock.p2 = limit->p2.p2_slow;
625 else
626 clock.p2 = limit->p2.p2_fast;
627 }
628
0206e353 629 memset(best_clock, 0, sizeof(*best_clock));
79e53945 630
42158660
ZY
631 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632 clock.m1++) {
633 for (clock.m2 = limit->m2.min;
634 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 635 if (clock.m2 >= clock.m1)
42158660
ZY
636 break;
637 for (clock.n = limit->n.min;
638 clock.n <= limit->n.max; clock.n++) {
639 for (clock.p1 = limit->p1.min;
640 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
641 int this_err;
642
ac58c3f0
DV
643 i9xx_clock(refclk, &clock);
644 if (!intel_PLL_is_valid(dev, limit,
645 &clock))
646 continue;
647 if (match_clock &&
648 clock.p != match_clock->p)
649 continue;
650
651 this_err = abs(clock.dot - target);
652 if (this_err < err) {
653 *best_clock = clock;
654 err = this_err;
655 }
656 }
657 }
658 }
659 }
660
661 return (err != target);
662}
663
664static bool
a919ff14 665pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
666 int target, int refclk, intel_clock_t *match_clock,
667 intel_clock_t *best_clock)
79e53945 668{
a919ff14 669 struct drm_device *dev = crtc->base.dev;
79e53945 670 intel_clock_t clock;
79e53945
JB
671 int err = target;
672
d0737e1d 673 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 674 /*
a210b028
DV
675 * For LVDS just rely on its current settings for dual-channel.
676 * We haven't figured out how to reliably set up different
677 * single/dual channel state, if we even can.
79e53945 678 */
1974cad0 679 if (intel_is_dual_link_lvds(dev))
79e53945
JB
680 clock.p2 = limit->p2.p2_fast;
681 else
682 clock.p2 = limit->p2.p2_slow;
683 } else {
684 if (target < limit->p2.dot_limit)
685 clock.p2 = limit->p2.p2_slow;
686 else
687 clock.p2 = limit->p2.p2_fast;
688 }
689
0206e353 690 memset(best_clock, 0, sizeof(*best_clock));
79e53945 691
42158660
ZY
692 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
693 clock.m1++) {
694 for (clock.m2 = limit->m2.min;
695 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
696 for (clock.n = limit->n.min;
697 clock.n <= limit->n.max; clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
700 int this_err;
701
ac58c3f0 702 pineview_clock(refclk, &clock);
1b894b59
CW
703 if (!intel_PLL_is_valid(dev, limit,
704 &clock))
79e53945 705 continue;
cec2f356
SP
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
79e53945
JB
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721}
722
d4906093 723static bool
a919ff14 724g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
725 int target, int refclk, intel_clock_t *match_clock,
726 intel_clock_t *best_clock)
d4906093 727{
a919ff14 728 struct drm_device *dev = crtc->base.dev;
d4906093
ML
729 intel_clock_t clock;
730 int max_n;
731 bool found;
6ba770dc
AJ
732 /* approximately equals target * 0.00585 */
733 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
734 found = false;
735
d0737e1d 736 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 737 if (intel_is_dual_link_lvds(dev))
d4906093
ML
738 clock.p2 = limit->p2.p2_fast;
739 else
740 clock.p2 = limit->p2.p2_slow;
741 } else {
742 if (target < limit->p2.dot_limit)
743 clock.p2 = limit->p2.p2_slow;
744 else
745 clock.p2 = limit->p2.p2_fast;
746 }
747
748 memset(best_clock, 0, sizeof(*best_clock));
749 max_n = limit->n.max;
f77f13e2 750 /* based on hardware requirement, prefer smaller n to precision */
d4906093 751 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 752 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
753 for (clock.m1 = limit->m1.max;
754 clock.m1 >= limit->m1.min; clock.m1--) {
755 for (clock.m2 = limit->m2.max;
756 clock.m2 >= limit->m2.min; clock.m2--) {
757 for (clock.p1 = limit->p1.max;
758 clock.p1 >= limit->p1.min; clock.p1--) {
759 int this_err;
760
ac58c3f0 761 i9xx_clock(refclk, &clock);
1b894b59
CW
762 if (!intel_PLL_is_valid(dev, limit,
763 &clock))
d4906093 764 continue;
1b894b59
CW
765
766 this_err = abs(clock.dot - target);
d4906093
ML
767 if (this_err < err_most) {
768 *best_clock = clock;
769 err_most = this_err;
770 max_n = clock.n;
771 found = true;
772 }
773 }
774 }
775 }
776 }
2c07245f
ZW
777 return found;
778}
779
d5dd62bd
ID
780/*
781 * Check if the calculated PLL configuration is more optimal compared to the
782 * best configuration and error found so far. Return the calculated error.
783 */
784static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
785 const intel_clock_t *calculated_clock,
786 const intel_clock_t *best_clock,
787 unsigned int best_error_ppm,
788 unsigned int *error_ppm)
789{
9ca3ba01
ID
790 /*
791 * For CHV ignore the error and consider only the P value.
792 * Prefer a bigger P value based on HW requirements.
793 */
794 if (IS_CHERRYVIEW(dev)) {
795 *error_ppm = 0;
796
797 return calculated_clock->p > best_clock->p;
798 }
799
24be4e46
ID
800 if (WARN_ON_ONCE(!target_freq))
801 return false;
802
d5dd62bd
ID
803 *error_ppm = div_u64(1000000ULL *
804 abs(target_freq - calculated_clock->dot),
805 target_freq);
806 /*
807 * Prefer a better P value over a better (smaller) error if the error
808 * is small. Ensure this preference for future configurations too by
809 * setting the error to 0.
810 */
811 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
812 *error_ppm = 0;
813
814 return true;
815 }
816
817 return *error_ppm + 10 < best_error_ppm;
818}
819
a0c4da24 820static bool
a919ff14 821vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
a0c4da24 824{
a919ff14 825 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 826 intel_clock_t clock;
69e4f900 827 unsigned int bestppm = 1000000;
27e639bf
VS
828 /* min update 19.2 MHz */
829 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 830 bool found = false;
a0c4da24 831
6b4bf1c4
VS
832 target *= 5; /* fast clock */
833
834 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
835
836 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 837 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 838 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 839 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 841 clock.p = clock.p1 * clock.p2;
a0c4da24 842 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 843 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 844 unsigned int ppm;
69e4f900 845
6b4bf1c4
VS
846 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
847 refclk * clock.m1);
848
849 vlv_clock(refclk, &clock);
43b0ac53 850
f01b7962
VS
851 if (!intel_PLL_is_valid(dev, limit,
852 &clock))
43b0ac53
VS
853 continue;
854
d5dd62bd
ID
855 if (!vlv_PLL_is_optimal(dev, target,
856 &clock,
857 best_clock,
858 bestppm, &ppm))
859 continue;
6b4bf1c4 860
d5dd62bd
ID
861 *best_clock = clock;
862 bestppm = ppm;
863 found = true;
a0c4da24
JB
864 }
865 }
866 }
867 }
a0c4da24 868
49e497ef 869 return found;
a0c4da24 870}
a4fc5ed6 871
ef9348c8 872static bool
a919ff14 873chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
874 int target, int refclk, intel_clock_t *match_clock,
875 intel_clock_t *best_clock)
876{
a919ff14 877 struct drm_device *dev = crtc->base.dev;
9ca3ba01 878 unsigned int best_error_ppm;
ef9348c8
CML
879 intel_clock_t clock;
880 uint64_t m2;
881 int found = false;
882
883 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 884 best_error_ppm = 1000000;
ef9348c8
CML
885
886 /*
887 * Based on hardware doc, the n always set to 1, and m1 always
888 * set to 2. If requires to support 200Mhz refclk, we need to
889 * revisit this because n may not 1 anymore.
890 */
891 clock.n = 1, clock.m1 = 2;
892 target *= 5; /* fast clock */
893
894 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895 for (clock.p2 = limit->p2.p2_fast;
896 clock.p2 >= limit->p2.p2_slow;
897 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 898 unsigned int error_ppm;
ef9348c8
CML
899
900 clock.p = clock.p1 * clock.p2;
901
902 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
903 clock.n) << 22, refclk * clock.m1);
904
905 if (m2 > INT_MAX/clock.m1)
906 continue;
907
908 clock.m2 = m2;
909
910 chv_clock(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit, &clock))
913 continue;
914
9ca3ba01
ID
915 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
916 best_error_ppm, &error_ppm))
917 continue;
918
919 *best_clock = clock;
920 best_error_ppm = error_ppm;
921 found = true;
ef9348c8
CML
922 }
923 }
924
925 return found;
926}
927
20ddf665
VS
928bool intel_crtc_active(struct drm_crtc *crtc)
929{
930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931
932 /* Be paranoid as we can arrive here with only partial
933 * state retrieved from the hardware during setup.
934 *
241bfc38 935 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
936 * as Haswell has gained clock readout/fastboot support.
937 *
66e514c1 938 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 939 * properly reconstruct framebuffers.
c3d1f436
MR
940 *
941 * FIXME: The intel_crtc->active here should be switched to
942 * crtc->state->active once we have proper CRTC states wired up
943 * for atomic.
20ddf665 944 */
c3d1f436 945 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 946 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
947}
948
a5c961d1
PZ
949enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
950 enum pipe pipe)
951{
952 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
954
6e3c9717 955 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
956}
957
fbf49ea2
VS
958static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
959{
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 reg = PIPEDSL(pipe);
962 u32 line1, line2;
963 u32 line_mask;
964
965 if (IS_GEN2(dev))
966 line_mask = DSL_LINEMASK_GEN2;
967 else
968 line_mask = DSL_LINEMASK_GEN3;
969
970 line1 = I915_READ(reg) & line_mask;
971 mdelay(5);
972 line2 = I915_READ(reg) & line_mask;
973
974 return line1 == line2;
975}
976
ab7ad7f6
KP
977/*
978 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 979 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
980 *
981 * After disabling a pipe, we can't wait for vblank in the usual way,
982 * spinning on the vblank interrupt status bit, since we won't actually
983 * see an interrupt when the pipe is disabled.
984 *
ab7ad7f6
KP
985 * On Gen4 and above:
986 * wait for the pipe register state bit to turn off
987 *
988 * Otherwise:
989 * wait for the display line value to settle (it usually
990 * ends up stopping at the start of the next frame).
58e10eb9 991 *
9d0498a2 992 */
575f7ab7 993static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 994{
575f7ab7 995 struct drm_device *dev = crtc->base.dev;
9d0498a2 996 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 997 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 998 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
999
1000 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1001 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1002
1003 /* Wait for the Pipe State to go off */
58e10eb9
CW
1004 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1005 100))
284637d9 1006 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1007 } else {
ab7ad7f6 1008 /* Wait for the display line to settle */
fbf49ea2 1009 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1010 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1011 }
79e53945
JB
1012}
1013
b0ea7d37
DL
1014/*
1015 * ibx_digital_port_connected - is the specified port connected?
1016 * @dev_priv: i915 private structure
1017 * @port: the port to test
1018 *
1019 * Returns true if @port is connected, false otherwise.
1020 */
1021bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1022 struct intel_digital_port *port)
1023{
1024 u32 bit;
1025
c36346e3 1026 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1027 switch (port->port) {
c36346e3
DL
1028 case PORT_B:
1029 bit = SDE_PORTB_HOTPLUG;
1030 break;
1031 case PORT_C:
1032 bit = SDE_PORTC_HOTPLUG;
1033 break;
1034 case PORT_D:
1035 bit = SDE_PORTD_HOTPLUG;
1036 break;
1037 default:
1038 return true;
1039 }
1040 } else {
eba905b2 1041 switch (port->port) {
c36346e3
DL
1042 case PORT_B:
1043 bit = SDE_PORTB_HOTPLUG_CPT;
1044 break;
1045 case PORT_C:
1046 bit = SDE_PORTC_HOTPLUG_CPT;
1047 break;
1048 case PORT_D:
1049 bit = SDE_PORTD_HOTPLUG_CPT;
1050 break;
1051 default:
1052 return true;
1053 }
b0ea7d37
DL
1054 }
1055
1056 return I915_READ(SDEISR) & bit;
1057}
1058
b24e7179
JB
1059static const char *state_string(bool enabled)
1060{
1061 return enabled ? "on" : "off";
1062}
1063
1064/* Only for pre-ILK configs */
55607e8a
DV
1065void assert_pll(struct drm_i915_private *dev_priv,
1066 enum pipe pipe, bool state)
b24e7179
JB
1067{
1068 int reg;
1069 u32 val;
1070 bool cur_state;
1071
1072 reg = DPLL(pipe);
1073 val = I915_READ(reg);
1074 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1075 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1076 "PLL state assertion failure (expected %s, current %s)\n",
1077 state_string(state), state_string(cur_state));
1078}
b24e7179 1079
23538ef1
JN
1080/* XXX: the dsi pll is shared between MIPI DSI ports */
1081static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1082{
1083 u32 val;
1084 bool cur_state;
1085
1086 mutex_lock(&dev_priv->dpio_lock);
1087 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1088 mutex_unlock(&dev_priv->dpio_lock);
1089
1090 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1091 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1092 "DSI PLL state assertion failure (expected %s, current %s)\n",
1093 state_string(state), state_string(cur_state));
1094}
1095#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1096#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1097
55607e8a 1098struct intel_shared_dpll *
e2b78267
DV
1099intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1100{
1101 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1102
6e3c9717 1103 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1104 return NULL;
1105
6e3c9717 1106 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1107}
1108
040484af 1109/* For ILK+ */
55607e8a
DV
1110void assert_shared_dpll(struct drm_i915_private *dev_priv,
1111 struct intel_shared_dpll *pll,
1112 bool state)
040484af 1113{
040484af 1114 bool cur_state;
5358901f 1115 struct intel_dpll_hw_state hw_state;
040484af 1116
92b27b08 1117 if (WARN (!pll,
46edb027 1118 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1119 return;
ee7b9f93 1120
5358901f 1121 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1122 I915_STATE_WARN(cur_state != state,
5358901f
DV
1123 "%s assertion failure (expected %s, current %s)\n",
1124 pll->name, state_string(state), state_string(cur_state));
040484af 1125}
040484af
JB
1126
1127static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1128 enum pipe pipe, bool state)
1129{
1130 int reg;
1131 u32 val;
1132 bool cur_state;
ad80a810
PZ
1133 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1134 pipe);
040484af 1135
affa9354
PZ
1136 if (HAS_DDI(dev_priv->dev)) {
1137 /* DDI does not have a specific FDI_TX register */
ad80a810 1138 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1139 val = I915_READ(reg);
ad80a810 1140 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1141 } else {
1142 reg = FDI_TX_CTL(pipe);
1143 val = I915_READ(reg);
1144 cur_state = !!(val & FDI_TX_ENABLE);
1145 }
e2c719b7 1146 I915_STATE_WARN(cur_state != state,
040484af
JB
1147 "FDI TX state assertion failure (expected %s, current %s)\n",
1148 state_string(state), state_string(cur_state));
1149}
1150#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1151#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1152
1153static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1154 enum pipe pipe, bool state)
1155{
1156 int reg;
1157 u32 val;
1158 bool cur_state;
1159
d63fa0dc
PZ
1160 reg = FDI_RX_CTL(pipe);
1161 val = I915_READ(reg);
1162 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1163 I915_STATE_WARN(cur_state != state,
040484af
JB
1164 "FDI RX state assertion failure (expected %s, current %s)\n",
1165 state_string(state), state_string(cur_state));
1166}
1167#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1168#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169
1170static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1171 enum pipe pipe)
1172{
1173 int reg;
1174 u32 val;
1175
1176 /* ILK FDI PLL is always enabled */
3d13ef2e 1177 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1178 return;
1179
bf507ef7 1180 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1181 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1182 return;
1183
040484af
JB
1184 reg = FDI_TX_CTL(pipe);
1185 val = I915_READ(reg);
e2c719b7 1186 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1187}
1188
55607e8a
DV
1189void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1190 enum pipe pipe, bool state)
040484af
JB
1191{
1192 int reg;
1193 u32 val;
55607e8a 1194 bool cur_state;
040484af
JB
1195
1196 reg = FDI_RX_CTL(pipe);
1197 val = I915_READ(reg);
55607e8a 1198 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1199 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1200 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
040484af
JB
1202}
1203
b680c37a
DV
1204void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1205 enum pipe pipe)
ea0760cf 1206{
bedd4dba
JN
1207 struct drm_device *dev = dev_priv->dev;
1208 int pp_reg;
ea0760cf
JB
1209 u32 val;
1210 enum pipe panel_pipe = PIPE_A;
0de3b485 1211 bool locked = true;
ea0760cf 1212
bedd4dba
JN
1213 if (WARN_ON(HAS_DDI(dev)))
1214 return;
1215
1216 if (HAS_PCH_SPLIT(dev)) {
1217 u32 port_sel;
1218
ea0760cf 1219 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1220 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1221
1222 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1223 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1225 /* XXX: else fix for eDP */
1226 } else if (IS_VALLEYVIEW(dev)) {
1227 /* presumably write lock depends on pipe, not port select */
1228 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1229 panel_pipe = pipe;
ea0760cf
JB
1230 } else {
1231 pp_reg = PP_CONTROL;
bedd4dba
JN
1232 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1233 panel_pipe = PIPE_B;
ea0760cf
JB
1234 }
1235
1236 val = I915_READ(pp_reg);
1237 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1238 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1239 locked = false;
1240
e2c719b7 1241 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1242 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1243 pipe_name(pipe));
ea0760cf
JB
1244}
1245
93ce0ba6
JN
1246static void assert_cursor(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
1248{
1249 struct drm_device *dev = dev_priv->dev;
1250 bool cur_state;
1251
d9d82081 1252 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1253 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1254 else
5efb3e28 1255 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1256
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1258 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1259 pipe_name(pipe), state_string(state), state_string(cur_state));
1260}
1261#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1262#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1263
b840d907
JB
1264void assert_pipe(struct drm_i915_private *dev_priv,
1265 enum pipe pipe, bool state)
b24e7179
JB
1266{
1267 int reg;
1268 u32 val;
63d7bbe9 1269 bool cur_state;
702e7a56
PZ
1270 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1271 pipe);
b24e7179 1272
b6b5d049
VS
1273 /* if we need the pipe quirk it must be always on */
1274 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1275 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1276 state = true;
1277
f458ebbc 1278 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1279 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1280 cur_state = false;
1281 } else {
1282 reg = PIPECONF(cpu_transcoder);
1283 val = I915_READ(reg);
1284 cur_state = !!(val & PIPECONF_ENABLE);
1285 }
1286
e2c719b7 1287 I915_STATE_WARN(cur_state != state,
63d7bbe9 1288 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1289 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1290}
1291
931872fc
CW
1292static void assert_plane(struct drm_i915_private *dev_priv,
1293 enum plane plane, bool state)
b24e7179
JB
1294{
1295 int reg;
1296 u32 val;
931872fc 1297 bool cur_state;
b24e7179
JB
1298
1299 reg = DSPCNTR(plane);
1300 val = I915_READ(reg);
931872fc 1301 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1302 I915_STATE_WARN(cur_state != state,
931872fc
CW
1303 "plane %c assertion failure (expected %s, current %s)\n",
1304 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1305}
1306
931872fc
CW
1307#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1308#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1309
b24e7179
JB
1310static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312{
653e1026 1313 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1314 int reg, i;
1315 u32 val;
1316 int cur_pipe;
1317
653e1026
VS
1318 /* Primary planes are fixed to pipes on gen4+ */
1319 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1320 reg = DSPCNTR(pipe);
1321 val = I915_READ(reg);
e2c719b7 1322 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1323 "plane %c assertion failure, should be disabled but not\n",
1324 plane_name(pipe));
19ec1358 1325 return;
28c05794 1326 }
19ec1358 1327
b24e7179 1328 /* Need to check both planes against the pipe */
055e393f 1329 for_each_pipe(dev_priv, i) {
b24e7179
JB
1330 reg = DSPCNTR(i);
1331 val = I915_READ(reg);
1332 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1333 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1334 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1335 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1336 plane_name(i), pipe_name(pipe));
b24e7179
JB
1337 }
1338}
1339
19332d7a
JB
1340static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe)
1342{
20674eef 1343 struct drm_device *dev = dev_priv->dev;
1fe47785 1344 int reg, sprite;
19332d7a
JB
1345 u32 val;
1346
7feb8b88 1347 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1348 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1349 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1350 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1351 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1352 sprite, pipe_name(pipe));
1353 }
1354 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1355 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1356 reg = SPCNTR(pipe, sprite);
20674eef 1357 val = I915_READ(reg);
e2c719b7 1358 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1359 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1360 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1361 }
1362 } else if (INTEL_INFO(dev)->gen >= 7) {
1363 reg = SPRCTL(pipe);
19332d7a 1364 val = I915_READ(reg);
e2c719b7 1365 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1366 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1367 plane_name(pipe), pipe_name(pipe));
1368 } else if (INTEL_INFO(dev)->gen >= 5) {
1369 reg = DVSCNTR(pipe);
19332d7a 1370 val = I915_READ(reg);
e2c719b7 1371 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1372 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1373 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1374 }
1375}
1376
08c71e5e
VS
1377static void assert_vblank_disabled(struct drm_crtc *crtc)
1378{
e2c719b7 1379 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1380 drm_crtc_vblank_put(crtc);
1381}
1382
89eff4be 1383static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1384{
1385 u32 val;
1386 bool enabled;
1387
e2c719b7 1388 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1389
92f2584a
JB
1390 val = I915_READ(PCH_DREF_CONTROL);
1391 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1392 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1393 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1394}
1395
ab9412ba
DV
1396static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe)
92f2584a
JB
1398{
1399 int reg;
1400 u32 val;
1401 bool enabled;
1402
ab9412ba 1403 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1404 val = I915_READ(reg);
1405 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1406 I915_STATE_WARN(enabled,
9db4a9c7
JB
1407 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1408 pipe_name(pipe));
92f2584a
JB
1409}
1410
4e634389
KP
1411static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1413{
1414 if ((val & DP_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv->dev)) {
1418 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1419 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1420 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421 return false;
44f37d1f
CML
1422 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424 return false;
f0575e92
KP
1425 } else {
1426 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427 return false;
1428 }
1429 return true;
1430}
1431
1519b995
KP
1432static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433 enum pipe pipe, u32 val)
1434{
dc0fa718 1435 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1436 return false;
1437
1438 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1439 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1440 return false;
44f37d1f
CML
1441 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1442 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443 return false;
1519b995 1444 } else {
dc0fa718 1445 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1446 return false;
1447 }
1448 return true;
1449}
1450
1451static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453{
1454 if ((val & LVDS_PORT_EN) == 0)
1455 return false;
1456
1457 if (HAS_PCH_CPT(dev_priv->dev)) {
1458 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459 return false;
1460 } else {
1461 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462 return false;
1463 }
1464 return true;
1465}
1466
1467static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468 enum pipe pipe, u32 val)
1469{
1470 if ((val & ADPA_DAC_ENABLE) == 0)
1471 return false;
1472 if (HAS_PCH_CPT(dev_priv->dev)) {
1473 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474 return false;
1475 } else {
1476 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477 return false;
1478 }
1479 return true;
1480}
1481
291906f1 1482static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1483 enum pipe pipe, int reg, u32 port_sel)
291906f1 1484{
47a05eca 1485 u32 val = I915_READ(reg);
e2c719b7 1486 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1487 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1488 reg, pipe_name(pipe));
de9a35ab 1489
e2c719b7 1490 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1491 && (val & DP_PIPEB_SELECT),
de9a35ab 1492 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1493}
1494
1495static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, int reg)
1497{
47a05eca 1498 u32 val = I915_READ(reg);
e2c719b7 1499 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1500 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1501 reg, pipe_name(pipe));
de9a35ab 1502
e2c719b7 1503 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1504 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1505 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1506}
1507
1508static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe)
1510{
1511 int reg;
1512 u32 val;
291906f1 1513
f0575e92
KP
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1517
1518 reg = PCH_ADPA;
1519 val = I915_READ(reg);
e2c719b7 1520 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1521 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1522 pipe_name(pipe));
291906f1
JB
1523
1524 reg = PCH_LVDS;
1525 val = I915_READ(reg);
e2c719b7 1526 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1527 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1528 pipe_name(pipe));
291906f1 1529
e2debe91
PZ
1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1531 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1532 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1533}
1534
40e9cf64
JB
1535static void intel_init_dpio(struct drm_device *dev)
1536{
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538
1539 if (!IS_VALLEYVIEW(dev))
1540 return;
1541
a09caddd
CML
1542 /*
1543 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1544 * CHV x1 PHY (DP/HDMI D)
1545 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1546 */
1547 if (IS_CHERRYVIEW(dev)) {
1548 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1549 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1550 } else {
1551 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1552 }
5382f5f3
JB
1553}
1554
d288f65f 1555static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1556 const struct intel_crtc_state *pipe_config)
87442f73 1557{
426115cf
DV
1558 struct drm_device *dev = crtc->base.dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 int reg = DPLL(crtc->pipe);
d288f65f 1561 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1562
426115cf 1563 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1564
1565 /* No really, not for ILK+ */
1566 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1567
1568 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1569 if (IS_MOBILE(dev_priv->dev))
426115cf 1570 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1571
426115cf
DV
1572 I915_WRITE(reg, dpll);
1573 POSTING_READ(reg);
1574 udelay(150);
1575
1576 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1577 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1578
d288f65f 1579 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1580 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1581
1582 /* We do this three times for luck */
426115cf 1583 I915_WRITE(reg, dpll);
87442f73
DV
1584 POSTING_READ(reg);
1585 udelay(150); /* wait for warmup */
426115cf 1586 I915_WRITE(reg, dpll);
87442f73
DV
1587 POSTING_READ(reg);
1588 udelay(150); /* wait for warmup */
426115cf 1589 I915_WRITE(reg, dpll);
87442f73
DV
1590 POSTING_READ(reg);
1591 udelay(150); /* wait for warmup */
1592}
1593
d288f65f 1594static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1595 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1596{
1597 struct drm_device *dev = crtc->base.dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 int pipe = crtc->pipe;
1600 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1601 u32 tmp;
1602
1603 assert_pipe_disabled(dev_priv, crtc->pipe);
1604
1605 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1606
1607 mutex_lock(&dev_priv->dpio_lock);
1608
1609 /* Enable back the 10bit clock to display controller */
1610 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1611 tmp |= DPIO_DCLKP_EN;
1612 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1613
1614 /*
1615 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1616 */
1617 udelay(1);
1618
1619 /* Enable PLL */
d288f65f 1620 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1621
1622 /* Check PLL is locked */
a11b0703 1623 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1624 DRM_ERROR("PLL %d failed to lock\n", pipe);
1625
a11b0703 1626 /* not sure when this should be written */
d288f65f 1627 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1628 POSTING_READ(DPLL_MD(pipe));
1629
9d556c99
CML
1630 mutex_unlock(&dev_priv->dpio_lock);
1631}
1632
1c4e0274
VS
1633static int intel_num_dvo_pipes(struct drm_device *dev)
1634{
1635 struct intel_crtc *crtc;
1636 int count = 0;
1637
1638 for_each_intel_crtc(dev, crtc)
1639 count += crtc->active &&
409ee761 1640 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1641
1642 return count;
1643}
1644
66e3d5c0 1645static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1646{
66e3d5c0
DV
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int reg = DPLL(crtc->pipe);
6e3c9717 1650 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1651
66e3d5c0 1652 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1653
63d7bbe9 1654 /* No really, not for ILK+ */
3d13ef2e 1655 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1656
1657 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1658 if (IS_MOBILE(dev) && !IS_I830(dev))
1659 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1660
1c4e0274
VS
1661 /* Enable DVO 2x clock on both PLLs if necessary */
1662 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1663 /*
1664 * It appears to be important that we don't enable this
1665 * for the current pipe before otherwise configuring the
1666 * PLL. No idea how this should be handled if multiple
1667 * DVO outputs are enabled simultaneosly.
1668 */
1669 dpll |= DPLL_DVO_2X_MODE;
1670 I915_WRITE(DPLL(!crtc->pipe),
1671 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1672 }
66e3d5c0
DV
1673
1674 /* Wait for the clocks to stabilize. */
1675 POSTING_READ(reg);
1676 udelay(150);
1677
1678 if (INTEL_INFO(dev)->gen >= 4) {
1679 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1680 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1681 } else {
1682 /* The pixel multiplier can only be updated once the
1683 * DPLL is enabled and the clocks are stable.
1684 *
1685 * So write it again.
1686 */
1687 I915_WRITE(reg, dpll);
1688 }
63d7bbe9
JB
1689
1690 /* We do this three times for luck */
66e3d5c0 1691 I915_WRITE(reg, dpll);
63d7bbe9
JB
1692 POSTING_READ(reg);
1693 udelay(150); /* wait for warmup */
66e3d5c0 1694 I915_WRITE(reg, dpll);
63d7bbe9
JB
1695 POSTING_READ(reg);
1696 udelay(150); /* wait for warmup */
66e3d5c0 1697 I915_WRITE(reg, dpll);
63d7bbe9
JB
1698 POSTING_READ(reg);
1699 udelay(150); /* wait for warmup */
1700}
1701
1702/**
50b44a44 1703 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1704 * @dev_priv: i915 private structure
1705 * @pipe: pipe PLL to disable
1706 *
1707 * Disable the PLL for @pipe, making sure the pipe is off first.
1708 *
1709 * Note! This is for pre-ILK only.
1710 */
1c4e0274 1711static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1712{
1c4e0274
VS
1713 struct drm_device *dev = crtc->base.dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 enum pipe pipe = crtc->pipe;
1716
1717 /* Disable DVO 2x clock on both PLLs if necessary */
1718 if (IS_I830(dev) &&
409ee761 1719 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1720 intel_num_dvo_pipes(dev) == 1) {
1721 I915_WRITE(DPLL(PIPE_B),
1722 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1723 I915_WRITE(DPLL(PIPE_A),
1724 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1725 }
1726
b6b5d049
VS
1727 /* Don't disable pipe or pipe PLLs if needed */
1728 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1729 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1730 return;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
50b44a44
DV
1735 I915_WRITE(DPLL(pipe), 0);
1736 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1737}
1738
f6071166
JB
1739static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740{
1741 u32 val = 0;
1742
1743 /* Make sure the pipe isn't still relying on us */
1744 assert_pipe_disabled(dev_priv, pipe);
1745
e5cbfbfb
ID
1746 /*
1747 * Leave integrated clock source and reference clock enabled for pipe B.
1748 * The latter is needed for VGA hotplug / manual detection.
1749 */
f6071166 1750 if (pipe == PIPE_B)
e5cbfbfb 1751 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1752 I915_WRITE(DPLL(pipe), val);
1753 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1754
1755}
1756
1757static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1758{
d752048d 1759 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1760 u32 val;
1761
a11b0703
VS
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1764
a11b0703 1765 /* Set PLL en = 0 */
d17ec4ce 1766 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1767 if (pipe != PIPE_A)
1768 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1769 I915_WRITE(DPLL(pipe), val);
1770 POSTING_READ(DPLL(pipe));
d752048d
VS
1771
1772 mutex_lock(&dev_priv->dpio_lock);
1773
1774 /* Disable 10bit clock to display controller */
1775 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1776 val &= ~DPIO_DCLKP_EN;
1777 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1778
61407f6d
VS
1779 /* disable left/right clock distribution */
1780 if (pipe != PIPE_B) {
1781 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1782 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1783 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1784 } else {
1785 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1786 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1787 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1788 }
1789
d752048d 1790 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1791}
1792
e4607fcf
CML
1793void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1794 struct intel_digital_port *dport)
89b667f8
JB
1795{
1796 u32 port_mask;
00fc31b7 1797 int dpll_reg;
89b667f8 1798
e4607fcf
CML
1799 switch (dport->port) {
1800 case PORT_B:
89b667f8 1801 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1802 dpll_reg = DPLL(0);
e4607fcf
CML
1803 break;
1804 case PORT_C:
89b667f8 1805 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1806 dpll_reg = DPLL(0);
1807 break;
1808 case PORT_D:
1809 port_mask = DPLL_PORTD_READY_MASK;
1810 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1811 break;
1812 default:
1813 BUG();
1814 }
89b667f8 1815
00fc31b7 1816 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1817 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1818 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1819}
1820
b14b1055
DV
1821static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1822{
1823 struct drm_device *dev = crtc->base.dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1826
be19f0ff
CW
1827 if (WARN_ON(pll == NULL))
1828 return;
1829
3e369b76 1830 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1831 if (pll->active == 0) {
1832 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1833 WARN_ON(pll->on);
1834 assert_shared_dpll_disabled(dev_priv, pll);
1835
1836 pll->mode_set(dev_priv, pll);
1837 }
1838}
1839
92f2584a 1840/**
85b3894f 1841 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1842 * @dev_priv: i915 private structure
1843 * @pipe: pipe PLL to enable
1844 *
1845 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1846 * drives the transcoder clock.
1847 */
85b3894f 1848static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1849{
3d13ef2e
DL
1850 struct drm_device *dev = crtc->base.dev;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1852 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1853
87a875bb 1854 if (WARN_ON(pll == NULL))
48da64a8
CW
1855 return;
1856
3e369b76 1857 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1858 return;
ee7b9f93 1859
74dd6928 1860 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1861 pll->name, pll->active, pll->on,
e2b78267 1862 crtc->base.base.id);
92f2584a 1863
cdbd2316
DV
1864 if (pll->active++) {
1865 WARN_ON(!pll->on);
e9d6944e 1866 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1867 return;
1868 }
f4a091c7 1869 WARN_ON(pll->on);
ee7b9f93 1870
bd2bb1b9
PZ
1871 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1872
46edb027 1873 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1874 pll->enable(dev_priv, pll);
ee7b9f93 1875 pll->on = true;
92f2584a
JB
1876}
1877
f6daaec2 1878static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1879{
3d13ef2e
DL
1880 struct drm_device *dev = crtc->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1882 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1883
92f2584a 1884 /* PCH only available on ILK+ */
3d13ef2e 1885 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1886 if (WARN_ON(pll == NULL))
ee7b9f93 1887 return;
92f2584a 1888
3e369b76 1889 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1890 return;
7a419866 1891
46edb027
DV
1892 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1893 pll->name, pll->active, pll->on,
e2b78267 1894 crtc->base.base.id);
7a419866 1895
48da64a8 1896 if (WARN_ON(pll->active == 0)) {
e9d6944e 1897 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1898 return;
1899 }
1900
e9d6944e 1901 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1902 WARN_ON(!pll->on);
cdbd2316 1903 if (--pll->active)
7a419866 1904 return;
ee7b9f93 1905
46edb027 1906 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1907 pll->disable(dev_priv, pll);
ee7b9f93 1908 pll->on = false;
bd2bb1b9
PZ
1909
1910 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1911}
1912
b8a4f404
PZ
1913static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1914 enum pipe pipe)
040484af 1915{
23670b32 1916 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1917 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1919 uint32_t reg, val, pipeconf_val;
040484af
JB
1920
1921 /* PCH only available on ILK+ */
55522f37 1922 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1923
1924 /* Make sure PCH DPLL is enabled */
e72f9fbf 1925 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1926 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1927
1928 /* FDI must be feeding us bits for PCH ports */
1929 assert_fdi_tx_enabled(dev_priv, pipe);
1930 assert_fdi_rx_enabled(dev_priv, pipe);
1931
23670b32
DV
1932 if (HAS_PCH_CPT(dev)) {
1933 /* Workaround: Set the timing override bit before enabling the
1934 * pch transcoder. */
1935 reg = TRANS_CHICKEN2(pipe);
1936 val = I915_READ(reg);
1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938 I915_WRITE(reg, val);
59c859d6 1939 }
23670b32 1940
ab9412ba 1941 reg = PCH_TRANSCONF(pipe);
040484af 1942 val = I915_READ(reg);
5f7f726d 1943 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1944
1945 if (HAS_PCH_IBX(dev_priv->dev)) {
1946 /*
1947 * make the BPC in transcoder be consistent with
1948 * that in pipeconf reg.
1949 */
dfd07d72
DV
1950 val &= ~PIPECONF_BPC_MASK;
1951 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1952 }
5f7f726d
PZ
1953
1954 val &= ~TRANS_INTERLACE_MASK;
1955 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1956 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1957 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1958 val |= TRANS_LEGACY_INTERLACED_ILK;
1959 else
1960 val |= TRANS_INTERLACED;
5f7f726d
PZ
1961 else
1962 val |= TRANS_PROGRESSIVE;
1963
040484af
JB
1964 I915_WRITE(reg, val | TRANS_ENABLE);
1965 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1966 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1967}
1968
8fb033d7 1969static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1970 enum transcoder cpu_transcoder)
040484af 1971{
8fb033d7 1972 u32 val, pipeconf_val;
8fb033d7
PZ
1973
1974 /* PCH only available on ILK+ */
55522f37 1975 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1976
8fb033d7 1977 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1978 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1979 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1980
223a6fdf
PZ
1981 /* Workaround: set timing override bit. */
1982 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1983 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1984 I915_WRITE(_TRANSA_CHICKEN2, val);
1985
25f3ef11 1986 val = TRANS_ENABLE;
937bb610 1987 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1988
9a76b1c6
PZ
1989 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1990 PIPECONF_INTERLACED_ILK)
a35f2679 1991 val |= TRANS_INTERLACED;
8fb033d7
PZ
1992 else
1993 val |= TRANS_PROGRESSIVE;
1994
ab9412ba
DV
1995 I915_WRITE(LPT_TRANSCONF, val);
1996 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1997 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1998}
1999
b8a4f404
PZ
2000static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2001 enum pipe pipe)
040484af 2002{
23670b32
DV
2003 struct drm_device *dev = dev_priv->dev;
2004 uint32_t reg, val;
040484af
JB
2005
2006 /* FDI relies on the transcoder */
2007 assert_fdi_tx_disabled(dev_priv, pipe);
2008 assert_fdi_rx_disabled(dev_priv, pipe);
2009
291906f1
JB
2010 /* Ports must be off as well */
2011 assert_pch_ports_disabled(dev_priv, pipe);
2012
ab9412ba 2013 reg = PCH_TRANSCONF(pipe);
040484af
JB
2014 val = I915_READ(reg);
2015 val &= ~TRANS_ENABLE;
2016 I915_WRITE(reg, val);
2017 /* wait for PCH transcoder off, transcoder state */
2018 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2019 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2020
2021 if (!HAS_PCH_IBX(dev)) {
2022 /* Workaround: Clear the timing override chicken bit again. */
2023 reg = TRANS_CHICKEN2(pipe);
2024 val = I915_READ(reg);
2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026 I915_WRITE(reg, val);
2027 }
040484af
JB
2028}
2029
ab4d966c 2030static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2031{
8fb033d7
PZ
2032 u32 val;
2033
ab9412ba 2034 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2035 val &= ~TRANS_ENABLE;
ab9412ba 2036 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2037 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2038 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2039 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2040
2041 /* Workaround: clear timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2043 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2044 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2045}
2046
b24e7179 2047/**
309cfea8 2048 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2049 * @crtc: crtc responsible for the pipe
b24e7179 2050 *
0372264a 2051 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2052 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2053 */
e1fdc473 2054static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2055{
0372264a
PZ
2056 struct drm_device *dev = crtc->base.dev;
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2059 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2060 pipe);
1a240d4d 2061 enum pipe pch_transcoder;
b24e7179
JB
2062 int reg;
2063 u32 val;
2064
58c6eaa2 2065 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2066 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2067 assert_sprites_disabled(dev_priv, pipe);
2068
681e5811 2069 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2070 pch_transcoder = TRANSCODER_A;
2071 else
2072 pch_transcoder = pipe;
2073
b24e7179
JB
2074 /*
2075 * A pipe without a PLL won't actually be able to drive bits from
2076 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2077 * need the check.
2078 */
2079 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2081 assert_dsi_pll_enabled(dev_priv);
2082 else
2083 assert_pll_enabled(dev_priv, pipe);
040484af 2084 else {
6e3c9717 2085 if (crtc->config->has_pch_encoder) {
040484af 2086 /* if driving the PCH, we need FDI enabled */
cc391bbb 2087 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2088 assert_fdi_tx_pll_enabled(dev_priv,
2089 (enum pipe) cpu_transcoder);
040484af
JB
2090 }
2091 /* FIXME: assert CPU port conditions for SNB+ */
2092 }
b24e7179 2093
702e7a56 2094 reg = PIPECONF(cpu_transcoder);
b24e7179 2095 val = I915_READ(reg);
7ad25d48 2096 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2097 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2098 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2099 return;
7ad25d48 2100 }
00d70b15
CW
2101
2102 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2103 POSTING_READ(reg);
b24e7179
JB
2104}
2105
2106/**
309cfea8 2107 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2108 * @crtc: crtc whose pipes is to be disabled
b24e7179 2109 *
575f7ab7
VS
2110 * Disable the pipe of @crtc, making sure that various hardware
2111 * specific requirements are met, if applicable, e.g. plane
2112 * disabled, panel fitter off, etc.
b24e7179
JB
2113 *
2114 * Will wait until the pipe has shut down before returning.
2115 */
575f7ab7 2116static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2117{
575f7ab7 2118 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2119 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2120 enum pipe pipe = crtc->pipe;
b24e7179
JB
2121 int reg;
2122 u32 val;
2123
2124 /*
2125 * Make sure planes won't keep trying to pump pixels to us,
2126 * or we might hang the display.
2127 */
2128 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2129 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2130 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2131
702e7a56 2132 reg = PIPECONF(cpu_transcoder);
b24e7179 2133 val = I915_READ(reg);
00d70b15
CW
2134 if ((val & PIPECONF_ENABLE) == 0)
2135 return;
2136
67adc644
VS
2137 /*
2138 * Double wide has implications for planes
2139 * so best keep it disabled when not needed.
2140 */
6e3c9717 2141 if (crtc->config->double_wide)
67adc644
VS
2142 val &= ~PIPECONF_DOUBLE_WIDE;
2143
2144 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2145 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2146 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2147 val &= ~PIPECONF_ENABLE;
2148
2149 I915_WRITE(reg, val);
2150 if ((val & PIPECONF_ENABLE) == 0)
2151 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2152}
2153
d74362c9
KP
2154/*
2155 * Plane regs are double buffered, going from enabled->disabled needs a
2156 * trigger in order to latch. The display address reg provides this.
2157 */
1dba99f4
VS
2158void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2159 enum plane plane)
d74362c9 2160{
3d13ef2e
DL
2161 struct drm_device *dev = dev_priv->dev;
2162 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2163
2164 I915_WRITE(reg, I915_READ(reg));
2165 POSTING_READ(reg);
d74362c9
KP
2166}
2167
b24e7179 2168/**
262ca2b0 2169 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2170 * @plane: plane to be enabled
2171 * @crtc: crtc for the plane
b24e7179 2172 *
fdd508a6 2173 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2174 */
fdd508a6
VS
2175static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2176 struct drm_crtc *crtc)
b24e7179 2177{
fdd508a6
VS
2178 struct drm_device *dev = plane->dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2181
2182 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2183 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2184
98ec7739
VS
2185 if (intel_crtc->primary_enabled)
2186 return;
0037f71c 2187
4c445e0e 2188 intel_crtc->primary_enabled = true;
939c2fe8 2189
fdd508a6
VS
2190 dev_priv->display.update_primary_plane(crtc, plane->fb,
2191 crtc->x, crtc->y);
33c3b0d1
VS
2192
2193 /*
2194 * BDW signals flip done immediately if the plane
2195 * is disabled, even if the plane enable is already
2196 * armed to occur at the next vblank :(
2197 */
2198 if (IS_BROADWELL(dev))
2199 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2200}
2201
b24e7179 2202/**
262ca2b0 2203 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2204 * @plane: plane to be disabled
2205 * @crtc: crtc for the plane
b24e7179 2206 *
fdd508a6 2207 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2208 */
fdd508a6
VS
2209static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2210 struct drm_crtc *crtc)
b24e7179 2211{
fdd508a6
VS
2212 struct drm_device *dev = plane->dev;
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215
32b7eeec
MR
2216 if (WARN_ON(!intel_crtc->active))
2217 return;
b24e7179 2218
98ec7739
VS
2219 if (!intel_crtc->primary_enabled)
2220 return;
0037f71c 2221
4c445e0e 2222 intel_crtc->primary_enabled = false;
939c2fe8 2223
fdd508a6
VS
2224 dev_priv->display.update_primary_plane(crtc, plane->fb,
2225 crtc->x, crtc->y);
b24e7179
JB
2226}
2227
693db184
CW
2228static bool need_vtd_wa(struct drm_device *dev)
2229{
2230#ifdef CONFIG_INTEL_IOMMU
2231 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2232 return true;
2233#endif
2234 return false;
2235}
2236
50470bb0 2237unsigned int
6761dd31
TU
2238intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2239 uint64_t fb_format_modifier)
a57ce0b2 2240{
6761dd31
TU
2241 unsigned int tile_height;
2242 uint32_t pixel_bytes;
a57ce0b2 2243
b5d0e9bf
DL
2244 switch (fb_format_modifier) {
2245 case DRM_FORMAT_MOD_NONE:
2246 tile_height = 1;
2247 break;
2248 case I915_FORMAT_MOD_X_TILED:
2249 tile_height = IS_GEN2(dev) ? 16 : 8;
2250 break;
2251 case I915_FORMAT_MOD_Y_TILED:
2252 tile_height = 32;
2253 break;
2254 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2255 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2256 switch (pixel_bytes) {
b5d0e9bf 2257 default:
6761dd31 2258 case 1:
b5d0e9bf
DL
2259 tile_height = 64;
2260 break;
6761dd31
TU
2261 case 2:
2262 case 4:
b5d0e9bf
DL
2263 tile_height = 32;
2264 break;
6761dd31 2265 case 8:
b5d0e9bf
DL
2266 tile_height = 16;
2267 break;
6761dd31 2268 case 16:
b5d0e9bf
DL
2269 WARN_ONCE(1,
2270 "128-bit pixels are not supported for display!");
2271 tile_height = 16;
2272 break;
2273 }
2274 break;
2275 default:
2276 MISSING_CASE(fb_format_modifier);
2277 tile_height = 1;
2278 break;
2279 }
091df6cb 2280
6761dd31
TU
2281 return tile_height;
2282}
2283
2284unsigned int
2285intel_fb_align_height(struct drm_device *dev, unsigned int height,
2286 uint32_t pixel_format, uint64_t fb_format_modifier)
2287{
2288 return ALIGN(height, intel_tile_height(dev, pixel_format,
2289 fb_format_modifier));
a57ce0b2
JB
2290}
2291
f64b98cd
TU
2292static int
2293intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2294 const struct drm_plane_state *plane_state)
2295{
50470bb0
TU
2296 struct intel_rotation_info *info = &view->rotation_info;
2297 static const struct i915_ggtt_view rotated_view =
2298 { .type = I915_GGTT_VIEW_ROTATED };
2299
f64b98cd
TU
2300 *view = i915_ggtt_view_normal;
2301
50470bb0
TU
2302 if (!plane_state)
2303 return 0;
2304
121920fa 2305 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2306 return 0;
2307
2308 *view = rotated_view;
2309
2310 info->height = fb->height;
2311 info->pixel_format = fb->pixel_format;
2312 info->pitch = fb->pitches[0];
2313 info->fb_modifier = fb->modifier[0];
2314
2315 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2316 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2317 DRM_DEBUG_KMS(
2318 "Y or Yf tiling is needed for 90/270 rotation!\n");
2319 return -EINVAL;
2320 }
2321
f64b98cd
TU
2322 return 0;
2323}
2324
127bd2ac 2325int
850c4cdc
TU
2326intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327 struct drm_framebuffer *fb,
82bc3b2d 2328 const struct drm_plane_state *plane_state,
a4872ba6 2329 struct intel_engine_cs *pipelined)
6b95a207 2330{
850c4cdc 2331 struct drm_device *dev = fb->dev;
ce453d81 2332 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2333 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2334 struct i915_ggtt_view view;
6b95a207
KH
2335 u32 alignment;
2336 int ret;
2337
ebcdd39e
MR
2338 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2339
7b911adc
TU
2340 switch (fb->modifier[0]) {
2341 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2342 if (INTEL_INFO(dev)->gen >= 9)
2343 alignment = 256 * 1024;
2344 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2345 alignment = 128 * 1024;
a6c45cf0 2346 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2347 alignment = 4 * 1024;
2348 else
2349 alignment = 64 * 1024;
6b95a207 2350 break;
7b911adc 2351 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2352 if (INTEL_INFO(dev)->gen >= 9)
2353 alignment = 256 * 1024;
2354 else {
2355 /* pin() will align the object as required by fence */
2356 alignment = 0;
2357 }
6b95a207 2358 break;
7b911adc 2359 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2360 case I915_FORMAT_MOD_Yf_TILED:
2361 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2362 "Y tiling bo slipped through, driver bug!\n"))
2363 return -EINVAL;
2364 alignment = 1 * 1024 * 1024;
2365 break;
6b95a207 2366 default:
7b911adc
TU
2367 MISSING_CASE(fb->modifier[0]);
2368 return -EINVAL;
6b95a207
KH
2369 }
2370
f64b98cd
TU
2371 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2372 if (ret)
2373 return ret;
2374
693db184
CW
2375 /* Note that the w/a also requires 64 PTE of padding following the
2376 * bo. We currently fill all unused PTE with the shadow page and so
2377 * we should always have valid PTE following the scanout preventing
2378 * the VT-d warning.
2379 */
2380 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2381 alignment = 256 * 1024;
2382
d6dd6843
PZ
2383 /*
2384 * Global gtt pte registers are special registers which actually forward
2385 * writes to a chunk of system memory. Which means that there is no risk
2386 * that the register values disappear as soon as we call
2387 * intel_runtime_pm_put(), so it is correct to wrap only the
2388 * pin/unpin/fence and not more.
2389 */
2390 intel_runtime_pm_get(dev_priv);
2391
ce453d81 2392 dev_priv->mm.interruptible = false;
e6617330 2393 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2394 &view);
48b956c5 2395 if (ret)
ce453d81 2396 goto err_interruptible;
6b95a207
KH
2397
2398 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2399 * fence, whereas 965+ only requires a fence if using
2400 * framebuffer compression. For simplicity, we always install
2401 * a fence as the cost is not that onerous.
2402 */
06d98131 2403 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2404 if (ret)
2405 goto err_unpin;
1690e1eb 2406
9a5a53b3 2407 i915_gem_object_pin_fence(obj);
6b95a207 2408
ce453d81 2409 dev_priv->mm.interruptible = true;
d6dd6843 2410 intel_runtime_pm_put(dev_priv);
6b95a207 2411 return 0;
48b956c5
CW
2412
2413err_unpin:
f64b98cd 2414 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2415err_interruptible:
2416 dev_priv->mm.interruptible = true;
d6dd6843 2417 intel_runtime_pm_put(dev_priv);
48b956c5 2418 return ret;
6b95a207
KH
2419}
2420
82bc3b2d
TU
2421static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422 const struct drm_plane_state *plane_state)
1690e1eb 2423{
82bc3b2d 2424 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2425 struct i915_ggtt_view view;
2426 int ret;
82bc3b2d 2427
ebcdd39e
MR
2428 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
f64b98cd
TU
2430 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431 WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
1690e1eb 2433 i915_gem_object_unpin_fence(obj);
f64b98cd 2434 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2435}
2436
c2c75131
DV
2437/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438 * is assumed to be a power-of-two. */
bc752862
CW
2439unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2440 unsigned int tiling_mode,
2441 unsigned int cpp,
2442 unsigned int pitch)
c2c75131 2443{
bc752862
CW
2444 if (tiling_mode != I915_TILING_NONE) {
2445 unsigned int tile_rows, tiles;
c2c75131 2446
bc752862
CW
2447 tile_rows = *y / 8;
2448 *y %= 8;
c2c75131 2449
bc752862
CW
2450 tiles = *x / (512/cpp);
2451 *x %= 512/cpp;
2452
2453 return tile_rows * pitch * 8 + tiles * 4096;
2454 } else {
2455 unsigned int offset;
2456
2457 offset = *y * pitch + *x * cpp;
2458 *y = 0;
2459 *x = (offset & 4095) / cpp;
2460 return offset & -4096;
2461 }
c2c75131
DV
2462}
2463
b35d63fa 2464static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2465{
2466 switch (format) {
2467 case DISPPLANE_8BPP:
2468 return DRM_FORMAT_C8;
2469 case DISPPLANE_BGRX555:
2470 return DRM_FORMAT_XRGB1555;
2471 case DISPPLANE_BGRX565:
2472 return DRM_FORMAT_RGB565;
2473 default:
2474 case DISPPLANE_BGRX888:
2475 return DRM_FORMAT_XRGB8888;
2476 case DISPPLANE_RGBX888:
2477 return DRM_FORMAT_XBGR8888;
2478 case DISPPLANE_BGRX101010:
2479 return DRM_FORMAT_XRGB2101010;
2480 case DISPPLANE_RGBX101010:
2481 return DRM_FORMAT_XBGR2101010;
2482 }
2483}
2484
bc8d7dff
DL
2485static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2486{
2487 switch (format) {
2488 case PLANE_CTL_FORMAT_RGB_565:
2489 return DRM_FORMAT_RGB565;
2490 default:
2491 case PLANE_CTL_FORMAT_XRGB_8888:
2492 if (rgb_order) {
2493 if (alpha)
2494 return DRM_FORMAT_ABGR8888;
2495 else
2496 return DRM_FORMAT_XBGR8888;
2497 } else {
2498 if (alpha)
2499 return DRM_FORMAT_ARGB8888;
2500 else
2501 return DRM_FORMAT_XRGB8888;
2502 }
2503 case PLANE_CTL_FORMAT_XRGB_2101010:
2504 if (rgb_order)
2505 return DRM_FORMAT_XBGR2101010;
2506 else
2507 return DRM_FORMAT_XRGB2101010;
2508 }
2509}
2510
5724dbd1 2511static bool
f6936e29
DV
2512intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2513 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2514{
2515 struct drm_device *dev = crtc->base.dev;
2516 struct drm_i915_gem_object *obj = NULL;
2517 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2518 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2519 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2520 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2521 PAGE_SIZE);
2522
2523 size_aligned -= base_aligned;
46f297fb 2524
ff2652ea
CW
2525 if (plane_config->size == 0)
2526 return false;
2527
f37b5c2b
DV
2528 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2529 base_aligned,
2530 base_aligned,
2531 size_aligned);
46f297fb 2532 if (!obj)
484b41dd 2533 return false;
46f297fb 2534
49af449b
DL
2535 obj->tiling_mode = plane_config->tiling;
2536 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2537 obj->stride = fb->pitches[0];
46f297fb 2538
6bf129df
DL
2539 mode_cmd.pixel_format = fb->pixel_format;
2540 mode_cmd.width = fb->width;
2541 mode_cmd.height = fb->height;
2542 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2543 mode_cmd.modifier[0] = fb->modifier[0];
2544 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2545
2546 mutex_lock(&dev->struct_mutex);
6bf129df 2547 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2548 &mode_cmd, obj)) {
46f297fb
JB
2549 DRM_DEBUG_KMS("intel fb init failed\n");
2550 goto out_unref_obj;
2551 }
46f297fb 2552 mutex_unlock(&dev->struct_mutex);
484b41dd 2553
f6936e29 2554 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2555 return true;
46f297fb
JB
2556
2557out_unref_obj:
2558 drm_gem_object_unreference(&obj->base);
2559 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2560 return false;
2561}
2562
afd65eb4
MR
2563/* Update plane->state->fb to match plane->fb after driver-internal updates */
2564static void
2565update_state_fb(struct drm_plane *plane)
2566{
2567 if (plane->fb == plane->state->fb)
2568 return;
2569
2570 if (plane->state->fb)
2571 drm_framebuffer_unreference(plane->state->fb);
2572 plane->state->fb = plane->fb;
2573 if (plane->state->fb)
2574 drm_framebuffer_reference(plane->state->fb);
2575}
2576
5724dbd1 2577static void
f6936e29
DV
2578intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2579 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2580{
2581 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2582 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2583 struct drm_crtc *c;
2584 struct intel_crtc *i;
2ff8fde1 2585 struct drm_i915_gem_object *obj;
88595ac9
DV
2586 struct drm_plane *primary = intel_crtc->base.primary;
2587 struct drm_framebuffer *fb;
484b41dd 2588
2d14030b 2589 if (!plane_config->fb)
484b41dd
JB
2590 return;
2591
f6936e29 2592 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2593 fb = &plane_config->fb->base;
2594 goto valid_fb;
f55548b5 2595 }
484b41dd 2596
2d14030b 2597 kfree(plane_config->fb);
484b41dd
JB
2598
2599 /*
2600 * Failed to alloc the obj, check to see if we should share
2601 * an fb with another CRTC instead
2602 */
70e1e0ec 2603 for_each_crtc(dev, c) {
484b41dd
JB
2604 i = to_intel_crtc(c);
2605
2606 if (c == &intel_crtc->base)
2607 continue;
2608
2ff8fde1
MR
2609 if (!i->active)
2610 continue;
2611
88595ac9
DV
2612 fb = c->primary->fb;
2613 if (!fb)
484b41dd
JB
2614 continue;
2615
88595ac9 2616 obj = intel_fb_obj(fb);
2ff8fde1 2617 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2618 drm_framebuffer_reference(fb);
2619 goto valid_fb;
484b41dd
JB
2620 }
2621 }
88595ac9
DV
2622
2623 return;
2624
2625valid_fb:
2626 obj = intel_fb_obj(fb);
2627 if (obj->tiling_mode != I915_TILING_NONE)
2628 dev_priv->preserve_bios_swizzle = true;
2629
2630 primary->fb = fb;
2631 primary->state->crtc = &intel_crtc->base;
2632 primary->crtc = &intel_crtc->base;
2633 update_state_fb(primary);
2634 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2635}
2636
29b9bde6
DV
2637static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2638 struct drm_framebuffer *fb,
2639 int x, int y)
81255565
JB
2640{
2641 struct drm_device *dev = crtc->dev;
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2644 struct drm_i915_gem_object *obj;
81255565 2645 int plane = intel_crtc->plane;
e506a0c6 2646 unsigned long linear_offset;
81255565 2647 u32 dspcntr;
f45651ba 2648 u32 reg = DSPCNTR(plane);
48404c1e 2649 int pixel_size;
f45651ba 2650
fdd508a6
VS
2651 if (!intel_crtc->primary_enabled) {
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
c9ba6fad
VS
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
f45651ba
VS
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
fdd508a6 2669 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2681 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2688 }
81255565 2689
57779d06
VS
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
81255565
JB
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
57779d06
VS
2694 case DRM_FORMAT_XRGB1555:
2695 case DRM_FORMAT_ARGB1555:
2696 dspcntr |= DISPPLANE_BGRX555;
81255565 2697 break;
57779d06
VS
2698 case DRM_FORMAT_RGB565:
2699 dspcntr |= DISPPLANE_BGRX565;
2700 break;
2701 case DRM_FORMAT_XRGB8888:
2702 case DRM_FORMAT_ARGB8888:
2703 dspcntr |= DISPPLANE_BGRX888;
2704 break;
2705 case DRM_FORMAT_XBGR8888:
2706 case DRM_FORMAT_ABGR8888:
2707 dspcntr |= DISPPLANE_RGBX888;
2708 break;
2709 case DRM_FORMAT_XRGB2101010:
2710 case DRM_FORMAT_ARGB2101010:
2711 dspcntr |= DISPPLANE_BGRX101010;
2712 break;
2713 case DRM_FORMAT_XBGR2101010:
2714 case DRM_FORMAT_ABGR2101010:
2715 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2716 break;
2717 default:
baba133a 2718 BUG();
81255565 2719 }
57779d06 2720
f45651ba
VS
2721 if (INTEL_INFO(dev)->gen >= 4 &&
2722 obj->tiling_mode != I915_TILING_NONE)
2723 dspcntr |= DISPPLANE_TILED;
81255565 2724
de1aa629
VS
2725 if (IS_G4X(dev))
2726 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
b9897127 2728 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2729
c2c75131
DV
2730 if (INTEL_INFO(dev)->gen >= 4) {
2731 intel_crtc->dspaddr_offset =
bc752862 2732 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2733 pixel_size,
bc752862 2734 fb->pitches[0]);
c2c75131
DV
2735 linear_offset -= intel_crtc->dspaddr_offset;
2736 } else {
e506a0c6 2737 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2738 }
e506a0c6 2739
8e7d688b 2740 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2741 dspcntr |= DISPPLANE_ROTATE_180;
2742
6e3c9717
ACO
2743 x += (intel_crtc->config->pipe_src_w - 1);
2744 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2745
2746 /* Finding the last pixel of the last line of the display
2747 data and adding to linear_offset*/
2748 linear_offset +=
6e3c9717
ACO
2749 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2751 }
2752
2753 I915_WRITE(reg, dspcntr);
2754
01f2c773 2755 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2756 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2757 I915_WRITE(DSPSURF(plane),
2758 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2759 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2760 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2761 } else
f343c5f6 2762 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2763 POSTING_READ(reg);
17638cd6
JB
2764}
2765
29b9bde6
DV
2766static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767 struct drm_framebuffer *fb,
2768 int x, int y)
17638cd6
JB
2769{
2770 struct drm_device *dev = crtc->dev;
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2773 struct drm_i915_gem_object *obj;
17638cd6 2774 int plane = intel_crtc->plane;
e506a0c6 2775 unsigned long linear_offset;
17638cd6 2776 u32 dspcntr;
f45651ba 2777 u32 reg = DSPCNTR(plane);
48404c1e 2778 int pixel_size;
f45651ba 2779
fdd508a6
VS
2780 if (!intel_crtc->primary_enabled) {
2781 I915_WRITE(reg, 0);
2782 I915_WRITE(DSPSURF(plane), 0);
2783 POSTING_READ(reg);
2784 return;
2785 }
2786
c9ba6fad
VS
2787 obj = intel_fb_obj(fb);
2788 if (WARN_ON(obj == NULL))
2789 return;
2790
2791 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2792
f45651ba
VS
2793 dspcntr = DISPPLANE_GAMMA_ENABLE;
2794
fdd508a6 2795 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2796
2797 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2798 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2799
57779d06
VS
2800 switch (fb->pixel_format) {
2801 case DRM_FORMAT_C8:
17638cd6
JB
2802 dspcntr |= DISPPLANE_8BPP;
2803 break;
57779d06
VS
2804 case DRM_FORMAT_RGB565:
2805 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2806 break;
57779d06
VS
2807 case DRM_FORMAT_XRGB8888:
2808 case DRM_FORMAT_ARGB8888:
2809 dspcntr |= DISPPLANE_BGRX888;
2810 break;
2811 case DRM_FORMAT_XBGR8888:
2812 case DRM_FORMAT_ABGR8888:
2813 dspcntr |= DISPPLANE_RGBX888;
2814 break;
2815 case DRM_FORMAT_XRGB2101010:
2816 case DRM_FORMAT_ARGB2101010:
2817 dspcntr |= DISPPLANE_BGRX101010;
2818 break;
2819 case DRM_FORMAT_XBGR2101010:
2820 case DRM_FORMAT_ABGR2101010:
2821 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2822 break;
2823 default:
baba133a 2824 BUG();
17638cd6
JB
2825 }
2826
2827 if (obj->tiling_mode != I915_TILING_NONE)
2828 dspcntr |= DISPPLANE_TILED;
17638cd6 2829
f45651ba 2830 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2831 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2832
b9897127 2833 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2834 intel_crtc->dspaddr_offset =
bc752862 2835 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2836 pixel_size,
bc752862 2837 fb->pitches[0]);
c2c75131 2838 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2839 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2840 dspcntr |= DISPPLANE_ROTATE_180;
2841
2842 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2843 x += (intel_crtc->config->pipe_src_w - 1);
2844 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2845
2846 /* Finding the last pixel of the last line of the display
2847 data and adding to linear_offset*/
2848 linear_offset +=
6e3c9717
ACO
2849 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2850 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2851 }
2852 }
2853
2854 I915_WRITE(reg, dspcntr);
17638cd6 2855
01f2c773 2856 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2857 I915_WRITE(DSPSURF(plane),
2858 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2859 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2860 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2861 } else {
2862 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2863 I915_WRITE(DSPLINOFF(plane), linear_offset);
2864 }
17638cd6 2865 POSTING_READ(reg);
17638cd6
JB
2866}
2867
b321803d
DL
2868u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2869 uint32_t pixel_format)
2870{
2871 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2872
2873 /*
2874 * The stride is either expressed as a multiple of 64 bytes
2875 * chunks for linear buffers or in number of tiles for tiled
2876 * buffers.
2877 */
2878 switch (fb_modifier) {
2879 case DRM_FORMAT_MOD_NONE:
2880 return 64;
2881 case I915_FORMAT_MOD_X_TILED:
2882 if (INTEL_INFO(dev)->gen == 2)
2883 return 128;
2884 return 512;
2885 case I915_FORMAT_MOD_Y_TILED:
2886 /* No need to check for old gens and Y tiling since this is
2887 * about the display engine and those will be blocked before
2888 * we get here.
2889 */
2890 return 128;
2891 case I915_FORMAT_MOD_Yf_TILED:
2892 if (bits_per_pixel == 8)
2893 return 64;
2894 else
2895 return 128;
2896 default:
2897 MISSING_CASE(fb_modifier);
2898 return 64;
2899 }
2900}
2901
121920fa
TU
2902unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2903 struct drm_i915_gem_object *obj)
2904{
2905 enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2906
2907 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908 view = I915_GGTT_VIEW_ROTATED;
2909
2910 return i915_gem_obj_ggtt_offset_view(obj, view);
2911}
2912
70d21f0e
DL
2913static void skylake_update_primary_plane(struct drm_crtc *crtc,
2914 struct drm_framebuffer *fb,
2915 int x, int y)
2916{
2917 struct drm_device *dev = crtc->dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
70d21f0e
DL
2920 struct drm_i915_gem_object *obj;
2921 int pipe = intel_crtc->pipe;
b321803d 2922 u32 plane_ctl, stride_div;
121920fa 2923 unsigned long surf_addr;
70d21f0e
DL
2924
2925 if (!intel_crtc->primary_enabled) {
2926 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2927 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2928 POSTING_READ(PLANE_CTL(pipe, 0));
2929 return;
2930 }
2931
2932 plane_ctl = PLANE_CTL_ENABLE |
2933 PLANE_CTL_PIPE_GAMMA_ENABLE |
2934 PLANE_CTL_PIPE_CSC_ENABLE;
2935
2936 switch (fb->pixel_format) {
2937 case DRM_FORMAT_RGB565:
2938 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2939 break;
2940 case DRM_FORMAT_XRGB8888:
2941 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2942 break;
f75fb42a
JN
2943 case DRM_FORMAT_ARGB8888:
2944 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2945 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946 break;
70d21f0e
DL
2947 case DRM_FORMAT_XBGR8888:
2948 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2949 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2950 break;
f75fb42a
JN
2951 case DRM_FORMAT_ABGR8888:
2952 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2953 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2954 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955 break;
70d21f0e
DL
2956 case DRM_FORMAT_XRGB2101010:
2957 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2958 break;
2959 case DRM_FORMAT_XBGR2101010:
2960 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2961 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2962 break;
2963 default:
2964 BUG();
2965 }
2966
30af77c4
DV
2967 switch (fb->modifier[0]) {
2968 case DRM_FORMAT_MOD_NONE:
70d21f0e 2969 break;
30af77c4 2970 case I915_FORMAT_MOD_X_TILED:
70d21f0e 2971 plane_ctl |= PLANE_CTL_TILED_X;
b321803d
DL
2972 break;
2973 case I915_FORMAT_MOD_Y_TILED:
2974 plane_ctl |= PLANE_CTL_TILED_Y;
2975 break;
2976 case I915_FORMAT_MOD_Yf_TILED:
2977 plane_ctl |= PLANE_CTL_TILED_YF;
70d21f0e
DL
2978 break;
2979 default:
b321803d 2980 MISSING_CASE(fb->modifier[0]);
70d21f0e
DL
2981 }
2982
2983 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2984 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2985 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e 2986
b321803d
DL
2987 obj = intel_fb_obj(fb);
2988 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2989 fb->pixel_format);
121920fa 2990 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
b321803d 2991
70d21f0e 2992 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
70d21f0e
DL
2993 I915_WRITE(PLANE_POS(pipe, 0), 0);
2994 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2995 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2996 (intel_crtc->config->pipe_src_h - 1) << 16 |
2997 (intel_crtc->config->pipe_src_w - 1));
b321803d 2998 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
121920fa 2999 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3000
3001 POSTING_READ(PLANE_SURF(pipe, 0));
3002}
3003
17638cd6
JB
3004/* Assume fb object is pinned & idle & fenced and just update base pointers */
3005static int
3006intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3007 int x, int y, enum mode_set_atomic state)
3008{
3009 struct drm_device *dev = crtc->dev;
3010 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3011
6b8e6ed0
CW
3012 if (dev_priv->display.disable_fbc)
3013 dev_priv->display.disable_fbc(dev);
81255565 3014
29b9bde6
DV
3015 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3016
3017 return 0;
81255565
JB
3018}
3019
7514747d 3020static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3021{
96a02917
VS
3022 struct drm_crtc *crtc;
3023
70e1e0ec 3024 for_each_crtc(dev, crtc) {
96a02917
VS
3025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026 enum plane plane = intel_crtc->plane;
3027
3028 intel_prepare_page_flip(dev, plane);
3029 intel_finish_page_flip_plane(dev, plane);
3030 }
7514747d
VS
3031}
3032
3033static void intel_update_primary_planes(struct drm_device *dev)
3034{
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct drm_crtc *crtc;
96a02917 3037
70e1e0ec 3038 for_each_crtc(dev, crtc) {
96a02917
VS
3039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
51fd371b 3041 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3042 /*
3043 * FIXME: Once we have proper support for primary planes (and
3044 * disabling them without disabling the entire crtc) allow again
66e514c1 3045 * a NULL crtc->primary->fb.
947fdaad 3046 */
f4510a27 3047 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3048 dev_priv->display.update_primary_plane(crtc,
66e514c1 3049 crtc->primary->fb,
262ca2b0
MR
3050 crtc->x,
3051 crtc->y);
51fd371b 3052 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3053 }
3054}
3055
7514747d
VS
3056void intel_prepare_reset(struct drm_device *dev)
3057{
f98ce92f
VS
3058 struct drm_i915_private *dev_priv = to_i915(dev);
3059 struct intel_crtc *crtc;
3060
7514747d
VS
3061 /* no reset support for gen2 */
3062 if (IS_GEN2(dev))
3063 return;
3064
3065 /* reset doesn't touch the display */
3066 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3067 return;
3068
3069 drm_modeset_lock_all(dev);
f98ce92f
VS
3070
3071 /*
3072 * Disabling the crtcs gracefully seems nicer. Also the
3073 * g33 docs say we should at least disable all the planes.
3074 */
3075 for_each_intel_crtc(dev, crtc) {
3076 if (crtc->active)
3077 dev_priv->display.crtc_disable(&crtc->base);
3078 }
7514747d
VS
3079}
3080
3081void intel_finish_reset(struct drm_device *dev)
3082{
3083 struct drm_i915_private *dev_priv = to_i915(dev);
3084
3085 /*
3086 * Flips in the rings will be nuked by the reset,
3087 * so complete all pending flips so that user space
3088 * will get its events and not get stuck.
3089 */
3090 intel_complete_page_flips(dev);
3091
3092 /* no reset support for gen2 */
3093 if (IS_GEN2(dev))
3094 return;
3095
3096 /* reset doesn't touch the display */
3097 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3098 /*
3099 * Flips in the rings have been nuked by the reset,
3100 * so update the base address of all primary
3101 * planes to the the last fb to make sure we're
3102 * showing the correct fb after a reset.
3103 */
3104 intel_update_primary_planes(dev);
3105 return;
3106 }
3107
3108 /*
3109 * The display has been reset as well,
3110 * so need a full re-initialization.
3111 */
3112 intel_runtime_pm_disable_interrupts(dev_priv);
3113 intel_runtime_pm_enable_interrupts(dev_priv);
3114
3115 intel_modeset_init_hw(dev);
3116
3117 spin_lock_irq(&dev_priv->irq_lock);
3118 if (dev_priv->display.hpd_irq_setup)
3119 dev_priv->display.hpd_irq_setup(dev);
3120 spin_unlock_irq(&dev_priv->irq_lock);
3121
3122 intel_modeset_setup_hw_state(dev, true);
3123
3124 intel_hpd_init(dev_priv);
3125
3126 drm_modeset_unlock_all(dev);
3127}
3128
14667a4b
CW
3129static int
3130intel_finish_fb(struct drm_framebuffer *old_fb)
3131{
2ff8fde1 3132 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
3133 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134 bool was_interruptible = dev_priv->mm.interruptible;
3135 int ret;
3136
14667a4b
CW
3137 /* Big Hammer, we also need to ensure that any pending
3138 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3139 * current scanout is retired before unpinning the old
3140 * framebuffer.
3141 *
3142 * This should only fail upon a hung GPU, in which case we
3143 * can safely continue.
3144 */
3145 dev_priv->mm.interruptible = false;
3146 ret = i915_gem_object_finish_gpu(obj);
3147 dev_priv->mm.interruptible = was_interruptible;
3148
3149 return ret;
3150}
3151
7d5e3799
CW
3152static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3153{
3154 struct drm_device *dev = crtc->dev;
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3157 bool pending;
3158
3159 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3160 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3161 return false;
3162
5e2d7afc 3163 spin_lock_irq(&dev->event_lock);
7d5e3799 3164 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3165 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3166
3167 return pending;
3168}
3169
e30e8f75
GP
3170static void intel_update_pipe_size(struct intel_crtc *crtc)
3171{
3172 struct drm_device *dev = crtc->base.dev;
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 const struct drm_display_mode *adjusted_mode;
3175
3176 if (!i915.fastboot)
3177 return;
3178
3179 /*
3180 * Update pipe size and adjust fitter if needed: the reason for this is
3181 * that in compute_mode_changes we check the native mode (not the pfit
3182 * mode) to see if we can flip rather than do a full mode set. In the
3183 * fastboot case, we'll flip, but if we don't update the pipesrc and
3184 * pfit state, we'll end up with a big fb scanned out into the wrong
3185 * sized surface.
3186 *
3187 * To fix this properly, we need to hoist the checks up into
3188 * compute_mode_changes (or above), check the actual pfit state and
3189 * whether the platform allows pfit disable with pipe active, and only
3190 * then update the pipesrc and pfit state, even on the flip path.
3191 */
3192
6e3c9717 3193 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3194
3195 I915_WRITE(PIPESRC(crtc->pipe),
3196 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3197 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3198 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3199 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3200 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3201 I915_WRITE(PF_CTL(crtc->pipe), 0);
3202 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3203 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3204 }
6e3c9717
ACO
3205 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3206 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3207}
3208
5e84e1a4
ZW
3209static void intel_fdi_normal_train(struct drm_crtc *crtc)
3210{
3211 struct drm_device *dev = crtc->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 int pipe = intel_crtc->pipe;
3215 u32 reg, temp;
3216
3217 /* enable normal train */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
61e499bf 3220 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3221 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3222 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3223 } else {
3224 temp &= ~FDI_LINK_TRAIN_NONE;
3225 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3226 }
5e84e1a4
ZW
3227 I915_WRITE(reg, temp);
3228
3229 reg = FDI_RX_CTL(pipe);
3230 temp = I915_READ(reg);
3231 if (HAS_PCH_CPT(dev)) {
3232 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3234 } else {
3235 temp &= ~FDI_LINK_TRAIN_NONE;
3236 temp |= FDI_LINK_TRAIN_NONE;
3237 }
3238 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3239
3240 /* wait one idle pattern time */
3241 POSTING_READ(reg);
3242 udelay(1000);
357555c0
JB
3243
3244 /* IVB wants error correction enabled */
3245 if (IS_IVYBRIDGE(dev))
3246 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3247 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3248}
3249
8db9d77b
ZW
3250/* The FDI link training functions for ILK/Ibexpeak. */
3251static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3252{
3253 struct drm_device *dev = crtc->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 int pipe = intel_crtc->pipe;
5eddb70b 3257 u32 reg, temp, tries;
8db9d77b 3258
1c8562f6 3259 /* FDI needs bits from pipe first */
0fc932b8 3260 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3261
e1a44743
AJ
3262 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3263 for train result */
5eddb70b
CW
3264 reg = FDI_RX_IMR(pipe);
3265 temp = I915_READ(reg);
e1a44743
AJ
3266 temp &= ~FDI_RX_SYMBOL_LOCK;
3267 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3268 I915_WRITE(reg, temp);
3269 I915_READ(reg);
e1a44743
AJ
3270 udelay(150);
3271
8db9d77b 3272 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3273 reg = FDI_TX_CTL(pipe);
3274 temp = I915_READ(reg);
627eb5a3 3275 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3276 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3277 temp &= ~FDI_LINK_TRAIN_NONE;
3278 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3279 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3280
5eddb70b
CW
3281 reg = FDI_RX_CTL(pipe);
3282 temp = I915_READ(reg);
8db9d77b
ZW
3283 temp &= ~FDI_LINK_TRAIN_NONE;
3284 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3285 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3286
3287 POSTING_READ(reg);
8db9d77b
ZW
3288 udelay(150);
3289
5b2adf89 3290 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3291 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3292 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3293 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3294
5eddb70b 3295 reg = FDI_RX_IIR(pipe);
e1a44743 3296 for (tries = 0; tries < 5; tries++) {
5eddb70b 3297 temp = I915_READ(reg);
8db9d77b
ZW
3298 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3299
3300 if ((temp & FDI_RX_BIT_LOCK)) {
3301 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3302 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3303 break;
3304 }
8db9d77b 3305 }
e1a44743 3306 if (tries == 5)
5eddb70b 3307 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3308
3309 /* Train 2 */
5eddb70b
CW
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
8db9d77b
ZW
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3314 I915_WRITE(reg, temp);
8db9d77b 3315
5eddb70b
CW
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
8db9d77b
ZW
3318 temp &= ~FDI_LINK_TRAIN_NONE;
3319 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3320 I915_WRITE(reg, temp);
8db9d77b 3321
5eddb70b
CW
3322 POSTING_READ(reg);
3323 udelay(150);
8db9d77b 3324
5eddb70b 3325 reg = FDI_RX_IIR(pipe);
e1a44743 3326 for (tries = 0; tries < 5; tries++) {
5eddb70b 3327 temp = I915_READ(reg);
8db9d77b
ZW
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3331 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3332 DRM_DEBUG_KMS("FDI train 2 done.\n");
3333 break;
3334 }
8db9d77b 3335 }
e1a44743 3336 if (tries == 5)
5eddb70b 3337 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3338
3339 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3340
8db9d77b
ZW
3341}
3342
0206e353 3343static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3344 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3345 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3346 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3347 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3348};
3349
3350/* The FDI link training functions for SNB/Cougarpoint. */
3351static void gen6_fdi_link_train(struct drm_crtc *crtc)
3352{
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356 int pipe = intel_crtc->pipe;
fa37d39e 3357 u32 reg, temp, i, retry;
8db9d77b 3358
e1a44743
AJ
3359 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3360 for train result */
5eddb70b
CW
3361 reg = FDI_RX_IMR(pipe);
3362 temp = I915_READ(reg);
e1a44743
AJ
3363 temp &= ~FDI_RX_SYMBOL_LOCK;
3364 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3365 I915_WRITE(reg, temp);
3366
3367 POSTING_READ(reg);
e1a44743
AJ
3368 udelay(150);
3369
8db9d77b 3370 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3371 reg = FDI_TX_CTL(pipe);
3372 temp = I915_READ(reg);
627eb5a3 3373 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3374 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1;
3377 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3378 /* SNB-B */
3379 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3380 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3381
d74cf324
DV
3382 I915_WRITE(FDI_RX_MISC(pipe),
3383 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3384
5eddb70b
CW
3385 reg = FDI_RX_CTL(pipe);
3386 temp = I915_READ(reg);
8db9d77b
ZW
3387 if (HAS_PCH_CPT(dev)) {
3388 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3390 } else {
3391 temp &= ~FDI_LINK_TRAIN_NONE;
3392 temp |= FDI_LINK_TRAIN_PATTERN_1;
3393 }
5eddb70b
CW
3394 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396 POSTING_READ(reg);
8db9d77b
ZW
3397 udelay(150);
3398
0206e353 3399 for (i = 0; i < 4; i++) {
5eddb70b
CW
3400 reg = FDI_TX_CTL(pipe);
3401 temp = I915_READ(reg);
8db9d77b
ZW
3402 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3403 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3404 I915_WRITE(reg, temp);
3405
3406 POSTING_READ(reg);
8db9d77b
ZW
3407 udelay(500);
3408
fa37d39e
SP
3409 for (retry = 0; retry < 5; retry++) {
3410 reg = FDI_RX_IIR(pipe);
3411 temp = I915_READ(reg);
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413 if (temp & FDI_RX_BIT_LOCK) {
3414 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3415 DRM_DEBUG_KMS("FDI train 1 done.\n");
3416 break;
3417 }
3418 udelay(50);
8db9d77b 3419 }
fa37d39e
SP
3420 if (retry < 5)
3421 break;
8db9d77b
ZW
3422 }
3423 if (i == 4)
5eddb70b 3424 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3425
3426 /* Train 2 */
5eddb70b
CW
3427 reg = FDI_TX_CTL(pipe);
3428 temp = I915_READ(reg);
8db9d77b
ZW
3429 temp &= ~FDI_LINK_TRAIN_NONE;
3430 temp |= FDI_LINK_TRAIN_PATTERN_2;
3431 if (IS_GEN6(dev)) {
3432 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3433 /* SNB-B */
3434 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3435 }
5eddb70b 3436 I915_WRITE(reg, temp);
8db9d77b 3437
5eddb70b
CW
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
8db9d77b
ZW
3440 if (HAS_PCH_CPT(dev)) {
3441 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3443 } else {
3444 temp &= ~FDI_LINK_TRAIN_NONE;
3445 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446 }
5eddb70b
CW
3447 I915_WRITE(reg, temp);
3448
3449 POSTING_READ(reg);
8db9d77b
ZW
3450 udelay(150);
3451
0206e353 3452 for (i = 0; i < 4; i++) {
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3457 I915_WRITE(reg, temp);
3458
3459 POSTING_READ(reg);
8db9d77b
ZW
3460 udelay(500);
3461
fa37d39e
SP
3462 for (retry = 0; retry < 5; retry++) {
3463 reg = FDI_RX_IIR(pipe);
3464 temp = I915_READ(reg);
3465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466 if (temp & FDI_RX_SYMBOL_LOCK) {
3467 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3468 DRM_DEBUG_KMS("FDI train 2 done.\n");
3469 break;
3470 }
3471 udelay(50);
8db9d77b 3472 }
fa37d39e
SP
3473 if (retry < 5)
3474 break;
8db9d77b
ZW
3475 }
3476 if (i == 4)
5eddb70b 3477 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3478
3479 DRM_DEBUG_KMS("FDI train done.\n");
3480}
3481
357555c0
JB
3482/* Manual link training for Ivy Bridge A0 parts */
3483static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3484{
3485 struct drm_device *dev = crtc->dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 int pipe = intel_crtc->pipe;
139ccd3f 3489 u32 reg, temp, i, j;
357555c0
JB
3490
3491 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3492 for train result */
3493 reg = FDI_RX_IMR(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~FDI_RX_SYMBOL_LOCK;
3496 temp &= ~FDI_RX_BIT_LOCK;
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
3500 udelay(150);
3501
01a415fd
DV
3502 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3503 I915_READ(FDI_RX_IIR(pipe)));
3504
139ccd3f
JB
3505 /* Try each vswing and preemphasis setting twice before moving on */
3506 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3507 /* disable first in case we need to retry */
3508 reg = FDI_TX_CTL(pipe);
3509 temp = I915_READ(reg);
3510 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3511 temp &= ~FDI_TX_ENABLE;
3512 I915_WRITE(reg, temp);
357555c0 3513
139ccd3f
JB
3514 reg = FDI_RX_CTL(pipe);
3515 temp = I915_READ(reg);
3516 temp &= ~FDI_LINK_TRAIN_AUTO;
3517 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518 temp &= ~FDI_RX_ENABLE;
3519 I915_WRITE(reg, temp);
357555c0 3520
139ccd3f 3521 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3522 reg = FDI_TX_CTL(pipe);
3523 temp = I915_READ(reg);
139ccd3f 3524 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3525 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3526 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3528 temp |= snb_b_fdi_train_param[j/2];
3529 temp |= FDI_COMPOSITE_SYNC;
3530 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3531
139ccd3f
JB
3532 I915_WRITE(FDI_RX_MISC(pipe),
3533 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3534
139ccd3f 3535 reg = FDI_RX_CTL(pipe);
357555c0 3536 temp = I915_READ(reg);
139ccd3f
JB
3537 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538 temp |= FDI_COMPOSITE_SYNC;
3539 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3540
139ccd3f
JB
3541 POSTING_READ(reg);
3542 udelay(1); /* should be 0.5us */
357555c0 3543
139ccd3f
JB
3544 for (i = 0; i < 4; i++) {
3545 reg = FDI_RX_IIR(pipe);
3546 temp = I915_READ(reg);
3547 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3548
139ccd3f
JB
3549 if (temp & FDI_RX_BIT_LOCK ||
3550 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3551 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3553 i);
3554 break;
3555 }
3556 udelay(1); /* should be 0.5us */
3557 }
3558 if (i == 4) {
3559 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3560 continue;
3561 }
357555c0 3562
139ccd3f 3563 /* Train 2 */
357555c0
JB
3564 reg = FDI_TX_CTL(pipe);
3565 temp = I915_READ(reg);
139ccd3f
JB
3566 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3567 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3568 I915_WRITE(reg, temp);
3569
3570 reg = FDI_RX_CTL(pipe);
3571 temp = I915_READ(reg);
3572 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3573 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
139ccd3f 3577 udelay(2); /* should be 1.5us */
357555c0 3578
139ccd3f
JB
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_RX_IIR(pipe);
3581 temp = I915_READ(reg);
3582 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3583
139ccd3f
JB
3584 if (temp & FDI_RX_SYMBOL_LOCK ||
3585 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3586 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3587 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3588 i);
3589 goto train_done;
3590 }
3591 udelay(2); /* should be 1.5us */
357555c0 3592 }
139ccd3f
JB
3593 if (i == 4)
3594 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3595 }
357555c0 3596
139ccd3f 3597train_done:
357555c0
JB
3598 DRM_DEBUG_KMS("FDI train done.\n");
3599}
3600
88cefb6c 3601static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3602{
88cefb6c 3603 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3604 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3605 int pipe = intel_crtc->pipe;
5eddb70b 3606 u32 reg, temp;
79e53945 3607
c64e311e 3608
c98e9dcf 3609 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3610 reg = FDI_RX_CTL(pipe);
3611 temp = I915_READ(reg);
627eb5a3 3612 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3613 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3614 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3615 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3616
3617 POSTING_READ(reg);
c98e9dcf
JB
3618 udelay(200);
3619
3620 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3621 temp = I915_READ(reg);
3622 I915_WRITE(reg, temp | FDI_PCDCLK);
3623
3624 POSTING_READ(reg);
c98e9dcf
JB
3625 udelay(200);
3626
20749730
PZ
3627 /* Enable CPU FDI TX PLL, always on for Ironlake */
3628 reg = FDI_TX_CTL(pipe);
3629 temp = I915_READ(reg);
3630 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3631 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3632
20749730
PZ
3633 POSTING_READ(reg);
3634 udelay(100);
6be4a607 3635 }
0e23b99d
JB
3636}
3637
88cefb6c
DV
3638static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3639{
3640 struct drm_device *dev = intel_crtc->base.dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 int pipe = intel_crtc->pipe;
3643 u32 reg, temp;
3644
3645 /* Switch from PCDclk to Rawclk */
3646 reg = FDI_RX_CTL(pipe);
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3649
3650 /* Disable CPU FDI TX PLL */
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3654
3655 POSTING_READ(reg);
3656 udelay(100);
3657
3658 reg = FDI_RX_CTL(pipe);
3659 temp = I915_READ(reg);
3660 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3661
3662 /* Wait for the clocks to turn off. */
3663 POSTING_READ(reg);
3664 udelay(100);
3665}
3666
0fc932b8
JB
3667static void ironlake_fdi_disable(struct drm_crtc *crtc)
3668{
3669 struct drm_device *dev = crtc->dev;
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672 int pipe = intel_crtc->pipe;
3673 u32 reg, temp;
3674
3675 /* disable CPU FDI tx and PCH FDI rx */
3676 reg = FDI_TX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3679 POSTING_READ(reg);
3680
3681 reg = FDI_RX_CTL(pipe);
3682 temp = I915_READ(reg);
3683 temp &= ~(0x7 << 16);
dfd07d72 3684 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3685 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3686
3687 POSTING_READ(reg);
3688 udelay(100);
3689
3690 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3691 if (HAS_PCH_IBX(dev))
6f06ce18 3692 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3693
3694 /* still set train pattern 1 */
3695 reg = FDI_TX_CTL(pipe);
3696 temp = I915_READ(reg);
3697 temp &= ~FDI_LINK_TRAIN_NONE;
3698 temp |= FDI_LINK_TRAIN_PATTERN_1;
3699 I915_WRITE(reg, temp);
3700
3701 reg = FDI_RX_CTL(pipe);
3702 temp = I915_READ(reg);
3703 if (HAS_PCH_CPT(dev)) {
3704 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3705 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706 } else {
3707 temp &= ~FDI_LINK_TRAIN_NONE;
3708 temp |= FDI_LINK_TRAIN_PATTERN_1;
3709 }
3710 /* BPC in FDI rx is consistent with that in PIPECONF */
3711 temp &= ~(0x07 << 16);
dfd07d72 3712 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3713 I915_WRITE(reg, temp);
3714
3715 POSTING_READ(reg);
3716 udelay(100);
3717}
3718
5dce5b93
CW
3719bool intel_has_pending_fb_unpin(struct drm_device *dev)
3720{
3721 struct intel_crtc *crtc;
3722
3723 /* Note that we don't need to be called with mode_config.lock here
3724 * as our list of CRTC objects is static for the lifetime of the
3725 * device and so cannot disappear as we iterate. Similarly, we can
3726 * happily treat the predicates as racy, atomic checks as userspace
3727 * cannot claim and pin a new fb without at least acquring the
3728 * struct_mutex and so serialising with us.
3729 */
d3fcc808 3730 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3731 if (atomic_read(&crtc->unpin_work_count) == 0)
3732 continue;
3733
3734 if (crtc->unpin_work)
3735 intel_wait_for_vblank(dev, crtc->pipe);
3736
3737 return true;
3738 }
3739
3740 return false;
3741}
3742
d6bbafa1
CW
3743static void page_flip_completed(struct intel_crtc *intel_crtc)
3744{
3745 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3746 struct intel_unpin_work *work = intel_crtc->unpin_work;
3747
3748 /* ensure that the unpin work is consistent wrt ->pending. */
3749 smp_rmb();
3750 intel_crtc->unpin_work = NULL;
3751
3752 if (work->event)
3753 drm_send_vblank_event(intel_crtc->base.dev,
3754 intel_crtc->pipe,
3755 work->event);
3756
3757 drm_crtc_vblank_put(&intel_crtc->base);
3758
3759 wake_up_all(&dev_priv->pending_flip_queue);
3760 queue_work(dev_priv->wq, &work->work);
3761
3762 trace_i915_flip_complete(intel_crtc->plane,
3763 work->pending_flip_obj);
3764}
3765
46a55d30 3766void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3767{
0f91128d 3768 struct drm_device *dev = crtc->dev;
5bb61643 3769 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3770
2c10d571 3771 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3772 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3773 !intel_crtc_has_pending_flip(crtc),
3774 60*HZ) == 0)) {
3775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3776
5e2d7afc 3777 spin_lock_irq(&dev->event_lock);
9c787942
CW
3778 if (intel_crtc->unpin_work) {
3779 WARN_ONCE(1, "Removing stuck page flip\n");
3780 page_flip_completed(intel_crtc);
3781 }
5e2d7afc 3782 spin_unlock_irq(&dev->event_lock);
9c787942 3783 }
5bb61643 3784
975d568a
CW
3785 if (crtc->primary->fb) {
3786 mutex_lock(&dev->struct_mutex);
3787 intel_finish_fb(crtc->primary->fb);
3788 mutex_unlock(&dev->struct_mutex);
3789 }
e6c3a2a6
CW
3790}
3791
e615efe4
ED
3792/* Program iCLKIP clock to the desired frequency */
3793static void lpt_program_iclkip(struct drm_crtc *crtc)
3794{
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3797 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3798 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3799 u32 temp;
3800
09153000
DV
3801 mutex_lock(&dev_priv->dpio_lock);
3802
e615efe4
ED
3803 /* It is necessary to ungate the pixclk gate prior to programming
3804 * the divisors, and gate it back when it is done.
3805 */
3806 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3807
3808 /* Disable SSCCTL */
3809 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3810 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3811 SBI_SSCCTL_DISABLE,
3812 SBI_ICLK);
e615efe4
ED
3813
3814 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3815 if (clock == 20000) {
e615efe4
ED
3816 auxdiv = 1;
3817 divsel = 0x41;
3818 phaseinc = 0x20;
3819 } else {
3820 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3821 * but the adjusted_mode->crtc_clock in in KHz. To get the
3822 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3823 * convert the virtual clock precision to KHz here for higher
3824 * precision.
3825 */
3826 u32 iclk_virtual_root_freq = 172800 * 1000;
3827 u32 iclk_pi_range = 64;
3828 u32 desired_divisor, msb_divisor_value, pi_value;
3829
12d7ceed 3830 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3831 msb_divisor_value = desired_divisor / iclk_pi_range;
3832 pi_value = desired_divisor % iclk_pi_range;
3833
3834 auxdiv = 0;
3835 divsel = msb_divisor_value - 2;
3836 phaseinc = pi_value;
3837 }
3838
3839 /* This should not happen with any sane values */
3840 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3841 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3842 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3843 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3844
3845 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3846 clock,
e615efe4
ED
3847 auxdiv,
3848 divsel,
3849 phasedir,
3850 phaseinc);
3851
3852 /* Program SSCDIVINTPHASE6 */
988d6ee8 3853 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3854 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3855 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3856 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3857 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3858 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3859 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3860 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3861
3862 /* Program SSCAUXDIV */
988d6ee8 3863 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3864 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3865 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3866 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3867
3868 /* Enable modulator and associated divider */
988d6ee8 3869 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3870 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3871 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3872
3873 /* Wait for initialization time */
3874 udelay(24);
3875
3876 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3877
3878 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3879}
3880
275f01b2
DV
3881static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3882 enum pipe pch_transcoder)
3883{
3884 struct drm_device *dev = crtc->base.dev;
3885 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3886 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3887
3888 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3889 I915_READ(HTOTAL(cpu_transcoder)));
3890 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3891 I915_READ(HBLANK(cpu_transcoder)));
3892 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3893 I915_READ(HSYNC(cpu_transcoder)));
3894
3895 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3896 I915_READ(VTOTAL(cpu_transcoder)));
3897 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3898 I915_READ(VBLANK(cpu_transcoder)));
3899 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3900 I915_READ(VSYNC(cpu_transcoder)));
3901 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3902 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3903}
3904
003632d9 3905static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3906{
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 uint32_t temp;
3909
3910 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 3911 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
3912 return;
3913
3914 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3915 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3916
003632d9
ACO
3917 temp &= ~FDI_BC_BIFURCATION_SELECT;
3918 if (enable)
3919 temp |= FDI_BC_BIFURCATION_SELECT;
3920
3921 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
3922 I915_WRITE(SOUTH_CHICKEN1, temp);
3923 POSTING_READ(SOUTH_CHICKEN1);
3924}
3925
3926static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3927{
3928 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
3929
3930 switch (intel_crtc->pipe) {
3931 case PIPE_A:
3932 break;
3933 case PIPE_B:
6e3c9717 3934 if (intel_crtc->config->fdi_lanes > 2)
003632d9 3935 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 3936 else
003632d9 3937 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3938
3939 break;
3940 case PIPE_C:
003632d9 3941 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3942
3943 break;
3944 default:
3945 BUG();
3946 }
3947}
3948
f67a559d
JB
3949/*
3950 * Enable PCH resources required for PCH ports:
3951 * - PCH PLLs
3952 * - FDI training & RX/TX
3953 * - update transcoder timings
3954 * - DP transcoding bits
3955 * - transcoder
3956 */
3957static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3958{
3959 struct drm_device *dev = crtc->dev;
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962 int pipe = intel_crtc->pipe;
ee7b9f93 3963 u32 reg, temp;
2c07245f 3964
ab9412ba 3965 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3966
1fbc0d78
DV
3967 if (IS_IVYBRIDGE(dev))
3968 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3969
cd986abb
DV
3970 /* Write the TU size bits before fdi link training, so that error
3971 * detection works. */
3972 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3973 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3974
c98e9dcf 3975 /* For PCH output, training FDI link */
674cf967 3976 dev_priv->display.fdi_link_train(crtc);
2c07245f 3977
3ad8a208
DV
3978 /* We need to program the right clock selection before writing the pixel
3979 * mutliplier into the DPLL. */
303b81e0 3980 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3981 u32 sel;
4b645f14 3982
c98e9dcf 3983 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3984 temp |= TRANS_DPLL_ENABLE(pipe);
3985 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3986 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3987 temp |= sel;
3988 else
3989 temp &= ~sel;
c98e9dcf 3990 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3991 }
5eddb70b 3992
3ad8a208
DV
3993 /* XXX: pch pll's can be enabled any time before we enable the PCH
3994 * transcoder, and we actually should do this to not upset any PCH
3995 * transcoder that already use the clock when we share it.
3996 *
3997 * Note that enable_shared_dpll tries to do the right thing, but
3998 * get_shared_dpll unconditionally resets the pll - we need that to have
3999 * the right LVDS enable sequence. */
85b3894f 4000 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4001
d9b6cb56
JB
4002 /* set transcoder timing, panel must allow it */
4003 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4004 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4005
303b81e0 4006 intel_fdi_normal_train(crtc);
5e84e1a4 4007
c98e9dcf 4008 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4009 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4010 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4011 reg = TRANS_DP_CTL(pipe);
4012 temp = I915_READ(reg);
4013 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4014 TRANS_DP_SYNC_MASK |
4015 TRANS_DP_BPC_MASK);
5eddb70b
CW
4016 temp |= (TRANS_DP_OUTPUT_ENABLE |
4017 TRANS_DP_ENH_FRAMING);
9325c9f0 4018 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4019
4020 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4021 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4022 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4023 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4024
4025 switch (intel_trans_dp_port_sel(crtc)) {
4026 case PCH_DP_B:
5eddb70b 4027 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4028 break;
4029 case PCH_DP_C:
5eddb70b 4030 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4031 break;
4032 case PCH_DP_D:
5eddb70b 4033 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4034 break;
4035 default:
e95d41e1 4036 BUG();
32f9d658 4037 }
2c07245f 4038
5eddb70b 4039 I915_WRITE(reg, temp);
6be4a607 4040 }
b52eb4dc 4041
b8a4f404 4042 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4043}
4044
1507e5bd
PZ
4045static void lpt_pch_enable(struct drm_crtc *crtc)
4046{
4047 struct drm_device *dev = crtc->dev;
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4050 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4051
ab9412ba 4052 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4053
8c52b5e8 4054 lpt_program_iclkip(crtc);
1507e5bd 4055
0540e488 4056 /* Set transcoder timing. */
275f01b2 4057 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4058
937bb610 4059 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4060}
4061
716c2e55 4062void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4063{
e2b78267 4064 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4065
4066 if (pll == NULL)
4067 return;
4068
3e369b76 4069 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4070 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4071 return;
4072 }
4073
3e369b76
ACO
4074 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4075 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4076 WARN_ON(pll->on);
4077 WARN_ON(pll->active);
4078 }
4079
6e3c9717 4080 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4081}
4082
190f68c5
ACO
4083struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4084 struct intel_crtc_state *crtc_state)
ee7b9f93 4085{
e2b78267 4086 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4087 struct intel_shared_dpll *pll;
e2b78267 4088 enum intel_dpll_id i;
ee7b9f93 4089
98b6bd99
DV
4090 if (HAS_PCH_IBX(dev_priv->dev)) {
4091 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4092 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4093 pll = &dev_priv->shared_dplls[i];
98b6bd99 4094
46edb027
DV
4095 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4096 crtc->base.base.id, pll->name);
98b6bd99 4097
8bd31e67 4098 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4099
98b6bd99
DV
4100 goto found;
4101 }
4102
e72f9fbf
DV
4103 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4104 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4105
4106 /* Only want to check enabled timings first */
8bd31e67 4107 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4108 continue;
4109
190f68c5 4110 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4111 &pll->new_config->hw_state,
4112 sizeof(pll->new_config->hw_state)) == 0) {
4113 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4114 crtc->base.base.id, pll->name,
8bd31e67
ACO
4115 pll->new_config->crtc_mask,
4116 pll->active);
ee7b9f93
JB
4117 goto found;
4118 }
4119 }
4120
4121 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4122 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4123 pll = &dev_priv->shared_dplls[i];
8bd31e67 4124 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4125 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4126 crtc->base.base.id, pll->name);
ee7b9f93
JB
4127 goto found;
4128 }
4129 }
4130
4131 return NULL;
4132
4133found:
8bd31e67 4134 if (pll->new_config->crtc_mask == 0)
190f68c5 4135 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4136
190f68c5 4137 crtc_state->shared_dpll = i;
46edb027
DV
4138 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4139 pipe_name(crtc->pipe));
ee7b9f93 4140
8bd31e67 4141 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4142
ee7b9f93
JB
4143 return pll;
4144}
4145
8bd31e67
ACO
4146/**
4147 * intel_shared_dpll_start_config - start a new PLL staged config
4148 * @dev_priv: DRM device
4149 * @clear_pipes: mask of pipes that will have their PLLs freed
4150 *
4151 * Starts a new PLL staged config, copying the current config but
4152 * releasing the references of pipes specified in clear_pipes.
4153 */
4154static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4155 unsigned clear_pipes)
4156{
4157 struct intel_shared_dpll *pll;
4158 enum intel_dpll_id i;
4159
4160 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4161 pll = &dev_priv->shared_dplls[i];
4162
4163 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4164 GFP_KERNEL);
4165 if (!pll->new_config)
4166 goto cleanup;
4167
4168 pll->new_config->crtc_mask &= ~clear_pipes;
4169 }
4170
4171 return 0;
4172
4173cleanup:
4174 while (--i >= 0) {
4175 pll = &dev_priv->shared_dplls[i];
f354d733 4176 kfree(pll->new_config);
8bd31e67
ACO
4177 pll->new_config = NULL;
4178 }
4179
4180 return -ENOMEM;
4181}
4182
4183static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4184{
4185 struct intel_shared_dpll *pll;
4186 enum intel_dpll_id i;
4187
4188 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189 pll = &dev_priv->shared_dplls[i];
4190
4191 WARN_ON(pll->new_config == &pll->config);
4192
4193 pll->config = *pll->new_config;
4194 kfree(pll->new_config);
4195 pll->new_config = NULL;
4196 }
4197}
4198
4199static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4200{
4201 struct intel_shared_dpll *pll;
4202 enum intel_dpll_id i;
4203
4204 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4205 pll = &dev_priv->shared_dplls[i];
4206
4207 WARN_ON(pll->new_config == &pll->config);
4208
4209 kfree(pll->new_config);
4210 pll->new_config = NULL;
4211 }
4212}
4213
a1520318 4214static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4215{
4216 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4217 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4218 u32 temp;
4219
4220 temp = I915_READ(dslreg);
4221 udelay(500);
4222 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4223 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4224 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4225 }
4226}
4227
bd2e244f
JB
4228static void skylake_pfit_enable(struct intel_crtc *crtc)
4229{
4230 struct drm_device *dev = crtc->base.dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 int pipe = crtc->pipe;
4233
6e3c9717 4234 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4235 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4236 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4237 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4238 }
4239}
4240
b074cec8
JB
4241static void ironlake_pfit_enable(struct intel_crtc *crtc)
4242{
4243 struct drm_device *dev = crtc->base.dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 int pipe = crtc->pipe;
4246
6e3c9717 4247 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4248 /* Force use of hard-coded filter coefficients
4249 * as some pre-programmed values are broken,
4250 * e.g. x201.
4251 */
4252 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4253 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4254 PF_PIPE_SEL_IVB(pipe));
4255 else
4256 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4257 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4258 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4259 }
4260}
4261
4a3b8769 4262static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4263{
4264 struct drm_device *dev = crtc->dev;
4265 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4266 struct drm_plane *plane;
bb53d4ae
VS
4267 struct intel_plane *intel_plane;
4268
af2b653b
MR
4269 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4270 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4271 if (intel_plane->pipe == pipe)
4272 intel_plane_restore(&intel_plane->base);
af2b653b 4273 }
bb53d4ae
VS
4274}
4275
0d703d4e
MR
4276/*
4277 * Disable a plane internally without actually modifying the plane's state.
4278 * This will allow us to easily restore the plane later by just reprogramming
4279 * its state.
4280 */
4281static void disable_plane_internal(struct drm_plane *plane)
4282{
4283 struct intel_plane *intel_plane = to_intel_plane(plane);
4284 struct drm_plane_state *state =
4285 plane->funcs->atomic_duplicate_state(plane);
4286 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4287
4288 intel_state->visible = false;
4289 intel_plane->commit_plane(plane, intel_state);
4290
4291 intel_plane_destroy_state(plane, state);
4292}
4293
4a3b8769 4294static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4295{
4296 struct drm_device *dev = crtc->dev;
4297 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4298 struct drm_plane *plane;
bb53d4ae
VS
4299 struct intel_plane *intel_plane;
4300
af2b653b
MR
4301 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4302 intel_plane = to_intel_plane(plane);
0d703d4e
MR
4303 if (plane->fb && intel_plane->pipe == pipe)
4304 disable_plane_internal(plane);
af2b653b 4305 }
bb53d4ae
VS
4306}
4307
20bc8673 4308void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4309{
cea165c3
VS
4310 struct drm_device *dev = crtc->base.dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4312
6e3c9717 4313 if (!crtc->config->ips_enabled)
d77e4531
PZ
4314 return;
4315
cea165c3
VS
4316 /* We can only enable IPS after we enable a plane and wait for a vblank */
4317 intel_wait_for_vblank(dev, crtc->pipe);
4318
d77e4531 4319 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4320 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4321 mutex_lock(&dev_priv->rps.hw_lock);
4322 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4323 mutex_unlock(&dev_priv->rps.hw_lock);
4324 /* Quoting Art Runyan: "its not safe to expect any particular
4325 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4326 * mailbox." Moreover, the mailbox may return a bogus state,
4327 * so we need to just enable it and continue on.
2a114cc1
BW
4328 */
4329 } else {
4330 I915_WRITE(IPS_CTL, IPS_ENABLE);
4331 /* The bit only becomes 1 in the next vblank, so this wait here
4332 * is essentially intel_wait_for_vblank. If we don't have this
4333 * and don't wait for vblanks until the end of crtc_enable, then
4334 * the HW state readout code will complain that the expected
4335 * IPS_CTL value is not the one we read. */
4336 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4337 DRM_ERROR("Timed out waiting for IPS enable\n");
4338 }
d77e4531
PZ
4339}
4340
20bc8673 4341void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4342{
4343 struct drm_device *dev = crtc->base.dev;
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345
6e3c9717 4346 if (!crtc->config->ips_enabled)
d77e4531
PZ
4347 return;
4348
4349 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4350 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4351 mutex_lock(&dev_priv->rps.hw_lock);
4352 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4353 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4354 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4355 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4356 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4357 } else {
2a114cc1 4358 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4359 POSTING_READ(IPS_CTL);
4360 }
d77e4531
PZ
4361
4362 /* We need to wait for a vblank before we can disable the plane. */
4363 intel_wait_for_vblank(dev, crtc->pipe);
4364}
4365
4366/** Loads the palette/gamma unit for the CRTC with the prepared values */
4367static void intel_crtc_load_lut(struct drm_crtc *crtc)
4368{
4369 struct drm_device *dev = crtc->dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372 enum pipe pipe = intel_crtc->pipe;
4373 int palreg = PALETTE(pipe);
4374 int i;
4375 bool reenable_ips = false;
4376
4377 /* The clocks have to be on to load the palette. */
83d65738 4378 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4379 return;
4380
4381 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4382 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4383 assert_dsi_pll_enabled(dev_priv);
4384 else
4385 assert_pll_enabled(dev_priv, pipe);
4386 }
4387
4388 /* use legacy palette for Ironlake */
7a1db49a 4389 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4390 palreg = LGC_PALETTE(pipe);
4391
4392 /* Workaround : Do not read or write the pipe palette/gamma data while
4393 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4394 */
6e3c9717 4395 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4396 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4397 GAMMA_MODE_MODE_SPLIT)) {
4398 hsw_disable_ips(intel_crtc);
4399 reenable_ips = true;
4400 }
4401
4402 for (i = 0; i < 256; i++) {
4403 I915_WRITE(palreg + 4 * i,
4404 (intel_crtc->lut_r[i] << 16) |
4405 (intel_crtc->lut_g[i] << 8) |
4406 intel_crtc->lut_b[i]);
4407 }
4408
4409 if (reenable_ips)
4410 hsw_enable_ips(intel_crtc);
4411}
4412
d3eedb1a
VS
4413static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4414{
4415 if (!enable && intel_crtc->overlay) {
4416 struct drm_device *dev = intel_crtc->base.dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419 mutex_lock(&dev->struct_mutex);
4420 dev_priv->mm.interruptible = false;
4421 (void) intel_overlay_switch_off(intel_crtc->overlay);
4422 dev_priv->mm.interruptible = true;
4423 mutex_unlock(&dev->struct_mutex);
4424 }
4425
4426 /* Let userspace switch the overlay on again. In most cases userspace
4427 * has to recompute where to put it anyway.
4428 */
4429}
4430
d3eedb1a 4431static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4432{
4433 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435 int pipe = intel_crtc->pipe;
a5c4d7bc 4436
fdd508a6 4437 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4438 intel_enable_sprite_planes(crtc);
a5c4d7bc 4439 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4440 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4441
4442 hsw_enable_ips(intel_crtc);
4443
4444 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4445 intel_fbc_update(dev);
a5c4d7bc 4446 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4447
4448 /*
4449 * FIXME: Once we grow proper nuclear flip support out of this we need
4450 * to compute the mask of flip planes precisely. For the time being
4451 * consider this a flip from a NULL plane.
4452 */
4453 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4454}
4455
d3eedb1a 4456static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4457{
4458 struct drm_device *dev = crtc->dev;
4459 struct drm_i915_private *dev_priv = dev->dev_private;
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4462
4463 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4464
e35fef21 4465 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4466 intel_fbc_disable(dev);
a5c4d7bc
VS
4467
4468 hsw_disable_ips(intel_crtc);
4469
d3eedb1a 4470 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4471 intel_crtc_update_cursor(crtc, false);
4a3b8769 4472 intel_disable_sprite_planes(crtc);
fdd508a6 4473 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4474
f99d7069
DV
4475 /*
4476 * FIXME: Once we grow proper nuclear flip support out of this we need
4477 * to compute the mask of flip planes precisely. For the time being
4478 * consider this a flip to a NULL plane.
4479 */
4480 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4481}
4482
f67a559d
JB
4483static void ironlake_crtc_enable(struct drm_crtc *crtc)
4484{
4485 struct drm_device *dev = crtc->dev;
4486 struct drm_i915_private *dev_priv = dev->dev_private;
4487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4488 struct intel_encoder *encoder;
f67a559d 4489 int pipe = intel_crtc->pipe;
f67a559d 4490
83d65738 4491 WARN_ON(!crtc->state->enable);
08a48469 4492
f67a559d
JB
4493 if (intel_crtc->active)
4494 return;
4495
6e3c9717 4496 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4497 intel_prepare_shared_dpll(intel_crtc);
4498
6e3c9717 4499 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4500 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4501
4502 intel_set_pipe_timings(intel_crtc);
4503
6e3c9717 4504 if (intel_crtc->config->has_pch_encoder) {
29407aab 4505 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4506 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4507 }
4508
4509 ironlake_set_pipeconf(crtc);
4510
f67a559d 4511 intel_crtc->active = true;
8664281b 4512
a72e4c9f
DV
4513 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4514 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4515
f6736a1a 4516 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4517 if (encoder->pre_enable)
4518 encoder->pre_enable(encoder);
f67a559d 4519
6e3c9717 4520 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4521 /* Note: FDI PLL enabling _must_ be done before we enable the
4522 * cpu pipes, hence this is separate from all the other fdi/pch
4523 * enabling. */
88cefb6c 4524 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4525 } else {
4526 assert_fdi_tx_disabled(dev_priv, pipe);
4527 assert_fdi_rx_disabled(dev_priv, pipe);
4528 }
f67a559d 4529
b074cec8 4530 ironlake_pfit_enable(intel_crtc);
f67a559d 4531
9c54c0dd
JB
4532 /*
4533 * On ILK+ LUT must be loaded before the pipe is running but with
4534 * clocks enabled
4535 */
4536 intel_crtc_load_lut(crtc);
4537
f37fcc2a 4538 intel_update_watermarks(crtc);
e1fdc473 4539 intel_enable_pipe(intel_crtc);
f67a559d 4540
6e3c9717 4541 if (intel_crtc->config->has_pch_encoder)
f67a559d 4542 ironlake_pch_enable(crtc);
c98e9dcf 4543
f9b61ff6
DV
4544 assert_vblank_disabled(crtc);
4545 drm_crtc_vblank_on(crtc);
4546
fa5c73b1
DV
4547 for_each_encoder_on_crtc(dev, crtc, encoder)
4548 encoder->enable(encoder);
61b77ddd
DV
4549
4550 if (HAS_PCH_CPT(dev))
a1520318 4551 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4552
d3eedb1a 4553 intel_crtc_enable_planes(crtc);
6be4a607
JB
4554}
4555
42db64ef
PZ
4556/* IPS only exists on ULT machines and is tied to pipe A. */
4557static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4558{
f5adf94e 4559 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4560}
4561
e4916946
PZ
4562/*
4563 * This implements the workaround described in the "notes" section of the mode
4564 * set sequence documentation. When going from no pipes or single pipe to
4565 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4566 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4567 */
4568static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4569{
4570 struct drm_device *dev = crtc->base.dev;
4571 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4572
4573 /* We want to get the other_active_crtc only if there's only 1 other
4574 * active crtc. */
d3fcc808 4575 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4576 if (!crtc_it->active || crtc_it == crtc)
4577 continue;
4578
4579 if (other_active_crtc)
4580 return;
4581
4582 other_active_crtc = crtc_it;
4583 }
4584 if (!other_active_crtc)
4585 return;
4586
4587 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4589}
4590
4f771f10
PZ
4591static void haswell_crtc_enable(struct drm_crtc *crtc)
4592{
4593 struct drm_device *dev = crtc->dev;
4594 struct drm_i915_private *dev_priv = dev->dev_private;
4595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596 struct intel_encoder *encoder;
4597 int pipe = intel_crtc->pipe;
4f771f10 4598
83d65738 4599 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4600
4601 if (intel_crtc->active)
4602 return;
4603
df8ad70c
DV
4604 if (intel_crtc_to_shared_dpll(intel_crtc))
4605 intel_enable_shared_dpll(intel_crtc);
4606
6e3c9717 4607 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4608 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4609
4610 intel_set_pipe_timings(intel_crtc);
4611
6e3c9717
ACO
4612 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4613 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4614 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4615 }
4616
6e3c9717 4617 if (intel_crtc->config->has_pch_encoder) {
229fca97 4618 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4619 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4620 }
4621
4622 haswell_set_pipeconf(crtc);
4623
4624 intel_set_pipe_csc(crtc);
4625
4f771f10 4626 intel_crtc->active = true;
8664281b 4627
a72e4c9f 4628 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4629 for_each_encoder_on_crtc(dev, crtc, encoder)
4630 if (encoder->pre_enable)
4631 encoder->pre_enable(encoder);
4632
6e3c9717 4633 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4634 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4635 true);
4fe9467d
ID
4636 dev_priv->display.fdi_link_train(crtc);
4637 }
4638
1f544388 4639 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4640
bd2e244f
JB
4641 if (IS_SKYLAKE(dev))
4642 skylake_pfit_enable(intel_crtc);
4643 else
4644 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4645
4646 /*
4647 * On ILK+ LUT must be loaded before the pipe is running but with
4648 * clocks enabled
4649 */
4650 intel_crtc_load_lut(crtc);
4651
1f544388 4652 intel_ddi_set_pipe_settings(crtc);
8228c251 4653 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4654
f37fcc2a 4655 intel_update_watermarks(crtc);
e1fdc473 4656 intel_enable_pipe(intel_crtc);
42db64ef 4657
6e3c9717 4658 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4659 lpt_pch_enable(crtc);
4f771f10 4660
6e3c9717 4661 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4662 intel_ddi_set_vc_payload_alloc(crtc, true);
4663
f9b61ff6
DV
4664 assert_vblank_disabled(crtc);
4665 drm_crtc_vblank_on(crtc);
4666
8807e55b 4667 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4668 encoder->enable(encoder);
8807e55b
JN
4669 intel_opregion_notify_encoder(encoder, true);
4670 }
4f771f10 4671
e4916946
PZ
4672 /* If we change the relative order between pipe/planes enabling, we need
4673 * to change the workaround. */
4674 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4675 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4676}
4677
bd2e244f
JB
4678static void skylake_pfit_disable(struct intel_crtc *crtc)
4679{
4680 struct drm_device *dev = crtc->base.dev;
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 int pipe = crtc->pipe;
4683
4684 /* To avoid upsetting the power well on haswell only disable the pfit if
4685 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4686 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4687 I915_WRITE(PS_CTL(pipe), 0);
4688 I915_WRITE(PS_WIN_POS(pipe), 0);
4689 I915_WRITE(PS_WIN_SZ(pipe), 0);
4690 }
4691}
4692
3f8dce3a
DV
4693static void ironlake_pfit_disable(struct intel_crtc *crtc)
4694{
4695 struct drm_device *dev = crtc->base.dev;
4696 struct drm_i915_private *dev_priv = dev->dev_private;
4697 int pipe = crtc->pipe;
4698
4699 /* To avoid upsetting the power well on haswell only disable the pfit if
4700 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4701 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4702 I915_WRITE(PF_CTL(pipe), 0);
4703 I915_WRITE(PF_WIN_POS(pipe), 0);
4704 I915_WRITE(PF_WIN_SZ(pipe), 0);
4705 }
4706}
4707
6be4a607
JB
4708static void ironlake_crtc_disable(struct drm_crtc *crtc)
4709{
4710 struct drm_device *dev = crtc->dev;
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4713 struct intel_encoder *encoder;
6be4a607 4714 int pipe = intel_crtc->pipe;
5eddb70b 4715 u32 reg, temp;
b52eb4dc 4716
f7abfe8b
CW
4717 if (!intel_crtc->active)
4718 return;
4719
d3eedb1a 4720 intel_crtc_disable_planes(crtc);
a5c4d7bc 4721
ea9d758d
DV
4722 for_each_encoder_on_crtc(dev, crtc, encoder)
4723 encoder->disable(encoder);
4724
f9b61ff6
DV
4725 drm_crtc_vblank_off(crtc);
4726 assert_vblank_disabled(crtc);
4727
6e3c9717 4728 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4729 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4730
575f7ab7 4731 intel_disable_pipe(intel_crtc);
32f9d658 4732
3f8dce3a 4733 ironlake_pfit_disable(intel_crtc);
2c07245f 4734
bf49ec8c
DV
4735 for_each_encoder_on_crtc(dev, crtc, encoder)
4736 if (encoder->post_disable)
4737 encoder->post_disable(encoder);
2c07245f 4738
6e3c9717 4739 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4740 ironlake_fdi_disable(crtc);
913d8d11 4741
d925c59a 4742 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4743
d925c59a
DV
4744 if (HAS_PCH_CPT(dev)) {
4745 /* disable TRANS_DP_CTL */
4746 reg = TRANS_DP_CTL(pipe);
4747 temp = I915_READ(reg);
4748 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4749 TRANS_DP_PORT_SEL_MASK);
4750 temp |= TRANS_DP_PORT_SEL_NONE;
4751 I915_WRITE(reg, temp);
4752
4753 /* disable DPLL_SEL */
4754 temp = I915_READ(PCH_DPLL_SEL);
11887397 4755 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4756 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4757 }
e3421a18 4758
d925c59a 4759 /* disable PCH DPLL */
e72f9fbf 4760 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4761
d925c59a
DV
4762 ironlake_fdi_pll_disable(intel_crtc);
4763 }
6b383a7f 4764
f7abfe8b 4765 intel_crtc->active = false;
46ba614c 4766 intel_update_watermarks(crtc);
d1ebd816
BW
4767
4768 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4769 intel_fbc_update(dev);
d1ebd816 4770 mutex_unlock(&dev->struct_mutex);
6be4a607 4771}
1b3c7a47 4772
4f771f10 4773static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4774{
4f771f10
PZ
4775 struct drm_device *dev = crtc->dev;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4778 struct intel_encoder *encoder;
6e3c9717 4779 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4780
4f771f10
PZ
4781 if (!intel_crtc->active)
4782 return;
4783
d3eedb1a 4784 intel_crtc_disable_planes(crtc);
dda9a66a 4785
8807e55b
JN
4786 for_each_encoder_on_crtc(dev, crtc, encoder) {
4787 intel_opregion_notify_encoder(encoder, false);
4f771f10 4788 encoder->disable(encoder);
8807e55b 4789 }
4f771f10 4790
f9b61ff6
DV
4791 drm_crtc_vblank_off(crtc);
4792 assert_vblank_disabled(crtc);
4793
6e3c9717 4794 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4795 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4796 false);
575f7ab7 4797 intel_disable_pipe(intel_crtc);
4f771f10 4798
6e3c9717 4799 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4800 intel_ddi_set_vc_payload_alloc(crtc, false);
4801
ad80a810 4802 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4803
bd2e244f
JB
4804 if (IS_SKYLAKE(dev))
4805 skylake_pfit_disable(intel_crtc);
4806 else
4807 ironlake_pfit_disable(intel_crtc);
4f771f10 4808
1f544388 4809 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4810
6e3c9717 4811 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4812 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4813 intel_ddi_fdi_disable(crtc);
83616634 4814 }
4f771f10 4815
97b040aa
ID
4816 for_each_encoder_on_crtc(dev, crtc, encoder)
4817 if (encoder->post_disable)
4818 encoder->post_disable(encoder);
4819
4f771f10 4820 intel_crtc->active = false;
46ba614c 4821 intel_update_watermarks(crtc);
4f771f10
PZ
4822
4823 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4824 intel_fbc_update(dev);
4f771f10 4825 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4826
4827 if (intel_crtc_to_shared_dpll(intel_crtc))
4828 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4829}
4830
ee7b9f93
JB
4831static void ironlake_crtc_off(struct drm_crtc *crtc)
4832{
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4834 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4835}
4836
6441ab5f 4837
2dd24552
JB
4838static void i9xx_pfit_enable(struct intel_crtc *crtc)
4839{
4840 struct drm_device *dev = crtc->base.dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4842 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4843
681a8504 4844 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4845 return;
4846
2dd24552 4847 /*
c0b03411
DV
4848 * The panel fitter should only be adjusted whilst the pipe is disabled,
4849 * according to register description and PRM.
2dd24552 4850 */
c0b03411
DV
4851 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4852 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4853
b074cec8
JB
4854 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4855 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4856
4857 /* Border color in case we don't scale up to the full screen. Black by
4858 * default, change to something else for debugging. */
4859 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4860}
4861
d05410f9
DA
4862static enum intel_display_power_domain port_to_power_domain(enum port port)
4863{
4864 switch (port) {
4865 case PORT_A:
4866 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4867 case PORT_B:
4868 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4869 case PORT_C:
4870 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4871 case PORT_D:
4872 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4873 default:
4874 WARN_ON_ONCE(1);
4875 return POWER_DOMAIN_PORT_OTHER;
4876 }
4877}
4878
77d22dca
ID
4879#define for_each_power_domain(domain, mask) \
4880 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4881 if ((1 << (domain)) & (mask))
4882
319be8ae
ID
4883enum intel_display_power_domain
4884intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4885{
4886 struct drm_device *dev = intel_encoder->base.dev;
4887 struct intel_digital_port *intel_dig_port;
4888
4889 switch (intel_encoder->type) {
4890 case INTEL_OUTPUT_UNKNOWN:
4891 /* Only DDI platforms should ever use this output type */
4892 WARN_ON_ONCE(!HAS_DDI(dev));
4893 case INTEL_OUTPUT_DISPLAYPORT:
4894 case INTEL_OUTPUT_HDMI:
4895 case INTEL_OUTPUT_EDP:
4896 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4897 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4898 case INTEL_OUTPUT_DP_MST:
4899 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4900 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4901 case INTEL_OUTPUT_ANALOG:
4902 return POWER_DOMAIN_PORT_CRT;
4903 case INTEL_OUTPUT_DSI:
4904 return POWER_DOMAIN_PORT_DSI;
4905 default:
4906 return POWER_DOMAIN_PORT_OTHER;
4907 }
4908}
4909
4910static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4911{
319be8ae
ID
4912 struct drm_device *dev = crtc->dev;
4913 struct intel_encoder *intel_encoder;
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4916 unsigned long mask;
4917 enum transcoder transcoder;
4918
4919 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4920
4921 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4922 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4923 if (intel_crtc->config->pch_pfit.enabled ||
4924 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4925 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4926
319be8ae
ID
4927 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4928 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4929
77d22dca
ID
4930 return mask;
4931}
4932
77d22dca
ID
4933static void modeset_update_crtc_power_domains(struct drm_device *dev)
4934{
4935 struct drm_i915_private *dev_priv = dev->dev_private;
4936 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4937 struct intel_crtc *crtc;
4938
4939 /*
4940 * First get all needed power domains, then put all unneeded, to avoid
4941 * any unnecessary toggling of the power wells.
4942 */
d3fcc808 4943 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4944 enum intel_display_power_domain domain;
4945
83d65738 4946 if (!crtc->base.state->enable)
77d22dca
ID
4947 continue;
4948
319be8ae 4949 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4950
4951 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4952 intel_display_power_get(dev_priv, domain);
4953 }
4954
50f6e502
VS
4955 if (dev_priv->display.modeset_global_resources)
4956 dev_priv->display.modeset_global_resources(dev);
4957
d3fcc808 4958 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4959 enum intel_display_power_domain domain;
4960
4961 for_each_power_domain(domain, crtc->enabled_power_domains)
4962 intel_display_power_put(dev_priv, domain);
4963
4964 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4965 }
4966
4967 intel_display_set_init_power(dev_priv, false);
4968}
4969
dfcab17e 4970/* returns HPLL frequency in kHz */
f8bf63fd 4971static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4972{
586f49dc 4973 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4974
586f49dc
JB
4975 /* Obtain SKU information */
4976 mutex_lock(&dev_priv->dpio_lock);
4977 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4978 CCK_FUSE_HPLL_FREQ_MASK;
4979 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4980
dfcab17e 4981 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4982}
4983
f8bf63fd
VS
4984static void vlv_update_cdclk(struct drm_device *dev)
4985{
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987
4988 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4989 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4990 dev_priv->vlv_cdclk_freq);
4991
4992 /*
4993 * Program the gmbus_freq based on the cdclk frequency.
4994 * BSpec erroneously claims we should aim for 4MHz, but
4995 * in fact 1MHz is the correct frequency.
4996 */
6be1e3d3 4997 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4998}
4999
30a970c6
JB
5000/* Adjust CDclk dividers to allow high res or save power if possible */
5001static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5002{
5003 struct drm_i915_private *dev_priv = dev->dev_private;
5004 u32 val, cmd;
5005
d197b7d3 5006 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 5007
dfcab17e 5008 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5009 cmd = 2;
dfcab17e 5010 else if (cdclk == 266667)
30a970c6
JB
5011 cmd = 1;
5012 else
5013 cmd = 0;
5014
5015 mutex_lock(&dev_priv->rps.hw_lock);
5016 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5017 val &= ~DSPFREQGUAR_MASK;
5018 val |= (cmd << DSPFREQGUAR_SHIFT);
5019 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5020 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5021 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5022 50)) {
5023 DRM_ERROR("timed out waiting for CDclk change\n");
5024 }
5025 mutex_unlock(&dev_priv->rps.hw_lock);
5026
dfcab17e 5027 if (cdclk == 400000) {
6bcda4f0 5028 u32 divider;
30a970c6 5029
6bcda4f0 5030 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5031
5032 mutex_lock(&dev_priv->dpio_lock);
5033 /* adjust cdclk divider */
5034 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5035 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5036 val |= divider;
5037 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5038
5039 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5040 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5041 50))
5042 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5043 mutex_unlock(&dev_priv->dpio_lock);
5044 }
5045
5046 mutex_lock(&dev_priv->dpio_lock);
5047 /* adjust self-refresh exit latency value */
5048 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5049 val &= ~0x7f;
5050
5051 /*
5052 * For high bandwidth configs, we set a higher latency in the bunit
5053 * so that the core display fetch happens in time to avoid underruns.
5054 */
dfcab17e 5055 if (cdclk == 400000)
30a970c6
JB
5056 val |= 4500 / 250; /* 4.5 usec */
5057 else
5058 val |= 3000 / 250; /* 3.0 usec */
5059 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5060 mutex_unlock(&dev_priv->dpio_lock);
5061
f8bf63fd 5062 vlv_update_cdclk(dev);
30a970c6
JB
5063}
5064
383c5a6a
VS
5065static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5066{
5067 struct drm_i915_private *dev_priv = dev->dev_private;
5068 u32 val, cmd;
5069
5070 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5071
5072 switch (cdclk) {
383c5a6a
VS
5073 case 333333:
5074 case 320000:
383c5a6a 5075 case 266667:
383c5a6a 5076 case 200000:
383c5a6a
VS
5077 break;
5078 default:
5f77eeb0 5079 MISSING_CASE(cdclk);
383c5a6a
VS
5080 return;
5081 }
5082
9d0d3fda
VS
5083 /*
5084 * Specs are full of misinformation, but testing on actual
5085 * hardware has shown that we just need to write the desired
5086 * CCK divider into the Punit register.
5087 */
5088 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5089
383c5a6a
VS
5090 mutex_lock(&dev_priv->rps.hw_lock);
5091 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5092 val &= ~DSPFREQGUAR_MASK_CHV;
5093 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5094 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5095 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5096 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5097 50)) {
5098 DRM_ERROR("timed out waiting for CDclk change\n");
5099 }
5100 mutex_unlock(&dev_priv->rps.hw_lock);
5101
5102 vlv_update_cdclk(dev);
5103}
5104
30a970c6
JB
5105static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5106 int max_pixclk)
5107{
6bcda4f0 5108 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5109 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5110
30a970c6
JB
5111 /*
5112 * Really only a few cases to deal with, as only 4 CDclks are supported:
5113 * 200MHz
5114 * 267MHz
29dc7ef3 5115 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5116 * 400MHz (VLV only)
5117 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5118 * of the lower bin and adjust if needed.
e37c67a1
VS
5119 *
5120 * We seem to get an unstable or solid color picture at 200MHz.
5121 * Not sure what's wrong. For now use 200MHz only when all pipes
5122 * are off.
30a970c6 5123 */
6cca3195
VS
5124 if (!IS_CHERRYVIEW(dev_priv) &&
5125 max_pixclk > freq_320*limit/100)
dfcab17e 5126 return 400000;
6cca3195 5127 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5128 return freq_320;
e37c67a1 5129 else if (max_pixclk > 0)
dfcab17e 5130 return 266667;
e37c67a1
VS
5131 else
5132 return 200000;
30a970c6
JB
5133}
5134
2f2d7aa1
VS
5135/* compute the max pixel clock for new configuration */
5136static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
5137{
5138 struct drm_device *dev = dev_priv->dev;
5139 struct intel_crtc *intel_crtc;
5140 int max_pixclk = 0;
5141
d3fcc808 5142 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 5143 if (intel_crtc->new_enabled)
30a970c6 5144 max_pixclk = max(max_pixclk,
2d112de7 5145 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
5146 }
5147
5148 return max_pixclk;
5149}
5150
5151static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 5152 unsigned *prepare_pipes)
30a970c6
JB
5153{
5154 struct drm_i915_private *dev_priv = dev->dev_private;
5155 struct intel_crtc *intel_crtc;
2f2d7aa1 5156 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 5157
d60c4473
ID
5158 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5159 dev_priv->vlv_cdclk_freq)
30a970c6
JB
5160 return;
5161
2f2d7aa1 5162 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 5163 for_each_intel_crtc(dev, intel_crtc)
83d65738 5164 if (intel_crtc->base.state->enable)
30a970c6
JB
5165 *prepare_pipes |= (1 << intel_crtc->pipe);
5166}
5167
1e69cd74
VS
5168static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5169{
5170 unsigned int credits, default_credits;
5171
5172 if (IS_CHERRYVIEW(dev_priv))
5173 default_credits = PFI_CREDIT(12);
5174 else
5175 default_credits = PFI_CREDIT(8);
5176
5177 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5178 /* CHV suggested value is 31 or 63 */
5179 if (IS_CHERRYVIEW(dev_priv))
5180 credits = PFI_CREDIT_31;
5181 else
5182 credits = PFI_CREDIT(15);
5183 } else {
5184 credits = default_credits;
5185 }
5186
5187 /*
5188 * WA - write default credits before re-programming
5189 * FIXME: should we also set the resend bit here?
5190 */
5191 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5192 default_credits);
5193
5194 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5195 credits | PFI_CREDIT_RESEND);
5196
5197 /*
5198 * FIXME is this guaranteed to clear
5199 * immediately or should we poll for it?
5200 */
5201 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5202}
5203
30a970c6
JB
5204static void valleyview_modeset_global_resources(struct drm_device *dev)
5205{
5206 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 5207 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5208 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5209
383c5a6a 5210 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5211 /*
5212 * FIXME: We can end up here with all power domains off, yet
5213 * with a CDCLK frequency other than the minimum. To account
5214 * for this take the PIPE-A power domain, which covers the HW
5215 * blocks needed for the following programming. This can be
5216 * removed once it's guaranteed that we get here either with
5217 * the minimum CDCLK set, or the required power domains
5218 * enabled.
5219 */
5220 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5221
383c5a6a
VS
5222 if (IS_CHERRYVIEW(dev))
5223 cherryview_set_cdclk(dev, req_cdclk);
5224 else
5225 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5226
1e69cd74
VS
5227 vlv_program_pfi_credits(dev_priv);
5228
738c05c0 5229 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5230 }
30a970c6
JB
5231}
5232
89b667f8
JB
5233static void valleyview_crtc_enable(struct drm_crtc *crtc)
5234{
5235 struct drm_device *dev = crtc->dev;
a72e4c9f 5236 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238 struct intel_encoder *encoder;
5239 int pipe = intel_crtc->pipe;
23538ef1 5240 bool is_dsi;
89b667f8 5241
83d65738 5242 WARN_ON(!crtc->state->enable);
89b667f8
JB
5243
5244 if (intel_crtc->active)
5245 return;
5246
409ee761 5247 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5248
1ae0d137
VS
5249 if (!is_dsi) {
5250 if (IS_CHERRYVIEW(dev))
6e3c9717 5251 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5252 else
6e3c9717 5253 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5254 }
5b18e57c 5255
6e3c9717 5256 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5257 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5258
5259 intel_set_pipe_timings(intel_crtc);
5260
c14b0485
VS
5261 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5262 struct drm_i915_private *dev_priv = dev->dev_private;
5263
5264 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5265 I915_WRITE(CHV_CANVAS(pipe), 0);
5266 }
5267
5b18e57c
DV
5268 i9xx_set_pipeconf(intel_crtc);
5269
89b667f8 5270 intel_crtc->active = true;
89b667f8 5271
a72e4c9f 5272 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5273
89b667f8
JB
5274 for_each_encoder_on_crtc(dev, crtc, encoder)
5275 if (encoder->pre_pll_enable)
5276 encoder->pre_pll_enable(encoder);
5277
9d556c99
CML
5278 if (!is_dsi) {
5279 if (IS_CHERRYVIEW(dev))
6e3c9717 5280 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5281 else
6e3c9717 5282 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5283 }
89b667f8
JB
5284
5285 for_each_encoder_on_crtc(dev, crtc, encoder)
5286 if (encoder->pre_enable)
5287 encoder->pre_enable(encoder);
5288
2dd24552
JB
5289 i9xx_pfit_enable(intel_crtc);
5290
63cbb074
VS
5291 intel_crtc_load_lut(crtc);
5292
f37fcc2a 5293 intel_update_watermarks(crtc);
e1fdc473 5294 intel_enable_pipe(intel_crtc);
be6a6f8e 5295
4b3a9526
VS
5296 assert_vblank_disabled(crtc);
5297 drm_crtc_vblank_on(crtc);
5298
f9b61ff6
DV
5299 for_each_encoder_on_crtc(dev, crtc, encoder)
5300 encoder->enable(encoder);
5301
9ab0460b 5302 intel_crtc_enable_planes(crtc);
d40d9187 5303
56b80e1f 5304 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5305 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5306}
5307
f13c2ef3
DV
5308static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5309{
5310 struct drm_device *dev = crtc->base.dev;
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312
6e3c9717
ACO
5313 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5314 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5315}
5316
0b8765c6 5317static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5318{
5319 struct drm_device *dev = crtc->dev;
a72e4c9f 5320 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5322 struct intel_encoder *encoder;
79e53945 5323 int pipe = intel_crtc->pipe;
79e53945 5324
83d65738 5325 WARN_ON(!crtc->state->enable);
08a48469 5326
f7abfe8b
CW
5327 if (intel_crtc->active)
5328 return;
5329
f13c2ef3
DV
5330 i9xx_set_pll_dividers(intel_crtc);
5331
6e3c9717 5332 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5333 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5334
5335 intel_set_pipe_timings(intel_crtc);
5336
5b18e57c
DV
5337 i9xx_set_pipeconf(intel_crtc);
5338
f7abfe8b 5339 intel_crtc->active = true;
6b383a7f 5340
4a3436e8 5341 if (!IS_GEN2(dev))
a72e4c9f 5342 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5343
9d6d9f19
MK
5344 for_each_encoder_on_crtc(dev, crtc, encoder)
5345 if (encoder->pre_enable)
5346 encoder->pre_enable(encoder);
5347
f6736a1a
DV
5348 i9xx_enable_pll(intel_crtc);
5349
2dd24552
JB
5350 i9xx_pfit_enable(intel_crtc);
5351
63cbb074
VS
5352 intel_crtc_load_lut(crtc);
5353
f37fcc2a 5354 intel_update_watermarks(crtc);
e1fdc473 5355 intel_enable_pipe(intel_crtc);
be6a6f8e 5356
4b3a9526
VS
5357 assert_vblank_disabled(crtc);
5358 drm_crtc_vblank_on(crtc);
5359
f9b61ff6
DV
5360 for_each_encoder_on_crtc(dev, crtc, encoder)
5361 encoder->enable(encoder);
5362
9ab0460b 5363 intel_crtc_enable_planes(crtc);
d40d9187 5364
4a3436e8
VS
5365 /*
5366 * Gen2 reports pipe underruns whenever all planes are disabled.
5367 * So don't enable underrun reporting before at least some planes
5368 * are enabled.
5369 * FIXME: Need to fix the logic to work when we turn off all planes
5370 * but leave the pipe running.
5371 */
5372 if (IS_GEN2(dev))
a72e4c9f 5373 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5374
56b80e1f 5375 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5376 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5377}
79e53945 5378
87476d63
DV
5379static void i9xx_pfit_disable(struct intel_crtc *crtc)
5380{
5381 struct drm_device *dev = crtc->base.dev;
5382 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5383
6e3c9717 5384 if (!crtc->config->gmch_pfit.control)
328d8e82 5385 return;
87476d63 5386
328d8e82 5387 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5388
328d8e82
DV
5389 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5390 I915_READ(PFIT_CONTROL));
5391 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5392}
5393
0b8765c6
JB
5394static void i9xx_crtc_disable(struct drm_crtc *crtc)
5395{
5396 struct drm_device *dev = crtc->dev;
5397 struct drm_i915_private *dev_priv = dev->dev_private;
5398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5399 struct intel_encoder *encoder;
0b8765c6 5400 int pipe = intel_crtc->pipe;
ef9c3aee 5401
f7abfe8b
CW
5402 if (!intel_crtc->active)
5403 return;
5404
4a3436e8
VS
5405 /*
5406 * Gen2 reports pipe underruns whenever all planes are disabled.
5407 * So diasble underrun reporting before all the planes get disabled.
5408 * FIXME: Need to fix the logic to work when we turn off all planes
5409 * but leave the pipe running.
5410 */
5411 if (IS_GEN2(dev))
a72e4c9f 5412 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5413
564ed191
ID
5414 /*
5415 * Vblank time updates from the shadow to live plane control register
5416 * are blocked if the memory self-refresh mode is active at that
5417 * moment. So to make sure the plane gets truly disabled, disable
5418 * first the self-refresh mode. The self-refresh enable bit in turn
5419 * will be checked/applied by the HW only at the next frame start
5420 * event which is after the vblank start event, so we need to have a
5421 * wait-for-vblank between disabling the plane and the pipe.
5422 */
5423 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5424 intel_crtc_disable_planes(crtc);
5425
6304cd91
VS
5426 /*
5427 * On gen2 planes are double buffered but the pipe isn't, so we must
5428 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5429 * We also need to wait on all gmch platforms because of the
5430 * self-refresh mode constraint explained above.
6304cd91 5431 */
564ed191 5432 intel_wait_for_vblank(dev, pipe);
6304cd91 5433
4b3a9526
VS
5434 for_each_encoder_on_crtc(dev, crtc, encoder)
5435 encoder->disable(encoder);
5436
f9b61ff6
DV
5437 drm_crtc_vblank_off(crtc);
5438 assert_vblank_disabled(crtc);
5439
575f7ab7 5440 intel_disable_pipe(intel_crtc);
24a1f16d 5441
87476d63 5442 i9xx_pfit_disable(intel_crtc);
24a1f16d 5443
89b667f8
JB
5444 for_each_encoder_on_crtc(dev, crtc, encoder)
5445 if (encoder->post_disable)
5446 encoder->post_disable(encoder);
5447
409ee761 5448 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5449 if (IS_CHERRYVIEW(dev))
5450 chv_disable_pll(dev_priv, pipe);
5451 else if (IS_VALLEYVIEW(dev))
5452 vlv_disable_pll(dev_priv, pipe);
5453 else
1c4e0274 5454 i9xx_disable_pll(intel_crtc);
076ed3b2 5455 }
0b8765c6 5456
4a3436e8 5457 if (!IS_GEN2(dev))
a72e4c9f 5458 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5459
f7abfe8b 5460 intel_crtc->active = false;
46ba614c 5461 intel_update_watermarks(crtc);
f37fcc2a 5462
efa9624e 5463 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5464 intel_fbc_update(dev);
efa9624e 5465 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5466}
5467
ee7b9f93
JB
5468static void i9xx_crtc_off(struct drm_crtc *crtc)
5469{
5470}
5471
b04c5bd6
BF
5472/* Master function to enable/disable CRTC and corresponding power wells */
5473void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5474{
5475 struct drm_device *dev = crtc->dev;
5476 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5478 enum intel_display_power_domain domain;
5479 unsigned long domains;
976f8a20 5480
0e572fe7
DV
5481 if (enable) {
5482 if (!intel_crtc->active) {
e1e9fb84
DV
5483 domains = get_crtc_power_domains(crtc);
5484 for_each_power_domain(domain, domains)
5485 intel_display_power_get(dev_priv, domain);
5486 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5487
5488 dev_priv->display.crtc_enable(crtc);
5489 }
5490 } else {
5491 if (intel_crtc->active) {
5492 dev_priv->display.crtc_disable(crtc);
5493
e1e9fb84
DV
5494 domains = intel_crtc->enabled_power_domains;
5495 for_each_power_domain(domain, domains)
5496 intel_display_power_put(dev_priv, domain);
5497 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5498 }
5499 }
b04c5bd6
BF
5500}
5501
5502/**
5503 * Sets the power management mode of the pipe and plane.
5504 */
5505void intel_crtc_update_dpms(struct drm_crtc *crtc)
5506{
5507 struct drm_device *dev = crtc->dev;
5508 struct intel_encoder *intel_encoder;
5509 bool enable = false;
5510
5511 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5512 enable |= intel_encoder->connectors_active;
5513
5514 intel_crtc_control(crtc, enable);
976f8a20
DV
5515}
5516
cdd59983
CW
5517static void intel_crtc_disable(struct drm_crtc *crtc)
5518{
cdd59983 5519 struct drm_device *dev = crtc->dev;
976f8a20 5520 struct drm_connector *connector;
ee7b9f93 5521 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5522
976f8a20 5523 /* crtc should still be enabled when we disable it. */
83d65738 5524 WARN_ON(!crtc->state->enable);
976f8a20
DV
5525
5526 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5527 dev_priv->display.off(crtc);
5528
455a6808 5529 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5530
5531 /* Update computed state. */
5532 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5533 if (!connector->encoder || !connector->encoder->crtc)
5534 continue;
5535
5536 if (connector->encoder->crtc != crtc)
5537 continue;
5538
5539 connector->dpms = DRM_MODE_DPMS_OFF;
5540 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5541 }
5542}
5543
ea5b213a 5544void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5545{
4ef69c7a 5546 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5547
ea5b213a
CW
5548 drm_encoder_cleanup(encoder);
5549 kfree(intel_encoder);
7e7d76c3
JB
5550}
5551
9237329d 5552/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5553 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5554 * state of the entire output pipe. */
9237329d 5555static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5556{
5ab432ef
DV
5557 if (mode == DRM_MODE_DPMS_ON) {
5558 encoder->connectors_active = true;
5559
b2cabb0e 5560 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5561 } else {
5562 encoder->connectors_active = false;
5563
b2cabb0e 5564 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5565 }
79e53945
JB
5566}
5567
0a91ca29
DV
5568/* Cross check the actual hw state with our own modeset state tracking (and it's
5569 * internal consistency). */
b980514c 5570static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5571{
0a91ca29
DV
5572 if (connector->get_hw_state(connector)) {
5573 struct intel_encoder *encoder = connector->encoder;
5574 struct drm_crtc *crtc;
5575 bool encoder_enabled;
5576 enum pipe pipe;
5577
5578 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5579 connector->base.base.id,
c23cc417 5580 connector->base.name);
0a91ca29 5581
0e32b39c
DA
5582 /* there is no real hw state for MST connectors */
5583 if (connector->mst_port)
5584 return;
5585
e2c719b7 5586 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5587 "wrong connector dpms state\n");
e2c719b7 5588 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5589 "active connector not linked to encoder\n");
0a91ca29 5590
36cd7444 5591 if (encoder) {
e2c719b7 5592 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5593 "encoder->connectors_active not set\n");
5594
5595 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5596 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5597 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5598 return;
0a91ca29 5599
36cd7444 5600 crtc = encoder->base.crtc;
0a91ca29 5601
83d65738
MR
5602 I915_STATE_WARN(!crtc->state->enable,
5603 "crtc not enabled\n");
e2c719b7
RC
5604 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5605 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5606 "encoder active on the wrong pipe\n");
5607 }
0a91ca29 5608 }
79e53945
JB
5609}
5610
5ab432ef
DV
5611/* Even simpler default implementation, if there's really no special case to
5612 * consider. */
5613void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5614{
5ab432ef
DV
5615 /* All the simple cases only support two dpms states. */
5616 if (mode != DRM_MODE_DPMS_ON)
5617 mode = DRM_MODE_DPMS_OFF;
d4270e57 5618
5ab432ef
DV
5619 if (mode == connector->dpms)
5620 return;
5621
5622 connector->dpms = mode;
5623
5624 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5625 if (connector->encoder)
5626 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5627
b980514c 5628 intel_modeset_check_state(connector->dev);
79e53945
JB
5629}
5630
f0947c37
DV
5631/* Simple connector->get_hw_state implementation for encoders that support only
5632 * one connector and no cloning and hence the encoder state determines the state
5633 * of the connector. */
5634bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5635{
24929352 5636 enum pipe pipe = 0;
f0947c37 5637 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5638
f0947c37 5639 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5640}
5641
d272ddfa
VS
5642static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5643{
5644 struct intel_crtc *crtc =
5645 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5646
5647 if (crtc->base.state->enable &&
5648 crtc->config->has_pch_encoder)
5649 return crtc->config->fdi_lanes;
5650
5651 return 0;
5652}
5653
1857e1da 5654static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5655 struct intel_crtc_state *pipe_config)
1857e1da 5656{
1857e1da
DV
5657 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5658 pipe_name(pipe), pipe_config->fdi_lanes);
5659 if (pipe_config->fdi_lanes > 4) {
5660 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5661 pipe_name(pipe), pipe_config->fdi_lanes);
5662 return false;
5663 }
5664
bafb6553 5665 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5666 if (pipe_config->fdi_lanes > 2) {
5667 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5668 pipe_config->fdi_lanes);
5669 return false;
5670 } else {
5671 return true;
5672 }
5673 }
5674
5675 if (INTEL_INFO(dev)->num_pipes == 2)
5676 return true;
5677
5678 /* Ivybridge 3 pipe is really complicated */
5679 switch (pipe) {
5680 case PIPE_A:
5681 return true;
5682 case PIPE_B:
d272ddfa
VS
5683 if (pipe_config->fdi_lanes > 2 &&
5684 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
1857e1da
DV
5685 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5686 pipe_name(pipe), pipe_config->fdi_lanes);
5687 return false;
5688 }
5689 return true;
5690 case PIPE_C:
251cc67c
VS
5691 if (pipe_config->fdi_lanes > 2) {
5692 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5693 pipe_name(pipe), pipe_config->fdi_lanes);
5694 return false;
5695 }
d272ddfa 5696 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
1857e1da
DV
5697 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5698 return false;
5699 }
5700 return true;
5701 default:
5702 BUG();
5703 }
5704}
5705
e29c22c0
DV
5706#define RETRY 1
5707static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5708 struct intel_crtc_state *pipe_config)
877d48d5 5709{
1857e1da 5710 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5711 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5712 int lane, link_bw, fdi_dotclock;
e29c22c0 5713 bool setup_ok, needs_recompute = false;
877d48d5 5714
e29c22c0 5715retry:
877d48d5
DV
5716 /* FDI is a binary signal running at ~2.7GHz, encoding
5717 * each output octet as 10 bits. The actual frequency
5718 * is stored as a divider into a 100MHz clock, and the
5719 * mode pixel clock is stored in units of 1KHz.
5720 * Hence the bw of each lane in terms of the mode signal
5721 * is:
5722 */
5723 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5724
241bfc38 5725 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5726
2bd89a07 5727 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5728 pipe_config->pipe_bpp);
5729
5730 pipe_config->fdi_lanes = lane;
5731
2bd89a07 5732 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5733 link_bw, &pipe_config->fdi_m_n);
1857e1da 5734
e29c22c0
DV
5735 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5736 intel_crtc->pipe, pipe_config);
5737 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5738 pipe_config->pipe_bpp -= 2*3;
5739 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5740 pipe_config->pipe_bpp);
5741 needs_recompute = true;
5742 pipe_config->bw_constrained = true;
5743
5744 goto retry;
5745 }
5746
5747 if (needs_recompute)
5748 return RETRY;
5749
5750 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5751}
5752
42db64ef 5753static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5754 struct intel_crtc_state *pipe_config)
42db64ef 5755{
d330a953 5756 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5757 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5758 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5759}
5760
a43f6e0f 5761static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5762 struct intel_crtc_state *pipe_config)
79e53945 5763{
a43f6e0f 5764 struct drm_device *dev = crtc->base.dev;
8bd31e67 5765 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5766 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5767
ad3a4479 5768 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5769 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5770 int clock_limit =
5771 dev_priv->display.get_display_clock_speed(dev);
5772
5773 /*
5774 * Enable pixel doubling when the dot clock
5775 * is > 90% of the (display) core speed.
5776 *
b397c96b
VS
5777 * GDG double wide on either pipe,
5778 * otherwise pipe A only.
cf532bb2 5779 */
b397c96b 5780 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5781 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5782 clock_limit *= 2;
cf532bb2 5783 pipe_config->double_wide = true;
ad3a4479
VS
5784 }
5785
241bfc38 5786 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5787 return -EINVAL;
2c07245f 5788 }
89749350 5789
1d1d0e27
VS
5790 /*
5791 * Pipe horizontal size must be even in:
5792 * - DVO ganged mode
5793 * - LVDS dual channel mode
5794 * - Double wide pipe
5795 */
b4f2bf4c 5796 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5797 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5798 pipe_config->pipe_src_w &= ~1;
5799
8693a824
DL
5800 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5801 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5802 */
5803 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5804 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5805 return -EINVAL;
44f46b42 5806
bd080ee5 5807 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5808 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5809 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5810 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5811 * for lvds. */
5812 pipe_config->pipe_bpp = 8*3;
5813 }
5814
f5adf94e 5815 if (HAS_IPS(dev))
a43f6e0f
DV
5816 hsw_compute_ips_config(crtc, pipe_config);
5817
877d48d5 5818 if (pipe_config->has_pch_encoder)
a43f6e0f 5819 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5820
e29c22c0 5821 return 0;
79e53945
JB
5822}
5823
25eb05fc
JB
5824static int valleyview_get_display_clock_speed(struct drm_device *dev)
5825{
d197b7d3 5826 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5827 u32 val;
5828 int divider;
5829
6bcda4f0
VS
5830 if (dev_priv->hpll_freq == 0)
5831 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5832
d197b7d3
VS
5833 mutex_lock(&dev_priv->dpio_lock);
5834 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5835 mutex_unlock(&dev_priv->dpio_lock);
5836
5837 divider = val & DISPLAY_FREQUENCY_VALUES;
5838
7d007f40
VS
5839 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5840 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5841 "cdclk change in progress\n");
5842
6bcda4f0 5843 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5844}
5845
e70236a8
JB
5846static int i945_get_display_clock_speed(struct drm_device *dev)
5847{
5848 return 400000;
5849}
79e53945 5850
e70236a8 5851static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5852{
e70236a8
JB
5853 return 333000;
5854}
79e53945 5855
e70236a8
JB
5856static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5857{
5858 return 200000;
5859}
79e53945 5860
257a7ffc
DV
5861static int pnv_get_display_clock_speed(struct drm_device *dev)
5862{
5863 u16 gcfgc = 0;
5864
5865 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5866
5867 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5868 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5869 return 267000;
5870 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5871 return 333000;
5872 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5873 return 444000;
5874 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5875 return 200000;
5876 default:
5877 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5878 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5879 return 133000;
5880 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5881 return 167000;
5882 }
5883}
5884
e70236a8
JB
5885static int i915gm_get_display_clock_speed(struct drm_device *dev)
5886{
5887 u16 gcfgc = 0;
79e53945 5888
e70236a8
JB
5889 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5890
5891 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5892 return 133000;
5893 else {
5894 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5895 case GC_DISPLAY_CLOCK_333_MHZ:
5896 return 333000;
5897 default:
5898 case GC_DISPLAY_CLOCK_190_200_MHZ:
5899 return 190000;
79e53945 5900 }
e70236a8
JB
5901 }
5902}
5903
5904static int i865_get_display_clock_speed(struct drm_device *dev)
5905{
5906 return 266000;
5907}
5908
5909static int i855_get_display_clock_speed(struct drm_device *dev)
5910{
5911 u16 hpllcc = 0;
5912 /* Assume that the hardware is in the high speed state. This
5913 * should be the default.
5914 */
5915 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5916 case GC_CLOCK_133_200:
5917 case GC_CLOCK_100_200:
5918 return 200000;
5919 case GC_CLOCK_166_250:
5920 return 250000;
5921 case GC_CLOCK_100_133:
79e53945 5922 return 133000;
e70236a8 5923 }
79e53945 5924
e70236a8
JB
5925 /* Shouldn't happen */
5926 return 0;
5927}
79e53945 5928
e70236a8
JB
5929static int i830_get_display_clock_speed(struct drm_device *dev)
5930{
5931 return 133000;
79e53945
JB
5932}
5933
2c07245f 5934static void
a65851af 5935intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5936{
a65851af
VS
5937 while (*num > DATA_LINK_M_N_MASK ||
5938 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5939 *num >>= 1;
5940 *den >>= 1;
5941 }
5942}
5943
a65851af
VS
5944static void compute_m_n(unsigned int m, unsigned int n,
5945 uint32_t *ret_m, uint32_t *ret_n)
5946{
5947 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5948 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5949 intel_reduce_m_n_ratio(ret_m, ret_n);
5950}
5951
e69d0bc1
DV
5952void
5953intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5954 int pixel_clock, int link_clock,
5955 struct intel_link_m_n *m_n)
2c07245f 5956{
e69d0bc1 5957 m_n->tu = 64;
a65851af
VS
5958
5959 compute_m_n(bits_per_pixel * pixel_clock,
5960 link_clock * nlanes * 8,
5961 &m_n->gmch_m, &m_n->gmch_n);
5962
5963 compute_m_n(pixel_clock, link_clock,
5964 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5965}
5966
a7615030
CW
5967static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5968{
d330a953
JN
5969 if (i915.panel_use_ssc >= 0)
5970 return i915.panel_use_ssc != 0;
41aa3448 5971 return dev_priv->vbt.lvds_use_ssc
435793df 5972 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5973}
5974
409ee761 5975static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5976{
409ee761 5977 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 int refclk;
5980
a0c4da24 5981 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5982 refclk = 100000;
d0737e1d 5983 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5984 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5985 refclk = dev_priv->vbt.lvds_ssc_freq;
5986 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5987 } else if (!IS_GEN2(dev)) {
5988 refclk = 96000;
5989 } else {
5990 refclk = 48000;
5991 }
5992
5993 return refclk;
5994}
5995
7429e9d4 5996static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5997{
7df00d7a 5998 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5999}
f47709a9 6000
7429e9d4
DV
6001static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6002{
6003 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6004}
6005
f47709a9 6006static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6007 struct intel_crtc_state *crtc_state,
a7516a05
JB
6008 intel_clock_t *reduced_clock)
6009{
f47709a9 6010 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6011 u32 fp, fp2 = 0;
6012
6013 if (IS_PINEVIEW(dev)) {
190f68c5 6014 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6015 if (reduced_clock)
7429e9d4 6016 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6017 } else {
190f68c5 6018 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6019 if (reduced_clock)
7429e9d4 6020 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6021 }
6022
190f68c5 6023 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6024
f47709a9 6025 crtc->lowfreq_avail = false;
e1f234bd 6026 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
ab585dea 6027 reduced_clock) {
190f68c5 6028 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6029 crtc->lowfreq_avail = true;
a7516a05 6030 } else {
190f68c5 6031 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6032 }
6033}
6034
5e69f97f
CML
6035static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6036 pipe)
89b667f8
JB
6037{
6038 u32 reg_val;
6039
6040 /*
6041 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6042 * and set it to a reasonable value instead.
6043 */
ab3c759a 6044 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6045 reg_val &= 0xffffff00;
6046 reg_val |= 0x00000030;
ab3c759a 6047 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6048
ab3c759a 6049 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6050 reg_val &= 0x8cffffff;
6051 reg_val = 0x8c000000;
ab3c759a 6052 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6053
ab3c759a 6054 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6055 reg_val &= 0xffffff00;
ab3c759a 6056 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6057
ab3c759a 6058 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6059 reg_val &= 0x00ffffff;
6060 reg_val |= 0xb0000000;
ab3c759a 6061 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6062}
6063
b551842d
DV
6064static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6065 struct intel_link_m_n *m_n)
6066{
6067 struct drm_device *dev = crtc->base.dev;
6068 struct drm_i915_private *dev_priv = dev->dev_private;
6069 int pipe = crtc->pipe;
6070
e3b95f1e
DV
6071 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6072 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6073 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6074 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6075}
6076
6077static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6078 struct intel_link_m_n *m_n,
6079 struct intel_link_m_n *m2_n2)
b551842d
DV
6080{
6081 struct drm_device *dev = crtc->base.dev;
6082 struct drm_i915_private *dev_priv = dev->dev_private;
6083 int pipe = crtc->pipe;
6e3c9717 6084 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6085
6086 if (INTEL_INFO(dev)->gen >= 5) {
6087 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6088 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6089 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6090 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6091 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6092 * for gen < 8) and if DRRS is supported (to make sure the
6093 * registers are not unnecessarily accessed).
6094 */
44395bfe 6095 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6096 crtc->config->has_drrs) {
f769cd24
VK
6097 I915_WRITE(PIPE_DATA_M2(transcoder),
6098 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6099 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6100 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6101 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6102 }
b551842d 6103 } else {
e3b95f1e
DV
6104 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6105 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6106 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6107 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6108 }
6109}
6110
fe3cd48d 6111void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6112{
fe3cd48d
R
6113 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6114
6115 if (m_n == M1_N1) {
6116 dp_m_n = &crtc->config->dp_m_n;
6117 dp_m2_n2 = &crtc->config->dp_m2_n2;
6118 } else if (m_n == M2_N2) {
6119
6120 /*
6121 * M2_N2 registers are not supported. Hence m2_n2 divider value
6122 * needs to be programmed into M1_N1.
6123 */
6124 dp_m_n = &crtc->config->dp_m2_n2;
6125 } else {
6126 DRM_ERROR("Unsupported divider value\n");
6127 return;
6128 }
6129
6e3c9717
ACO
6130 if (crtc->config->has_pch_encoder)
6131 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6132 else
fe3cd48d 6133 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6134}
6135
d288f65f 6136static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6137 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6138{
6139 u32 dpll, dpll_md;
6140
6141 /*
6142 * Enable DPIO clock input. We should never disable the reference
6143 * clock for pipe B, since VGA hotplug / manual detection depends
6144 * on it.
6145 */
6146 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6147 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6148 /* We should never disable this, set it here for state tracking */
6149 if (crtc->pipe == PIPE_B)
6150 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6151 dpll |= DPLL_VCO_ENABLE;
d288f65f 6152 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6153
d288f65f 6154 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6155 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6156 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6157}
6158
d288f65f 6159static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6160 const struct intel_crtc_state *pipe_config)
a0c4da24 6161{
f47709a9 6162 struct drm_device *dev = crtc->base.dev;
a0c4da24 6163 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6164 int pipe = crtc->pipe;
bdd4b6a6 6165 u32 mdiv;
a0c4da24 6166 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6167 u32 coreclk, reg_val;
a0c4da24 6168
09153000
DV
6169 mutex_lock(&dev_priv->dpio_lock);
6170
d288f65f
VS
6171 bestn = pipe_config->dpll.n;
6172 bestm1 = pipe_config->dpll.m1;
6173 bestm2 = pipe_config->dpll.m2;
6174 bestp1 = pipe_config->dpll.p1;
6175 bestp2 = pipe_config->dpll.p2;
a0c4da24 6176
89b667f8
JB
6177 /* See eDP HDMI DPIO driver vbios notes doc */
6178
6179 /* PLL B needs special handling */
bdd4b6a6 6180 if (pipe == PIPE_B)
5e69f97f 6181 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6182
6183 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6184 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6185
6186 /* Disable target IRef on PLL */
ab3c759a 6187 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6188 reg_val &= 0x00ffffff;
ab3c759a 6189 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6190
6191 /* Disable fast lock */
ab3c759a 6192 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6193
6194 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6195 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6196 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6197 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6198 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6199
6200 /*
6201 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6202 * but we don't support that).
6203 * Note: don't use the DAC post divider as it seems unstable.
6204 */
6205 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6206 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6207
a0c4da24 6208 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6209 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6210
89b667f8 6211 /* Set HBR and RBR LPF coefficients */
d288f65f 6212 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6213 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6214 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6215 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6216 0x009f0003);
89b667f8 6217 else
ab3c759a 6218 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6219 0x00d0000f);
6220
681a8504 6221 if (pipe_config->has_dp_encoder) {
89b667f8 6222 /* Use SSC source */
bdd4b6a6 6223 if (pipe == PIPE_A)
ab3c759a 6224 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6225 0x0df40000);
6226 else
ab3c759a 6227 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6228 0x0df70000);
6229 } else { /* HDMI or VGA */
6230 /* Use bend source */
bdd4b6a6 6231 if (pipe == PIPE_A)
ab3c759a 6232 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6233 0x0df70000);
6234 else
ab3c759a 6235 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6236 0x0df40000);
6237 }
a0c4da24 6238
ab3c759a 6239 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6240 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6241 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6242 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6243 coreclk |= 0x01000000;
ab3c759a 6244 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6245
ab3c759a 6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6247 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6248}
6249
d288f65f 6250static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6251 struct intel_crtc_state *pipe_config)
1ae0d137 6252{
d288f65f 6253 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6254 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6255 DPLL_VCO_ENABLE;
6256 if (crtc->pipe != PIPE_A)
d288f65f 6257 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6258
d288f65f
VS
6259 pipe_config->dpll_hw_state.dpll_md =
6260 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6261}
6262
d288f65f 6263static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6264 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6265{
6266 struct drm_device *dev = crtc->base.dev;
6267 struct drm_i915_private *dev_priv = dev->dev_private;
6268 int pipe = crtc->pipe;
6269 int dpll_reg = DPLL(crtc->pipe);
6270 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 6271 u32 loopfilter, tribuf_calcntr;
9d556c99 6272 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 6273 u32 dpio_val;
9cbe40c1 6274 int vco;
9d556c99 6275
d288f65f
VS
6276 bestn = pipe_config->dpll.n;
6277 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6278 bestm1 = pipe_config->dpll.m1;
6279 bestm2 = pipe_config->dpll.m2 >> 22;
6280 bestp1 = pipe_config->dpll.p1;
6281 bestp2 = pipe_config->dpll.p2;
9cbe40c1 6282 vco = pipe_config->dpll.vco;
a945ce7e 6283 dpio_val = 0;
9cbe40c1 6284 loopfilter = 0;
9d556c99
CML
6285
6286 /*
6287 * Enable Refclk and SSC
6288 */
a11b0703 6289 I915_WRITE(dpll_reg,
d288f65f 6290 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6291
6292 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6293
9d556c99
CML
6294 /* p1 and p2 divider */
6295 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6296 5 << DPIO_CHV_S1_DIV_SHIFT |
6297 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6298 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6299 1 << DPIO_CHV_K_DIV_SHIFT);
6300
6301 /* Feedback post-divider - m2 */
6302 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6303
6304 /* Feedback refclk divider - n and m1 */
6305 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6306 DPIO_CHV_M1_DIV_BY_2 |
6307 1 << DPIO_CHV_N_DIV_SHIFT);
6308
6309 /* M2 fraction division */
a945ce7e
VP
6310 if (bestm2_frac)
6311 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
6312
6313 /* M2 fraction division enable */
a945ce7e
VP
6314 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6315 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6316 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6317 if (bestm2_frac)
6318 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6319 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 6320
de3a0fde
VP
6321 /* Program digital lock detect threshold */
6322 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6323 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6324 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6325 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6326 if (!bestm2_frac)
6327 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6328 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6329
9d556c99 6330 /* Loop filter */
9cbe40c1
VP
6331 if (vco == 5400000) {
6332 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6333 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6334 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6335 tribuf_calcntr = 0x9;
6336 } else if (vco <= 6200000) {
6337 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6338 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6339 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6340 tribuf_calcntr = 0x9;
6341 } else if (vco <= 6480000) {
6342 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6343 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6344 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6345 tribuf_calcntr = 0x8;
6346 } else {
6347 /* Not supported. Apply the same limits as in the max case */
6348 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6349 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6350 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6351 tribuf_calcntr = 0;
6352 }
9d556c99
CML
6353 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6354
968040b2 6355 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
6356 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6357 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6358 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6359
9d556c99
CML
6360 /* AFC Recal */
6361 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6362 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6363 DPIO_AFC_RECAL);
6364
6365 mutex_unlock(&dev_priv->dpio_lock);
6366}
6367
d288f65f
VS
6368/**
6369 * vlv_force_pll_on - forcibly enable just the PLL
6370 * @dev_priv: i915 private structure
6371 * @pipe: pipe PLL to enable
6372 * @dpll: PLL configuration
6373 *
6374 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6375 * in cases where we need the PLL enabled even when @pipe is not going to
6376 * be enabled.
6377 */
6378void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6379 const struct dpll *dpll)
6380{
6381 struct intel_crtc *crtc =
6382 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6383 struct intel_crtc_state pipe_config = {
d288f65f
VS
6384 .pixel_multiplier = 1,
6385 .dpll = *dpll,
6386 };
6387
6388 if (IS_CHERRYVIEW(dev)) {
6389 chv_update_pll(crtc, &pipe_config);
6390 chv_prepare_pll(crtc, &pipe_config);
6391 chv_enable_pll(crtc, &pipe_config);
6392 } else {
6393 vlv_update_pll(crtc, &pipe_config);
6394 vlv_prepare_pll(crtc, &pipe_config);
6395 vlv_enable_pll(crtc, &pipe_config);
6396 }
6397}
6398
6399/**
6400 * vlv_force_pll_off - forcibly disable just the PLL
6401 * @dev_priv: i915 private structure
6402 * @pipe: pipe PLL to disable
6403 *
6404 * Disable the PLL for @pipe. To be used in cases where we need
6405 * the PLL enabled even when @pipe is not going to be enabled.
6406 */
6407void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6408{
6409 if (IS_CHERRYVIEW(dev))
6410 chv_disable_pll(to_i915(dev), pipe);
6411 else
6412 vlv_disable_pll(to_i915(dev), pipe);
6413}
6414
f47709a9 6415static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6416 struct intel_crtc_state *crtc_state,
f47709a9 6417 intel_clock_t *reduced_clock,
eb1cbe48
DV
6418 int num_connectors)
6419{
f47709a9 6420 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6421 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6422 u32 dpll;
6423 bool is_sdvo;
190f68c5 6424 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6425
190f68c5 6426 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6427
d0737e1d
ACO
6428 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6429 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6430
6431 dpll = DPLL_VGA_MODE_DIS;
6432
d0737e1d 6433 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6434 dpll |= DPLLB_MODE_LVDS;
6435 else
6436 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6437
ef1b460d 6438 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6439 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6440 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6441 }
198a037f
DV
6442
6443 if (is_sdvo)
4a33e48d 6444 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6445
190f68c5 6446 if (crtc_state->has_dp_encoder)
4a33e48d 6447 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6448
6449 /* compute bitmask from p1 value */
6450 if (IS_PINEVIEW(dev))
6451 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6452 else {
6453 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6454 if (IS_G4X(dev) && reduced_clock)
6455 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6456 }
6457 switch (clock->p2) {
6458 case 5:
6459 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6460 break;
6461 case 7:
6462 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6463 break;
6464 case 10:
6465 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6466 break;
6467 case 14:
6468 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6469 break;
6470 }
6471 if (INTEL_INFO(dev)->gen >= 4)
6472 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6473
190f68c5 6474 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6475 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6476 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6477 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6478 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6479 else
6480 dpll |= PLL_REF_INPUT_DREFCLK;
6481
6482 dpll |= DPLL_VCO_ENABLE;
190f68c5 6483 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6484
eb1cbe48 6485 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6486 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6487 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6488 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6489 }
6490}
6491
f47709a9 6492static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6493 struct intel_crtc_state *crtc_state,
f47709a9 6494 intel_clock_t *reduced_clock,
eb1cbe48
DV
6495 int num_connectors)
6496{
f47709a9 6497 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6498 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6499 u32 dpll;
190f68c5 6500 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6501
190f68c5 6502 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6503
eb1cbe48
DV
6504 dpll = DPLL_VGA_MODE_DIS;
6505
d0737e1d 6506 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6507 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6508 } else {
6509 if (clock->p1 == 2)
6510 dpll |= PLL_P1_DIVIDE_BY_TWO;
6511 else
6512 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6513 if (clock->p2 == 4)
6514 dpll |= PLL_P2_DIVIDE_BY_4;
6515 }
6516
d0737e1d 6517 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6518 dpll |= DPLL_DVO_2X_MODE;
6519
d0737e1d 6520 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6521 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6522 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6523 else
6524 dpll |= PLL_REF_INPUT_DREFCLK;
6525
6526 dpll |= DPLL_VCO_ENABLE;
190f68c5 6527 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6528}
6529
8a654f3b 6530static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6531{
6532 struct drm_device *dev = intel_crtc->base.dev;
6533 struct drm_i915_private *dev_priv = dev->dev_private;
6534 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6535 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6536 struct drm_display_mode *adjusted_mode =
6e3c9717 6537 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6538 uint32_t crtc_vtotal, crtc_vblank_end;
6539 int vsyncshift = 0;
4d8a62ea
DV
6540
6541 /* We need to be careful not to changed the adjusted mode, for otherwise
6542 * the hw state checker will get angry at the mismatch. */
6543 crtc_vtotal = adjusted_mode->crtc_vtotal;
6544 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6545
609aeaca 6546 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6547 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6548 crtc_vtotal -= 1;
6549 crtc_vblank_end -= 1;
609aeaca 6550
409ee761 6551 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6552 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6553 else
6554 vsyncshift = adjusted_mode->crtc_hsync_start -
6555 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6556 if (vsyncshift < 0)
6557 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6558 }
6559
6560 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6561 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6562
fe2b8f9d 6563 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6564 (adjusted_mode->crtc_hdisplay - 1) |
6565 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6566 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6567 (adjusted_mode->crtc_hblank_start - 1) |
6568 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6569 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6570 (adjusted_mode->crtc_hsync_start - 1) |
6571 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6572
fe2b8f9d 6573 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6574 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6575 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6576 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6577 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6578 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6579 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6580 (adjusted_mode->crtc_vsync_start - 1) |
6581 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6582
b5e508d4
PZ
6583 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6584 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6585 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6586 * bits. */
6587 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6588 (pipe == PIPE_B || pipe == PIPE_C))
6589 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6590
b0e77b9c
PZ
6591 /* pipesrc controls the size that is scaled from, which should
6592 * always be the user's requested size.
6593 */
6594 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6595 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6596 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6597}
6598
1bd1bd80 6599static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6600 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6601{
6602 struct drm_device *dev = crtc->base.dev;
6603 struct drm_i915_private *dev_priv = dev->dev_private;
6604 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6605 uint32_t tmp;
6606
6607 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6608 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6609 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6610 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6611 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6612 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6613 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6614 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6615 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6616
6617 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6618 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6619 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6620 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6621 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6622 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6623 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6624 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6625 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6626
6627 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6628 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6629 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6630 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6631 }
6632
6633 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6634 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6635 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6636
2d112de7
ACO
6637 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6638 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6639}
6640
f6a83288 6641void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6642 struct intel_crtc_state *pipe_config)
babea61d 6643{
2d112de7
ACO
6644 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6645 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6646 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6647 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6648
2d112de7
ACO
6649 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6650 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6651 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6652 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6653
2d112de7 6654 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6655
2d112de7
ACO
6656 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6657 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6658}
6659
84b046f3
DV
6660static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6661{
6662 struct drm_device *dev = intel_crtc->base.dev;
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664 uint32_t pipeconf;
6665
9f11a9e4 6666 pipeconf = 0;
84b046f3 6667
b6b5d049
VS
6668 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6669 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6670 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6671
6e3c9717 6672 if (intel_crtc->config->double_wide)
cf532bb2 6673 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6674
ff9ce46e
DV
6675 /* only g4x and later have fancy bpc/dither controls */
6676 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6677 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6678 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6679 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6680 PIPECONF_DITHER_TYPE_SP;
84b046f3 6681
6e3c9717 6682 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6683 case 18:
6684 pipeconf |= PIPECONF_6BPC;
6685 break;
6686 case 24:
6687 pipeconf |= PIPECONF_8BPC;
6688 break;
6689 case 30:
6690 pipeconf |= PIPECONF_10BPC;
6691 break;
6692 default:
6693 /* Case prevented by intel_choose_pipe_bpp_dither. */
6694 BUG();
84b046f3
DV
6695 }
6696 }
6697
6698 if (HAS_PIPE_CXSR(dev)) {
6699 if (intel_crtc->lowfreq_avail) {
6700 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6701 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6702 } else {
6703 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6704 }
6705 }
6706
6e3c9717 6707 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6708 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6709 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6710 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6711 else
6712 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6713 } else
84b046f3
DV
6714 pipeconf |= PIPECONF_PROGRESSIVE;
6715
6e3c9717 6716 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6717 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6718
84b046f3
DV
6719 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6720 POSTING_READ(PIPECONF(intel_crtc->pipe));
6721}
6722
190f68c5
ACO
6723static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6724 struct intel_crtc_state *crtc_state)
79e53945 6725{
c7653199 6726 struct drm_device *dev = crtc->base.dev;
79e53945 6727 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6728 int refclk, num_connectors = 0;
652c393a 6729 intel_clock_t clock, reduced_clock;
a16af721 6730 bool ok, has_reduced_clock = false;
e9fd1c02 6731 bool is_lvds = false, is_dsi = false;
5eddb70b 6732 struct intel_encoder *encoder;
d4906093 6733 const intel_limit_t *limit;
79e53945 6734
d0737e1d
ACO
6735 for_each_intel_encoder(dev, encoder) {
6736 if (encoder->new_crtc != crtc)
6737 continue;
6738
5eddb70b 6739 switch (encoder->type) {
79e53945
JB
6740 case INTEL_OUTPUT_LVDS:
6741 is_lvds = true;
6742 break;
e9fd1c02
JN
6743 case INTEL_OUTPUT_DSI:
6744 is_dsi = true;
6745 break;
6847d71b
PZ
6746 default:
6747 break;
79e53945 6748 }
43565a06 6749
c751ce4f 6750 num_connectors++;
79e53945
JB
6751 }
6752
f2335330 6753 if (is_dsi)
5b18e57c 6754 return 0;
f2335330 6755
190f68c5 6756 if (!crtc_state->clock_set) {
409ee761 6757 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6758
e9fd1c02
JN
6759 /*
6760 * Returns a set of divisors for the desired target clock with
6761 * the given refclk, or FALSE. The returned values represent
6762 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6763 * 2) / p1 / p2.
6764 */
409ee761 6765 limit = intel_limit(crtc, refclk);
c7653199 6766 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6767 crtc_state->port_clock,
e9fd1c02 6768 refclk, NULL, &clock);
f2335330 6769 if (!ok) {
e9fd1c02
JN
6770 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6771 return -EINVAL;
6772 }
79e53945 6773
f2335330
JN
6774 if (is_lvds && dev_priv->lvds_downclock_avail) {
6775 /*
6776 * Ensure we match the reduced clock's P to the target
6777 * clock. If the clocks don't match, we can't switch
6778 * the display clock by using the FP0/FP1. In such case
6779 * we will disable the LVDS downclock feature.
6780 */
6781 has_reduced_clock =
c7653199 6782 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6783 dev_priv->lvds_downclock,
6784 refclk, &clock,
6785 &reduced_clock);
6786 }
6787 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6788 crtc_state->dpll.n = clock.n;
6789 crtc_state->dpll.m1 = clock.m1;
6790 crtc_state->dpll.m2 = clock.m2;
6791 crtc_state->dpll.p1 = clock.p1;
6792 crtc_state->dpll.p2 = clock.p2;
f47709a9 6793 }
7026d4ac 6794
e9fd1c02 6795 if (IS_GEN2(dev)) {
190f68c5 6796 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6797 has_reduced_clock ? &reduced_clock : NULL,
6798 num_connectors);
9d556c99 6799 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6800 chv_update_pll(crtc, crtc_state);
e9fd1c02 6801 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6802 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6803 } else {
190f68c5 6804 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6805 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6806 num_connectors);
e9fd1c02 6807 }
79e53945 6808
c8f7a0db 6809 return 0;
f564048e
EA
6810}
6811
2fa2fe9a 6812static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6813 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6814{
6815 struct drm_device *dev = crtc->base.dev;
6816 struct drm_i915_private *dev_priv = dev->dev_private;
6817 uint32_t tmp;
6818
dc9e7dec
VS
6819 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6820 return;
6821
2fa2fe9a 6822 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6823 if (!(tmp & PFIT_ENABLE))
6824 return;
2fa2fe9a 6825
06922821 6826 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6827 if (INTEL_INFO(dev)->gen < 4) {
6828 if (crtc->pipe != PIPE_B)
6829 return;
2fa2fe9a
DV
6830 } else {
6831 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6832 return;
6833 }
6834
06922821 6835 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6836 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6837 if (INTEL_INFO(dev)->gen < 5)
6838 pipe_config->gmch_pfit.lvds_border_bits =
6839 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6840}
6841
acbec814 6842static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6843 struct intel_crtc_state *pipe_config)
acbec814
JB
6844{
6845 struct drm_device *dev = crtc->base.dev;
6846 struct drm_i915_private *dev_priv = dev->dev_private;
6847 int pipe = pipe_config->cpu_transcoder;
6848 intel_clock_t clock;
6849 u32 mdiv;
662c6ecb 6850 int refclk = 100000;
acbec814 6851
f573de5a
SK
6852 /* In case of MIPI DPLL will not even be used */
6853 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6854 return;
6855
acbec814 6856 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6857 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6858 mutex_unlock(&dev_priv->dpio_lock);
6859
6860 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6861 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6862 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6863 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6864 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6865
f646628b 6866 vlv_clock(refclk, &clock);
acbec814 6867
f646628b
VS
6868 /* clock.dot is the fast clock */
6869 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6870}
6871
5724dbd1
DL
6872static void
6873i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6874 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6875{
6876 struct drm_device *dev = crtc->base.dev;
6877 struct drm_i915_private *dev_priv = dev->dev_private;
6878 u32 val, base, offset;
6879 int pipe = crtc->pipe, plane = crtc->plane;
6880 int fourcc, pixel_format;
6761dd31 6881 unsigned int aligned_height;
b113d5ee 6882 struct drm_framebuffer *fb;
1b842c89 6883 struct intel_framebuffer *intel_fb;
1ad292b5 6884
42a7b088
DL
6885 val = I915_READ(DSPCNTR(plane));
6886 if (!(val & DISPLAY_PLANE_ENABLE))
6887 return;
6888
d9806c9f 6889 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6890 if (!intel_fb) {
1ad292b5
JB
6891 DRM_DEBUG_KMS("failed to alloc fb\n");
6892 return;
6893 }
6894
1b842c89
DL
6895 fb = &intel_fb->base;
6896
18c5247e
DV
6897 if (INTEL_INFO(dev)->gen >= 4) {
6898 if (val & DISPPLANE_TILED) {
49af449b 6899 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6900 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6901 }
6902 }
1ad292b5
JB
6903
6904 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6905 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6906 fb->pixel_format = fourcc;
6907 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6908
6909 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6910 if (plane_config->tiling)
1ad292b5
JB
6911 offset = I915_READ(DSPTILEOFF(plane));
6912 else
6913 offset = I915_READ(DSPLINOFF(plane));
6914 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6915 } else {
6916 base = I915_READ(DSPADDR(plane));
6917 }
6918 plane_config->base = base;
6919
6920 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6921 fb->width = ((val >> 16) & 0xfff) + 1;
6922 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6923
6924 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6925 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6926
b113d5ee 6927 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6928 fb->pixel_format,
6929 fb->modifier[0]);
1ad292b5 6930
f37b5c2b 6931 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 6932
2844a921
DL
6933 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6934 pipe_name(pipe), plane, fb->width, fb->height,
6935 fb->bits_per_pixel, base, fb->pitches[0],
6936 plane_config->size);
1ad292b5 6937
2d14030b 6938 plane_config->fb = intel_fb;
1ad292b5
JB
6939}
6940
70b23a98 6941static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6942 struct intel_crtc_state *pipe_config)
70b23a98
VS
6943{
6944 struct drm_device *dev = crtc->base.dev;
6945 struct drm_i915_private *dev_priv = dev->dev_private;
6946 int pipe = pipe_config->cpu_transcoder;
6947 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6948 intel_clock_t clock;
6949 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6950 int refclk = 100000;
6951
6952 mutex_lock(&dev_priv->dpio_lock);
6953 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6954 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6955 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6956 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6957 mutex_unlock(&dev_priv->dpio_lock);
6958
6959 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6960 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6961 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6962 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6963 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6964
6965 chv_clock(refclk, &clock);
6966
6967 /* clock.dot is the fast clock */
6968 pipe_config->port_clock = clock.dot / 5;
6969}
6970
0e8ffe1b 6971static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6972 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6973{
6974 struct drm_device *dev = crtc->base.dev;
6975 struct drm_i915_private *dev_priv = dev->dev_private;
6976 uint32_t tmp;
6977
f458ebbc
DV
6978 if (!intel_display_power_is_enabled(dev_priv,
6979 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6980 return false;
6981
e143a21c 6982 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6983 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6984
0e8ffe1b
DV
6985 tmp = I915_READ(PIPECONF(crtc->pipe));
6986 if (!(tmp & PIPECONF_ENABLE))
6987 return false;
6988
42571aef
VS
6989 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6990 switch (tmp & PIPECONF_BPC_MASK) {
6991 case PIPECONF_6BPC:
6992 pipe_config->pipe_bpp = 18;
6993 break;
6994 case PIPECONF_8BPC:
6995 pipe_config->pipe_bpp = 24;
6996 break;
6997 case PIPECONF_10BPC:
6998 pipe_config->pipe_bpp = 30;
6999 break;
7000 default:
7001 break;
7002 }
7003 }
7004
b5a9fa09
DV
7005 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7006 pipe_config->limited_color_range = true;
7007
282740f7
VS
7008 if (INTEL_INFO(dev)->gen < 4)
7009 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7010
1bd1bd80
DV
7011 intel_get_pipe_timings(crtc, pipe_config);
7012
2fa2fe9a
DV
7013 i9xx_get_pfit_config(crtc, pipe_config);
7014
6c49f241
DV
7015 if (INTEL_INFO(dev)->gen >= 4) {
7016 tmp = I915_READ(DPLL_MD(crtc->pipe));
7017 pipe_config->pixel_multiplier =
7018 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7019 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7020 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7021 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7022 tmp = I915_READ(DPLL(crtc->pipe));
7023 pipe_config->pixel_multiplier =
7024 ((tmp & SDVO_MULTIPLIER_MASK)
7025 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7026 } else {
7027 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7028 * port and will be fixed up in the encoder->get_config
7029 * function. */
7030 pipe_config->pixel_multiplier = 1;
7031 }
8bcc2795
DV
7032 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7033 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7034 /*
7035 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7036 * on 830. Filter it out here so that we don't
7037 * report errors due to that.
7038 */
7039 if (IS_I830(dev))
7040 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7041
8bcc2795
DV
7042 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7043 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7044 } else {
7045 /* Mask out read-only status bits. */
7046 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7047 DPLL_PORTC_READY_MASK |
7048 DPLL_PORTB_READY_MASK);
8bcc2795 7049 }
6c49f241 7050
70b23a98
VS
7051 if (IS_CHERRYVIEW(dev))
7052 chv_crtc_clock_get(crtc, pipe_config);
7053 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7054 vlv_crtc_clock_get(crtc, pipe_config);
7055 else
7056 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7057
0e8ffe1b
DV
7058 return true;
7059}
7060
dde86e2d 7061static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7062{
7063 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7064 struct intel_encoder *encoder;
74cfd7ac 7065 u32 val, final;
13d83a67 7066 bool has_lvds = false;
199e5d79 7067 bool has_cpu_edp = false;
199e5d79 7068 bool has_panel = false;
99eb6a01
KP
7069 bool has_ck505 = false;
7070 bool can_ssc = false;
13d83a67
JB
7071
7072 /* We need to take the global config into account */
b2784e15 7073 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7074 switch (encoder->type) {
7075 case INTEL_OUTPUT_LVDS:
7076 has_panel = true;
7077 has_lvds = true;
7078 break;
7079 case INTEL_OUTPUT_EDP:
7080 has_panel = true;
2de6905f 7081 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7082 has_cpu_edp = true;
7083 break;
6847d71b
PZ
7084 default:
7085 break;
13d83a67
JB
7086 }
7087 }
7088
99eb6a01 7089 if (HAS_PCH_IBX(dev)) {
41aa3448 7090 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7091 can_ssc = has_ck505;
7092 } else {
7093 has_ck505 = false;
7094 can_ssc = true;
7095 }
7096
2de6905f
ID
7097 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7098 has_panel, has_lvds, has_ck505);
13d83a67
JB
7099
7100 /* Ironlake: try to setup display ref clock before DPLL
7101 * enabling. This is only under driver's control after
7102 * PCH B stepping, previous chipset stepping should be
7103 * ignoring this setting.
7104 */
74cfd7ac
CW
7105 val = I915_READ(PCH_DREF_CONTROL);
7106
7107 /* As we must carefully and slowly disable/enable each source in turn,
7108 * compute the final state we want first and check if we need to
7109 * make any changes at all.
7110 */
7111 final = val;
7112 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7113 if (has_ck505)
7114 final |= DREF_NONSPREAD_CK505_ENABLE;
7115 else
7116 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7117
7118 final &= ~DREF_SSC_SOURCE_MASK;
7119 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7120 final &= ~DREF_SSC1_ENABLE;
7121
7122 if (has_panel) {
7123 final |= DREF_SSC_SOURCE_ENABLE;
7124
7125 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7126 final |= DREF_SSC1_ENABLE;
7127
7128 if (has_cpu_edp) {
7129 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7130 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7131 else
7132 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7133 } else
7134 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7135 } else {
7136 final |= DREF_SSC_SOURCE_DISABLE;
7137 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7138 }
7139
7140 if (final == val)
7141 return;
7142
13d83a67 7143 /* Always enable nonspread source */
74cfd7ac 7144 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7145
99eb6a01 7146 if (has_ck505)
74cfd7ac 7147 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7148 else
74cfd7ac 7149 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7150
199e5d79 7151 if (has_panel) {
74cfd7ac
CW
7152 val &= ~DREF_SSC_SOURCE_MASK;
7153 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7154
199e5d79 7155 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7156 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7157 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7158 val |= DREF_SSC1_ENABLE;
e77166b5 7159 } else
74cfd7ac 7160 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7161
7162 /* Get SSC going before enabling the outputs */
74cfd7ac 7163 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7164 POSTING_READ(PCH_DREF_CONTROL);
7165 udelay(200);
7166
74cfd7ac 7167 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7168
7169 /* Enable CPU source on CPU attached eDP */
199e5d79 7170 if (has_cpu_edp) {
99eb6a01 7171 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7172 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7173 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7174 } else
74cfd7ac 7175 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7176 } else
74cfd7ac 7177 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7178
74cfd7ac 7179 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7180 POSTING_READ(PCH_DREF_CONTROL);
7181 udelay(200);
7182 } else {
7183 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7184
74cfd7ac 7185 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7186
7187 /* Turn off CPU output */
74cfd7ac 7188 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7189
74cfd7ac 7190 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7191 POSTING_READ(PCH_DREF_CONTROL);
7192 udelay(200);
7193
7194 /* Turn off the SSC source */
74cfd7ac
CW
7195 val &= ~DREF_SSC_SOURCE_MASK;
7196 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7197
7198 /* Turn off SSC1 */
74cfd7ac 7199 val &= ~DREF_SSC1_ENABLE;
199e5d79 7200
74cfd7ac 7201 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7202 POSTING_READ(PCH_DREF_CONTROL);
7203 udelay(200);
7204 }
74cfd7ac
CW
7205
7206 BUG_ON(val != final);
13d83a67
JB
7207}
7208
f31f2d55 7209static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7210{
f31f2d55 7211 uint32_t tmp;
dde86e2d 7212
0ff066a9
PZ
7213 tmp = I915_READ(SOUTH_CHICKEN2);
7214 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7215 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7216
0ff066a9
PZ
7217 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7218 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7219 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7220
0ff066a9
PZ
7221 tmp = I915_READ(SOUTH_CHICKEN2);
7222 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7223 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7224
0ff066a9
PZ
7225 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7226 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7227 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7228}
7229
7230/* WaMPhyProgramming:hsw */
7231static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7232{
7233 uint32_t tmp;
dde86e2d
PZ
7234
7235 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7236 tmp &= ~(0xFF << 24);
7237 tmp |= (0x12 << 24);
7238 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7239
dde86e2d
PZ
7240 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7241 tmp |= (1 << 11);
7242 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7243
7244 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7245 tmp |= (1 << 11);
7246 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7247
dde86e2d
PZ
7248 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7249 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7250 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7251
7252 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7253 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7254 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7255
0ff066a9
PZ
7256 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7257 tmp &= ~(7 << 13);
7258 tmp |= (5 << 13);
7259 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 7260
0ff066a9
PZ
7261 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7262 tmp &= ~(7 << 13);
7263 tmp |= (5 << 13);
7264 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7265
7266 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7267 tmp &= ~0xFF;
7268 tmp |= 0x1C;
7269 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7270
7271 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7272 tmp &= ~0xFF;
7273 tmp |= 0x1C;
7274 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7275
7276 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7277 tmp &= ~(0xFF << 16);
7278 tmp |= (0x1C << 16);
7279 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7280
7281 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7282 tmp &= ~(0xFF << 16);
7283 tmp |= (0x1C << 16);
7284 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7285
0ff066a9
PZ
7286 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7287 tmp |= (1 << 27);
7288 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7289
0ff066a9
PZ
7290 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7291 tmp |= (1 << 27);
7292 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7293
0ff066a9
PZ
7294 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7295 tmp &= ~(0xF << 28);
7296 tmp |= (4 << 28);
7297 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7298
0ff066a9
PZ
7299 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7300 tmp &= ~(0xF << 28);
7301 tmp |= (4 << 28);
7302 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7303}
7304
2fa86a1f
PZ
7305/* Implements 3 different sequences from BSpec chapter "Display iCLK
7306 * Programming" based on the parameters passed:
7307 * - Sequence to enable CLKOUT_DP
7308 * - Sequence to enable CLKOUT_DP without spread
7309 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7310 */
7311static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7312 bool with_fdi)
f31f2d55
PZ
7313{
7314 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7315 uint32_t reg, tmp;
7316
7317 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7318 with_spread = true;
7319 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7320 with_fdi, "LP PCH doesn't have FDI\n"))
7321 with_fdi = false;
f31f2d55
PZ
7322
7323 mutex_lock(&dev_priv->dpio_lock);
7324
7325 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7326 tmp &= ~SBI_SSCCTL_DISABLE;
7327 tmp |= SBI_SSCCTL_PATHALT;
7328 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7329
7330 udelay(24);
7331
2fa86a1f
PZ
7332 if (with_spread) {
7333 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7334 tmp &= ~SBI_SSCCTL_PATHALT;
7335 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7336
2fa86a1f
PZ
7337 if (with_fdi) {
7338 lpt_reset_fdi_mphy(dev_priv);
7339 lpt_program_fdi_mphy(dev_priv);
7340 }
7341 }
dde86e2d 7342
2fa86a1f
PZ
7343 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7344 SBI_GEN0 : SBI_DBUFF0;
7345 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7346 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7347 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7348
7349 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7350}
7351
47701c3b
PZ
7352/* Sequence to disable CLKOUT_DP */
7353static void lpt_disable_clkout_dp(struct drm_device *dev)
7354{
7355 struct drm_i915_private *dev_priv = dev->dev_private;
7356 uint32_t reg, tmp;
7357
7358 mutex_lock(&dev_priv->dpio_lock);
7359
7360 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7361 SBI_GEN0 : SBI_DBUFF0;
7362 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7363 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7364 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7365
7366 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7367 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7368 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7369 tmp |= SBI_SSCCTL_PATHALT;
7370 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7371 udelay(32);
7372 }
7373 tmp |= SBI_SSCCTL_DISABLE;
7374 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7375 }
7376
7377 mutex_unlock(&dev_priv->dpio_lock);
7378}
7379
bf8fa3d3
PZ
7380static void lpt_init_pch_refclk(struct drm_device *dev)
7381{
bf8fa3d3
PZ
7382 struct intel_encoder *encoder;
7383 bool has_vga = false;
7384
b2784e15 7385 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7386 switch (encoder->type) {
7387 case INTEL_OUTPUT_ANALOG:
7388 has_vga = true;
7389 break;
6847d71b
PZ
7390 default:
7391 break;
bf8fa3d3
PZ
7392 }
7393 }
7394
47701c3b
PZ
7395 if (has_vga)
7396 lpt_enable_clkout_dp(dev, true, true);
7397 else
7398 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7399}
7400
dde86e2d
PZ
7401/*
7402 * Initialize reference clocks when the driver loads
7403 */
7404void intel_init_pch_refclk(struct drm_device *dev)
7405{
7406 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7407 ironlake_init_pch_refclk(dev);
7408 else if (HAS_PCH_LPT(dev))
7409 lpt_init_pch_refclk(dev);
7410}
7411
d9d444cb
JB
7412static int ironlake_get_refclk(struct drm_crtc *crtc)
7413{
7414 struct drm_device *dev = crtc->dev;
7415 struct drm_i915_private *dev_priv = dev->dev_private;
7416 struct intel_encoder *encoder;
d9d444cb
JB
7417 int num_connectors = 0;
7418 bool is_lvds = false;
7419
d0737e1d
ACO
7420 for_each_intel_encoder(dev, encoder) {
7421 if (encoder->new_crtc != to_intel_crtc(crtc))
7422 continue;
7423
d9d444cb
JB
7424 switch (encoder->type) {
7425 case INTEL_OUTPUT_LVDS:
7426 is_lvds = true;
7427 break;
6847d71b
PZ
7428 default:
7429 break;
d9d444cb
JB
7430 }
7431 num_connectors++;
7432 }
7433
7434 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7435 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7436 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7437 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7438 }
7439
7440 return 120000;
7441}
7442
6ff93609 7443static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7444{
c8203565 7445 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7447 int pipe = intel_crtc->pipe;
c8203565
PZ
7448 uint32_t val;
7449
78114071 7450 val = 0;
c8203565 7451
6e3c9717 7452 switch (intel_crtc->config->pipe_bpp) {
c8203565 7453 case 18:
dfd07d72 7454 val |= PIPECONF_6BPC;
c8203565
PZ
7455 break;
7456 case 24:
dfd07d72 7457 val |= PIPECONF_8BPC;
c8203565
PZ
7458 break;
7459 case 30:
dfd07d72 7460 val |= PIPECONF_10BPC;
c8203565
PZ
7461 break;
7462 case 36:
dfd07d72 7463 val |= PIPECONF_12BPC;
c8203565
PZ
7464 break;
7465 default:
cc769b62
PZ
7466 /* Case prevented by intel_choose_pipe_bpp_dither. */
7467 BUG();
c8203565
PZ
7468 }
7469
6e3c9717 7470 if (intel_crtc->config->dither)
c8203565
PZ
7471 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7472
6e3c9717 7473 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7474 val |= PIPECONF_INTERLACED_ILK;
7475 else
7476 val |= PIPECONF_PROGRESSIVE;
7477
6e3c9717 7478 if (intel_crtc->config->limited_color_range)
3685a8f3 7479 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7480
c8203565
PZ
7481 I915_WRITE(PIPECONF(pipe), val);
7482 POSTING_READ(PIPECONF(pipe));
7483}
7484
86d3efce
VS
7485/*
7486 * Set up the pipe CSC unit.
7487 *
7488 * Currently only full range RGB to limited range RGB conversion
7489 * is supported, but eventually this should handle various
7490 * RGB<->YCbCr scenarios as well.
7491 */
50f3b016 7492static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7493{
7494 struct drm_device *dev = crtc->dev;
7495 struct drm_i915_private *dev_priv = dev->dev_private;
7496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7497 int pipe = intel_crtc->pipe;
7498 uint16_t coeff = 0x7800; /* 1.0 */
7499
7500 /*
7501 * TODO: Check what kind of values actually come out of the pipe
7502 * with these coeff/postoff values and adjust to get the best
7503 * accuracy. Perhaps we even need to take the bpc value into
7504 * consideration.
7505 */
7506
6e3c9717 7507 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7508 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7509
7510 /*
7511 * GY/GU and RY/RU should be the other way around according
7512 * to BSpec, but reality doesn't agree. Just set them up in
7513 * a way that results in the correct picture.
7514 */
7515 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7516 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7517
7518 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7519 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7520
7521 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7522 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7523
7524 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7525 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7526 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7527
7528 if (INTEL_INFO(dev)->gen > 6) {
7529 uint16_t postoff = 0;
7530
6e3c9717 7531 if (intel_crtc->config->limited_color_range)
32cf0cb0 7532 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7533
7534 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7535 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7536 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7537
7538 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7539 } else {
7540 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7541
6e3c9717 7542 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7543 mode |= CSC_BLACK_SCREEN_OFFSET;
7544
7545 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7546 }
7547}
7548
6ff93609 7549static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7550{
756f85cf
PZ
7551 struct drm_device *dev = crtc->dev;
7552 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7553 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7554 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7555 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7556 uint32_t val;
7557
3eff4faa 7558 val = 0;
ee2b0b38 7559
6e3c9717 7560 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7561 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7562
6e3c9717 7563 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7564 val |= PIPECONF_INTERLACED_ILK;
7565 else
7566 val |= PIPECONF_PROGRESSIVE;
7567
702e7a56
PZ
7568 I915_WRITE(PIPECONF(cpu_transcoder), val);
7569 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7570
7571 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7572 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7573
3cdf122c 7574 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7575 val = 0;
7576
6e3c9717 7577 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7578 case 18:
7579 val |= PIPEMISC_DITHER_6_BPC;
7580 break;
7581 case 24:
7582 val |= PIPEMISC_DITHER_8_BPC;
7583 break;
7584 case 30:
7585 val |= PIPEMISC_DITHER_10_BPC;
7586 break;
7587 case 36:
7588 val |= PIPEMISC_DITHER_12_BPC;
7589 break;
7590 default:
7591 /* Case prevented by pipe_config_set_bpp. */
7592 BUG();
7593 }
7594
6e3c9717 7595 if (intel_crtc->config->dither)
756f85cf
PZ
7596 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7597
7598 I915_WRITE(PIPEMISC(pipe), val);
7599 }
ee2b0b38
PZ
7600}
7601
6591c6e4 7602static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7603 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7604 intel_clock_t *clock,
7605 bool *has_reduced_clock,
7606 intel_clock_t *reduced_clock)
7607{
7608 struct drm_device *dev = crtc->dev;
7609 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7611 int refclk;
d4906093 7612 const intel_limit_t *limit;
a16af721 7613 bool ret, is_lvds = false;
79e53945 7614
d0737e1d 7615 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7616
d9d444cb 7617 refclk = ironlake_get_refclk(crtc);
79e53945 7618
d4906093
ML
7619 /*
7620 * Returns a set of divisors for the desired target clock with the given
7621 * refclk, or FALSE. The returned values represent the clock equation:
7622 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7623 */
409ee761 7624 limit = intel_limit(intel_crtc, refclk);
a919ff14 7625 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7626 crtc_state->port_clock,
ee9300bb 7627 refclk, NULL, clock);
6591c6e4
PZ
7628 if (!ret)
7629 return false;
cda4b7d3 7630
ddc9003c 7631 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7632 /*
7633 * Ensure we match the reduced clock's P to the target clock.
7634 * If the clocks don't match, we can't switch the display clock
7635 * by using the FP0/FP1. In such case we will disable the LVDS
7636 * downclock feature.
7637 */
ee9300bb 7638 *has_reduced_clock =
a919ff14 7639 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7640 dev_priv->lvds_downclock,
7641 refclk, clock,
7642 reduced_clock);
652c393a 7643 }
61e9653f 7644
6591c6e4
PZ
7645 return true;
7646}
7647
d4b1931c
PZ
7648int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7649{
7650 /*
7651 * Account for spread spectrum to avoid
7652 * oversubscribing the link. Max center spread
7653 * is 2.5%; use 5% for safety's sake.
7654 */
7655 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7656 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7657}
7658
7429e9d4 7659static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7660{
7429e9d4 7661 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7662}
7663
de13a2e3 7664static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7665 struct intel_crtc_state *crtc_state,
7429e9d4 7666 u32 *fp,
9a7c7890 7667 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7668{
de13a2e3 7669 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7670 struct drm_device *dev = crtc->dev;
7671 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7672 struct intel_encoder *intel_encoder;
7673 uint32_t dpll;
6cc5f341 7674 int factor, num_connectors = 0;
09ede541 7675 bool is_lvds = false, is_sdvo = false;
79e53945 7676
d0737e1d
ACO
7677 for_each_intel_encoder(dev, intel_encoder) {
7678 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7679 continue;
7680
de13a2e3 7681 switch (intel_encoder->type) {
79e53945
JB
7682 case INTEL_OUTPUT_LVDS:
7683 is_lvds = true;
7684 break;
7685 case INTEL_OUTPUT_SDVO:
7d57382e 7686 case INTEL_OUTPUT_HDMI:
79e53945 7687 is_sdvo = true;
79e53945 7688 break;
6847d71b
PZ
7689 default:
7690 break;
79e53945 7691 }
43565a06 7692
c751ce4f 7693 num_connectors++;
79e53945 7694 }
79e53945 7695
c1858123 7696 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7697 factor = 21;
7698 if (is_lvds) {
7699 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7700 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7701 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7702 factor = 25;
190f68c5 7703 } else if (crtc_state->sdvo_tv_clock)
8febb297 7704 factor = 20;
c1858123 7705
190f68c5 7706 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7707 *fp |= FP_CB_TUNE;
2c07245f 7708
9a7c7890
DV
7709 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7710 *fp2 |= FP_CB_TUNE;
7711
5eddb70b 7712 dpll = 0;
2c07245f 7713
a07d6787
EA
7714 if (is_lvds)
7715 dpll |= DPLLB_MODE_LVDS;
7716 else
7717 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7718
190f68c5 7719 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7720 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7721
7722 if (is_sdvo)
4a33e48d 7723 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7724 if (crtc_state->has_dp_encoder)
4a33e48d 7725 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7726
a07d6787 7727 /* compute bitmask from p1 value */
190f68c5 7728 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7729 /* also FPA1 */
190f68c5 7730 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7731
190f68c5 7732 switch (crtc_state->dpll.p2) {
a07d6787
EA
7733 case 5:
7734 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7735 break;
7736 case 7:
7737 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7738 break;
7739 case 10:
7740 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7741 break;
7742 case 14:
7743 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7744 break;
79e53945
JB
7745 }
7746
b4c09f3b 7747 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7748 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7749 else
7750 dpll |= PLL_REF_INPUT_DREFCLK;
7751
959e16d6 7752 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7753}
7754
190f68c5
ACO
7755static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7756 struct intel_crtc_state *crtc_state)
de13a2e3 7757{
c7653199 7758 struct drm_device *dev = crtc->base.dev;
de13a2e3 7759 intel_clock_t clock, reduced_clock;
cbbab5bd 7760 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7761 bool ok, has_reduced_clock = false;
8b47047b 7762 bool is_lvds = false;
e2b78267 7763 struct intel_shared_dpll *pll;
de13a2e3 7764
409ee761 7765 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7766
5dc5298b
PZ
7767 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7768 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7769
190f68c5 7770 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7771 &has_reduced_clock, &reduced_clock);
190f68c5 7772 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7773 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7774 return -EINVAL;
79e53945 7775 }
f47709a9 7776 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7777 if (!crtc_state->clock_set) {
7778 crtc_state->dpll.n = clock.n;
7779 crtc_state->dpll.m1 = clock.m1;
7780 crtc_state->dpll.m2 = clock.m2;
7781 crtc_state->dpll.p1 = clock.p1;
7782 crtc_state->dpll.p2 = clock.p2;
f47709a9 7783 }
79e53945 7784
5dc5298b 7785 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7786 if (crtc_state->has_pch_encoder) {
7787 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7788 if (has_reduced_clock)
7429e9d4 7789 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7790
190f68c5 7791 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7792 &fp, &reduced_clock,
7793 has_reduced_clock ? &fp2 : NULL);
7794
190f68c5
ACO
7795 crtc_state->dpll_hw_state.dpll = dpll;
7796 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7797 if (has_reduced_clock)
190f68c5 7798 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7799 else
190f68c5 7800 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7801
190f68c5 7802 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7803 if (pll == NULL) {
84f44ce7 7804 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7805 pipe_name(crtc->pipe));
4b645f14
JB
7806 return -EINVAL;
7807 }
3fb37703 7808 }
79e53945 7809
ab585dea 7810 if (is_lvds && has_reduced_clock)
c7653199 7811 crtc->lowfreq_avail = true;
bcd644e0 7812 else
c7653199 7813 crtc->lowfreq_avail = false;
e2b78267 7814
c8f7a0db 7815 return 0;
79e53945
JB
7816}
7817
eb14cb74
VS
7818static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7819 struct intel_link_m_n *m_n)
7820{
7821 struct drm_device *dev = crtc->base.dev;
7822 struct drm_i915_private *dev_priv = dev->dev_private;
7823 enum pipe pipe = crtc->pipe;
7824
7825 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7826 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7827 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7828 & ~TU_SIZE_MASK;
7829 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7830 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7831 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7832}
7833
7834static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7835 enum transcoder transcoder,
b95af8be
VK
7836 struct intel_link_m_n *m_n,
7837 struct intel_link_m_n *m2_n2)
72419203
DV
7838{
7839 struct drm_device *dev = crtc->base.dev;
7840 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7841 enum pipe pipe = crtc->pipe;
72419203 7842
eb14cb74
VS
7843 if (INTEL_INFO(dev)->gen >= 5) {
7844 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7845 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7846 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7847 & ~TU_SIZE_MASK;
7848 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7849 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7850 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7851 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7852 * gen < 8) and if DRRS is supported (to make sure the
7853 * registers are not unnecessarily read).
7854 */
7855 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7856 crtc->config->has_drrs) {
b95af8be
VK
7857 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7858 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7859 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7860 & ~TU_SIZE_MASK;
7861 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7862 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7863 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7864 }
eb14cb74
VS
7865 } else {
7866 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7867 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7868 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7869 & ~TU_SIZE_MASK;
7870 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7871 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7872 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7873 }
7874}
7875
7876void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7877 struct intel_crtc_state *pipe_config)
eb14cb74 7878{
681a8504 7879 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7880 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7881 else
7882 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7883 &pipe_config->dp_m_n,
7884 &pipe_config->dp_m2_n2);
eb14cb74 7885}
72419203 7886
eb14cb74 7887static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7888 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7889{
7890 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7891 &pipe_config->fdi_m_n, NULL);
72419203
DV
7892}
7893
bd2e244f 7894static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7895 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7896{
7897 struct drm_device *dev = crtc->base.dev;
7898 struct drm_i915_private *dev_priv = dev->dev_private;
7899 uint32_t tmp;
7900
7901 tmp = I915_READ(PS_CTL(crtc->pipe));
7902
7903 if (tmp & PS_ENABLE) {
7904 pipe_config->pch_pfit.enabled = true;
7905 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7906 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7907 }
7908}
7909
5724dbd1
DL
7910static void
7911skylake_get_initial_plane_config(struct intel_crtc *crtc,
7912 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7913{
7914 struct drm_device *dev = crtc->base.dev;
7915 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 7916 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
7917 int pipe = crtc->pipe;
7918 int fourcc, pixel_format;
6761dd31 7919 unsigned int aligned_height;
bc8d7dff 7920 struct drm_framebuffer *fb;
1b842c89 7921 struct intel_framebuffer *intel_fb;
bc8d7dff 7922
d9806c9f 7923 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7924 if (!intel_fb) {
bc8d7dff
DL
7925 DRM_DEBUG_KMS("failed to alloc fb\n");
7926 return;
7927 }
7928
1b842c89
DL
7929 fb = &intel_fb->base;
7930
bc8d7dff 7931 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7932 if (!(val & PLANE_CTL_ENABLE))
7933 goto error;
7934
bc8d7dff
DL
7935 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7936 fourcc = skl_format_to_fourcc(pixel_format,
7937 val & PLANE_CTL_ORDER_RGBX,
7938 val & PLANE_CTL_ALPHA_MASK);
7939 fb->pixel_format = fourcc;
7940 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7941
40f46283
DL
7942 tiling = val & PLANE_CTL_TILED_MASK;
7943 switch (tiling) {
7944 case PLANE_CTL_TILED_LINEAR:
7945 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7946 break;
7947 case PLANE_CTL_TILED_X:
7948 plane_config->tiling = I915_TILING_X;
7949 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7950 break;
7951 case PLANE_CTL_TILED_Y:
7952 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7953 break;
7954 case PLANE_CTL_TILED_YF:
7955 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7956 break;
7957 default:
7958 MISSING_CASE(tiling);
7959 goto error;
7960 }
7961
bc8d7dff
DL
7962 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7963 plane_config->base = base;
7964
7965 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7966
7967 val = I915_READ(PLANE_SIZE(pipe, 0));
7968 fb->height = ((val >> 16) & 0xfff) + 1;
7969 fb->width = ((val >> 0) & 0x1fff) + 1;
7970
7971 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
7972 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7973 fb->pixel_format);
bc8d7dff
DL
7974 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7975
7976 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7977 fb->pixel_format,
7978 fb->modifier[0]);
bc8d7dff 7979
f37b5c2b 7980 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
7981
7982 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7983 pipe_name(pipe), fb->width, fb->height,
7984 fb->bits_per_pixel, base, fb->pitches[0],
7985 plane_config->size);
7986
2d14030b 7987 plane_config->fb = intel_fb;
bc8d7dff
DL
7988 return;
7989
7990error:
7991 kfree(fb);
7992}
7993
2fa2fe9a 7994static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7995 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7996{
7997 struct drm_device *dev = crtc->base.dev;
7998 struct drm_i915_private *dev_priv = dev->dev_private;
7999 uint32_t tmp;
8000
8001 tmp = I915_READ(PF_CTL(crtc->pipe));
8002
8003 if (tmp & PF_ENABLE) {
fd4daa9c 8004 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8005 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8006 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8007
8008 /* We currently do not free assignements of panel fitters on
8009 * ivb/hsw (since we don't use the higher upscaling modes which
8010 * differentiates them) so just WARN about this case for now. */
8011 if (IS_GEN7(dev)) {
8012 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8013 PF_PIPE_SEL_IVB(crtc->pipe));
8014 }
2fa2fe9a 8015 }
79e53945
JB
8016}
8017
5724dbd1
DL
8018static void
8019ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8020 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8021{
8022 struct drm_device *dev = crtc->base.dev;
8023 struct drm_i915_private *dev_priv = dev->dev_private;
8024 u32 val, base, offset;
aeee5a49 8025 int pipe = crtc->pipe;
4c6baa59 8026 int fourcc, pixel_format;
6761dd31 8027 unsigned int aligned_height;
b113d5ee 8028 struct drm_framebuffer *fb;
1b842c89 8029 struct intel_framebuffer *intel_fb;
4c6baa59 8030
42a7b088
DL
8031 val = I915_READ(DSPCNTR(pipe));
8032 if (!(val & DISPLAY_PLANE_ENABLE))
8033 return;
8034
d9806c9f 8035 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8036 if (!intel_fb) {
4c6baa59
JB
8037 DRM_DEBUG_KMS("failed to alloc fb\n");
8038 return;
8039 }
8040
1b842c89
DL
8041 fb = &intel_fb->base;
8042
18c5247e
DV
8043 if (INTEL_INFO(dev)->gen >= 4) {
8044 if (val & DISPPLANE_TILED) {
49af449b 8045 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8046 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8047 }
8048 }
4c6baa59
JB
8049
8050 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8051 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8052 fb->pixel_format = fourcc;
8053 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8054
aeee5a49 8055 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8056 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8057 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8058 } else {
49af449b 8059 if (plane_config->tiling)
aeee5a49 8060 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8061 else
aeee5a49 8062 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8063 }
8064 plane_config->base = base;
8065
8066 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8067 fb->width = ((val >> 16) & 0xfff) + 1;
8068 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8069
8070 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8071 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8072
b113d5ee 8073 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8074 fb->pixel_format,
8075 fb->modifier[0]);
4c6baa59 8076
f37b5c2b 8077 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8078
2844a921
DL
8079 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8080 pipe_name(pipe), fb->width, fb->height,
8081 fb->bits_per_pixel, base, fb->pitches[0],
8082 plane_config->size);
b113d5ee 8083
2d14030b 8084 plane_config->fb = intel_fb;
4c6baa59
JB
8085}
8086
0e8ffe1b 8087static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8088 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8089{
8090 struct drm_device *dev = crtc->base.dev;
8091 struct drm_i915_private *dev_priv = dev->dev_private;
8092 uint32_t tmp;
8093
f458ebbc
DV
8094 if (!intel_display_power_is_enabled(dev_priv,
8095 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8096 return false;
8097
e143a21c 8098 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8099 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8100
0e8ffe1b
DV
8101 tmp = I915_READ(PIPECONF(crtc->pipe));
8102 if (!(tmp & PIPECONF_ENABLE))
8103 return false;
8104
42571aef
VS
8105 switch (tmp & PIPECONF_BPC_MASK) {
8106 case PIPECONF_6BPC:
8107 pipe_config->pipe_bpp = 18;
8108 break;
8109 case PIPECONF_8BPC:
8110 pipe_config->pipe_bpp = 24;
8111 break;
8112 case PIPECONF_10BPC:
8113 pipe_config->pipe_bpp = 30;
8114 break;
8115 case PIPECONF_12BPC:
8116 pipe_config->pipe_bpp = 36;
8117 break;
8118 default:
8119 break;
8120 }
8121
b5a9fa09
DV
8122 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8123 pipe_config->limited_color_range = true;
8124
ab9412ba 8125 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8126 struct intel_shared_dpll *pll;
8127
88adfff1
DV
8128 pipe_config->has_pch_encoder = true;
8129
627eb5a3
DV
8130 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8131 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8132 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8133
8134 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8135
c0d43d62 8136 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8137 pipe_config->shared_dpll =
8138 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8139 } else {
8140 tmp = I915_READ(PCH_DPLL_SEL);
8141 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8142 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8143 else
8144 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8145 }
66e985c0
DV
8146
8147 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8148
8149 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8150 &pipe_config->dpll_hw_state));
c93f54cf
DV
8151
8152 tmp = pipe_config->dpll_hw_state.dpll;
8153 pipe_config->pixel_multiplier =
8154 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8155 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8156
8157 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8158 } else {
8159 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8160 }
8161
1bd1bd80
DV
8162 intel_get_pipe_timings(crtc, pipe_config);
8163
2fa2fe9a
DV
8164 ironlake_get_pfit_config(crtc, pipe_config);
8165
0e8ffe1b
DV
8166 return true;
8167}
8168
be256dc7
PZ
8169static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8170{
8171 struct drm_device *dev = dev_priv->dev;
be256dc7 8172 struct intel_crtc *crtc;
be256dc7 8173
d3fcc808 8174 for_each_intel_crtc(dev, crtc)
e2c719b7 8175 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8176 pipe_name(crtc->pipe));
8177
e2c719b7
RC
8178 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8179 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8180 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8181 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8182 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8183 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8184 "CPU PWM1 enabled\n");
c5107b87 8185 if (IS_HASWELL(dev))
e2c719b7 8186 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8187 "CPU PWM2 enabled\n");
e2c719b7 8188 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8189 "PCH PWM1 enabled\n");
e2c719b7 8190 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8191 "Utility pin enabled\n");
e2c719b7 8192 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8193
9926ada1
PZ
8194 /*
8195 * In theory we can still leave IRQs enabled, as long as only the HPD
8196 * interrupts remain enabled. We used to check for that, but since it's
8197 * gen-specific and since we only disable LCPLL after we fully disable
8198 * the interrupts, the check below should be enough.
8199 */
e2c719b7 8200 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8201}
8202
9ccd5aeb
PZ
8203static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8204{
8205 struct drm_device *dev = dev_priv->dev;
8206
8207 if (IS_HASWELL(dev))
8208 return I915_READ(D_COMP_HSW);
8209 else
8210 return I915_READ(D_COMP_BDW);
8211}
8212
3c4c9b81
PZ
8213static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8214{
8215 struct drm_device *dev = dev_priv->dev;
8216
8217 if (IS_HASWELL(dev)) {
8218 mutex_lock(&dev_priv->rps.hw_lock);
8219 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8220 val))
f475dadf 8221 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
8222 mutex_unlock(&dev_priv->rps.hw_lock);
8223 } else {
9ccd5aeb
PZ
8224 I915_WRITE(D_COMP_BDW, val);
8225 POSTING_READ(D_COMP_BDW);
3c4c9b81 8226 }
be256dc7
PZ
8227}
8228
8229/*
8230 * This function implements pieces of two sequences from BSpec:
8231 * - Sequence for display software to disable LCPLL
8232 * - Sequence for display software to allow package C8+
8233 * The steps implemented here are just the steps that actually touch the LCPLL
8234 * register. Callers should take care of disabling all the display engine
8235 * functions, doing the mode unset, fixing interrupts, etc.
8236 */
6ff58d53
PZ
8237static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8238 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
8239{
8240 uint32_t val;
8241
8242 assert_can_disable_lcpll(dev_priv);
8243
8244 val = I915_READ(LCPLL_CTL);
8245
8246 if (switch_to_fclk) {
8247 val |= LCPLL_CD_SOURCE_FCLK;
8248 I915_WRITE(LCPLL_CTL, val);
8249
8250 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8251 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8252 DRM_ERROR("Switching to FCLK failed\n");
8253
8254 val = I915_READ(LCPLL_CTL);
8255 }
8256
8257 val |= LCPLL_PLL_DISABLE;
8258 I915_WRITE(LCPLL_CTL, val);
8259 POSTING_READ(LCPLL_CTL);
8260
8261 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8262 DRM_ERROR("LCPLL still locked\n");
8263
9ccd5aeb 8264 val = hsw_read_dcomp(dev_priv);
be256dc7 8265 val |= D_COMP_COMP_DISABLE;
3c4c9b81 8266 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8267 ndelay(100);
8268
9ccd5aeb
PZ
8269 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8270 1))
be256dc7
PZ
8271 DRM_ERROR("D_COMP RCOMP still in progress\n");
8272
8273 if (allow_power_down) {
8274 val = I915_READ(LCPLL_CTL);
8275 val |= LCPLL_POWER_DOWN_ALLOW;
8276 I915_WRITE(LCPLL_CTL, val);
8277 POSTING_READ(LCPLL_CTL);
8278 }
8279}
8280
8281/*
8282 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8283 * source.
8284 */
6ff58d53 8285static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8286{
8287 uint32_t val;
8288
8289 val = I915_READ(LCPLL_CTL);
8290
8291 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8292 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8293 return;
8294
a8a8bd54
PZ
8295 /*
8296 * Make sure we're not on PC8 state before disabling PC8, otherwise
8297 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8298 */
59bad947 8299 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8300
be256dc7
PZ
8301 if (val & LCPLL_POWER_DOWN_ALLOW) {
8302 val &= ~LCPLL_POWER_DOWN_ALLOW;
8303 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8304 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8305 }
8306
9ccd5aeb 8307 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8308 val |= D_COMP_COMP_FORCE;
8309 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8310 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8311
8312 val = I915_READ(LCPLL_CTL);
8313 val &= ~LCPLL_PLL_DISABLE;
8314 I915_WRITE(LCPLL_CTL, val);
8315
8316 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8317 DRM_ERROR("LCPLL not locked yet\n");
8318
8319 if (val & LCPLL_CD_SOURCE_FCLK) {
8320 val = I915_READ(LCPLL_CTL);
8321 val &= ~LCPLL_CD_SOURCE_FCLK;
8322 I915_WRITE(LCPLL_CTL, val);
8323
8324 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8325 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8326 DRM_ERROR("Switching back to LCPLL failed\n");
8327 }
215733fa 8328
59bad947 8329 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8330}
8331
765dab67
PZ
8332/*
8333 * Package states C8 and deeper are really deep PC states that can only be
8334 * reached when all the devices on the system allow it, so even if the graphics
8335 * device allows PC8+, it doesn't mean the system will actually get to these
8336 * states. Our driver only allows PC8+ when going into runtime PM.
8337 *
8338 * The requirements for PC8+ are that all the outputs are disabled, the power
8339 * well is disabled and most interrupts are disabled, and these are also
8340 * requirements for runtime PM. When these conditions are met, we manually do
8341 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8342 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8343 * hang the machine.
8344 *
8345 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8346 * the state of some registers, so when we come back from PC8+ we need to
8347 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8348 * need to take care of the registers kept by RC6. Notice that this happens even
8349 * if we don't put the device in PCI D3 state (which is what currently happens
8350 * because of the runtime PM support).
8351 *
8352 * For more, read "Display Sequences for Package C8" on the hardware
8353 * documentation.
8354 */
a14cb6fc 8355void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8356{
c67a470b
PZ
8357 struct drm_device *dev = dev_priv->dev;
8358 uint32_t val;
8359
c67a470b
PZ
8360 DRM_DEBUG_KMS("Enabling package C8+\n");
8361
c67a470b
PZ
8362 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8363 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8364 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8365 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8366 }
8367
8368 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8369 hsw_disable_lcpll(dev_priv, true, true);
8370}
8371
a14cb6fc 8372void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8373{
8374 struct drm_device *dev = dev_priv->dev;
8375 uint32_t val;
8376
c67a470b
PZ
8377 DRM_DEBUG_KMS("Disabling package C8+\n");
8378
8379 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8380 lpt_init_pch_refclk(dev);
8381
8382 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8383 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8384 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8385 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8386 }
8387
8388 intel_prepare_ddi(dev);
c67a470b
PZ
8389}
8390
190f68c5
ACO
8391static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8392 struct intel_crtc_state *crtc_state)
09b4ddf9 8393{
190f68c5 8394 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8395 return -EINVAL;
716c2e55 8396
c7653199 8397 crtc->lowfreq_avail = false;
644cef34 8398
c8f7a0db 8399 return 0;
79e53945
JB
8400}
8401
96b7dfb7
S
8402static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8403 enum port port,
5cec258b 8404 struct intel_crtc_state *pipe_config)
96b7dfb7 8405{
3148ade7 8406 u32 temp, dpll_ctl1;
96b7dfb7
S
8407
8408 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8409 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8410
8411 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8412 case SKL_DPLL0:
8413 /*
8414 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8415 * of the shared DPLL framework and thus needs to be read out
8416 * separately
8417 */
8418 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8419 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8420 break;
96b7dfb7
S
8421 case SKL_DPLL1:
8422 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8423 break;
8424 case SKL_DPLL2:
8425 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8426 break;
8427 case SKL_DPLL3:
8428 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8429 break;
96b7dfb7
S
8430 }
8431}
8432
7d2c8175
DL
8433static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8434 enum port port,
5cec258b 8435 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8436{
8437 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8438
8439 switch (pipe_config->ddi_pll_sel) {
8440 case PORT_CLK_SEL_WRPLL1:
8441 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8442 break;
8443 case PORT_CLK_SEL_WRPLL2:
8444 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8445 break;
8446 }
8447}
8448
26804afd 8449static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8450 struct intel_crtc_state *pipe_config)
26804afd
DV
8451{
8452 struct drm_device *dev = crtc->base.dev;
8453 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8454 struct intel_shared_dpll *pll;
26804afd
DV
8455 enum port port;
8456 uint32_t tmp;
8457
8458 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8459
8460 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8461
96b7dfb7
S
8462 if (IS_SKYLAKE(dev))
8463 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8464 else
8465 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8466
d452c5b6
DV
8467 if (pipe_config->shared_dpll >= 0) {
8468 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8469
8470 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8471 &pipe_config->dpll_hw_state));
8472 }
8473
26804afd
DV
8474 /*
8475 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8476 * DDI E. So just check whether this pipe is wired to DDI E and whether
8477 * the PCH transcoder is on.
8478 */
ca370455
DL
8479 if (INTEL_INFO(dev)->gen < 9 &&
8480 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8481 pipe_config->has_pch_encoder = true;
8482
8483 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8484 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8485 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8486
8487 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8488 }
8489}
8490
0e8ffe1b 8491static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8492 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8493{
8494 struct drm_device *dev = crtc->base.dev;
8495 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8496 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8497 uint32_t tmp;
8498
f458ebbc 8499 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8500 POWER_DOMAIN_PIPE(crtc->pipe)))
8501 return false;
8502
e143a21c 8503 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8504 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8505
eccb140b
DV
8506 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8507 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8508 enum pipe trans_edp_pipe;
8509 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8510 default:
8511 WARN(1, "unknown pipe linked to edp transcoder\n");
8512 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8513 case TRANS_DDI_EDP_INPUT_A_ON:
8514 trans_edp_pipe = PIPE_A;
8515 break;
8516 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8517 trans_edp_pipe = PIPE_B;
8518 break;
8519 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8520 trans_edp_pipe = PIPE_C;
8521 break;
8522 }
8523
8524 if (trans_edp_pipe == crtc->pipe)
8525 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8526 }
8527
f458ebbc 8528 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8529 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8530 return false;
8531
eccb140b 8532 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8533 if (!(tmp & PIPECONF_ENABLE))
8534 return false;
8535
26804afd 8536 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8537
1bd1bd80
DV
8538 intel_get_pipe_timings(crtc, pipe_config);
8539
2fa2fe9a 8540 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8541 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8542 if (IS_SKYLAKE(dev))
8543 skylake_get_pfit_config(crtc, pipe_config);
8544 else
8545 ironlake_get_pfit_config(crtc, pipe_config);
8546 }
88adfff1 8547
e59150dc
JB
8548 if (IS_HASWELL(dev))
8549 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8550 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8551
ebb69c95
CT
8552 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8553 pipe_config->pixel_multiplier =
8554 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8555 } else {
8556 pipe_config->pixel_multiplier = 1;
8557 }
6c49f241 8558
0e8ffe1b
DV
8559 return true;
8560}
8561
560b85bb
CW
8562static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8563{
8564 struct drm_device *dev = crtc->dev;
8565 struct drm_i915_private *dev_priv = dev->dev_private;
8566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8567 uint32_t cntl = 0, size = 0;
560b85bb 8568
dc41c154 8569 if (base) {
3dd512fb
MR
8570 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8571 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
8572 unsigned int stride = roundup_pow_of_two(width) * 4;
8573
8574 switch (stride) {
8575 default:
8576 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8577 width, stride);
8578 stride = 256;
8579 /* fallthrough */
8580 case 256:
8581 case 512:
8582 case 1024:
8583 case 2048:
8584 break;
4b0e333e
CW
8585 }
8586
dc41c154
VS
8587 cntl |= CURSOR_ENABLE |
8588 CURSOR_GAMMA_ENABLE |
8589 CURSOR_FORMAT_ARGB |
8590 CURSOR_STRIDE(stride);
8591
8592 size = (height << 12) | width;
4b0e333e 8593 }
560b85bb 8594
dc41c154
VS
8595 if (intel_crtc->cursor_cntl != 0 &&
8596 (intel_crtc->cursor_base != base ||
8597 intel_crtc->cursor_size != size ||
8598 intel_crtc->cursor_cntl != cntl)) {
8599 /* On these chipsets we can only modify the base/size/stride
8600 * whilst the cursor is disabled.
8601 */
8602 I915_WRITE(_CURACNTR, 0);
4b0e333e 8603 POSTING_READ(_CURACNTR);
dc41c154 8604 intel_crtc->cursor_cntl = 0;
4b0e333e 8605 }
560b85bb 8606
99d1f387 8607 if (intel_crtc->cursor_base != base) {
9db4a9c7 8608 I915_WRITE(_CURABASE, base);
99d1f387
VS
8609 intel_crtc->cursor_base = base;
8610 }
4726e0b0 8611
dc41c154
VS
8612 if (intel_crtc->cursor_size != size) {
8613 I915_WRITE(CURSIZE, size);
8614 intel_crtc->cursor_size = size;
4b0e333e 8615 }
560b85bb 8616
4b0e333e 8617 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8618 I915_WRITE(_CURACNTR, cntl);
8619 POSTING_READ(_CURACNTR);
4b0e333e 8620 intel_crtc->cursor_cntl = cntl;
560b85bb 8621 }
560b85bb
CW
8622}
8623
560b85bb 8624static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8625{
8626 struct drm_device *dev = crtc->dev;
8627 struct drm_i915_private *dev_priv = dev->dev_private;
8628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629 int pipe = intel_crtc->pipe;
4b0e333e
CW
8630 uint32_t cntl;
8631
8632 cntl = 0;
8633 if (base) {
8634 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 8635 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
8636 case 64:
8637 cntl |= CURSOR_MODE_64_ARGB_AX;
8638 break;
8639 case 128:
8640 cntl |= CURSOR_MODE_128_ARGB_AX;
8641 break;
8642 case 256:
8643 cntl |= CURSOR_MODE_256_ARGB_AX;
8644 break;
8645 default:
3dd512fb 8646 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 8647 return;
65a21cd6 8648 }
4b0e333e 8649 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8650
8651 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8652 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8653 }
65a21cd6 8654
8e7d688b 8655 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8656 cntl |= CURSOR_ROTATE_180;
8657
4b0e333e
CW
8658 if (intel_crtc->cursor_cntl != cntl) {
8659 I915_WRITE(CURCNTR(pipe), cntl);
8660 POSTING_READ(CURCNTR(pipe));
8661 intel_crtc->cursor_cntl = cntl;
65a21cd6 8662 }
4b0e333e 8663
65a21cd6 8664 /* and commit changes on next vblank */
5efb3e28
VS
8665 I915_WRITE(CURBASE(pipe), base);
8666 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8667
8668 intel_crtc->cursor_base = base;
65a21cd6
JB
8669}
8670
cda4b7d3 8671/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8672static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8673 bool on)
cda4b7d3
CW
8674{
8675 struct drm_device *dev = crtc->dev;
8676 struct drm_i915_private *dev_priv = dev->dev_private;
8677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678 int pipe = intel_crtc->pipe;
3d7d6510
MR
8679 int x = crtc->cursor_x;
8680 int y = crtc->cursor_y;
d6e4db15 8681 u32 base = 0, pos = 0;
cda4b7d3 8682
d6e4db15 8683 if (on)
cda4b7d3 8684 base = intel_crtc->cursor_addr;
cda4b7d3 8685
6e3c9717 8686 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8687 base = 0;
8688
6e3c9717 8689 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8690 base = 0;
8691
8692 if (x < 0) {
3dd512fb 8693 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
8694 base = 0;
8695
8696 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8697 x = -x;
8698 }
8699 pos |= x << CURSOR_X_SHIFT;
8700
8701 if (y < 0) {
3dd512fb 8702 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
8703 base = 0;
8704
8705 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8706 y = -y;
8707 }
8708 pos |= y << CURSOR_Y_SHIFT;
8709
4b0e333e 8710 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8711 return;
8712
5efb3e28
VS
8713 I915_WRITE(CURPOS(pipe), pos);
8714
4398ad45
VS
8715 /* ILK+ do this automagically */
8716 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8717 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
8718 base += (intel_crtc->base.cursor->state->crtc_h *
8719 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
8720 }
8721
8ac54669 8722 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8723 i845_update_cursor(crtc, base);
8724 else
8725 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8726}
8727
dc41c154
VS
8728static bool cursor_size_ok(struct drm_device *dev,
8729 uint32_t width, uint32_t height)
8730{
8731 if (width == 0 || height == 0)
8732 return false;
8733
8734 /*
8735 * 845g/865g are special in that they are only limited by
8736 * the width of their cursors, the height is arbitrary up to
8737 * the precision of the register. Everything else requires
8738 * square cursors, limited to a few power-of-two sizes.
8739 */
8740 if (IS_845G(dev) || IS_I865G(dev)) {
8741 if ((width & 63) != 0)
8742 return false;
8743
8744 if (width > (IS_845G(dev) ? 64 : 512))
8745 return false;
8746
8747 if (height > 1023)
8748 return false;
8749 } else {
8750 switch (width | height) {
8751 case 256:
8752 case 128:
8753 if (IS_GEN2(dev))
8754 return false;
8755 case 64:
8756 break;
8757 default:
8758 return false;
8759 }
8760 }
8761
8762 return true;
8763}
8764
79e53945 8765static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8766 u16 *blue, uint32_t start, uint32_t size)
79e53945 8767{
7203425a 8768 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8770
7203425a 8771 for (i = start; i < end; i++) {
79e53945
JB
8772 intel_crtc->lut_r[i] = red[i] >> 8;
8773 intel_crtc->lut_g[i] = green[i] >> 8;
8774 intel_crtc->lut_b[i] = blue[i] >> 8;
8775 }
8776
8777 intel_crtc_load_lut(crtc);
8778}
8779
79e53945
JB
8780/* VESA 640x480x72Hz mode to set on the pipe */
8781static struct drm_display_mode load_detect_mode = {
8782 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8783 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8784};
8785
a8bb6818
DV
8786struct drm_framebuffer *
8787__intel_framebuffer_create(struct drm_device *dev,
8788 struct drm_mode_fb_cmd2 *mode_cmd,
8789 struct drm_i915_gem_object *obj)
d2dff872
CW
8790{
8791 struct intel_framebuffer *intel_fb;
8792 int ret;
8793
8794 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8795 if (!intel_fb) {
6ccb81f2 8796 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8797 return ERR_PTR(-ENOMEM);
8798 }
8799
8800 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8801 if (ret)
8802 goto err;
d2dff872
CW
8803
8804 return &intel_fb->base;
dd4916c5 8805err:
6ccb81f2 8806 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8807 kfree(intel_fb);
8808
8809 return ERR_PTR(ret);
d2dff872
CW
8810}
8811
b5ea642a 8812static struct drm_framebuffer *
a8bb6818
DV
8813intel_framebuffer_create(struct drm_device *dev,
8814 struct drm_mode_fb_cmd2 *mode_cmd,
8815 struct drm_i915_gem_object *obj)
8816{
8817 struct drm_framebuffer *fb;
8818 int ret;
8819
8820 ret = i915_mutex_lock_interruptible(dev);
8821 if (ret)
8822 return ERR_PTR(ret);
8823 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8824 mutex_unlock(&dev->struct_mutex);
8825
8826 return fb;
8827}
8828
d2dff872
CW
8829static u32
8830intel_framebuffer_pitch_for_width(int width, int bpp)
8831{
8832 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8833 return ALIGN(pitch, 64);
8834}
8835
8836static u32
8837intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8838{
8839 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8840 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8841}
8842
8843static struct drm_framebuffer *
8844intel_framebuffer_create_for_mode(struct drm_device *dev,
8845 struct drm_display_mode *mode,
8846 int depth, int bpp)
8847{
8848 struct drm_i915_gem_object *obj;
0fed39bd 8849 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8850
8851 obj = i915_gem_alloc_object(dev,
8852 intel_framebuffer_size_for_mode(mode, bpp));
8853 if (obj == NULL)
8854 return ERR_PTR(-ENOMEM);
8855
8856 mode_cmd.width = mode->hdisplay;
8857 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8858 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8859 bpp);
5ca0c34a 8860 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8861
8862 return intel_framebuffer_create(dev, &mode_cmd, obj);
8863}
8864
8865static struct drm_framebuffer *
8866mode_fits_in_fbdev(struct drm_device *dev,
8867 struct drm_display_mode *mode)
8868{
4520f53a 8869#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8870 struct drm_i915_private *dev_priv = dev->dev_private;
8871 struct drm_i915_gem_object *obj;
8872 struct drm_framebuffer *fb;
8873
4c0e5528 8874 if (!dev_priv->fbdev)
d2dff872
CW
8875 return NULL;
8876
4c0e5528 8877 if (!dev_priv->fbdev->fb)
d2dff872
CW
8878 return NULL;
8879
4c0e5528
DV
8880 obj = dev_priv->fbdev->fb->obj;
8881 BUG_ON(!obj);
8882
8bcd4553 8883 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8884 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8885 fb->bits_per_pixel))
d2dff872
CW
8886 return NULL;
8887
01f2c773 8888 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8889 return NULL;
8890
8891 return fb;
4520f53a
DV
8892#else
8893 return NULL;
8894#endif
d2dff872
CW
8895}
8896
d2434ab7 8897bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8898 struct drm_display_mode *mode,
51fd371b
RC
8899 struct intel_load_detect_pipe *old,
8900 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8901{
8902 struct intel_crtc *intel_crtc;
d2434ab7
DV
8903 struct intel_encoder *intel_encoder =
8904 intel_attached_encoder(connector);
79e53945 8905 struct drm_crtc *possible_crtc;
4ef69c7a 8906 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8907 struct drm_crtc *crtc = NULL;
8908 struct drm_device *dev = encoder->dev;
94352cf9 8909 struct drm_framebuffer *fb;
51fd371b 8910 struct drm_mode_config *config = &dev->mode_config;
83a57153 8911 struct drm_atomic_state *state = NULL;
944b0c76 8912 struct drm_connector_state *connector_state;
51fd371b 8913 int ret, i = -1;
79e53945 8914
d2dff872 8915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8916 connector->base.id, connector->name,
8e329a03 8917 encoder->base.id, encoder->name);
d2dff872 8918
51fd371b
RC
8919retry:
8920 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8921 if (ret)
8922 goto fail_unlock;
6e9f798d 8923
79e53945
JB
8924 /*
8925 * Algorithm gets a little messy:
7a5e4805 8926 *
79e53945
JB
8927 * - if the connector already has an assigned crtc, use it (but make
8928 * sure it's on first)
7a5e4805 8929 *
79e53945
JB
8930 * - try to find the first unused crtc that can drive this connector,
8931 * and use that if we find one
79e53945
JB
8932 */
8933
8934 /* See if we already have a CRTC for this connector */
8935 if (encoder->crtc) {
8936 crtc = encoder->crtc;
8261b191 8937
51fd371b 8938 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8939 if (ret)
8940 goto fail_unlock;
8941 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8942 if (ret)
8943 goto fail_unlock;
7b24056b 8944
24218aac 8945 old->dpms_mode = connector->dpms;
8261b191
CW
8946 old->load_detect_temp = false;
8947
8948 /* Make sure the crtc and connector are running */
24218aac
DV
8949 if (connector->dpms != DRM_MODE_DPMS_ON)
8950 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8951
7173188d 8952 return true;
79e53945
JB
8953 }
8954
8955 /* Find an unused one (if possible) */
70e1e0ec 8956 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8957 i++;
8958 if (!(encoder->possible_crtcs & (1 << i)))
8959 continue;
83d65738 8960 if (possible_crtc->state->enable)
a459249c
VS
8961 continue;
8962 /* This can occur when applying the pipe A quirk on resume. */
8963 if (to_intel_crtc(possible_crtc)->new_enabled)
8964 continue;
8965
8966 crtc = possible_crtc;
8967 break;
79e53945
JB
8968 }
8969
8970 /*
8971 * If we didn't find an unused CRTC, don't use any.
8972 */
8973 if (!crtc) {
7173188d 8974 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8975 goto fail_unlock;
79e53945
JB
8976 }
8977
51fd371b
RC
8978 ret = drm_modeset_lock(&crtc->mutex, ctx);
8979 if (ret)
4d02e2de
DV
8980 goto fail_unlock;
8981 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8982 if (ret)
51fd371b 8983 goto fail_unlock;
fc303101
DV
8984 intel_encoder->new_crtc = to_intel_crtc(crtc);
8985 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8986
8987 intel_crtc = to_intel_crtc(crtc);
412b61d8 8988 intel_crtc->new_enabled = true;
6e3c9717 8989 intel_crtc->new_config = intel_crtc->config;
24218aac 8990 old->dpms_mode = connector->dpms;
8261b191 8991 old->load_detect_temp = true;
d2dff872 8992 old->release_fb = NULL;
79e53945 8993
83a57153
ACO
8994 state = drm_atomic_state_alloc(dev);
8995 if (!state)
8996 return false;
8997
8998 state->acquire_ctx = ctx;
8999
944b0c76
ACO
9000 connector_state = drm_atomic_get_connector_state(state, connector);
9001 if (IS_ERR(connector_state)) {
9002 ret = PTR_ERR(connector_state);
9003 goto fail;
9004 }
9005
9006 connector_state->crtc = crtc;
9007 connector_state->best_encoder = &intel_encoder->base;
9008
6492711d
CW
9009 if (!mode)
9010 mode = &load_detect_mode;
79e53945 9011
d2dff872
CW
9012 /* We need a framebuffer large enough to accommodate all accesses
9013 * that the plane may generate whilst we perform load detection.
9014 * We can not rely on the fbcon either being present (we get called
9015 * during its initialisation to detect all boot displays, or it may
9016 * not even exist) or that it is large enough to satisfy the
9017 * requested mode.
9018 */
94352cf9
DV
9019 fb = mode_fits_in_fbdev(dev, mode);
9020 if (fb == NULL) {
d2dff872 9021 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9022 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9023 old->release_fb = fb;
d2dff872
CW
9024 } else
9025 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9026 if (IS_ERR(fb)) {
d2dff872 9027 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9028 goto fail;
79e53945 9029 }
79e53945 9030
83a57153 9031 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
6492711d 9032 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9033 if (old->release_fb)
9034 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9035 goto fail;
79e53945 9036 }
9128b040 9037 crtc->primary->crtc = crtc;
7173188d 9038
79e53945 9039 /* let the connector get through one full cycle before testing */
9d0498a2 9040 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9041 return true;
412b61d8
VS
9042
9043 fail:
83d65738 9044 intel_crtc->new_enabled = crtc->state->enable;
412b61d8 9045 if (intel_crtc->new_enabled)
6e3c9717 9046 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
9047 else
9048 intel_crtc->new_config = NULL;
51fd371b 9049fail_unlock:
83a57153
ACO
9050 if (state) {
9051 drm_atomic_state_free(state);
9052 state = NULL;
9053 }
9054
51fd371b
RC
9055 if (ret == -EDEADLK) {
9056 drm_modeset_backoff(ctx);
9057 goto retry;
9058 }
9059
412b61d8 9060 return false;
79e53945
JB
9061}
9062
d2434ab7 9063void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
9064 struct intel_load_detect_pipe *old,
9065 struct drm_modeset_acquire_ctx *ctx)
79e53945 9066{
83a57153 9067 struct drm_device *dev = connector->dev;
d2434ab7
DV
9068 struct intel_encoder *intel_encoder =
9069 intel_attached_encoder(connector);
4ef69c7a 9070 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9071 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 9073 struct drm_atomic_state *state;
944b0c76 9074 struct drm_connector_state *connector_state;
79e53945 9075
d2dff872 9076 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9077 connector->base.id, connector->name,
8e329a03 9078 encoder->base.id, encoder->name);
d2dff872 9079
8261b191 9080 if (old->load_detect_temp) {
83a57153 9081 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
9082 if (!state)
9083 goto fail;
83a57153
ACO
9084
9085 state->acquire_ctx = ctx;
9086
944b0c76
ACO
9087 connector_state = drm_atomic_get_connector_state(state, connector);
9088 if (IS_ERR(connector_state))
9089 goto fail;
9090
fc303101
DV
9091 to_intel_connector(connector)->new_encoder = NULL;
9092 intel_encoder->new_crtc = NULL;
412b61d8
VS
9093 intel_crtc->new_enabled = false;
9094 intel_crtc->new_config = NULL;
944b0c76
ACO
9095
9096 connector_state->best_encoder = NULL;
9097 connector_state->crtc = NULL;
9098
83a57153
ACO
9099 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9100
9101 drm_atomic_state_free(state);
d2dff872 9102
36206361
DV
9103 if (old->release_fb) {
9104 drm_framebuffer_unregister_private(old->release_fb);
9105 drm_framebuffer_unreference(old->release_fb);
9106 }
d2dff872 9107
0622a53c 9108 return;
79e53945
JB
9109 }
9110
c751ce4f 9111 /* Switch crtc and encoder back off if necessary */
24218aac
DV
9112 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9113 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
9114
9115 return;
9116fail:
9117 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9118 drm_atomic_state_free(state);
79e53945
JB
9119}
9120
da4a1efa 9121static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 9122 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
9123{
9124 struct drm_i915_private *dev_priv = dev->dev_private;
9125 u32 dpll = pipe_config->dpll_hw_state.dpll;
9126
9127 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 9128 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
9129 else if (HAS_PCH_SPLIT(dev))
9130 return 120000;
9131 else if (!IS_GEN2(dev))
9132 return 96000;
9133 else
9134 return 48000;
9135}
9136
79e53945 9137/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 9138static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 9139 struct intel_crtc_state *pipe_config)
79e53945 9140{
f1f644dc 9141 struct drm_device *dev = crtc->base.dev;
79e53945 9142 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 9143 int pipe = pipe_config->cpu_transcoder;
293623f7 9144 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
9145 u32 fp;
9146 intel_clock_t clock;
da4a1efa 9147 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
9148
9149 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 9150 fp = pipe_config->dpll_hw_state.fp0;
79e53945 9151 else
293623f7 9152 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
9153
9154 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
9155 if (IS_PINEVIEW(dev)) {
9156 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9157 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
9158 } else {
9159 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9160 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9161 }
9162
a6c45cf0 9163 if (!IS_GEN2(dev)) {
f2b115e6
AJ
9164 if (IS_PINEVIEW(dev))
9165 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9166 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
9167 else
9168 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
9169 DPLL_FPA01_P1_POST_DIV_SHIFT);
9170
9171 switch (dpll & DPLL_MODE_MASK) {
9172 case DPLLB_MODE_DAC_SERIAL:
9173 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9174 5 : 10;
9175 break;
9176 case DPLLB_MODE_LVDS:
9177 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9178 7 : 14;
9179 break;
9180 default:
28c97730 9181 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 9182 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 9183 return;
79e53945
JB
9184 }
9185
ac58c3f0 9186 if (IS_PINEVIEW(dev))
da4a1efa 9187 pineview_clock(refclk, &clock);
ac58c3f0 9188 else
da4a1efa 9189 i9xx_clock(refclk, &clock);
79e53945 9190 } else {
0fb58223 9191 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 9192 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
9193
9194 if (is_lvds) {
9195 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9196 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
9197
9198 if (lvds & LVDS_CLKB_POWER_UP)
9199 clock.p2 = 7;
9200 else
9201 clock.p2 = 14;
79e53945
JB
9202 } else {
9203 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9204 clock.p1 = 2;
9205 else {
9206 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9207 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9208 }
9209 if (dpll & PLL_P2_DIVIDE_BY_4)
9210 clock.p2 = 4;
9211 else
9212 clock.p2 = 2;
79e53945 9213 }
da4a1efa
VS
9214
9215 i9xx_clock(refclk, &clock);
79e53945
JB
9216 }
9217
18442d08
VS
9218 /*
9219 * This value includes pixel_multiplier. We will use
241bfc38 9220 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
9221 * encoder's get_config() function.
9222 */
9223 pipe_config->port_clock = clock.dot;
f1f644dc
JB
9224}
9225
6878da05
VS
9226int intel_dotclock_calculate(int link_freq,
9227 const struct intel_link_m_n *m_n)
f1f644dc 9228{
f1f644dc
JB
9229 /*
9230 * The calculation for the data clock is:
1041a02f 9231 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 9232 * But we want to avoid losing precison if possible, so:
1041a02f 9233 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
9234 *
9235 * and the link clock is simpler:
1041a02f 9236 * link_clock = (m * link_clock) / n
f1f644dc
JB
9237 */
9238
6878da05
VS
9239 if (!m_n->link_n)
9240 return 0;
f1f644dc 9241
6878da05
VS
9242 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9243}
f1f644dc 9244
18442d08 9245static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 9246 struct intel_crtc_state *pipe_config)
6878da05
VS
9247{
9248 struct drm_device *dev = crtc->base.dev;
79e53945 9249
18442d08
VS
9250 /* read out port_clock from the DPLL */
9251 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9252
f1f644dc 9253 /*
18442d08 9254 * This value does not include pixel_multiplier.
241bfc38 9255 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9256 * agree once we know their relationship in the encoder's
9257 * get_config() function.
79e53945 9258 */
2d112de7 9259 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
9260 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9261 &pipe_config->fdi_m_n);
79e53945
JB
9262}
9263
9264/** Returns the currently programmed mode of the given pipe. */
9265struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9266 struct drm_crtc *crtc)
9267{
548f245b 9268 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9270 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 9271 struct drm_display_mode *mode;
5cec258b 9272 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
9273 int htot = I915_READ(HTOTAL(cpu_transcoder));
9274 int hsync = I915_READ(HSYNC(cpu_transcoder));
9275 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9276 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9277 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9278
9279 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9280 if (!mode)
9281 return NULL;
9282
f1f644dc
JB
9283 /*
9284 * Construct a pipe_config sufficient for getting the clock info
9285 * back out of crtc_clock_get.
9286 *
9287 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9288 * to use a real value here instead.
9289 */
293623f7 9290 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9291 pipe_config.pixel_multiplier = 1;
293623f7
VS
9292 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9293 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9294 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9295 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9296
773ae034 9297 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9298 mode->hdisplay = (htot & 0xffff) + 1;
9299 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9300 mode->hsync_start = (hsync & 0xffff) + 1;
9301 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9302 mode->vdisplay = (vtot & 0xffff) + 1;
9303 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9304 mode->vsync_start = (vsync & 0xffff) + 1;
9305 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9306
9307 drm_mode_set_name(mode);
79e53945
JB
9308
9309 return mode;
9310}
9311
652c393a
JB
9312static void intel_decrease_pllclock(struct drm_crtc *crtc)
9313{
9314 struct drm_device *dev = crtc->dev;
fbee40df 9315 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9317
baff296c 9318 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9319 return;
9320
9321 if (!dev_priv->lvds_downclock_avail)
9322 return;
9323
9324 /*
9325 * Since this is called by a timer, we should never get here in
9326 * the manual case.
9327 */
9328 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9329 int pipe = intel_crtc->pipe;
9330 int dpll_reg = DPLL(pipe);
9331 int dpll;
f6e5b160 9332
44d98a61 9333 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9334
8ac5a6d5 9335 assert_panel_unlocked(dev_priv, pipe);
652c393a 9336
dc257cf1 9337 dpll = I915_READ(dpll_reg);
652c393a
JB
9338 dpll |= DISPLAY_RATE_SELECT_FPA1;
9339 I915_WRITE(dpll_reg, dpll);
9d0498a2 9340 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9341 dpll = I915_READ(dpll_reg);
9342 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9343 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9344 }
9345
9346}
9347
f047e395
CW
9348void intel_mark_busy(struct drm_device *dev)
9349{
c67a470b
PZ
9350 struct drm_i915_private *dev_priv = dev->dev_private;
9351
f62a0076
CW
9352 if (dev_priv->mm.busy)
9353 return;
9354
43694d69 9355 intel_runtime_pm_get(dev_priv);
c67a470b 9356 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
9357 if (INTEL_INFO(dev)->gen >= 6)
9358 gen6_rps_busy(dev_priv);
f62a0076 9359 dev_priv->mm.busy = true;
f047e395
CW
9360}
9361
9362void intel_mark_idle(struct drm_device *dev)
652c393a 9363{
c67a470b 9364 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9365 struct drm_crtc *crtc;
652c393a 9366
f62a0076
CW
9367 if (!dev_priv->mm.busy)
9368 return;
9369
9370 dev_priv->mm.busy = false;
9371
70e1e0ec 9372 for_each_crtc(dev, crtc) {
f4510a27 9373 if (!crtc->primary->fb)
652c393a
JB
9374 continue;
9375
725a5b54 9376 intel_decrease_pllclock(crtc);
652c393a 9377 }
b29c19b6 9378
3d13ef2e 9379 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9380 gen6_rps_idle(dev->dev_private);
bb4cdd53 9381
43694d69 9382 intel_runtime_pm_put(dev_priv);
652c393a
JB
9383}
9384
f5de6e07
ACO
9385static void intel_crtc_set_state(struct intel_crtc *crtc,
9386 struct intel_crtc_state *crtc_state)
9387{
9388 kfree(crtc->config);
9389 crtc->config = crtc_state;
16f3f658 9390 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9391}
9392
79e53945
JB
9393static void intel_crtc_destroy(struct drm_crtc *crtc)
9394{
9395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9396 struct drm_device *dev = crtc->dev;
9397 struct intel_unpin_work *work;
67e77c5a 9398
5e2d7afc 9399 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9400 work = intel_crtc->unpin_work;
9401 intel_crtc->unpin_work = NULL;
5e2d7afc 9402 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9403
9404 if (work) {
9405 cancel_work_sync(&work->work);
9406 kfree(work);
9407 }
79e53945 9408
f5de6e07 9409 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9410 drm_crtc_cleanup(crtc);
67e77c5a 9411
79e53945
JB
9412 kfree(intel_crtc);
9413}
9414
6b95a207
KH
9415static void intel_unpin_work_fn(struct work_struct *__work)
9416{
9417 struct intel_unpin_work *work =
9418 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9419 struct drm_device *dev = work->crtc->dev;
f99d7069 9420 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9421
b4a98e57 9422 mutex_lock(&dev->struct_mutex);
82bc3b2d 9423 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 9424 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 9425
7ff0ebcc 9426 intel_fbc_update(dev);
f06cc1b9
JH
9427
9428 if (work->flip_queued_req)
146d84f0 9429 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9430 mutex_unlock(&dev->struct_mutex);
9431
f99d7069 9432 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 9433 drm_framebuffer_unreference(work->old_fb);
f99d7069 9434
b4a98e57
CW
9435 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9436 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9437
6b95a207
KH
9438 kfree(work);
9439}
9440
1afe3e9d 9441static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9442 struct drm_crtc *crtc)
6b95a207 9443{
6b95a207
KH
9444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9445 struct intel_unpin_work *work;
6b95a207
KH
9446 unsigned long flags;
9447
9448 /* Ignore early vblank irqs */
9449 if (intel_crtc == NULL)
9450 return;
9451
f326038a
DV
9452 /*
9453 * This is called both by irq handlers and the reset code (to complete
9454 * lost pageflips) so needs the full irqsave spinlocks.
9455 */
6b95a207
KH
9456 spin_lock_irqsave(&dev->event_lock, flags);
9457 work = intel_crtc->unpin_work;
e7d841ca
CW
9458
9459 /* Ensure we don't miss a work->pending update ... */
9460 smp_rmb();
9461
9462 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9463 spin_unlock_irqrestore(&dev->event_lock, flags);
9464 return;
9465 }
9466
d6bbafa1 9467 page_flip_completed(intel_crtc);
0af7e4df 9468
6b95a207 9469 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9470}
9471
1afe3e9d
JB
9472void intel_finish_page_flip(struct drm_device *dev, int pipe)
9473{
fbee40df 9474 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9475 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9476
49b14a5c 9477 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9478}
9479
9480void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9481{
fbee40df 9482 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9483 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9484
49b14a5c 9485 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9486}
9487
75f7f3ec
VS
9488/* Is 'a' after or equal to 'b'? */
9489static bool g4x_flip_count_after_eq(u32 a, u32 b)
9490{
9491 return !((a - b) & 0x80000000);
9492}
9493
9494static bool page_flip_finished(struct intel_crtc *crtc)
9495{
9496 struct drm_device *dev = crtc->base.dev;
9497 struct drm_i915_private *dev_priv = dev->dev_private;
9498
bdfa7542
VS
9499 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9500 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9501 return true;
9502
75f7f3ec
VS
9503 /*
9504 * The relevant registers doen't exist on pre-ctg.
9505 * As the flip done interrupt doesn't trigger for mmio
9506 * flips on gmch platforms, a flip count check isn't
9507 * really needed there. But since ctg has the registers,
9508 * include it in the check anyway.
9509 */
9510 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9511 return true;
9512
9513 /*
9514 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9515 * used the same base address. In that case the mmio flip might
9516 * have completed, but the CS hasn't even executed the flip yet.
9517 *
9518 * A flip count check isn't enough as the CS might have updated
9519 * the base address just after start of vblank, but before we
9520 * managed to process the interrupt. This means we'd complete the
9521 * CS flip too soon.
9522 *
9523 * Combining both checks should get us a good enough result. It may
9524 * still happen that the CS flip has been executed, but has not
9525 * yet actually completed. But in case the base address is the same
9526 * anyway, we don't really care.
9527 */
9528 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9529 crtc->unpin_work->gtt_offset &&
9530 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9531 crtc->unpin_work->flip_count);
9532}
9533
6b95a207
KH
9534void intel_prepare_page_flip(struct drm_device *dev, int plane)
9535{
fbee40df 9536 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9537 struct intel_crtc *intel_crtc =
9538 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9539 unsigned long flags;
9540
f326038a
DV
9541
9542 /*
9543 * This is called both by irq handlers and the reset code (to complete
9544 * lost pageflips) so needs the full irqsave spinlocks.
9545 *
9546 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9547 * generate a page-flip completion irq, i.e. every modeset
9548 * is also accompanied by a spurious intel_prepare_page_flip().
9549 */
6b95a207 9550 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9551 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9552 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9553 spin_unlock_irqrestore(&dev->event_lock, flags);
9554}
9555
eba905b2 9556static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9557{
9558 /* Ensure that the work item is consistent when activating it ... */
9559 smp_wmb();
9560 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9561 /* and that it is marked active as soon as the irq could fire. */
9562 smp_wmb();
9563}
9564
8c9f3aaf
JB
9565static int intel_gen2_queue_flip(struct drm_device *dev,
9566 struct drm_crtc *crtc,
9567 struct drm_framebuffer *fb,
ed8d1975 9568 struct drm_i915_gem_object *obj,
a4872ba6 9569 struct intel_engine_cs *ring,
ed8d1975 9570 uint32_t flags)
8c9f3aaf 9571{
8c9f3aaf 9572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9573 u32 flip_mask;
9574 int ret;
9575
6d90c952 9576 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9577 if (ret)
4fa62c89 9578 return ret;
8c9f3aaf
JB
9579
9580 /* Can't queue multiple flips, so wait for the previous
9581 * one to finish before executing the next.
9582 */
9583 if (intel_crtc->plane)
9584 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9585 else
9586 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9587 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9588 intel_ring_emit(ring, MI_NOOP);
9589 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9590 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9591 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9592 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9593 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9594
9595 intel_mark_page_flip_active(intel_crtc);
09246732 9596 __intel_ring_advance(ring);
83d4092b 9597 return 0;
8c9f3aaf
JB
9598}
9599
9600static int intel_gen3_queue_flip(struct drm_device *dev,
9601 struct drm_crtc *crtc,
9602 struct drm_framebuffer *fb,
ed8d1975 9603 struct drm_i915_gem_object *obj,
a4872ba6 9604 struct intel_engine_cs *ring,
ed8d1975 9605 uint32_t flags)
8c9f3aaf 9606{
8c9f3aaf 9607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9608 u32 flip_mask;
9609 int ret;
9610
6d90c952 9611 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9612 if (ret)
4fa62c89 9613 return ret;
8c9f3aaf
JB
9614
9615 if (intel_crtc->plane)
9616 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9617 else
9618 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9619 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9620 intel_ring_emit(ring, MI_NOOP);
9621 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9622 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9623 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9624 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9625 intel_ring_emit(ring, MI_NOOP);
9626
e7d841ca 9627 intel_mark_page_flip_active(intel_crtc);
09246732 9628 __intel_ring_advance(ring);
83d4092b 9629 return 0;
8c9f3aaf
JB
9630}
9631
9632static int intel_gen4_queue_flip(struct drm_device *dev,
9633 struct drm_crtc *crtc,
9634 struct drm_framebuffer *fb,
ed8d1975 9635 struct drm_i915_gem_object *obj,
a4872ba6 9636 struct intel_engine_cs *ring,
ed8d1975 9637 uint32_t flags)
8c9f3aaf
JB
9638{
9639 struct drm_i915_private *dev_priv = dev->dev_private;
9640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9641 uint32_t pf, pipesrc;
9642 int ret;
9643
6d90c952 9644 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9645 if (ret)
4fa62c89 9646 return ret;
8c9f3aaf
JB
9647
9648 /* i965+ uses the linear or tiled offsets from the
9649 * Display Registers (which do not change across a page-flip)
9650 * so we need only reprogram the base address.
9651 */
6d90c952
DV
9652 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9653 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9654 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9655 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9656 obj->tiling_mode);
8c9f3aaf
JB
9657
9658 /* XXX Enabling the panel-fitter across page-flip is so far
9659 * untested on non-native modes, so ignore it for now.
9660 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9661 */
9662 pf = 0;
9663 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9664 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9665
9666 intel_mark_page_flip_active(intel_crtc);
09246732 9667 __intel_ring_advance(ring);
83d4092b 9668 return 0;
8c9f3aaf
JB
9669}
9670
9671static int intel_gen6_queue_flip(struct drm_device *dev,
9672 struct drm_crtc *crtc,
9673 struct drm_framebuffer *fb,
ed8d1975 9674 struct drm_i915_gem_object *obj,
a4872ba6 9675 struct intel_engine_cs *ring,
ed8d1975 9676 uint32_t flags)
8c9f3aaf
JB
9677{
9678 struct drm_i915_private *dev_priv = dev->dev_private;
9679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9680 uint32_t pf, pipesrc;
9681 int ret;
9682
6d90c952 9683 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9684 if (ret)
4fa62c89 9685 return ret;
8c9f3aaf 9686
6d90c952
DV
9687 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9688 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9689 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9690 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9691
dc257cf1
DV
9692 /* Contrary to the suggestions in the documentation,
9693 * "Enable Panel Fitter" does not seem to be required when page
9694 * flipping with a non-native mode, and worse causes a normal
9695 * modeset to fail.
9696 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9697 */
9698 pf = 0;
8c9f3aaf 9699 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9700 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9701
9702 intel_mark_page_flip_active(intel_crtc);
09246732 9703 __intel_ring_advance(ring);
83d4092b 9704 return 0;
8c9f3aaf
JB
9705}
9706
7c9017e5
JB
9707static int intel_gen7_queue_flip(struct drm_device *dev,
9708 struct drm_crtc *crtc,
9709 struct drm_framebuffer *fb,
ed8d1975 9710 struct drm_i915_gem_object *obj,
a4872ba6 9711 struct intel_engine_cs *ring,
ed8d1975 9712 uint32_t flags)
7c9017e5 9713{
7c9017e5 9714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9715 uint32_t plane_bit = 0;
ffe74d75
CW
9716 int len, ret;
9717
eba905b2 9718 switch (intel_crtc->plane) {
cb05d8de
DV
9719 case PLANE_A:
9720 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9721 break;
9722 case PLANE_B:
9723 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9724 break;
9725 case PLANE_C:
9726 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9727 break;
9728 default:
9729 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9730 return -ENODEV;
cb05d8de
DV
9731 }
9732
ffe74d75 9733 len = 4;
f476828a 9734 if (ring->id == RCS) {
ffe74d75 9735 len += 6;
f476828a
DL
9736 /*
9737 * On Gen 8, SRM is now taking an extra dword to accommodate
9738 * 48bits addresses, and we need a NOOP for the batch size to
9739 * stay even.
9740 */
9741 if (IS_GEN8(dev))
9742 len += 2;
9743 }
ffe74d75 9744
f66fab8e
VS
9745 /*
9746 * BSpec MI_DISPLAY_FLIP for IVB:
9747 * "The full packet must be contained within the same cache line."
9748 *
9749 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9750 * cacheline, if we ever start emitting more commands before
9751 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9752 * then do the cacheline alignment, and finally emit the
9753 * MI_DISPLAY_FLIP.
9754 */
9755 ret = intel_ring_cacheline_align(ring);
9756 if (ret)
4fa62c89 9757 return ret;
f66fab8e 9758
ffe74d75 9759 ret = intel_ring_begin(ring, len);
7c9017e5 9760 if (ret)
4fa62c89 9761 return ret;
7c9017e5 9762
ffe74d75
CW
9763 /* Unmask the flip-done completion message. Note that the bspec says that
9764 * we should do this for both the BCS and RCS, and that we must not unmask
9765 * more than one flip event at any time (or ensure that one flip message
9766 * can be sent by waiting for flip-done prior to queueing new flips).
9767 * Experimentation says that BCS works despite DERRMR masking all
9768 * flip-done completion events and that unmasking all planes at once
9769 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9770 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9771 */
9772 if (ring->id == RCS) {
9773 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9774 intel_ring_emit(ring, DERRMR);
9775 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9776 DERRMR_PIPEB_PRI_FLIP_DONE |
9777 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9778 if (IS_GEN8(dev))
9779 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9780 MI_SRM_LRM_GLOBAL_GTT);
9781 else
9782 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9783 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9784 intel_ring_emit(ring, DERRMR);
9785 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9786 if (IS_GEN8(dev)) {
9787 intel_ring_emit(ring, 0);
9788 intel_ring_emit(ring, MI_NOOP);
9789 }
ffe74d75
CW
9790 }
9791
cb05d8de 9792 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9793 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9794 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9795 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9796
9797 intel_mark_page_flip_active(intel_crtc);
09246732 9798 __intel_ring_advance(ring);
83d4092b 9799 return 0;
7c9017e5
JB
9800}
9801
84c33a64
SG
9802static bool use_mmio_flip(struct intel_engine_cs *ring,
9803 struct drm_i915_gem_object *obj)
9804{
9805 /*
9806 * This is not being used for older platforms, because
9807 * non-availability of flip done interrupt forces us to use
9808 * CS flips. Older platforms derive flip done using some clever
9809 * tricks involving the flip_pending status bits and vblank irqs.
9810 * So using MMIO flips there would disrupt this mechanism.
9811 */
9812
8e09bf83
CW
9813 if (ring == NULL)
9814 return true;
9815
84c33a64
SG
9816 if (INTEL_INFO(ring->dev)->gen < 5)
9817 return false;
9818
9819 if (i915.use_mmio_flip < 0)
9820 return false;
9821 else if (i915.use_mmio_flip > 0)
9822 return true;
14bf993e
OM
9823 else if (i915.enable_execlists)
9824 return true;
84c33a64 9825 else
41c52415 9826 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9827}
9828
ff944564
DL
9829static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9830{
9831 struct drm_device *dev = intel_crtc->base.dev;
9832 struct drm_i915_private *dev_priv = dev->dev_private;
9833 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9834 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9835 struct drm_i915_gem_object *obj = intel_fb->obj;
9836 const enum pipe pipe = intel_crtc->pipe;
9837 u32 ctl, stride;
9838
9839 ctl = I915_READ(PLANE_CTL(pipe, 0));
9840 ctl &= ~PLANE_CTL_TILED_MASK;
9841 if (obj->tiling_mode == I915_TILING_X)
9842 ctl |= PLANE_CTL_TILED_X;
9843
9844 /*
9845 * The stride is either expressed as a multiple of 64 bytes chunks for
9846 * linear buffers or in number of tiles for tiled buffers.
9847 */
9848 stride = fb->pitches[0] >> 6;
9849 if (obj->tiling_mode == I915_TILING_X)
9850 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9851
9852 /*
9853 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9854 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9855 */
9856 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9857 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9858
9859 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9860 POSTING_READ(PLANE_SURF(pipe, 0));
9861}
9862
9863static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9864{
9865 struct drm_device *dev = intel_crtc->base.dev;
9866 struct drm_i915_private *dev_priv = dev->dev_private;
9867 struct intel_framebuffer *intel_fb =
9868 to_intel_framebuffer(intel_crtc->base.primary->fb);
9869 struct drm_i915_gem_object *obj = intel_fb->obj;
9870 u32 dspcntr;
9871 u32 reg;
9872
84c33a64
SG
9873 reg = DSPCNTR(intel_crtc->plane);
9874 dspcntr = I915_READ(reg);
9875
c5d97472
DL
9876 if (obj->tiling_mode != I915_TILING_NONE)
9877 dspcntr |= DISPPLANE_TILED;
9878 else
9879 dspcntr &= ~DISPPLANE_TILED;
9880
84c33a64
SG
9881 I915_WRITE(reg, dspcntr);
9882
9883 I915_WRITE(DSPSURF(intel_crtc->plane),
9884 intel_crtc->unpin_work->gtt_offset);
9885 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9886
ff944564
DL
9887}
9888
9889/*
9890 * XXX: This is the temporary way to update the plane registers until we get
9891 * around to using the usual plane update functions for MMIO flips
9892 */
9893static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9894{
9895 struct drm_device *dev = intel_crtc->base.dev;
9896 bool atomic_update;
9897 u32 start_vbl_count;
9898
9899 intel_mark_page_flip_active(intel_crtc);
9900
9901 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9902
9903 if (INTEL_INFO(dev)->gen >= 9)
9904 skl_do_mmio_flip(intel_crtc);
9905 else
9906 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9907 ilk_do_mmio_flip(intel_crtc);
9908
9362c7c5
ACO
9909 if (atomic_update)
9910 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9911}
9912
9362c7c5 9913static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9914{
cc8c4cc2 9915 struct intel_crtc *crtc =
9362c7c5 9916 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9917 struct intel_mmio_flip *mmio_flip;
84c33a64 9918
cc8c4cc2
JH
9919 mmio_flip = &crtc->mmio_flip;
9920 if (mmio_flip->req)
9c654818
JH
9921 WARN_ON(__i915_wait_request(mmio_flip->req,
9922 crtc->reset_counter,
9923 false, NULL, NULL) != 0);
84c33a64 9924
cc8c4cc2
JH
9925 intel_do_mmio_flip(crtc);
9926 if (mmio_flip->req) {
9927 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9928 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9929 mutex_unlock(&crtc->base.dev->struct_mutex);
9930 }
84c33a64
SG
9931}
9932
9933static int intel_queue_mmio_flip(struct drm_device *dev,
9934 struct drm_crtc *crtc,
9935 struct drm_framebuffer *fb,
9936 struct drm_i915_gem_object *obj,
9937 struct intel_engine_cs *ring,
9938 uint32_t flags)
9939{
84c33a64 9940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9941
cc8c4cc2
JH
9942 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9943 obj->last_write_req);
536f5b5e
ACO
9944
9945 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9946
84c33a64
SG
9947 return 0;
9948}
9949
8c9f3aaf
JB
9950static int intel_default_queue_flip(struct drm_device *dev,
9951 struct drm_crtc *crtc,
9952 struct drm_framebuffer *fb,
ed8d1975 9953 struct drm_i915_gem_object *obj,
a4872ba6 9954 struct intel_engine_cs *ring,
ed8d1975 9955 uint32_t flags)
8c9f3aaf
JB
9956{
9957 return -ENODEV;
9958}
9959
d6bbafa1
CW
9960static bool __intel_pageflip_stall_check(struct drm_device *dev,
9961 struct drm_crtc *crtc)
9962{
9963 struct drm_i915_private *dev_priv = dev->dev_private;
9964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9965 struct intel_unpin_work *work = intel_crtc->unpin_work;
9966 u32 addr;
9967
9968 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9969 return true;
9970
9971 if (!work->enable_stall_check)
9972 return false;
9973
9974 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9975 if (work->flip_queued_req &&
9976 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9977 return false;
9978
1e3feefd 9979 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
9980 }
9981
1e3feefd 9982 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
9983 return false;
9984
9985 /* Potential stall - if we see that the flip has happened,
9986 * assume a missed interrupt. */
9987 if (INTEL_INFO(dev)->gen >= 4)
9988 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9989 else
9990 addr = I915_READ(DSPADDR(intel_crtc->plane));
9991
9992 /* There is a potential issue here with a false positive after a flip
9993 * to the same address. We could address this by checking for a
9994 * non-incrementing frame counter.
9995 */
9996 return addr == work->gtt_offset;
9997}
9998
9999void intel_check_page_flip(struct drm_device *dev, int pipe)
10000{
10001 struct drm_i915_private *dev_priv = dev->dev_private;
10002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a 10004
6c51d46f 10005 WARN_ON(!in_interrupt());
d6bbafa1
CW
10006
10007 if (crtc == NULL)
10008 return;
10009
f326038a 10010 spin_lock(&dev->event_lock);
d6bbafa1
CW
10011 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10012 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
1e3feefd
DV
10013 intel_crtc->unpin_work->flip_queued_vblank,
10014 drm_vblank_count(dev, pipe));
d6bbafa1
CW
10015 page_flip_completed(intel_crtc);
10016 }
f326038a 10017 spin_unlock(&dev->event_lock);
d6bbafa1
CW
10018}
10019
6b95a207
KH
10020static int intel_crtc_page_flip(struct drm_crtc *crtc,
10021 struct drm_framebuffer *fb,
ed8d1975
KP
10022 struct drm_pending_vblank_event *event,
10023 uint32_t page_flip_flags)
6b95a207
KH
10024{
10025 struct drm_device *dev = crtc->dev;
10026 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 10027 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 10028 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 10029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 10030 struct drm_plane *primary = crtc->primary;
a071fa00 10031 enum pipe pipe = intel_crtc->pipe;
6b95a207 10032 struct intel_unpin_work *work;
a4872ba6 10033 struct intel_engine_cs *ring;
52e68630 10034 int ret;
6b95a207 10035
2ff8fde1
MR
10036 /*
10037 * drm_mode_page_flip_ioctl() should already catch this, but double
10038 * check to be safe. In the future we may enable pageflipping from
10039 * a disabled primary plane.
10040 */
10041 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10042 return -EBUSY;
10043
e6a595d2 10044 /* Can't change pixel format via MI display flips. */
f4510a27 10045 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10046 return -EINVAL;
10047
10048 /*
10049 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10050 * Note that pitch changes could also affect these register.
10051 */
10052 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10053 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10054 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10055 return -EINVAL;
10056
f900db47
CW
10057 if (i915_terminally_wedged(&dev_priv->gpu_error))
10058 goto out_hang;
10059
b14c5679 10060 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10061 if (work == NULL)
10062 return -ENOMEM;
10063
6b95a207 10064 work->event = event;
b4a98e57 10065 work->crtc = crtc;
ab8d6675 10066 work->old_fb = old_fb;
6b95a207
KH
10067 INIT_WORK(&work->work, intel_unpin_work_fn);
10068
87b6b101 10069 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10070 if (ret)
10071 goto free_work;
10072
6b95a207 10073 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10074 spin_lock_irq(&dev->event_lock);
6b95a207 10075 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10076 /* Before declaring the flip queue wedged, check if
10077 * the hardware completed the operation behind our backs.
10078 */
10079 if (__intel_pageflip_stall_check(dev, crtc)) {
10080 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10081 page_flip_completed(intel_crtc);
10082 } else {
10083 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10084 spin_unlock_irq(&dev->event_lock);
468f0b44 10085
d6bbafa1
CW
10086 drm_crtc_vblank_put(crtc);
10087 kfree(work);
10088 return -EBUSY;
10089 }
6b95a207
KH
10090 }
10091 intel_crtc->unpin_work = work;
5e2d7afc 10092 spin_unlock_irq(&dev->event_lock);
6b95a207 10093
b4a98e57
CW
10094 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10095 flush_workqueue(dev_priv->wq);
10096
75dfca80 10097 /* Reference the objects for the scheduled work. */
ab8d6675 10098 drm_framebuffer_reference(work->old_fb);
05394f39 10099 drm_gem_object_reference(&obj->base);
6b95a207 10100
f4510a27 10101 crtc->primary->fb = fb;
afd65eb4 10102 update_state_fb(crtc->primary);
1ed1f968 10103
e1f99ce6 10104 work->pending_flip_obj = obj;
e1f99ce6 10105
89ed88ba
CW
10106 ret = i915_mutex_lock_interruptible(dev);
10107 if (ret)
10108 goto cleanup;
10109
b4a98e57 10110 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10111 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10112
75f7f3ec 10113 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10114 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10115
4fa62c89
VS
10116 if (IS_VALLEYVIEW(dev)) {
10117 ring = &dev_priv->ring[BCS];
ab8d6675 10118 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
10119 /* vlv: DISPLAY_FLIP fails to change tiling */
10120 ring = NULL;
48bf5b2d 10121 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 10122 ring = &dev_priv->ring[BCS];
4fa62c89 10123 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 10124 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
10125 if (ring == NULL || ring->id != RCS)
10126 ring = &dev_priv->ring[BCS];
10127 } else {
10128 ring = &dev_priv->ring[RCS];
10129 }
10130
82bc3b2d
TU
10131 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10132 crtc->primary->state, ring);
8c9f3aaf
JB
10133 if (ret)
10134 goto cleanup_pending;
6b95a207 10135
121920fa
TU
10136 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10137 + intel_crtc->dspaddr_offset;
4fa62c89 10138
d6bbafa1 10139 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10140 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10141 page_flip_flags);
d6bbafa1
CW
10142 if (ret)
10143 goto cleanup_unpin;
10144
f06cc1b9
JH
10145 i915_gem_request_assign(&work->flip_queued_req,
10146 obj->last_write_req);
d6bbafa1 10147 } else {
84c33a64 10148 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10149 page_flip_flags);
10150 if (ret)
10151 goto cleanup_unpin;
10152
f06cc1b9
JH
10153 i915_gem_request_assign(&work->flip_queued_req,
10154 intel_ring_get_request(ring));
d6bbafa1
CW
10155 }
10156
1e3feefd 10157 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 10158 work->enable_stall_check = true;
4fa62c89 10159
ab8d6675 10160 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
10161 INTEL_FRONTBUFFER_PRIMARY(pipe));
10162
7ff0ebcc 10163 intel_fbc_disable(dev);
f99d7069 10164 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10165 mutex_unlock(&dev->struct_mutex);
10166
e5510fac
JB
10167 trace_i915_flip_request(intel_crtc->plane, obj);
10168
6b95a207 10169 return 0;
96b099fd 10170
4fa62c89 10171cleanup_unpin:
82bc3b2d 10172 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 10173cleanup_pending:
b4a98e57 10174 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
10175 mutex_unlock(&dev->struct_mutex);
10176cleanup:
f4510a27 10177 crtc->primary->fb = old_fb;
afd65eb4 10178 update_state_fb(crtc->primary);
89ed88ba
CW
10179
10180 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 10181 drm_framebuffer_unreference(work->old_fb);
96b099fd 10182
5e2d7afc 10183 spin_lock_irq(&dev->event_lock);
96b099fd 10184 intel_crtc->unpin_work = NULL;
5e2d7afc 10185 spin_unlock_irq(&dev->event_lock);
96b099fd 10186
87b6b101 10187 drm_crtc_vblank_put(crtc);
7317c75e 10188free_work:
96b099fd
CW
10189 kfree(work);
10190
f900db47
CW
10191 if (ret == -EIO) {
10192out_hang:
53a366b9 10193 ret = intel_plane_restore(primary);
f0d3dad3 10194 if (ret == 0 && event) {
5e2d7afc 10195 spin_lock_irq(&dev->event_lock);
a071fa00 10196 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 10197 spin_unlock_irq(&dev->event_lock);
f0d3dad3 10198 }
f900db47 10199 }
96b099fd 10200 return ret;
6b95a207
KH
10201}
10202
f6e5b160 10203static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10204 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10205 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
10206 .atomic_begin = intel_begin_crtc_commit,
10207 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
10208};
10209
9a935856
DV
10210/**
10211 * intel_modeset_update_staged_output_state
10212 *
10213 * Updates the staged output configuration state, e.g. after we've read out the
10214 * current hw state.
10215 */
10216static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10217{
7668851f 10218 struct intel_crtc *crtc;
9a935856
DV
10219 struct intel_encoder *encoder;
10220 struct intel_connector *connector;
f6e5b160 10221
3a3371ff 10222 for_each_intel_connector(dev, connector) {
9a935856
DV
10223 connector->new_encoder =
10224 to_intel_encoder(connector->base.encoder);
10225 }
f6e5b160 10226
b2784e15 10227 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10228 encoder->new_crtc =
10229 to_intel_crtc(encoder->base.crtc);
10230 }
7668851f 10231
d3fcc808 10232 for_each_intel_crtc(dev, crtc) {
83d65738 10233 crtc->new_enabled = crtc->base.state->enable;
7bd0a8e7
VS
10234
10235 if (crtc->new_enabled)
6e3c9717 10236 crtc->new_config = crtc->config;
7bd0a8e7
VS
10237 else
10238 crtc->new_config = NULL;
7668851f 10239 }
f6e5b160
CW
10240}
10241
d29b2f9d
ACO
10242/* Transitional helper to copy current connector/encoder state to
10243 * connector->state. This is needed so that code that is partially
10244 * converted to atomic does the right thing.
10245 */
10246static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10247{
10248 struct intel_connector *connector;
10249
10250 for_each_intel_connector(dev, connector) {
10251 if (connector->base.encoder) {
10252 connector->base.state->best_encoder =
10253 connector->base.encoder;
10254 connector->base.state->crtc =
10255 connector->base.encoder->crtc;
10256 } else {
10257 connector->base.state->best_encoder = NULL;
10258 connector->base.state->crtc = NULL;
10259 }
10260 }
10261}
10262
9a935856
DV
10263/**
10264 * intel_modeset_commit_output_state
10265 *
10266 * This function copies the stage display pipe configuration to the real one.
10267 */
10268static void intel_modeset_commit_output_state(struct drm_device *dev)
10269{
7668851f 10270 struct intel_crtc *crtc;
9a935856
DV
10271 struct intel_encoder *encoder;
10272 struct intel_connector *connector;
f6e5b160 10273
3a3371ff 10274 for_each_intel_connector(dev, connector) {
9a935856
DV
10275 connector->base.encoder = &connector->new_encoder->base;
10276 }
f6e5b160 10277
b2784e15 10278 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10279 encoder->base.crtc = &encoder->new_crtc->base;
10280 }
7668851f 10281
d3fcc808 10282 for_each_intel_crtc(dev, crtc) {
83d65738 10283 crtc->base.state->enable = crtc->new_enabled;
7668851f
VS
10284 crtc->base.enabled = crtc->new_enabled;
10285 }
d29b2f9d
ACO
10286
10287 intel_modeset_update_connector_atomic_state(dev);
9a935856
DV
10288}
10289
050f7aeb 10290static void
eba905b2 10291connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10292 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10293{
10294 int bpp = pipe_config->pipe_bpp;
10295
10296 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10297 connector->base.base.id,
c23cc417 10298 connector->base.name);
050f7aeb
DV
10299
10300 /* Don't use an invalid EDID bpc value */
10301 if (connector->base.display_info.bpc &&
10302 connector->base.display_info.bpc * 3 < bpp) {
10303 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10304 bpp, connector->base.display_info.bpc*3);
10305 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10306 }
10307
10308 /* Clamp bpp to 8 on screens without EDID 1.4 */
10309 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10310 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10311 bpp);
10312 pipe_config->pipe_bpp = 24;
10313 }
10314}
10315
4e53c2e0 10316static int
050f7aeb
DV
10317compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10318 struct drm_framebuffer *fb,
5cec258b 10319 struct intel_crtc_state *pipe_config)
4e53c2e0 10320{
050f7aeb
DV
10321 struct drm_device *dev = crtc->base.dev;
10322 struct intel_connector *connector;
4e53c2e0
DV
10323 int bpp;
10324
d42264b1
DV
10325 switch (fb->pixel_format) {
10326 case DRM_FORMAT_C8:
4e53c2e0
DV
10327 bpp = 8*3; /* since we go through a colormap */
10328 break;
d42264b1
DV
10329 case DRM_FORMAT_XRGB1555:
10330 case DRM_FORMAT_ARGB1555:
10331 /* checked in intel_framebuffer_init already */
10332 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10333 return -EINVAL;
10334 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10335 bpp = 6*3; /* min is 18bpp */
10336 break;
d42264b1
DV
10337 case DRM_FORMAT_XBGR8888:
10338 case DRM_FORMAT_ABGR8888:
10339 /* checked in intel_framebuffer_init already */
10340 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10341 return -EINVAL;
10342 case DRM_FORMAT_XRGB8888:
10343 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10344 bpp = 8*3;
10345 break;
d42264b1
DV
10346 case DRM_FORMAT_XRGB2101010:
10347 case DRM_FORMAT_ARGB2101010:
10348 case DRM_FORMAT_XBGR2101010:
10349 case DRM_FORMAT_ABGR2101010:
10350 /* checked in intel_framebuffer_init already */
10351 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10352 return -EINVAL;
4e53c2e0
DV
10353 bpp = 10*3;
10354 break;
baba133a 10355 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10356 default:
10357 DRM_DEBUG_KMS("unsupported depth\n");
10358 return -EINVAL;
10359 }
10360
4e53c2e0
DV
10361 pipe_config->pipe_bpp = bpp;
10362
10363 /* Clamp display bpp to EDID value */
3a3371ff 10364 for_each_intel_connector(dev, connector) {
1b829e05
DV
10365 if (!connector->new_encoder ||
10366 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10367 continue;
10368
050f7aeb 10369 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10370 }
10371
10372 return bpp;
10373}
10374
644db711
DV
10375static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10376{
10377 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10378 "type: 0x%x flags: 0x%x\n",
1342830c 10379 mode->crtc_clock,
644db711
DV
10380 mode->crtc_hdisplay, mode->crtc_hsync_start,
10381 mode->crtc_hsync_end, mode->crtc_htotal,
10382 mode->crtc_vdisplay, mode->crtc_vsync_start,
10383 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10384}
10385
c0b03411 10386static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10387 struct intel_crtc_state *pipe_config,
c0b03411
DV
10388 const char *context)
10389{
10390 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10391 context, pipe_name(crtc->pipe));
10392
10393 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10394 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10395 pipe_config->pipe_bpp, pipe_config->dither);
10396 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10397 pipe_config->has_pch_encoder,
10398 pipe_config->fdi_lanes,
10399 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10400 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10401 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10402 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10403 pipe_config->has_dp_encoder,
10404 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10405 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10406 pipe_config->dp_m_n.tu);
b95af8be
VK
10407
10408 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10409 pipe_config->has_dp_encoder,
10410 pipe_config->dp_m2_n2.gmch_m,
10411 pipe_config->dp_m2_n2.gmch_n,
10412 pipe_config->dp_m2_n2.link_m,
10413 pipe_config->dp_m2_n2.link_n,
10414 pipe_config->dp_m2_n2.tu);
10415
55072d19
DV
10416 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10417 pipe_config->has_audio,
10418 pipe_config->has_infoframe);
10419
c0b03411 10420 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10421 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10422 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10423 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10424 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10425 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10426 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10427 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10428 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10429 pipe_config->gmch_pfit.control,
10430 pipe_config->gmch_pfit.pgm_ratios,
10431 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10432 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10433 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10434 pipe_config->pch_pfit.size,
10435 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10436 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10437 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10438}
10439
bc079e8b
VS
10440static bool encoders_cloneable(const struct intel_encoder *a,
10441 const struct intel_encoder *b)
accfc0c5 10442{
bc079e8b
VS
10443 /* masks could be asymmetric, so check both ways */
10444 return a == b || (a->cloneable & (1 << b->type) &&
10445 b->cloneable & (1 << a->type));
10446}
10447
10448static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10449 struct intel_encoder *encoder)
10450{
10451 struct drm_device *dev = crtc->base.dev;
10452 struct intel_encoder *source_encoder;
10453
b2784e15 10454 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10455 if (source_encoder->new_crtc != crtc)
10456 continue;
10457
10458 if (!encoders_cloneable(encoder, source_encoder))
10459 return false;
10460 }
10461
10462 return true;
10463}
10464
10465static bool check_encoder_cloning(struct intel_crtc *crtc)
10466{
10467 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10468 struct intel_encoder *encoder;
10469
b2784e15 10470 for_each_intel_encoder(dev, encoder) {
bc079e8b 10471 if (encoder->new_crtc != crtc)
accfc0c5
DV
10472 continue;
10473
bc079e8b
VS
10474 if (!check_single_encoder_cloning(crtc, encoder))
10475 return false;
accfc0c5
DV
10476 }
10477
bc079e8b 10478 return true;
accfc0c5
DV
10479}
10480
00f0b378
VS
10481static bool check_digital_port_conflicts(struct drm_device *dev)
10482{
10483 struct intel_connector *connector;
10484 unsigned int used_ports = 0;
10485
10486 /*
10487 * Walk the connector list instead of the encoder
10488 * list to detect the problem on ddi platforms
10489 * where there's just one encoder per digital port.
10490 */
3a3371ff 10491 for_each_intel_connector(dev, connector) {
00f0b378
VS
10492 struct intel_encoder *encoder = connector->new_encoder;
10493
10494 if (!encoder)
10495 continue;
10496
10497 WARN_ON(!encoder->new_crtc);
10498
10499 switch (encoder->type) {
10500 unsigned int port_mask;
10501 case INTEL_OUTPUT_UNKNOWN:
10502 if (WARN_ON(!HAS_DDI(dev)))
10503 break;
10504 case INTEL_OUTPUT_DISPLAYPORT:
10505 case INTEL_OUTPUT_HDMI:
10506 case INTEL_OUTPUT_EDP:
10507 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10508
10509 /* the same port mustn't appear more than once */
10510 if (used_ports & port_mask)
10511 return false;
10512
10513 used_ports |= port_mask;
10514 default:
10515 break;
10516 }
10517 }
10518
10519 return true;
10520}
10521
83a57153
ACO
10522static void
10523clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10524{
10525 struct drm_crtc_state tmp_state;
10526
10527 /* Clear only the intel specific part of the crtc state */
10528 tmp_state = crtc_state->base;
10529 memset(crtc_state, 0, sizeof *crtc_state);
10530 crtc_state->base = tmp_state;
10531}
10532
5cec258b 10533static struct intel_crtc_state *
b8cecdf5 10534intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10535 struct drm_framebuffer *fb,
83a57153
ACO
10536 struct drm_display_mode *mode,
10537 struct drm_atomic_state *state)
ee7b9f93 10538{
7758a113 10539 struct drm_device *dev = crtc->dev;
7758a113 10540 struct intel_encoder *encoder;
5cec258b 10541 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10542 int plane_bpp, ret = -EINVAL;
10543 bool retry = true;
ee7b9f93 10544
bc079e8b 10545 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10546 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10547 return ERR_PTR(-EINVAL);
10548 }
10549
00f0b378
VS
10550 if (!check_digital_port_conflicts(dev)) {
10551 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10552 return ERR_PTR(-EINVAL);
10553 }
10554
83a57153
ACO
10555 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10556 if (IS_ERR(pipe_config))
10557 return pipe_config;
10558
10559 clear_intel_crtc_state(pipe_config);
7758a113 10560
07878248 10561 pipe_config->base.crtc = crtc;
2d112de7
ACO
10562 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10563 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10564
e143a21c
DV
10565 pipe_config->cpu_transcoder =
10566 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10567 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10568
2960bc9c
ID
10569 /*
10570 * Sanitize sync polarity flags based on requested ones. If neither
10571 * positive or negative polarity is requested, treat this as meaning
10572 * negative polarity.
10573 */
2d112de7 10574 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10575 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10576 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10577
2d112de7 10578 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10579 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10580 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10581
050f7aeb
DV
10582 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10583 * plane pixel format and any sink constraints into account. Returns the
10584 * source plane bpp so that dithering can be selected on mismatches
10585 * after encoders and crtc also have had their say. */
10586 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10587 fb, pipe_config);
4e53c2e0
DV
10588 if (plane_bpp < 0)
10589 goto fail;
10590
e41a56be
VS
10591 /*
10592 * Determine the real pipe dimensions. Note that stereo modes can
10593 * increase the actual pipe size due to the frame doubling and
10594 * insertion of additional space for blanks between the frame. This
10595 * is stored in the crtc timings. We use the requested mode to do this
10596 * computation to clearly distinguish it from the adjusted mode, which
10597 * can be changed by the connectors in the below retry loop.
10598 */
2d112de7 10599 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10600 &pipe_config->pipe_src_w,
10601 &pipe_config->pipe_src_h);
e41a56be 10602
e29c22c0 10603encoder_retry:
ef1b460d 10604 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10605 pipe_config->port_clock = 0;
ef1b460d 10606 pipe_config->pixel_multiplier = 1;
ff9a6750 10607
135c81b8 10608 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10609 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10610 CRTC_STEREO_DOUBLE);
135c81b8 10611
7758a113
DV
10612 /* Pass our mode to the connectors and the CRTC to give them a chance to
10613 * adjust it according to limitations or connector properties, and also
10614 * a chance to reject the mode entirely.
47f1c6c9 10615 */
b2784e15 10616 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10617
7758a113
DV
10618 if (&encoder->new_crtc->base != crtc)
10619 continue;
7ae89233 10620
efea6e8e
DV
10621 if (!(encoder->compute_config(encoder, pipe_config))) {
10622 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10623 goto fail;
10624 }
ee7b9f93 10625 }
47f1c6c9 10626
ff9a6750
DV
10627 /* Set default port clock if not overwritten by the encoder. Needs to be
10628 * done afterwards in case the encoder adjusts the mode. */
10629 if (!pipe_config->port_clock)
2d112de7 10630 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10631 * pipe_config->pixel_multiplier;
ff9a6750 10632
a43f6e0f 10633 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10634 if (ret < 0) {
7758a113
DV
10635 DRM_DEBUG_KMS("CRTC fixup failed\n");
10636 goto fail;
ee7b9f93 10637 }
e29c22c0
DV
10638
10639 if (ret == RETRY) {
10640 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10641 ret = -EINVAL;
10642 goto fail;
10643 }
10644
10645 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10646 retry = false;
10647 goto encoder_retry;
10648 }
10649
4e53c2e0
DV
10650 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10651 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10652 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10653
b8cecdf5 10654 return pipe_config;
7758a113 10655fail:
e29c22c0 10656 return ERR_PTR(ret);
ee7b9f93 10657}
47f1c6c9 10658
e2e1ed41
DV
10659/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10660 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10661static void
10662intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10663 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10664{
10665 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10666 struct drm_device *dev = crtc->dev;
10667 struct intel_encoder *encoder;
10668 struct intel_connector *connector;
10669 struct drm_crtc *tmp_crtc;
79e53945 10670
e2e1ed41 10671 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10672
e2e1ed41
DV
10673 /* Check which crtcs have changed outputs connected to them, these need
10674 * to be part of the prepare_pipes mask. We don't (yet) support global
10675 * modeset across multiple crtcs, so modeset_pipes will only have one
10676 * bit set at most. */
3a3371ff 10677 for_each_intel_connector(dev, connector) {
e2e1ed41
DV
10678 if (connector->base.encoder == &connector->new_encoder->base)
10679 continue;
79e53945 10680
e2e1ed41
DV
10681 if (connector->base.encoder) {
10682 tmp_crtc = connector->base.encoder->crtc;
10683
10684 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10685 }
10686
10687 if (connector->new_encoder)
10688 *prepare_pipes |=
10689 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10690 }
10691
b2784e15 10692 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10693 if (encoder->base.crtc == &encoder->new_crtc->base)
10694 continue;
10695
10696 if (encoder->base.crtc) {
10697 tmp_crtc = encoder->base.crtc;
10698
10699 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10700 }
10701
10702 if (encoder->new_crtc)
10703 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10704 }
10705
7668851f 10706 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10707 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10708 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
e2e1ed41 10709 continue;
7e7d76c3 10710
7668851f 10711 if (!intel_crtc->new_enabled)
e2e1ed41 10712 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10713 else
10714 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10715 }
10716
e2e1ed41
DV
10717
10718 /* set_mode is also used to update properties on life display pipes. */
10719 intel_crtc = to_intel_crtc(crtc);
7668851f 10720 if (intel_crtc->new_enabled)
e2e1ed41
DV
10721 *prepare_pipes |= 1 << intel_crtc->pipe;
10722
b6c5164d
DV
10723 /*
10724 * For simplicity do a full modeset on any pipe where the output routing
10725 * changed. We could be more clever, but that would require us to be
10726 * more careful with calling the relevant encoder->mode_set functions.
10727 */
e2e1ed41
DV
10728 if (*prepare_pipes)
10729 *modeset_pipes = *prepare_pipes;
10730
10731 /* ... and mask these out. */
10732 *modeset_pipes &= ~(*disable_pipes);
10733 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10734
10735 /*
10736 * HACK: We don't (yet) fully support global modesets. intel_set_config
10737 * obies this rule, but the modeset restore mode of
10738 * intel_modeset_setup_hw_state does not.
10739 */
10740 *modeset_pipes &= 1 << intel_crtc->pipe;
10741 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10742
10743 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10744 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10745}
79e53945 10746
ea9d758d 10747static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10748{
ea9d758d 10749 struct drm_encoder *encoder;
f6e5b160 10750 struct drm_device *dev = crtc->dev;
f6e5b160 10751
ea9d758d
DV
10752 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10753 if (encoder->crtc == crtc)
10754 return true;
10755
10756 return false;
10757}
10758
10759static void
10760intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10761{
ba41c0de 10762 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10763 struct intel_encoder *intel_encoder;
10764 struct intel_crtc *intel_crtc;
10765 struct drm_connector *connector;
10766
ba41c0de
DV
10767 intel_shared_dpll_commit(dev_priv);
10768
b2784e15 10769 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10770 if (!intel_encoder->base.crtc)
10771 continue;
10772
10773 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10774
10775 if (prepare_pipes & (1 << intel_crtc->pipe))
10776 intel_encoder->connectors_active = false;
10777 }
10778
10779 intel_modeset_commit_output_state(dev);
10780
7668851f 10781 /* Double check state. */
d3fcc808 10782 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10783 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10784 WARN_ON(intel_crtc->new_config &&
6e3c9717 10785 intel_crtc->new_config != intel_crtc->config);
83d65738 10786 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
ea9d758d
DV
10787 }
10788
10789 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10790 if (!connector->encoder || !connector->encoder->crtc)
10791 continue;
10792
10793 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10794
10795 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10796 struct drm_property *dpms_property =
10797 dev->mode_config.dpms_property;
10798
ea9d758d 10799 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10800 drm_object_property_set_value(&connector->base,
68d34720
DV
10801 dpms_property,
10802 DRM_MODE_DPMS_ON);
ea9d758d
DV
10803
10804 intel_encoder = to_intel_encoder(connector->encoder);
10805 intel_encoder->connectors_active = true;
10806 }
10807 }
10808
10809}
10810
3bd26263 10811static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10812{
3bd26263 10813 int diff;
f1f644dc
JB
10814
10815 if (clock1 == clock2)
10816 return true;
10817
10818 if (!clock1 || !clock2)
10819 return false;
10820
10821 diff = abs(clock1 - clock2);
10822
10823 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10824 return true;
10825
10826 return false;
10827}
10828
25c5b266
DV
10829#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10830 list_for_each_entry((intel_crtc), \
10831 &(dev)->mode_config.crtc_list, \
10832 base.head) \
0973f18f 10833 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10834
0e8ffe1b 10835static bool
2fa2fe9a 10836intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10837 struct intel_crtc_state *current_config,
10838 struct intel_crtc_state *pipe_config)
0e8ffe1b 10839{
66e985c0
DV
10840#define PIPE_CONF_CHECK_X(name) \
10841 if (current_config->name != pipe_config->name) { \
10842 DRM_ERROR("mismatch in " #name " " \
10843 "(expected 0x%08x, found 0x%08x)\n", \
10844 current_config->name, \
10845 pipe_config->name); \
10846 return false; \
10847 }
10848
08a24034
DV
10849#define PIPE_CONF_CHECK_I(name) \
10850 if (current_config->name != pipe_config->name) { \
10851 DRM_ERROR("mismatch in " #name " " \
10852 "(expected %i, found %i)\n", \
10853 current_config->name, \
10854 pipe_config->name); \
10855 return false; \
88adfff1
DV
10856 }
10857
b95af8be
VK
10858/* This is required for BDW+ where there is only one set of registers for
10859 * switching between high and low RR.
10860 * This macro can be used whenever a comparison has to be made between one
10861 * hw state and multiple sw state variables.
10862 */
10863#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10864 if ((current_config->name != pipe_config->name) && \
10865 (current_config->alt_name != pipe_config->name)) { \
10866 DRM_ERROR("mismatch in " #name " " \
10867 "(expected %i or %i, found %i)\n", \
10868 current_config->name, \
10869 current_config->alt_name, \
10870 pipe_config->name); \
10871 return false; \
10872 }
10873
1bd1bd80
DV
10874#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10875 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10876 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10877 "(expected %i, found %i)\n", \
10878 current_config->name & (mask), \
10879 pipe_config->name & (mask)); \
10880 return false; \
10881 }
10882
5e550656
VS
10883#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10884 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10885 DRM_ERROR("mismatch in " #name " " \
10886 "(expected %i, found %i)\n", \
10887 current_config->name, \
10888 pipe_config->name); \
10889 return false; \
10890 }
10891
bb760063
DV
10892#define PIPE_CONF_QUIRK(quirk) \
10893 ((current_config->quirks | pipe_config->quirks) & (quirk))
10894
eccb140b
DV
10895 PIPE_CONF_CHECK_I(cpu_transcoder);
10896
08a24034
DV
10897 PIPE_CONF_CHECK_I(has_pch_encoder);
10898 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10899 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10900 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10901 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10902 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10903 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10904
eb14cb74 10905 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10906
10907 if (INTEL_INFO(dev)->gen < 8) {
10908 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10909 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10910 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10911 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10912 PIPE_CONF_CHECK_I(dp_m_n.tu);
10913
10914 if (current_config->has_drrs) {
10915 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10916 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10917 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10918 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10919 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10920 }
10921 } else {
10922 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10923 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10924 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10925 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10926 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10927 }
eb14cb74 10928
2d112de7
ACO
10929 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10930 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10931 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10932 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10933 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10934 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10935
2d112de7
ACO
10936 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10937 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10938 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10939 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10940 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10941 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10942
c93f54cf 10943 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10944 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10945 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10946 IS_VALLEYVIEW(dev))
10947 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10948 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10949
9ed109a7
DV
10950 PIPE_CONF_CHECK_I(has_audio);
10951
2d112de7 10952 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10953 DRM_MODE_FLAG_INTERLACE);
10954
bb760063 10955 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10956 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10957 DRM_MODE_FLAG_PHSYNC);
2d112de7 10958 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10959 DRM_MODE_FLAG_NHSYNC);
2d112de7 10960 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10961 DRM_MODE_FLAG_PVSYNC);
2d112de7 10962 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10963 DRM_MODE_FLAG_NVSYNC);
10964 }
045ac3b5 10965
37327abd
VS
10966 PIPE_CONF_CHECK_I(pipe_src_w);
10967 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10968
9953599b
DV
10969 /*
10970 * FIXME: BIOS likes to set up a cloned config with lvds+external
10971 * screen. Since we don't yet re-compute the pipe config when moving
10972 * just the lvds port away to another pipe the sw tracking won't match.
10973 *
10974 * Proper atomic modesets with recomputed global state will fix this.
10975 * Until then just don't check gmch state for inherited modes.
10976 */
10977 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10978 PIPE_CONF_CHECK_I(gmch_pfit.control);
10979 /* pfit ratios are autocomputed by the hw on gen4+ */
10980 if (INTEL_INFO(dev)->gen < 4)
10981 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10982 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10983 }
10984
fd4daa9c
CW
10985 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10986 if (current_config->pch_pfit.enabled) {
10987 PIPE_CONF_CHECK_I(pch_pfit.pos);
10988 PIPE_CONF_CHECK_I(pch_pfit.size);
10989 }
2fa2fe9a 10990
e59150dc
JB
10991 /* BDW+ don't expose a synchronous way to read the state */
10992 if (IS_HASWELL(dev))
10993 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10994
282740f7
VS
10995 PIPE_CONF_CHECK_I(double_wide);
10996
26804afd
DV
10997 PIPE_CONF_CHECK_X(ddi_pll_sel);
10998
c0d43d62 10999 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 11000 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 11001 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
11002 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11003 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 11004 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
11005 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11006 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11007 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 11008
42571aef
VS
11009 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11010 PIPE_CONF_CHECK_I(pipe_bpp);
11011
2d112de7 11012 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 11013 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 11014
66e985c0 11015#undef PIPE_CONF_CHECK_X
08a24034 11016#undef PIPE_CONF_CHECK_I
b95af8be 11017#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 11018#undef PIPE_CONF_CHECK_FLAGS
5e550656 11019#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 11020#undef PIPE_CONF_QUIRK
88adfff1 11021
0e8ffe1b
DV
11022 return true;
11023}
11024
08db6652
DL
11025static void check_wm_state(struct drm_device *dev)
11026{
11027 struct drm_i915_private *dev_priv = dev->dev_private;
11028 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11029 struct intel_crtc *intel_crtc;
11030 int plane;
11031
11032 if (INTEL_INFO(dev)->gen < 9)
11033 return;
11034
11035 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11036 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11037
11038 for_each_intel_crtc(dev, intel_crtc) {
11039 struct skl_ddb_entry *hw_entry, *sw_entry;
11040 const enum pipe pipe = intel_crtc->pipe;
11041
11042 if (!intel_crtc->active)
11043 continue;
11044
11045 /* planes */
dd740780 11046 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
11047 hw_entry = &hw_ddb.plane[pipe][plane];
11048 sw_entry = &sw_ddb->plane[pipe][plane];
11049
11050 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11051 continue;
11052
11053 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11054 "(expected (%u,%u), found (%u,%u))\n",
11055 pipe_name(pipe), plane + 1,
11056 sw_entry->start, sw_entry->end,
11057 hw_entry->start, hw_entry->end);
11058 }
11059
11060 /* cursor */
11061 hw_entry = &hw_ddb.cursor[pipe];
11062 sw_entry = &sw_ddb->cursor[pipe];
11063
11064 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11065 continue;
11066
11067 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11068 "(expected (%u,%u), found (%u,%u))\n",
11069 pipe_name(pipe),
11070 sw_entry->start, sw_entry->end,
11071 hw_entry->start, hw_entry->end);
11072 }
11073}
11074
91d1b4bd
DV
11075static void
11076check_connector_state(struct drm_device *dev)
8af6cf88 11077{
8af6cf88
DV
11078 struct intel_connector *connector;
11079
3a3371ff 11080 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11081 /* This also checks the encoder/connector hw state with the
11082 * ->get_hw_state callbacks. */
11083 intel_connector_check_state(connector);
11084
e2c719b7 11085 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11086 "connector's staged encoder doesn't match current encoder\n");
11087 }
91d1b4bd
DV
11088}
11089
11090static void
11091check_encoder_state(struct drm_device *dev)
11092{
11093 struct intel_encoder *encoder;
11094 struct intel_connector *connector;
8af6cf88 11095
b2784e15 11096 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11097 bool enabled = false;
11098 bool active = false;
11099 enum pipe pipe, tracked_pipe;
11100
11101 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11102 encoder->base.base.id,
8e329a03 11103 encoder->base.name);
8af6cf88 11104
e2c719b7 11105 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11106 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11107 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11108 "encoder's active_connectors set, but no crtc\n");
11109
3a3371ff 11110 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11111 if (connector->base.encoder != &encoder->base)
11112 continue;
11113 enabled = true;
11114 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11115 active = true;
11116 }
0e32b39c
DA
11117 /*
11118 * for MST connectors if we unplug the connector is gone
11119 * away but the encoder is still connected to a crtc
11120 * until a modeset happens in response to the hotplug.
11121 */
11122 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11123 continue;
11124
e2c719b7 11125 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
11126 "encoder's enabled state mismatch "
11127 "(expected %i, found %i)\n",
11128 !!encoder->base.crtc, enabled);
e2c719b7 11129 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
11130 "active encoder with no crtc\n");
11131
e2c719b7 11132 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
11133 "encoder's computed active state doesn't match tracked active state "
11134 "(expected %i, found %i)\n", active, encoder->connectors_active);
11135
11136 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 11137 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
11138 "encoder's hw state doesn't match sw tracking "
11139 "(expected %i, found %i)\n",
11140 encoder->connectors_active, active);
11141
11142 if (!encoder->base.crtc)
11143 continue;
11144
11145 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 11146 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
11147 "active encoder's pipe doesn't match"
11148 "(expected %i, found %i)\n",
11149 tracked_pipe, pipe);
11150
11151 }
91d1b4bd
DV
11152}
11153
11154static void
11155check_crtc_state(struct drm_device *dev)
11156{
fbee40df 11157 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11158 struct intel_crtc *crtc;
11159 struct intel_encoder *encoder;
5cec258b 11160 struct intel_crtc_state pipe_config;
8af6cf88 11161
d3fcc808 11162 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
11163 bool enabled = false;
11164 bool active = false;
11165
045ac3b5
JB
11166 memset(&pipe_config, 0, sizeof(pipe_config));
11167
8af6cf88
DV
11168 DRM_DEBUG_KMS("[CRTC:%d]\n",
11169 crtc->base.base.id);
11170
83d65738 11171 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
11172 "active crtc, but not enabled in sw tracking\n");
11173
b2784e15 11174 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11175 if (encoder->base.crtc != &crtc->base)
11176 continue;
11177 enabled = true;
11178 if (encoder->connectors_active)
11179 active = true;
11180 }
6c49f241 11181
e2c719b7 11182 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
11183 "crtc's computed active state doesn't match tracked active state "
11184 "(expected %i, found %i)\n", active, crtc->active);
83d65738 11185 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 11186 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
11187 "(expected %i, found %i)\n", enabled,
11188 crtc->base.state->enable);
8af6cf88 11189
0e8ffe1b
DV
11190 active = dev_priv->display.get_pipe_config(crtc,
11191 &pipe_config);
d62cf62a 11192
b6b5d049
VS
11193 /* hw state is inconsistent with the pipe quirk */
11194 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11195 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
11196 active = crtc->active;
11197
b2784e15 11198 for_each_intel_encoder(dev, encoder) {
3eaba51c 11199 enum pipe pipe;
6c49f241
DV
11200 if (encoder->base.crtc != &crtc->base)
11201 continue;
1d37b689 11202 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11203 encoder->get_config(encoder, &pipe_config);
11204 }
11205
e2c719b7 11206 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
11207 "crtc active state doesn't match with hw state "
11208 "(expected %i, found %i)\n", crtc->active, active);
11209
c0b03411 11210 if (active &&
6e3c9717 11211 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 11212 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
11213 intel_dump_pipe_config(crtc, &pipe_config,
11214 "[hw state]");
6e3c9717 11215 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
11216 "[sw state]");
11217 }
8af6cf88
DV
11218 }
11219}
11220
91d1b4bd
DV
11221static void
11222check_shared_dpll_state(struct drm_device *dev)
11223{
fbee40df 11224 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11225 struct intel_crtc *crtc;
11226 struct intel_dpll_hw_state dpll_hw_state;
11227 int i;
5358901f
DV
11228
11229 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11230 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11231 int enabled_crtcs = 0, active_crtcs = 0;
11232 bool active;
11233
11234 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11235
11236 DRM_DEBUG_KMS("%s\n", pll->name);
11237
11238 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11239
e2c719b7 11240 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 11241 "more active pll users than references: %i vs %i\n",
3e369b76 11242 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 11243 I915_STATE_WARN(pll->active && !pll->on,
5358901f 11244 "pll in active use but not on in sw tracking\n");
e2c719b7 11245 I915_STATE_WARN(pll->on && !pll->active,
35c95375 11246 "pll in on but not on in use in sw tracking\n");
e2c719b7 11247 I915_STATE_WARN(pll->on != active,
5358901f
DV
11248 "pll on state mismatch (expected %i, found %i)\n",
11249 pll->on, active);
11250
d3fcc808 11251 for_each_intel_crtc(dev, crtc) {
83d65738 11252 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
11253 enabled_crtcs++;
11254 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11255 active_crtcs++;
11256 }
e2c719b7 11257 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
11258 "pll active crtcs mismatch (expected %i, found %i)\n",
11259 pll->active, active_crtcs);
e2c719b7 11260 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 11261 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 11262 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 11263
e2c719b7 11264 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
11265 sizeof(dpll_hw_state)),
11266 "pll hw state mismatch\n");
5358901f 11267 }
8af6cf88
DV
11268}
11269
91d1b4bd
DV
11270void
11271intel_modeset_check_state(struct drm_device *dev)
11272{
08db6652 11273 check_wm_state(dev);
91d1b4bd
DV
11274 check_connector_state(dev);
11275 check_encoder_state(dev);
11276 check_crtc_state(dev);
11277 check_shared_dpll_state(dev);
11278}
11279
5cec258b 11280void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
11281 int dotclock)
11282{
11283 /*
11284 * FDI already provided one idea for the dotclock.
11285 * Yell if the encoder disagrees.
11286 */
2d112de7 11287 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11288 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11289 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11290}
11291
80715b2f
VS
11292static void update_scanline_offset(struct intel_crtc *crtc)
11293{
11294 struct drm_device *dev = crtc->base.dev;
11295
11296 /*
11297 * The scanline counter increments at the leading edge of hsync.
11298 *
11299 * On most platforms it starts counting from vtotal-1 on the
11300 * first active line. That means the scanline counter value is
11301 * always one less than what we would expect. Ie. just after
11302 * start of vblank, which also occurs at start of hsync (on the
11303 * last active line), the scanline counter will read vblank_start-1.
11304 *
11305 * On gen2 the scanline counter starts counting from 1 instead
11306 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11307 * to keep the value positive), instead of adding one.
11308 *
11309 * On HSW+ the behaviour of the scanline counter depends on the output
11310 * type. For DP ports it behaves like most other platforms, but on HDMI
11311 * there's an extra 1 line difference. So we need to add two instead of
11312 * one to the value.
11313 */
11314 if (IS_GEN2(dev)) {
6e3c9717 11315 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
11316 int vtotal;
11317
11318 vtotal = mode->crtc_vtotal;
11319 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11320 vtotal /= 2;
11321
11322 crtc->scanline_offset = vtotal - 1;
11323 } else if (HAS_DDI(dev) &&
409ee761 11324 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
11325 crtc->scanline_offset = 2;
11326 } else
11327 crtc->scanline_offset = 1;
11328}
11329
5cec258b 11330static struct intel_crtc_state *
7f27126e
JB
11331intel_modeset_compute_config(struct drm_crtc *crtc,
11332 struct drm_display_mode *mode,
11333 struct drm_framebuffer *fb,
83a57153 11334 struct drm_atomic_state *state,
7f27126e
JB
11335 unsigned *modeset_pipes,
11336 unsigned *prepare_pipes,
11337 unsigned *disable_pipes)
11338{
db7542dd 11339 struct drm_device *dev = crtc->dev;
5cec258b 11340 struct intel_crtc_state *pipe_config = NULL;
db7542dd 11341 struct intel_crtc *intel_crtc;
7f27126e
JB
11342
11343 intel_modeset_affected_pipes(crtc, modeset_pipes,
11344 prepare_pipes, disable_pipes);
11345
db7542dd
ACO
11346 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11347 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11348 if (IS_ERR(pipe_config))
11349 return pipe_config;
11350
11351 pipe_config->base.enable = false;
11352 }
7f27126e
JB
11353
11354 /*
11355 * Note this needs changes when we start tracking multiple modes
11356 * and crtcs. At that point we'll need to compute the whole config
11357 * (i.e. one pipe_config for each crtc) rather than just the one
11358 * for this crtc.
11359 */
db7542dd
ACO
11360 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11361 /* FIXME: For now we still expect modeset_pipes has at most
11362 * one bit set. */
11363 if (WARN_ON(&intel_crtc->base != crtc))
11364 continue;
83a57153 11365
db7542dd
ACO
11366 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11367 if (IS_ERR(pipe_config))
11368 return pipe_config;
7f27126e 11369
db7542dd
ACO
11370 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11371 "[modeset]");
11372 }
11373
11374 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
7f27126e
JB
11375}
11376
ed6739ef
ACO
11377static int __intel_set_mode_setup_plls(struct drm_device *dev,
11378 unsigned modeset_pipes,
11379 unsigned disable_pipes)
11380{
11381 struct drm_i915_private *dev_priv = to_i915(dev);
11382 unsigned clear_pipes = modeset_pipes | disable_pipes;
11383 struct intel_crtc *intel_crtc;
11384 int ret = 0;
11385
11386 if (!dev_priv->display.crtc_compute_clock)
11387 return 0;
11388
11389 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11390 if (ret)
11391 goto done;
11392
11393 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11394 struct intel_crtc_state *state = intel_crtc->new_config;
11395 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11396 state);
11397 if (ret) {
11398 intel_shared_dpll_abort_config(dev_priv);
11399 goto done;
11400 }
11401 }
11402
11403done:
11404 return ret;
11405}
11406
f30da187
DV
11407static int __intel_set_mode(struct drm_crtc *crtc,
11408 struct drm_display_mode *mode,
7f27126e 11409 int x, int y, struct drm_framebuffer *fb,
5cec258b 11410 struct intel_crtc_state *pipe_config,
7f27126e
JB
11411 unsigned modeset_pipes,
11412 unsigned prepare_pipes,
11413 unsigned disable_pipes)
a6778b3c
DV
11414{
11415 struct drm_device *dev = crtc->dev;
fbee40df 11416 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11417 struct drm_display_mode *saved_mode;
83a57153 11418 struct intel_crtc_state *crtc_state_copy = NULL;
25c5b266 11419 struct intel_crtc *intel_crtc;
c0c36b94 11420 int ret = 0;
a6778b3c 11421
4b4b9238 11422 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11423 if (!saved_mode)
11424 return -ENOMEM;
a6778b3c 11425
83a57153
ACO
11426 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11427 if (!crtc_state_copy) {
11428 ret = -ENOMEM;
11429 goto done;
11430 }
11431
3ac18232 11432 *saved_mode = crtc->mode;
a6778b3c 11433
b9950a13
VS
11434 if (modeset_pipes)
11435 to_intel_crtc(crtc)->new_config = pipe_config;
11436
30a970c6
JB
11437 /*
11438 * See if the config requires any additional preparation, e.g.
11439 * to adjust global state with pipes off. We need to do this
11440 * here so we can get the modeset_pipe updated config for the new
11441 * mode set on this crtc. For other crtcs we need to use the
11442 * adjusted_mode bits in the crtc directly.
11443 */
c164f833 11444 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11445 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11446
c164f833
VS
11447 /* may have added more to prepare_pipes than we should */
11448 prepare_pipes &= ~disable_pipes;
11449 }
11450
ed6739ef
ACO
11451 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11452 if (ret)
11453 goto done;
8bd31e67 11454
460da916
DV
11455 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11456 intel_crtc_disable(&intel_crtc->base);
11457
ea9d758d 11458 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
83d65738 11459 if (intel_crtc->base.state->enable)
ea9d758d
DV
11460 dev_priv->display.crtc_disable(&intel_crtc->base);
11461 }
a6778b3c 11462
6c4c86f5
DV
11463 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11464 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11465 *
11466 * Note we'll need to fix this up when we start tracking multiple
11467 * pipes; here we assume a single modeset_pipe and only track the
11468 * single crtc and mode.
f6e5b160 11469 */
b8cecdf5 11470 if (modeset_pipes) {
25c5b266 11471 crtc->mode = *mode;
b8cecdf5
DV
11472 /* mode_set/enable/disable functions rely on a correct pipe
11473 * config. */
f5de6e07 11474 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11475
11476 /*
11477 * Calculate and store various constants which
11478 * are later needed by vblank and swap-completion
11479 * timestamping. They are derived from true hwmode.
11480 */
11481 drm_calc_timestamping_constants(crtc,
2d112de7 11482 &pipe_config->base.adjusted_mode);
b8cecdf5 11483 }
7758a113 11484
ea9d758d
DV
11485 /* Only after disabling all output pipelines that will be changed can we
11486 * update the the output configuration. */
11487 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11488
50f6e502 11489 modeset_update_crtc_power_domains(dev);
47fab737 11490
a6778b3c
DV
11491 /* Set up the DPLL and any encoders state that needs to adjust or depend
11492 * on the DPLL.
f6e5b160 11493 */
25c5b266 11494 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11495 struct drm_plane *primary = intel_crtc->base.primary;
11496 int vdisplay, hdisplay;
4c10794f 11497
455a6808
GP
11498 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11499 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11500 fb, 0, 0,
11501 hdisplay, vdisplay,
11502 x << 16, y << 16,
11503 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11504 }
11505
11506 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11507 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11508 update_scanline_offset(intel_crtc);
11509
25c5b266 11510 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11511 }
a6778b3c 11512
a6778b3c
DV
11513 /* FIXME: add subpixel order */
11514done:
83d65738 11515 if (ret && crtc->state->enable)
3ac18232 11516 crtc->mode = *saved_mode;
a6778b3c 11517
83a57153
ACO
11518 if (ret == 0 && pipe_config) {
11519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11520
11521 /* The pipe_config will be freed with the atomic state, so
11522 * make a copy. */
11523 memcpy(crtc_state_copy, intel_crtc->config,
11524 sizeof *crtc_state_copy);
11525 intel_crtc->config = crtc_state_copy;
11526 intel_crtc->base.state = &crtc_state_copy->base;
11527
11528 if (modeset_pipes)
11529 intel_crtc->new_config = intel_crtc->config;
11530 } else {
11531 kfree(crtc_state_copy);
11532 }
11533
3ac18232 11534 kfree(saved_mode);
a6778b3c 11535 return ret;
f6e5b160
CW
11536}
11537
7f27126e
JB
11538static int intel_set_mode_pipes(struct drm_crtc *crtc,
11539 struct drm_display_mode *mode,
11540 int x, int y, struct drm_framebuffer *fb,
5cec258b 11541 struct intel_crtc_state *pipe_config,
7f27126e
JB
11542 unsigned modeset_pipes,
11543 unsigned prepare_pipes,
11544 unsigned disable_pipes)
f30da187
DV
11545{
11546 int ret;
11547
7f27126e
JB
11548 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11549 prepare_pipes, disable_pipes);
f30da187
DV
11550
11551 if (ret == 0)
11552 intel_modeset_check_state(crtc->dev);
11553
11554 return ret;
11555}
11556
7f27126e
JB
11557static int intel_set_mode(struct drm_crtc *crtc,
11558 struct drm_display_mode *mode,
83a57153
ACO
11559 int x, int y, struct drm_framebuffer *fb,
11560 struct drm_atomic_state *state)
7f27126e 11561{
5cec258b 11562 struct intel_crtc_state *pipe_config;
7f27126e 11563 unsigned modeset_pipes, prepare_pipes, disable_pipes;
83a57153 11564 int ret = 0;
7f27126e 11565
83a57153 11566 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
7f27126e
JB
11567 &modeset_pipes,
11568 &prepare_pipes,
11569 &disable_pipes);
11570
83a57153
ACO
11571 if (IS_ERR(pipe_config)) {
11572 ret = PTR_ERR(pipe_config);
11573 goto out;
11574 }
11575
11576 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11577 modeset_pipes, prepare_pipes,
11578 disable_pipes);
11579 if (ret)
11580 goto out;
7f27126e 11581
83a57153
ACO
11582out:
11583 return ret;
7f27126e
JB
11584}
11585
c0c36b94
CW
11586void intel_crtc_restore_mode(struct drm_crtc *crtc)
11587{
83a57153
ACO
11588 struct drm_device *dev = crtc->dev;
11589 struct drm_atomic_state *state;
11590 struct intel_encoder *encoder;
11591 struct intel_connector *connector;
11592 struct drm_connector_state *connector_state;
11593
11594 state = drm_atomic_state_alloc(dev);
11595 if (!state) {
11596 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11597 crtc->base.id);
11598 return;
11599 }
11600
11601 state->acquire_ctx = dev->mode_config.acquire_ctx;
11602
11603 /* The force restore path in the HW readout code relies on the staged
11604 * config still keeping the user requested config while the actual
11605 * state has been overwritten by the configuration read from HW. We
11606 * need to copy the staged config to the atomic state, otherwise the
11607 * mode set will just reapply the state the HW is already in. */
11608 for_each_intel_encoder(dev, encoder) {
11609 if (&encoder->new_crtc->base != crtc)
11610 continue;
11611
11612 for_each_intel_connector(dev, connector) {
11613 if (connector->new_encoder != encoder)
11614 continue;
11615
11616 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11617 if (IS_ERR(connector_state)) {
11618 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11619 connector->base.base.id,
11620 connector->base.name,
11621 PTR_ERR(connector_state));
11622 continue;
11623 }
11624
11625 connector_state->crtc = crtc;
11626 connector_state->best_encoder = &encoder->base;
11627 }
11628 }
11629
11630 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11631 state);
11632
11633 drm_atomic_state_free(state);
c0c36b94
CW
11634}
11635
25c5b266
DV
11636#undef for_each_intel_crtc_masked
11637
d9e55608
DV
11638static void intel_set_config_free(struct intel_set_config *config)
11639{
11640 if (!config)
11641 return;
11642
1aa4b628
DV
11643 kfree(config->save_connector_encoders);
11644 kfree(config->save_encoder_crtcs);
7668851f 11645 kfree(config->save_crtc_enabled);
d9e55608
DV
11646 kfree(config);
11647}
11648
85f9eb71
DV
11649static int intel_set_config_save_state(struct drm_device *dev,
11650 struct intel_set_config *config)
11651{
7668851f 11652 struct drm_crtc *crtc;
85f9eb71
DV
11653 struct drm_encoder *encoder;
11654 struct drm_connector *connector;
11655 int count;
11656
7668851f
VS
11657 config->save_crtc_enabled =
11658 kcalloc(dev->mode_config.num_crtc,
11659 sizeof(bool), GFP_KERNEL);
11660 if (!config->save_crtc_enabled)
11661 return -ENOMEM;
11662
1aa4b628
DV
11663 config->save_encoder_crtcs =
11664 kcalloc(dev->mode_config.num_encoder,
11665 sizeof(struct drm_crtc *), GFP_KERNEL);
11666 if (!config->save_encoder_crtcs)
85f9eb71
DV
11667 return -ENOMEM;
11668
1aa4b628
DV
11669 config->save_connector_encoders =
11670 kcalloc(dev->mode_config.num_connector,
11671 sizeof(struct drm_encoder *), GFP_KERNEL);
11672 if (!config->save_connector_encoders)
85f9eb71
DV
11673 return -ENOMEM;
11674
11675 /* Copy data. Note that driver private data is not affected.
11676 * Should anything bad happen only the expected state is
11677 * restored, not the drivers personal bookkeeping.
11678 */
7668851f 11679 count = 0;
70e1e0ec 11680 for_each_crtc(dev, crtc) {
83d65738 11681 config->save_crtc_enabled[count++] = crtc->state->enable;
7668851f
VS
11682 }
11683
85f9eb71
DV
11684 count = 0;
11685 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11686 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11687 }
11688
11689 count = 0;
11690 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11691 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11692 }
11693
11694 return 0;
11695}
11696
11697static void intel_set_config_restore_state(struct drm_device *dev,
11698 struct intel_set_config *config)
11699{
7668851f 11700 struct intel_crtc *crtc;
9a935856
DV
11701 struct intel_encoder *encoder;
11702 struct intel_connector *connector;
85f9eb71
DV
11703 int count;
11704
7668851f 11705 count = 0;
d3fcc808 11706 for_each_intel_crtc(dev, crtc) {
7668851f 11707 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11708
11709 if (crtc->new_enabled)
6e3c9717 11710 crtc->new_config = crtc->config;
7bd0a8e7
VS
11711 else
11712 crtc->new_config = NULL;
7668851f
VS
11713 }
11714
85f9eb71 11715 count = 0;
b2784e15 11716 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11717 encoder->new_crtc =
11718 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11719 }
11720
11721 count = 0;
3a3371ff 11722 for_each_intel_connector(dev, connector) {
9a935856
DV
11723 connector->new_encoder =
11724 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11725 }
11726}
11727
e3de42b6 11728static bool
2e57f47d 11729is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11730{
11731 int i;
11732
2e57f47d
CW
11733 if (set->num_connectors == 0)
11734 return false;
11735
11736 if (WARN_ON(set->connectors == NULL))
11737 return false;
11738
11739 for (i = 0; i < set->num_connectors; i++)
11740 if (set->connectors[i]->encoder &&
11741 set->connectors[i]->encoder->crtc == set->crtc &&
11742 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11743 return true;
11744
11745 return false;
11746}
11747
5e2b584e
DV
11748static void
11749intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11750 struct intel_set_config *config)
11751{
11752
11753 /* We should be able to check here if the fb has the same properties
11754 * and then just flip_or_move it */
2e57f47d
CW
11755 if (is_crtc_connector_off(set)) {
11756 config->mode_changed = true;
f4510a27 11757 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11758 /*
11759 * If we have no fb, we can only flip as long as the crtc is
11760 * active, otherwise we need a full mode set. The crtc may
11761 * be active if we've only disabled the primary plane, or
11762 * in fastboot situations.
11763 */
f4510a27 11764 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11765 struct intel_crtc *intel_crtc =
11766 to_intel_crtc(set->crtc);
11767
3b150f08 11768 if (intel_crtc->active) {
319d9827
JB
11769 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11770 config->fb_changed = true;
11771 } else {
11772 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11773 config->mode_changed = true;
11774 }
5e2b584e
DV
11775 } else if (set->fb == NULL) {
11776 config->mode_changed = true;
72f4901e 11777 } else if (set->fb->pixel_format !=
f4510a27 11778 set->crtc->primary->fb->pixel_format) {
5e2b584e 11779 config->mode_changed = true;
e3de42b6 11780 } else {
5e2b584e 11781 config->fb_changed = true;
e3de42b6 11782 }
5e2b584e
DV
11783 }
11784
835c5873 11785 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11786 config->fb_changed = true;
11787
11788 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11789 DRM_DEBUG_KMS("modes are different, full mode set\n");
11790 drm_mode_debug_printmodeline(&set->crtc->mode);
11791 drm_mode_debug_printmodeline(set->mode);
11792 config->mode_changed = true;
11793 }
a1d95703
CW
11794
11795 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11796 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11797}
11798
2e431051 11799static int
9a935856
DV
11800intel_modeset_stage_output_state(struct drm_device *dev,
11801 struct drm_mode_set *set,
944b0c76
ACO
11802 struct intel_set_config *config,
11803 struct drm_atomic_state *state)
50f56119 11804{
9a935856 11805 struct intel_connector *connector;
944b0c76 11806 struct drm_connector_state *connector_state;
9a935856 11807 struct intel_encoder *encoder;
7668851f 11808 struct intel_crtc *crtc;
f3f08572 11809 int ro;
50f56119 11810
9abdda74 11811 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11812 * of connectors. For paranoia, double-check this. */
11813 WARN_ON(!set->fb && (set->num_connectors != 0));
11814 WARN_ON(set->fb && (set->num_connectors == 0));
11815
3a3371ff 11816 for_each_intel_connector(dev, connector) {
9a935856
DV
11817 /* Otherwise traverse passed in connector list and get encoders
11818 * for them. */
50f56119 11819 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11820 if (set->connectors[ro] == &connector->base) {
0e32b39c 11821 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11822 break;
11823 }
11824 }
11825
9a935856
DV
11826 /* If we disable the crtc, disable all its connectors. Also, if
11827 * the connector is on the changing crtc but not on the new
11828 * connector list, disable it. */
11829 if ((!set->fb || ro == set->num_connectors) &&
11830 connector->base.encoder &&
11831 connector->base.encoder->crtc == set->crtc) {
11832 connector->new_encoder = NULL;
11833
11834 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11835 connector->base.base.id,
c23cc417 11836 connector->base.name);
9a935856
DV
11837 }
11838
11839
11840 if (&connector->new_encoder->base != connector->base.encoder) {
10634189
ACO
11841 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11842 connector->base.base.id,
11843 connector->base.name);
5e2b584e 11844 config->mode_changed = true;
50f56119
DV
11845 }
11846 }
9a935856 11847 /* connector->new_encoder is now updated for all connectors. */
50f56119 11848
9a935856 11849 /* Update crtc of enabled connectors. */
3a3371ff 11850 for_each_intel_connector(dev, connector) {
7668851f
VS
11851 struct drm_crtc *new_crtc;
11852
9a935856 11853 if (!connector->new_encoder)
50f56119
DV
11854 continue;
11855
9a935856 11856 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11857
11858 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11859 if (set->connectors[ro] == &connector->base)
50f56119
DV
11860 new_crtc = set->crtc;
11861 }
11862
11863 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11864 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11865 new_crtc)) {
5e2b584e 11866 return -EINVAL;
50f56119 11867 }
0e32b39c 11868 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856 11869
944b0c76
ACO
11870 connector_state =
11871 drm_atomic_get_connector_state(state, &connector->base);
11872 if (IS_ERR(connector_state))
11873 return PTR_ERR(connector_state);
11874
11875 connector_state->crtc = new_crtc;
11876 connector_state->best_encoder = &connector->new_encoder->base;
11877
9a935856
DV
11878 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11879 connector->base.base.id,
c23cc417 11880 connector->base.name,
9a935856
DV
11881 new_crtc->base.id);
11882 }
11883
11884 /* Check for any encoders that needs to be disabled. */
b2784e15 11885 for_each_intel_encoder(dev, encoder) {
5a65f358 11886 int num_connectors = 0;
3a3371ff 11887 for_each_intel_connector(dev, connector) {
9a935856
DV
11888 if (connector->new_encoder == encoder) {
11889 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11890 num_connectors++;
9a935856
DV
11891 }
11892 }
5a65f358
PZ
11893
11894 if (num_connectors == 0)
11895 encoder->new_crtc = NULL;
11896 else if (num_connectors > 1)
11897 return -EINVAL;
11898
9a935856
DV
11899 /* Only now check for crtc changes so we don't miss encoders
11900 * that will be disabled. */
11901 if (&encoder->new_crtc->base != encoder->base.crtc) {
10634189
ACO
11902 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11903 encoder->base.base.id,
11904 encoder->base.name);
5e2b584e 11905 config->mode_changed = true;
50f56119
DV
11906 }
11907 }
9a935856 11908 /* Now we've also updated encoder->new_crtc for all encoders. */
3a3371ff 11909 for_each_intel_connector(dev, connector) {
944b0c76
ACO
11910 connector_state =
11911 drm_atomic_get_connector_state(state, &connector->base);
11912
11913 if (connector->new_encoder) {
0e32b39c
DA
11914 if (connector->new_encoder != connector->encoder)
11915 connector->encoder = connector->new_encoder;
944b0c76
ACO
11916 } else {
11917 connector_state->crtc = NULL;
11918 }
0e32b39c 11919 }
d3fcc808 11920 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11921 crtc->new_enabled = false;
11922
b2784e15 11923 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11924 if (encoder->new_crtc == crtc) {
11925 crtc->new_enabled = true;
11926 break;
11927 }
11928 }
11929
83d65738 11930 if (crtc->new_enabled != crtc->base.state->enable) {
10634189
ACO
11931 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11932 crtc->base.base.id,
7668851f
VS
11933 crtc->new_enabled ? "en" : "dis");
11934 config->mode_changed = true;
11935 }
7bd0a8e7
VS
11936
11937 if (crtc->new_enabled)
6e3c9717 11938 crtc->new_config = crtc->config;
7bd0a8e7
VS
11939 else
11940 crtc->new_config = NULL;
7668851f
VS
11941 }
11942
2e431051
DV
11943 return 0;
11944}
11945
7d00a1f5
VS
11946static void disable_crtc_nofb(struct intel_crtc *crtc)
11947{
11948 struct drm_device *dev = crtc->base.dev;
11949 struct intel_encoder *encoder;
11950 struct intel_connector *connector;
11951
11952 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11953 pipe_name(crtc->pipe));
11954
3a3371ff 11955 for_each_intel_connector(dev, connector) {
7d00a1f5
VS
11956 if (connector->new_encoder &&
11957 connector->new_encoder->new_crtc == crtc)
11958 connector->new_encoder = NULL;
11959 }
11960
b2784e15 11961 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11962 if (encoder->new_crtc == crtc)
11963 encoder->new_crtc = NULL;
11964 }
11965
11966 crtc->new_enabled = false;
7bd0a8e7 11967 crtc->new_config = NULL;
7d00a1f5
VS
11968}
11969
2e431051
DV
11970static int intel_crtc_set_config(struct drm_mode_set *set)
11971{
11972 struct drm_device *dev;
2e431051 11973 struct drm_mode_set save_set;
83a57153 11974 struct drm_atomic_state *state = NULL;
2e431051 11975 struct intel_set_config *config;
5cec258b 11976 struct intel_crtc_state *pipe_config;
50f52756 11977 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11978 int ret;
2e431051 11979
8d3e375e
DV
11980 BUG_ON(!set);
11981 BUG_ON(!set->crtc);
11982 BUG_ON(!set->crtc->helper_private);
2e431051 11983
7e53f3a4
DV
11984 /* Enforce sane interface api - has been abused by the fb helper. */
11985 BUG_ON(!set->mode && set->fb);
11986 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11987
2e431051
DV
11988 if (set->fb) {
11989 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11990 set->crtc->base.id, set->fb->base.id,
11991 (int)set->num_connectors, set->x, set->y);
11992 } else {
11993 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11994 }
11995
11996 dev = set->crtc->dev;
11997
11998 ret = -ENOMEM;
11999 config = kzalloc(sizeof(*config), GFP_KERNEL);
12000 if (!config)
12001 goto out_config;
12002
12003 ret = intel_set_config_save_state(dev, config);
12004 if (ret)
12005 goto out_config;
12006
12007 save_set.crtc = set->crtc;
12008 save_set.mode = &set->crtc->mode;
12009 save_set.x = set->crtc->x;
12010 save_set.y = set->crtc->y;
f4510a27 12011 save_set.fb = set->crtc->primary->fb;
2e431051
DV
12012
12013 /* Compute whether we need a full modeset, only an fb base update or no
12014 * change at all. In the future we might also check whether only the
12015 * mode changed, e.g. for LVDS where we only change the panel fitter in
12016 * such cases. */
12017 intel_set_config_compute_mode_changes(set, config);
12018
83a57153
ACO
12019 state = drm_atomic_state_alloc(dev);
12020 if (!state) {
12021 ret = -ENOMEM;
12022 goto out_config;
12023 }
12024
12025 state->acquire_ctx = dev->mode_config.acquire_ctx;
12026
944b0c76 12027 ret = intel_modeset_stage_output_state(dev, set, config, state);
2e431051
DV
12028 if (ret)
12029 goto fail;
12030
50f52756 12031 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
83a57153 12032 set->fb, state,
50f52756
JB
12033 &modeset_pipes,
12034 &prepare_pipes,
12035 &disable_pipes);
20664591 12036 if (IS_ERR(pipe_config)) {
6ac0483b 12037 ret = PTR_ERR(pipe_config);
50f52756 12038 goto fail;
20664591 12039 } else if (pipe_config) {
b9950a13 12040 if (pipe_config->has_audio !=
6e3c9717 12041 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
12042 config->mode_changed = true;
12043
af15d2ce
JB
12044 /*
12045 * Note we have an issue here with infoframes: current code
12046 * only updates them on the full mode set path per hw
12047 * requirements. So here we should be checking for any
12048 * required changes and forcing a mode set.
12049 */
20664591 12050 }
50f52756 12051
1f9954d0
JB
12052 intel_update_pipe_size(to_intel_crtc(set->crtc));
12053
5e2b584e 12054 if (config->mode_changed) {
50f52756
JB
12055 ret = intel_set_mode_pipes(set->crtc, set->mode,
12056 set->x, set->y, set->fb, pipe_config,
12057 modeset_pipes, prepare_pipes,
12058 disable_pipes);
5e2b584e 12059 } else if (config->fb_changed) {
3b150f08 12060 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
12061 struct drm_plane *primary = set->crtc->primary;
12062 int vdisplay, hdisplay;
3b150f08 12063
455a6808
GP
12064 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12065 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12066 0, 0, hdisplay, vdisplay,
12067 set->x << 16, set->y << 16,
12068 hdisplay << 16, vdisplay << 16);
3b150f08
MR
12069
12070 /*
12071 * We need to make sure the primary plane is re-enabled if it
12072 * has previously been turned off.
12073 */
12074 if (!intel_crtc->primary_enabled && ret == 0) {
12075 WARN_ON(!intel_crtc->active);
fdd508a6 12076 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
12077 }
12078
7ca51a3a
JB
12079 /*
12080 * In the fastboot case this may be our only check of the
12081 * state after boot. It would be better to only do it on
12082 * the first update, but we don't have a nice way of doing that
12083 * (and really, set_config isn't used much for high freq page
12084 * flipping, so increasing its cost here shouldn't be a big
12085 * deal).
12086 */
d330a953 12087 if (i915.fastboot && ret == 0)
7ca51a3a 12088 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12089 }
12090
2d05eae1 12091 if (ret) {
bf67dfeb
DV
12092 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12093 set->crtc->base.id, ret);
50f56119 12094fail:
2d05eae1 12095 intel_set_config_restore_state(dev, config);
50f56119 12096
83a57153
ACO
12097 drm_atomic_state_clear(state);
12098
7d00a1f5
VS
12099 /*
12100 * HACK: if the pipe was on, but we didn't have a framebuffer,
12101 * force the pipe off to avoid oopsing in the modeset code
12102 * due to fb==NULL. This should only happen during boot since
12103 * we don't yet reconstruct the FB from the hardware state.
12104 */
12105 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12106 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12107
2d05eae1
CW
12108 /* Try to restore the config */
12109 if (config->mode_changed &&
12110 intel_set_mode(save_set.crtc, save_set.mode,
83a57153
ACO
12111 save_set.x, save_set.y, save_set.fb,
12112 state))
2d05eae1
CW
12113 DRM_ERROR("failed to restore config after modeset failure\n");
12114 }
50f56119 12115
d9e55608 12116out_config:
83a57153
ACO
12117 if (state)
12118 drm_atomic_state_free(state);
12119
d9e55608 12120 intel_set_config_free(config);
50f56119
DV
12121 return ret;
12122}
f6e5b160
CW
12123
12124static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12125 .gamma_set = intel_crtc_gamma_set,
50f56119 12126 .set_config = intel_crtc_set_config,
f6e5b160
CW
12127 .destroy = intel_crtc_destroy,
12128 .page_flip = intel_crtc_page_flip,
1356837e
MR
12129 .atomic_duplicate_state = intel_crtc_duplicate_state,
12130 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12131};
12132
5358901f
DV
12133static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12134 struct intel_shared_dpll *pll,
12135 struct intel_dpll_hw_state *hw_state)
ee7b9f93 12136{
5358901f 12137 uint32_t val;
ee7b9f93 12138
f458ebbc 12139 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
12140 return false;
12141
5358901f 12142 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
12143 hw_state->dpll = val;
12144 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12145 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
12146
12147 return val & DPLL_VCO_ENABLE;
12148}
12149
15bdd4cf
DV
12150static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12151 struct intel_shared_dpll *pll)
12152{
3e369b76
ACO
12153 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12154 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
12155}
12156
e7b903d2
DV
12157static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12158 struct intel_shared_dpll *pll)
12159{
e7b903d2 12160 /* PCH refclock must be enabled first */
89eff4be 12161 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 12162
3e369b76 12163 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
12164
12165 /* Wait for the clocks to stabilize. */
12166 POSTING_READ(PCH_DPLL(pll->id));
12167 udelay(150);
12168
12169 /* The pixel multiplier can only be updated once the
12170 * DPLL is enabled and the clocks are stable.
12171 *
12172 * So write it again.
12173 */
3e369b76 12174 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 12175 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12176 udelay(200);
12177}
12178
12179static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12180 struct intel_shared_dpll *pll)
12181{
12182 struct drm_device *dev = dev_priv->dev;
12183 struct intel_crtc *crtc;
e7b903d2
DV
12184
12185 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 12186 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
12187 if (intel_crtc_to_shared_dpll(crtc) == pll)
12188 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
12189 }
12190
15bdd4cf
DV
12191 I915_WRITE(PCH_DPLL(pll->id), 0);
12192 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12193 udelay(200);
12194}
12195
46edb027
DV
12196static char *ibx_pch_dpll_names[] = {
12197 "PCH DPLL A",
12198 "PCH DPLL B",
12199};
12200
7c74ade1 12201static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12202{
e7b903d2 12203 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12204 int i;
12205
7c74ade1 12206 dev_priv->num_shared_dpll = 2;
ee7b9f93 12207
e72f9fbf 12208 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12209 dev_priv->shared_dplls[i].id = i;
12210 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12211 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12212 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12213 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12214 dev_priv->shared_dplls[i].get_hw_state =
12215 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12216 }
12217}
12218
7c74ade1
DV
12219static void intel_shared_dpll_init(struct drm_device *dev)
12220{
e7b903d2 12221 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12222
9cd86933
DV
12223 if (HAS_DDI(dev))
12224 intel_ddi_pll_init(dev);
12225 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12226 ibx_pch_dpll_init(dev);
12227 else
12228 dev_priv->num_shared_dpll = 0;
12229
12230 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12231}
12232
1fc0a8f7
TU
12233/**
12234 * intel_wm_need_update - Check whether watermarks need updating
12235 * @plane: drm plane
12236 * @state: new plane state
12237 *
12238 * Check current plane state versus the new one to determine whether
12239 * watermarks need to be recalculated.
12240 *
12241 * Returns true or false.
12242 */
12243bool intel_wm_need_update(struct drm_plane *plane,
12244 struct drm_plane_state *state)
12245{
12246 /* Update watermarks on tiling changes. */
12247 if (!plane->state->fb || !state->fb ||
12248 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12249 plane->state->rotation != state->rotation)
12250 return true;
12251
12252 return false;
12253}
12254
6beb8c23
MR
12255/**
12256 * intel_prepare_plane_fb - Prepare fb for usage on plane
12257 * @plane: drm plane to prepare for
12258 * @fb: framebuffer to prepare for presentation
12259 *
12260 * Prepares a framebuffer for usage on a display plane. Generally this
12261 * involves pinning the underlying object and updating the frontbuffer tracking
12262 * bits. Some older platforms need special physical address handling for
12263 * cursor planes.
12264 *
12265 * Returns 0 on success, negative error code on failure.
12266 */
12267int
12268intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12269 struct drm_framebuffer *fb,
12270 const struct drm_plane_state *new_state)
465c120c
MR
12271{
12272 struct drm_device *dev = plane->dev;
6beb8c23
MR
12273 struct intel_plane *intel_plane = to_intel_plane(plane);
12274 enum pipe pipe = intel_plane->pipe;
12275 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12276 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12277 unsigned frontbuffer_bits = 0;
12278 int ret = 0;
465c120c 12279
ea2c67bb 12280 if (!obj)
465c120c
MR
12281 return 0;
12282
6beb8c23
MR
12283 switch (plane->type) {
12284 case DRM_PLANE_TYPE_PRIMARY:
12285 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12286 break;
12287 case DRM_PLANE_TYPE_CURSOR:
12288 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12289 break;
12290 case DRM_PLANE_TYPE_OVERLAY:
12291 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12292 break;
12293 }
465c120c 12294
6beb8c23 12295 mutex_lock(&dev->struct_mutex);
465c120c 12296
6beb8c23
MR
12297 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12298 INTEL_INFO(dev)->cursor_needs_physical) {
12299 int align = IS_I830(dev) ? 16 * 1024 : 256;
12300 ret = i915_gem_object_attach_phys(obj, align);
12301 if (ret)
12302 DRM_DEBUG_KMS("failed to attach phys object\n");
12303 } else {
82bc3b2d 12304 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 12305 }
465c120c 12306
6beb8c23
MR
12307 if (ret == 0)
12308 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 12309
4c34574f 12310 mutex_unlock(&dev->struct_mutex);
465c120c 12311
6beb8c23
MR
12312 return ret;
12313}
12314
38f3ce3a
MR
12315/**
12316 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12317 * @plane: drm plane to clean up for
12318 * @fb: old framebuffer that was on plane
12319 *
12320 * Cleans up a framebuffer that has just been removed from a plane.
12321 */
12322void
12323intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
12324 struct drm_framebuffer *fb,
12325 const struct drm_plane_state *old_state)
38f3ce3a
MR
12326{
12327 struct drm_device *dev = plane->dev;
12328 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12329
12330 if (WARN_ON(!obj))
12331 return;
12332
12333 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12334 !INTEL_INFO(dev)->cursor_needs_physical) {
12335 mutex_lock(&dev->struct_mutex);
82bc3b2d 12336 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
12337 mutex_unlock(&dev->struct_mutex);
12338 }
465c120c
MR
12339}
12340
12341static int
3c692a41
GP
12342intel_check_primary_plane(struct drm_plane *plane,
12343 struct intel_plane_state *state)
12344{
32b7eeec
MR
12345 struct drm_device *dev = plane->dev;
12346 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 12347 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12348 struct intel_crtc *intel_crtc;
2b875c22 12349 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
12350 struct drm_rect *dest = &state->dst;
12351 struct drm_rect *src = &state->src;
12352 const struct drm_rect *clip = &state->clip;
465c120c
MR
12353 int ret;
12354
ea2c67bb
MR
12355 crtc = crtc ? crtc : plane->crtc;
12356 intel_crtc = to_intel_crtc(crtc);
12357
c59cb179
MR
12358 ret = drm_plane_helper_check_update(plane, crtc, fb,
12359 src, dest, clip,
12360 DRM_PLANE_HELPER_NO_SCALING,
12361 DRM_PLANE_HELPER_NO_SCALING,
12362 false, true, &state->visible);
12363 if (ret)
12364 return ret;
465c120c 12365
32b7eeec
MR
12366 if (intel_crtc->active) {
12367 intel_crtc->atomic.wait_for_flips = true;
12368
12369 /*
12370 * FBC does not work on some platforms for rotated
12371 * planes, so disable it when rotation is not 0 and
12372 * update it when rotation is set back to 0.
12373 *
12374 * FIXME: This is redundant with the fbc update done in
12375 * the primary plane enable function except that that
12376 * one is done too late. We eventually need to unify
12377 * this.
12378 */
12379 if (intel_crtc->primary_enabled &&
12380 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 12381 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 12382 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
12383 intel_crtc->atomic.disable_fbc = true;
12384 }
12385
12386 if (state->visible) {
12387 /*
12388 * BDW signals flip done immediately if the plane
12389 * is disabled, even if the plane enable is already
12390 * armed to occur at the next vblank :(
12391 */
12392 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12393 intel_crtc->atomic.wait_vblank = true;
12394 }
12395
12396 intel_crtc->atomic.fb_bits |=
12397 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12398
12399 intel_crtc->atomic.update_fbc = true;
0fda6568 12400
1fc0a8f7 12401 if (intel_wm_need_update(plane, &state->base))
0fda6568 12402 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
12403 }
12404
14af293f
GP
12405 return 0;
12406}
12407
12408static void
12409intel_commit_primary_plane(struct drm_plane *plane,
12410 struct intel_plane_state *state)
12411{
2b875c22
MR
12412 struct drm_crtc *crtc = state->base.crtc;
12413 struct drm_framebuffer *fb = state->base.fb;
12414 struct drm_device *dev = plane->dev;
14af293f 12415 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 12416 struct intel_crtc *intel_crtc;
14af293f
GP
12417 struct drm_rect *src = &state->src;
12418
ea2c67bb
MR
12419 crtc = crtc ? crtc : plane->crtc;
12420 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
12421
12422 plane->fb = fb;
9dc806fc
MR
12423 crtc->x = src->x1 >> 16;
12424 crtc->y = src->y1 >> 16;
ccc759dc 12425
ccc759dc 12426 if (intel_crtc->active) {
ccc759dc 12427 if (state->visible) {
ccc759dc
GP
12428 /* FIXME: kill this fastboot hack */
12429 intel_update_pipe_size(intel_crtc);
465c120c 12430
ccc759dc 12431 intel_crtc->primary_enabled = true;
465c120c 12432
ccc759dc
GP
12433 dev_priv->display.update_primary_plane(crtc, plane->fb,
12434 crtc->x, crtc->y);
ccc759dc
GP
12435 } else {
12436 /*
12437 * If clipping results in a non-visible primary plane,
12438 * we'll disable the primary plane. Note that this is
12439 * a bit different than what happens if userspace
12440 * explicitly disables the plane by passing fb=0
12441 * because plane->fb still gets set and pinned.
12442 */
12443 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 12444 }
ccc759dc 12445 }
465c120c
MR
12446}
12447
32b7eeec 12448static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 12449{
32b7eeec 12450 struct drm_device *dev = crtc->dev;
140fd38d 12451 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 12452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
12453 struct intel_plane *intel_plane;
12454 struct drm_plane *p;
12455 unsigned fb_bits = 0;
12456
12457 /* Track fb's for any planes being disabled */
12458 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12459 intel_plane = to_intel_plane(p);
12460
12461 if (intel_crtc->atomic.disabled_planes &
12462 (1 << drm_plane_index(p))) {
12463 switch (p->type) {
12464 case DRM_PLANE_TYPE_PRIMARY:
12465 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12466 break;
12467 case DRM_PLANE_TYPE_CURSOR:
12468 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12469 break;
12470 case DRM_PLANE_TYPE_OVERLAY:
12471 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12472 break;
12473 }
3c692a41 12474
ea2c67bb
MR
12475 mutex_lock(&dev->struct_mutex);
12476 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12477 mutex_unlock(&dev->struct_mutex);
12478 }
12479 }
3c692a41 12480
32b7eeec
MR
12481 if (intel_crtc->atomic.wait_for_flips)
12482 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12483
32b7eeec
MR
12484 if (intel_crtc->atomic.disable_fbc)
12485 intel_fbc_disable(dev);
3c692a41 12486
32b7eeec
MR
12487 if (intel_crtc->atomic.pre_disable_primary)
12488 intel_pre_disable_primary(crtc);
3c692a41 12489
32b7eeec
MR
12490 if (intel_crtc->atomic.update_wm)
12491 intel_update_watermarks(crtc);
3c692a41 12492
32b7eeec 12493 intel_runtime_pm_get(dev_priv);
3c692a41 12494
c34c9ee4
MR
12495 /* Perform vblank evasion around commit operation */
12496 if (intel_crtc->active)
12497 intel_crtc->atomic.evade =
12498 intel_pipe_update_start(intel_crtc,
12499 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12500}
12501
12502static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12503{
12504 struct drm_device *dev = crtc->dev;
12505 struct drm_i915_private *dev_priv = dev->dev_private;
12506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12507 struct drm_plane *p;
12508
c34c9ee4
MR
12509 if (intel_crtc->atomic.evade)
12510 intel_pipe_update_end(intel_crtc,
12511 intel_crtc->atomic.start_vbl_count);
3c692a41 12512
140fd38d 12513 intel_runtime_pm_put(dev_priv);
3c692a41 12514
32b7eeec
MR
12515 if (intel_crtc->atomic.wait_vblank)
12516 intel_wait_for_vblank(dev, intel_crtc->pipe);
12517
12518 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12519
12520 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12521 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12522 intel_fbc_update(dev);
ccc759dc 12523 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12524 }
3c692a41 12525
32b7eeec
MR
12526 if (intel_crtc->atomic.post_enable_primary)
12527 intel_post_enable_primary(crtc);
3c692a41 12528
32b7eeec
MR
12529 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12530 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12531 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12532 false, false);
12533
12534 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12535}
12536
cf4c7c12 12537/**
4a3b8769
MR
12538 * intel_plane_destroy - destroy a plane
12539 * @plane: plane to destroy
cf4c7c12 12540 *
4a3b8769
MR
12541 * Common destruction function for all types of planes (primary, cursor,
12542 * sprite).
cf4c7c12 12543 */
4a3b8769 12544void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12545{
12546 struct intel_plane *intel_plane = to_intel_plane(plane);
12547 drm_plane_cleanup(plane);
12548 kfree(intel_plane);
12549}
12550
65a3fea0 12551const struct drm_plane_funcs intel_plane_funcs = {
ff42e093
DV
12552 .update_plane = drm_plane_helper_update,
12553 .disable_plane = drm_plane_helper_disable,
3d7d6510 12554 .destroy = intel_plane_destroy,
c196e1d6 12555 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12556 .atomic_get_property = intel_plane_atomic_get_property,
12557 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12558 .atomic_duplicate_state = intel_plane_duplicate_state,
12559 .atomic_destroy_state = intel_plane_destroy_state,
12560
465c120c
MR
12561};
12562
12563static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12564 int pipe)
12565{
12566 struct intel_plane *primary;
8e7d688b 12567 struct intel_plane_state *state;
465c120c
MR
12568 const uint32_t *intel_primary_formats;
12569 int num_formats;
12570
12571 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12572 if (primary == NULL)
12573 return NULL;
12574
8e7d688b
MR
12575 state = intel_create_plane_state(&primary->base);
12576 if (!state) {
ea2c67bb
MR
12577 kfree(primary);
12578 return NULL;
12579 }
8e7d688b 12580 primary->base.state = &state->base;
ea2c67bb 12581
465c120c
MR
12582 primary->can_scale = false;
12583 primary->max_downscale = 1;
12584 primary->pipe = pipe;
12585 primary->plane = pipe;
c59cb179
MR
12586 primary->check_plane = intel_check_primary_plane;
12587 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12588 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12589 primary->plane = !pipe;
12590
12591 if (INTEL_INFO(dev)->gen <= 3) {
12592 intel_primary_formats = intel_primary_formats_gen2;
12593 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12594 } else {
12595 intel_primary_formats = intel_primary_formats_gen4;
12596 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12597 }
12598
12599 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12600 &intel_plane_funcs,
465c120c
MR
12601 intel_primary_formats, num_formats,
12602 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12603
12604 if (INTEL_INFO(dev)->gen >= 4) {
12605 if (!dev->mode_config.rotation_property)
12606 dev->mode_config.rotation_property =
12607 drm_mode_create_rotation_property(dev,
12608 BIT(DRM_ROTATE_0) |
12609 BIT(DRM_ROTATE_180));
12610 if (dev->mode_config.rotation_property)
12611 drm_object_attach_property(&primary->base.base,
12612 dev->mode_config.rotation_property,
8e7d688b 12613 state->base.rotation);
48404c1e
SJ
12614 }
12615
ea2c67bb
MR
12616 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12617
465c120c
MR
12618 return &primary->base;
12619}
12620
3d7d6510 12621static int
852e787c
GP
12622intel_check_cursor_plane(struct drm_plane *plane,
12623 struct intel_plane_state *state)
3d7d6510 12624{
2b875c22 12625 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12626 struct drm_device *dev = plane->dev;
2b875c22 12627 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12628 struct drm_rect *dest = &state->dst;
12629 struct drm_rect *src = &state->src;
12630 const struct drm_rect *clip = &state->clip;
757f9a3e 12631 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12632 struct intel_crtc *intel_crtc;
757f9a3e
GP
12633 unsigned stride;
12634 int ret;
3d7d6510 12635
ea2c67bb
MR
12636 crtc = crtc ? crtc : plane->crtc;
12637 intel_crtc = to_intel_crtc(crtc);
12638
757f9a3e 12639 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12640 src, dest, clip,
3d7d6510
MR
12641 DRM_PLANE_HELPER_NO_SCALING,
12642 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12643 true, true, &state->visible);
757f9a3e
GP
12644 if (ret)
12645 return ret;
12646
12647
12648 /* if we want to turn off the cursor ignore width and height */
12649 if (!obj)
32b7eeec 12650 goto finish;
757f9a3e 12651
757f9a3e 12652 /* Check for which cursor types we support */
ea2c67bb
MR
12653 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12654 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12655 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12656 return -EINVAL;
12657 }
12658
ea2c67bb
MR
12659 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12660 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12661 DRM_DEBUG_KMS("buffer is too small\n");
12662 return -ENOMEM;
12663 }
12664
3a656b54 12665 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
12666 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12667 ret = -EINVAL;
12668 }
757f9a3e 12669
32b7eeec
MR
12670finish:
12671 if (intel_crtc->active) {
3749f463 12672 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
12673 intel_crtc->atomic.update_wm = true;
12674
12675 intel_crtc->atomic.fb_bits |=
12676 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12677 }
12678
757f9a3e 12679 return ret;
852e787c 12680}
3d7d6510 12681
f4a2cf29 12682static void
852e787c
GP
12683intel_commit_cursor_plane(struct drm_plane *plane,
12684 struct intel_plane_state *state)
12685{
2b875c22 12686 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12687 struct drm_device *dev = plane->dev;
12688 struct intel_crtc *intel_crtc;
2b875c22 12689 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12690 uint32_t addr;
852e787c 12691
ea2c67bb
MR
12692 crtc = crtc ? crtc : plane->crtc;
12693 intel_crtc = to_intel_crtc(crtc);
12694
2b875c22 12695 plane->fb = state->base.fb;
ea2c67bb
MR
12696 crtc->cursor_x = state->base.crtc_x;
12697 crtc->cursor_y = state->base.crtc_y;
12698
a912f12f
GP
12699 if (intel_crtc->cursor_bo == obj)
12700 goto update;
4ed91096 12701
f4a2cf29 12702 if (!obj)
a912f12f 12703 addr = 0;
f4a2cf29 12704 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12705 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12706 else
a912f12f 12707 addr = obj->phys_handle->busaddr;
852e787c 12708
a912f12f
GP
12709 intel_crtc->cursor_addr = addr;
12710 intel_crtc->cursor_bo = obj;
12711update:
852e787c 12712
32b7eeec 12713 if (intel_crtc->active)
a912f12f 12714 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12715}
12716
3d7d6510
MR
12717static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12718 int pipe)
12719{
12720 struct intel_plane *cursor;
8e7d688b 12721 struct intel_plane_state *state;
3d7d6510
MR
12722
12723 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12724 if (cursor == NULL)
12725 return NULL;
12726
8e7d688b
MR
12727 state = intel_create_plane_state(&cursor->base);
12728 if (!state) {
ea2c67bb
MR
12729 kfree(cursor);
12730 return NULL;
12731 }
8e7d688b 12732 cursor->base.state = &state->base;
ea2c67bb 12733
3d7d6510
MR
12734 cursor->can_scale = false;
12735 cursor->max_downscale = 1;
12736 cursor->pipe = pipe;
12737 cursor->plane = pipe;
c59cb179
MR
12738 cursor->check_plane = intel_check_cursor_plane;
12739 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12740
12741 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12742 &intel_plane_funcs,
3d7d6510
MR
12743 intel_cursor_formats,
12744 ARRAY_SIZE(intel_cursor_formats),
12745 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12746
12747 if (INTEL_INFO(dev)->gen >= 4) {
12748 if (!dev->mode_config.rotation_property)
12749 dev->mode_config.rotation_property =
12750 drm_mode_create_rotation_property(dev,
12751 BIT(DRM_ROTATE_0) |
12752 BIT(DRM_ROTATE_180));
12753 if (dev->mode_config.rotation_property)
12754 drm_object_attach_property(&cursor->base.base,
12755 dev->mode_config.rotation_property,
8e7d688b 12756 state->base.rotation);
4398ad45
VS
12757 }
12758
ea2c67bb
MR
12759 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12760
3d7d6510
MR
12761 return &cursor->base;
12762}
12763
b358d0a6 12764static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12765{
fbee40df 12766 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12767 struct intel_crtc *intel_crtc;
f5de6e07 12768 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12769 struct drm_plane *primary = NULL;
12770 struct drm_plane *cursor = NULL;
465c120c 12771 int i, ret;
79e53945 12772
955382f3 12773 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12774 if (intel_crtc == NULL)
12775 return;
12776
f5de6e07
ACO
12777 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12778 if (!crtc_state)
12779 goto fail;
12780 intel_crtc_set_state(intel_crtc, crtc_state);
07878248 12781 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 12782
465c120c 12783 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12784 if (!primary)
12785 goto fail;
12786
12787 cursor = intel_cursor_plane_create(dev, pipe);
12788 if (!cursor)
12789 goto fail;
12790
465c120c 12791 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12792 cursor, &intel_crtc_funcs);
12793 if (ret)
12794 goto fail;
79e53945
JB
12795
12796 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12797 for (i = 0; i < 256; i++) {
12798 intel_crtc->lut_r[i] = i;
12799 intel_crtc->lut_g[i] = i;
12800 intel_crtc->lut_b[i] = i;
12801 }
12802
1f1c2e24
VS
12803 /*
12804 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12805 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12806 */
80824003
JB
12807 intel_crtc->pipe = pipe;
12808 intel_crtc->plane = pipe;
3a77c4c4 12809 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12810 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12811 intel_crtc->plane = !pipe;
80824003
JB
12812 }
12813
4b0e333e
CW
12814 intel_crtc->cursor_base = ~0;
12815 intel_crtc->cursor_cntl = ~0;
dc41c154 12816 intel_crtc->cursor_size = ~0;
8d7849db 12817
22fd0fab
JB
12818 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12819 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12820 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12821 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12822
9362c7c5
ACO
12823 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12824
79e53945 12825 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12826
12827 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12828 return;
12829
12830fail:
12831 if (primary)
12832 drm_plane_cleanup(primary);
12833 if (cursor)
12834 drm_plane_cleanup(cursor);
f5de6e07 12835 kfree(crtc_state);
3d7d6510 12836 kfree(intel_crtc);
79e53945
JB
12837}
12838
752aa88a
JB
12839enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12840{
12841 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12842 struct drm_device *dev = connector->base.dev;
752aa88a 12843
51fd371b 12844 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12845
d3babd3f 12846 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12847 return INVALID_PIPE;
12848
12849 return to_intel_crtc(encoder->crtc)->pipe;
12850}
12851
08d7b3d1 12852int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12853 struct drm_file *file)
08d7b3d1 12854{
08d7b3d1 12855 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12856 struct drm_crtc *drmmode_crtc;
c05422d5 12857 struct intel_crtc *crtc;
08d7b3d1 12858
7707e653 12859 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12860
7707e653 12861 if (!drmmode_crtc) {
08d7b3d1 12862 DRM_ERROR("no such CRTC id\n");
3f2c2057 12863 return -ENOENT;
08d7b3d1
CW
12864 }
12865
7707e653 12866 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12867 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12868
c05422d5 12869 return 0;
08d7b3d1
CW
12870}
12871
66a9278e 12872static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12873{
66a9278e
DV
12874 struct drm_device *dev = encoder->base.dev;
12875 struct intel_encoder *source_encoder;
79e53945 12876 int index_mask = 0;
79e53945
JB
12877 int entry = 0;
12878
b2784e15 12879 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12880 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12881 index_mask |= (1 << entry);
12882
79e53945
JB
12883 entry++;
12884 }
4ef69c7a 12885
79e53945
JB
12886 return index_mask;
12887}
12888
4d302442
CW
12889static bool has_edp_a(struct drm_device *dev)
12890{
12891 struct drm_i915_private *dev_priv = dev->dev_private;
12892
12893 if (!IS_MOBILE(dev))
12894 return false;
12895
12896 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12897 return false;
12898
e3589908 12899 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12900 return false;
12901
12902 return true;
12903}
12904
84b4e042
JB
12905static bool intel_crt_present(struct drm_device *dev)
12906{
12907 struct drm_i915_private *dev_priv = dev->dev_private;
12908
884497ed
DL
12909 if (INTEL_INFO(dev)->gen >= 9)
12910 return false;
12911
cf404ce4 12912 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12913 return false;
12914
12915 if (IS_CHERRYVIEW(dev))
12916 return false;
12917
12918 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12919 return false;
12920
12921 return true;
12922}
12923
79e53945
JB
12924static void intel_setup_outputs(struct drm_device *dev)
12925{
725e30ad 12926 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12927 struct intel_encoder *encoder;
c6f95f27 12928 struct drm_connector *connector;
cb0953d7 12929 bool dpd_is_edp = false;
79e53945 12930
c9093354 12931 intel_lvds_init(dev);
79e53945 12932
84b4e042 12933 if (intel_crt_present(dev))
79935fca 12934 intel_crt_init(dev);
cb0953d7 12935
affa9354 12936 if (HAS_DDI(dev)) {
0e72a5b5
ED
12937 int found;
12938
de31facd
JB
12939 /*
12940 * Haswell uses DDI functions to detect digital outputs.
12941 * On SKL pre-D0 the strap isn't connected, so we assume
12942 * it's there.
12943 */
0e72a5b5 12944 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
12945 /* WaIgnoreDDIAStrap: skl */
12946 if (found ||
12947 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
12948 intel_ddi_init(dev, PORT_A);
12949
12950 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12951 * register */
12952 found = I915_READ(SFUSE_STRAP);
12953
12954 if (found & SFUSE_STRAP_DDIB_DETECTED)
12955 intel_ddi_init(dev, PORT_B);
12956 if (found & SFUSE_STRAP_DDIC_DETECTED)
12957 intel_ddi_init(dev, PORT_C);
12958 if (found & SFUSE_STRAP_DDID_DETECTED)
12959 intel_ddi_init(dev, PORT_D);
12960 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12961 int found;
5d8a7752 12962 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12963
12964 if (has_edp_a(dev))
12965 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12966
dc0fa718 12967 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12968 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12969 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12970 if (!found)
e2debe91 12971 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12972 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12973 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12974 }
12975
dc0fa718 12976 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12977 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12978
dc0fa718 12979 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12980 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12981
5eb08b69 12982 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12983 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12984
270b3042 12985 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12986 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12987 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12988 /*
12989 * The DP_DETECTED bit is the latched state of the DDC
12990 * SDA pin at boot. However since eDP doesn't require DDC
12991 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12992 * eDP ports may have been muxed to an alternate function.
12993 * Thus we can't rely on the DP_DETECTED bit alone to detect
12994 * eDP ports. Consult the VBT as well as DP_DETECTED to
12995 * detect eDP ports.
12996 */
d2182a66
VS
12997 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12998 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12999 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13000 PORT_B);
e17ac6db
VS
13001 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13002 intel_dp_is_edp(dev, PORT_B))
13003 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 13004
d2182a66
VS
13005 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13006 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
13007 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13008 PORT_C);
e17ac6db
VS
13009 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13010 intel_dp_is_edp(dev, PORT_C))
13011 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 13012
9418c1f1 13013 if (IS_CHERRYVIEW(dev)) {
e17ac6db 13014 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
13015 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13016 PORT_D);
e17ac6db
VS
13017 /* eDP not supported on port D, so don't check VBT */
13018 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13019 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
13020 }
13021
3cfca973 13022 intel_dsi_init(dev);
103a196f 13023 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 13024 bool found = false;
7d57382e 13025
e2debe91 13026 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13027 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 13028 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
13029 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13030 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 13031 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 13032 }
27185ae1 13033
e7281eab 13034 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13035 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 13036 }
13520b05
KH
13037
13038 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 13039
e2debe91 13040 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13041 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 13042 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 13043 }
27185ae1 13044
e2debe91 13045 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 13046
b01f2c3a
JB
13047 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13048 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 13049 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 13050 }
e7281eab 13051 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13052 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 13053 }
27185ae1 13054
b01f2c3a 13055 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 13056 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 13057 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 13058 } else if (IS_GEN2(dev))
79e53945
JB
13059 intel_dvo_init(dev);
13060
103a196f 13061 if (SUPPORTS_TV(dev))
79e53945
JB
13062 intel_tv_init(dev);
13063
c6f95f27
MR
13064 /*
13065 * FIXME: We don't have full atomic support yet, but we want to be
13066 * able to enable/test plane updates via the atomic interface in the
13067 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
13068 * will take some atomic codepaths to lookup properties during
13069 * drmModeGetConnector() that unconditionally dereference
13070 * connector->state.
13071 *
13072 * We create a dummy connector state here for each connector to ensure
13073 * the DRM core doesn't try to dereference a NULL connector->state.
13074 * The actual connector properties will never be updated or contain
13075 * useful information, but since we're doing this specifically for
13076 * testing/debug of the plane operations (and only when a specific
13077 * kernel module option is given), that shouldn't really matter.
13078 *
d29b2f9d
ACO
13079 * We are also relying on these states to convert the legacy mode set
13080 * to use a drm_atomic_state struct. The states are kept consistent
13081 * with actual state, so that it is safe to rely on that instead of
13082 * the staged config.
13083 *
c6f95f27
MR
13084 * Once atomic support for crtc's + connectors lands, this loop should
13085 * be removed since we'll be setting up real connector state, which
13086 * will contain Intel-specific properties.
13087 */
d29b2f9d
ACO
13088 list_for_each_entry(connector,
13089 &dev->mode_config.connector_list,
13090 head) {
13091 if (!WARN_ON(connector->state)) {
13092 connector->state = kzalloc(sizeof(*connector->state),
13093 GFP_KERNEL);
c6f95f27
MR
13094 }
13095 }
13096
0bc12bcb 13097 intel_psr_init(dev);
7c8f8a70 13098
b2784e15 13099 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
13100 encoder->base.possible_crtcs = encoder->crtc_mask;
13101 encoder->base.possible_clones =
66a9278e 13102 intel_encoder_clones(encoder);
79e53945 13103 }
47356eb6 13104
dde86e2d 13105 intel_init_pch_refclk(dev);
270b3042
DV
13106
13107 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
13108}
13109
13110static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13111{
60a5ca01 13112 struct drm_device *dev = fb->dev;
79e53945 13113 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 13114
ef2d633e 13115 drm_framebuffer_cleanup(fb);
60a5ca01 13116 mutex_lock(&dev->struct_mutex);
ef2d633e 13117 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
13118 drm_gem_object_unreference(&intel_fb->obj->base);
13119 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13120 kfree(intel_fb);
13121}
13122
13123static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 13124 struct drm_file *file,
79e53945
JB
13125 unsigned int *handle)
13126{
13127 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 13128 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 13129
05394f39 13130 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
13131}
13132
13133static const struct drm_framebuffer_funcs intel_fb_funcs = {
13134 .destroy = intel_user_framebuffer_destroy,
13135 .create_handle = intel_user_framebuffer_create_handle,
13136};
13137
b321803d
DL
13138static
13139u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13140 uint32_t pixel_format)
13141{
13142 u32 gen = INTEL_INFO(dev)->gen;
13143
13144 if (gen >= 9) {
13145 /* "The stride in bytes must not exceed the of the size of 8K
13146 * pixels and 32K bytes."
13147 */
13148 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13149 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13150 return 32*1024;
13151 } else if (gen >= 4) {
13152 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13153 return 16*1024;
13154 else
13155 return 32*1024;
13156 } else if (gen >= 3) {
13157 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13158 return 8*1024;
13159 else
13160 return 16*1024;
13161 } else {
13162 /* XXX DSPC is limited to 4k tiled */
13163 return 8*1024;
13164 }
13165}
13166
b5ea642a
DV
13167static int intel_framebuffer_init(struct drm_device *dev,
13168 struct intel_framebuffer *intel_fb,
13169 struct drm_mode_fb_cmd2 *mode_cmd,
13170 struct drm_i915_gem_object *obj)
79e53945 13171{
6761dd31 13172 unsigned int aligned_height;
79e53945 13173 int ret;
b321803d 13174 u32 pitch_limit, stride_alignment;
79e53945 13175
dd4916c5
DV
13176 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13177
2a80eada
DV
13178 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13179 /* Enforce that fb modifier and tiling mode match, but only for
13180 * X-tiled. This is needed for FBC. */
13181 if (!!(obj->tiling_mode == I915_TILING_X) !=
13182 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13183 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13184 return -EINVAL;
13185 }
13186 } else {
13187 if (obj->tiling_mode == I915_TILING_X)
13188 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13189 else if (obj->tiling_mode == I915_TILING_Y) {
13190 DRM_DEBUG("No Y tiling for legacy addfb\n");
13191 return -EINVAL;
13192 }
13193 }
13194
9a8f0a12
TU
13195 /* Passed in modifier sanity checking. */
13196 switch (mode_cmd->modifier[0]) {
13197 case I915_FORMAT_MOD_Y_TILED:
13198 case I915_FORMAT_MOD_Yf_TILED:
13199 if (INTEL_INFO(dev)->gen < 9) {
13200 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13201 mode_cmd->modifier[0]);
13202 return -EINVAL;
13203 }
13204 case DRM_FORMAT_MOD_NONE:
13205 case I915_FORMAT_MOD_X_TILED:
13206 break;
13207 default:
c0f40428
JB
13208 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13209 mode_cmd->modifier[0]);
57cd6508 13210 return -EINVAL;
c16ed4be 13211 }
57cd6508 13212
b321803d
DL
13213 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13214 mode_cmd->pixel_format);
13215 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13216 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13217 mode_cmd->pitches[0], stride_alignment);
57cd6508 13218 return -EINVAL;
c16ed4be 13219 }
57cd6508 13220
b321803d
DL
13221 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13222 mode_cmd->pixel_format);
a35cdaa0 13223 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13224 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13225 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13226 "tiled" : "linear",
a35cdaa0 13227 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13228 return -EINVAL;
c16ed4be 13229 }
5d7bd705 13230
2a80eada 13231 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13232 mode_cmd->pitches[0] != obj->stride) {
13233 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13234 mode_cmd->pitches[0], obj->stride);
5d7bd705 13235 return -EINVAL;
c16ed4be 13236 }
5d7bd705 13237
57779d06 13238 /* Reject formats not supported by any plane early. */
308e5bcb 13239 switch (mode_cmd->pixel_format) {
57779d06 13240 case DRM_FORMAT_C8:
04b3924d
VS
13241 case DRM_FORMAT_RGB565:
13242 case DRM_FORMAT_XRGB8888:
13243 case DRM_FORMAT_ARGB8888:
57779d06
VS
13244 break;
13245 case DRM_FORMAT_XRGB1555:
13246 case DRM_FORMAT_ARGB1555:
c16ed4be 13247 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13248 DRM_DEBUG("unsupported pixel format: %s\n",
13249 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13250 return -EINVAL;
c16ed4be 13251 }
57779d06
VS
13252 break;
13253 case DRM_FORMAT_XBGR8888:
13254 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13255 case DRM_FORMAT_XRGB2101010:
13256 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13257 case DRM_FORMAT_XBGR2101010:
13258 case DRM_FORMAT_ABGR2101010:
c16ed4be 13259 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13260 DRM_DEBUG("unsupported pixel format: %s\n",
13261 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13262 return -EINVAL;
c16ed4be 13263 }
b5626747 13264 break;
04b3924d
VS
13265 case DRM_FORMAT_YUYV:
13266 case DRM_FORMAT_UYVY:
13267 case DRM_FORMAT_YVYU:
13268 case DRM_FORMAT_VYUY:
c16ed4be 13269 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
13270 DRM_DEBUG("unsupported pixel format: %s\n",
13271 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13272 return -EINVAL;
c16ed4be 13273 }
57cd6508
CW
13274 break;
13275 default:
4ee62c76
VS
13276 DRM_DEBUG("unsupported pixel format: %s\n",
13277 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
13278 return -EINVAL;
13279 }
13280
90f9a336
VS
13281 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13282 if (mode_cmd->offsets[0] != 0)
13283 return -EINVAL;
13284
ec2c981e 13285 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
13286 mode_cmd->pixel_format,
13287 mode_cmd->modifier[0]);
53155c0a
DV
13288 /* FIXME drm helper for size checks (especially planar formats)? */
13289 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13290 return -EINVAL;
13291
c7d73f6a
DV
13292 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13293 intel_fb->obj = obj;
80075d49 13294 intel_fb->obj->framebuffer_references++;
c7d73f6a 13295
79e53945
JB
13296 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13297 if (ret) {
13298 DRM_ERROR("framebuffer init failed %d\n", ret);
13299 return ret;
13300 }
13301
79e53945
JB
13302 return 0;
13303}
13304
79e53945
JB
13305static struct drm_framebuffer *
13306intel_user_framebuffer_create(struct drm_device *dev,
13307 struct drm_file *filp,
308e5bcb 13308 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 13309{
05394f39 13310 struct drm_i915_gem_object *obj;
79e53945 13311
308e5bcb
JB
13312 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13313 mode_cmd->handles[0]));
c8725226 13314 if (&obj->base == NULL)
cce13ff7 13315 return ERR_PTR(-ENOENT);
79e53945 13316
d2dff872 13317 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
13318}
13319
4520f53a 13320#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 13321static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
13322{
13323}
13324#endif
13325
79e53945 13326static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 13327 .fb_create = intel_user_framebuffer_create,
0632fef6 13328 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
13329 .atomic_check = intel_atomic_check,
13330 .atomic_commit = intel_atomic_commit,
79e53945
JB
13331};
13332
e70236a8
JB
13333/* Set up chip specific display functions */
13334static void intel_init_display(struct drm_device *dev)
13335{
13336 struct drm_i915_private *dev_priv = dev->dev_private;
13337
ee9300bb
DV
13338 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13339 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
13340 else if (IS_CHERRYVIEW(dev))
13341 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
13342 else if (IS_VALLEYVIEW(dev))
13343 dev_priv->display.find_dpll = vlv_find_best_dpll;
13344 else if (IS_PINEVIEW(dev))
13345 dev_priv->display.find_dpll = pnv_find_best_dpll;
13346 else
13347 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13348
bc8d7dff
DL
13349 if (INTEL_INFO(dev)->gen >= 9) {
13350 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13351 dev_priv->display.get_initial_plane_config =
13352 skylake_get_initial_plane_config;
bc8d7dff
DL
13353 dev_priv->display.crtc_compute_clock =
13354 haswell_crtc_compute_clock;
13355 dev_priv->display.crtc_enable = haswell_crtc_enable;
13356 dev_priv->display.crtc_disable = haswell_crtc_disable;
13357 dev_priv->display.off = ironlake_crtc_off;
13358 dev_priv->display.update_primary_plane =
13359 skylake_update_primary_plane;
13360 } else if (HAS_DDI(dev)) {
0e8ffe1b 13361 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13362 dev_priv->display.get_initial_plane_config =
13363 ironlake_get_initial_plane_config;
797d0259
ACO
13364 dev_priv->display.crtc_compute_clock =
13365 haswell_crtc_compute_clock;
4f771f10
PZ
13366 dev_priv->display.crtc_enable = haswell_crtc_enable;
13367 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 13368 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
13369 dev_priv->display.update_primary_plane =
13370 ironlake_update_primary_plane;
09b4ddf9 13371 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 13372 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
13373 dev_priv->display.get_initial_plane_config =
13374 ironlake_get_initial_plane_config;
3fb37703
ACO
13375 dev_priv->display.crtc_compute_clock =
13376 ironlake_crtc_compute_clock;
76e5a89c
DV
13377 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13378 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 13379 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
13380 dev_priv->display.update_primary_plane =
13381 ironlake_update_primary_plane;
89b667f8
JB
13382 } else if (IS_VALLEYVIEW(dev)) {
13383 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13384 dev_priv->display.get_initial_plane_config =
13385 i9xx_get_initial_plane_config;
d6dfee7a 13386 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
13387 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13388 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13389 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13390 dev_priv->display.update_primary_plane =
13391 i9xx_update_primary_plane;
f564048e 13392 } else {
0e8ffe1b 13393 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13394 dev_priv->display.get_initial_plane_config =
13395 i9xx_get_initial_plane_config;
d6dfee7a 13396 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
13397 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13398 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 13399 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13400 dev_priv->display.update_primary_plane =
13401 i9xx_update_primary_plane;
f564048e 13402 }
e70236a8 13403
e70236a8 13404 /* Returns the core display clock speed */
25eb05fc
JB
13405 if (IS_VALLEYVIEW(dev))
13406 dev_priv->display.get_display_clock_speed =
13407 valleyview_get_display_clock_speed;
13408 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
13409 dev_priv->display.get_display_clock_speed =
13410 i945_get_display_clock_speed;
13411 else if (IS_I915G(dev))
13412 dev_priv->display.get_display_clock_speed =
13413 i915_get_display_clock_speed;
257a7ffc 13414 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
13415 dev_priv->display.get_display_clock_speed =
13416 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
13417 else if (IS_PINEVIEW(dev))
13418 dev_priv->display.get_display_clock_speed =
13419 pnv_get_display_clock_speed;
e70236a8
JB
13420 else if (IS_I915GM(dev))
13421 dev_priv->display.get_display_clock_speed =
13422 i915gm_get_display_clock_speed;
13423 else if (IS_I865G(dev))
13424 dev_priv->display.get_display_clock_speed =
13425 i865_get_display_clock_speed;
f0f8a9ce 13426 else if (IS_I85X(dev))
e70236a8
JB
13427 dev_priv->display.get_display_clock_speed =
13428 i855_get_display_clock_speed;
13429 else /* 852, 830 */
13430 dev_priv->display.get_display_clock_speed =
13431 i830_get_display_clock_speed;
13432
7c10a2b5 13433 if (IS_GEN5(dev)) {
3bb11b53 13434 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
13435 } else if (IS_GEN6(dev)) {
13436 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
13437 } else if (IS_IVYBRIDGE(dev)) {
13438 /* FIXME: detect B0+ stepping and use auto training */
13439 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 13440 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 13441 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
13442 } else if (IS_VALLEYVIEW(dev)) {
13443 dev_priv->display.modeset_global_resources =
13444 valleyview_modeset_global_resources;
e70236a8 13445 }
8c9f3aaf 13446
8c9f3aaf
JB
13447 switch (INTEL_INFO(dev)->gen) {
13448 case 2:
13449 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13450 break;
13451
13452 case 3:
13453 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13454 break;
13455
13456 case 4:
13457 case 5:
13458 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13459 break;
13460
13461 case 6:
13462 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13463 break;
7c9017e5 13464 case 7:
4e0bbc31 13465 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
13466 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13467 break;
830c81db 13468 case 9:
ba343e02
TU
13469 /* Drop through - unsupported since execlist only. */
13470 default:
13471 /* Default just returns -ENODEV to indicate unsupported */
13472 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 13473 }
7bd688cd
JN
13474
13475 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
13476
13477 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
13478}
13479
b690e96c
JB
13480/*
13481 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13482 * resume, or other times. This quirk makes sure that's the case for
13483 * affected systems.
13484 */
0206e353 13485static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
13486{
13487 struct drm_i915_private *dev_priv = dev->dev_private;
13488
13489 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 13490 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
13491}
13492
b6b5d049
VS
13493static void quirk_pipeb_force(struct drm_device *dev)
13494{
13495 struct drm_i915_private *dev_priv = dev->dev_private;
13496
13497 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13498 DRM_INFO("applying pipe b force quirk\n");
13499}
13500
435793df
KP
13501/*
13502 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13503 */
13504static void quirk_ssc_force_disable(struct drm_device *dev)
13505{
13506 struct drm_i915_private *dev_priv = dev->dev_private;
13507 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 13508 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
13509}
13510
4dca20ef 13511/*
5a15ab5b
CE
13512 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13513 * brightness value
4dca20ef
CE
13514 */
13515static void quirk_invert_brightness(struct drm_device *dev)
13516{
13517 struct drm_i915_private *dev_priv = dev->dev_private;
13518 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13519 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13520}
13521
9c72cc6f
SD
13522/* Some VBT's incorrectly indicate no backlight is present */
13523static void quirk_backlight_present(struct drm_device *dev)
13524{
13525 struct drm_i915_private *dev_priv = dev->dev_private;
13526 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13527 DRM_INFO("applying backlight present quirk\n");
13528}
13529
b690e96c
JB
13530struct intel_quirk {
13531 int device;
13532 int subsystem_vendor;
13533 int subsystem_device;
13534 void (*hook)(struct drm_device *dev);
13535};
13536
5f85f176
EE
13537/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13538struct intel_dmi_quirk {
13539 void (*hook)(struct drm_device *dev);
13540 const struct dmi_system_id (*dmi_id_list)[];
13541};
13542
13543static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13544{
13545 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13546 return 1;
13547}
13548
13549static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13550 {
13551 .dmi_id_list = &(const struct dmi_system_id[]) {
13552 {
13553 .callback = intel_dmi_reverse_brightness,
13554 .ident = "NCR Corporation",
13555 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13556 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13557 },
13558 },
13559 { } /* terminating entry */
13560 },
13561 .hook = quirk_invert_brightness,
13562 },
13563};
13564
c43b5634 13565static struct intel_quirk intel_quirks[] = {
b690e96c 13566 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13567 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13568
b690e96c
JB
13569 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13570 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13571
b690e96c
JB
13572 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13573 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13574
5f080c0f
VS
13575 /* 830 needs to leave pipe A & dpll A up */
13576 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13577
b6b5d049
VS
13578 /* 830 needs to leave pipe B & dpll B up */
13579 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13580
435793df
KP
13581 /* Lenovo U160 cannot use SSC on LVDS */
13582 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13583
13584 /* Sony Vaio Y cannot use SSC on LVDS */
13585 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13586
be505f64
AH
13587 /* Acer Aspire 5734Z must invert backlight brightness */
13588 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13589
13590 /* Acer/eMachines G725 */
13591 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13592
13593 /* Acer/eMachines e725 */
13594 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13595
13596 /* Acer/Packard Bell NCL20 */
13597 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13598
13599 /* Acer Aspire 4736Z */
13600 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13601
13602 /* Acer Aspire 5336 */
13603 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13604
13605 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13606 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13607
dfb3d47b
SD
13608 /* Acer C720 Chromebook (Core i3 4005U) */
13609 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13610
b2a9601c 13611 /* Apple Macbook 2,1 (Core 2 T7400) */
13612 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13613
d4967d8c
SD
13614 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13615 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13616
13617 /* HP Chromebook 14 (Celeron 2955U) */
13618 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
13619
13620 /* Dell Chromebook 11 */
13621 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
13622};
13623
13624static void intel_init_quirks(struct drm_device *dev)
13625{
13626 struct pci_dev *d = dev->pdev;
13627 int i;
13628
13629 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13630 struct intel_quirk *q = &intel_quirks[i];
13631
13632 if (d->device == q->device &&
13633 (d->subsystem_vendor == q->subsystem_vendor ||
13634 q->subsystem_vendor == PCI_ANY_ID) &&
13635 (d->subsystem_device == q->subsystem_device ||
13636 q->subsystem_device == PCI_ANY_ID))
13637 q->hook(dev);
13638 }
5f85f176
EE
13639 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13640 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13641 intel_dmi_quirks[i].hook(dev);
13642 }
b690e96c
JB
13643}
13644
9cce37f4
JB
13645/* Disable the VGA plane that we never use */
13646static void i915_disable_vga(struct drm_device *dev)
13647{
13648 struct drm_i915_private *dev_priv = dev->dev_private;
13649 u8 sr1;
766aa1c4 13650 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13651
2b37c616 13652 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13653 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13654 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13655 sr1 = inb(VGA_SR_DATA);
13656 outb(sr1 | 1<<5, VGA_SR_DATA);
13657 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13658 udelay(300);
13659
01f5a626 13660 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13661 POSTING_READ(vga_reg);
13662}
13663
f817586c
DV
13664void intel_modeset_init_hw(struct drm_device *dev)
13665{
a8f78b58
ED
13666 intel_prepare_ddi(dev);
13667
f8bf63fd
VS
13668 if (IS_VALLEYVIEW(dev))
13669 vlv_update_cdclk(dev);
13670
f817586c
DV
13671 intel_init_clock_gating(dev);
13672
8090c6b9 13673 intel_enable_gt_powersave(dev);
f817586c
DV
13674}
13675
79e53945
JB
13676void intel_modeset_init(struct drm_device *dev)
13677{
652c393a 13678 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13679 int sprite, ret;
8cc87b75 13680 enum pipe pipe;
46f297fb 13681 struct intel_crtc *crtc;
79e53945
JB
13682
13683 drm_mode_config_init(dev);
13684
13685 dev->mode_config.min_width = 0;
13686 dev->mode_config.min_height = 0;
13687
019d96cb
DA
13688 dev->mode_config.preferred_depth = 24;
13689 dev->mode_config.prefer_shadow = 1;
13690
25bab385
TU
13691 dev->mode_config.allow_fb_modifiers = true;
13692
e6ecefaa 13693 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13694
b690e96c
JB
13695 intel_init_quirks(dev);
13696
1fa61106
ED
13697 intel_init_pm(dev);
13698
e3c74757
BW
13699 if (INTEL_INFO(dev)->num_pipes == 0)
13700 return;
13701
e70236a8 13702 intel_init_display(dev);
7c10a2b5 13703 intel_init_audio(dev);
e70236a8 13704
a6c45cf0
CW
13705 if (IS_GEN2(dev)) {
13706 dev->mode_config.max_width = 2048;
13707 dev->mode_config.max_height = 2048;
13708 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13709 dev->mode_config.max_width = 4096;
13710 dev->mode_config.max_height = 4096;
79e53945 13711 } else {
a6c45cf0
CW
13712 dev->mode_config.max_width = 8192;
13713 dev->mode_config.max_height = 8192;
79e53945 13714 }
068be561 13715
dc41c154
VS
13716 if (IS_845G(dev) || IS_I865G(dev)) {
13717 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13718 dev->mode_config.cursor_height = 1023;
13719 } else if (IS_GEN2(dev)) {
068be561
DL
13720 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13721 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13722 } else {
13723 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13724 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13725 }
13726
5d4545ae 13727 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13728
28c97730 13729 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13730 INTEL_INFO(dev)->num_pipes,
13731 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13732
055e393f 13733 for_each_pipe(dev_priv, pipe) {
8cc87b75 13734 intel_crtc_init(dev, pipe);
3bdcfc0c 13735 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 13736 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13737 if (ret)
06da8da2 13738 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13739 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13740 }
79e53945
JB
13741 }
13742
f42bb70d
JB
13743 intel_init_dpio(dev);
13744
e72f9fbf 13745 intel_shared_dpll_init(dev);
ee7b9f93 13746
9cce37f4
JB
13747 /* Just disable it once at startup */
13748 i915_disable_vga(dev);
79e53945 13749 intel_setup_outputs(dev);
11be49eb
CW
13750
13751 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13752 intel_fbc_disable(dev);
fa9fa083 13753
6e9f798d 13754 drm_modeset_lock_all(dev);
fa9fa083 13755 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13756 drm_modeset_unlock_all(dev);
46f297fb 13757
d3fcc808 13758 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13759 if (!crtc->active)
13760 continue;
13761
46f297fb 13762 /*
46f297fb
JB
13763 * Note that reserving the BIOS fb up front prevents us
13764 * from stuffing other stolen allocations like the ring
13765 * on top. This prevents some ugliness at boot time, and
13766 * can even allow for smooth boot transitions if the BIOS
13767 * fb is large enough for the active pipe configuration.
13768 */
5724dbd1
DL
13769 if (dev_priv->display.get_initial_plane_config) {
13770 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13771 &crtc->plane_config);
13772 /*
13773 * If the fb is shared between multiple heads, we'll
13774 * just get the first one.
13775 */
f6936e29 13776 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 13777 }
46f297fb 13778 }
2c7111db
CW
13779}
13780
7fad798e
DV
13781static void intel_enable_pipe_a(struct drm_device *dev)
13782{
13783 struct intel_connector *connector;
13784 struct drm_connector *crt = NULL;
13785 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13786 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13787
13788 /* We can't just switch on the pipe A, we need to set things up with a
13789 * proper mode and output configuration. As a gross hack, enable pipe A
13790 * by enabling the load detect pipe once. */
3a3371ff 13791 for_each_intel_connector(dev, connector) {
7fad798e
DV
13792 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13793 crt = &connector->base;
13794 break;
13795 }
13796 }
13797
13798 if (!crt)
13799 return;
13800
208bf9fd 13801 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 13802 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
13803}
13804
fa555837
DV
13805static bool
13806intel_check_plane_mapping(struct intel_crtc *crtc)
13807{
7eb552ae
BW
13808 struct drm_device *dev = crtc->base.dev;
13809 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13810 u32 reg, val;
13811
7eb552ae 13812 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13813 return true;
13814
13815 reg = DSPCNTR(!crtc->plane);
13816 val = I915_READ(reg);
13817
13818 if ((val & DISPLAY_PLANE_ENABLE) &&
13819 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13820 return false;
13821
13822 return true;
13823}
13824
24929352
DV
13825static void intel_sanitize_crtc(struct intel_crtc *crtc)
13826{
13827 struct drm_device *dev = crtc->base.dev;
13828 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13829 u32 reg;
24929352 13830
24929352 13831 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13832 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13833 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13834
d3eaf884 13835 /* restore vblank interrupts to correct state */
9625604c 13836 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
13837 if (crtc->active) {
13838 update_scanline_offset(crtc);
9625604c
DV
13839 drm_crtc_vblank_on(&crtc->base);
13840 }
d3eaf884 13841
24929352 13842 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13843 * disable the crtc (and hence change the state) if it is wrong. Note
13844 * that gen4+ has a fixed plane -> pipe mapping. */
13845 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13846 struct intel_connector *connector;
13847 bool plane;
13848
24929352
DV
13849 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13850 crtc->base.base.id);
13851
13852 /* Pipe has the wrong plane attached and the plane is active.
13853 * Temporarily change the plane mapping and disable everything
13854 * ... */
13855 plane = crtc->plane;
13856 crtc->plane = !plane;
9c8958bc 13857 crtc->primary_enabled = true;
24929352
DV
13858 dev_priv->display.crtc_disable(&crtc->base);
13859 crtc->plane = plane;
13860
13861 /* ... and break all links. */
3a3371ff 13862 for_each_intel_connector(dev, connector) {
24929352
DV
13863 if (connector->encoder->base.crtc != &crtc->base)
13864 continue;
13865
7f1950fb
EE
13866 connector->base.dpms = DRM_MODE_DPMS_OFF;
13867 connector->base.encoder = NULL;
24929352 13868 }
7f1950fb
EE
13869 /* multiple connectors may have the same encoder:
13870 * handle them and break crtc link separately */
3a3371ff 13871 for_each_intel_connector(dev, connector)
7f1950fb
EE
13872 if (connector->encoder->base.crtc == &crtc->base) {
13873 connector->encoder->base.crtc = NULL;
13874 connector->encoder->connectors_active = false;
13875 }
24929352
DV
13876
13877 WARN_ON(crtc->active);
83d65738 13878 crtc->base.state->enable = false;
24929352
DV
13879 crtc->base.enabled = false;
13880 }
24929352 13881
7fad798e
DV
13882 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13883 crtc->pipe == PIPE_A && !crtc->active) {
13884 /* BIOS forgot to enable pipe A, this mostly happens after
13885 * resume. Force-enable the pipe to fix this, the update_dpms
13886 * call below we restore the pipe to the right state, but leave
13887 * the required bits on. */
13888 intel_enable_pipe_a(dev);
13889 }
13890
24929352
DV
13891 /* Adjust the state of the output pipe according to whether we
13892 * have active connectors/encoders. */
13893 intel_crtc_update_dpms(&crtc->base);
13894
83d65738 13895 if (crtc->active != crtc->base.state->enable) {
24929352
DV
13896 struct intel_encoder *encoder;
13897
13898 /* This can happen either due to bugs in the get_hw_state
13899 * functions or because the pipe is force-enabled due to the
13900 * pipe A quirk. */
13901 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13902 crtc->base.base.id,
83d65738 13903 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
13904 crtc->active ? "enabled" : "disabled");
13905
83d65738 13906 crtc->base.state->enable = crtc->active;
24929352
DV
13907 crtc->base.enabled = crtc->active;
13908
13909 /* Because we only establish the connector -> encoder ->
13910 * crtc links if something is active, this means the
13911 * crtc is now deactivated. Break the links. connector
13912 * -> encoder links are only establish when things are
13913 * actually up, hence no need to break them. */
13914 WARN_ON(crtc->active);
13915
13916 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13917 WARN_ON(encoder->connectors_active);
13918 encoder->base.crtc = NULL;
13919 }
13920 }
c5ab3bc0 13921
a3ed6aad 13922 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13923 /*
13924 * We start out with underrun reporting disabled to avoid races.
13925 * For correct bookkeeping mark this on active crtcs.
13926 *
c5ab3bc0
DV
13927 * Also on gmch platforms we dont have any hardware bits to
13928 * disable the underrun reporting. Which means we need to start
13929 * out with underrun reporting disabled also on inactive pipes,
13930 * since otherwise we'll complain about the garbage we read when
13931 * e.g. coming up after runtime pm.
13932 *
4cc31489
DV
13933 * No protection against concurrent access is required - at
13934 * worst a fifo underrun happens which also sets this to false.
13935 */
13936 crtc->cpu_fifo_underrun_disabled = true;
13937 crtc->pch_fifo_underrun_disabled = true;
13938 }
24929352
DV
13939}
13940
13941static void intel_sanitize_encoder(struct intel_encoder *encoder)
13942{
13943 struct intel_connector *connector;
13944 struct drm_device *dev = encoder->base.dev;
13945
13946 /* We need to check both for a crtc link (meaning that the
13947 * encoder is active and trying to read from a pipe) and the
13948 * pipe itself being active. */
13949 bool has_active_crtc = encoder->base.crtc &&
13950 to_intel_crtc(encoder->base.crtc)->active;
13951
13952 if (encoder->connectors_active && !has_active_crtc) {
13953 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13954 encoder->base.base.id,
8e329a03 13955 encoder->base.name);
24929352
DV
13956
13957 /* Connector is active, but has no active pipe. This is
13958 * fallout from our resume register restoring. Disable
13959 * the encoder manually again. */
13960 if (encoder->base.crtc) {
13961 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13962 encoder->base.base.id,
8e329a03 13963 encoder->base.name);
24929352 13964 encoder->disable(encoder);
a62d1497
VS
13965 if (encoder->post_disable)
13966 encoder->post_disable(encoder);
24929352 13967 }
7f1950fb
EE
13968 encoder->base.crtc = NULL;
13969 encoder->connectors_active = false;
24929352
DV
13970
13971 /* Inconsistent output/port/pipe state happens presumably due to
13972 * a bug in one of the get_hw_state functions. Or someplace else
13973 * in our code, like the register restore mess on resume. Clamp
13974 * things to off as a safer default. */
3a3371ff 13975 for_each_intel_connector(dev, connector) {
24929352
DV
13976 if (connector->encoder != encoder)
13977 continue;
7f1950fb
EE
13978 connector->base.dpms = DRM_MODE_DPMS_OFF;
13979 connector->base.encoder = NULL;
24929352
DV
13980 }
13981 }
13982 /* Enabled encoders without active connectors will be fixed in
13983 * the crtc fixup. */
13984}
13985
04098753 13986void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13987{
13988 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13989 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13990
04098753
ID
13991 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13992 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13993 i915_disable_vga(dev);
13994 }
13995}
13996
13997void i915_redisable_vga(struct drm_device *dev)
13998{
13999 struct drm_i915_private *dev_priv = dev->dev_private;
14000
8dc8a27c
PZ
14001 /* This function can be called both from intel_modeset_setup_hw_state or
14002 * at a very early point in our resume sequence, where the power well
14003 * structures are not yet restored. Since this function is at a very
14004 * paranoid "someone might have enabled VGA while we were not looking"
14005 * level, just check if the power well is enabled instead of trying to
14006 * follow the "don't touch the power well if we don't need it" policy
14007 * the rest of the driver uses. */
f458ebbc 14008 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
14009 return;
14010
04098753 14011 i915_redisable_vga_power_on(dev);
0fde901f
KM
14012}
14013
98ec7739
VS
14014static bool primary_get_hw_state(struct intel_crtc *crtc)
14015{
14016 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14017
14018 if (!crtc->active)
14019 return false;
14020
14021 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14022}
14023
30e984df 14024static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
14025{
14026 struct drm_i915_private *dev_priv = dev->dev_private;
14027 enum pipe pipe;
24929352
DV
14028 struct intel_crtc *crtc;
14029 struct intel_encoder *encoder;
14030 struct intel_connector *connector;
5358901f 14031 int i;
24929352 14032
d3fcc808 14033 for_each_intel_crtc(dev, crtc) {
6e3c9717 14034 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 14035
6e3c9717 14036 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 14037
0e8ffe1b 14038 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 14039 crtc->config);
24929352 14040
83d65738 14041 crtc->base.state->enable = crtc->active;
24929352 14042 crtc->base.enabled = crtc->active;
98ec7739 14043 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
14044
14045 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14046 crtc->base.base.id,
14047 crtc->active ? "enabled" : "disabled");
14048 }
14049
5358901f
DV
14050 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14051 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14052
3e369b76
ACO
14053 pll->on = pll->get_hw_state(dev_priv, pll,
14054 &pll->config.hw_state);
5358901f 14055 pll->active = 0;
3e369b76 14056 pll->config.crtc_mask = 0;
d3fcc808 14057 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 14058 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 14059 pll->active++;
3e369b76 14060 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 14061 }
5358901f 14062 }
5358901f 14063
1e6f2ddc 14064 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 14065 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 14066
3e369b76 14067 if (pll->config.crtc_mask)
bd2bb1b9 14068 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
14069 }
14070
b2784e15 14071 for_each_intel_encoder(dev, encoder) {
24929352
DV
14072 pipe = 0;
14073
14074 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
14075 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14076 encoder->base.crtc = &crtc->base;
6e3c9717 14077 encoder->get_config(encoder, crtc->config);
24929352
DV
14078 } else {
14079 encoder->base.crtc = NULL;
14080 }
14081
14082 encoder->connectors_active = false;
6f2bcceb 14083 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 14084 encoder->base.base.id,
8e329a03 14085 encoder->base.name,
24929352 14086 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 14087 pipe_name(pipe));
24929352
DV
14088 }
14089
3a3371ff 14090 for_each_intel_connector(dev, connector) {
24929352
DV
14091 if (connector->get_hw_state(connector)) {
14092 connector->base.dpms = DRM_MODE_DPMS_ON;
14093 connector->encoder->connectors_active = true;
14094 connector->base.encoder = &connector->encoder->base;
14095 } else {
14096 connector->base.dpms = DRM_MODE_DPMS_OFF;
14097 connector->base.encoder = NULL;
14098 }
14099 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14100 connector->base.base.id,
c23cc417 14101 connector->base.name,
24929352
DV
14102 connector->base.encoder ? "enabled" : "disabled");
14103 }
30e984df
DV
14104}
14105
14106/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14107 * and i915 state tracking structures. */
14108void intel_modeset_setup_hw_state(struct drm_device *dev,
14109 bool force_restore)
14110{
14111 struct drm_i915_private *dev_priv = dev->dev_private;
14112 enum pipe pipe;
30e984df
DV
14113 struct intel_crtc *crtc;
14114 struct intel_encoder *encoder;
35c95375 14115 int i;
30e984df
DV
14116
14117 intel_modeset_readout_hw_state(dev);
24929352 14118
babea61d
JB
14119 /*
14120 * Now that we have the config, copy it to each CRTC struct
14121 * Note that this could go away if we move to using crtc_config
14122 * checking everywhere.
14123 */
d3fcc808 14124 for_each_intel_crtc(dev, crtc) {
d330a953 14125 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
14126 intel_mode_from_pipe_config(&crtc->base.mode,
14127 crtc->config);
babea61d
JB
14128 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14129 crtc->base.base.id);
14130 drm_mode_debug_printmodeline(&crtc->base.mode);
14131 }
14132 }
14133
24929352 14134 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 14135 for_each_intel_encoder(dev, encoder) {
24929352
DV
14136 intel_sanitize_encoder(encoder);
14137 }
14138
055e393f 14139 for_each_pipe(dev_priv, pipe) {
24929352
DV
14140 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14141 intel_sanitize_crtc(crtc);
6e3c9717
ACO
14142 intel_dump_pipe_config(crtc, crtc->config,
14143 "[setup_hw_state]");
24929352 14144 }
9a935856 14145
d29b2f9d
ACO
14146 intel_modeset_update_connector_atomic_state(dev);
14147
35c95375
DV
14148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14149 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14150
14151 if (!pll->on || pll->active)
14152 continue;
14153
14154 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14155
14156 pll->disable(dev_priv, pll);
14157 pll->on = false;
14158 }
14159
3078999f
PB
14160 if (IS_GEN9(dev))
14161 skl_wm_get_hw_state(dev);
14162 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
14163 ilk_wm_get_hw_state(dev);
14164
45e2b5f6 14165 if (force_restore) {
7d0bc1ea
VS
14166 i915_redisable_vga(dev);
14167
f30da187
DV
14168 /*
14169 * We need to use raw interfaces for restoring state to avoid
14170 * checking (bogus) intermediate states.
14171 */
055e393f 14172 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
14173 struct drm_crtc *crtc =
14174 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 14175
83a57153 14176 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
14177 }
14178 } else {
14179 intel_modeset_update_staged_output_state(dev);
14180 }
8af6cf88
DV
14181
14182 intel_modeset_check_state(dev);
2c7111db
CW
14183}
14184
14185void intel_modeset_gem_init(struct drm_device *dev)
14186{
92122789 14187 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 14188 struct drm_crtc *c;
2ff8fde1 14189 struct drm_i915_gem_object *obj;
484b41dd 14190
ae48434c
ID
14191 mutex_lock(&dev->struct_mutex);
14192 intel_init_gt_powersave(dev);
14193 mutex_unlock(&dev->struct_mutex);
14194
92122789
JB
14195 /*
14196 * There may be no VBT; and if the BIOS enabled SSC we can
14197 * just keep using it to avoid unnecessary flicker. Whereas if the
14198 * BIOS isn't using it, don't assume it will work even if the VBT
14199 * indicates as much.
14200 */
14201 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14202 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14203 DREF_SSC1_ENABLE);
14204
1833b134 14205 intel_modeset_init_hw(dev);
02e792fb
DV
14206
14207 intel_setup_overlay(dev);
484b41dd
JB
14208
14209 /*
14210 * Make sure any fbs we allocated at startup are properly
14211 * pinned & fenced. When we do the allocation it's too early
14212 * for this.
14213 */
14214 mutex_lock(&dev->struct_mutex);
70e1e0ec 14215 for_each_crtc(dev, c) {
2ff8fde1
MR
14216 obj = intel_fb_obj(c->primary->fb);
14217 if (obj == NULL)
484b41dd
JB
14218 continue;
14219
850c4cdc
TU
14220 if (intel_pin_and_fence_fb_obj(c->primary,
14221 c->primary->fb,
82bc3b2d 14222 c->primary->state,
850c4cdc 14223 NULL)) {
484b41dd
JB
14224 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14225 to_intel_crtc(c)->pipe);
66e514c1
DA
14226 drm_framebuffer_unreference(c->primary->fb);
14227 c->primary->fb = NULL;
afd65eb4 14228 update_state_fb(c->primary);
484b41dd
JB
14229 }
14230 }
14231 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
14232
14233 intel_backlight_register(dev);
79e53945
JB
14234}
14235
4932e2c3
ID
14236void intel_connector_unregister(struct intel_connector *intel_connector)
14237{
14238 struct drm_connector *connector = &intel_connector->base;
14239
14240 intel_panel_destroy_backlight(connector);
34ea3d38 14241 drm_connector_unregister(connector);
4932e2c3
ID
14242}
14243
79e53945
JB
14244void intel_modeset_cleanup(struct drm_device *dev)
14245{
652c393a 14246 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 14247 struct drm_connector *connector;
652c393a 14248
2eb5252e
ID
14249 intel_disable_gt_powersave(dev);
14250
0962c3c9
VS
14251 intel_backlight_unregister(dev);
14252
fd0c0642
DV
14253 /*
14254 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 14255 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
14256 * experience fancy races otherwise.
14257 */
2aeb7d3a 14258 intel_irq_uninstall(dev_priv);
eb21b92b 14259
fd0c0642
DV
14260 /*
14261 * Due to the hpd irq storm handling the hotplug work can re-arm the
14262 * poll handlers. Hence disable polling after hpd handling is shut down.
14263 */
f87ea761 14264 drm_kms_helper_poll_fini(dev);
fd0c0642 14265
652c393a
JB
14266 mutex_lock(&dev->struct_mutex);
14267
723bfd70
JB
14268 intel_unregister_dsm_handler();
14269
7ff0ebcc 14270 intel_fbc_disable(dev);
e70236a8 14271
69341a5e
KH
14272 mutex_unlock(&dev->struct_mutex);
14273
1630fe75
CW
14274 /* flush any delayed tasks or pending work */
14275 flush_scheduled_work();
14276
db31af1d
JN
14277 /* destroy the backlight and sysfs files before encoders/connectors */
14278 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
14279 struct intel_connector *intel_connector;
14280
14281 intel_connector = to_intel_connector(connector);
14282 intel_connector->unregister(intel_connector);
db31af1d 14283 }
d9255d57 14284
79e53945 14285 drm_mode_config_cleanup(dev);
4d7bb011
DV
14286
14287 intel_cleanup_overlay(dev);
ae48434c
ID
14288
14289 mutex_lock(&dev->struct_mutex);
14290 intel_cleanup_gt_powersave(dev);
14291 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14292}
14293
f1c79df3
ZW
14294/*
14295 * Return which encoder is currently attached for connector.
14296 */
df0e9248 14297struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 14298{
df0e9248
CW
14299 return &intel_attached_encoder(connector)->base;
14300}
f1c79df3 14301
df0e9248
CW
14302void intel_connector_attach_encoder(struct intel_connector *connector,
14303 struct intel_encoder *encoder)
14304{
14305 connector->encoder = encoder;
14306 drm_mode_connector_attach_encoder(&connector->base,
14307 &encoder->base);
79e53945 14308}
28d52043
DA
14309
14310/*
14311 * set vga decode state - true == enable VGA decode
14312 */
14313int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14314{
14315 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 14316 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
14317 u16 gmch_ctrl;
14318
75fa041d
CW
14319 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14320 DRM_ERROR("failed to read control word\n");
14321 return -EIO;
14322 }
14323
c0cc8a55
CW
14324 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14325 return 0;
14326
28d52043
DA
14327 if (state)
14328 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14329 else
14330 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
14331
14332 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14333 DRM_ERROR("failed to write control word\n");
14334 return -EIO;
14335 }
14336
28d52043
DA
14337 return 0;
14338}
c4a1d9e4 14339
c4a1d9e4 14340struct intel_display_error_state {
ff57f1b0
PZ
14341
14342 u32 power_well_driver;
14343
63b66e5b
CW
14344 int num_transcoders;
14345
c4a1d9e4
CW
14346 struct intel_cursor_error_state {
14347 u32 control;
14348 u32 position;
14349 u32 base;
14350 u32 size;
52331309 14351 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
14352
14353 struct intel_pipe_error_state {
ddf9c536 14354 bool power_domain_on;
c4a1d9e4 14355 u32 source;
f301b1e1 14356 u32 stat;
52331309 14357 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
14358
14359 struct intel_plane_error_state {
14360 u32 control;
14361 u32 stride;
14362 u32 size;
14363 u32 pos;
14364 u32 addr;
14365 u32 surface;
14366 u32 tile_offset;
52331309 14367 } plane[I915_MAX_PIPES];
63b66e5b
CW
14368
14369 struct intel_transcoder_error_state {
ddf9c536 14370 bool power_domain_on;
63b66e5b
CW
14371 enum transcoder cpu_transcoder;
14372
14373 u32 conf;
14374
14375 u32 htotal;
14376 u32 hblank;
14377 u32 hsync;
14378 u32 vtotal;
14379 u32 vblank;
14380 u32 vsync;
14381 } transcoder[4];
c4a1d9e4
CW
14382};
14383
14384struct intel_display_error_state *
14385intel_display_capture_error_state(struct drm_device *dev)
14386{
fbee40df 14387 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 14388 struct intel_display_error_state *error;
63b66e5b
CW
14389 int transcoders[] = {
14390 TRANSCODER_A,
14391 TRANSCODER_B,
14392 TRANSCODER_C,
14393 TRANSCODER_EDP,
14394 };
c4a1d9e4
CW
14395 int i;
14396
63b66e5b
CW
14397 if (INTEL_INFO(dev)->num_pipes == 0)
14398 return NULL;
14399
9d1cb914 14400 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
14401 if (error == NULL)
14402 return NULL;
14403
190be112 14404 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
14405 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14406
055e393f 14407 for_each_pipe(dev_priv, i) {
ddf9c536 14408 error->pipe[i].power_domain_on =
f458ebbc
DV
14409 __intel_display_power_is_enabled(dev_priv,
14410 POWER_DOMAIN_PIPE(i));
ddf9c536 14411 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
14412 continue;
14413
5efb3e28
VS
14414 error->cursor[i].control = I915_READ(CURCNTR(i));
14415 error->cursor[i].position = I915_READ(CURPOS(i));
14416 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
14417
14418 error->plane[i].control = I915_READ(DSPCNTR(i));
14419 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 14420 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 14421 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
14422 error->plane[i].pos = I915_READ(DSPPOS(i));
14423 }
ca291363
PZ
14424 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14425 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
14426 if (INTEL_INFO(dev)->gen >= 4) {
14427 error->plane[i].surface = I915_READ(DSPSURF(i));
14428 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14429 }
14430
c4a1d9e4 14431 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 14432
3abfce77 14433 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 14434 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
14435 }
14436
14437 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14438 if (HAS_DDI(dev_priv->dev))
14439 error->num_transcoders++; /* Account for eDP. */
14440
14441 for (i = 0; i < error->num_transcoders; i++) {
14442 enum transcoder cpu_transcoder = transcoders[i];
14443
ddf9c536 14444 error->transcoder[i].power_domain_on =
f458ebbc 14445 __intel_display_power_is_enabled(dev_priv,
38cc1daf 14446 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 14447 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
14448 continue;
14449
63b66e5b
CW
14450 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14451
14452 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14453 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14454 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14455 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14456 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14457 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14458 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
14459 }
14460
14461 return error;
14462}
14463
edc3d884
MK
14464#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14465
c4a1d9e4 14466void
edc3d884 14467intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
14468 struct drm_device *dev,
14469 struct intel_display_error_state *error)
14470{
055e393f 14471 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
14472 int i;
14473
63b66e5b
CW
14474 if (!error)
14475 return;
14476
edc3d884 14477 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 14478 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 14479 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 14480 error->power_well_driver);
055e393f 14481 for_each_pipe(dev_priv, i) {
edc3d884 14482 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
14483 err_printf(m, " Power: %s\n",
14484 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 14485 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 14486 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
14487
14488 err_printf(m, "Plane [%d]:\n", i);
14489 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14490 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 14491 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
14492 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14493 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 14494 }
4b71a570 14495 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 14496 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 14497 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
14498 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14499 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
14500 }
14501
edc3d884
MK
14502 err_printf(m, "Cursor [%d]:\n", i);
14503 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14504 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14505 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 14506 }
63b66e5b
CW
14507
14508 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 14509 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14510 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14511 err_printf(m, " Power: %s\n",
14512 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14513 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14514 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14515 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14516 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14517 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14518 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14519 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14520 }
c4a1d9e4 14521}
e2fcdaa9
VS
14522
14523void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14524{
14525 struct intel_crtc *crtc;
14526
14527 for_each_intel_crtc(dev, crtc) {
14528 struct intel_unpin_work *work;
e2fcdaa9 14529
5e2d7afc 14530 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14531
14532 work = crtc->unpin_work;
14533
14534 if (work && work->event &&
14535 work->event->base.file_priv == file) {
14536 kfree(work->event);
14537 work->event = NULL;
14538 }
14539
5e2d7afc 14540 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14541 }
14542}