]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: gmch: set SR WMs to valid values before enabling them
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
076ed3b2
CML
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
076ed3b2 1538 }
40e9cf64
JB
1539}
1540
426115cf 1541static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1542{
426115cf
DV
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1547
426115cf 1548 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1555 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1556
426115cf
DV
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1566
1567 /* We do this three times for luck */
426115cf 1568 I915_WRITE(reg, dpll);
87442f73
DV
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
426115cf 1571 I915_WRITE(reg, dpll);
87442f73
DV
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
426115cf 1574 I915_WRITE(reg, dpll);
87442f73
DV
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577}
1578
9d556c99
CML
1579static void chv_enable_pll(struct intel_crtc *crtc)
1580{
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
a11b0703 1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1605
1606 /* Check PLL is locked */
a11b0703 1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
a11b0703
VS
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
9d556c99
CML
1614 mutex_unlock(&dev_priv->dpio_lock);
1615}
1616
66e3d5c0 1617static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1618{
66e3d5c0
DV
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1623
66e3d5c0 1624 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1625
63d7bbe9 1626 /* No really, not for ILK+ */
3d13ef2e 1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1628
1629 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1632
66e3d5c0
DV
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
63d7bbe9
JB
1650
1651 /* We do this three times for luck */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
66e3d5c0 1655 I915_WRITE(reg, dpll);
63d7bbe9
JB
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
66e3d5c0 1658 I915_WRITE(reg, dpll);
63d7bbe9
JB
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661}
1662
1663/**
50b44a44 1664 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
50b44a44 1672static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1673{
63d7bbe9
JB
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
50b44a44
DV
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1683}
1684
f6071166
JB
1685static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686{
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
e5cbfbfb
ID
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
f6071166 1696 if (pipe == PIPE_B)
e5cbfbfb 1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1700
1701}
1702
1703static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704{
d752048d 1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1706 u32 val;
1707
a11b0703
VS
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1710
a11b0703
VS
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
d752048d
VS
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
61407f6d
VS
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
d752048d 1736 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1737}
1738
e4607fcf
CML
1739void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
89b667f8
JB
1741{
1742 u32 port_mask;
00fc31b7 1743 int dpll_reg;
89b667f8 1744
e4607fcf
CML
1745 switch (dport->port) {
1746 case PORT_B:
89b667f8 1747 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1748 dpll_reg = DPLL(0);
e4607fcf
CML
1749 break;
1750 case PORT_C:
89b667f8 1751 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1757 break;
1758 default:
1759 BUG();
1760 }
89b667f8 1761
00fc31b7 1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1764 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1765}
1766
b14b1055
DV
1767static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768{
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
be19f0ff
CW
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
b14b1055
DV
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784}
1785
92f2584a 1786/**
85b3894f 1787 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
85b3894f 1794static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1795{
3d13ef2e
DL
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1799
87a875bb 1800 if (WARN_ON(pll == NULL))
48da64a8
CW
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
ee7b9f93 1805
46edb027
DV
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
e2b78267 1808 crtc->base.base.id);
92f2584a 1809
cdbd2316
DV
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
e9d6944e 1812 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1813 return;
1814 }
f4a091c7 1815 WARN_ON(pll->on);
ee7b9f93 1816
46edb027 1817 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1818 pll->enable(dev_priv, pll);
ee7b9f93 1819 pll->on = true;
92f2584a
JB
1820}
1821
e2b78267 1822static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1823{
3d13ef2e
DL
1824 struct drm_device *dev = crtc->base.dev;
1825 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1826 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1827
92f2584a 1828 /* PCH only available on ILK+ */
3d13ef2e 1829 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1830 if (WARN_ON(pll == NULL))
ee7b9f93 1831 return;
92f2584a 1832
48da64a8
CW
1833 if (WARN_ON(pll->refcount == 0))
1834 return;
7a419866 1835
46edb027
DV
1836 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1837 pll->name, pll->active, pll->on,
e2b78267 1838 crtc->base.base.id);
7a419866 1839
48da64a8 1840 if (WARN_ON(pll->active == 0)) {
e9d6944e 1841 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1842 return;
1843 }
1844
e9d6944e 1845 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1846 WARN_ON(!pll->on);
cdbd2316 1847 if (--pll->active)
7a419866 1848 return;
ee7b9f93 1849
46edb027 1850 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1851 pll->disable(dev_priv, pll);
ee7b9f93 1852 pll->on = false;
92f2584a
JB
1853}
1854
b8a4f404
PZ
1855static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1856 enum pipe pipe)
040484af 1857{
23670b32 1858 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1859 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1861 uint32_t reg, val, pipeconf_val;
040484af
JB
1862
1863 /* PCH only available on ILK+ */
3d13ef2e 1864 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1865
1866 /* Make sure PCH DPLL is enabled */
e72f9fbf 1867 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1868 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1869
1870 /* FDI must be feeding us bits for PCH ports */
1871 assert_fdi_tx_enabled(dev_priv, pipe);
1872 assert_fdi_rx_enabled(dev_priv, pipe);
1873
23670b32
DV
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Workaround: Set the timing override bit before enabling the
1876 * pch transcoder. */
1877 reg = TRANS_CHICKEN2(pipe);
1878 val = I915_READ(reg);
1879 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1880 I915_WRITE(reg, val);
59c859d6 1881 }
23670b32 1882
ab9412ba 1883 reg = PCH_TRANSCONF(pipe);
040484af 1884 val = I915_READ(reg);
5f7f726d 1885 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1886
1887 if (HAS_PCH_IBX(dev_priv->dev)) {
1888 /*
1889 * make the BPC in transcoder be consistent with
1890 * that in pipeconf reg.
1891 */
dfd07d72
DV
1892 val &= ~PIPECONF_BPC_MASK;
1893 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1894 }
5f7f726d
PZ
1895
1896 val &= ~TRANS_INTERLACE_MASK;
1897 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1898 if (HAS_PCH_IBX(dev_priv->dev) &&
1899 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1900 val |= TRANS_LEGACY_INTERLACED_ILK;
1901 else
1902 val |= TRANS_INTERLACED;
5f7f726d
PZ
1903 else
1904 val |= TRANS_PROGRESSIVE;
1905
040484af
JB
1906 I915_WRITE(reg, val | TRANS_ENABLE);
1907 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1908 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1909}
1910
8fb033d7 1911static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1912 enum transcoder cpu_transcoder)
040484af 1913{
8fb033d7 1914 u32 val, pipeconf_val;
8fb033d7
PZ
1915
1916 /* PCH only available on ILK+ */
3d13ef2e 1917 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1918
8fb033d7 1919 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1920 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1921 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1922
223a6fdf
PZ
1923 /* Workaround: set timing override bit. */
1924 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1925 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1926 I915_WRITE(_TRANSA_CHICKEN2, val);
1927
25f3ef11 1928 val = TRANS_ENABLE;
937bb610 1929 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1930
9a76b1c6
PZ
1931 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1932 PIPECONF_INTERLACED_ILK)
a35f2679 1933 val |= TRANS_INTERLACED;
8fb033d7
PZ
1934 else
1935 val |= TRANS_PROGRESSIVE;
1936
ab9412ba
DV
1937 I915_WRITE(LPT_TRANSCONF, val);
1938 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1939 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1940}
1941
b8a4f404
PZ
1942static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1943 enum pipe pipe)
040484af 1944{
23670b32
DV
1945 struct drm_device *dev = dev_priv->dev;
1946 uint32_t reg, val;
040484af
JB
1947
1948 /* FDI relies on the transcoder */
1949 assert_fdi_tx_disabled(dev_priv, pipe);
1950 assert_fdi_rx_disabled(dev_priv, pipe);
1951
291906f1
JB
1952 /* Ports must be off as well */
1953 assert_pch_ports_disabled(dev_priv, pipe);
1954
ab9412ba 1955 reg = PCH_TRANSCONF(pipe);
040484af
JB
1956 val = I915_READ(reg);
1957 val &= ~TRANS_ENABLE;
1958 I915_WRITE(reg, val);
1959 /* wait for PCH transcoder off, transcoder state */
1960 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1961 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1962
1963 if (!HAS_PCH_IBX(dev)) {
1964 /* Workaround: Clear the timing override chicken bit again. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
040484af
JB
1970}
1971
ab4d966c 1972static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1973{
8fb033d7
PZ
1974 u32 val;
1975
ab9412ba 1976 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1977 val &= ~TRANS_ENABLE;
ab9412ba 1978 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1979 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1980 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1981 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1982
1983 /* Workaround: clear timing override bit. */
1984 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1985 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1986 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1987}
1988
b24e7179 1989/**
309cfea8 1990 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1991 * @crtc: crtc responsible for the pipe
b24e7179 1992 *
0372264a 1993 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1994 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1995 */
e1fdc473 1996static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1997{
0372264a
PZ
1998 struct drm_device *dev = crtc->base.dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2001 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2002 pipe);
1a240d4d 2003 enum pipe pch_transcoder;
b24e7179
JB
2004 int reg;
2005 u32 val;
2006
58c6eaa2 2007 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2008 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2009 assert_sprites_disabled(dev_priv, pipe);
2010
681e5811 2011 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2012 pch_transcoder = TRANSCODER_A;
2013 else
2014 pch_transcoder = pipe;
2015
b24e7179
JB
2016 /*
2017 * A pipe without a PLL won't actually be able to drive bits from
2018 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2019 * need the check.
2020 */
2021 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2023 assert_dsi_pll_enabled(dev_priv);
2024 else
2025 assert_pll_enabled(dev_priv, pipe);
040484af 2026 else {
30421c4f 2027 if (crtc->config.has_pch_encoder) {
040484af 2028 /* if driving the PCH, we need FDI enabled */
cc391bbb 2029 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2030 assert_fdi_tx_pll_enabled(dev_priv,
2031 (enum pipe) cpu_transcoder);
040484af
JB
2032 }
2033 /* FIXME: assert CPU port conditions for SNB+ */
2034 }
b24e7179 2035
702e7a56 2036 reg = PIPECONF(cpu_transcoder);
b24e7179 2037 val = I915_READ(reg);
7ad25d48
PZ
2038 if (val & PIPECONF_ENABLE) {
2039 WARN_ON(!(pipe == PIPE_A &&
2040 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2041 return;
7ad25d48 2042 }
00d70b15
CW
2043
2044 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2045 POSTING_READ(reg);
b24e7179
JB
2046}
2047
2048/**
309cfea8 2049 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2050 * @dev_priv: i915 private structure
2051 * @pipe: pipe to disable
2052 *
2053 * Disable @pipe, making sure that various hardware specific requirements
2054 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2055 *
2056 * @pipe should be %PIPE_A or %PIPE_B.
2057 *
2058 * Will wait until the pipe has shut down before returning.
2059 */
2060static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062{
702e7a56
PZ
2063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2064 pipe);
b24e7179
JB
2065 int reg;
2066 u32 val;
2067
2068 /*
2069 * Make sure planes won't keep trying to pump pixels to us,
2070 * or we might hang the display.
2071 */
2072 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2073 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2074 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2075
2076 /* Don't disable pipe A or pipe A PLLs if needed */
2077 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2078 return;
2079
702e7a56 2080 reg = PIPECONF(cpu_transcoder);
b24e7179 2081 val = I915_READ(reg);
00d70b15
CW
2082 if ((val & PIPECONF_ENABLE) == 0)
2083 return;
2084
2085 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2086 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2087}
2088
d74362c9
KP
2089/*
2090 * Plane regs are double buffered, going from enabled->disabled needs a
2091 * trigger in order to latch. The display address reg provides this.
2092 */
1dba99f4
VS
2093void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2094 enum plane plane)
d74362c9 2095{
3d13ef2e
DL
2096 struct drm_device *dev = dev_priv->dev;
2097 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2098
2099 I915_WRITE(reg, I915_READ(reg));
2100 POSTING_READ(reg);
d74362c9
KP
2101}
2102
b24e7179 2103/**
262ca2b0 2104 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2105 * @dev_priv: i915 private structure
2106 * @plane: plane to enable
2107 * @pipe: pipe being fed
2108 *
2109 * Enable @plane on @pipe, making sure that @pipe is running first.
2110 */
262ca2b0
MR
2111static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2112 enum plane plane, enum pipe pipe)
b24e7179 2113{
33c3b0d1 2114 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2117 int reg;
2118 u32 val;
2119
2120 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2121 assert_pipe_enabled(dev_priv, pipe);
2122
98ec7739
VS
2123 if (intel_crtc->primary_enabled)
2124 return;
0037f71c 2125
4c445e0e 2126 intel_crtc->primary_enabled = true;
939c2fe8 2127
b24e7179
JB
2128 reg = DSPCNTR(plane);
2129 val = I915_READ(reg);
10efa932 2130 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2131
2132 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2133 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2134
2135 /*
2136 * BDW signals flip done immediately if the plane
2137 * is disabled, even if the plane enable is already
2138 * armed to occur at the next vblank :(
2139 */
2140 if (IS_BROADWELL(dev))
2141 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2142}
2143
b24e7179 2144/**
262ca2b0 2145 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2146 * @dev_priv: i915 private structure
2147 * @plane: plane to disable
2148 * @pipe: pipe consuming the data
2149 *
2150 * Disable @plane; should be an independent operation.
2151 */
262ca2b0
MR
2152static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2153 enum plane plane, enum pipe pipe)
b24e7179 2154{
939c2fe8
VS
2155 struct intel_crtc *intel_crtc =
2156 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2157 int reg;
2158 u32 val;
2159
98ec7739
VS
2160 if (!intel_crtc->primary_enabled)
2161 return;
0037f71c 2162
4c445e0e 2163 intel_crtc->primary_enabled = false;
939c2fe8 2164
b24e7179
JB
2165 reg = DSPCNTR(plane);
2166 val = I915_READ(reg);
10efa932 2167 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2168
2169 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2170 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2171}
2172
693db184
CW
2173static bool need_vtd_wa(struct drm_device *dev)
2174{
2175#ifdef CONFIG_INTEL_IOMMU
2176 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2177 return true;
2178#endif
2179 return false;
2180}
2181
a57ce0b2
JB
2182static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2183{
2184 int tile_height;
2185
2186 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2187 return ALIGN(height, tile_height);
2188}
2189
127bd2ac 2190int
48b956c5 2191intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2192 struct drm_i915_gem_object *obj,
a4872ba6 2193 struct intel_engine_cs *pipelined)
6b95a207 2194{
ce453d81 2195 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2196 u32 alignment;
2197 int ret;
2198
05394f39 2199 switch (obj->tiling_mode) {
6b95a207 2200 case I915_TILING_NONE:
534843da
CW
2201 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2202 alignment = 128 * 1024;
a6c45cf0 2203 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2204 alignment = 4 * 1024;
2205 else
2206 alignment = 64 * 1024;
6b95a207
KH
2207 break;
2208 case I915_TILING_X:
2209 /* pin() will align the object as required by fence */
2210 alignment = 0;
2211 break;
2212 case I915_TILING_Y:
80075d49 2213 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2214 return -EINVAL;
2215 default:
2216 BUG();
2217 }
2218
693db184
CW
2219 /* Note that the w/a also requires 64 PTE of padding following the
2220 * bo. We currently fill all unused PTE with the shadow page and so
2221 * we should always have valid PTE following the scanout preventing
2222 * the VT-d warning.
2223 */
2224 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2225 alignment = 256 * 1024;
2226
ce453d81 2227 dev_priv->mm.interruptible = false;
2da3b9b9 2228 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2229 if (ret)
ce453d81 2230 goto err_interruptible;
6b95a207
KH
2231
2232 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2233 * fence, whereas 965+ only requires a fence if using
2234 * framebuffer compression. For simplicity, we always install
2235 * a fence as the cost is not that onerous.
2236 */
06d98131 2237 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2238 if (ret)
2239 goto err_unpin;
1690e1eb 2240
9a5a53b3 2241 i915_gem_object_pin_fence(obj);
6b95a207 2242
ce453d81 2243 dev_priv->mm.interruptible = true;
6b95a207 2244 return 0;
48b956c5
CW
2245
2246err_unpin:
cc98b413 2247 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2248err_interruptible:
2249 dev_priv->mm.interruptible = true;
48b956c5 2250 return ret;
6b95a207
KH
2251}
2252
1690e1eb
CW
2253void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2254{
2255 i915_gem_object_unpin_fence(obj);
cc98b413 2256 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2257}
2258
c2c75131
DV
2259/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2260 * is assumed to be a power-of-two. */
bc752862
CW
2261unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2262 unsigned int tiling_mode,
2263 unsigned int cpp,
2264 unsigned int pitch)
c2c75131 2265{
bc752862
CW
2266 if (tiling_mode != I915_TILING_NONE) {
2267 unsigned int tile_rows, tiles;
c2c75131 2268
bc752862
CW
2269 tile_rows = *y / 8;
2270 *y %= 8;
c2c75131 2271
bc752862
CW
2272 tiles = *x / (512/cpp);
2273 *x %= 512/cpp;
2274
2275 return tile_rows * pitch * 8 + tiles * 4096;
2276 } else {
2277 unsigned int offset;
2278
2279 offset = *y * pitch + *x * cpp;
2280 *y = 0;
2281 *x = (offset & 4095) / cpp;
2282 return offset & -4096;
2283 }
c2c75131
DV
2284}
2285
46f297fb
JB
2286int intel_format_to_fourcc(int format)
2287{
2288 switch (format) {
2289 case DISPPLANE_8BPP:
2290 return DRM_FORMAT_C8;
2291 case DISPPLANE_BGRX555:
2292 return DRM_FORMAT_XRGB1555;
2293 case DISPPLANE_BGRX565:
2294 return DRM_FORMAT_RGB565;
2295 default:
2296 case DISPPLANE_BGRX888:
2297 return DRM_FORMAT_XRGB8888;
2298 case DISPPLANE_RGBX888:
2299 return DRM_FORMAT_XBGR8888;
2300 case DISPPLANE_BGRX101010:
2301 return DRM_FORMAT_XRGB2101010;
2302 case DISPPLANE_RGBX101010:
2303 return DRM_FORMAT_XBGR2101010;
2304 }
2305}
2306
484b41dd 2307static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2308 struct intel_plane_config *plane_config)
2309{
2310 struct drm_device *dev = crtc->base.dev;
2311 struct drm_i915_gem_object *obj = NULL;
2312 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2313 u32 base = plane_config->base;
2314
ff2652ea
CW
2315 if (plane_config->size == 0)
2316 return false;
2317
46f297fb
JB
2318 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2319 plane_config->size);
2320 if (!obj)
484b41dd 2321 return false;
46f297fb
JB
2322
2323 if (plane_config->tiled) {
2324 obj->tiling_mode = I915_TILING_X;
66e514c1 2325 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2326 }
2327
66e514c1
DA
2328 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2329 mode_cmd.width = crtc->base.primary->fb->width;
2330 mode_cmd.height = crtc->base.primary->fb->height;
2331 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2332
2333 mutex_lock(&dev->struct_mutex);
2334
66e514c1 2335 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2336 &mode_cmd, obj)) {
46f297fb
JB
2337 DRM_DEBUG_KMS("intel fb init failed\n");
2338 goto out_unref_obj;
2339 }
2340
a071fa00 2341 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2342 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2343
2344 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2345 return true;
46f297fb
JB
2346
2347out_unref_obj:
2348 drm_gem_object_unreference(&obj->base);
2349 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2350 return false;
2351}
2352
2353static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2354 struct intel_plane_config *plane_config)
2355{
2356 struct drm_device *dev = intel_crtc->base.dev;
2357 struct drm_crtc *c;
2358 struct intel_crtc *i;
2359 struct intel_framebuffer *fb;
2360
66e514c1 2361 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2362 return;
2363
2364 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2365 return;
2366
66e514c1
DA
2367 kfree(intel_crtc->base.primary->fb);
2368 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2369
2370 /*
2371 * Failed to alloc the obj, check to see if we should share
2372 * an fb with another CRTC instead
2373 */
70e1e0ec 2374 for_each_crtc(dev, c) {
484b41dd
JB
2375 i = to_intel_crtc(c);
2376
2377 if (c == &intel_crtc->base)
2378 continue;
2379
66e514c1 2380 if (!i->active || !c->primary->fb)
484b41dd
JB
2381 continue;
2382
66e514c1 2383 fb = to_intel_framebuffer(c->primary->fb);
484b41dd 2384 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
66e514c1
DA
2385 drm_framebuffer_reference(c->primary->fb);
2386 intel_crtc->base.primary->fb = c->primary->fb;
a071fa00 2387 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2388 break;
2389 }
2390 }
46f297fb
JB
2391}
2392
29b9bde6
DV
2393static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2394 struct drm_framebuffer *fb,
2395 int x, int y)
81255565
JB
2396{
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 struct intel_framebuffer *intel_fb;
05394f39 2401 struct drm_i915_gem_object *obj;
81255565 2402 int plane = intel_crtc->plane;
e506a0c6 2403 unsigned long linear_offset;
81255565 2404 u32 dspcntr;
5eddb70b 2405 u32 reg;
81255565 2406
81255565
JB
2407 intel_fb = to_intel_framebuffer(fb);
2408 obj = intel_fb->obj;
81255565 2409
5eddb70b
CW
2410 reg = DSPCNTR(plane);
2411 dspcntr = I915_READ(reg);
81255565
JB
2412 /* Mask out pixel format bits in case we change it */
2413 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2414 switch (fb->pixel_format) {
2415 case DRM_FORMAT_C8:
81255565
JB
2416 dspcntr |= DISPPLANE_8BPP;
2417 break;
57779d06
VS
2418 case DRM_FORMAT_XRGB1555:
2419 case DRM_FORMAT_ARGB1555:
2420 dspcntr |= DISPPLANE_BGRX555;
81255565 2421 break;
57779d06
VS
2422 case DRM_FORMAT_RGB565:
2423 dspcntr |= DISPPLANE_BGRX565;
2424 break;
2425 case DRM_FORMAT_XRGB8888:
2426 case DRM_FORMAT_ARGB8888:
2427 dspcntr |= DISPPLANE_BGRX888;
2428 break;
2429 case DRM_FORMAT_XBGR8888:
2430 case DRM_FORMAT_ABGR8888:
2431 dspcntr |= DISPPLANE_RGBX888;
2432 break;
2433 case DRM_FORMAT_XRGB2101010:
2434 case DRM_FORMAT_ARGB2101010:
2435 dspcntr |= DISPPLANE_BGRX101010;
2436 break;
2437 case DRM_FORMAT_XBGR2101010:
2438 case DRM_FORMAT_ABGR2101010:
2439 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2440 break;
2441 default:
baba133a 2442 BUG();
81255565 2443 }
57779d06 2444
a6c45cf0 2445 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2446 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2447 dspcntr |= DISPPLANE_TILED;
2448 else
2449 dspcntr &= ~DISPPLANE_TILED;
2450 }
2451
de1aa629
VS
2452 if (IS_G4X(dev))
2453 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2454
5eddb70b 2455 I915_WRITE(reg, dspcntr);
81255565 2456
e506a0c6 2457 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2458
c2c75131
DV
2459 if (INTEL_INFO(dev)->gen >= 4) {
2460 intel_crtc->dspaddr_offset =
bc752862
CW
2461 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2462 fb->bits_per_pixel / 8,
2463 fb->pitches[0]);
c2c75131
DV
2464 linear_offset -= intel_crtc->dspaddr_offset;
2465 } else {
e506a0c6 2466 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2467 }
e506a0c6 2468
f343c5f6
BW
2469 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2470 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2471 fb->pitches[0]);
01f2c773 2472 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2473 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2474 I915_WRITE(DSPSURF(plane),
2475 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2476 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2477 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2478 } else
f343c5f6 2479 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2480 POSTING_READ(reg);
17638cd6
JB
2481}
2482
29b9bde6
DV
2483static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2484 struct drm_framebuffer *fb,
2485 int x, int y)
17638cd6
JB
2486{
2487 struct drm_device *dev = crtc->dev;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2490 struct intel_framebuffer *intel_fb;
2491 struct drm_i915_gem_object *obj;
2492 int plane = intel_crtc->plane;
e506a0c6 2493 unsigned long linear_offset;
17638cd6
JB
2494 u32 dspcntr;
2495 u32 reg;
2496
17638cd6
JB
2497 intel_fb = to_intel_framebuffer(fb);
2498 obj = intel_fb->obj;
2499
2500 reg = DSPCNTR(plane);
2501 dspcntr = I915_READ(reg);
2502 /* Mask out pixel format bits in case we change it */
2503 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2504 switch (fb->pixel_format) {
2505 case DRM_FORMAT_C8:
17638cd6
JB
2506 dspcntr |= DISPPLANE_8BPP;
2507 break;
57779d06
VS
2508 case DRM_FORMAT_RGB565:
2509 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2510 break;
57779d06
VS
2511 case DRM_FORMAT_XRGB8888:
2512 case DRM_FORMAT_ARGB8888:
2513 dspcntr |= DISPPLANE_BGRX888;
2514 break;
2515 case DRM_FORMAT_XBGR8888:
2516 case DRM_FORMAT_ABGR8888:
2517 dspcntr |= DISPPLANE_RGBX888;
2518 break;
2519 case DRM_FORMAT_XRGB2101010:
2520 case DRM_FORMAT_ARGB2101010:
2521 dspcntr |= DISPPLANE_BGRX101010;
2522 break;
2523 case DRM_FORMAT_XBGR2101010:
2524 case DRM_FORMAT_ABGR2101010:
2525 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2526 break;
2527 default:
baba133a 2528 BUG();
17638cd6
JB
2529 }
2530
2531 if (obj->tiling_mode != I915_TILING_NONE)
2532 dspcntr |= DISPPLANE_TILED;
2533 else
2534 dspcntr &= ~DISPPLANE_TILED;
2535
b42c6009 2536 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2537 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2538 else
2539 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2540
2541 I915_WRITE(reg, dspcntr);
2542
e506a0c6 2543 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2544 intel_crtc->dspaddr_offset =
bc752862
CW
2545 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2546 fb->bits_per_pixel / 8,
2547 fb->pitches[0]);
c2c75131 2548 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2549
f343c5f6
BW
2550 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552 fb->pitches[0]);
01f2c773 2553 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2554 I915_WRITE(DSPSURF(plane),
2555 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2556 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2557 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2558 } else {
2559 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2560 I915_WRITE(DSPLINOFF(plane), linear_offset);
2561 }
17638cd6 2562 POSTING_READ(reg);
17638cd6
JB
2563}
2564
2565/* Assume fb object is pinned & idle & fenced and just update base pointers */
2566static int
2567intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2568 int x, int y, enum mode_set_atomic state)
2569{
2570 struct drm_device *dev = crtc->dev;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2572
6b8e6ed0
CW
2573 if (dev_priv->display.disable_fbc)
2574 dev_priv->display.disable_fbc(dev);
cc36513c 2575 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2576
29b9bde6
DV
2577 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2578
2579 return 0;
81255565
JB
2580}
2581
96a02917
VS
2582void intel_display_handle_reset(struct drm_device *dev)
2583{
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct drm_crtc *crtc;
2586
2587 /*
2588 * Flips in the rings have been nuked by the reset,
2589 * so complete all pending flips so that user space
2590 * will get its events and not get stuck.
2591 *
2592 * Also update the base address of all primary
2593 * planes to the the last fb to make sure we're
2594 * showing the correct fb after a reset.
2595 *
2596 * Need to make two loops over the crtcs so that we
2597 * don't try to grab a crtc mutex before the
2598 * pending_flip_queue really got woken up.
2599 */
2600
70e1e0ec 2601 for_each_crtc(dev, crtc) {
96a02917
VS
2602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2603 enum plane plane = intel_crtc->plane;
2604
2605 intel_prepare_page_flip(dev, plane);
2606 intel_finish_page_flip_plane(dev, plane);
2607 }
2608
70e1e0ec 2609 for_each_crtc(dev, crtc) {
96a02917
VS
2610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2611
51fd371b 2612 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2613 /*
2614 * FIXME: Once we have proper support for primary planes (and
2615 * disabling them without disabling the entire crtc) allow again
66e514c1 2616 * a NULL crtc->primary->fb.
947fdaad 2617 */
f4510a27 2618 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2619 dev_priv->display.update_primary_plane(crtc,
66e514c1 2620 crtc->primary->fb,
262ca2b0
MR
2621 crtc->x,
2622 crtc->y);
51fd371b 2623 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2624 }
2625}
2626
14667a4b
CW
2627static int
2628intel_finish_fb(struct drm_framebuffer *old_fb)
2629{
2630 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2631 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2632 bool was_interruptible = dev_priv->mm.interruptible;
2633 int ret;
2634
14667a4b
CW
2635 /* Big Hammer, we also need to ensure that any pending
2636 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2637 * current scanout is retired before unpinning the old
2638 * framebuffer.
2639 *
2640 * This should only fail upon a hung GPU, in which case we
2641 * can safely continue.
2642 */
2643 dev_priv->mm.interruptible = false;
2644 ret = i915_gem_object_finish_gpu(obj);
2645 dev_priv->mm.interruptible = was_interruptible;
2646
2647 return ret;
2648}
2649
7d5e3799
CW
2650static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2651{
2652 struct drm_device *dev = crtc->dev;
2653 struct drm_i915_private *dev_priv = dev->dev_private;
2654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2655 unsigned long flags;
2656 bool pending;
2657
2658 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2659 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2660 return false;
2661
2662 spin_lock_irqsave(&dev->event_lock, flags);
2663 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2664 spin_unlock_irqrestore(&dev->event_lock, flags);
2665
2666 return pending;
2667}
2668
5c3b82e2 2669static int
3c4fdcfb 2670intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2671 struct drm_framebuffer *fb)
79e53945
JB
2672{
2673 struct drm_device *dev = crtc->dev;
6b8e6ed0 2674 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2676 enum pipe pipe = intel_crtc->pipe;
94352cf9 2677 struct drm_framebuffer *old_fb;
a071fa00 2678 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
91565c85 2679 struct drm_i915_gem_object *old_obj;
5c3b82e2 2680 int ret;
79e53945 2681
7d5e3799
CW
2682 if (intel_crtc_has_pending_flip(crtc)) {
2683 DRM_ERROR("pipe is still busy with an old pageflip\n");
2684 return -EBUSY;
2685 }
2686
79e53945 2687 /* no fb bound */
94352cf9 2688 if (!fb) {
a5071c2f 2689 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2690 return 0;
2691 }
2692
7eb552ae 2693 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2694 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2695 plane_name(intel_crtc->plane),
2696 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2697 return -EINVAL;
79e53945
JB
2698 }
2699
a071fa00 2700 old_fb = crtc->primary->fb;
91565c85 2701 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
a071fa00 2702
5c3b82e2 2703 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2704 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2705 if (ret == 0)
91565c85 2706 i915_gem_track_fb(old_obj, obj,
a071fa00 2707 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2708 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2709 if (ret != 0) {
a5071c2f 2710 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2711 return ret;
2712 }
79e53945 2713
bb2043de
DL
2714 /*
2715 * Update pipe size and adjust fitter if needed: the reason for this is
2716 * that in compute_mode_changes we check the native mode (not the pfit
2717 * mode) to see if we can flip rather than do a full mode set. In the
2718 * fastboot case, we'll flip, but if we don't update the pipesrc and
2719 * pfit state, we'll end up with a big fb scanned out into the wrong
2720 * sized surface.
2721 *
2722 * To fix this properly, we need to hoist the checks up into
2723 * compute_mode_changes (or above), check the actual pfit state and
2724 * whether the platform allows pfit disable with pipe active, and only
2725 * then update the pipesrc and pfit state, even on the flip path.
2726 */
d330a953 2727 if (i915.fastboot) {
d7bf63f2
DL
2728 const struct drm_display_mode *adjusted_mode =
2729 &intel_crtc->config.adjusted_mode;
2730
4d6a3e63 2731 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2732 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2733 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2734 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2735 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2736 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2737 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2738 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2739 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2740 }
0637d60d
JB
2741 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2742 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2743 }
2744
29b9bde6 2745 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2746
f99d7069
DV
2747 if (intel_crtc->active)
2748 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2749
f4510a27 2750 crtc->primary->fb = fb;
6c4c86f5
DV
2751 crtc->x = x;
2752 crtc->y = y;
94352cf9 2753
b7f1de28 2754 if (old_fb) {
d7697eea
DV
2755 if (intel_crtc->active && old_fb != fb)
2756 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
1690e1eb 2758 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
8ac36ec1 2759 mutex_unlock(&dev->struct_mutex);
b7f1de28 2760 }
652c393a 2761
8ac36ec1 2762 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2763 intel_update_fbc(dev);
5c3b82e2 2764 mutex_unlock(&dev->struct_mutex);
79e53945 2765
5c3b82e2 2766 return 0;
79e53945
JB
2767}
2768
5e84e1a4
ZW
2769static void intel_fdi_normal_train(struct drm_crtc *crtc)
2770{
2771 struct drm_device *dev = crtc->dev;
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 int pipe = intel_crtc->pipe;
2775 u32 reg, temp;
2776
2777 /* enable normal train */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
61e499bf 2780 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2781 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2783 } else {
2784 temp &= ~FDI_LINK_TRAIN_NONE;
2785 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2786 }
5e84e1a4
ZW
2787 I915_WRITE(reg, temp);
2788
2789 reg = FDI_RX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if (HAS_PCH_CPT(dev)) {
2792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2794 } else {
2795 temp &= ~FDI_LINK_TRAIN_NONE;
2796 temp |= FDI_LINK_TRAIN_NONE;
2797 }
2798 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2799
2800 /* wait one idle pattern time */
2801 POSTING_READ(reg);
2802 udelay(1000);
357555c0
JB
2803
2804 /* IVB wants error correction enabled */
2805 if (IS_IVYBRIDGE(dev))
2806 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2807 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2808}
2809
1fbc0d78 2810static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2811{
1fbc0d78
DV
2812 return crtc->base.enabled && crtc->active &&
2813 crtc->config.has_pch_encoder;
1e833f40
DV
2814}
2815
01a415fd
DV
2816static void ivb_modeset_global_resources(struct drm_device *dev)
2817{
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 struct intel_crtc *pipe_B_crtc =
2820 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2821 struct intel_crtc *pipe_C_crtc =
2822 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2823 uint32_t temp;
2824
1e833f40
DV
2825 /*
2826 * When everything is off disable fdi C so that we could enable fdi B
2827 * with all lanes. Note that we don't care about enabled pipes without
2828 * an enabled pch encoder.
2829 */
2830 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2831 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2832 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2833 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2834
2835 temp = I915_READ(SOUTH_CHICKEN1);
2836 temp &= ~FDI_BC_BIFURCATION_SELECT;
2837 DRM_DEBUG_KMS("disabling fdi C rx\n");
2838 I915_WRITE(SOUTH_CHICKEN1, temp);
2839 }
2840}
2841
8db9d77b
ZW
2842/* The FDI link training functions for ILK/Ibexpeak. */
2843static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2844{
2845 struct drm_device *dev = crtc->dev;
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2848 int pipe = intel_crtc->pipe;
5eddb70b 2849 u32 reg, temp, tries;
8db9d77b 2850
1c8562f6 2851 /* FDI needs bits from pipe first */
0fc932b8 2852 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2853
e1a44743
AJ
2854 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2855 for train result */
5eddb70b
CW
2856 reg = FDI_RX_IMR(pipe);
2857 temp = I915_READ(reg);
e1a44743
AJ
2858 temp &= ~FDI_RX_SYMBOL_LOCK;
2859 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2860 I915_WRITE(reg, temp);
2861 I915_READ(reg);
e1a44743
AJ
2862 udelay(150);
2863
8db9d77b 2864 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2865 reg = FDI_TX_CTL(pipe);
2866 temp = I915_READ(reg);
627eb5a3
DV
2867 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2868 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2871 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2872
5eddb70b
CW
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
8db9d77b
ZW
2875 temp &= ~FDI_LINK_TRAIN_NONE;
2876 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2877 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2878
2879 POSTING_READ(reg);
8db9d77b
ZW
2880 udelay(150);
2881
5b2adf89 2882 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2883 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2884 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2885 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2886
5eddb70b 2887 reg = FDI_RX_IIR(pipe);
e1a44743 2888 for (tries = 0; tries < 5; tries++) {
5eddb70b 2889 temp = I915_READ(reg);
8db9d77b
ZW
2890 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2891
2892 if ((temp & FDI_RX_BIT_LOCK)) {
2893 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2894 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2895 break;
2896 }
8db9d77b 2897 }
e1a44743 2898 if (tries == 5)
5eddb70b 2899 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2900
2901 /* Train 2 */
5eddb70b
CW
2902 reg = FDI_TX_CTL(pipe);
2903 temp = I915_READ(reg);
8db9d77b
ZW
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2906 I915_WRITE(reg, temp);
8db9d77b 2907
5eddb70b
CW
2908 reg = FDI_RX_CTL(pipe);
2909 temp = I915_READ(reg);
8db9d77b
ZW
2910 temp &= ~FDI_LINK_TRAIN_NONE;
2911 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2912 I915_WRITE(reg, temp);
8db9d77b 2913
5eddb70b
CW
2914 POSTING_READ(reg);
2915 udelay(150);
8db9d77b 2916
5eddb70b 2917 reg = FDI_RX_IIR(pipe);
e1a44743 2918 for (tries = 0; tries < 5; tries++) {
5eddb70b 2919 temp = I915_READ(reg);
8db9d77b
ZW
2920 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2921
2922 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2923 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2924 DRM_DEBUG_KMS("FDI train 2 done.\n");
2925 break;
2926 }
8db9d77b 2927 }
e1a44743 2928 if (tries == 5)
5eddb70b 2929 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2930
2931 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2932
8db9d77b
ZW
2933}
2934
0206e353 2935static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2936 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2937 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2938 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2939 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2940};
2941
2942/* The FDI link training functions for SNB/Cougarpoint. */
2943static void gen6_fdi_link_train(struct drm_crtc *crtc)
2944{
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 int pipe = intel_crtc->pipe;
fa37d39e 2949 u32 reg, temp, i, retry;
8db9d77b 2950
e1a44743
AJ
2951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2952 for train result */
5eddb70b
CW
2953 reg = FDI_RX_IMR(pipe);
2954 temp = I915_READ(reg);
e1a44743
AJ
2955 temp &= ~FDI_RX_SYMBOL_LOCK;
2956 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2957 I915_WRITE(reg, temp);
2958
2959 POSTING_READ(reg);
e1a44743
AJ
2960 udelay(150);
2961
8db9d77b 2962 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2963 reg = FDI_TX_CTL(pipe);
2964 temp = I915_READ(reg);
627eb5a3
DV
2965 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2966 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2967 temp &= ~FDI_LINK_TRAIN_NONE;
2968 temp |= FDI_LINK_TRAIN_PATTERN_1;
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 /* SNB-B */
2971 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2972 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2973
d74cf324
DV
2974 I915_WRITE(FDI_RX_MISC(pipe),
2975 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2976
5eddb70b
CW
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
8db9d77b
ZW
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1;
2985 }
5eddb70b
CW
2986 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2987
2988 POSTING_READ(reg);
8db9d77b
ZW
2989 udelay(150);
2990
0206e353 2991 for (i = 0; i < 4; i++) {
5eddb70b
CW
2992 reg = FDI_TX_CTL(pipe);
2993 temp = I915_READ(reg);
8db9d77b
ZW
2994 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2995 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2996 I915_WRITE(reg, temp);
2997
2998 POSTING_READ(reg);
8db9d77b
ZW
2999 udelay(500);
3000
fa37d39e
SP
3001 for (retry = 0; retry < 5; retry++) {
3002 reg = FDI_RX_IIR(pipe);
3003 temp = I915_READ(reg);
3004 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3005 if (temp & FDI_RX_BIT_LOCK) {
3006 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3007 DRM_DEBUG_KMS("FDI train 1 done.\n");
3008 break;
3009 }
3010 udelay(50);
8db9d77b 3011 }
fa37d39e
SP
3012 if (retry < 5)
3013 break;
8db9d77b
ZW
3014 }
3015 if (i == 4)
5eddb70b 3016 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3017
3018 /* Train 2 */
5eddb70b
CW
3019 reg = FDI_TX_CTL(pipe);
3020 temp = I915_READ(reg);
8db9d77b
ZW
3021 temp &= ~FDI_LINK_TRAIN_NONE;
3022 temp |= FDI_LINK_TRAIN_PATTERN_2;
3023 if (IS_GEN6(dev)) {
3024 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3025 /* SNB-B */
3026 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3027 }
5eddb70b 3028 I915_WRITE(reg, temp);
8db9d77b 3029
5eddb70b
CW
3030 reg = FDI_RX_CTL(pipe);
3031 temp = I915_READ(reg);
8db9d77b
ZW
3032 if (HAS_PCH_CPT(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3034 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_PATTERN_2;
3038 }
5eddb70b
CW
3039 I915_WRITE(reg, temp);
3040
3041 POSTING_READ(reg);
8db9d77b
ZW
3042 udelay(150);
3043
0206e353 3044 for (i = 0; i < 4; i++) {
5eddb70b
CW
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
8db9d77b
ZW
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3049 I915_WRITE(reg, temp);
3050
3051 POSTING_READ(reg);
8db9d77b
ZW
3052 udelay(500);
3053
fa37d39e
SP
3054 for (retry = 0; retry < 5; retry++) {
3055 reg = FDI_RX_IIR(pipe);
3056 temp = I915_READ(reg);
3057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3058 if (temp & FDI_RX_SYMBOL_LOCK) {
3059 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3060 DRM_DEBUG_KMS("FDI train 2 done.\n");
3061 break;
3062 }
3063 udelay(50);
8db9d77b 3064 }
fa37d39e
SP
3065 if (retry < 5)
3066 break;
8db9d77b
ZW
3067 }
3068 if (i == 4)
5eddb70b 3069 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3070
3071 DRM_DEBUG_KMS("FDI train done.\n");
3072}
3073
357555c0
JB
3074/* Manual link training for Ivy Bridge A0 parts */
3075static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3076{
3077 struct drm_device *dev = crtc->dev;
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 int pipe = intel_crtc->pipe;
139ccd3f 3081 u32 reg, temp, i, j;
357555c0
JB
3082
3083 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3084 for train result */
3085 reg = FDI_RX_IMR(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~FDI_RX_SYMBOL_LOCK;
3088 temp &= ~FDI_RX_BIT_LOCK;
3089 I915_WRITE(reg, temp);
3090
3091 POSTING_READ(reg);
3092 udelay(150);
3093
01a415fd
DV
3094 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3095 I915_READ(FDI_RX_IIR(pipe)));
3096
139ccd3f
JB
3097 /* Try each vswing and preemphasis setting twice before moving on */
3098 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3099 /* disable first in case we need to retry */
3100 reg = FDI_TX_CTL(pipe);
3101 temp = I915_READ(reg);
3102 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3103 temp &= ~FDI_TX_ENABLE;
3104 I915_WRITE(reg, temp);
357555c0 3105
139ccd3f
JB
3106 reg = FDI_RX_CTL(pipe);
3107 temp = I915_READ(reg);
3108 temp &= ~FDI_LINK_TRAIN_AUTO;
3109 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3110 temp &= ~FDI_RX_ENABLE;
3111 I915_WRITE(reg, temp);
357555c0 3112
139ccd3f 3113 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
139ccd3f
JB
3116 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3117 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3118 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3119 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3120 temp |= snb_b_fdi_train_param[j/2];
3121 temp |= FDI_COMPOSITE_SYNC;
3122 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3123
139ccd3f
JB
3124 I915_WRITE(FDI_RX_MISC(pipe),
3125 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3126
139ccd3f 3127 reg = FDI_RX_CTL(pipe);
357555c0 3128 temp = I915_READ(reg);
139ccd3f
JB
3129 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3130 temp |= FDI_COMPOSITE_SYNC;
3131 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3132
139ccd3f
JB
3133 POSTING_READ(reg);
3134 udelay(1); /* should be 0.5us */
357555c0 3135
139ccd3f
JB
3136 for (i = 0; i < 4; i++) {
3137 reg = FDI_RX_IIR(pipe);
3138 temp = I915_READ(reg);
3139 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3140
139ccd3f
JB
3141 if (temp & FDI_RX_BIT_LOCK ||
3142 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3143 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3144 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3145 i);
3146 break;
3147 }
3148 udelay(1); /* should be 0.5us */
3149 }
3150 if (i == 4) {
3151 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3152 continue;
3153 }
357555c0 3154
139ccd3f 3155 /* Train 2 */
357555c0
JB
3156 reg = FDI_TX_CTL(pipe);
3157 temp = I915_READ(reg);
139ccd3f
JB
3158 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3159 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3160 I915_WRITE(reg, temp);
3161
3162 reg = FDI_RX_CTL(pipe);
3163 temp = I915_READ(reg);
3164 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3165 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3166 I915_WRITE(reg, temp);
3167
3168 POSTING_READ(reg);
139ccd3f 3169 udelay(2); /* should be 1.5us */
357555c0 3170
139ccd3f
JB
3171 for (i = 0; i < 4; i++) {
3172 reg = FDI_RX_IIR(pipe);
3173 temp = I915_READ(reg);
3174 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3175
139ccd3f
JB
3176 if (temp & FDI_RX_SYMBOL_LOCK ||
3177 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3178 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3179 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3180 i);
3181 goto train_done;
3182 }
3183 udelay(2); /* should be 1.5us */
357555c0 3184 }
139ccd3f
JB
3185 if (i == 4)
3186 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3187 }
357555c0 3188
139ccd3f 3189train_done:
357555c0
JB
3190 DRM_DEBUG_KMS("FDI train done.\n");
3191}
3192
88cefb6c 3193static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3194{
88cefb6c 3195 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3196 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3197 int pipe = intel_crtc->pipe;
5eddb70b 3198 u32 reg, temp;
79e53945 3199
c64e311e 3200
c98e9dcf 3201 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3202 reg = FDI_RX_CTL(pipe);
3203 temp = I915_READ(reg);
627eb5a3
DV
3204 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3205 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3206 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3207 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3208
3209 POSTING_READ(reg);
c98e9dcf
JB
3210 udelay(200);
3211
3212 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3213 temp = I915_READ(reg);
3214 I915_WRITE(reg, temp | FDI_PCDCLK);
3215
3216 POSTING_READ(reg);
c98e9dcf
JB
3217 udelay(200);
3218
20749730
PZ
3219 /* Enable CPU FDI TX PLL, always on for Ironlake */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3223 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3224
20749730
PZ
3225 POSTING_READ(reg);
3226 udelay(100);
6be4a607 3227 }
0e23b99d
JB
3228}
3229
88cefb6c
DV
3230static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3231{
3232 struct drm_device *dev = intel_crtc->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 int pipe = intel_crtc->pipe;
3235 u32 reg, temp;
3236
3237 /* Switch from PCDclk to Rawclk */
3238 reg = FDI_RX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3241
3242 /* Disable CPU FDI TX PLL */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3246
3247 POSTING_READ(reg);
3248 udelay(100);
3249
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
3252 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3253
3254 /* Wait for the clocks to turn off. */
3255 POSTING_READ(reg);
3256 udelay(100);
3257}
3258
0fc932b8
JB
3259static void ironlake_fdi_disable(struct drm_crtc *crtc)
3260{
3261 struct drm_device *dev = crtc->dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3264 int pipe = intel_crtc->pipe;
3265 u32 reg, temp;
3266
3267 /* disable CPU FDI tx and PCH FDI rx */
3268 reg = FDI_TX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3271 POSTING_READ(reg);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~(0x7 << 16);
dfd07d72 3276 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3277 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3278
3279 POSTING_READ(reg);
3280 udelay(100);
3281
3282 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3283 if (HAS_PCH_IBX(dev))
6f06ce18 3284 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3285
3286 /* still set train pattern 1 */
3287 reg = FDI_TX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_1;
3291 I915_WRITE(reg, temp);
3292
3293 reg = FDI_RX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if (HAS_PCH_CPT(dev)) {
3296 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3298 } else {
3299 temp &= ~FDI_LINK_TRAIN_NONE;
3300 temp |= FDI_LINK_TRAIN_PATTERN_1;
3301 }
3302 /* BPC in FDI rx is consistent with that in PIPECONF */
3303 temp &= ~(0x07 << 16);
dfd07d72 3304 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3305 I915_WRITE(reg, temp);
3306
3307 POSTING_READ(reg);
3308 udelay(100);
3309}
3310
5dce5b93
CW
3311bool intel_has_pending_fb_unpin(struct drm_device *dev)
3312{
3313 struct intel_crtc *crtc;
3314
3315 /* Note that we don't need to be called with mode_config.lock here
3316 * as our list of CRTC objects is static for the lifetime of the
3317 * device and so cannot disappear as we iterate. Similarly, we can
3318 * happily treat the predicates as racy, atomic checks as userspace
3319 * cannot claim and pin a new fb without at least acquring the
3320 * struct_mutex and so serialising with us.
3321 */
d3fcc808 3322 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3323 if (atomic_read(&crtc->unpin_work_count) == 0)
3324 continue;
3325
3326 if (crtc->unpin_work)
3327 intel_wait_for_vblank(dev, crtc->pipe);
3328
3329 return true;
3330 }
3331
3332 return false;
3333}
3334
46a55d30 3335void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3336{
0f91128d 3337 struct drm_device *dev = crtc->dev;
5bb61643 3338 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3339
f4510a27 3340 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3341 return;
3342
2c10d571
DV
3343 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3344
eed6d67d
DV
3345 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3346 !intel_crtc_has_pending_flip(crtc),
3347 60*HZ) == 0);
5bb61643 3348
0f91128d 3349 mutex_lock(&dev->struct_mutex);
f4510a27 3350 intel_finish_fb(crtc->primary->fb);
0f91128d 3351 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3352}
3353
e615efe4
ED
3354/* Program iCLKIP clock to the desired frequency */
3355static void lpt_program_iclkip(struct drm_crtc *crtc)
3356{
3357 struct drm_device *dev = crtc->dev;
3358 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3359 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3360 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3361 u32 temp;
3362
09153000
DV
3363 mutex_lock(&dev_priv->dpio_lock);
3364
e615efe4
ED
3365 /* It is necessary to ungate the pixclk gate prior to programming
3366 * the divisors, and gate it back when it is done.
3367 */
3368 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3369
3370 /* Disable SSCCTL */
3371 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3372 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3373 SBI_SSCCTL_DISABLE,
3374 SBI_ICLK);
e615efe4
ED
3375
3376 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3377 if (clock == 20000) {
e615efe4
ED
3378 auxdiv = 1;
3379 divsel = 0x41;
3380 phaseinc = 0x20;
3381 } else {
3382 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3383 * but the adjusted_mode->crtc_clock in in KHz. To get the
3384 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3385 * convert the virtual clock precision to KHz here for higher
3386 * precision.
3387 */
3388 u32 iclk_virtual_root_freq = 172800 * 1000;
3389 u32 iclk_pi_range = 64;
3390 u32 desired_divisor, msb_divisor_value, pi_value;
3391
12d7ceed 3392 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3393 msb_divisor_value = desired_divisor / iclk_pi_range;
3394 pi_value = desired_divisor % iclk_pi_range;
3395
3396 auxdiv = 0;
3397 divsel = msb_divisor_value - 2;
3398 phaseinc = pi_value;
3399 }
3400
3401 /* This should not happen with any sane values */
3402 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3403 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3404 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3405 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3406
3407 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3408 clock,
e615efe4
ED
3409 auxdiv,
3410 divsel,
3411 phasedir,
3412 phaseinc);
3413
3414 /* Program SSCDIVINTPHASE6 */
988d6ee8 3415 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3416 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3417 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3418 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3419 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3420 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3421 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3422 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3423
3424 /* Program SSCAUXDIV */
988d6ee8 3425 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3426 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3427 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Enable modulator and associated divider */
988d6ee8 3431 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3432 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3433 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3434
3435 /* Wait for initialization time */
3436 udelay(24);
3437
3438 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3439
3440 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3441}
3442
275f01b2
DV
3443static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3444 enum pipe pch_transcoder)
3445{
3446 struct drm_device *dev = crtc->base.dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3449
3450 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3451 I915_READ(HTOTAL(cpu_transcoder)));
3452 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3453 I915_READ(HBLANK(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3455 I915_READ(HSYNC(cpu_transcoder)));
3456
3457 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3458 I915_READ(VTOTAL(cpu_transcoder)));
3459 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3460 I915_READ(VBLANK(cpu_transcoder)));
3461 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3462 I915_READ(VSYNC(cpu_transcoder)));
3463 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3464 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3465}
3466
1fbc0d78
DV
3467static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3468{
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t temp;
3471
3472 temp = I915_READ(SOUTH_CHICKEN1);
3473 if (temp & FDI_BC_BIFURCATION_SELECT)
3474 return;
3475
3476 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3477 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3478
3479 temp |= FDI_BC_BIFURCATION_SELECT;
3480 DRM_DEBUG_KMS("enabling fdi C rx\n");
3481 I915_WRITE(SOUTH_CHICKEN1, temp);
3482 POSTING_READ(SOUTH_CHICKEN1);
3483}
3484
3485static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3486{
3487 struct drm_device *dev = intel_crtc->base.dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490 switch (intel_crtc->pipe) {
3491 case PIPE_A:
3492 break;
3493 case PIPE_B:
3494 if (intel_crtc->config.fdi_lanes > 2)
3495 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3496 else
3497 cpt_enable_fdi_bc_bifurcation(dev);
3498
3499 break;
3500 case PIPE_C:
3501 cpt_enable_fdi_bc_bifurcation(dev);
3502
3503 break;
3504 default:
3505 BUG();
3506 }
3507}
3508
f67a559d
JB
3509/*
3510 * Enable PCH resources required for PCH ports:
3511 * - PCH PLLs
3512 * - FDI training & RX/TX
3513 * - update transcoder timings
3514 * - DP transcoding bits
3515 * - transcoder
3516 */
3517static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3518{
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 int pipe = intel_crtc->pipe;
ee7b9f93 3523 u32 reg, temp;
2c07245f 3524
ab9412ba 3525 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3526
1fbc0d78
DV
3527 if (IS_IVYBRIDGE(dev))
3528 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3529
cd986abb
DV
3530 /* Write the TU size bits before fdi link training, so that error
3531 * detection works. */
3532 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3533 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3534
c98e9dcf 3535 /* For PCH output, training FDI link */
674cf967 3536 dev_priv->display.fdi_link_train(crtc);
2c07245f 3537
3ad8a208
DV
3538 /* We need to program the right clock selection before writing the pixel
3539 * mutliplier into the DPLL. */
303b81e0 3540 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3541 u32 sel;
4b645f14 3542
c98e9dcf 3543 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3544 temp |= TRANS_DPLL_ENABLE(pipe);
3545 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3546 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3547 temp |= sel;
3548 else
3549 temp &= ~sel;
c98e9dcf 3550 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3551 }
5eddb70b 3552
3ad8a208
DV
3553 /* XXX: pch pll's can be enabled any time before we enable the PCH
3554 * transcoder, and we actually should do this to not upset any PCH
3555 * transcoder that already use the clock when we share it.
3556 *
3557 * Note that enable_shared_dpll tries to do the right thing, but
3558 * get_shared_dpll unconditionally resets the pll - we need that to have
3559 * the right LVDS enable sequence. */
85b3894f 3560 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3561
d9b6cb56
JB
3562 /* set transcoder timing, panel must allow it */
3563 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3564 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3565
303b81e0 3566 intel_fdi_normal_train(crtc);
5e84e1a4 3567
c98e9dcf
JB
3568 /* For PCH DP, enable TRANS_DP_CTL */
3569 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3570 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3571 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3572 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3573 reg = TRANS_DP_CTL(pipe);
3574 temp = I915_READ(reg);
3575 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3576 TRANS_DP_SYNC_MASK |
3577 TRANS_DP_BPC_MASK);
5eddb70b
CW
3578 temp |= (TRANS_DP_OUTPUT_ENABLE |
3579 TRANS_DP_ENH_FRAMING);
9325c9f0 3580 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3581
3582 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3583 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3584 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3585 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3586
3587 switch (intel_trans_dp_port_sel(crtc)) {
3588 case PCH_DP_B:
5eddb70b 3589 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3590 break;
3591 case PCH_DP_C:
5eddb70b 3592 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3593 break;
3594 case PCH_DP_D:
5eddb70b 3595 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3596 break;
3597 default:
e95d41e1 3598 BUG();
32f9d658 3599 }
2c07245f 3600
5eddb70b 3601 I915_WRITE(reg, temp);
6be4a607 3602 }
b52eb4dc 3603
b8a4f404 3604 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3605}
3606
1507e5bd
PZ
3607static void lpt_pch_enable(struct drm_crtc *crtc)
3608{
3609 struct drm_device *dev = crtc->dev;
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3612 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3613
ab9412ba 3614 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3615
8c52b5e8 3616 lpt_program_iclkip(crtc);
1507e5bd 3617
0540e488 3618 /* Set transcoder timing. */
275f01b2 3619 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3620
937bb610 3621 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3622}
3623
e2b78267 3624static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3625{
e2b78267 3626 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3627
3628 if (pll == NULL)
3629 return;
3630
3631 if (pll->refcount == 0) {
46edb027 3632 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3633 return;
3634 }
3635
f4a091c7
DV
3636 if (--pll->refcount == 0) {
3637 WARN_ON(pll->on);
3638 WARN_ON(pll->active);
3639 }
3640
a43f6e0f 3641 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3642}
3643
b89a1d39 3644static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3645{
e2b78267
DV
3646 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3647 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3648 enum intel_dpll_id i;
ee7b9f93 3649
ee7b9f93 3650 if (pll) {
46edb027
DV
3651 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3652 crtc->base.base.id, pll->name);
e2b78267 3653 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3654 }
3655
98b6bd99
DV
3656 if (HAS_PCH_IBX(dev_priv->dev)) {
3657 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3658 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3659 pll = &dev_priv->shared_dplls[i];
98b6bd99 3660
46edb027
DV
3661 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3662 crtc->base.base.id, pll->name);
98b6bd99 3663
f2a69f44
DV
3664 WARN_ON(pll->refcount);
3665
98b6bd99
DV
3666 goto found;
3667 }
3668
e72f9fbf
DV
3669 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3670 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3671
3672 /* Only want to check enabled timings first */
3673 if (pll->refcount == 0)
3674 continue;
3675
b89a1d39
DV
3676 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3677 sizeof(pll->hw_state)) == 0) {
46edb027 3678 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3679 crtc->base.base.id,
46edb027 3680 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3681
3682 goto found;
3683 }
3684 }
3685
3686 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3687 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3688 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3689 if (pll->refcount == 0) {
46edb027
DV
3690 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3691 crtc->base.base.id, pll->name);
ee7b9f93
JB
3692 goto found;
3693 }
3694 }
3695
3696 return NULL;
3697
3698found:
f2a69f44
DV
3699 if (pll->refcount == 0)
3700 pll->hw_state = crtc->config.dpll_hw_state;
3701
a43f6e0f 3702 crtc->config.shared_dpll = i;
46edb027
DV
3703 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3704 pipe_name(crtc->pipe));
ee7b9f93 3705
cdbd2316 3706 pll->refcount++;
e04c7350 3707
ee7b9f93
JB
3708 return pll;
3709}
3710
a1520318 3711static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3712{
3713 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3714 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3715 u32 temp;
3716
3717 temp = I915_READ(dslreg);
3718 udelay(500);
3719 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3720 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3721 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3722 }
3723}
3724
b074cec8
JB
3725static void ironlake_pfit_enable(struct intel_crtc *crtc)
3726{
3727 struct drm_device *dev = crtc->base.dev;
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 int pipe = crtc->pipe;
3730
fd4daa9c 3731 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3732 /* Force use of hard-coded filter coefficients
3733 * as some pre-programmed values are broken,
3734 * e.g. x201.
3735 */
3736 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3737 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3738 PF_PIPE_SEL_IVB(pipe));
3739 else
3740 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3741 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3742 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3743 }
3744}
3745
bb53d4ae
VS
3746static void intel_enable_planes(struct drm_crtc *crtc)
3747{
3748 struct drm_device *dev = crtc->dev;
3749 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3750 struct drm_plane *plane;
bb53d4ae
VS
3751 struct intel_plane *intel_plane;
3752
af2b653b
MR
3753 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3754 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3755 if (intel_plane->pipe == pipe)
3756 intel_plane_restore(&intel_plane->base);
af2b653b 3757 }
bb53d4ae
VS
3758}
3759
3760static void intel_disable_planes(struct drm_crtc *crtc)
3761{
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3764 struct drm_plane *plane;
bb53d4ae
VS
3765 struct intel_plane *intel_plane;
3766
af2b653b
MR
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_disable(&intel_plane->base);
af2b653b 3771 }
bb53d4ae
VS
3772}
3773
20bc8673 3774void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3775{
cea165c3
VS
3776 struct drm_device *dev = crtc->base.dev;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3778
3779 if (!crtc->config.ips_enabled)
3780 return;
3781
cea165c3
VS
3782 /* We can only enable IPS after we enable a plane and wait for a vblank */
3783 intel_wait_for_vblank(dev, crtc->pipe);
3784
d77e4531 3785 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3786 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3789 mutex_unlock(&dev_priv->rps.hw_lock);
3790 /* Quoting Art Runyan: "its not safe to expect any particular
3791 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3792 * mailbox." Moreover, the mailbox may return a bogus state,
3793 * so we need to just enable it and continue on.
2a114cc1
BW
3794 */
3795 } else {
3796 I915_WRITE(IPS_CTL, IPS_ENABLE);
3797 /* The bit only becomes 1 in the next vblank, so this wait here
3798 * is essentially intel_wait_for_vblank. If we don't have this
3799 * and don't wait for vblanks until the end of crtc_enable, then
3800 * the HW state readout code will complain that the expected
3801 * IPS_CTL value is not the one we read. */
3802 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3803 DRM_ERROR("Timed out waiting for IPS enable\n");
3804 }
d77e4531
PZ
3805}
3806
20bc8673 3807void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3808{
3809 struct drm_device *dev = crtc->base.dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811
3812 if (!crtc->config.ips_enabled)
3813 return;
3814
3815 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3816 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3817 mutex_lock(&dev_priv->rps.hw_lock);
3818 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3819 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3820 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3821 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3822 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3823 } else {
2a114cc1 3824 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3825 POSTING_READ(IPS_CTL);
3826 }
d77e4531
PZ
3827
3828 /* We need to wait for a vblank before we can disable the plane. */
3829 intel_wait_for_vblank(dev, crtc->pipe);
3830}
3831
3832/** Loads the palette/gamma unit for the CRTC with the prepared values */
3833static void intel_crtc_load_lut(struct drm_crtc *crtc)
3834{
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3838 enum pipe pipe = intel_crtc->pipe;
3839 int palreg = PALETTE(pipe);
3840 int i;
3841 bool reenable_ips = false;
3842
3843 /* The clocks have to be on to load the palette. */
3844 if (!crtc->enabled || !intel_crtc->active)
3845 return;
3846
3847 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3848 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3849 assert_dsi_pll_enabled(dev_priv);
3850 else
3851 assert_pll_enabled(dev_priv, pipe);
3852 }
3853
3854 /* use legacy palette for Ironlake */
3855 if (HAS_PCH_SPLIT(dev))
3856 palreg = LGC_PALETTE(pipe);
3857
3858 /* Workaround : Do not read or write the pipe palette/gamma data while
3859 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3860 */
41e6fc4c 3861 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3862 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3863 GAMMA_MODE_MODE_SPLIT)) {
3864 hsw_disable_ips(intel_crtc);
3865 reenable_ips = true;
3866 }
3867
3868 for (i = 0; i < 256; i++) {
3869 I915_WRITE(palreg + 4 * i,
3870 (intel_crtc->lut_r[i] << 16) |
3871 (intel_crtc->lut_g[i] << 8) |
3872 intel_crtc->lut_b[i]);
3873 }
3874
3875 if (reenable_ips)
3876 hsw_enable_ips(intel_crtc);
3877}
3878
d3eedb1a
VS
3879static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3880{
3881 if (!enable && intel_crtc->overlay) {
3882 struct drm_device *dev = intel_crtc->base.dev;
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884
3885 mutex_lock(&dev->struct_mutex);
3886 dev_priv->mm.interruptible = false;
3887 (void) intel_overlay_switch_off(intel_crtc->overlay);
3888 dev_priv->mm.interruptible = true;
3889 mutex_unlock(&dev->struct_mutex);
3890 }
3891
3892 /* Let userspace switch the overlay on again. In most cases userspace
3893 * has to recompute where to put it anyway.
3894 */
3895}
3896
3897/**
3898 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3899 * cursor plane briefly if not already running after enabling the display
3900 * plane.
3901 * This workaround avoids occasional blank screens when self refresh is
3902 * enabled.
3903 */
3904static void
3905g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3906{
3907 u32 cntl = I915_READ(CURCNTR(pipe));
3908
3909 if ((cntl & CURSOR_MODE) == 0) {
3910 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3911
3912 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3913 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3914 intel_wait_for_vblank(dev_priv->dev, pipe);
3915 I915_WRITE(CURCNTR(pipe), cntl);
3916 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3917 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3918 }
3919}
3920
3921static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3922{
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3926 int pipe = intel_crtc->pipe;
3927 int plane = intel_crtc->plane;
3928
f98551ae
VS
3929 drm_vblank_on(dev, pipe);
3930
a5c4d7bc
VS
3931 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3932 intel_enable_planes(crtc);
d3eedb1a
VS
3933 /* The fixup needs to happen before cursor is enabled */
3934 if (IS_G4X(dev))
3935 g4x_fixup_plane(dev_priv, pipe);
a5c4d7bc 3936 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3937 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3938
3939 hsw_enable_ips(intel_crtc);
3940
3941 mutex_lock(&dev->struct_mutex);
3942 intel_update_fbc(dev);
3943 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3944
3945 /*
3946 * FIXME: Once we grow proper nuclear flip support out of this we need
3947 * to compute the mask of flip planes precisely. For the time being
3948 * consider this a flip from a NULL plane.
3949 */
3950 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3951}
3952
d3eedb1a 3953static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3954{
3955 struct drm_device *dev = crtc->dev;
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3957 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3958 int pipe = intel_crtc->pipe;
3959 int plane = intel_crtc->plane;
3960
3961 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3962
3963 if (dev_priv->fbc.plane == plane)
3964 intel_disable_fbc(dev);
3965
3966 hsw_disable_ips(intel_crtc);
3967
d3eedb1a 3968 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3969 intel_crtc_update_cursor(crtc, false);
3970 intel_disable_planes(crtc);
3971 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3972
f99d7069
DV
3973 /*
3974 * FIXME: Once we grow proper nuclear flip support out of this we need
3975 * to compute the mask of flip planes precisely. For the time being
3976 * consider this a flip to a NULL plane.
3977 */
3978 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3979
f98551ae 3980 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3981}
3982
f67a559d
JB
3983static void ironlake_crtc_enable(struct drm_crtc *crtc)
3984{
3985 struct drm_device *dev = crtc->dev;
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3988 struct intel_encoder *encoder;
f67a559d 3989 int pipe = intel_crtc->pipe;
29407aab 3990 enum plane plane = intel_crtc->plane;
f67a559d 3991
08a48469
DV
3992 WARN_ON(!crtc->enabled);
3993
f67a559d
JB
3994 if (intel_crtc->active)
3995 return;
3996
b14b1055
DV
3997 if (intel_crtc->config.has_pch_encoder)
3998 intel_prepare_shared_dpll(intel_crtc);
3999
29407aab
DV
4000 if (intel_crtc->config.has_dp_encoder)
4001 intel_dp_set_m_n(intel_crtc);
4002
4003 intel_set_pipe_timings(intel_crtc);
4004
4005 if (intel_crtc->config.has_pch_encoder) {
4006 intel_cpu_transcoder_set_m_n(intel_crtc,
4007 &intel_crtc->config.fdi_m_n);
4008 }
4009
4010 ironlake_set_pipeconf(crtc);
4011
4012 /* Set up the display plane register */
4013 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4014 POSTING_READ(DSPCNTR(plane));
4015
4016 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4017 crtc->x, crtc->y);
4018
f67a559d 4019 intel_crtc->active = true;
8664281b
PZ
4020
4021 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4022 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4023
f6736a1a 4024 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4025 if (encoder->pre_enable)
4026 encoder->pre_enable(encoder);
f67a559d 4027
5bfe2ac0 4028 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4029 /* Note: FDI PLL enabling _must_ be done before we enable the
4030 * cpu pipes, hence this is separate from all the other fdi/pch
4031 * enabling. */
88cefb6c 4032 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4033 } else {
4034 assert_fdi_tx_disabled(dev_priv, pipe);
4035 assert_fdi_rx_disabled(dev_priv, pipe);
4036 }
f67a559d 4037
b074cec8 4038 ironlake_pfit_enable(intel_crtc);
f67a559d 4039
9c54c0dd
JB
4040 /*
4041 * On ILK+ LUT must be loaded before the pipe is running but with
4042 * clocks enabled
4043 */
4044 intel_crtc_load_lut(crtc);
4045
f37fcc2a 4046 intel_update_watermarks(crtc);
e1fdc473 4047 intel_enable_pipe(intel_crtc);
f67a559d 4048
5bfe2ac0 4049 if (intel_crtc->config.has_pch_encoder)
f67a559d 4050 ironlake_pch_enable(crtc);
c98e9dcf 4051
fa5c73b1
DV
4052 for_each_encoder_on_crtc(dev, crtc, encoder)
4053 encoder->enable(encoder);
61b77ddd
DV
4054
4055 if (HAS_PCH_CPT(dev))
a1520318 4056 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4057
d3eedb1a 4058 intel_crtc_enable_planes(crtc);
6be4a607
JB
4059}
4060
42db64ef
PZ
4061/* IPS only exists on ULT machines and is tied to pipe A. */
4062static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4063{
f5adf94e 4064 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4065}
4066
e4916946
PZ
4067/*
4068 * This implements the workaround described in the "notes" section of the mode
4069 * set sequence documentation. When going from no pipes or single pipe to
4070 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4071 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4072 */
4073static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4074{
4075 struct drm_device *dev = crtc->base.dev;
4076 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4077
4078 /* We want to get the other_active_crtc only if there's only 1 other
4079 * active crtc. */
d3fcc808 4080 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4081 if (!crtc_it->active || crtc_it == crtc)
4082 continue;
4083
4084 if (other_active_crtc)
4085 return;
4086
4087 other_active_crtc = crtc_it;
4088 }
4089 if (!other_active_crtc)
4090 return;
4091
4092 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4093 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4094}
4095
4f771f10
PZ
4096static void haswell_crtc_enable(struct drm_crtc *crtc)
4097{
4098 struct drm_device *dev = crtc->dev;
4099 struct drm_i915_private *dev_priv = dev->dev_private;
4100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4101 struct intel_encoder *encoder;
4102 int pipe = intel_crtc->pipe;
229fca97 4103 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4104
4105 WARN_ON(!crtc->enabled);
4106
4107 if (intel_crtc->active)
4108 return;
4109
229fca97
DV
4110 if (intel_crtc->config.has_dp_encoder)
4111 intel_dp_set_m_n(intel_crtc);
4112
4113 intel_set_pipe_timings(intel_crtc);
4114
4115 if (intel_crtc->config.has_pch_encoder) {
4116 intel_cpu_transcoder_set_m_n(intel_crtc,
4117 &intel_crtc->config.fdi_m_n);
4118 }
4119
4120 haswell_set_pipeconf(crtc);
4121
4122 intel_set_pipe_csc(crtc);
4123
4124 /* Set up the display plane register */
4125 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4126 POSTING_READ(DSPCNTR(plane));
4127
4128 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4129 crtc->x, crtc->y);
4130
4f771f10 4131 intel_crtc->active = true;
8664281b
PZ
4132
4133 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4134 if (intel_crtc->config.has_pch_encoder)
4135 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4136
5bfe2ac0 4137 if (intel_crtc->config.has_pch_encoder)
04945641 4138 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4139
4140 for_each_encoder_on_crtc(dev, crtc, encoder)
4141 if (encoder->pre_enable)
4142 encoder->pre_enable(encoder);
4143
1f544388 4144 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4145
b074cec8 4146 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4147
4148 /*
4149 * On ILK+ LUT must be loaded before the pipe is running but with
4150 * clocks enabled
4151 */
4152 intel_crtc_load_lut(crtc);
4153
1f544388 4154 intel_ddi_set_pipe_settings(crtc);
8228c251 4155 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4156
f37fcc2a 4157 intel_update_watermarks(crtc);
e1fdc473 4158 intel_enable_pipe(intel_crtc);
42db64ef 4159
5bfe2ac0 4160 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4161 lpt_pch_enable(crtc);
4f771f10 4162
8807e55b 4163 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4164 encoder->enable(encoder);
8807e55b
JN
4165 intel_opregion_notify_encoder(encoder, true);
4166 }
4f771f10 4167
e4916946
PZ
4168 /* If we change the relative order between pipe/planes enabling, we need
4169 * to change the workaround. */
4170 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4171 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4172}
4173
3f8dce3a
DV
4174static void ironlake_pfit_disable(struct intel_crtc *crtc)
4175{
4176 struct drm_device *dev = crtc->base.dev;
4177 struct drm_i915_private *dev_priv = dev->dev_private;
4178 int pipe = crtc->pipe;
4179
4180 /* To avoid upsetting the power well on haswell only disable the pfit if
4181 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4182 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4183 I915_WRITE(PF_CTL(pipe), 0);
4184 I915_WRITE(PF_WIN_POS(pipe), 0);
4185 I915_WRITE(PF_WIN_SZ(pipe), 0);
4186 }
4187}
4188
6be4a607
JB
4189static void ironlake_crtc_disable(struct drm_crtc *crtc)
4190{
4191 struct drm_device *dev = crtc->dev;
4192 struct drm_i915_private *dev_priv = dev->dev_private;
4193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4194 struct intel_encoder *encoder;
6be4a607 4195 int pipe = intel_crtc->pipe;
5eddb70b 4196 u32 reg, temp;
b52eb4dc 4197
f7abfe8b
CW
4198 if (!intel_crtc->active)
4199 return;
4200
d3eedb1a 4201 intel_crtc_disable_planes(crtc);
a5c4d7bc 4202
ea9d758d
DV
4203 for_each_encoder_on_crtc(dev, crtc, encoder)
4204 encoder->disable(encoder);
4205
d925c59a
DV
4206 if (intel_crtc->config.has_pch_encoder)
4207 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4208
b24e7179 4209 intel_disable_pipe(dev_priv, pipe);
32f9d658 4210
3f8dce3a 4211 ironlake_pfit_disable(intel_crtc);
2c07245f 4212
bf49ec8c
DV
4213 for_each_encoder_on_crtc(dev, crtc, encoder)
4214 if (encoder->post_disable)
4215 encoder->post_disable(encoder);
2c07245f 4216
d925c59a
DV
4217 if (intel_crtc->config.has_pch_encoder) {
4218 ironlake_fdi_disable(crtc);
913d8d11 4219
d925c59a
DV
4220 ironlake_disable_pch_transcoder(dev_priv, pipe);
4221 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4222
d925c59a
DV
4223 if (HAS_PCH_CPT(dev)) {
4224 /* disable TRANS_DP_CTL */
4225 reg = TRANS_DP_CTL(pipe);
4226 temp = I915_READ(reg);
4227 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4228 TRANS_DP_PORT_SEL_MASK);
4229 temp |= TRANS_DP_PORT_SEL_NONE;
4230 I915_WRITE(reg, temp);
4231
4232 /* disable DPLL_SEL */
4233 temp = I915_READ(PCH_DPLL_SEL);
11887397 4234 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4235 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4236 }
e3421a18 4237
d925c59a 4238 /* disable PCH DPLL */
e72f9fbf 4239 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4240
d925c59a
DV
4241 ironlake_fdi_pll_disable(intel_crtc);
4242 }
6b383a7f 4243
f7abfe8b 4244 intel_crtc->active = false;
46ba614c 4245 intel_update_watermarks(crtc);
d1ebd816
BW
4246
4247 mutex_lock(&dev->struct_mutex);
6b383a7f 4248 intel_update_fbc(dev);
d1ebd816 4249 mutex_unlock(&dev->struct_mutex);
6be4a607 4250}
1b3c7a47 4251
4f771f10 4252static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4253{
4f771f10
PZ
4254 struct drm_device *dev = crtc->dev;
4255 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4257 struct intel_encoder *encoder;
4258 int pipe = intel_crtc->pipe;
3b117c8f 4259 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4260
4f771f10
PZ
4261 if (!intel_crtc->active)
4262 return;
4263
d3eedb1a 4264 intel_crtc_disable_planes(crtc);
dda9a66a 4265
8807e55b
JN
4266 for_each_encoder_on_crtc(dev, crtc, encoder) {
4267 intel_opregion_notify_encoder(encoder, false);
4f771f10 4268 encoder->disable(encoder);
8807e55b 4269 }
4f771f10 4270
8664281b
PZ
4271 if (intel_crtc->config.has_pch_encoder)
4272 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4273 intel_disable_pipe(dev_priv, pipe);
4274
ad80a810 4275 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4276
3f8dce3a 4277 ironlake_pfit_disable(intel_crtc);
4f771f10 4278
1f544388 4279 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4280
4281 for_each_encoder_on_crtc(dev, crtc, encoder)
4282 if (encoder->post_disable)
4283 encoder->post_disable(encoder);
4284
88adfff1 4285 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4286 lpt_disable_pch_transcoder(dev_priv);
8664281b 4287 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4288 intel_ddi_fdi_disable(crtc);
83616634 4289 }
4f771f10
PZ
4290
4291 intel_crtc->active = false;
46ba614c 4292 intel_update_watermarks(crtc);
4f771f10
PZ
4293
4294 mutex_lock(&dev->struct_mutex);
4295 intel_update_fbc(dev);
4296 mutex_unlock(&dev->struct_mutex);
4297}
4298
ee7b9f93
JB
4299static void ironlake_crtc_off(struct drm_crtc *crtc)
4300{
4301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4302 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4303}
4304
6441ab5f
PZ
4305static void haswell_crtc_off(struct drm_crtc *crtc)
4306{
4307 intel_ddi_put_crtc_pll(crtc);
4308}
4309
2dd24552
JB
4310static void i9xx_pfit_enable(struct intel_crtc *crtc)
4311{
4312 struct drm_device *dev = crtc->base.dev;
4313 struct drm_i915_private *dev_priv = dev->dev_private;
4314 struct intel_crtc_config *pipe_config = &crtc->config;
4315
328d8e82 4316 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4317 return;
4318
2dd24552 4319 /*
c0b03411
DV
4320 * The panel fitter should only be adjusted whilst the pipe is disabled,
4321 * according to register description and PRM.
2dd24552 4322 */
c0b03411
DV
4323 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4324 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4325
b074cec8
JB
4326 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4327 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4328
4329 /* Border color in case we don't scale up to the full screen. Black by
4330 * default, change to something else for debugging. */
4331 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4332}
4333
77d22dca
ID
4334#define for_each_power_domain(domain, mask) \
4335 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4336 if ((1 << (domain)) & (mask))
4337
319be8ae
ID
4338enum intel_display_power_domain
4339intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4340{
4341 struct drm_device *dev = intel_encoder->base.dev;
4342 struct intel_digital_port *intel_dig_port;
4343
4344 switch (intel_encoder->type) {
4345 case INTEL_OUTPUT_UNKNOWN:
4346 /* Only DDI platforms should ever use this output type */
4347 WARN_ON_ONCE(!HAS_DDI(dev));
4348 case INTEL_OUTPUT_DISPLAYPORT:
4349 case INTEL_OUTPUT_HDMI:
4350 case INTEL_OUTPUT_EDP:
4351 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4352 switch (intel_dig_port->port) {
4353 case PORT_A:
4354 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4355 case PORT_B:
4356 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4357 case PORT_C:
4358 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4359 case PORT_D:
4360 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4361 default:
4362 WARN_ON_ONCE(1);
4363 return POWER_DOMAIN_PORT_OTHER;
4364 }
4365 case INTEL_OUTPUT_ANALOG:
4366 return POWER_DOMAIN_PORT_CRT;
4367 case INTEL_OUTPUT_DSI:
4368 return POWER_DOMAIN_PORT_DSI;
4369 default:
4370 return POWER_DOMAIN_PORT_OTHER;
4371 }
4372}
4373
4374static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4375{
319be8ae
ID
4376 struct drm_device *dev = crtc->dev;
4377 struct intel_encoder *intel_encoder;
4378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4379 enum pipe pipe = intel_crtc->pipe;
4380 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
77d22dca
ID
4381 unsigned long mask;
4382 enum transcoder transcoder;
4383
4384 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4385
4386 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4387 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4388 if (pfit_enabled)
4389 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4390
319be8ae
ID
4391 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4392 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4393
77d22dca
ID
4394 return mask;
4395}
4396
4397void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4398 bool enable)
4399{
4400 if (dev_priv->power_domains.init_power_on == enable)
4401 return;
4402
4403 if (enable)
4404 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4405 else
4406 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4407
4408 dev_priv->power_domains.init_power_on = enable;
4409}
4410
4411static void modeset_update_crtc_power_domains(struct drm_device *dev)
4412{
4413 struct drm_i915_private *dev_priv = dev->dev_private;
4414 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4415 struct intel_crtc *crtc;
4416
4417 /*
4418 * First get all needed power domains, then put all unneeded, to avoid
4419 * any unnecessary toggling of the power wells.
4420 */
d3fcc808 4421 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4422 enum intel_display_power_domain domain;
4423
4424 if (!crtc->base.enabled)
4425 continue;
4426
319be8ae 4427 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4428
4429 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4430 intel_display_power_get(dev_priv, domain);
4431 }
4432
d3fcc808 4433 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4434 enum intel_display_power_domain domain;
4435
4436 for_each_power_domain(domain, crtc->enabled_power_domains)
4437 intel_display_power_put(dev_priv, domain);
4438
4439 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4440 }
4441
4442 intel_display_set_init_power(dev_priv, false);
4443}
4444
dfcab17e 4445/* returns HPLL frequency in kHz */
f8bf63fd 4446static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4447{
586f49dc 4448 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4449
586f49dc
JB
4450 /* Obtain SKU information */
4451 mutex_lock(&dev_priv->dpio_lock);
4452 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4453 CCK_FUSE_HPLL_FREQ_MASK;
4454 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4455
dfcab17e 4456 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4457}
4458
f8bf63fd
VS
4459static void vlv_update_cdclk(struct drm_device *dev)
4460{
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462
4463 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4464 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4465 dev_priv->vlv_cdclk_freq);
4466
4467 /*
4468 * Program the gmbus_freq based on the cdclk frequency.
4469 * BSpec erroneously claims we should aim for 4MHz, but
4470 * in fact 1MHz is the correct frequency.
4471 */
4472 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4473}
4474
30a970c6
JB
4475/* Adjust CDclk dividers to allow high res or save power if possible */
4476static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4477{
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 u32 val, cmd;
4480
d197b7d3 4481 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4482
dfcab17e 4483 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4484 cmd = 2;
dfcab17e 4485 else if (cdclk == 266667)
30a970c6
JB
4486 cmd = 1;
4487 else
4488 cmd = 0;
4489
4490 mutex_lock(&dev_priv->rps.hw_lock);
4491 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4492 val &= ~DSPFREQGUAR_MASK;
4493 val |= (cmd << DSPFREQGUAR_SHIFT);
4494 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4495 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4496 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4497 50)) {
4498 DRM_ERROR("timed out waiting for CDclk change\n");
4499 }
4500 mutex_unlock(&dev_priv->rps.hw_lock);
4501
dfcab17e 4502 if (cdclk == 400000) {
30a970c6
JB
4503 u32 divider, vco;
4504
4505 vco = valleyview_get_vco(dev_priv);
dfcab17e 4506 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4507
4508 mutex_lock(&dev_priv->dpio_lock);
4509 /* adjust cdclk divider */
4510 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4511 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4512 val |= divider;
4513 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4514
4515 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4516 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4517 50))
4518 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4519 mutex_unlock(&dev_priv->dpio_lock);
4520 }
4521
4522 mutex_lock(&dev_priv->dpio_lock);
4523 /* adjust self-refresh exit latency value */
4524 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4525 val &= ~0x7f;
4526
4527 /*
4528 * For high bandwidth configs, we set a higher latency in the bunit
4529 * so that the core display fetch happens in time to avoid underruns.
4530 */
dfcab17e 4531 if (cdclk == 400000)
30a970c6
JB
4532 val |= 4500 / 250; /* 4.5 usec */
4533 else
4534 val |= 3000 / 250; /* 3.0 usec */
4535 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4536 mutex_unlock(&dev_priv->dpio_lock);
4537
f8bf63fd 4538 vlv_update_cdclk(dev);
30a970c6
JB
4539}
4540
30a970c6
JB
4541static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4542 int max_pixclk)
4543{
29dc7ef3
VS
4544 int vco = valleyview_get_vco(dev_priv);
4545 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4546
30a970c6
JB
4547 /*
4548 * Really only a few cases to deal with, as only 4 CDclks are supported:
4549 * 200MHz
4550 * 267MHz
29dc7ef3 4551 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4552 * 400MHz
4553 * So we check to see whether we're above 90% of the lower bin and
4554 * adjust if needed.
e37c67a1
VS
4555 *
4556 * We seem to get an unstable or solid color picture at 200MHz.
4557 * Not sure what's wrong. For now use 200MHz only when all pipes
4558 * are off.
30a970c6 4559 */
29dc7ef3 4560 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4561 return 400000;
4562 else if (max_pixclk > 266667*9/10)
29dc7ef3 4563 return freq_320;
e37c67a1 4564 else if (max_pixclk > 0)
dfcab17e 4565 return 266667;
e37c67a1
VS
4566 else
4567 return 200000;
30a970c6
JB
4568}
4569
2f2d7aa1
VS
4570/* compute the max pixel clock for new configuration */
4571static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4572{
4573 struct drm_device *dev = dev_priv->dev;
4574 struct intel_crtc *intel_crtc;
4575 int max_pixclk = 0;
4576
d3fcc808 4577 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4578 if (intel_crtc->new_enabled)
30a970c6 4579 max_pixclk = max(max_pixclk,
2f2d7aa1 4580 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4581 }
4582
4583 return max_pixclk;
4584}
4585
4586static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4587 unsigned *prepare_pipes)
30a970c6
JB
4588{
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590 struct intel_crtc *intel_crtc;
2f2d7aa1 4591 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4592
d60c4473
ID
4593 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4594 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4595 return;
4596
2f2d7aa1 4597 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4598 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4599 if (intel_crtc->base.enabled)
4600 *prepare_pipes |= (1 << intel_crtc->pipe);
4601}
4602
4603static void valleyview_modeset_global_resources(struct drm_device *dev)
4604{
4605 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4606 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4607 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4608
d60c4473 4609 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4610 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4611 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4612}
4613
89b667f8
JB
4614static void valleyview_crtc_enable(struct drm_crtc *crtc)
4615{
4616 struct drm_device *dev = crtc->dev;
5b18e57c 4617 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4619 struct intel_encoder *encoder;
4620 int pipe = intel_crtc->pipe;
5b18e57c 4621 int plane = intel_crtc->plane;
23538ef1 4622 bool is_dsi;
5b18e57c 4623 u32 dspcntr;
89b667f8
JB
4624
4625 WARN_ON(!crtc->enabled);
4626
4627 if (intel_crtc->active)
4628 return;
4629
8525a235
SK
4630 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4631
4632 if (!is_dsi && !IS_CHERRYVIEW(dev))
4633 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4634
5b18e57c
DV
4635 /* Set up the display plane register */
4636 dspcntr = DISPPLANE_GAMMA_ENABLE;
4637
4638 if (intel_crtc->config.has_dp_encoder)
4639 intel_dp_set_m_n(intel_crtc);
4640
4641 intel_set_pipe_timings(intel_crtc);
4642
4643 /* pipesrc and dspsize control the size that is scaled from,
4644 * which should always be the user's requested size.
4645 */
4646 I915_WRITE(DSPSIZE(plane),
4647 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4648 (intel_crtc->config.pipe_src_w - 1));
4649 I915_WRITE(DSPPOS(plane), 0);
4650
4651 i9xx_set_pipeconf(intel_crtc);
4652
4653 I915_WRITE(DSPCNTR(plane), dspcntr);
4654 POSTING_READ(DSPCNTR(plane));
4655
4656 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4657 crtc->x, crtc->y);
4658
89b667f8 4659 intel_crtc->active = true;
89b667f8 4660
4a3436e8
VS
4661 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4662
89b667f8
JB
4663 for_each_encoder_on_crtc(dev, crtc, encoder)
4664 if (encoder->pre_pll_enable)
4665 encoder->pre_pll_enable(encoder);
4666
9d556c99
CML
4667 if (!is_dsi) {
4668 if (IS_CHERRYVIEW(dev))
4669 chv_enable_pll(intel_crtc);
4670 else
4671 vlv_enable_pll(intel_crtc);
4672 }
89b667f8
JB
4673
4674 for_each_encoder_on_crtc(dev, crtc, encoder)
4675 if (encoder->pre_enable)
4676 encoder->pre_enable(encoder);
4677
2dd24552
JB
4678 i9xx_pfit_enable(intel_crtc);
4679
63cbb074
VS
4680 intel_crtc_load_lut(crtc);
4681
f37fcc2a 4682 intel_update_watermarks(crtc);
e1fdc473 4683 intel_enable_pipe(intel_crtc);
be6a6f8e 4684
5004945f
JN
4685 for_each_encoder_on_crtc(dev, crtc, encoder)
4686 encoder->enable(encoder);
9ab0460b
VS
4687
4688 intel_crtc_enable_planes(crtc);
d40d9187 4689
56b80e1f
VS
4690 /* Underruns don't raise interrupts, so check manually. */
4691 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4692}
4693
f13c2ef3
DV
4694static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4695{
4696 struct drm_device *dev = crtc->base.dev;
4697 struct drm_i915_private *dev_priv = dev->dev_private;
4698
4699 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4700 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4701}
4702
0b8765c6 4703static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4704{
4705 struct drm_device *dev = crtc->dev;
5b18e57c 4706 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4708 struct intel_encoder *encoder;
79e53945 4709 int pipe = intel_crtc->pipe;
5b18e57c
DV
4710 int plane = intel_crtc->plane;
4711 u32 dspcntr;
79e53945 4712
08a48469
DV
4713 WARN_ON(!crtc->enabled);
4714
f7abfe8b
CW
4715 if (intel_crtc->active)
4716 return;
4717
f13c2ef3
DV
4718 i9xx_set_pll_dividers(intel_crtc);
4719
5b18e57c
DV
4720 /* Set up the display plane register */
4721 dspcntr = DISPPLANE_GAMMA_ENABLE;
4722
4723 if (pipe == 0)
4724 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4725 else
4726 dspcntr |= DISPPLANE_SEL_PIPE_B;
4727
4728 if (intel_crtc->config.has_dp_encoder)
4729 intel_dp_set_m_n(intel_crtc);
4730
4731 intel_set_pipe_timings(intel_crtc);
4732
4733 /* pipesrc and dspsize control the size that is scaled from,
4734 * which should always be the user's requested size.
4735 */
4736 I915_WRITE(DSPSIZE(plane),
4737 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4738 (intel_crtc->config.pipe_src_w - 1));
4739 I915_WRITE(DSPPOS(plane), 0);
4740
4741 i9xx_set_pipeconf(intel_crtc);
4742
4743 I915_WRITE(DSPCNTR(plane), dspcntr);
4744 POSTING_READ(DSPCNTR(plane));
4745
4746 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4747 crtc->x, crtc->y);
4748
f7abfe8b 4749 intel_crtc->active = true;
6b383a7f 4750
4a3436e8
VS
4751 if (!IS_GEN2(dev))
4752 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4753
9d6d9f19
MK
4754 for_each_encoder_on_crtc(dev, crtc, encoder)
4755 if (encoder->pre_enable)
4756 encoder->pre_enable(encoder);
4757
f6736a1a
DV
4758 i9xx_enable_pll(intel_crtc);
4759
2dd24552
JB
4760 i9xx_pfit_enable(intel_crtc);
4761
63cbb074
VS
4762 intel_crtc_load_lut(crtc);
4763
f37fcc2a 4764 intel_update_watermarks(crtc);
e1fdc473 4765 intel_enable_pipe(intel_crtc);
be6a6f8e 4766
fa5c73b1
DV
4767 for_each_encoder_on_crtc(dev, crtc, encoder)
4768 encoder->enable(encoder);
9ab0460b
VS
4769
4770 intel_crtc_enable_planes(crtc);
d40d9187 4771
4a3436e8
VS
4772 /*
4773 * Gen2 reports pipe underruns whenever all planes are disabled.
4774 * So don't enable underrun reporting before at least some planes
4775 * are enabled.
4776 * FIXME: Need to fix the logic to work when we turn off all planes
4777 * but leave the pipe running.
4778 */
4779 if (IS_GEN2(dev))
4780 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4781
56b80e1f
VS
4782 /* Underruns don't raise interrupts, so check manually. */
4783 i9xx_check_fifo_underruns(dev);
0b8765c6 4784}
79e53945 4785
87476d63
DV
4786static void i9xx_pfit_disable(struct intel_crtc *crtc)
4787{
4788 struct drm_device *dev = crtc->base.dev;
4789 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4790
328d8e82
DV
4791 if (!crtc->config.gmch_pfit.control)
4792 return;
87476d63 4793
328d8e82 4794 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4795
328d8e82
DV
4796 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4797 I915_READ(PFIT_CONTROL));
4798 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4799}
4800
0b8765c6
JB
4801static void i9xx_crtc_disable(struct drm_crtc *crtc)
4802{
4803 struct drm_device *dev = crtc->dev;
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4806 struct intel_encoder *encoder;
0b8765c6 4807 int pipe = intel_crtc->pipe;
ef9c3aee 4808
f7abfe8b
CW
4809 if (!intel_crtc->active)
4810 return;
4811
4a3436e8
VS
4812 /*
4813 * Gen2 reports pipe underruns whenever all planes are disabled.
4814 * So diasble underrun reporting before all the planes get disabled.
4815 * FIXME: Need to fix the logic to work when we turn off all planes
4816 * but leave the pipe running.
4817 */
4818 if (IS_GEN2(dev))
4819 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4820
9ab0460b
VS
4821 intel_crtc_disable_planes(crtc);
4822
ea9d758d
DV
4823 for_each_encoder_on_crtc(dev, crtc, encoder)
4824 encoder->disable(encoder);
4825
6304cd91
VS
4826 /*
4827 * On gen2 planes are double buffered but the pipe isn't, so we must
4828 * wait for planes to fully turn off before disabling the pipe.
4829 */
4830 if (IS_GEN2(dev))
4831 intel_wait_for_vblank(dev, pipe);
4832
b24e7179 4833 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4834
87476d63 4835 i9xx_pfit_disable(intel_crtc);
24a1f16d 4836
89b667f8
JB
4837 for_each_encoder_on_crtc(dev, crtc, encoder)
4838 if (encoder->post_disable)
4839 encoder->post_disable(encoder);
4840
076ed3b2
CML
4841 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4842 if (IS_CHERRYVIEW(dev))
4843 chv_disable_pll(dev_priv, pipe);
4844 else if (IS_VALLEYVIEW(dev))
4845 vlv_disable_pll(dev_priv, pipe);
4846 else
4847 i9xx_disable_pll(dev_priv, pipe);
4848 }
0b8765c6 4849
4a3436e8
VS
4850 if (!IS_GEN2(dev))
4851 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4852
f7abfe8b 4853 intel_crtc->active = false;
46ba614c 4854 intel_update_watermarks(crtc);
f37fcc2a 4855
efa9624e 4856 mutex_lock(&dev->struct_mutex);
6b383a7f 4857 intel_update_fbc(dev);
efa9624e 4858 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4859}
4860
ee7b9f93
JB
4861static void i9xx_crtc_off(struct drm_crtc *crtc)
4862{
4863}
4864
976f8a20
DV
4865static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4866 bool enabled)
2c07245f
ZW
4867{
4868 struct drm_device *dev = crtc->dev;
4869 struct drm_i915_master_private *master_priv;
4870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871 int pipe = intel_crtc->pipe;
79e53945
JB
4872
4873 if (!dev->primary->master)
4874 return;
4875
4876 master_priv = dev->primary->master->driver_priv;
4877 if (!master_priv->sarea_priv)
4878 return;
4879
79e53945
JB
4880 switch (pipe) {
4881 case 0:
4882 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4883 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4884 break;
4885 case 1:
4886 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4887 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4888 break;
4889 default:
9db4a9c7 4890 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4891 break;
4892 }
79e53945
JB
4893}
4894
976f8a20
DV
4895/**
4896 * Sets the power management mode of the pipe and plane.
4897 */
4898void intel_crtc_update_dpms(struct drm_crtc *crtc)
4899{
4900 struct drm_device *dev = crtc->dev;
4901 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4903 struct intel_encoder *intel_encoder;
0e572fe7
DV
4904 enum intel_display_power_domain domain;
4905 unsigned long domains;
976f8a20
DV
4906 bool enable = false;
4907
4908 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4909 enable |= intel_encoder->connectors_active;
4910
0e572fe7
DV
4911 if (enable) {
4912 if (!intel_crtc->active) {
4913 /*
4914 * FIXME: DDI plls and relevant code isn't converted
4915 * yet, so do runtime PM for DPMS only for all other
4916 * platforms for now.
4917 */
4918 if (!HAS_DDI(dev)) {
4919 domains = get_crtc_power_domains(crtc);
4920 for_each_power_domain(domain, domains)
4921 intel_display_power_get(dev_priv, domain);
4922 intel_crtc->enabled_power_domains = domains;
4923 }
4924
4925 dev_priv->display.crtc_enable(crtc);
4926 }
4927 } else {
4928 if (intel_crtc->active) {
4929 dev_priv->display.crtc_disable(crtc);
4930
4931 if (!HAS_DDI(dev)) {
4932 domains = intel_crtc->enabled_power_domains;
4933 for_each_power_domain(domain, domains)
4934 intel_display_power_put(dev_priv, domain);
4935 intel_crtc->enabled_power_domains = 0;
4936 }
4937 }
4938 }
976f8a20
DV
4939
4940 intel_crtc_update_sarea(crtc, enable);
4941}
4942
cdd59983
CW
4943static void intel_crtc_disable(struct drm_crtc *crtc)
4944{
cdd59983 4945 struct drm_device *dev = crtc->dev;
976f8a20 4946 struct drm_connector *connector;
ee7b9f93 4947 struct drm_i915_private *dev_priv = dev->dev_private;
a071fa00
DV
4948 struct drm_i915_gem_object *old_obj;
4949 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4950
976f8a20
DV
4951 /* crtc should still be enabled when we disable it. */
4952 WARN_ON(!crtc->enabled);
4953
4954 dev_priv->display.crtc_disable(crtc);
4955 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4956 dev_priv->display.off(crtc);
4957
931872fc 4958 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4959 assert_cursor_disabled(dev_priv, pipe);
4960 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4961
f4510a27 4962 if (crtc->primary->fb) {
a071fa00 4963 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
cdd59983 4964 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4965 intel_unpin_fb_obj(old_obj);
4966 i915_gem_track_fb(old_obj, NULL,
4967 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4968 mutex_unlock(&dev->struct_mutex);
f4510a27 4969 crtc->primary->fb = NULL;
976f8a20
DV
4970 }
4971
4972 /* Update computed state. */
4973 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4974 if (!connector->encoder || !connector->encoder->crtc)
4975 continue;
4976
4977 if (connector->encoder->crtc != crtc)
4978 continue;
4979
4980 connector->dpms = DRM_MODE_DPMS_OFF;
4981 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4982 }
4983}
4984
ea5b213a 4985void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4986{
4ef69c7a 4987 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4988
ea5b213a
CW
4989 drm_encoder_cleanup(encoder);
4990 kfree(intel_encoder);
7e7d76c3
JB
4991}
4992
9237329d 4993/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4994 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4995 * state of the entire output pipe. */
9237329d 4996static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4997{
5ab432ef
DV
4998 if (mode == DRM_MODE_DPMS_ON) {
4999 encoder->connectors_active = true;
5000
b2cabb0e 5001 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5002 } else {
5003 encoder->connectors_active = false;
5004
b2cabb0e 5005 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5006 }
79e53945
JB
5007}
5008
0a91ca29
DV
5009/* Cross check the actual hw state with our own modeset state tracking (and it's
5010 * internal consistency). */
b980514c 5011static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5012{
0a91ca29
DV
5013 if (connector->get_hw_state(connector)) {
5014 struct intel_encoder *encoder = connector->encoder;
5015 struct drm_crtc *crtc;
5016 bool encoder_enabled;
5017 enum pipe pipe;
5018
5019 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5020 connector->base.base.id,
c23cc417 5021 connector->base.name);
0a91ca29
DV
5022
5023 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5024 "wrong connector dpms state\n");
5025 WARN(connector->base.encoder != &encoder->base,
5026 "active connector not linked to encoder\n");
5027 WARN(!encoder->connectors_active,
5028 "encoder->connectors_active not set\n");
5029
5030 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5031 WARN(!encoder_enabled, "encoder not enabled\n");
5032 if (WARN_ON(!encoder->base.crtc))
5033 return;
5034
5035 crtc = encoder->base.crtc;
5036
5037 WARN(!crtc->enabled, "crtc not enabled\n");
5038 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5039 WARN(pipe != to_intel_crtc(crtc)->pipe,
5040 "encoder active on the wrong pipe\n");
5041 }
79e53945
JB
5042}
5043
5ab432ef
DV
5044/* Even simpler default implementation, if there's really no special case to
5045 * consider. */
5046void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5047{
5ab432ef
DV
5048 /* All the simple cases only support two dpms states. */
5049 if (mode != DRM_MODE_DPMS_ON)
5050 mode = DRM_MODE_DPMS_OFF;
d4270e57 5051
5ab432ef
DV
5052 if (mode == connector->dpms)
5053 return;
5054
5055 connector->dpms = mode;
5056
5057 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5058 if (connector->encoder)
5059 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5060
b980514c 5061 intel_modeset_check_state(connector->dev);
79e53945
JB
5062}
5063
f0947c37
DV
5064/* Simple connector->get_hw_state implementation for encoders that support only
5065 * one connector and no cloning and hence the encoder state determines the state
5066 * of the connector. */
5067bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5068{
24929352 5069 enum pipe pipe = 0;
f0947c37 5070 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5071
f0947c37 5072 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5073}
5074
1857e1da
DV
5075static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5076 struct intel_crtc_config *pipe_config)
5077{
5078 struct drm_i915_private *dev_priv = dev->dev_private;
5079 struct intel_crtc *pipe_B_crtc =
5080 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5081
5082 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5083 pipe_name(pipe), pipe_config->fdi_lanes);
5084 if (pipe_config->fdi_lanes > 4) {
5085 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5086 pipe_name(pipe), pipe_config->fdi_lanes);
5087 return false;
5088 }
5089
bafb6553 5090 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5091 if (pipe_config->fdi_lanes > 2) {
5092 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5093 pipe_config->fdi_lanes);
5094 return false;
5095 } else {
5096 return true;
5097 }
5098 }
5099
5100 if (INTEL_INFO(dev)->num_pipes == 2)
5101 return true;
5102
5103 /* Ivybridge 3 pipe is really complicated */
5104 switch (pipe) {
5105 case PIPE_A:
5106 return true;
5107 case PIPE_B:
5108 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5109 pipe_config->fdi_lanes > 2) {
5110 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5111 pipe_name(pipe), pipe_config->fdi_lanes);
5112 return false;
5113 }
5114 return true;
5115 case PIPE_C:
1e833f40 5116 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5117 pipe_B_crtc->config.fdi_lanes <= 2) {
5118 if (pipe_config->fdi_lanes > 2) {
5119 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5120 pipe_name(pipe), pipe_config->fdi_lanes);
5121 return false;
5122 }
5123 } else {
5124 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5125 return false;
5126 }
5127 return true;
5128 default:
5129 BUG();
5130 }
5131}
5132
e29c22c0
DV
5133#define RETRY 1
5134static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5135 struct intel_crtc_config *pipe_config)
877d48d5 5136{
1857e1da 5137 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5138 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5139 int lane, link_bw, fdi_dotclock;
e29c22c0 5140 bool setup_ok, needs_recompute = false;
877d48d5 5141
e29c22c0 5142retry:
877d48d5
DV
5143 /* FDI is a binary signal running at ~2.7GHz, encoding
5144 * each output octet as 10 bits. The actual frequency
5145 * is stored as a divider into a 100MHz clock, and the
5146 * mode pixel clock is stored in units of 1KHz.
5147 * Hence the bw of each lane in terms of the mode signal
5148 * is:
5149 */
5150 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5151
241bfc38 5152 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5153
2bd89a07 5154 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5155 pipe_config->pipe_bpp);
5156
5157 pipe_config->fdi_lanes = lane;
5158
2bd89a07 5159 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5160 link_bw, &pipe_config->fdi_m_n);
1857e1da 5161
e29c22c0
DV
5162 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5163 intel_crtc->pipe, pipe_config);
5164 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5165 pipe_config->pipe_bpp -= 2*3;
5166 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5167 pipe_config->pipe_bpp);
5168 needs_recompute = true;
5169 pipe_config->bw_constrained = true;
5170
5171 goto retry;
5172 }
5173
5174 if (needs_recompute)
5175 return RETRY;
5176
5177 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5178}
5179
42db64ef
PZ
5180static void hsw_compute_ips_config(struct intel_crtc *crtc,
5181 struct intel_crtc_config *pipe_config)
5182{
d330a953 5183 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5184 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5185 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5186}
5187
a43f6e0f 5188static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5189 struct intel_crtc_config *pipe_config)
79e53945 5190{
a43f6e0f 5191 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5192 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5193
ad3a4479 5194 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5195 if (INTEL_INFO(dev)->gen < 4) {
5196 struct drm_i915_private *dev_priv = dev->dev_private;
5197 int clock_limit =
5198 dev_priv->display.get_display_clock_speed(dev);
5199
5200 /*
5201 * Enable pixel doubling when the dot clock
5202 * is > 90% of the (display) core speed.
5203 *
b397c96b
VS
5204 * GDG double wide on either pipe,
5205 * otherwise pipe A only.
cf532bb2 5206 */
b397c96b 5207 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5208 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5209 clock_limit *= 2;
cf532bb2 5210 pipe_config->double_wide = true;
ad3a4479
VS
5211 }
5212
241bfc38 5213 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5214 return -EINVAL;
2c07245f 5215 }
89749350 5216
1d1d0e27
VS
5217 /*
5218 * Pipe horizontal size must be even in:
5219 * - DVO ganged mode
5220 * - LVDS dual channel mode
5221 * - Double wide pipe
5222 */
5223 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5224 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5225 pipe_config->pipe_src_w &= ~1;
5226
8693a824
DL
5227 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5228 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5229 */
5230 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5231 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5232 return -EINVAL;
44f46b42 5233
bd080ee5 5234 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5235 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5236 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5237 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5238 * for lvds. */
5239 pipe_config->pipe_bpp = 8*3;
5240 }
5241
f5adf94e 5242 if (HAS_IPS(dev))
a43f6e0f
DV
5243 hsw_compute_ips_config(crtc, pipe_config);
5244
5245 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5246 * clock survives for now. */
5247 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5248 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5249
877d48d5 5250 if (pipe_config->has_pch_encoder)
a43f6e0f 5251 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5252
e29c22c0 5253 return 0;
79e53945
JB
5254}
5255
25eb05fc
JB
5256static int valleyview_get_display_clock_speed(struct drm_device *dev)
5257{
d197b7d3
VS
5258 struct drm_i915_private *dev_priv = dev->dev_private;
5259 int vco = valleyview_get_vco(dev_priv);
5260 u32 val;
5261 int divider;
5262
5263 mutex_lock(&dev_priv->dpio_lock);
5264 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5265 mutex_unlock(&dev_priv->dpio_lock);
5266
5267 divider = val & DISPLAY_FREQUENCY_VALUES;
5268
7d007f40
VS
5269 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5270 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5271 "cdclk change in progress\n");
5272
d197b7d3 5273 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5274}
5275
e70236a8
JB
5276static int i945_get_display_clock_speed(struct drm_device *dev)
5277{
5278 return 400000;
5279}
79e53945 5280
e70236a8 5281static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5282{
e70236a8
JB
5283 return 333000;
5284}
79e53945 5285
e70236a8
JB
5286static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5287{
5288 return 200000;
5289}
79e53945 5290
257a7ffc
DV
5291static int pnv_get_display_clock_speed(struct drm_device *dev)
5292{
5293 u16 gcfgc = 0;
5294
5295 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5296
5297 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5298 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5299 return 267000;
5300 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5301 return 333000;
5302 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5303 return 444000;
5304 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5305 return 200000;
5306 default:
5307 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5308 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5309 return 133000;
5310 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5311 return 167000;
5312 }
5313}
5314
e70236a8
JB
5315static int i915gm_get_display_clock_speed(struct drm_device *dev)
5316{
5317 u16 gcfgc = 0;
79e53945 5318
e70236a8
JB
5319 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5320
5321 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5322 return 133000;
5323 else {
5324 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5325 case GC_DISPLAY_CLOCK_333_MHZ:
5326 return 333000;
5327 default:
5328 case GC_DISPLAY_CLOCK_190_200_MHZ:
5329 return 190000;
79e53945 5330 }
e70236a8
JB
5331 }
5332}
5333
5334static int i865_get_display_clock_speed(struct drm_device *dev)
5335{
5336 return 266000;
5337}
5338
5339static int i855_get_display_clock_speed(struct drm_device *dev)
5340{
5341 u16 hpllcc = 0;
5342 /* Assume that the hardware is in the high speed state. This
5343 * should be the default.
5344 */
5345 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5346 case GC_CLOCK_133_200:
5347 case GC_CLOCK_100_200:
5348 return 200000;
5349 case GC_CLOCK_166_250:
5350 return 250000;
5351 case GC_CLOCK_100_133:
79e53945 5352 return 133000;
e70236a8 5353 }
79e53945 5354
e70236a8
JB
5355 /* Shouldn't happen */
5356 return 0;
5357}
79e53945 5358
e70236a8
JB
5359static int i830_get_display_clock_speed(struct drm_device *dev)
5360{
5361 return 133000;
79e53945
JB
5362}
5363
2c07245f 5364static void
a65851af 5365intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5366{
a65851af
VS
5367 while (*num > DATA_LINK_M_N_MASK ||
5368 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5369 *num >>= 1;
5370 *den >>= 1;
5371 }
5372}
5373
a65851af
VS
5374static void compute_m_n(unsigned int m, unsigned int n,
5375 uint32_t *ret_m, uint32_t *ret_n)
5376{
5377 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5378 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5379 intel_reduce_m_n_ratio(ret_m, ret_n);
5380}
5381
e69d0bc1
DV
5382void
5383intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5384 int pixel_clock, int link_clock,
5385 struct intel_link_m_n *m_n)
2c07245f 5386{
e69d0bc1 5387 m_n->tu = 64;
a65851af
VS
5388
5389 compute_m_n(bits_per_pixel * pixel_clock,
5390 link_clock * nlanes * 8,
5391 &m_n->gmch_m, &m_n->gmch_n);
5392
5393 compute_m_n(pixel_clock, link_clock,
5394 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5395}
5396
a7615030
CW
5397static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5398{
d330a953
JN
5399 if (i915.panel_use_ssc >= 0)
5400 return i915.panel_use_ssc != 0;
41aa3448 5401 return dev_priv->vbt.lvds_use_ssc
435793df 5402 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5403}
5404
c65d77d8
JB
5405static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5406{
5407 struct drm_device *dev = crtc->dev;
5408 struct drm_i915_private *dev_priv = dev->dev_private;
5409 int refclk;
5410
a0c4da24 5411 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5412 refclk = 100000;
a0c4da24 5413 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5414 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5415 refclk = dev_priv->vbt.lvds_ssc_freq;
5416 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5417 } else if (!IS_GEN2(dev)) {
5418 refclk = 96000;
5419 } else {
5420 refclk = 48000;
5421 }
5422
5423 return refclk;
5424}
5425
7429e9d4 5426static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5427{
7df00d7a 5428 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5429}
f47709a9 5430
7429e9d4
DV
5431static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5432{
5433 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5434}
5435
f47709a9 5436static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5437 intel_clock_t *reduced_clock)
5438{
f47709a9 5439 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5440 u32 fp, fp2 = 0;
5441
5442 if (IS_PINEVIEW(dev)) {
7429e9d4 5443 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5444 if (reduced_clock)
7429e9d4 5445 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5446 } else {
7429e9d4 5447 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5448 if (reduced_clock)
7429e9d4 5449 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5450 }
5451
8bcc2795 5452 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5453
f47709a9
DV
5454 crtc->lowfreq_avail = false;
5455 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5456 reduced_clock && i915.powersave) {
8bcc2795 5457 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5458 crtc->lowfreq_avail = true;
a7516a05 5459 } else {
8bcc2795 5460 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5461 }
5462}
5463
5e69f97f
CML
5464static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5465 pipe)
89b667f8
JB
5466{
5467 u32 reg_val;
5468
5469 /*
5470 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5471 * and set it to a reasonable value instead.
5472 */
ab3c759a 5473 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5474 reg_val &= 0xffffff00;
5475 reg_val |= 0x00000030;
ab3c759a 5476 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5477
ab3c759a 5478 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5479 reg_val &= 0x8cffffff;
5480 reg_val = 0x8c000000;
ab3c759a 5481 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5482
ab3c759a 5483 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5484 reg_val &= 0xffffff00;
ab3c759a 5485 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5486
ab3c759a 5487 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5488 reg_val &= 0x00ffffff;
5489 reg_val |= 0xb0000000;
ab3c759a 5490 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5491}
5492
b551842d
DV
5493static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5494 struct intel_link_m_n *m_n)
5495{
5496 struct drm_device *dev = crtc->base.dev;
5497 struct drm_i915_private *dev_priv = dev->dev_private;
5498 int pipe = crtc->pipe;
5499
e3b95f1e
DV
5500 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5501 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5502 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5503 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5504}
5505
5506static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5507 struct intel_link_m_n *m_n)
5508{
5509 struct drm_device *dev = crtc->base.dev;
5510 struct drm_i915_private *dev_priv = dev->dev_private;
5511 int pipe = crtc->pipe;
5512 enum transcoder transcoder = crtc->config.cpu_transcoder;
5513
5514 if (INTEL_INFO(dev)->gen >= 5) {
5515 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5516 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5517 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5518 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5519 } else {
e3b95f1e
DV
5520 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5521 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5522 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5523 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5524 }
5525}
5526
03afc4a2
DV
5527static void intel_dp_set_m_n(struct intel_crtc *crtc)
5528{
5529 if (crtc->config.has_pch_encoder)
5530 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5531 else
5532 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5533}
5534
f47709a9 5535static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5536{
5537 u32 dpll, dpll_md;
5538
5539 /*
5540 * Enable DPIO clock input. We should never disable the reference
5541 * clock for pipe B, since VGA hotplug / manual detection depends
5542 * on it.
5543 */
5544 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5545 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5546 /* We should never disable this, set it here for state tracking */
5547 if (crtc->pipe == PIPE_B)
5548 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5549 dpll |= DPLL_VCO_ENABLE;
5550 crtc->config.dpll_hw_state.dpll = dpll;
5551
5552 dpll_md = (crtc->config.pixel_multiplier - 1)
5553 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5554 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5555}
5556
5557static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5558{
f47709a9 5559 struct drm_device *dev = crtc->base.dev;
a0c4da24 5560 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5561 int pipe = crtc->pipe;
bdd4b6a6 5562 u32 mdiv;
a0c4da24 5563 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5564 u32 coreclk, reg_val;
a0c4da24 5565
09153000
DV
5566 mutex_lock(&dev_priv->dpio_lock);
5567
f47709a9
DV
5568 bestn = crtc->config.dpll.n;
5569 bestm1 = crtc->config.dpll.m1;
5570 bestm2 = crtc->config.dpll.m2;
5571 bestp1 = crtc->config.dpll.p1;
5572 bestp2 = crtc->config.dpll.p2;
a0c4da24 5573
89b667f8
JB
5574 /* See eDP HDMI DPIO driver vbios notes doc */
5575
5576 /* PLL B needs special handling */
bdd4b6a6 5577 if (pipe == PIPE_B)
5e69f97f 5578 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5579
5580 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5581 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5582
5583 /* Disable target IRef on PLL */
ab3c759a 5584 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5585 reg_val &= 0x00ffffff;
ab3c759a 5586 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5587
5588 /* Disable fast lock */
ab3c759a 5589 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5590
5591 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5592 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5593 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5594 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5595 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5596
5597 /*
5598 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5599 * but we don't support that).
5600 * Note: don't use the DAC post divider as it seems unstable.
5601 */
5602 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5604
a0c4da24 5605 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5607
89b667f8 5608 /* Set HBR and RBR LPF coefficients */
ff9a6750 5609 if (crtc->config.port_clock == 162000 ||
99750bd4 5610 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5611 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5612 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5613 0x009f0003);
89b667f8 5614 else
ab3c759a 5615 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5616 0x00d0000f);
5617
5618 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5619 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5620 /* Use SSC source */
bdd4b6a6 5621 if (pipe == PIPE_A)
ab3c759a 5622 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5623 0x0df40000);
5624 else
ab3c759a 5625 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5626 0x0df70000);
5627 } else { /* HDMI or VGA */
5628 /* Use bend source */
bdd4b6a6 5629 if (pipe == PIPE_A)
ab3c759a 5630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5631 0x0df70000);
5632 else
ab3c759a 5633 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5634 0x0df40000);
5635 }
a0c4da24 5636
ab3c759a 5637 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5638 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5639 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5640 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5641 coreclk |= 0x01000000;
ab3c759a 5642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5643
ab3c759a 5644 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5645 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5646}
5647
9d556c99
CML
5648static void chv_update_pll(struct intel_crtc *crtc)
5649{
5650 struct drm_device *dev = crtc->base.dev;
5651 struct drm_i915_private *dev_priv = dev->dev_private;
5652 int pipe = crtc->pipe;
5653 int dpll_reg = DPLL(crtc->pipe);
5654 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5655 u32 loopfilter, intcoeff;
9d556c99
CML
5656 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5657 int refclk;
5658
a11b0703
VS
5659 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5660 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5661 DPLL_VCO_ENABLE;
5662 if (pipe != PIPE_A)
5663 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5664
5665 crtc->config.dpll_hw_state.dpll_md =
5666 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5667
5668 bestn = crtc->config.dpll.n;
5669 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5670 bestm1 = crtc->config.dpll.m1;
5671 bestm2 = crtc->config.dpll.m2 >> 22;
5672 bestp1 = crtc->config.dpll.p1;
5673 bestp2 = crtc->config.dpll.p2;
5674
5675 /*
5676 * Enable Refclk and SSC
5677 */
a11b0703
VS
5678 I915_WRITE(dpll_reg,
5679 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5680
5681 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5682
9d556c99
CML
5683 /* p1 and p2 divider */
5684 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5685 5 << DPIO_CHV_S1_DIV_SHIFT |
5686 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5687 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5688 1 << DPIO_CHV_K_DIV_SHIFT);
5689
5690 /* Feedback post-divider - m2 */
5691 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5692
5693 /* Feedback refclk divider - n and m1 */
5694 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5695 DPIO_CHV_M1_DIV_BY_2 |
5696 1 << DPIO_CHV_N_DIV_SHIFT);
5697
5698 /* M2 fraction division */
5699 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5700
5701 /* M2 fraction division enable */
5702 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5703 DPIO_CHV_FRAC_DIV_EN |
5704 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5705
5706 /* Loop filter */
5707 refclk = i9xx_get_refclk(&crtc->base, 0);
5708 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5709 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5710 if (refclk == 100000)
5711 intcoeff = 11;
5712 else if (refclk == 38400)
5713 intcoeff = 10;
5714 else
5715 intcoeff = 9;
5716 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5717 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5718
5719 /* AFC Recal */
5720 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5721 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5722 DPIO_AFC_RECAL);
5723
5724 mutex_unlock(&dev_priv->dpio_lock);
5725}
5726
f47709a9
DV
5727static void i9xx_update_pll(struct intel_crtc *crtc,
5728 intel_clock_t *reduced_clock,
eb1cbe48
DV
5729 int num_connectors)
5730{
f47709a9 5731 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5732 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5733 u32 dpll;
5734 bool is_sdvo;
f47709a9 5735 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5736
f47709a9 5737 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5738
f47709a9
DV
5739 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5740 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5741
5742 dpll = DPLL_VGA_MODE_DIS;
5743
f47709a9 5744 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5745 dpll |= DPLLB_MODE_LVDS;
5746 else
5747 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5748
ef1b460d 5749 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5750 dpll |= (crtc->config.pixel_multiplier - 1)
5751 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5752 }
198a037f
DV
5753
5754 if (is_sdvo)
4a33e48d 5755 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5756
f47709a9 5757 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5758 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5759
5760 /* compute bitmask from p1 value */
5761 if (IS_PINEVIEW(dev))
5762 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5763 else {
5764 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5765 if (IS_G4X(dev) && reduced_clock)
5766 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5767 }
5768 switch (clock->p2) {
5769 case 5:
5770 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5771 break;
5772 case 7:
5773 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5774 break;
5775 case 10:
5776 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5777 break;
5778 case 14:
5779 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5780 break;
5781 }
5782 if (INTEL_INFO(dev)->gen >= 4)
5783 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5784
09ede541 5785 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5786 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5787 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5788 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5789 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5790 else
5791 dpll |= PLL_REF_INPUT_DREFCLK;
5792
5793 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5794 crtc->config.dpll_hw_state.dpll = dpll;
5795
eb1cbe48 5796 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5797 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5798 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5799 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5800 }
5801}
5802
f47709a9 5803static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5804 intel_clock_t *reduced_clock,
eb1cbe48
DV
5805 int num_connectors)
5806{
f47709a9 5807 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5808 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5809 u32 dpll;
f47709a9 5810 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5811
f47709a9 5812 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5813
eb1cbe48
DV
5814 dpll = DPLL_VGA_MODE_DIS;
5815
f47709a9 5816 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5817 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5818 } else {
5819 if (clock->p1 == 2)
5820 dpll |= PLL_P1_DIVIDE_BY_TWO;
5821 else
5822 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5823 if (clock->p2 == 4)
5824 dpll |= PLL_P2_DIVIDE_BY_4;
5825 }
5826
4a33e48d
DV
5827 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5828 dpll |= DPLL_DVO_2X_MODE;
5829
f47709a9 5830 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5831 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5832 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5833 else
5834 dpll |= PLL_REF_INPUT_DREFCLK;
5835
5836 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5837 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5838}
5839
8a654f3b 5840static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5841{
5842 struct drm_device *dev = intel_crtc->base.dev;
5843 struct drm_i915_private *dev_priv = dev->dev_private;
5844 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5845 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5846 struct drm_display_mode *adjusted_mode =
5847 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5848 uint32_t crtc_vtotal, crtc_vblank_end;
5849 int vsyncshift = 0;
4d8a62ea
DV
5850
5851 /* We need to be careful not to changed the adjusted mode, for otherwise
5852 * the hw state checker will get angry at the mismatch. */
5853 crtc_vtotal = adjusted_mode->crtc_vtotal;
5854 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5855
609aeaca 5856 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5857 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5858 crtc_vtotal -= 1;
5859 crtc_vblank_end -= 1;
609aeaca
VS
5860
5861 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5862 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5863 else
5864 vsyncshift = adjusted_mode->crtc_hsync_start -
5865 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5866 if (vsyncshift < 0)
5867 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5868 }
5869
5870 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5871 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5872
fe2b8f9d 5873 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5874 (adjusted_mode->crtc_hdisplay - 1) |
5875 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5876 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5877 (adjusted_mode->crtc_hblank_start - 1) |
5878 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5879 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5880 (adjusted_mode->crtc_hsync_start - 1) |
5881 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5882
fe2b8f9d 5883 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5884 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5885 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5886 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5887 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5888 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5889 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5890 (adjusted_mode->crtc_vsync_start - 1) |
5891 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5892
b5e508d4
PZ
5893 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5894 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5895 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5896 * bits. */
5897 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5898 (pipe == PIPE_B || pipe == PIPE_C))
5899 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5900
b0e77b9c
PZ
5901 /* pipesrc controls the size that is scaled from, which should
5902 * always be the user's requested size.
5903 */
5904 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5905 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5906 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5907}
5908
1bd1bd80
DV
5909static void intel_get_pipe_timings(struct intel_crtc *crtc,
5910 struct intel_crtc_config *pipe_config)
5911{
5912 struct drm_device *dev = crtc->base.dev;
5913 struct drm_i915_private *dev_priv = dev->dev_private;
5914 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5915 uint32_t tmp;
5916
5917 tmp = I915_READ(HTOTAL(cpu_transcoder));
5918 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5919 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5920 tmp = I915_READ(HBLANK(cpu_transcoder));
5921 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5922 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5923 tmp = I915_READ(HSYNC(cpu_transcoder));
5924 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5925 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5926
5927 tmp = I915_READ(VTOTAL(cpu_transcoder));
5928 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5929 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5930 tmp = I915_READ(VBLANK(cpu_transcoder));
5931 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5932 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5933 tmp = I915_READ(VSYNC(cpu_transcoder));
5934 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5935 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5936
5937 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5938 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5939 pipe_config->adjusted_mode.crtc_vtotal += 1;
5940 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5941 }
5942
5943 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5944 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5945 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5946
5947 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5948 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5949}
5950
f6a83288
DV
5951void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5952 struct intel_crtc_config *pipe_config)
babea61d 5953{
f6a83288
DV
5954 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5955 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5956 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5957 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5958
f6a83288
DV
5959 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5960 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5961 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5962 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5963
f6a83288 5964 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5965
f6a83288
DV
5966 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5967 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5968}
5969
84b046f3
DV
5970static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5971{
5972 struct drm_device *dev = intel_crtc->base.dev;
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974 uint32_t pipeconf;
5975
9f11a9e4 5976 pipeconf = 0;
84b046f3 5977
67c72a12
DV
5978 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5979 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5980 pipeconf |= PIPECONF_ENABLE;
5981
cf532bb2
VS
5982 if (intel_crtc->config.double_wide)
5983 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5984
ff9ce46e
DV
5985 /* only g4x and later have fancy bpc/dither controls */
5986 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5987 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5988 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5989 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5990 PIPECONF_DITHER_TYPE_SP;
84b046f3 5991
ff9ce46e
DV
5992 switch (intel_crtc->config.pipe_bpp) {
5993 case 18:
5994 pipeconf |= PIPECONF_6BPC;
5995 break;
5996 case 24:
5997 pipeconf |= PIPECONF_8BPC;
5998 break;
5999 case 30:
6000 pipeconf |= PIPECONF_10BPC;
6001 break;
6002 default:
6003 /* Case prevented by intel_choose_pipe_bpp_dither. */
6004 BUG();
84b046f3
DV
6005 }
6006 }
6007
6008 if (HAS_PIPE_CXSR(dev)) {
6009 if (intel_crtc->lowfreq_avail) {
6010 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6011 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6012 } else {
6013 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6014 }
6015 }
6016
efc2cfff
VS
6017 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6018 if (INTEL_INFO(dev)->gen < 4 ||
6019 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6020 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6021 else
6022 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6023 } else
84b046f3
DV
6024 pipeconf |= PIPECONF_PROGRESSIVE;
6025
9f11a9e4
DV
6026 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6027 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6028
84b046f3
DV
6029 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6030 POSTING_READ(PIPECONF(intel_crtc->pipe));
6031}
6032
f564048e 6033static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6034 int x, int y,
94352cf9 6035 struct drm_framebuffer *fb)
79e53945
JB
6036{
6037 struct drm_device *dev = crtc->dev;
6038 struct drm_i915_private *dev_priv = dev->dev_private;
6039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6040 int refclk, num_connectors = 0;
652c393a 6041 intel_clock_t clock, reduced_clock;
a16af721 6042 bool ok, has_reduced_clock = false;
e9fd1c02 6043 bool is_lvds = false, is_dsi = false;
5eddb70b 6044 struct intel_encoder *encoder;
d4906093 6045 const intel_limit_t *limit;
79e53945 6046
6c2b7c12 6047 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6048 switch (encoder->type) {
79e53945
JB
6049 case INTEL_OUTPUT_LVDS:
6050 is_lvds = true;
6051 break;
e9fd1c02
JN
6052 case INTEL_OUTPUT_DSI:
6053 is_dsi = true;
6054 break;
79e53945 6055 }
43565a06 6056
c751ce4f 6057 num_connectors++;
79e53945
JB
6058 }
6059
f2335330 6060 if (is_dsi)
5b18e57c 6061 return 0;
f2335330
JN
6062
6063 if (!intel_crtc->config.clock_set) {
6064 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6065
e9fd1c02
JN
6066 /*
6067 * Returns a set of divisors for the desired target clock with
6068 * the given refclk, or FALSE. The returned values represent
6069 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6070 * 2) / p1 / p2.
6071 */
6072 limit = intel_limit(crtc, refclk);
6073 ok = dev_priv->display.find_dpll(limit, crtc,
6074 intel_crtc->config.port_clock,
6075 refclk, NULL, &clock);
f2335330 6076 if (!ok) {
e9fd1c02
JN
6077 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6078 return -EINVAL;
6079 }
79e53945 6080
f2335330
JN
6081 if (is_lvds && dev_priv->lvds_downclock_avail) {
6082 /*
6083 * Ensure we match the reduced clock's P to the target
6084 * clock. If the clocks don't match, we can't switch
6085 * the display clock by using the FP0/FP1. In such case
6086 * we will disable the LVDS downclock feature.
6087 */
6088 has_reduced_clock =
6089 dev_priv->display.find_dpll(limit, crtc,
6090 dev_priv->lvds_downclock,
6091 refclk, &clock,
6092 &reduced_clock);
6093 }
6094 /* Compat-code for transition, will disappear. */
f47709a9
DV
6095 intel_crtc->config.dpll.n = clock.n;
6096 intel_crtc->config.dpll.m1 = clock.m1;
6097 intel_crtc->config.dpll.m2 = clock.m2;
6098 intel_crtc->config.dpll.p1 = clock.p1;
6099 intel_crtc->config.dpll.p2 = clock.p2;
6100 }
7026d4ac 6101
e9fd1c02 6102 if (IS_GEN2(dev)) {
8a654f3b 6103 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6104 has_reduced_clock ? &reduced_clock : NULL,
6105 num_connectors);
9d556c99
CML
6106 } else if (IS_CHERRYVIEW(dev)) {
6107 chv_update_pll(intel_crtc);
e9fd1c02 6108 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6109 vlv_update_pll(intel_crtc);
e9fd1c02 6110 } else {
f47709a9 6111 i9xx_update_pll(intel_crtc,
eb1cbe48 6112 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6113 num_connectors);
e9fd1c02 6114 }
79e53945 6115
c8f7a0db 6116 return 0;
f564048e
EA
6117}
6118
2fa2fe9a
DV
6119static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6120 struct intel_crtc_config *pipe_config)
6121{
6122 struct drm_device *dev = crtc->base.dev;
6123 struct drm_i915_private *dev_priv = dev->dev_private;
6124 uint32_t tmp;
6125
dc9e7dec
VS
6126 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6127 return;
6128
2fa2fe9a 6129 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6130 if (!(tmp & PFIT_ENABLE))
6131 return;
2fa2fe9a 6132
06922821 6133 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6134 if (INTEL_INFO(dev)->gen < 4) {
6135 if (crtc->pipe != PIPE_B)
6136 return;
2fa2fe9a
DV
6137 } else {
6138 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6139 return;
6140 }
6141
06922821 6142 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6143 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6144 if (INTEL_INFO(dev)->gen < 5)
6145 pipe_config->gmch_pfit.lvds_border_bits =
6146 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6147}
6148
acbec814
JB
6149static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6150 struct intel_crtc_config *pipe_config)
6151{
6152 struct drm_device *dev = crtc->base.dev;
6153 struct drm_i915_private *dev_priv = dev->dev_private;
6154 int pipe = pipe_config->cpu_transcoder;
6155 intel_clock_t clock;
6156 u32 mdiv;
662c6ecb 6157 int refclk = 100000;
acbec814
JB
6158
6159 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6160 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6161 mutex_unlock(&dev_priv->dpio_lock);
6162
6163 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6164 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6165 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6166 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6167 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6168
f646628b 6169 vlv_clock(refclk, &clock);
acbec814 6170
f646628b
VS
6171 /* clock.dot is the fast clock */
6172 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6173}
6174
1ad292b5
JB
6175static void i9xx_get_plane_config(struct intel_crtc *crtc,
6176 struct intel_plane_config *plane_config)
6177{
6178 struct drm_device *dev = crtc->base.dev;
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180 u32 val, base, offset;
6181 int pipe = crtc->pipe, plane = crtc->plane;
6182 int fourcc, pixel_format;
6183 int aligned_height;
6184
66e514c1
DA
6185 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6186 if (!crtc->base.primary->fb) {
1ad292b5
JB
6187 DRM_DEBUG_KMS("failed to alloc fb\n");
6188 return;
6189 }
6190
6191 val = I915_READ(DSPCNTR(plane));
6192
6193 if (INTEL_INFO(dev)->gen >= 4)
6194 if (val & DISPPLANE_TILED)
6195 plane_config->tiled = true;
6196
6197 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6198 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6199 crtc->base.primary->fb->pixel_format = fourcc;
6200 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6201 drm_format_plane_cpp(fourcc, 0) * 8;
6202
6203 if (INTEL_INFO(dev)->gen >= 4) {
6204 if (plane_config->tiled)
6205 offset = I915_READ(DSPTILEOFF(plane));
6206 else
6207 offset = I915_READ(DSPLINOFF(plane));
6208 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6209 } else {
6210 base = I915_READ(DSPADDR(plane));
6211 }
6212 plane_config->base = base;
6213
6214 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6215 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6216 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6217
6218 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6219 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6220
66e514c1 6221 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6222 plane_config->tiled);
6223
1267a26b
FF
6224 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6225 aligned_height);
1ad292b5
JB
6226
6227 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6228 pipe, plane, crtc->base.primary->fb->width,
6229 crtc->base.primary->fb->height,
6230 crtc->base.primary->fb->bits_per_pixel, base,
6231 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6232 plane_config->size);
6233
6234}
6235
70b23a98
VS
6236static void chv_crtc_clock_get(struct intel_crtc *crtc,
6237 struct intel_crtc_config *pipe_config)
6238{
6239 struct drm_device *dev = crtc->base.dev;
6240 struct drm_i915_private *dev_priv = dev->dev_private;
6241 int pipe = pipe_config->cpu_transcoder;
6242 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6243 intel_clock_t clock;
6244 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6245 int refclk = 100000;
6246
6247 mutex_lock(&dev_priv->dpio_lock);
6248 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6249 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6250 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6251 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6252 mutex_unlock(&dev_priv->dpio_lock);
6253
6254 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6255 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6256 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6257 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6258 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6259
6260 chv_clock(refclk, &clock);
6261
6262 /* clock.dot is the fast clock */
6263 pipe_config->port_clock = clock.dot / 5;
6264}
6265
0e8ffe1b
DV
6266static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6267 struct intel_crtc_config *pipe_config)
6268{
6269 struct drm_device *dev = crtc->base.dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 uint32_t tmp;
6272
b5482bd0
ID
6273 if (!intel_display_power_enabled(dev_priv,
6274 POWER_DOMAIN_PIPE(crtc->pipe)))
6275 return false;
6276
e143a21c 6277 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6278 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6279
0e8ffe1b
DV
6280 tmp = I915_READ(PIPECONF(crtc->pipe));
6281 if (!(tmp & PIPECONF_ENABLE))
6282 return false;
6283
42571aef
VS
6284 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6285 switch (tmp & PIPECONF_BPC_MASK) {
6286 case PIPECONF_6BPC:
6287 pipe_config->pipe_bpp = 18;
6288 break;
6289 case PIPECONF_8BPC:
6290 pipe_config->pipe_bpp = 24;
6291 break;
6292 case PIPECONF_10BPC:
6293 pipe_config->pipe_bpp = 30;
6294 break;
6295 default:
6296 break;
6297 }
6298 }
6299
b5a9fa09
DV
6300 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6301 pipe_config->limited_color_range = true;
6302
282740f7
VS
6303 if (INTEL_INFO(dev)->gen < 4)
6304 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6305
1bd1bd80
DV
6306 intel_get_pipe_timings(crtc, pipe_config);
6307
2fa2fe9a
DV
6308 i9xx_get_pfit_config(crtc, pipe_config);
6309
6c49f241
DV
6310 if (INTEL_INFO(dev)->gen >= 4) {
6311 tmp = I915_READ(DPLL_MD(crtc->pipe));
6312 pipe_config->pixel_multiplier =
6313 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6314 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6315 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6316 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6317 tmp = I915_READ(DPLL(crtc->pipe));
6318 pipe_config->pixel_multiplier =
6319 ((tmp & SDVO_MULTIPLIER_MASK)
6320 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6321 } else {
6322 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6323 * port and will be fixed up in the encoder->get_config
6324 * function. */
6325 pipe_config->pixel_multiplier = 1;
6326 }
8bcc2795
DV
6327 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6328 if (!IS_VALLEYVIEW(dev)) {
6329 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6330 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6331 } else {
6332 /* Mask out read-only status bits. */
6333 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6334 DPLL_PORTC_READY_MASK |
6335 DPLL_PORTB_READY_MASK);
8bcc2795 6336 }
6c49f241 6337
70b23a98
VS
6338 if (IS_CHERRYVIEW(dev))
6339 chv_crtc_clock_get(crtc, pipe_config);
6340 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6341 vlv_crtc_clock_get(crtc, pipe_config);
6342 else
6343 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6344
0e8ffe1b
DV
6345 return true;
6346}
6347
dde86e2d 6348static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6349{
6350 struct drm_i915_private *dev_priv = dev->dev_private;
6351 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6352 struct intel_encoder *encoder;
74cfd7ac 6353 u32 val, final;
13d83a67 6354 bool has_lvds = false;
199e5d79 6355 bool has_cpu_edp = false;
199e5d79 6356 bool has_panel = false;
99eb6a01
KP
6357 bool has_ck505 = false;
6358 bool can_ssc = false;
13d83a67
JB
6359
6360 /* We need to take the global config into account */
199e5d79
KP
6361 list_for_each_entry(encoder, &mode_config->encoder_list,
6362 base.head) {
6363 switch (encoder->type) {
6364 case INTEL_OUTPUT_LVDS:
6365 has_panel = true;
6366 has_lvds = true;
6367 break;
6368 case INTEL_OUTPUT_EDP:
6369 has_panel = true;
2de6905f 6370 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6371 has_cpu_edp = true;
6372 break;
13d83a67
JB
6373 }
6374 }
6375
99eb6a01 6376 if (HAS_PCH_IBX(dev)) {
41aa3448 6377 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6378 can_ssc = has_ck505;
6379 } else {
6380 has_ck505 = false;
6381 can_ssc = true;
6382 }
6383
2de6905f
ID
6384 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6385 has_panel, has_lvds, has_ck505);
13d83a67
JB
6386
6387 /* Ironlake: try to setup display ref clock before DPLL
6388 * enabling. This is only under driver's control after
6389 * PCH B stepping, previous chipset stepping should be
6390 * ignoring this setting.
6391 */
74cfd7ac
CW
6392 val = I915_READ(PCH_DREF_CONTROL);
6393
6394 /* As we must carefully and slowly disable/enable each source in turn,
6395 * compute the final state we want first and check if we need to
6396 * make any changes at all.
6397 */
6398 final = val;
6399 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6400 if (has_ck505)
6401 final |= DREF_NONSPREAD_CK505_ENABLE;
6402 else
6403 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6404
6405 final &= ~DREF_SSC_SOURCE_MASK;
6406 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6407 final &= ~DREF_SSC1_ENABLE;
6408
6409 if (has_panel) {
6410 final |= DREF_SSC_SOURCE_ENABLE;
6411
6412 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6413 final |= DREF_SSC1_ENABLE;
6414
6415 if (has_cpu_edp) {
6416 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6417 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6418 else
6419 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6420 } else
6421 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6422 } else {
6423 final |= DREF_SSC_SOURCE_DISABLE;
6424 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6425 }
6426
6427 if (final == val)
6428 return;
6429
13d83a67 6430 /* Always enable nonspread source */
74cfd7ac 6431 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6432
99eb6a01 6433 if (has_ck505)
74cfd7ac 6434 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6435 else
74cfd7ac 6436 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6437
199e5d79 6438 if (has_panel) {
74cfd7ac
CW
6439 val &= ~DREF_SSC_SOURCE_MASK;
6440 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6441
199e5d79 6442 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6443 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6444 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6445 val |= DREF_SSC1_ENABLE;
e77166b5 6446 } else
74cfd7ac 6447 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6448
6449 /* Get SSC going before enabling the outputs */
74cfd7ac 6450 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6451 POSTING_READ(PCH_DREF_CONTROL);
6452 udelay(200);
6453
74cfd7ac 6454 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6455
6456 /* Enable CPU source on CPU attached eDP */
199e5d79 6457 if (has_cpu_edp) {
99eb6a01 6458 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6459 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6460 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6461 } else
74cfd7ac 6462 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6463 } else
74cfd7ac 6464 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6465
74cfd7ac 6466 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6467 POSTING_READ(PCH_DREF_CONTROL);
6468 udelay(200);
6469 } else {
6470 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6471
74cfd7ac 6472 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6473
6474 /* Turn off CPU output */
74cfd7ac 6475 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6476
74cfd7ac 6477 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6478 POSTING_READ(PCH_DREF_CONTROL);
6479 udelay(200);
6480
6481 /* Turn off the SSC source */
74cfd7ac
CW
6482 val &= ~DREF_SSC_SOURCE_MASK;
6483 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6484
6485 /* Turn off SSC1 */
74cfd7ac 6486 val &= ~DREF_SSC1_ENABLE;
199e5d79 6487
74cfd7ac 6488 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6489 POSTING_READ(PCH_DREF_CONTROL);
6490 udelay(200);
6491 }
74cfd7ac
CW
6492
6493 BUG_ON(val != final);
13d83a67
JB
6494}
6495
f31f2d55 6496static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6497{
f31f2d55 6498 uint32_t tmp;
dde86e2d 6499
0ff066a9
PZ
6500 tmp = I915_READ(SOUTH_CHICKEN2);
6501 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6502 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6503
0ff066a9
PZ
6504 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6505 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6506 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6507
0ff066a9
PZ
6508 tmp = I915_READ(SOUTH_CHICKEN2);
6509 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6510 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6511
0ff066a9
PZ
6512 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6513 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6514 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6515}
6516
6517/* WaMPhyProgramming:hsw */
6518static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6519{
6520 uint32_t tmp;
dde86e2d
PZ
6521
6522 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6523 tmp &= ~(0xFF << 24);
6524 tmp |= (0x12 << 24);
6525 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6526
dde86e2d
PZ
6527 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6528 tmp |= (1 << 11);
6529 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6530
6531 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6532 tmp |= (1 << 11);
6533 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6534
dde86e2d
PZ
6535 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6536 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6537 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6538
6539 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6540 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6541 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6542
0ff066a9
PZ
6543 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6544 tmp &= ~(7 << 13);
6545 tmp |= (5 << 13);
6546 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6547
0ff066a9
PZ
6548 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6549 tmp &= ~(7 << 13);
6550 tmp |= (5 << 13);
6551 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6552
6553 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6554 tmp &= ~0xFF;
6555 tmp |= 0x1C;
6556 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6557
6558 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6559 tmp &= ~0xFF;
6560 tmp |= 0x1C;
6561 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6562
6563 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6564 tmp &= ~(0xFF << 16);
6565 tmp |= (0x1C << 16);
6566 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6567
6568 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6569 tmp &= ~(0xFF << 16);
6570 tmp |= (0x1C << 16);
6571 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6572
0ff066a9
PZ
6573 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6574 tmp |= (1 << 27);
6575 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6576
0ff066a9
PZ
6577 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6578 tmp |= (1 << 27);
6579 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6580
0ff066a9
PZ
6581 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6582 tmp &= ~(0xF << 28);
6583 tmp |= (4 << 28);
6584 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6585
0ff066a9
PZ
6586 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6587 tmp &= ~(0xF << 28);
6588 tmp |= (4 << 28);
6589 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6590}
6591
2fa86a1f
PZ
6592/* Implements 3 different sequences from BSpec chapter "Display iCLK
6593 * Programming" based on the parameters passed:
6594 * - Sequence to enable CLKOUT_DP
6595 * - Sequence to enable CLKOUT_DP without spread
6596 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6597 */
6598static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6599 bool with_fdi)
f31f2d55
PZ
6600{
6601 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6602 uint32_t reg, tmp;
6603
6604 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6605 with_spread = true;
6606 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6607 with_fdi, "LP PCH doesn't have FDI\n"))
6608 with_fdi = false;
f31f2d55
PZ
6609
6610 mutex_lock(&dev_priv->dpio_lock);
6611
6612 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6613 tmp &= ~SBI_SSCCTL_DISABLE;
6614 tmp |= SBI_SSCCTL_PATHALT;
6615 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6616
6617 udelay(24);
6618
2fa86a1f
PZ
6619 if (with_spread) {
6620 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6621 tmp &= ~SBI_SSCCTL_PATHALT;
6622 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6623
2fa86a1f
PZ
6624 if (with_fdi) {
6625 lpt_reset_fdi_mphy(dev_priv);
6626 lpt_program_fdi_mphy(dev_priv);
6627 }
6628 }
dde86e2d 6629
2fa86a1f
PZ
6630 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6631 SBI_GEN0 : SBI_DBUFF0;
6632 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6633 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6634 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6635
6636 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6637}
6638
47701c3b
PZ
6639/* Sequence to disable CLKOUT_DP */
6640static void lpt_disable_clkout_dp(struct drm_device *dev)
6641{
6642 struct drm_i915_private *dev_priv = dev->dev_private;
6643 uint32_t reg, tmp;
6644
6645 mutex_lock(&dev_priv->dpio_lock);
6646
6647 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6648 SBI_GEN0 : SBI_DBUFF0;
6649 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6650 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6651 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6652
6653 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6654 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6655 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6656 tmp |= SBI_SSCCTL_PATHALT;
6657 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6658 udelay(32);
6659 }
6660 tmp |= SBI_SSCCTL_DISABLE;
6661 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6662 }
6663
6664 mutex_unlock(&dev_priv->dpio_lock);
6665}
6666
bf8fa3d3
PZ
6667static void lpt_init_pch_refclk(struct drm_device *dev)
6668{
6669 struct drm_mode_config *mode_config = &dev->mode_config;
6670 struct intel_encoder *encoder;
6671 bool has_vga = false;
6672
6673 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6674 switch (encoder->type) {
6675 case INTEL_OUTPUT_ANALOG:
6676 has_vga = true;
6677 break;
6678 }
6679 }
6680
47701c3b
PZ
6681 if (has_vga)
6682 lpt_enable_clkout_dp(dev, true, true);
6683 else
6684 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6685}
6686
dde86e2d
PZ
6687/*
6688 * Initialize reference clocks when the driver loads
6689 */
6690void intel_init_pch_refclk(struct drm_device *dev)
6691{
6692 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6693 ironlake_init_pch_refclk(dev);
6694 else if (HAS_PCH_LPT(dev))
6695 lpt_init_pch_refclk(dev);
6696}
6697
d9d444cb
JB
6698static int ironlake_get_refclk(struct drm_crtc *crtc)
6699{
6700 struct drm_device *dev = crtc->dev;
6701 struct drm_i915_private *dev_priv = dev->dev_private;
6702 struct intel_encoder *encoder;
d9d444cb
JB
6703 int num_connectors = 0;
6704 bool is_lvds = false;
6705
6c2b7c12 6706 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6707 switch (encoder->type) {
6708 case INTEL_OUTPUT_LVDS:
6709 is_lvds = true;
6710 break;
d9d444cb
JB
6711 }
6712 num_connectors++;
6713 }
6714
6715 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6716 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6717 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6718 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6719 }
6720
6721 return 120000;
6722}
6723
6ff93609 6724static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6725{
c8203565 6726 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6728 int pipe = intel_crtc->pipe;
c8203565
PZ
6729 uint32_t val;
6730
78114071 6731 val = 0;
c8203565 6732
965e0c48 6733 switch (intel_crtc->config.pipe_bpp) {
c8203565 6734 case 18:
dfd07d72 6735 val |= PIPECONF_6BPC;
c8203565
PZ
6736 break;
6737 case 24:
dfd07d72 6738 val |= PIPECONF_8BPC;
c8203565
PZ
6739 break;
6740 case 30:
dfd07d72 6741 val |= PIPECONF_10BPC;
c8203565
PZ
6742 break;
6743 case 36:
dfd07d72 6744 val |= PIPECONF_12BPC;
c8203565
PZ
6745 break;
6746 default:
cc769b62
PZ
6747 /* Case prevented by intel_choose_pipe_bpp_dither. */
6748 BUG();
c8203565
PZ
6749 }
6750
d8b32247 6751 if (intel_crtc->config.dither)
c8203565
PZ
6752 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6753
6ff93609 6754 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6755 val |= PIPECONF_INTERLACED_ILK;
6756 else
6757 val |= PIPECONF_PROGRESSIVE;
6758
50f3b016 6759 if (intel_crtc->config.limited_color_range)
3685a8f3 6760 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6761
c8203565
PZ
6762 I915_WRITE(PIPECONF(pipe), val);
6763 POSTING_READ(PIPECONF(pipe));
6764}
6765
86d3efce
VS
6766/*
6767 * Set up the pipe CSC unit.
6768 *
6769 * Currently only full range RGB to limited range RGB conversion
6770 * is supported, but eventually this should handle various
6771 * RGB<->YCbCr scenarios as well.
6772 */
50f3b016 6773static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6774{
6775 struct drm_device *dev = crtc->dev;
6776 struct drm_i915_private *dev_priv = dev->dev_private;
6777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6778 int pipe = intel_crtc->pipe;
6779 uint16_t coeff = 0x7800; /* 1.0 */
6780
6781 /*
6782 * TODO: Check what kind of values actually come out of the pipe
6783 * with these coeff/postoff values and adjust to get the best
6784 * accuracy. Perhaps we even need to take the bpc value into
6785 * consideration.
6786 */
6787
50f3b016 6788 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6789 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6790
6791 /*
6792 * GY/GU and RY/RU should be the other way around according
6793 * to BSpec, but reality doesn't agree. Just set them up in
6794 * a way that results in the correct picture.
6795 */
6796 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6797 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6798
6799 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6800 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6801
6802 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6803 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6804
6805 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6806 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6807 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6808
6809 if (INTEL_INFO(dev)->gen > 6) {
6810 uint16_t postoff = 0;
6811
50f3b016 6812 if (intel_crtc->config.limited_color_range)
32cf0cb0 6813 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6814
6815 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6816 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6817 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6818
6819 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6820 } else {
6821 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6822
50f3b016 6823 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6824 mode |= CSC_BLACK_SCREEN_OFFSET;
6825
6826 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6827 }
6828}
6829
6ff93609 6830static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6831{
756f85cf
PZ
6832 struct drm_device *dev = crtc->dev;
6833 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6835 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6836 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6837 uint32_t val;
6838
3eff4faa 6839 val = 0;
ee2b0b38 6840
756f85cf 6841 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6842 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6843
6ff93609 6844 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6845 val |= PIPECONF_INTERLACED_ILK;
6846 else
6847 val |= PIPECONF_PROGRESSIVE;
6848
702e7a56
PZ
6849 I915_WRITE(PIPECONF(cpu_transcoder), val);
6850 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6851
6852 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6853 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6854
6855 if (IS_BROADWELL(dev)) {
6856 val = 0;
6857
6858 switch (intel_crtc->config.pipe_bpp) {
6859 case 18:
6860 val |= PIPEMISC_DITHER_6_BPC;
6861 break;
6862 case 24:
6863 val |= PIPEMISC_DITHER_8_BPC;
6864 break;
6865 case 30:
6866 val |= PIPEMISC_DITHER_10_BPC;
6867 break;
6868 case 36:
6869 val |= PIPEMISC_DITHER_12_BPC;
6870 break;
6871 default:
6872 /* Case prevented by pipe_config_set_bpp. */
6873 BUG();
6874 }
6875
6876 if (intel_crtc->config.dither)
6877 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6878
6879 I915_WRITE(PIPEMISC(pipe), val);
6880 }
ee2b0b38
PZ
6881}
6882
6591c6e4 6883static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6884 intel_clock_t *clock,
6885 bool *has_reduced_clock,
6886 intel_clock_t *reduced_clock)
6887{
6888 struct drm_device *dev = crtc->dev;
6889 struct drm_i915_private *dev_priv = dev->dev_private;
6890 struct intel_encoder *intel_encoder;
6891 int refclk;
d4906093 6892 const intel_limit_t *limit;
a16af721 6893 bool ret, is_lvds = false;
79e53945 6894
6591c6e4
PZ
6895 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6896 switch (intel_encoder->type) {
79e53945
JB
6897 case INTEL_OUTPUT_LVDS:
6898 is_lvds = true;
6899 break;
79e53945
JB
6900 }
6901 }
6902
d9d444cb 6903 refclk = ironlake_get_refclk(crtc);
79e53945 6904
d4906093
ML
6905 /*
6906 * Returns a set of divisors for the desired target clock with the given
6907 * refclk, or FALSE. The returned values represent the clock equation:
6908 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6909 */
1b894b59 6910 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6911 ret = dev_priv->display.find_dpll(limit, crtc,
6912 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6913 refclk, NULL, clock);
6591c6e4
PZ
6914 if (!ret)
6915 return false;
cda4b7d3 6916
ddc9003c 6917 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6918 /*
6919 * Ensure we match the reduced clock's P to the target clock.
6920 * If the clocks don't match, we can't switch the display clock
6921 * by using the FP0/FP1. In such case we will disable the LVDS
6922 * downclock feature.
6923 */
ee9300bb
DV
6924 *has_reduced_clock =
6925 dev_priv->display.find_dpll(limit, crtc,
6926 dev_priv->lvds_downclock,
6927 refclk, clock,
6928 reduced_clock);
652c393a 6929 }
61e9653f 6930
6591c6e4
PZ
6931 return true;
6932}
6933
d4b1931c
PZ
6934int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6935{
6936 /*
6937 * Account for spread spectrum to avoid
6938 * oversubscribing the link. Max center spread
6939 * is 2.5%; use 5% for safety's sake.
6940 */
6941 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6942 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6943}
6944
7429e9d4 6945static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6946{
7429e9d4 6947 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6948}
6949
de13a2e3 6950static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6951 u32 *fp,
9a7c7890 6952 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6953{
de13a2e3 6954 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6955 struct drm_device *dev = crtc->dev;
6956 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6957 struct intel_encoder *intel_encoder;
6958 uint32_t dpll;
6cc5f341 6959 int factor, num_connectors = 0;
09ede541 6960 bool is_lvds = false, is_sdvo = false;
79e53945 6961
de13a2e3
PZ
6962 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6963 switch (intel_encoder->type) {
79e53945
JB
6964 case INTEL_OUTPUT_LVDS:
6965 is_lvds = true;
6966 break;
6967 case INTEL_OUTPUT_SDVO:
7d57382e 6968 case INTEL_OUTPUT_HDMI:
79e53945 6969 is_sdvo = true;
79e53945 6970 break;
79e53945 6971 }
43565a06 6972
c751ce4f 6973 num_connectors++;
79e53945 6974 }
79e53945 6975
c1858123 6976 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6977 factor = 21;
6978 if (is_lvds) {
6979 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6980 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6981 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6982 factor = 25;
09ede541 6983 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6984 factor = 20;
c1858123 6985
7429e9d4 6986 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6987 *fp |= FP_CB_TUNE;
2c07245f 6988
9a7c7890
DV
6989 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6990 *fp2 |= FP_CB_TUNE;
6991
5eddb70b 6992 dpll = 0;
2c07245f 6993
a07d6787
EA
6994 if (is_lvds)
6995 dpll |= DPLLB_MODE_LVDS;
6996 else
6997 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6998
ef1b460d
DV
6999 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7000 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7001
7002 if (is_sdvo)
4a33e48d 7003 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7004 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7005 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7006
a07d6787 7007 /* compute bitmask from p1 value */
7429e9d4 7008 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7009 /* also FPA1 */
7429e9d4 7010 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7011
7429e9d4 7012 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7013 case 5:
7014 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7015 break;
7016 case 7:
7017 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7018 break;
7019 case 10:
7020 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7021 break;
7022 case 14:
7023 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7024 break;
79e53945
JB
7025 }
7026
b4c09f3b 7027 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7028 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7029 else
7030 dpll |= PLL_REF_INPUT_DREFCLK;
7031
959e16d6 7032 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7033}
7034
7035static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7036 int x, int y,
7037 struct drm_framebuffer *fb)
7038{
7039 struct drm_device *dev = crtc->dev;
de13a2e3 7040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7041 int num_connectors = 0;
7042 intel_clock_t clock, reduced_clock;
cbbab5bd 7043 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7044 bool ok, has_reduced_clock = false;
8b47047b 7045 bool is_lvds = false;
de13a2e3 7046 struct intel_encoder *encoder;
e2b78267 7047 struct intel_shared_dpll *pll;
de13a2e3
PZ
7048
7049 for_each_encoder_on_crtc(dev, crtc, encoder) {
7050 switch (encoder->type) {
7051 case INTEL_OUTPUT_LVDS:
7052 is_lvds = true;
7053 break;
de13a2e3
PZ
7054 }
7055
7056 num_connectors++;
a07d6787 7057 }
79e53945 7058
5dc5298b
PZ
7059 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7060 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7061
ff9a6750 7062 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7063 &has_reduced_clock, &reduced_clock);
ee9300bb 7064 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7065 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7066 return -EINVAL;
79e53945 7067 }
f47709a9
DV
7068 /* Compat-code for transition, will disappear. */
7069 if (!intel_crtc->config.clock_set) {
7070 intel_crtc->config.dpll.n = clock.n;
7071 intel_crtc->config.dpll.m1 = clock.m1;
7072 intel_crtc->config.dpll.m2 = clock.m2;
7073 intel_crtc->config.dpll.p1 = clock.p1;
7074 intel_crtc->config.dpll.p2 = clock.p2;
7075 }
79e53945 7076
5dc5298b 7077 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7078 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7079 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7080 if (has_reduced_clock)
7429e9d4 7081 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7082
7429e9d4 7083 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7084 &fp, &reduced_clock,
7085 has_reduced_clock ? &fp2 : NULL);
7086
959e16d6 7087 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7088 intel_crtc->config.dpll_hw_state.fp0 = fp;
7089 if (has_reduced_clock)
7090 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7091 else
7092 intel_crtc->config.dpll_hw_state.fp1 = fp;
7093
b89a1d39 7094 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7095 if (pll == NULL) {
84f44ce7 7096 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7097 pipe_name(intel_crtc->pipe));
4b645f14
JB
7098 return -EINVAL;
7099 }
ee7b9f93 7100 } else
e72f9fbf 7101 intel_put_shared_dpll(intel_crtc);
79e53945 7102
d330a953 7103 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7104 intel_crtc->lowfreq_avail = true;
7105 else
7106 intel_crtc->lowfreq_avail = false;
e2b78267 7107
c8f7a0db 7108 return 0;
79e53945
JB
7109}
7110
eb14cb74
VS
7111static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7112 struct intel_link_m_n *m_n)
7113{
7114 struct drm_device *dev = crtc->base.dev;
7115 struct drm_i915_private *dev_priv = dev->dev_private;
7116 enum pipe pipe = crtc->pipe;
7117
7118 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7119 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7120 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7121 & ~TU_SIZE_MASK;
7122 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7123 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7124 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7125}
7126
7127static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7128 enum transcoder transcoder,
7129 struct intel_link_m_n *m_n)
72419203
DV
7130{
7131 struct drm_device *dev = crtc->base.dev;
7132 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7133 enum pipe pipe = crtc->pipe;
72419203 7134
eb14cb74
VS
7135 if (INTEL_INFO(dev)->gen >= 5) {
7136 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7137 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7138 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7139 & ~TU_SIZE_MASK;
7140 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7141 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7142 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7143 } else {
7144 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7145 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7146 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7147 & ~TU_SIZE_MASK;
7148 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7149 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7150 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7151 }
7152}
7153
7154void intel_dp_get_m_n(struct intel_crtc *crtc,
7155 struct intel_crtc_config *pipe_config)
7156{
7157 if (crtc->config.has_pch_encoder)
7158 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7159 else
7160 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7161 &pipe_config->dp_m_n);
7162}
72419203 7163
eb14cb74
VS
7164static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7165 struct intel_crtc_config *pipe_config)
7166{
7167 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7168 &pipe_config->fdi_m_n);
72419203
DV
7169}
7170
2fa2fe9a
DV
7171static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7172 struct intel_crtc_config *pipe_config)
7173{
7174 struct drm_device *dev = crtc->base.dev;
7175 struct drm_i915_private *dev_priv = dev->dev_private;
7176 uint32_t tmp;
7177
7178 tmp = I915_READ(PF_CTL(crtc->pipe));
7179
7180 if (tmp & PF_ENABLE) {
fd4daa9c 7181 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7182 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7183 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7184
7185 /* We currently do not free assignements of panel fitters on
7186 * ivb/hsw (since we don't use the higher upscaling modes which
7187 * differentiates them) so just WARN about this case for now. */
7188 if (IS_GEN7(dev)) {
7189 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7190 PF_PIPE_SEL_IVB(crtc->pipe));
7191 }
2fa2fe9a 7192 }
79e53945
JB
7193}
7194
4c6baa59
JB
7195static void ironlake_get_plane_config(struct intel_crtc *crtc,
7196 struct intel_plane_config *plane_config)
7197{
7198 struct drm_device *dev = crtc->base.dev;
7199 struct drm_i915_private *dev_priv = dev->dev_private;
7200 u32 val, base, offset;
7201 int pipe = crtc->pipe, plane = crtc->plane;
7202 int fourcc, pixel_format;
7203 int aligned_height;
7204
66e514c1
DA
7205 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7206 if (!crtc->base.primary->fb) {
4c6baa59
JB
7207 DRM_DEBUG_KMS("failed to alloc fb\n");
7208 return;
7209 }
7210
7211 val = I915_READ(DSPCNTR(plane));
7212
7213 if (INTEL_INFO(dev)->gen >= 4)
7214 if (val & DISPPLANE_TILED)
7215 plane_config->tiled = true;
7216
7217 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7218 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7219 crtc->base.primary->fb->pixel_format = fourcc;
7220 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7221 drm_format_plane_cpp(fourcc, 0) * 8;
7222
7223 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7224 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7225 offset = I915_READ(DSPOFFSET(plane));
7226 } else {
7227 if (plane_config->tiled)
7228 offset = I915_READ(DSPTILEOFF(plane));
7229 else
7230 offset = I915_READ(DSPLINOFF(plane));
7231 }
7232 plane_config->base = base;
7233
7234 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7235 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7236 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7237
7238 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7239 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7240
66e514c1 7241 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7242 plane_config->tiled);
7243
1267a26b
FF
7244 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7245 aligned_height);
4c6baa59
JB
7246
7247 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7248 pipe, plane, crtc->base.primary->fb->width,
7249 crtc->base.primary->fb->height,
7250 crtc->base.primary->fb->bits_per_pixel, base,
7251 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7252 plane_config->size);
7253}
7254
0e8ffe1b
DV
7255static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7256 struct intel_crtc_config *pipe_config)
7257{
7258 struct drm_device *dev = crtc->base.dev;
7259 struct drm_i915_private *dev_priv = dev->dev_private;
7260 uint32_t tmp;
7261
e143a21c 7262 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7263 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7264
0e8ffe1b
DV
7265 tmp = I915_READ(PIPECONF(crtc->pipe));
7266 if (!(tmp & PIPECONF_ENABLE))
7267 return false;
7268
42571aef
VS
7269 switch (tmp & PIPECONF_BPC_MASK) {
7270 case PIPECONF_6BPC:
7271 pipe_config->pipe_bpp = 18;
7272 break;
7273 case PIPECONF_8BPC:
7274 pipe_config->pipe_bpp = 24;
7275 break;
7276 case PIPECONF_10BPC:
7277 pipe_config->pipe_bpp = 30;
7278 break;
7279 case PIPECONF_12BPC:
7280 pipe_config->pipe_bpp = 36;
7281 break;
7282 default:
7283 break;
7284 }
7285
b5a9fa09
DV
7286 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7287 pipe_config->limited_color_range = true;
7288
ab9412ba 7289 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7290 struct intel_shared_dpll *pll;
7291
88adfff1
DV
7292 pipe_config->has_pch_encoder = true;
7293
627eb5a3
DV
7294 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7295 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7296 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7297
7298 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7299
c0d43d62 7300 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7301 pipe_config->shared_dpll =
7302 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7303 } else {
7304 tmp = I915_READ(PCH_DPLL_SEL);
7305 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7306 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7307 else
7308 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7309 }
66e985c0
DV
7310
7311 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7312
7313 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7314 &pipe_config->dpll_hw_state));
c93f54cf
DV
7315
7316 tmp = pipe_config->dpll_hw_state.dpll;
7317 pipe_config->pixel_multiplier =
7318 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7319 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7320
7321 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7322 } else {
7323 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7324 }
7325
1bd1bd80
DV
7326 intel_get_pipe_timings(crtc, pipe_config);
7327
2fa2fe9a
DV
7328 ironlake_get_pfit_config(crtc, pipe_config);
7329
0e8ffe1b
DV
7330 return true;
7331}
7332
be256dc7
PZ
7333static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7334{
7335 struct drm_device *dev = dev_priv->dev;
7336 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7337 struct intel_crtc *crtc;
be256dc7 7338
d3fcc808 7339 for_each_intel_crtc(dev, crtc)
798183c5 7340 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7341 pipe_name(crtc->pipe));
7342
7343 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7344 WARN(plls->spll_refcount, "SPLL enabled\n");
7345 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7346 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7347 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7348 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7349 "CPU PWM1 enabled\n");
7350 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7351 "CPU PWM2 enabled\n");
7352 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7353 "PCH PWM1 enabled\n");
7354 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7355 "Utility pin enabled\n");
7356 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7357
9926ada1
PZ
7358 /*
7359 * In theory we can still leave IRQs enabled, as long as only the HPD
7360 * interrupts remain enabled. We used to check for that, but since it's
7361 * gen-specific and since we only disable LCPLL after we fully disable
7362 * the interrupts, the check below should be enough.
7363 */
7364 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7365}
7366
3c4c9b81
PZ
7367static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7368{
7369 struct drm_device *dev = dev_priv->dev;
7370
7371 if (IS_HASWELL(dev)) {
7372 mutex_lock(&dev_priv->rps.hw_lock);
7373 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7374 val))
7375 DRM_ERROR("Failed to disable D_COMP\n");
7376 mutex_unlock(&dev_priv->rps.hw_lock);
7377 } else {
7378 I915_WRITE(D_COMP, val);
7379 }
7380 POSTING_READ(D_COMP);
be256dc7
PZ
7381}
7382
7383/*
7384 * This function implements pieces of two sequences from BSpec:
7385 * - Sequence for display software to disable LCPLL
7386 * - Sequence for display software to allow package C8+
7387 * The steps implemented here are just the steps that actually touch the LCPLL
7388 * register. Callers should take care of disabling all the display engine
7389 * functions, doing the mode unset, fixing interrupts, etc.
7390 */
6ff58d53
PZ
7391static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7392 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7393{
7394 uint32_t val;
7395
7396 assert_can_disable_lcpll(dev_priv);
7397
7398 val = I915_READ(LCPLL_CTL);
7399
7400 if (switch_to_fclk) {
7401 val |= LCPLL_CD_SOURCE_FCLK;
7402 I915_WRITE(LCPLL_CTL, val);
7403
7404 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7405 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7406 DRM_ERROR("Switching to FCLK failed\n");
7407
7408 val = I915_READ(LCPLL_CTL);
7409 }
7410
7411 val |= LCPLL_PLL_DISABLE;
7412 I915_WRITE(LCPLL_CTL, val);
7413 POSTING_READ(LCPLL_CTL);
7414
7415 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7416 DRM_ERROR("LCPLL still locked\n");
7417
7418 val = I915_READ(D_COMP);
7419 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7420 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7421 ndelay(100);
7422
7423 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7424 DRM_ERROR("D_COMP RCOMP still in progress\n");
7425
7426 if (allow_power_down) {
7427 val = I915_READ(LCPLL_CTL);
7428 val |= LCPLL_POWER_DOWN_ALLOW;
7429 I915_WRITE(LCPLL_CTL, val);
7430 POSTING_READ(LCPLL_CTL);
7431 }
7432}
7433
7434/*
7435 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7436 * source.
7437 */
6ff58d53 7438static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7439{
7440 uint32_t val;
a8a8bd54 7441 unsigned long irqflags;
be256dc7
PZ
7442
7443 val = I915_READ(LCPLL_CTL);
7444
7445 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7446 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7447 return;
7448
a8a8bd54
PZ
7449 /*
7450 * Make sure we're not on PC8 state before disabling PC8, otherwise
7451 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7452 *
7453 * The other problem is that hsw_restore_lcpll() is called as part of
7454 * the runtime PM resume sequence, so we can't just call
7455 * gen6_gt_force_wake_get() because that function calls
7456 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7457 * while we are on the resume sequence. So to solve this problem we have
7458 * to call special forcewake code that doesn't touch runtime PM and
7459 * doesn't enable the forcewake delayed work.
7460 */
7461 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7462 if (dev_priv->uncore.forcewake_count++ == 0)
7463 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7464 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7465
be256dc7
PZ
7466 if (val & LCPLL_POWER_DOWN_ALLOW) {
7467 val &= ~LCPLL_POWER_DOWN_ALLOW;
7468 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7469 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7470 }
7471
7472 val = I915_READ(D_COMP);
7473 val |= D_COMP_COMP_FORCE;
7474 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7475 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7476
7477 val = I915_READ(LCPLL_CTL);
7478 val &= ~LCPLL_PLL_DISABLE;
7479 I915_WRITE(LCPLL_CTL, val);
7480
7481 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7482 DRM_ERROR("LCPLL not locked yet\n");
7483
7484 if (val & LCPLL_CD_SOURCE_FCLK) {
7485 val = I915_READ(LCPLL_CTL);
7486 val &= ~LCPLL_CD_SOURCE_FCLK;
7487 I915_WRITE(LCPLL_CTL, val);
7488
7489 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7490 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7491 DRM_ERROR("Switching back to LCPLL failed\n");
7492 }
215733fa 7493
a8a8bd54
PZ
7494 /* See the big comment above. */
7495 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7496 if (--dev_priv->uncore.forcewake_count == 0)
7497 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7498 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7499}
7500
765dab67
PZ
7501/*
7502 * Package states C8 and deeper are really deep PC states that can only be
7503 * reached when all the devices on the system allow it, so even if the graphics
7504 * device allows PC8+, it doesn't mean the system will actually get to these
7505 * states. Our driver only allows PC8+ when going into runtime PM.
7506 *
7507 * The requirements for PC8+ are that all the outputs are disabled, the power
7508 * well is disabled and most interrupts are disabled, and these are also
7509 * requirements for runtime PM. When these conditions are met, we manually do
7510 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7511 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7512 * hang the machine.
7513 *
7514 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7515 * the state of some registers, so when we come back from PC8+ we need to
7516 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7517 * need to take care of the registers kept by RC6. Notice that this happens even
7518 * if we don't put the device in PCI D3 state (which is what currently happens
7519 * because of the runtime PM support).
7520 *
7521 * For more, read "Display Sequences for Package C8" on the hardware
7522 * documentation.
7523 */
a14cb6fc 7524void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7525{
c67a470b
PZ
7526 struct drm_device *dev = dev_priv->dev;
7527 uint32_t val;
7528
c67a470b
PZ
7529 DRM_DEBUG_KMS("Enabling package C8+\n");
7530
c67a470b
PZ
7531 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7532 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7533 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7534 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7535 }
7536
7537 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7538 hsw_disable_lcpll(dev_priv, true, true);
7539}
7540
a14cb6fc 7541void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7542{
7543 struct drm_device *dev = dev_priv->dev;
7544 uint32_t val;
7545
c67a470b
PZ
7546 DRM_DEBUG_KMS("Disabling package C8+\n");
7547
7548 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7549 lpt_init_pch_refclk(dev);
7550
7551 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7552 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7553 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7554 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7555 }
7556
7557 intel_prepare_ddi(dev);
c67a470b
PZ
7558}
7559
9a952a0d
PZ
7560static void snb_modeset_global_resources(struct drm_device *dev)
7561{
7562 modeset_update_crtc_power_domains(dev);
7563}
7564
4f074129
ID
7565static void haswell_modeset_global_resources(struct drm_device *dev)
7566{
da723569 7567 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7568}
7569
09b4ddf9 7570static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7571 int x, int y,
7572 struct drm_framebuffer *fb)
7573{
09b4ddf9 7574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7575
566b734a 7576 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7577 return -EINVAL;
566b734a 7578 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7579
644cef34
DV
7580 intel_crtc->lowfreq_avail = false;
7581
c8f7a0db 7582 return 0;
79e53945
JB
7583}
7584
0e8ffe1b
DV
7585static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7586 struct intel_crtc_config *pipe_config)
7587{
7588 struct drm_device *dev = crtc->base.dev;
7589 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7590 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7591 uint32_t tmp;
7592
b5482bd0
ID
7593 if (!intel_display_power_enabled(dev_priv,
7594 POWER_DOMAIN_PIPE(crtc->pipe)))
7595 return false;
7596
e143a21c 7597 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7598 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7599
eccb140b
DV
7600 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7601 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7602 enum pipe trans_edp_pipe;
7603 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7604 default:
7605 WARN(1, "unknown pipe linked to edp transcoder\n");
7606 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7607 case TRANS_DDI_EDP_INPUT_A_ON:
7608 trans_edp_pipe = PIPE_A;
7609 break;
7610 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7611 trans_edp_pipe = PIPE_B;
7612 break;
7613 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7614 trans_edp_pipe = PIPE_C;
7615 break;
7616 }
7617
7618 if (trans_edp_pipe == crtc->pipe)
7619 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7620 }
7621
da7e29bd 7622 if (!intel_display_power_enabled(dev_priv,
eccb140b 7623 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7624 return false;
7625
eccb140b 7626 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7627 if (!(tmp & PIPECONF_ENABLE))
7628 return false;
7629
88adfff1 7630 /*
f196e6be 7631 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7632 * DDI E. So just check whether this pipe is wired to DDI E and whether
7633 * the PCH transcoder is on.
7634 */
eccb140b 7635 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7636 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7637 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7638 pipe_config->has_pch_encoder = true;
7639
627eb5a3
DV
7640 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7641 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7642 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7643
7644 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7645 }
7646
1bd1bd80
DV
7647 intel_get_pipe_timings(crtc, pipe_config);
7648
2fa2fe9a 7649 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7650 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7651 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7652
e59150dc
JB
7653 if (IS_HASWELL(dev))
7654 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7655 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7656
6c49f241
DV
7657 pipe_config->pixel_multiplier = 1;
7658
0e8ffe1b
DV
7659 return true;
7660}
7661
1a91510d
JN
7662static struct {
7663 int clock;
7664 u32 config;
7665} hdmi_audio_clock[] = {
7666 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7667 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7668 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7669 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7670 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7671 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7672 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7673 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7674 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7675 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7676};
7677
7678/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7679static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7680{
7681 int i;
7682
7683 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7684 if (mode->clock == hdmi_audio_clock[i].clock)
7685 break;
7686 }
7687
7688 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7689 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7690 i = 1;
7691 }
7692
7693 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7694 hdmi_audio_clock[i].clock,
7695 hdmi_audio_clock[i].config);
7696
7697 return hdmi_audio_clock[i].config;
7698}
7699
3a9627f4
WF
7700static bool intel_eld_uptodate(struct drm_connector *connector,
7701 int reg_eldv, uint32_t bits_eldv,
7702 int reg_elda, uint32_t bits_elda,
7703 int reg_edid)
7704{
7705 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7706 uint8_t *eld = connector->eld;
7707 uint32_t i;
7708
7709 i = I915_READ(reg_eldv);
7710 i &= bits_eldv;
7711
7712 if (!eld[0])
7713 return !i;
7714
7715 if (!i)
7716 return false;
7717
7718 i = I915_READ(reg_elda);
7719 i &= ~bits_elda;
7720 I915_WRITE(reg_elda, i);
7721
7722 for (i = 0; i < eld[2]; i++)
7723 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7724 return false;
7725
7726 return true;
7727}
7728
e0dac65e 7729static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7730 struct drm_crtc *crtc,
7731 struct drm_display_mode *mode)
e0dac65e
WF
7732{
7733 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7734 uint8_t *eld = connector->eld;
7735 uint32_t eldv;
7736 uint32_t len;
7737 uint32_t i;
7738
7739 i = I915_READ(G4X_AUD_VID_DID);
7740
7741 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7742 eldv = G4X_ELDV_DEVCL_DEVBLC;
7743 else
7744 eldv = G4X_ELDV_DEVCTG;
7745
3a9627f4
WF
7746 if (intel_eld_uptodate(connector,
7747 G4X_AUD_CNTL_ST, eldv,
7748 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7749 G4X_HDMIW_HDMIEDID))
7750 return;
7751
e0dac65e
WF
7752 i = I915_READ(G4X_AUD_CNTL_ST);
7753 i &= ~(eldv | G4X_ELD_ADDR);
7754 len = (i >> 9) & 0x1f; /* ELD buffer size */
7755 I915_WRITE(G4X_AUD_CNTL_ST, i);
7756
7757 if (!eld[0])
7758 return;
7759
7760 len = min_t(uint8_t, eld[2], len);
7761 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7762 for (i = 0; i < len; i++)
7763 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7764
7765 i = I915_READ(G4X_AUD_CNTL_ST);
7766 i |= eldv;
7767 I915_WRITE(G4X_AUD_CNTL_ST, i);
7768}
7769
83358c85 7770static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7771 struct drm_crtc *crtc,
7772 struct drm_display_mode *mode)
83358c85
WX
7773{
7774 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7775 uint8_t *eld = connector->eld;
83358c85
WX
7776 uint32_t eldv;
7777 uint32_t i;
7778 int len;
7779 int pipe = to_intel_crtc(crtc)->pipe;
7780 int tmp;
7781
7782 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7783 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7784 int aud_config = HSW_AUD_CFG(pipe);
7785 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7786
83358c85
WX
7787 /* Audio output enable */
7788 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7789 tmp = I915_READ(aud_cntrl_st2);
7790 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7791 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7792 POSTING_READ(aud_cntrl_st2);
83358c85 7793
c7905792 7794 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7795
7796 /* Set ELD valid state */
7797 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7798 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7799 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7800 I915_WRITE(aud_cntrl_st2, tmp);
7801 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7802 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7803
7804 /* Enable HDMI mode */
7805 tmp = I915_READ(aud_config);
7e7cb34f 7806 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7807 /* clear N_programing_enable and N_value_index */
7808 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7809 I915_WRITE(aud_config, tmp);
7810
7811 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7812
7813 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7814
7815 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7816 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7817 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7818 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7819 } else {
7820 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7821 }
83358c85
WX
7822
7823 if (intel_eld_uptodate(connector,
7824 aud_cntrl_st2, eldv,
7825 aud_cntl_st, IBX_ELD_ADDRESS,
7826 hdmiw_hdmiedid))
7827 return;
7828
7829 i = I915_READ(aud_cntrl_st2);
7830 i &= ~eldv;
7831 I915_WRITE(aud_cntrl_st2, i);
7832
7833 if (!eld[0])
7834 return;
7835
7836 i = I915_READ(aud_cntl_st);
7837 i &= ~IBX_ELD_ADDRESS;
7838 I915_WRITE(aud_cntl_st, i);
7839 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7840 DRM_DEBUG_DRIVER("port num:%d\n", i);
7841
7842 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7843 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7844 for (i = 0; i < len; i++)
7845 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7846
7847 i = I915_READ(aud_cntrl_st2);
7848 i |= eldv;
7849 I915_WRITE(aud_cntrl_st2, i);
7850
7851}
7852
e0dac65e 7853static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7854 struct drm_crtc *crtc,
7855 struct drm_display_mode *mode)
e0dac65e
WF
7856{
7857 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7858 uint8_t *eld = connector->eld;
7859 uint32_t eldv;
7860 uint32_t i;
7861 int len;
7862 int hdmiw_hdmiedid;
b6daa025 7863 int aud_config;
e0dac65e
WF
7864 int aud_cntl_st;
7865 int aud_cntrl_st2;
9b138a83 7866 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7867
b3f33cbf 7868 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7869 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7870 aud_config = IBX_AUD_CFG(pipe);
7871 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7872 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7873 } else if (IS_VALLEYVIEW(connector->dev)) {
7874 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7875 aud_config = VLV_AUD_CFG(pipe);
7876 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7877 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7878 } else {
9b138a83
WX
7879 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7880 aud_config = CPT_AUD_CFG(pipe);
7881 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7882 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7883 }
7884
9b138a83 7885 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7886
9ca2fe73
ML
7887 if (IS_VALLEYVIEW(connector->dev)) {
7888 struct intel_encoder *intel_encoder;
7889 struct intel_digital_port *intel_dig_port;
7890
7891 intel_encoder = intel_attached_encoder(connector);
7892 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7893 i = intel_dig_port->port;
7894 } else {
7895 i = I915_READ(aud_cntl_st);
7896 i = (i >> 29) & DIP_PORT_SEL_MASK;
7897 /* DIP_Port_Select, 0x1 = PortB */
7898 }
7899
e0dac65e
WF
7900 if (!i) {
7901 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7902 /* operate blindly on all ports */
1202b4c6
WF
7903 eldv = IBX_ELD_VALIDB;
7904 eldv |= IBX_ELD_VALIDB << 4;
7905 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7906 } else {
2582a850 7907 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7908 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7909 }
7910
3a9627f4
WF
7911 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7912 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7913 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7914 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7915 } else {
7916 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7917 }
e0dac65e 7918
3a9627f4
WF
7919 if (intel_eld_uptodate(connector,
7920 aud_cntrl_st2, eldv,
7921 aud_cntl_st, IBX_ELD_ADDRESS,
7922 hdmiw_hdmiedid))
7923 return;
7924
e0dac65e
WF
7925 i = I915_READ(aud_cntrl_st2);
7926 i &= ~eldv;
7927 I915_WRITE(aud_cntrl_st2, i);
7928
7929 if (!eld[0])
7930 return;
7931
e0dac65e 7932 i = I915_READ(aud_cntl_st);
1202b4c6 7933 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7934 I915_WRITE(aud_cntl_st, i);
7935
7936 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7937 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7938 for (i = 0; i < len; i++)
7939 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7940
7941 i = I915_READ(aud_cntrl_st2);
7942 i |= eldv;
7943 I915_WRITE(aud_cntrl_st2, i);
7944}
7945
7946void intel_write_eld(struct drm_encoder *encoder,
7947 struct drm_display_mode *mode)
7948{
7949 struct drm_crtc *crtc = encoder->crtc;
7950 struct drm_connector *connector;
7951 struct drm_device *dev = encoder->dev;
7952 struct drm_i915_private *dev_priv = dev->dev_private;
7953
7954 connector = drm_select_eld(encoder, mode);
7955 if (!connector)
7956 return;
7957
7958 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7959 connector->base.id,
c23cc417 7960 connector->name,
e0dac65e 7961 connector->encoder->base.id,
8e329a03 7962 connector->encoder->name);
e0dac65e
WF
7963
7964 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7965
7966 if (dev_priv->display.write_eld)
34427052 7967 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7968}
7969
560b85bb
CW
7970static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7971{
7972 struct drm_device *dev = crtc->dev;
7973 struct drm_i915_private *dev_priv = dev->dev_private;
7974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7975 uint32_t cntl;
560b85bb 7976
4b0e333e 7977 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7978 /* On these chipsets we can only modify the base whilst
7979 * the cursor is disabled.
7980 */
4b0e333e
CW
7981 if (intel_crtc->cursor_cntl) {
7982 I915_WRITE(_CURACNTR, 0);
7983 POSTING_READ(_CURACNTR);
7984 intel_crtc->cursor_cntl = 0;
7985 }
7986
9db4a9c7 7987 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7988 POSTING_READ(_CURABASE);
7989 }
560b85bb 7990
4b0e333e
CW
7991 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7992 cntl = 0;
7993 if (base)
7994 cntl = (CURSOR_ENABLE |
560b85bb 7995 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7996 CURSOR_FORMAT_ARGB);
7997 if (intel_crtc->cursor_cntl != cntl) {
7998 I915_WRITE(_CURACNTR, cntl);
7999 POSTING_READ(_CURACNTR);
8000 intel_crtc->cursor_cntl = cntl;
8001 }
560b85bb
CW
8002}
8003
8004static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8005{
8006 struct drm_device *dev = crtc->dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8009 int pipe = intel_crtc->pipe;
4b0e333e 8010 uint32_t cntl;
4726e0b0 8011
4b0e333e
CW
8012 cntl = 0;
8013 if (base) {
8014 cntl = MCURSOR_GAMMA_ENABLE;
8015 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8016 case 64:
8017 cntl |= CURSOR_MODE_64_ARGB_AX;
8018 break;
8019 case 128:
8020 cntl |= CURSOR_MODE_128_ARGB_AX;
8021 break;
8022 case 256:
8023 cntl |= CURSOR_MODE_256_ARGB_AX;
8024 break;
8025 default:
8026 WARN_ON(1);
8027 return;
560b85bb 8028 }
4b0e333e
CW
8029 cntl |= pipe << 28; /* Connect to correct pipe */
8030 }
8031 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8032 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8033 POSTING_READ(CURCNTR(pipe));
8034 intel_crtc->cursor_cntl = cntl;
560b85bb 8035 }
4b0e333e 8036
560b85bb 8037 /* and commit changes on next vblank */
9db4a9c7 8038 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8039 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8040}
8041
65a21cd6
JB
8042static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8043{
8044 struct drm_device *dev = crtc->dev;
8045 struct drm_i915_private *dev_priv = dev->dev_private;
8046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8047 int pipe = intel_crtc->pipe;
4b0e333e
CW
8048 uint32_t cntl;
8049
8050 cntl = 0;
8051 if (base) {
8052 cntl = MCURSOR_GAMMA_ENABLE;
8053 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8054 case 64:
8055 cntl |= CURSOR_MODE_64_ARGB_AX;
8056 break;
8057 case 128:
8058 cntl |= CURSOR_MODE_128_ARGB_AX;
8059 break;
8060 case 256:
8061 cntl |= CURSOR_MODE_256_ARGB_AX;
8062 break;
8063 default:
8064 WARN_ON(1);
8065 return;
65a21cd6 8066 }
4b0e333e
CW
8067 }
8068 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8069 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8070
4b0e333e
CW
8071 if (intel_crtc->cursor_cntl != cntl) {
8072 I915_WRITE(CURCNTR(pipe), cntl);
8073 POSTING_READ(CURCNTR(pipe));
8074 intel_crtc->cursor_cntl = cntl;
65a21cd6 8075 }
4b0e333e 8076
65a21cd6 8077 /* and commit changes on next vblank */
5efb3e28
VS
8078 I915_WRITE(CURBASE(pipe), base);
8079 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8080}
8081
cda4b7d3 8082/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8083static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8084 bool on)
cda4b7d3
CW
8085{
8086 struct drm_device *dev = crtc->dev;
8087 struct drm_i915_private *dev_priv = dev->dev_private;
8088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8089 int pipe = intel_crtc->pipe;
3d7d6510
MR
8090 int x = crtc->cursor_x;
8091 int y = crtc->cursor_y;
d6e4db15 8092 u32 base = 0, pos = 0;
cda4b7d3 8093
d6e4db15 8094 if (on)
cda4b7d3 8095 base = intel_crtc->cursor_addr;
cda4b7d3 8096
d6e4db15
VS
8097 if (x >= intel_crtc->config.pipe_src_w)
8098 base = 0;
8099
8100 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8101 base = 0;
8102
8103 if (x < 0) {
efc9064e 8104 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8105 base = 0;
8106
8107 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8108 x = -x;
8109 }
8110 pos |= x << CURSOR_X_SHIFT;
8111
8112 if (y < 0) {
efc9064e 8113 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8114 base = 0;
8115
8116 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8117 y = -y;
8118 }
8119 pos |= y << CURSOR_Y_SHIFT;
8120
4b0e333e 8121 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8122 return;
8123
5efb3e28
VS
8124 I915_WRITE(CURPOS(pipe), pos);
8125
8126 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8127 ivb_update_cursor(crtc, base);
5efb3e28
VS
8128 else if (IS_845G(dev) || IS_I865G(dev))
8129 i845_update_cursor(crtc, base);
8130 else
8131 i9xx_update_cursor(crtc, base);
4b0e333e 8132 intel_crtc->cursor_base = base;
cda4b7d3
CW
8133}
8134
e3287951
MR
8135/*
8136 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8137 *
8138 * Note that the object's reference will be consumed if the update fails. If
8139 * the update succeeds, the reference of the old object (if any) will be
8140 * consumed.
8141 */
8142static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8143 struct drm_i915_gem_object *obj,
8144 uint32_t width, uint32_t height)
79e53945
JB
8145{
8146 struct drm_device *dev = crtc->dev;
8147 struct drm_i915_private *dev_priv = dev->dev_private;
8148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8149 enum pipe pipe = intel_crtc->pipe;
64f962e3 8150 unsigned old_width;
cda4b7d3 8151 uint32_t addr;
3f8bc370 8152 int ret;
79e53945 8153
79e53945 8154 /* if we want to turn off the cursor ignore width and height */
e3287951 8155 if (!obj) {
28c97730 8156 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8157 addr = 0;
05394f39 8158 obj = NULL;
5004417d 8159 mutex_lock(&dev->struct_mutex);
3f8bc370 8160 goto finish;
79e53945
JB
8161 }
8162
4726e0b0
SK
8163 /* Check for which cursor types we support */
8164 if (!((width == 64 && height == 64) ||
8165 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8166 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8167 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8168 return -EINVAL;
8169 }
8170
05394f39 8171 if (obj->base.size < width * height * 4) {
e3287951 8172 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8173 ret = -ENOMEM;
8174 goto fail;
79e53945
JB
8175 }
8176
71acb5eb 8177 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8178 mutex_lock(&dev->struct_mutex);
3d13ef2e 8179 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8180 unsigned alignment;
8181
d9e86c0e 8182 if (obj->tiling_mode) {
3b25b31f 8183 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8184 ret = -EINVAL;
8185 goto fail_locked;
8186 }
8187
693db184
CW
8188 /* Note that the w/a also requires 2 PTE of padding following
8189 * the bo. We currently fill all unused PTE with the shadow
8190 * page and so we should always have valid PTE following the
8191 * cursor preventing the VT-d warning.
8192 */
8193 alignment = 0;
8194 if (need_vtd_wa(dev))
8195 alignment = 64*1024;
8196
8197 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8198 if (ret) {
3b25b31f 8199 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8200 goto fail_locked;
e7b526bb
CW
8201 }
8202
d9e86c0e
CW
8203 ret = i915_gem_object_put_fence(obj);
8204 if (ret) {
3b25b31f 8205 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8206 goto fail_unpin;
8207 }
8208
f343c5f6 8209 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8210 } else {
6eeefaf3 8211 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8212 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8213 if (ret) {
3b25b31f 8214 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8215 goto fail_locked;
71acb5eb 8216 }
00731155 8217 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8218 }
8219
a6c45cf0 8220 if (IS_GEN2(dev))
14b60391
JB
8221 I915_WRITE(CURSIZE, (height << 12) | width);
8222
3f8bc370 8223 finish:
3f8bc370 8224 if (intel_crtc->cursor_bo) {
00731155 8225 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8226 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8227 }
80824003 8228
a071fa00
DV
8229 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8230 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8231 mutex_unlock(&dev->struct_mutex);
3f8bc370 8232
64f962e3
CW
8233 old_width = intel_crtc->cursor_width;
8234
3f8bc370 8235 intel_crtc->cursor_addr = addr;
05394f39 8236 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8237 intel_crtc->cursor_width = width;
8238 intel_crtc->cursor_height = height;
8239
64f962e3
CW
8240 if (intel_crtc->active) {
8241 if (old_width != width)
8242 intel_update_watermarks(crtc);
f2f5f771 8243 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8244 }
3f8bc370 8245
f99d7069
DV
8246 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8247
79e53945 8248 return 0;
e7b526bb 8249fail_unpin:
cc98b413 8250 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8251fail_locked:
34b8686e 8252 mutex_unlock(&dev->struct_mutex);
bc9025bd 8253fail:
05394f39 8254 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8255 return ret;
79e53945
JB
8256}
8257
79e53945 8258static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8259 u16 *blue, uint32_t start, uint32_t size)
79e53945 8260{
7203425a 8261 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8263
7203425a 8264 for (i = start; i < end; i++) {
79e53945
JB
8265 intel_crtc->lut_r[i] = red[i] >> 8;
8266 intel_crtc->lut_g[i] = green[i] >> 8;
8267 intel_crtc->lut_b[i] = blue[i] >> 8;
8268 }
8269
8270 intel_crtc_load_lut(crtc);
8271}
8272
79e53945
JB
8273/* VESA 640x480x72Hz mode to set on the pipe */
8274static struct drm_display_mode load_detect_mode = {
8275 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8276 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8277};
8278
a8bb6818
DV
8279struct drm_framebuffer *
8280__intel_framebuffer_create(struct drm_device *dev,
8281 struct drm_mode_fb_cmd2 *mode_cmd,
8282 struct drm_i915_gem_object *obj)
d2dff872
CW
8283{
8284 struct intel_framebuffer *intel_fb;
8285 int ret;
8286
8287 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8288 if (!intel_fb) {
8289 drm_gem_object_unreference_unlocked(&obj->base);
8290 return ERR_PTR(-ENOMEM);
8291 }
8292
8293 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8294 if (ret)
8295 goto err;
d2dff872
CW
8296
8297 return &intel_fb->base;
dd4916c5
DV
8298err:
8299 drm_gem_object_unreference_unlocked(&obj->base);
8300 kfree(intel_fb);
8301
8302 return ERR_PTR(ret);
d2dff872
CW
8303}
8304
b5ea642a 8305static struct drm_framebuffer *
a8bb6818
DV
8306intel_framebuffer_create(struct drm_device *dev,
8307 struct drm_mode_fb_cmd2 *mode_cmd,
8308 struct drm_i915_gem_object *obj)
8309{
8310 struct drm_framebuffer *fb;
8311 int ret;
8312
8313 ret = i915_mutex_lock_interruptible(dev);
8314 if (ret)
8315 return ERR_PTR(ret);
8316 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8317 mutex_unlock(&dev->struct_mutex);
8318
8319 return fb;
8320}
8321
d2dff872
CW
8322static u32
8323intel_framebuffer_pitch_for_width(int width, int bpp)
8324{
8325 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8326 return ALIGN(pitch, 64);
8327}
8328
8329static u32
8330intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8331{
8332 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8333 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8334}
8335
8336static struct drm_framebuffer *
8337intel_framebuffer_create_for_mode(struct drm_device *dev,
8338 struct drm_display_mode *mode,
8339 int depth, int bpp)
8340{
8341 struct drm_i915_gem_object *obj;
0fed39bd 8342 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8343
8344 obj = i915_gem_alloc_object(dev,
8345 intel_framebuffer_size_for_mode(mode, bpp));
8346 if (obj == NULL)
8347 return ERR_PTR(-ENOMEM);
8348
8349 mode_cmd.width = mode->hdisplay;
8350 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8351 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8352 bpp);
5ca0c34a 8353 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8354
8355 return intel_framebuffer_create(dev, &mode_cmd, obj);
8356}
8357
8358static struct drm_framebuffer *
8359mode_fits_in_fbdev(struct drm_device *dev,
8360 struct drm_display_mode *mode)
8361{
4520f53a 8362#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8363 struct drm_i915_private *dev_priv = dev->dev_private;
8364 struct drm_i915_gem_object *obj;
8365 struct drm_framebuffer *fb;
8366
4c0e5528 8367 if (!dev_priv->fbdev)
d2dff872
CW
8368 return NULL;
8369
4c0e5528 8370 if (!dev_priv->fbdev->fb)
d2dff872
CW
8371 return NULL;
8372
4c0e5528
DV
8373 obj = dev_priv->fbdev->fb->obj;
8374 BUG_ON(!obj);
8375
8bcd4553 8376 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8377 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8378 fb->bits_per_pixel))
d2dff872
CW
8379 return NULL;
8380
01f2c773 8381 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8382 return NULL;
8383
8384 return fb;
4520f53a
DV
8385#else
8386 return NULL;
8387#endif
d2dff872
CW
8388}
8389
d2434ab7 8390bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8391 struct drm_display_mode *mode,
51fd371b
RC
8392 struct intel_load_detect_pipe *old,
8393 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8394{
8395 struct intel_crtc *intel_crtc;
d2434ab7
DV
8396 struct intel_encoder *intel_encoder =
8397 intel_attached_encoder(connector);
79e53945 8398 struct drm_crtc *possible_crtc;
4ef69c7a 8399 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8400 struct drm_crtc *crtc = NULL;
8401 struct drm_device *dev = encoder->dev;
94352cf9 8402 struct drm_framebuffer *fb;
51fd371b
RC
8403 struct drm_mode_config *config = &dev->mode_config;
8404 int ret, i = -1;
79e53945 8405
d2dff872 8406 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8407 connector->base.id, connector->name,
8e329a03 8408 encoder->base.id, encoder->name);
d2dff872 8409
51fd371b
RC
8410 drm_modeset_acquire_init(ctx, 0);
8411
8412retry:
8413 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8414 if (ret)
8415 goto fail_unlock;
6e9f798d 8416
79e53945
JB
8417 /*
8418 * Algorithm gets a little messy:
7a5e4805 8419 *
79e53945
JB
8420 * - if the connector already has an assigned crtc, use it (but make
8421 * sure it's on first)
7a5e4805 8422 *
79e53945
JB
8423 * - try to find the first unused crtc that can drive this connector,
8424 * and use that if we find one
79e53945
JB
8425 */
8426
8427 /* See if we already have a CRTC for this connector */
8428 if (encoder->crtc) {
8429 crtc = encoder->crtc;
8261b191 8430
51fd371b
RC
8431 ret = drm_modeset_lock(&crtc->mutex, ctx);
8432 if (ret)
8433 goto fail_unlock;
7b24056b 8434
24218aac 8435 old->dpms_mode = connector->dpms;
8261b191
CW
8436 old->load_detect_temp = false;
8437
8438 /* Make sure the crtc and connector are running */
24218aac
DV
8439 if (connector->dpms != DRM_MODE_DPMS_ON)
8440 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8441
7173188d 8442 return true;
79e53945
JB
8443 }
8444
8445 /* Find an unused one (if possible) */
70e1e0ec 8446 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8447 i++;
8448 if (!(encoder->possible_crtcs & (1 << i)))
8449 continue;
8450 if (!possible_crtc->enabled) {
8451 crtc = possible_crtc;
8452 break;
8453 }
79e53945
JB
8454 }
8455
8456 /*
8457 * If we didn't find an unused CRTC, don't use any.
8458 */
8459 if (!crtc) {
7173188d 8460 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8461 goto fail_unlock;
79e53945
JB
8462 }
8463
51fd371b
RC
8464 ret = drm_modeset_lock(&crtc->mutex, ctx);
8465 if (ret)
8466 goto fail_unlock;
fc303101
DV
8467 intel_encoder->new_crtc = to_intel_crtc(crtc);
8468 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8469
8470 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8471 intel_crtc->new_enabled = true;
8472 intel_crtc->new_config = &intel_crtc->config;
24218aac 8473 old->dpms_mode = connector->dpms;
8261b191 8474 old->load_detect_temp = true;
d2dff872 8475 old->release_fb = NULL;
79e53945 8476
6492711d
CW
8477 if (!mode)
8478 mode = &load_detect_mode;
79e53945 8479
d2dff872
CW
8480 /* We need a framebuffer large enough to accommodate all accesses
8481 * that the plane may generate whilst we perform load detection.
8482 * We can not rely on the fbcon either being present (we get called
8483 * during its initialisation to detect all boot displays, or it may
8484 * not even exist) or that it is large enough to satisfy the
8485 * requested mode.
8486 */
94352cf9
DV
8487 fb = mode_fits_in_fbdev(dev, mode);
8488 if (fb == NULL) {
d2dff872 8489 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8490 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8491 old->release_fb = fb;
d2dff872
CW
8492 } else
8493 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8494 if (IS_ERR(fb)) {
d2dff872 8495 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8496 goto fail;
79e53945 8497 }
79e53945 8498
c0c36b94 8499 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8500 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8501 if (old->release_fb)
8502 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8503 goto fail;
79e53945 8504 }
7173188d 8505
79e53945 8506 /* let the connector get through one full cycle before testing */
9d0498a2 8507 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8508 return true;
412b61d8
VS
8509
8510 fail:
8511 intel_crtc->new_enabled = crtc->enabled;
8512 if (intel_crtc->new_enabled)
8513 intel_crtc->new_config = &intel_crtc->config;
8514 else
8515 intel_crtc->new_config = NULL;
51fd371b
RC
8516fail_unlock:
8517 if (ret == -EDEADLK) {
8518 drm_modeset_backoff(ctx);
8519 goto retry;
8520 }
8521
8522 drm_modeset_drop_locks(ctx);
8523 drm_modeset_acquire_fini(ctx);
6e9f798d 8524
412b61d8 8525 return false;
79e53945
JB
8526}
8527
d2434ab7 8528void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8529 struct intel_load_detect_pipe *old,
8530 struct drm_modeset_acquire_ctx *ctx)
79e53945 8531{
d2434ab7
DV
8532 struct intel_encoder *intel_encoder =
8533 intel_attached_encoder(connector);
4ef69c7a 8534 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8535 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8537
d2dff872 8538 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8539 connector->base.id, connector->name,
8e329a03 8540 encoder->base.id, encoder->name);
d2dff872 8541
8261b191 8542 if (old->load_detect_temp) {
fc303101
DV
8543 to_intel_connector(connector)->new_encoder = NULL;
8544 intel_encoder->new_crtc = NULL;
412b61d8
VS
8545 intel_crtc->new_enabled = false;
8546 intel_crtc->new_config = NULL;
fc303101 8547 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8548
36206361
DV
8549 if (old->release_fb) {
8550 drm_framebuffer_unregister_private(old->release_fb);
8551 drm_framebuffer_unreference(old->release_fb);
8552 }
d2dff872 8553
51fd371b 8554 goto unlock;
0622a53c 8555 return;
79e53945
JB
8556 }
8557
c751ce4f 8558 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8559 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8560 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8561
51fd371b
RC
8562unlock:
8563 drm_modeset_drop_locks(ctx);
8564 drm_modeset_acquire_fini(ctx);
79e53945
JB
8565}
8566
da4a1efa
VS
8567static int i9xx_pll_refclk(struct drm_device *dev,
8568 const struct intel_crtc_config *pipe_config)
8569{
8570 struct drm_i915_private *dev_priv = dev->dev_private;
8571 u32 dpll = pipe_config->dpll_hw_state.dpll;
8572
8573 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8574 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8575 else if (HAS_PCH_SPLIT(dev))
8576 return 120000;
8577 else if (!IS_GEN2(dev))
8578 return 96000;
8579 else
8580 return 48000;
8581}
8582
79e53945 8583/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8584static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8585 struct intel_crtc_config *pipe_config)
79e53945 8586{
f1f644dc 8587 struct drm_device *dev = crtc->base.dev;
79e53945 8588 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8589 int pipe = pipe_config->cpu_transcoder;
293623f7 8590 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8591 u32 fp;
8592 intel_clock_t clock;
da4a1efa 8593 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8594
8595 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8596 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8597 else
293623f7 8598 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8599
8600 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8601 if (IS_PINEVIEW(dev)) {
8602 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8603 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8604 } else {
8605 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8606 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8607 }
8608
a6c45cf0 8609 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8610 if (IS_PINEVIEW(dev))
8611 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8612 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8613 else
8614 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8615 DPLL_FPA01_P1_POST_DIV_SHIFT);
8616
8617 switch (dpll & DPLL_MODE_MASK) {
8618 case DPLLB_MODE_DAC_SERIAL:
8619 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8620 5 : 10;
8621 break;
8622 case DPLLB_MODE_LVDS:
8623 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8624 7 : 14;
8625 break;
8626 default:
28c97730 8627 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8628 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8629 return;
79e53945
JB
8630 }
8631
ac58c3f0 8632 if (IS_PINEVIEW(dev))
da4a1efa 8633 pineview_clock(refclk, &clock);
ac58c3f0 8634 else
da4a1efa 8635 i9xx_clock(refclk, &clock);
79e53945 8636 } else {
0fb58223 8637 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8638 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8639
8640 if (is_lvds) {
8641 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8642 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8643
8644 if (lvds & LVDS_CLKB_POWER_UP)
8645 clock.p2 = 7;
8646 else
8647 clock.p2 = 14;
79e53945
JB
8648 } else {
8649 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8650 clock.p1 = 2;
8651 else {
8652 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8653 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8654 }
8655 if (dpll & PLL_P2_DIVIDE_BY_4)
8656 clock.p2 = 4;
8657 else
8658 clock.p2 = 2;
79e53945 8659 }
da4a1efa
VS
8660
8661 i9xx_clock(refclk, &clock);
79e53945
JB
8662 }
8663
18442d08
VS
8664 /*
8665 * This value includes pixel_multiplier. We will use
241bfc38 8666 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8667 * encoder's get_config() function.
8668 */
8669 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8670}
8671
6878da05
VS
8672int intel_dotclock_calculate(int link_freq,
8673 const struct intel_link_m_n *m_n)
f1f644dc 8674{
f1f644dc
JB
8675 /*
8676 * The calculation for the data clock is:
1041a02f 8677 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8678 * But we want to avoid losing precison if possible, so:
1041a02f 8679 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8680 *
8681 * and the link clock is simpler:
1041a02f 8682 * link_clock = (m * link_clock) / n
f1f644dc
JB
8683 */
8684
6878da05
VS
8685 if (!m_n->link_n)
8686 return 0;
f1f644dc 8687
6878da05
VS
8688 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8689}
f1f644dc 8690
18442d08
VS
8691static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8692 struct intel_crtc_config *pipe_config)
6878da05
VS
8693{
8694 struct drm_device *dev = crtc->base.dev;
79e53945 8695
18442d08
VS
8696 /* read out port_clock from the DPLL */
8697 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8698
f1f644dc 8699 /*
18442d08 8700 * This value does not include pixel_multiplier.
241bfc38 8701 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8702 * agree once we know their relationship in the encoder's
8703 * get_config() function.
79e53945 8704 */
241bfc38 8705 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8706 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8707 &pipe_config->fdi_m_n);
79e53945
JB
8708}
8709
8710/** Returns the currently programmed mode of the given pipe. */
8711struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8712 struct drm_crtc *crtc)
8713{
548f245b 8714 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8716 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8717 struct drm_display_mode *mode;
f1f644dc 8718 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8719 int htot = I915_READ(HTOTAL(cpu_transcoder));
8720 int hsync = I915_READ(HSYNC(cpu_transcoder));
8721 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8722 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8723 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8724
8725 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8726 if (!mode)
8727 return NULL;
8728
f1f644dc
JB
8729 /*
8730 * Construct a pipe_config sufficient for getting the clock info
8731 * back out of crtc_clock_get.
8732 *
8733 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8734 * to use a real value here instead.
8735 */
293623f7 8736 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8737 pipe_config.pixel_multiplier = 1;
293623f7
VS
8738 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8739 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8740 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8741 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8742
773ae034 8743 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8744 mode->hdisplay = (htot & 0xffff) + 1;
8745 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8746 mode->hsync_start = (hsync & 0xffff) + 1;
8747 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8748 mode->vdisplay = (vtot & 0xffff) + 1;
8749 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8750 mode->vsync_start = (vsync & 0xffff) + 1;
8751 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8752
8753 drm_mode_set_name(mode);
79e53945
JB
8754
8755 return mode;
8756}
8757
cc36513c
DV
8758static void intel_increase_pllclock(struct drm_device *dev,
8759 enum pipe pipe)
652c393a 8760{
fbee40df 8761 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8762 int dpll_reg = DPLL(pipe);
8763 int dpll;
652c393a 8764
bad720ff 8765 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8766 return;
8767
8768 if (!dev_priv->lvds_downclock_avail)
8769 return;
8770
dbdc6479 8771 dpll = I915_READ(dpll_reg);
652c393a 8772 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8773 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8774
8ac5a6d5 8775 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8776
8777 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8778 I915_WRITE(dpll_reg, dpll);
9d0498a2 8779 intel_wait_for_vblank(dev, pipe);
dbdc6479 8780
652c393a
JB
8781 dpll = I915_READ(dpll_reg);
8782 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8783 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8784 }
652c393a
JB
8785}
8786
8787static void intel_decrease_pllclock(struct drm_crtc *crtc)
8788{
8789 struct drm_device *dev = crtc->dev;
fbee40df 8790 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8792
bad720ff 8793 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8794 return;
8795
8796 if (!dev_priv->lvds_downclock_avail)
8797 return;
8798
8799 /*
8800 * Since this is called by a timer, we should never get here in
8801 * the manual case.
8802 */
8803 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8804 int pipe = intel_crtc->pipe;
8805 int dpll_reg = DPLL(pipe);
8806 int dpll;
f6e5b160 8807
44d98a61 8808 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8809
8ac5a6d5 8810 assert_panel_unlocked(dev_priv, pipe);
652c393a 8811
dc257cf1 8812 dpll = I915_READ(dpll_reg);
652c393a
JB
8813 dpll |= DISPLAY_RATE_SELECT_FPA1;
8814 I915_WRITE(dpll_reg, dpll);
9d0498a2 8815 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8816 dpll = I915_READ(dpll_reg);
8817 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8818 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8819 }
8820
8821}
8822
f047e395
CW
8823void intel_mark_busy(struct drm_device *dev)
8824{
c67a470b
PZ
8825 struct drm_i915_private *dev_priv = dev->dev_private;
8826
f62a0076
CW
8827 if (dev_priv->mm.busy)
8828 return;
8829
43694d69 8830 intel_runtime_pm_get(dev_priv);
c67a470b 8831 i915_update_gfx_val(dev_priv);
f62a0076 8832 dev_priv->mm.busy = true;
f047e395
CW
8833}
8834
8835void intel_mark_idle(struct drm_device *dev)
652c393a 8836{
c67a470b 8837 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8838 struct drm_crtc *crtc;
652c393a 8839
f62a0076
CW
8840 if (!dev_priv->mm.busy)
8841 return;
8842
8843 dev_priv->mm.busy = false;
8844
d330a953 8845 if (!i915.powersave)
bb4cdd53 8846 goto out;
652c393a 8847
70e1e0ec 8848 for_each_crtc(dev, crtc) {
f4510a27 8849 if (!crtc->primary->fb)
652c393a
JB
8850 continue;
8851
725a5b54 8852 intel_decrease_pllclock(crtc);
652c393a 8853 }
b29c19b6 8854
3d13ef2e 8855 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8856 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8857
8858out:
43694d69 8859 intel_runtime_pm_put(dev_priv);
652c393a
JB
8860}
8861
7c8f8a70 8862
f99d7069
DV
8863/**
8864 * intel_mark_fb_busy - mark given planes as busy
8865 * @dev: DRM device
8866 * @frontbuffer_bits: bits for the affected planes
8867 * @ring: optional ring for asynchronous commands
8868 *
8869 * This function gets called every time the screen contents change. It can be
8870 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8871 */
8872static void intel_mark_fb_busy(struct drm_device *dev,
8873 unsigned frontbuffer_bits,
8874 struct intel_engine_cs *ring)
652c393a 8875{
cc36513c 8876 enum pipe pipe;
652c393a 8877
d330a953 8878 if (!i915.powersave)
acb87dfb
CW
8879 return;
8880
cc36513c 8881 for_each_pipe(pipe) {
f99d7069 8882 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8883 continue;
8884
cc36513c 8885 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8886 if (ring && intel_fbc_enabled(dev))
8887 ring->fbc_dirty = true;
652c393a
JB
8888 }
8889}
8890
f99d7069
DV
8891/**
8892 * intel_fb_obj_invalidate - invalidate frontbuffer object
8893 * @obj: GEM object to invalidate
8894 * @ring: set for asynchronous rendering
8895 *
8896 * This function gets called every time rendering on the given object starts and
8897 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8898 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8899 * until the rendering completes or a flip on this frontbuffer plane is
8900 * scheduled.
8901 */
8902void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8903 struct intel_engine_cs *ring)
8904{
8905 struct drm_device *dev = obj->base.dev;
8906 struct drm_i915_private *dev_priv = dev->dev_private;
8907
8908 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8909
8910 if (!obj->frontbuffer_bits)
8911 return;
8912
8913 if (ring) {
8914 mutex_lock(&dev_priv->fb_tracking.lock);
8915 dev_priv->fb_tracking.busy_bits
8916 |= obj->frontbuffer_bits;
8917 dev_priv->fb_tracking.flip_bits
8918 &= ~obj->frontbuffer_bits;
8919 mutex_unlock(&dev_priv->fb_tracking.lock);
8920 }
8921
8922 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8923
8924 intel_edp_psr_exit(dev);
8925}
8926
8927/**
8928 * intel_frontbuffer_flush - flush frontbuffer
8929 * @dev: DRM device
8930 * @frontbuffer_bits: frontbuffer plane tracking bits
8931 *
8932 * This function gets called every time rendering on the given planes has
8933 * completed and frontbuffer caching can be started again. Flushes will get
8934 * delayed if they're blocked by some oustanding asynchronous rendering.
8935 *
8936 * Can be called without any locks held.
8937 */
8938void intel_frontbuffer_flush(struct drm_device *dev,
8939 unsigned frontbuffer_bits)
8940{
8941 struct drm_i915_private *dev_priv = dev->dev_private;
8942
8943 /* Delay flushing when rings are still busy.*/
8944 mutex_lock(&dev_priv->fb_tracking.lock);
8945 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8946 mutex_unlock(&dev_priv->fb_tracking.lock);
8947
8948 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8949
8950 intel_edp_psr_exit(dev);
8951}
8952
8953/**
8954 * intel_fb_obj_flush - flush frontbuffer object
8955 * @obj: GEM object to flush
8956 * @retire: set when retiring asynchronous rendering
8957 *
8958 * This function gets called every time rendering on the given object has
8959 * completed and frontbuffer caching can be started again. If @retire is true
8960 * then any delayed flushes will be unblocked.
8961 */
8962void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8963 bool retire)
8964{
8965 struct drm_device *dev = obj->base.dev;
8966 struct drm_i915_private *dev_priv = dev->dev_private;
8967 unsigned frontbuffer_bits;
8968
8969 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8970
8971 if (!obj->frontbuffer_bits)
8972 return;
8973
8974 frontbuffer_bits = obj->frontbuffer_bits;
8975
8976 if (retire) {
8977 mutex_lock(&dev_priv->fb_tracking.lock);
8978 /* Filter out new bits since rendering started. */
8979 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8980
8981 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8982 mutex_unlock(&dev_priv->fb_tracking.lock);
8983 }
8984
8985 intel_frontbuffer_flush(dev, frontbuffer_bits);
8986}
8987
8988/**
8989 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8990 * @dev: DRM device
8991 * @frontbuffer_bits: frontbuffer plane tracking bits
8992 *
8993 * This function gets called after scheduling a flip on @obj. The actual
8994 * frontbuffer flushing will be delayed until completion is signalled with
8995 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8996 * flush will be cancelled.
8997 *
8998 * Can be called without any locks held.
8999 */
9000void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9001 unsigned frontbuffer_bits)
9002{
9003 struct drm_i915_private *dev_priv = dev->dev_private;
9004
9005 mutex_lock(&dev_priv->fb_tracking.lock);
9006 dev_priv->fb_tracking.flip_bits
9007 |= frontbuffer_bits;
9008 mutex_unlock(&dev_priv->fb_tracking.lock);
9009}
9010
9011/**
9012 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9013 * @dev: DRM device
9014 * @frontbuffer_bits: frontbuffer plane tracking bits
9015 *
9016 * This function gets called after the flip has been latched and will complete
9017 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9018 *
9019 * Can be called without any locks held.
9020 */
9021void intel_frontbuffer_flip_complete(struct drm_device *dev,
9022 unsigned frontbuffer_bits)
9023{
9024 struct drm_i915_private *dev_priv = dev->dev_private;
9025
9026 mutex_lock(&dev_priv->fb_tracking.lock);
9027 /* Mask any cancelled flips. */
9028 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9029 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9030 mutex_unlock(&dev_priv->fb_tracking.lock);
9031
9032 intel_frontbuffer_flush(dev, frontbuffer_bits);
9033}
9034
79e53945
JB
9035static void intel_crtc_destroy(struct drm_crtc *crtc)
9036{
9037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9038 struct drm_device *dev = crtc->dev;
9039 struct intel_unpin_work *work;
9040 unsigned long flags;
9041
9042 spin_lock_irqsave(&dev->event_lock, flags);
9043 work = intel_crtc->unpin_work;
9044 intel_crtc->unpin_work = NULL;
9045 spin_unlock_irqrestore(&dev->event_lock, flags);
9046
9047 if (work) {
9048 cancel_work_sync(&work->work);
9049 kfree(work);
9050 }
79e53945
JB
9051
9052 drm_crtc_cleanup(crtc);
67e77c5a 9053
79e53945
JB
9054 kfree(intel_crtc);
9055}
9056
6b95a207
KH
9057static void intel_unpin_work_fn(struct work_struct *__work)
9058{
9059 struct intel_unpin_work *work =
9060 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9061 struct drm_device *dev = work->crtc->dev;
f99d7069 9062 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9063
b4a98e57 9064 mutex_lock(&dev->struct_mutex);
1690e1eb 9065 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9066 drm_gem_object_unreference(&work->pending_flip_obj->base);
9067 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9068
b4a98e57
CW
9069 intel_update_fbc(dev);
9070 mutex_unlock(&dev->struct_mutex);
9071
f99d7069
DV
9072 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9073
b4a98e57
CW
9074 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9075 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9076
6b95a207
KH
9077 kfree(work);
9078}
9079
1afe3e9d 9080static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9081 struct drm_crtc *crtc)
6b95a207 9082{
fbee40df 9083 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9085 struct intel_unpin_work *work;
6b95a207
KH
9086 unsigned long flags;
9087
9088 /* Ignore early vblank irqs */
9089 if (intel_crtc == NULL)
9090 return;
9091
9092 spin_lock_irqsave(&dev->event_lock, flags);
9093 work = intel_crtc->unpin_work;
e7d841ca
CW
9094
9095 /* Ensure we don't miss a work->pending update ... */
9096 smp_rmb();
9097
9098 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9099 spin_unlock_irqrestore(&dev->event_lock, flags);
9100 return;
9101 }
9102
e7d841ca
CW
9103 /* and that the unpin work is consistent wrt ->pending. */
9104 smp_rmb();
9105
6b95a207 9106 intel_crtc->unpin_work = NULL;
6b95a207 9107
45a066eb
RC
9108 if (work->event)
9109 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9110
87b6b101 9111 drm_crtc_vblank_put(crtc);
0af7e4df 9112
6b95a207
KH
9113 spin_unlock_irqrestore(&dev->event_lock, flags);
9114
2c10d571 9115 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9116
9117 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9118
9119 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9120}
9121
1afe3e9d
JB
9122void intel_finish_page_flip(struct drm_device *dev, int pipe)
9123{
fbee40df 9124 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9125 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9126
49b14a5c 9127 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9128}
9129
9130void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9131{
fbee40df 9132 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9133 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9134
49b14a5c 9135 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9136}
9137
75f7f3ec
VS
9138/* Is 'a' after or equal to 'b'? */
9139static bool g4x_flip_count_after_eq(u32 a, u32 b)
9140{
9141 return !((a - b) & 0x80000000);
9142}
9143
9144static bool page_flip_finished(struct intel_crtc *crtc)
9145{
9146 struct drm_device *dev = crtc->base.dev;
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148
9149 /*
9150 * The relevant registers doen't exist on pre-ctg.
9151 * As the flip done interrupt doesn't trigger for mmio
9152 * flips on gmch platforms, a flip count check isn't
9153 * really needed there. But since ctg has the registers,
9154 * include it in the check anyway.
9155 */
9156 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9157 return true;
9158
9159 /*
9160 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9161 * used the same base address. In that case the mmio flip might
9162 * have completed, but the CS hasn't even executed the flip yet.
9163 *
9164 * A flip count check isn't enough as the CS might have updated
9165 * the base address just after start of vblank, but before we
9166 * managed to process the interrupt. This means we'd complete the
9167 * CS flip too soon.
9168 *
9169 * Combining both checks should get us a good enough result. It may
9170 * still happen that the CS flip has been executed, but has not
9171 * yet actually completed. But in case the base address is the same
9172 * anyway, we don't really care.
9173 */
9174 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9175 crtc->unpin_work->gtt_offset &&
9176 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9177 crtc->unpin_work->flip_count);
9178}
9179
6b95a207
KH
9180void intel_prepare_page_flip(struct drm_device *dev, int plane)
9181{
fbee40df 9182 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9183 struct intel_crtc *intel_crtc =
9184 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9185 unsigned long flags;
9186
e7d841ca
CW
9187 /* NB: An MMIO update of the plane base pointer will also
9188 * generate a page-flip completion irq, i.e. every modeset
9189 * is also accompanied by a spurious intel_prepare_page_flip().
9190 */
6b95a207 9191 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9192 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9193 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9194 spin_unlock_irqrestore(&dev->event_lock, flags);
9195}
9196
eba905b2 9197static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9198{
9199 /* Ensure that the work item is consistent when activating it ... */
9200 smp_wmb();
9201 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9202 /* and that it is marked active as soon as the irq could fire. */
9203 smp_wmb();
9204}
9205
8c9f3aaf
JB
9206static int intel_gen2_queue_flip(struct drm_device *dev,
9207 struct drm_crtc *crtc,
9208 struct drm_framebuffer *fb,
ed8d1975 9209 struct drm_i915_gem_object *obj,
a4872ba6 9210 struct intel_engine_cs *ring,
ed8d1975 9211 uint32_t flags)
8c9f3aaf 9212{
8c9f3aaf 9213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9214 u32 flip_mask;
9215 int ret;
9216
6d90c952 9217 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9218 if (ret)
4fa62c89 9219 return ret;
8c9f3aaf
JB
9220
9221 /* Can't queue multiple flips, so wait for the previous
9222 * one to finish before executing the next.
9223 */
9224 if (intel_crtc->plane)
9225 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9226 else
9227 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9228 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9229 intel_ring_emit(ring, MI_NOOP);
9230 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9231 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9232 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9233 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9234 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9235
9236 intel_mark_page_flip_active(intel_crtc);
09246732 9237 __intel_ring_advance(ring);
83d4092b 9238 return 0;
8c9f3aaf
JB
9239}
9240
9241static int intel_gen3_queue_flip(struct drm_device *dev,
9242 struct drm_crtc *crtc,
9243 struct drm_framebuffer *fb,
ed8d1975 9244 struct drm_i915_gem_object *obj,
a4872ba6 9245 struct intel_engine_cs *ring,
ed8d1975 9246 uint32_t flags)
8c9f3aaf 9247{
8c9f3aaf 9248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9249 u32 flip_mask;
9250 int ret;
9251
6d90c952 9252 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9253 if (ret)
4fa62c89 9254 return ret;
8c9f3aaf
JB
9255
9256 if (intel_crtc->plane)
9257 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9258 else
9259 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9260 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9261 intel_ring_emit(ring, MI_NOOP);
9262 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9263 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9264 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9265 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9266 intel_ring_emit(ring, MI_NOOP);
9267
e7d841ca 9268 intel_mark_page_flip_active(intel_crtc);
09246732 9269 __intel_ring_advance(ring);
83d4092b 9270 return 0;
8c9f3aaf
JB
9271}
9272
9273static int intel_gen4_queue_flip(struct drm_device *dev,
9274 struct drm_crtc *crtc,
9275 struct drm_framebuffer *fb,
ed8d1975 9276 struct drm_i915_gem_object *obj,
a4872ba6 9277 struct intel_engine_cs *ring,
ed8d1975 9278 uint32_t flags)
8c9f3aaf
JB
9279{
9280 struct drm_i915_private *dev_priv = dev->dev_private;
9281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9282 uint32_t pf, pipesrc;
9283 int ret;
9284
6d90c952 9285 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9286 if (ret)
4fa62c89 9287 return ret;
8c9f3aaf
JB
9288
9289 /* i965+ uses the linear or tiled offsets from the
9290 * Display Registers (which do not change across a page-flip)
9291 * so we need only reprogram the base address.
9292 */
6d90c952
DV
9293 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9294 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9295 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9296 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9297 obj->tiling_mode);
8c9f3aaf
JB
9298
9299 /* XXX Enabling the panel-fitter across page-flip is so far
9300 * untested on non-native modes, so ignore it for now.
9301 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9302 */
9303 pf = 0;
9304 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9305 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9306
9307 intel_mark_page_flip_active(intel_crtc);
09246732 9308 __intel_ring_advance(ring);
83d4092b 9309 return 0;
8c9f3aaf
JB
9310}
9311
9312static int intel_gen6_queue_flip(struct drm_device *dev,
9313 struct drm_crtc *crtc,
9314 struct drm_framebuffer *fb,
ed8d1975 9315 struct drm_i915_gem_object *obj,
a4872ba6 9316 struct intel_engine_cs *ring,
ed8d1975 9317 uint32_t flags)
8c9f3aaf
JB
9318{
9319 struct drm_i915_private *dev_priv = dev->dev_private;
9320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9321 uint32_t pf, pipesrc;
9322 int ret;
9323
6d90c952 9324 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9325 if (ret)
4fa62c89 9326 return ret;
8c9f3aaf 9327
6d90c952
DV
9328 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9329 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9330 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9331 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9332
dc257cf1
DV
9333 /* Contrary to the suggestions in the documentation,
9334 * "Enable Panel Fitter" does not seem to be required when page
9335 * flipping with a non-native mode, and worse causes a normal
9336 * modeset to fail.
9337 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9338 */
9339 pf = 0;
8c9f3aaf 9340 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9341 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9342
9343 intel_mark_page_flip_active(intel_crtc);
09246732 9344 __intel_ring_advance(ring);
83d4092b 9345 return 0;
8c9f3aaf
JB
9346}
9347
7c9017e5
JB
9348static int intel_gen7_queue_flip(struct drm_device *dev,
9349 struct drm_crtc *crtc,
9350 struct drm_framebuffer *fb,
ed8d1975 9351 struct drm_i915_gem_object *obj,
a4872ba6 9352 struct intel_engine_cs *ring,
ed8d1975 9353 uint32_t flags)
7c9017e5 9354{
7c9017e5 9355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9356 uint32_t plane_bit = 0;
ffe74d75
CW
9357 int len, ret;
9358
eba905b2 9359 switch (intel_crtc->plane) {
cb05d8de
DV
9360 case PLANE_A:
9361 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9362 break;
9363 case PLANE_B:
9364 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9365 break;
9366 case PLANE_C:
9367 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9368 break;
9369 default:
9370 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9371 return -ENODEV;
cb05d8de
DV
9372 }
9373
ffe74d75 9374 len = 4;
f476828a 9375 if (ring->id == RCS) {
ffe74d75 9376 len += 6;
f476828a
DL
9377 /*
9378 * On Gen 8, SRM is now taking an extra dword to accommodate
9379 * 48bits addresses, and we need a NOOP for the batch size to
9380 * stay even.
9381 */
9382 if (IS_GEN8(dev))
9383 len += 2;
9384 }
ffe74d75 9385
f66fab8e
VS
9386 /*
9387 * BSpec MI_DISPLAY_FLIP for IVB:
9388 * "The full packet must be contained within the same cache line."
9389 *
9390 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9391 * cacheline, if we ever start emitting more commands before
9392 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9393 * then do the cacheline alignment, and finally emit the
9394 * MI_DISPLAY_FLIP.
9395 */
9396 ret = intel_ring_cacheline_align(ring);
9397 if (ret)
4fa62c89 9398 return ret;
f66fab8e 9399
ffe74d75 9400 ret = intel_ring_begin(ring, len);
7c9017e5 9401 if (ret)
4fa62c89 9402 return ret;
7c9017e5 9403
ffe74d75
CW
9404 /* Unmask the flip-done completion message. Note that the bspec says that
9405 * we should do this for both the BCS and RCS, and that we must not unmask
9406 * more than one flip event at any time (or ensure that one flip message
9407 * can be sent by waiting for flip-done prior to queueing new flips).
9408 * Experimentation says that BCS works despite DERRMR masking all
9409 * flip-done completion events and that unmasking all planes at once
9410 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9411 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9412 */
9413 if (ring->id == RCS) {
9414 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9415 intel_ring_emit(ring, DERRMR);
9416 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9417 DERRMR_PIPEB_PRI_FLIP_DONE |
9418 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9419 if (IS_GEN8(dev))
9420 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9421 MI_SRM_LRM_GLOBAL_GTT);
9422 else
9423 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9424 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9425 intel_ring_emit(ring, DERRMR);
9426 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9427 if (IS_GEN8(dev)) {
9428 intel_ring_emit(ring, 0);
9429 intel_ring_emit(ring, MI_NOOP);
9430 }
ffe74d75
CW
9431 }
9432
cb05d8de 9433 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9434 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9435 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9436 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9437
9438 intel_mark_page_flip_active(intel_crtc);
09246732 9439 __intel_ring_advance(ring);
83d4092b 9440 return 0;
7c9017e5
JB
9441}
9442
84c33a64
SG
9443static bool use_mmio_flip(struct intel_engine_cs *ring,
9444 struct drm_i915_gem_object *obj)
9445{
9446 /*
9447 * This is not being used for older platforms, because
9448 * non-availability of flip done interrupt forces us to use
9449 * CS flips. Older platforms derive flip done using some clever
9450 * tricks involving the flip_pending status bits and vblank irqs.
9451 * So using MMIO flips there would disrupt this mechanism.
9452 */
9453
9454 if (INTEL_INFO(ring->dev)->gen < 5)
9455 return false;
9456
9457 if (i915.use_mmio_flip < 0)
9458 return false;
9459 else if (i915.use_mmio_flip > 0)
9460 return true;
9461 else
9462 return ring != obj->ring;
9463}
9464
9465static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9466{
9467 struct drm_device *dev = intel_crtc->base.dev;
9468 struct drm_i915_private *dev_priv = dev->dev_private;
9469 struct intel_framebuffer *intel_fb =
9470 to_intel_framebuffer(intel_crtc->base.primary->fb);
9471 struct drm_i915_gem_object *obj = intel_fb->obj;
9472 u32 dspcntr;
9473 u32 reg;
9474
9475 intel_mark_page_flip_active(intel_crtc);
9476
9477 reg = DSPCNTR(intel_crtc->plane);
9478 dspcntr = I915_READ(reg);
9479
9480 if (INTEL_INFO(dev)->gen >= 4) {
9481 if (obj->tiling_mode != I915_TILING_NONE)
9482 dspcntr |= DISPPLANE_TILED;
9483 else
9484 dspcntr &= ~DISPPLANE_TILED;
9485 }
9486 I915_WRITE(reg, dspcntr);
9487
9488 I915_WRITE(DSPSURF(intel_crtc->plane),
9489 intel_crtc->unpin_work->gtt_offset);
9490 POSTING_READ(DSPSURF(intel_crtc->plane));
9491}
9492
9493static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9494{
9495 struct intel_engine_cs *ring;
9496 int ret;
9497
9498 lockdep_assert_held(&obj->base.dev->struct_mutex);
9499
9500 if (!obj->last_write_seqno)
9501 return 0;
9502
9503 ring = obj->ring;
9504
9505 if (i915_seqno_passed(ring->get_seqno(ring, true),
9506 obj->last_write_seqno))
9507 return 0;
9508
9509 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9510 if (ret)
9511 return ret;
9512
9513 if (WARN_ON(!ring->irq_get(ring)))
9514 return 0;
9515
9516 return 1;
9517}
9518
9519void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9520{
9521 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9522 struct intel_crtc *intel_crtc;
9523 unsigned long irq_flags;
9524 u32 seqno;
9525
9526 seqno = ring->get_seqno(ring, false);
9527
9528 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9529 for_each_intel_crtc(ring->dev, intel_crtc) {
9530 struct intel_mmio_flip *mmio_flip;
9531
9532 mmio_flip = &intel_crtc->mmio_flip;
9533 if (mmio_flip->seqno == 0)
9534 continue;
9535
9536 if (ring->id != mmio_flip->ring_id)
9537 continue;
9538
9539 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9540 intel_do_mmio_flip(intel_crtc);
9541 mmio_flip->seqno = 0;
9542 ring->irq_put(ring);
9543 }
9544 }
9545 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9546}
9547
9548static int intel_queue_mmio_flip(struct drm_device *dev,
9549 struct drm_crtc *crtc,
9550 struct drm_framebuffer *fb,
9551 struct drm_i915_gem_object *obj,
9552 struct intel_engine_cs *ring,
9553 uint32_t flags)
9554{
9555 struct drm_i915_private *dev_priv = dev->dev_private;
9556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9557 unsigned long irq_flags;
9558 int ret;
9559
9560 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9561 return -EBUSY;
9562
9563 ret = intel_postpone_flip(obj);
9564 if (ret < 0)
9565 return ret;
9566 if (ret == 0) {
9567 intel_do_mmio_flip(intel_crtc);
9568 return 0;
9569 }
9570
9571 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9572 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9573 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9574 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9575
9576 /*
9577 * Double check to catch cases where irq fired before
9578 * mmio flip data was ready
9579 */
9580 intel_notify_mmio_flip(obj->ring);
9581 return 0;
9582}
9583
8c9f3aaf
JB
9584static int intel_default_queue_flip(struct drm_device *dev,
9585 struct drm_crtc *crtc,
9586 struct drm_framebuffer *fb,
ed8d1975 9587 struct drm_i915_gem_object *obj,
a4872ba6 9588 struct intel_engine_cs *ring,
ed8d1975 9589 uint32_t flags)
8c9f3aaf
JB
9590{
9591 return -ENODEV;
9592}
9593
6b95a207
KH
9594static int intel_crtc_page_flip(struct drm_crtc *crtc,
9595 struct drm_framebuffer *fb,
ed8d1975
KP
9596 struct drm_pending_vblank_event *event,
9597 uint32_t page_flip_flags)
6b95a207
KH
9598{
9599 struct drm_device *dev = crtc->dev;
9600 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9601 struct drm_framebuffer *old_fb = crtc->primary->fb;
4a35f83b 9602 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
6b95a207 9603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9604 enum pipe pipe = intel_crtc->pipe;
6b95a207 9605 struct intel_unpin_work *work;
a4872ba6 9606 struct intel_engine_cs *ring;
8c9f3aaf 9607 unsigned long flags;
52e68630 9608 int ret;
6b95a207 9609
e6a595d2 9610 /* Can't change pixel format via MI display flips. */
f4510a27 9611 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9612 return -EINVAL;
9613
9614 /*
9615 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9616 * Note that pitch changes could also affect these register.
9617 */
9618 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9619 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9620 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9621 return -EINVAL;
9622
f900db47
CW
9623 if (i915_terminally_wedged(&dev_priv->gpu_error))
9624 goto out_hang;
9625
b14c5679 9626 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9627 if (work == NULL)
9628 return -ENOMEM;
9629
6b95a207 9630 work->event = event;
b4a98e57 9631 work->crtc = crtc;
4a35f83b 9632 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
6b95a207
KH
9633 INIT_WORK(&work->work, intel_unpin_work_fn);
9634
87b6b101 9635 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9636 if (ret)
9637 goto free_work;
9638
6b95a207
KH
9639 /* We borrow the event spin lock for protecting unpin_work */
9640 spin_lock_irqsave(&dev->event_lock, flags);
9641 if (intel_crtc->unpin_work) {
9642 spin_unlock_irqrestore(&dev->event_lock, flags);
9643 kfree(work);
87b6b101 9644 drm_crtc_vblank_put(crtc);
468f0b44
CW
9645
9646 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9647 return -EBUSY;
9648 }
9649 intel_crtc->unpin_work = work;
9650 spin_unlock_irqrestore(&dev->event_lock, flags);
9651
b4a98e57
CW
9652 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9653 flush_workqueue(dev_priv->wq);
9654
79158103
CW
9655 ret = i915_mutex_lock_interruptible(dev);
9656 if (ret)
9657 goto cleanup;
6b95a207 9658
75dfca80 9659 /* Reference the objects for the scheduled work. */
05394f39
CW
9660 drm_gem_object_reference(&work->old_fb_obj->base);
9661 drm_gem_object_reference(&obj->base);
6b95a207 9662
f4510a27 9663 crtc->primary->fb = fb;
96b099fd 9664
e1f99ce6 9665 work->pending_flip_obj = obj;
e1f99ce6 9666
4e5359cd
SF
9667 work->enable_stall_check = true;
9668
b4a98e57 9669 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9670 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9671
75f7f3ec 9672 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9673 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9674
4fa62c89
VS
9675 if (IS_VALLEYVIEW(dev)) {
9676 ring = &dev_priv->ring[BCS];
9677 } else if (INTEL_INFO(dev)->gen >= 7) {
9678 ring = obj->ring;
9679 if (ring == NULL || ring->id != RCS)
9680 ring = &dev_priv->ring[BCS];
9681 } else {
9682 ring = &dev_priv->ring[RCS];
9683 }
9684
9685 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9686 if (ret)
9687 goto cleanup_pending;
6b95a207 9688
4fa62c89
VS
9689 work->gtt_offset =
9690 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9691
84c33a64
SG
9692 if (use_mmio_flip(ring, obj))
9693 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9694 page_flip_flags);
9695 else
9696 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9697 page_flip_flags);
4fa62c89
VS
9698 if (ret)
9699 goto cleanup_unpin;
9700
a071fa00
DV
9701 i915_gem_track_fb(work->old_fb_obj, obj,
9702 INTEL_FRONTBUFFER_PRIMARY(pipe));
9703
7782de3b 9704 intel_disable_fbc(dev);
f99d7069 9705 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9706 mutex_unlock(&dev->struct_mutex);
9707
e5510fac
JB
9708 trace_i915_flip_request(intel_crtc->plane, obj);
9709
6b95a207 9710 return 0;
96b099fd 9711
4fa62c89
VS
9712cleanup_unpin:
9713 intel_unpin_fb_obj(obj);
8c9f3aaf 9714cleanup_pending:
b4a98e57 9715 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9716 crtc->primary->fb = old_fb;
05394f39
CW
9717 drm_gem_object_unreference(&work->old_fb_obj->base);
9718 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9719 mutex_unlock(&dev->struct_mutex);
9720
79158103 9721cleanup:
96b099fd
CW
9722 spin_lock_irqsave(&dev->event_lock, flags);
9723 intel_crtc->unpin_work = NULL;
9724 spin_unlock_irqrestore(&dev->event_lock, flags);
9725
87b6b101 9726 drm_crtc_vblank_put(crtc);
7317c75e 9727free_work:
96b099fd
CW
9728 kfree(work);
9729
f900db47
CW
9730 if (ret == -EIO) {
9731out_hang:
9732 intel_crtc_wait_for_pending_flips(crtc);
9733 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9734 if (ret == 0 && event)
a071fa00 9735 drm_send_vblank_event(dev, pipe, event);
f900db47 9736 }
96b099fd 9737 return ret;
6b95a207
KH
9738}
9739
f6e5b160 9740static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9741 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9742 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9743};
9744
9a935856
DV
9745/**
9746 * intel_modeset_update_staged_output_state
9747 *
9748 * Updates the staged output configuration state, e.g. after we've read out the
9749 * current hw state.
9750 */
9751static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9752{
7668851f 9753 struct intel_crtc *crtc;
9a935856
DV
9754 struct intel_encoder *encoder;
9755 struct intel_connector *connector;
f6e5b160 9756
9a935856
DV
9757 list_for_each_entry(connector, &dev->mode_config.connector_list,
9758 base.head) {
9759 connector->new_encoder =
9760 to_intel_encoder(connector->base.encoder);
9761 }
f6e5b160 9762
9a935856
DV
9763 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9764 base.head) {
9765 encoder->new_crtc =
9766 to_intel_crtc(encoder->base.crtc);
9767 }
7668851f 9768
d3fcc808 9769 for_each_intel_crtc(dev, crtc) {
7668851f 9770 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9771
9772 if (crtc->new_enabled)
9773 crtc->new_config = &crtc->config;
9774 else
9775 crtc->new_config = NULL;
7668851f 9776 }
f6e5b160
CW
9777}
9778
9a935856
DV
9779/**
9780 * intel_modeset_commit_output_state
9781 *
9782 * This function copies the stage display pipe configuration to the real one.
9783 */
9784static void intel_modeset_commit_output_state(struct drm_device *dev)
9785{
7668851f 9786 struct intel_crtc *crtc;
9a935856
DV
9787 struct intel_encoder *encoder;
9788 struct intel_connector *connector;
f6e5b160 9789
9a935856
DV
9790 list_for_each_entry(connector, &dev->mode_config.connector_list,
9791 base.head) {
9792 connector->base.encoder = &connector->new_encoder->base;
9793 }
f6e5b160 9794
9a935856
DV
9795 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9796 base.head) {
9797 encoder->base.crtc = &encoder->new_crtc->base;
9798 }
7668851f 9799
d3fcc808 9800 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9801 crtc->base.enabled = crtc->new_enabled;
9802 }
9a935856
DV
9803}
9804
050f7aeb 9805static void
eba905b2 9806connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9807 struct intel_crtc_config *pipe_config)
9808{
9809 int bpp = pipe_config->pipe_bpp;
9810
9811 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9812 connector->base.base.id,
c23cc417 9813 connector->base.name);
050f7aeb
DV
9814
9815 /* Don't use an invalid EDID bpc value */
9816 if (connector->base.display_info.bpc &&
9817 connector->base.display_info.bpc * 3 < bpp) {
9818 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9819 bpp, connector->base.display_info.bpc*3);
9820 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9821 }
9822
9823 /* Clamp bpp to 8 on screens without EDID 1.4 */
9824 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9825 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9826 bpp);
9827 pipe_config->pipe_bpp = 24;
9828 }
9829}
9830
4e53c2e0 9831static int
050f7aeb
DV
9832compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9833 struct drm_framebuffer *fb,
9834 struct intel_crtc_config *pipe_config)
4e53c2e0 9835{
050f7aeb
DV
9836 struct drm_device *dev = crtc->base.dev;
9837 struct intel_connector *connector;
4e53c2e0
DV
9838 int bpp;
9839
d42264b1
DV
9840 switch (fb->pixel_format) {
9841 case DRM_FORMAT_C8:
4e53c2e0
DV
9842 bpp = 8*3; /* since we go through a colormap */
9843 break;
d42264b1
DV
9844 case DRM_FORMAT_XRGB1555:
9845 case DRM_FORMAT_ARGB1555:
9846 /* checked in intel_framebuffer_init already */
9847 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9848 return -EINVAL;
9849 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9850 bpp = 6*3; /* min is 18bpp */
9851 break;
d42264b1
DV
9852 case DRM_FORMAT_XBGR8888:
9853 case DRM_FORMAT_ABGR8888:
9854 /* checked in intel_framebuffer_init already */
9855 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9856 return -EINVAL;
9857 case DRM_FORMAT_XRGB8888:
9858 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9859 bpp = 8*3;
9860 break;
d42264b1
DV
9861 case DRM_FORMAT_XRGB2101010:
9862 case DRM_FORMAT_ARGB2101010:
9863 case DRM_FORMAT_XBGR2101010:
9864 case DRM_FORMAT_ABGR2101010:
9865 /* checked in intel_framebuffer_init already */
9866 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9867 return -EINVAL;
4e53c2e0
DV
9868 bpp = 10*3;
9869 break;
baba133a 9870 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9871 default:
9872 DRM_DEBUG_KMS("unsupported depth\n");
9873 return -EINVAL;
9874 }
9875
4e53c2e0
DV
9876 pipe_config->pipe_bpp = bpp;
9877
9878 /* Clamp display bpp to EDID value */
9879 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9880 base.head) {
1b829e05
DV
9881 if (!connector->new_encoder ||
9882 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9883 continue;
9884
050f7aeb 9885 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9886 }
9887
9888 return bpp;
9889}
9890
644db711
DV
9891static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9892{
9893 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9894 "type: 0x%x flags: 0x%x\n",
1342830c 9895 mode->crtc_clock,
644db711
DV
9896 mode->crtc_hdisplay, mode->crtc_hsync_start,
9897 mode->crtc_hsync_end, mode->crtc_htotal,
9898 mode->crtc_vdisplay, mode->crtc_vsync_start,
9899 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9900}
9901
c0b03411
DV
9902static void intel_dump_pipe_config(struct intel_crtc *crtc,
9903 struct intel_crtc_config *pipe_config,
9904 const char *context)
9905{
9906 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9907 context, pipe_name(crtc->pipe));
9908
9909 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9910 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9911 pipe_config->pipe_bpp, pipe_config->dither);
9912 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9913 pipe_config->has_pch_encoder,
9914 pipe_config->fdi_lanes,
9915 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9916 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9917 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9918 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9919 pipe_config->has_dp_encoder,
9920 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9921 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9922 pipe_config->dp_m_n.tu);
c0b03411
DV
9923 DRM_DEBUG_KMS("requested mode:\n");
9924 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9925 DRM_DEBUG_KMS("adjusted mode:\n");
9926 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9927 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9928 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9929 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9930 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9931 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9932 pipe_config->gmch_pfit.control,
9933 pipe_config->gmch_pfit.pgm_ratios,
9934 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9935 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9936 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9937 pipe_config->pch_pfit.size,
9938 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9939 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9940 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9941}
9942
bc079e8b
VS
9943static bool encoders_cloneable(const struct intel_encoder *a,
9944 const struct intel_encoder *b)
accfc0c5 9945{
bc079e8b
VS
9946 /* masks could be asymmetric, so check both ways */
9947 return a == b || (a->cloneable & (1 << b->type) &&
9948 b->cloneable & (1 << a->type));
9949}
9950
9951static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9952 struct intel_encoder *encoder)
9953{
9954 struct drm_device *dev = crtc->base.dev;
9955 struct intel_encoder *source_encoder;
9956
9957 list_for_each_entry(source_encoder,
9958 &dev->mode_config.encoder_list, base.head) {
9959 if (source_encoder->new_crtc != crtc)
9960 continue;
9961
9962 if (!encoders_cloneable(encoder, source_encoder))
9963 return false;
9964 }
9965
9966 return true;
9967}
9968
9969static bool check_encoder_cloning(struct intel_crtc *crtc)
9970{
9971 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9972 struct intel_encoder *encoder;
9973
bc079e8b
VS
9974 list_for_each_entry(encoder,
9975 &dev->mode_config.encoder_list, base.head) {
9976 if (encoder->new_crtc != crtc)
accfc0c5
DV
9977 continue;
9978
bc079e8b
VS
9979 if (!check_single_encoder_cloning(crtc, encoder))
9980 return false;
accfc0c5
DV
9981 }
9982
bc079e8b 9983 return true;
accfc0c5
DV
9984}
9985
b8cecdf5
DV
9986static struct intel_crtc_config *
9987intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9988 struct drm_framebuffer *fb,
b8cecdf5 9989 struct drm_display_mode *mode)
ee7b9f93 9990{
7758a113 9991 struct drm_device *dev = crtc->dev;
7758a113 9992 struct intel_encoder *encoder;
b8cecdf5 9993 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9994 int plane_bpp, ret = -EINVAL;
9995 bool retry = true;
ee7b9f93 9996
bc079e8b 9997 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9998 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9999 return ERR_PTR(-EINVAL);
10000 }
10001
b8cecdf5
DV
10002 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10003 if (!pipe_config)
7758a113
DV
10004 return ERR_PTR(-ENOMEM);
10005
b8cecdf5
DV
10006 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10007 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10008
e143a21c
DV
10009 pipe_config->cpu_transcoder =
10010 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10011 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10012
2960bc9c
ID
10013 /*
10014 * Sanitize sync polarity flags based on requested ones. If neither
10015 * positive or negative polarity is requested, treat this as meaning
10016 * negative polarity.
10017 */
10018 if (!(pipe_config->adjusted_mode.flags &
10019 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10020 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10021
10022 if (!(pipe_config->adjusted_mode.flags &
10023 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10024 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10025
050f7aeb
DV
10026 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10027 * plane pixel format and any sink constraints into account. Returns the
10028 * source plane bpp so that dithering can be selected on mismatches
10029 * after encoders and crtc also have had their say. */
10030 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10031 fb, pipe_config);
4e53c2e0
DV
10032 if (plane_bpp < 0)
10033 goto fail;
10034
e41a56be
VS
10035 /*
10036 * Determine the real pipe dimensions. Note that stereo modes can
10037 * increase the actual pipe size due to the frame doubling and
10038 * insertion of additional space for blanks between the frame. This
10039 * is stored in the crtc timings. We use the requested mode to do this
10040 * computation to clearly distinguish it from the adjusted mode, which
10041 * can be changed by the connectors in the below retry loop.
10042 */
10043 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10044 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10045 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10046
e29c22c0 10047encoder_retry:
ef1b460d 10048 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10049 pipe_config->port_clock = 0;
ef1b460d 10050 pipe_config->pixel_multiplier = 1;
ff9a6750 10051
135c81b8 10052 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10053 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10054
7758a113
DV
10055 /* Pass our mode to the connectors and the CRTC to give them a chance to
10056 * adjust it according to limitations or connector properties, and also
10057 * a chance to reject the mode entirely.
47f1c6c9 10058 */
7758a113
DV
10059 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10060 base.head) {
47f1c6c9 10061
7758a113
DV
10062 if (&encoder->new_crtc->base != crtc)
10063 continue;
7ae89233 10064
efea6e8e
DV
10065 if (!(encoder->compute_config(encoder, pipe_config))) {
10066 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10067 goto fail;
10068 }
ee7b9f93 10069 }
47f1c6c9 10070
ff9a6750
DV
10071 /* Set default port clock if not overwritten by the encoder. Needs to be
10072 * done afterwards in case the encoder adjusts the mode. */
10073 if (!pipe_config->port_clock)
241bfc38
DL
10074 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10075 * pipe_config->pixel_multiplier;
ff9a6750 10076
a43f6e0f 10077 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10078 if (ret < 0) {
7758a113
DV
10079 DRM_DEBUG_KMS("CRTC fixup failed\n");
10080 goto fail;
ee7b9f93 10081 }
e29c22c0
DV
10082
10083 if (ret == RETRY) {
10084 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10085 ret = -EINVAL;
10086 goto fail;
10087 }
10088
10089 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10090 retry = false;
10091 goto encoder_retry;
10092 }
10093
4e53c2e0
DV
10094 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10095 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10096 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10097
b8cecdf5 10098 return pipe_config;
7758a113 10099fail:
b8cecdf5 10100 kfree(pipe_config);
e29c22c0 10101 return ERR_PTR(ret);
ee7b9f93 10102}
47f1c6c9 10103
e2e1ed41
DV
10104/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10105 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10106static void
10107intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10108 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10109{
10110 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10111 struct drm_device *dev = crtc->dev;
10112 struct intel_encoder *encoder;
10113 struct intel_connector *connector;
10114 struct drm_crtc *tmp_crtc;
79e53945 10115
e2e1ed41 10116 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10117
e2e1ed41
DV
10118 /* Check which crtcs have changed outputs connected to them, these need
10119 * to be part of the prepare_pipes mask. We don't (yet) support global
10120 * modeset across multiple crtcs, so modeset_pipes will only have one
10121 * bit set at most. */
10122 list_for_each_entry(connector, &dev->mode_config.connector_list,
10123 base.head) {
10124 if (connector->base.encoder == &connector->new_encoder->base)
10125 continue;
79e53945 10126
e2e1ed41
DV
10127 if (connector->base.encoder) {
10128 tmp_crtc = connector->base.encoder->crtc;
10129
10130 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10131 }
10132
10133 if (connector->new_encoder)
10134 *prepare_pipes |=
10135 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10136 }
10137
e2e1ed41
DV
10138 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10139 base.head) {
10140 if (encoder->base.crtc == &encoder->new_crtc->base)
10141 continue;
10142
10143 if (encoder->base.crtc) {
10144 tmp_crtc = encoder->base.crtc;
10145
10146 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10147 }
10148
10149 if (encoder->new_crtc)
10150 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10151 }
10152
7668851f 10153 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10154 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10155 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10156 continue;
7e7d76c3 10157
7668851f 10158 if (!intel_crtc->new_enabled)
e2e1ed41 10159 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10160 else
10161 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10162 }
10163
e2e1ed41
DV
10164
10165 /* set_mode is also used to update properties on life display pipes. */
10166 intel_crtc = to_intel_crtc(crtc);
7668851f 10167 if (intel_crtc->new_enabled)
e2e1ed41
DV
10168 *prepare_pipes |= 1 << intel_crtc->pipe;
10169
b6c5164d
DV
10170 /*
10171 * For simplicity do a full modeset on any pipe where the output routing
10172 * changed. We could be more clever, but that would require us to be
10173 * more careful with calling the relevant encoder->mode_set functions.
10174 */
e2e1ed41
DV
10175 if (*prepare_pipes)
10176 *modeset_pipes = *prepare_pipes;
10177
10178 /* ... and mask these out. */
10179 *modeset_pipes &= ~(*disable_pipes);
10180 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10181
10182 /*
10183 * HACK: We don't (yet) fully support global modesets. intel_set_config
10184 * obies this rule, but the modeset restore mode of
10185 * intel_modeset_setup_hw_state does not.
10186 */
10187 *modeset_pipes &= 1 << intel_crtc->pipe;
10188 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10189
10190 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10191 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10192}
79e53945 10193
ea9d758d 10194static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10195{
ea9d758d 10196 struct drm_encoder *encoder;
f6e5b160 10197 struct drm_device *dev = crtc->dev;
f6e5b160 10198
ea9d758d
DV
10199 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10200 if (encoder->crtc == crtc)
10201 return true;
10202
10203 return false;
10204}
10205
10206static void
10207intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10208{
10209 struct intel_encoder *intel_encoder;
10210 struct intel_crtc *intel_crtc;
10211 struct drm_connector *connector;
10212
10213 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10214 base.head) {
10215 if (!intel_encoder->base.crtc)
10216 continue;
10217
10218 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10219
10220 if (prepare_pipes & (1 << intel_crtc->pipe))
10221 intel_encoder->connectors_active = false;
10222 }
10223
10224 intel_modeset_commit_output_state(dev);
10225
7668851f 10226 /* Double check state. */
d3fcc808 10227 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10228 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10229 WARN_ON(intel_crtc->new_config &&
10230 intel_crtc->new_config != &intel_crtc->config);
10231 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10232 }
10233
10234 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10235 if (!connector->encoder || !connector->encoder->crtc)
10236 continue;
10237
10238 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10239
10240 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10241 struct drm_property *dpms_property =
10242 dev->mode_config.dpms_property;
10243
ea9d758d 10244 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10245 drm_object_property_set_value(&connector->base,
68d34720
DV
10246 dpms_property,
10247 DRM_MODE_DPMS_ON);
ea9d758d
DV
10248
10249 intel_encoder = to_intel_encoder(connector->encoder);
10250 intel_encoder->connectors_active = true;
10251 }
10252 }
10253
10254}
10255
3bd26263 10256static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10257{
3bd26263 10258 int diff;
f1f644dc
JB
10259
10260 if (clock1 == clock2)
10261 return true;
10262
10263 if (!clock1 || !clock2)
10264 return false;
10265
10266 diff = abs(clock1 - clock2);
10267
10268 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10269 return true;
10270
10271 return false;
10272}
10273
25c5b266
DV
10274#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10275 list_for_each_entry((intel_crtc), \
10276 &(dev)->mode_config.crtc_list, \
10277 base.head) \
0973f18f 10278 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10279
0e8ffe1b 10280static bool
2fa2fe9a
DV
10281intel_pipe_config_compare(struct drm_device *dev,
10282 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10283 struct intel_crtc_config *pipe_config)
10284{
66e985c0
DV
10285#define PIPE_CONF_CHECK_X(name) \
10286 if (current_config->name != pipe_config->name) { \
10287 DRM_ERROR("mismatch in " #name " " \
10288 "(expected 0x%08x, found 0x%08x)\n", \
10289 current_config->name, \
10290 pipe_config->name); \
10291 return false; \
10292 }
10293
08a24034
DV
10294#define PIPE_CONF_CHECK_I(name) \
10295 if (current_config->name != pipe_config->name) { \
10296 DRM_ERROR("mismatch in " #name " " \
10297 "(expected %i, found %i)\n", \
10298 current_config->name, \
10299 pipe_config->name); \
10300 return false; \
88adfff1
DV
10301 }
10302
1bd1bd80
DV
10303#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10304 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10305 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10306 "(expected %i, found %i)\n", \
10307 current_config->name & (mask), \
10308 pipe_config->name & (mask)); \
10309 return false; \
10310 }
10311
5e550656
VS
10312#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10313 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10314 DRM_ERROR("mismatch in " #name " " \
10315 "(expected %i, found %i)\n", \
10316 current_config->name, \
10317 pipe_config->name); \
10318 return false; \
10319 }
10320
bb760063
DV
10321#define PIPE_CONF_QUIRK(quirk) \
10322 ((current_config->quirks | pipe_config->quirks) & (quirk))
10323
eccb140b
DV
10324 PIPE_CONF_CHECK_I(cpu_transcoder);
10325
08a24034
DV
10326 PIPE_CONF_CHECK_I(has_pch_encoder);
10327 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10328 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10329 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10330 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10331 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10332 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10333
eb14cb74
VS
10334 PIPE_CONF_CHECK_I(has_dp_encoder);
10335 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10336 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10337 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10338 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10339 PIPE_CONF_CHECK_I(dp_m_n.tu);
10340
1bd1bd80
DV
10341 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10342 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10343 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10344 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10345 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10346 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10347
10348 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10349 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10350 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10351 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10352 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10353 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10354
c93f54cf 10355 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10356 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10357 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10358 IS_VALLEYVIEW(dev))
10359 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10360
9ed109a7
DV
10361 PIPE_CONF_CHECK_I(has_audio);
10362
1bd1bd80
DV
10363 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10364 DRM_MODE_FLAG_INTERLACE);
10365
bb760063
DV
10366 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10367 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10368 DRM_MODE_FLAG_PHSYNC);
10369 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10370 DRM_MODE_FLAG_NHSYNC);
10371 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10372 DRM_MODE_FLAG_PVSYNC);
10373 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10374 DRM_MODE_FLAG_NVSYNC);
10375 }
045ac3b5 10376
37327abd
VS
10377 PIPE_CONF_CHECK_I(pipe_src_w);
10378 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10379
9953599b
DV
10380 /*
10381 * FIXME: BIOS likes to set up a cloned config with lvds+external
10382 * screen. Since we don't yet re-compute the pipe config when moving
10383 * just the lvds port away to another pipe the sw tracking won't match.
10384 *
10385 * Proper atomic modesets with recomputed global state will fix this.
10386 * Until then just don't check gmch state for inherited modes.
10387 */
10388 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10389 PIPE_CONF_CHECK_I(gmch_pfit.control);
10390 /* pfit ratios are autocomputed by the hw on gen4+ */
10391 if (INTEL_INFO(dev)->gen < 4)
10392 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10393 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10394 }
10395
fd4daa9c
CW
10396 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10397 if (current_config->pch_pfit.enabled) {
10398 PIPE_CONF_CHECK_I(pch_pfit.pos);
10399 PIPE_CONF_CHECK_I(pch_pfit.size);
10400 }
2fa2fe9a 10401
e59150dc
JB
10402 /* BDW+ don't expose a synchronous way to read the state */
10403 if (IS_HASWELL(dev))
10404 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10405
282740f7
VS
10406 PIPE_CONF_CHECK_I(double_wide);
10407
c0d43d62 10408 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10409 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10410 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10411 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10412 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10413
42571aef
VS
10414 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10415 PIPE_CONF_CHECK_I(pipe_bpp);
10416
a9a7e98a
JB
10417 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10418 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10419
66e985c0 10420#undef PIPE_CONF_CHECK_X
08a24034 10421#undef PIPE_CONF_CHECK_I
1bd1bd80 10422#undef PIPE_CONF_CHECK_FLAGS
5e550656 10423#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10424#undef PIPE_CONF_QUIRK
88adfff1 10425
0e8ffe1b
DV
10426 return true;
10427}
10428
91d1b4bd
DV
10429static void
10430check_connector_state(struct drm_device *dev)
8af6cf88 10431{
8af6cf88
DV
10432 struct intel_connector *connector;
10433
10434 list_for_each_entry(connector, &dev->mode_config.connector_list,
10435 base.head) {
10436 /* This also checks the encoder/connector hw state with the
10437 * ->get_hw_state callbacks. */
10438 intel_connector_check_state(connector);
10439
10440 WARN(&connector->new_encoder->base != connector->base.encoder,
10441 "connector's staged encoder doesn't match current encoder\n");
10442 }
91d1b4bd
DV
10443}
10444
10445static void
10446check_encoder_state(struct drm_device *dev)
10447{
10448 struct intel_encoder *encoder;
10449 struct intel_connector *connector;
8af6cf88
DV
10450
10451 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10452 base.head) {
10453 bool enabled = false;
10454 bool active = false;
10455 enum pipe pipe, tracked_pipe;
10456
10457 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10458 encoder->base.base.id,
8e329a03 10459 encoder->base.name);
8af6cf88
DV
10460
10461 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10462 "encoder's stage crtc doesn't match current crtc\n");
10463 WARN(encoder->connectors_active && !encoder->base.crtc,
10464 "encoder's active_connectors set, but no crtc\n");
10465
10466 list_for_each_entry(connector, &dev->mode_config.connector_list,
10467 base.head) {
10468 if (connector->base.encoder != &encoder->base)
10469 continue;
10470 enabled = true;
10471 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10472 active = true;
10473 }
10474 WARN(!!encoder->base.crtc != enabled,
10475 "encoder's enabled state mismatch "
10476 "(expected %i, found %i)\n",
10477 !!encoder->base.crtc, enabled);
10478 WARN(active && !encoder->base.crtc,
10479 "active encoder with no crtc\n");
10480
10481 WARN(encoder->connectors_active != active,
10482 "encoder's computed active state doesn't match tracked active state "
10483 "(expected %i, found %i)\n", active, encoder->connectors_active);
10484
10485 active = encoder->get_hw_state(encoder, &pipe);
10486 WARN(active != encoder->connectors_active,
10487 "encoder's hw state doesn't match sw tracking "
10488 "(expected %i, found %i)\n",
10489 encoder->connectors_active, active);
10490
10491 if (!encoder->base.crtc)
10492 continue;
10493
10494 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10495 WARN(active && pipe != tracked_pipe,
10496 "active encoder's pipe doesn't match"
10497 "(expected %i, found %i)\n",
10498 tracked_pipe, pipe);
10499
10500 }
91d1b4bd
DV
10501}
10502
10503static void
10504check_crtc_state(struct drm_device *dev)
10505{
fbee40df 10506 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10507 struct intel_crtc *crtc;
10508 struct intel_encoder *encoder;
10509 struct intel_crtc_config pipe_config;
8af6cf88 10510
d3fcc808 10511 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10512 bool enabled = false;
10513 bool active = false;
10514
045ac3b5
JB
10515 memset(&pipe_config, 0, sizeof(pipe_config));
10516
8af6cf88
DV
10517 DRM_DEBUG_KMS("[CRTC:%d]\n",
10518 crtc->base.base.id);
10519
10520 WARN(crtc->active && !crtc->base.enabled,
10521 "active crtc, but not enabled in sw tracking\n");
10522
10523 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10524 base.head) {
10525 if (encoder->base.crtc != &crtc->base)
10526 continue;
10527 enabled = true;
10528 if (encoder->connectors_active)
10529 active = true;
10530 }
6c49f241 10531
8af6cf88
DV
10532 WARN(active != crtc->active,
10533 "crtc's computed active state doesn't match tracked active state "
10534 "(expected %i, found %i)\n", active, crtc->active);
10535 WARN(enabled != crtc->base.enabled,
10536 "crtc's computed enabled state doesn't match tracked enabled state "
10537 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10538
0e8ffe1b
DV
10539 active = dev_priv->display.get_pipe_config(crtc,
10540 &pipe_config);
d62cf62a
DV
10541
10542 /* hw state is inconsistent with the pipe A quirk */
10543 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10544 active = crtc->active;
10545
6c49f241
DV
10546 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10547 base.head) {
3eaba51c 10548 enum pipe pipe;
6c49f241
DV
10549 if (encoder->base.crtc != &crtc->base)
10550 continue;
1d37b689 10551 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10552 encoder->get_config(encoder, &pipe_config);
10553 }
10554
0e8ffe1b
DV
10555 WARN(crtc->active != active,
10556 "crtc active state doesn't match with hw state "
10557 "(expected %i, found %i)\n", crtc->active, active);
10558
c0b03411
DV
10559 if (active &&
10560 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10561 WARN(1, "pipe state doesn't match!\n");
10562 intel_dump_pipe_config(crtc, &pipe_config,
10563 "[hw state]");
10564 intel_dump_pipe_config(crtc, &crtc->config,
10565 "[sw state]");
10566 }
8af6cf88
DV
10567 }
10568}
10569
91d1b4bd
DV
10570static void
10571check_shared_dpll_state(struct drm_device *dev)
10572{
fbee40df 10573 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10574 struct intel_crtc *crtc;
10575 struct intel_dpll_hw_state dpll_hw_state;
10576 int i;
5358901f
DV
10577
10578 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10579 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10580 int enabled_crtcs = 0, active_crtcs = 0;
10581 bool active;
10582
10583 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10584
10585 DRM_DEBUG_KMS("%s\n", pll->name);
10586
10587 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10588
10589 WARN(pll->active > pll->refcount,
10590 "more active pll users than references: %i vs %i\n",
10591 pll->active, pll->refcount);
10592 WARN(pll->active && !pll->on,
10593 "pll in active use but not on in sw tracking\n");
35c95375
DV
10594 WARN(pll->on && !pll->active,
10595 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10596 WARN(pll->on != active,
10597 "pll on state mismatch (expected %i, found %i)\n",
10598 pll->on, active);
10599
d3fcc808 10600 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10601 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10602 enabled_crtcs++;
10603 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10604 active_crtcs++;
10605 }
10606 WARN(pll->active != active_crtcs,
10607 "pll active crtcs mismatch (expected %i, found %i)\n",
10608 pll->active, active_crtcs);
10609 WARN(pll->refcount != enabled_crtcs,
10610 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10611 pll->refcount, enabled_crtcs);
66e985c0
DV
10612
10613 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10614 sizeof(dpll_hw_state)),
10615 "pll hw state mismatch\n");
5358901f 10616 }
8af6cf88
DV
10617}
10618
91d1b4bd
DV
10619void
10620intel_modeset_check_state(struct drm_device *dev)
10621{
10622 check_connector_state(dev);
10623 check_encoder_state(dev);
10624 check_crtc_state(dev);
10625 check_shared_dpll_state(dev);
10626}
10627
18442d08
VS
10628void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10629 int dotclock)
10630{
10631 /*
10632 * FDI already provided one idea for the dotclock.
10633 * Yell if the encoder disagrees.
10634 */
241bfc38 10635 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10636 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10637 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10638}
10639
80715b2f
VS
10640static void update_scanline_offset(struct intel_crtc *crtc)
10641{
10642 struct drm_device *dev = crtc->base.dev;
10643
10644 /*
10645 * The scanline counter increments at the leading edge of hsync.
10646 *
10647 * On most platforms it starts counting from vtotal-1 on the
10648 * first active line. That means the scanline counter value is
10649 * always one less than what we would expect. Ie. just after
10650 * start of vblank, which also occurs at start of hsync (on the
10651 * last active line), the scanline counter will read vblank_start-1.
10652 *
10653 * On gen2 the scanline counter starts counting from 1 instead
10654 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10655 * to keep the value positive), instead of adding one.
10656 *
10657 * On HSW+ the behaviour of the scanline counter depends on the output
10658 * type. For DP ports it behaves like most other platforms, but on HDMI
10659 * there's an extra 1 line difference. So we need to add two instead of
10660 * one to the value.
10661 */
10662 if (IS_GEN2(dev)) {
10663 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10664 int vtotal;
10665
10666 vtotal = mode->crtc_vtotal;
10667 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10668 vtotal /= 2;
10669
10670 crtc->scanline_offset = vtotal - 1;
10671 } else if (HAS_DDI(dev) &&
10672 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10673 crtc->scanline_offset = 2;
10674 } else
10675 crtc->scanline_offset = 1;
10676}
10677
f30da187
DV
10678static int __intel_set_mode(struct drm_crtc *crtc,
10679 struct drm_display_mode *mode,
10680 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10681{
10682 struct drm_device *dev = crtc->dev;
fbee40df 10683 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10684 struct drm_display_mode *saved_mode;
b8cecdf5 10685 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10686 struct intel_crtc *intel_crtc;
10687 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10688 int ret = 0;
a6778b3c 10689
4b4b9238 10690 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10691 if (!saved_mode)
10692 return -ENOMEM;
a6778b3c 10693
e2e1ed41 10694 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10695 &prepare_pipes, &disable_pipes);
10696
3ac18232 10697 *saved_mode = crtc->mode;
a6778b3c 10698
25c5b266
DV
10699 /* Hack: Because we don't (yet) support global modeset on multiple
10700 * crtcs, we don't keep track of the new mode for more than one crtc.
10701 * Hence simply check whether any bit is set in modeset_pipes in all the
10702 * pieces of code that are not yet converted to deal with mutliple crtcs
10703 * changing their mode at the same time. */
25c5b266 10704 if (modeset_pipes) {
4e53c2e0 10705 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10706 if (IS_ERR(pipe_config)) {
10707 ret = PTR_ERR(pipe_config);
10708 pipe_config = NULL;
10709
3ac18232 10710 goto out;
25c5b266 10711 }
c0b03411
DV
10712 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10713 "[modeset]");
50741abc 10714 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10715 }
a6778b3c 10716
30a970c6
JB
10717 /*
10718 * See if the config requires any additional preparation, e.g.
10719 * to adjust global state with pipes off. We need to do this
10720 * here so we can get the modeset_pipe updated config for the new
10721 * mode set on this crtc. For other crtcs we need to use the
10722 * adjusted_mode bits in the crtc directly.
10723 */
c164f833 10724 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10725 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10726
c164f833
VS
10727 /* may have added more to prepare_pipes than we should */
10728 prepare_pipes &= ~disable_pipes;
10729 }
10730
460da916
DV
10731 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10732 intel_crtc_disable(&intel_crtc->base);
10733
ea9d758d
DV
10734 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10735 if (intel_crtc->base.enabled)
10736 dev_priv->display.crtc_disable(&intel_crtc->base);
10737 }
a6778b3c 10738
6c4c86f5
DV
10739 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10740 * to set it here already despite that we pass it down the callchain.
f6e5b160 10741 */
b8cecdf5 10742 if (modeset_pipes) {
25c5b266 10743 crtc->mode = *mode;
b8cecdf5
DV
10744 /* mode_set/enable/disable functions rely on a correct pipe
10745 * config. */
10746 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10747 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10748
10749 /*
10750 * Calculate and store various constants which
10751 * are later needed by vblank and swap-completion
10752 * timestamping. They are derived from true hwmode.
10753 */
10754 drm_calc_timestamping_constants(crtc,
10755 &pipe_config->adjusted_mode);
b8cecdf5 10756 }
7758a113 10757
ea9d758d
DV
10758 /* Only after disabling all output pipelines that will be changed can we
10759 * update the the output configuration. */
10760 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10761
47fab737
DV
10762 if (dev_priv->display.modeset_global_resources)
10763 dev_priv->display.modeset_global_resources(dev);
10764
a6778b3c
DV
10765 /* Set up the DPLL and any encoders state that needs to adjust or depend
10766 * on the DPLL.
f6e5b160 10767 */
25c5b266 10768 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
4c10794f 10769 struct drm_framebuffer *old_fb;
a071fa00
DV
10770 struct drm_i915_gem_object *old_obj = NULL;
10771 struct drm_i915_gem_object *obj =
10772 to_intel_framebuffer(fb)->obj;
4c10794f
DV
10773
10774 mutex_lock(&dev->struct_mutex);
10775 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10776 obj,
4c10794f
DV
10777 NULL);
10778 if (ret != 0) {
10779 DRM_ERROR("pin & fence failed\n");
10780 mutex_unlock(&dev->struct_mutex);
10781 goto done;
10782 }
10783 old_fb = crtc->primary->fb;
a071fa00
DV
10784 if (old_fb) {
10785 old_obj = to_intel_framebuffer(old_fb)->obj;
10786 intel_unpin_fb_obj(old_obj);
10787 }
10788 i915_gem_track_fb(old_obj, obj,
10789 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10790 mutex_unlock(&dev->struct_mutex);
10791
10792 crtc->primary->fb = fb;
10793 crtc->x = x;
10794 crtc->y = y;
10795
4271b753
DV
10796 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10797 x, y, fb);
c0c36b94
CW
10798 if (ret)
10799 goto done;
a6778b3c
DV
10800 }
10801
10802 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10803 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10804 update_scanline_offset(intel_crtc);
10805
25c5b266 10806 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10807 }
a6778b3c 10808
a6778b3c
DV
10809 /* FIXME: add subpixel order */
10810done:
4b4b9238 10811 if (ret && crtc->enabled)
3ac18232 10812 crtc->mode = *saved_mode;
a6778b3c 10813
3ac18232 10814out:
b8cecdf5 10815 kfree(pipe_config);
3ac18232 10816 kfree(saved_mode);
a6778b3c 10817 return ret;
f6e5b160
CW
10818}
10819
e7457a9a
DL
10820static int intel_set_mode(struct drm_crtc *crtc,
10821 struct drm_display_mode *mode,
10822 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10823{
10824 int ret;
10825
10826 ret = __intel_set_mode(crtc, mode, x, y, fb);
10827
10828 if (ret == 0)
10829 intel_modeset_check_state(crtc->dev);
10830
10831 return ret;
10832}
10833
c0c36b94
CW
10834void intel_crtc_restore_mode(struct drm_crtc *crtc)
10835{
f4510a27 10836 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10837}
10838
25c5b266
DV
10839#undef for_each_intel_crtc_masked
10840
d9e55608
DV
10841static void intel_set_config_free(struct intel_set_config *config)
10842{
10843 if (!config)
10844 return;
10845
1aa4b628
DV
10846 kfree(config->save_connector_encoders);
10847 kfree(config->save_encoder_crtcs);
7668851f 10848 kfree(config->save_crtc_enabled);
d9e55608
DV
10849 kfree(config);
10850}
10851
85f9eb71
DV
10852static int intel_set_config_save_state(struct drm_device *dev,
10853 struct intel_set_config *config)
10854{
7668851f 10855 struct drm_crtc *crtc;
85f9eb71
DV
10856 struct drm_encoder *encoder;
10857 struct drm_connector *connector;
10858 int count;
10859
7668851f
VS
10860 config->save_crtc_enabled =
10861 kcalloc(dev->mode_config.num_crtc,
10862 sizeof(bool), GFP_KERNEL);
10863 if (!config->save_crtc_enabled)
10864 return -ENOMEM;
10865
1aa4b628
DV
10866 config->save_encoder_crtcs =
10867 kcalloc(dev->mode_config.num_encoder,
10868 sizeof(struct drm_crtc *), GFP_KERNEL);
10869 if (!config->save_encoder_crtcs)
85f9eb71
DV
10870 return -ENOMEM;
10871
1aa4b628
DV
10872 config->save_connector_encoders =
10873 kcalloc(dev->mode_config.num_connector,
10874 sizeof(struct drm_encoder *), GFP_KERNEL);
10875 if (!config->save_connector_encoders)
85f9eb71
DV
10876 return -ENOMEM;
10877
10878 /* Copy data. Note that driver private data is not affected.
10879 * Should anything bad happen only the expected state is
10880 * restored, not the drivers personal bookkeeping.
10881 */
7668851f 10882 count = 0;
70e1e0ec 10883 for_each_crtc(dev, crtc) {
7668851f
VS
10884 config->save_crtc_enabled[count++] = crtc->enabled;
10885 }
10886
85f9eb71
DV
10887 count = 0;
10888 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10889 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10890 }
10891
10892 count = 0;
10893 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10894 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10895 }
10896
10897 return 0;
10898}
10899
10900static void intel_set_config_restore_state(struct drm_device *dev,
10901 struct intel_set_config *config)
10902{
7668851f 10903 struct intel_crtc *crtc;
9a935856
DV
10904 struct intel_encoder *encoder;
10905 struct intel_connector *connector;
85f9eb71
DV
10906 int count;
10907
7668851f 10908 count = 0;
d3fcc808 10909 for_each_intel_crtc(dev, crtc) {
7668851f 10910 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10911
10912 if (crtc->new_enabled)
10913 crtc->new_config = &crtc->config;
10914 else
10915 crtc->new_config = NULL;
7668851f
VS
10916 }
10917
85f9eb71 10918 count = 0;
9a935856
DV
10919 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10920 encoder->new_crtc =
10921 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10922 }
10923
10924 count = 0;
9a935856
DV
10925 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10926 connector->new_encoder =
10927 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10928 }
10929}
10930
e3de42b6 10931static bool
2e57f47d 10932is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10933{
10934 int i;
10935
2e57f47d
CW
10936 if (set->num_connectors == 0)
10937 return false;
10938
10939 if (WARN_ON(set->connectors == NULL))
10940 return false;
10941
10942 for (i = 0; i < set->num_connectors; i++)
10943 if (set->connectors[i]->encoder &&
10944 set->connectors[i]->encoder->crtc == set->crtc &&
10945 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10946 return true;
10947
10948 return false;
10949}
10950
5e2b584e
DV
10951static void
10952intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10953 struct intel_set_config *config)
10954{
10955
10956 /* We should be able to check here if the fb has the same properties
10957 * and then just flip_or_move it */
2e57f47d
CW
10958 if (is_crtc_connector_off(set)) {
10959 config->mode_changed = true;
f4510a27 10960 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10961 /*
10962 * If we have no fb, we can only flip as long as the crtc is
10963 * active, otherwise we need a full mode set. The crtc may
10964 * be active if we've only disabled the primary plane, or
10965 * in fastboot situations.
10966 */
f4510a27 10967 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10968 struct intel_crtc *intel_crtc =
10969 to_intel_crtc(set->crtc);
10970
3b150f08 10971 if (intel_crtc->active) {
319d9827
JB
10972 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10973 config->fb_changed = true;
10974 } else {
10975 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10976 config->mode_changed = true;
10977 }
5e2b584e
DV
10978 } else if (set->fb == NULL) {
10979 config->mode_changed = true;
72f4901e 10980 } else if (set->fb->pixel_format !=
f4510a27 10981 set->crtc->primary->fb->pixel_format) {
5e2b584e 10982 config->mode_changed = true;
e3de42b6 10983 } else {
5e2b584e 10984 config->fb_changed = true;
e3de42b6 10985 }
5e2b584e
DV
10986 }
10987
835c5873 10988 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10989 config->fb_changed = true;
10990
10991 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10992 DRM_DEBUG_KMS("modes are different, full mode set\n");
10993 drm_mode_debug_printmodeline(&set->crtc->mode);
10994 drm_mode_debug_printmodeline(set->mode);
10995 config->mode_changed = true;
10996 }
a1d95703
CW
10997
10998 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10999 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11000}
11001
2e431051 11002static int
9a935856
DV
11003intel_modeset_stage_output_state(struct drm_device *dev,
11004 struct drm_mode_set *set,
11005 struct intel_set_config *config)
50f56119 11006{
9a935856
DV
11007 struct intel_connector *connector;
11008 struct intel_encoder *encoder;
7668851f 11009 struct intel_crtc *crtc;
f3f08572 11010 int ro;
50f56119 11011
9abdda74 11012 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11013 * of connectors. For paranoia, double-check this. */
11014 WARN_ON(!set->fb && (set->num_connectors != 0));
11015 WARN_ON(set->fb && (set->num_connectors == 0));
11016
9a935856
DV
11017 list_for_each_entry(connector, &dev->mode_config.connector_list,
11018 base.head) {
11019 /* Otherwise traverse passed in connector list and get encoders
11020 * for them. */
50f56119 11021 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11022 if (set->connectors[ro] == &connector->base) {
11023 connector->new_encoder = connector->encoder;
50f56119
DV
11024 break;
11025 }
11026 }
11027
9a935856
DV
11028 /* If we disable the crtc, disable all its connectors. Also, if
11029 * the connector is on the changing crtc but not on the new
11030 * connector list, disable it. */
11031 if ((!set->fb || ro == set->num_connectors) &&
11032 connector->base.encoder &&
11033 connector->base.encoder->crtc == set->crtc) {
11034 connector->new_encoder = NULL;
11035
11036 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11037 connector->base.base.id,
c23cc417 11038 connector->base.name);
9a935856
DV
11039 }
11040
11041
11042 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11043 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11044 config->mode_changed = true;
50f56119
DV
11045 }
11046 }
9a935856 11047 /* connector->new_encoder is now updated for all connectors. */
50f56119 11048
9a935856 11049 /* Update crtc of enabled connectors. */
9a935856
DV
11050 list_for_each_entry(connector, &dev->mode_config.connector_list,
11051 base.head) {
7668851f
VS
11052 struct drm_crtc *new_crtc;
11053
9a935856 11054 if (!connector->new_encoder)
50f56119
DV
11055 continue;
11056
9a935856 11057 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11058
11059 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11060 if (set->connectors[ro] == &connector->base)
50f56119
DV
11061 new_crtc = set->crtc;
11062 }
11063
11064 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11065 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11066 new_crtc)) {
5e2b584e 11067 return -EINVAL;
50f56119 11068 }
9a935856
DV
11069 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11070
11071 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11072 connector->base.base.id,
c23cc417 11073 connector->base.name,
9a935856
DV
11074 new_crtc->base.id);
11075 }
11076
11077 /* Check for any encoders that needs to be disabled. */
11078 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11079 base.head) {
5a65f358 11080 int num_connectors = 0;
9a935856
DV
11081 list_for_each_entry(connector,
11082 &dev->mode_config.connector_list,
11083 base.head) {
11084 if (connector->new_encoder == encoder) {
11085 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11086 num_connectors++;
9a935856
DV
11087 }
11088 }
5a65f358
PZ
11089
11090 if (num_connectors == 0)
11091 encoder->new_crtc = NULL;
11092 else if (num_connectors > 1)
11093 return -EINVAL;
11094
9a935856
DV
11095 /* Only now check for crtc changes so we don't miss encoders
11096 * that will be disabled. */
11097 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11098 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11099 config->mode_changed = true;
50f56119
DV
11100 }
11101 }
9a935856 11102 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11103
d3fcc808 11104 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11105 crtc->new_enabled = false;
11106
11107 list_for_each_entry(encoder,
11108 &dev->mode_config.encoder_list,
11109 base.head) {
11110 if (encoder->new_crtc == crtc) {
11111 crtc->new_enabled = true;
11112 break;
11113 }
11114 }
11115
11116 if (crtc->new_enabled != crtc->base.enabled) {
11117 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11118 crtc->new_enabled ? "en" : "dis");
11119 config->mode_changed = true;
11120 }
7bd0a8e7
VS
11121
11122 if (crtc->new_enabled)
11123 crtc->new_config = &crtc->config;
11124 else
11125 crtc->new_config = NULL;
7668851f
VS
11126 }
11127
2e431051
DV
11128 return 0;
11129}
11130
7d00a1f5
VS
11131static void disable_crtc_nofb(struct intel_crtc *crtc)
11132{
11133 struct drm_device *dev = crtc->base.dev;
11134 struct intel_encoder *encoder;
11135 struct intel_connector *connector;
11136
11137 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11138 pipe_name(crtc->pipe));
11139
11140 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11141 if (connector->new_encoder &&
11142 connector->new_encoder->new_crtc == crtc)
11143 connector->new_encoder = NULL;
11144 }
11145
11146 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11147 if (encoder->new_crtc == crtc)
11148 encoder->new_crtc = NULL;
11149 }
11150
11151 crtc->new_enabled = false;
7bd0a8e7 11152 crtc->new_config = NULL;
7d00a1f5
VS
11153}
11154
2e431051
DV
11155static int intel_crtc_set_config(struct drm_mode_set *set)
11156{
11157 struct drm_device *dev;
2e431051
DV
11158 struct drm_mode_set save_set;
11159 struct intel_set_config *config;
11160 int ret;
2e431051 11161
8d3e375e
DV
11162 BUG_ON(!set);
11163 BUG_ON(!set->crtc);
11164 BUG_ON(!set->crtc->helper_private);
2e431051 11165
7e53f3a4
DV
11166 /* Enforce sane interface api - has been abused by the fb helper. */
11167 BUG_ON(!set->mode && set->fb);
11168 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11169
2e431051
DV
11170 if (set->fb) {
11171 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11172 set->crtc->base.id, set->fb->base.id,
11173 (int)set->num_connectors, set->x, set->y);
11174 } else {
11175 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11176 }
11177
11178 dev = set->crtc->dev;
11179
11180 ret = -ENOMEM;
11181 config = kzalloc(sizeof(*config), GFP_KERNEL);
11182 if (!config)
11183 goto out_config;
11184
11185 ret = intel_set_config_save_state(dev, config);
11186 if (ret)
11187 goto out_config;
11188
11189 save_set.crtc = set->crtc;
11190 save_set.mode = &set->crtc->mode;
11191 save_set.x = set->crtc->x;
11192 save_set.y = set->crtc->y;
f4510a27 11193 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11194
11195 /* Compute whether we need a full modeset, only an fb base update or no
11196 * change at all. In the future we might also check whether only the
11197 * mode changed, e.g. for LVDS where we only change the panel fitter in
11198 * such cases. */
11199 intel_set_config_compute_mode_changes(set, config);
11200
9a935856 11201 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11202 if (ret)
11203 goto fail;
11204
5e2b584e 11205 if (config->mode_changed) {
c0c36b94
CW
11206 ret = intel_set_mode(set->crtc, set->mode,
11207 set->x, set->y, set->fb);
5e2b584e 11208 } else if (config->fb_changed) {
3b150f08
MR
11209 struct drm_i915_private *dev_priv = dev->dev_private;
11210 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11211
4878cae2
VS
11212 intel_crtc_wait_for_pending_flips(set->crtc);
11213
4f660f49 11214 ret = intel_pipe_set_base(set->crtc,
94352cf9 11215 set->x, set->y, set->fb);
3b150f08
MR
11216
11217 /*
11218 * We need to make sure the primary plane is re-enabled if it
11219 * has previously been turned off.
11220 */
11221 if (!intel_crtc->primary_enabled && ret == 0) {
11222 WARN_ON(!intel_crtc->active);
11223 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11224 intel_crtc->pipe);
11225 }
11226
7ca51a3a
JB
11227 /*
11228 * In the fastboot case this may be our only check of the
11229 * state after boot. It would be better to only do it on
11230 * the first update, but we don't have a nice way of doing that
11231 * (and really, set_config isn't used much for high freq page
11232 * flipping, so increasing its cost here shouldn't be a big
11233 * deal).
11234 */
d330a953 11235 if (i915.fastboot && ret == 0)
7ca51a3a 11236 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11237 }
11238
2d05eae1 11239 if (ret) {
bf67dfeb
DV
11240 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11241 set->crtc->base.id, ret);
50f56119 11242fail:
2d05eae1 11243 intel_set_config_restore_state(dev, config);
50f56119 11244
7d00a1f5
VS
11245 /*
11246 * HACK: if the pipe was on, but we didn't have a framebuffer,
11247 * force the pipe off to avoid oopsing in the modeset code
11248 * due to fb==NULL. This should only happen during boot since
11249 * we don't yet reconstruct the FB from the hardware state.
11250 */
11251 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11252 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11253
2d05eae1
CW
11254 /* Try to restore the config */
11255 if (config->mode_changed &&
11256 intel_set_mode(save_set.crtc, save_set.mode,
11257 save_set.x, save_set.y, save_set.fb))
11258 DRM_ERROR("failed to restore config after modeset failure\n");
11259 }
50f56119 11260
d9e55608
DV
11261out_config:
11262 intel_set_config_free(config);
50f56119
DV
11263 return ret;
11264}
f6e5b160
CW
11265
11266static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11267 .gamma_set = intel_crtc_gamma_set,
50f56119 11268 .set_config = intel_crtc_set_config,
f6e5b160
CW
11269 .destroy = intel_crtc_destroy,
11270 .page_flip = intel_crtc_page_flip,
11271};
11272
79f689aa
PZ
11273static void intel_cpu_pll_init(struct drm_device *dev)
11274{
affa9354 11275 if (HAS_DDI(dev))
79f689aa
PZ
11276 intel_ddi_pll_init(dev);
11277}
11278
5358901f
DV
11279static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11280 struct intel_shared_dpll *pll,
11281 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11282{
5358901f 11283 uint32_t val;
ee7b9f93 11284
5358901f 11285 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11286 hw_state->dpll = val;
11287 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11288 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11289
11290 return val & DPLL_VCO_ENABLE;
11291}
11292
15bdd4cf
DV
11293static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11294 struct intel_shared_dpll *pll)
11295{
11296 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11297 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11298}
11299
e7b903d2
DV
11300static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11301 struct intel_shared_dpll *pll)
11302{
e7b903d2 11303 /* PCH refclock must be enabled first */
89eff4be 11304 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11305
15bdd4cf
DV
11306 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11307
11308 /* Wait for the clocks to stabilize. */
11309 POSTING_READ(PCH_DPLL(pll->id));
11310 udelay(150);
11311
11312 /* The pixel multiplier can only be updated once the
11313 * DPLL is enabled and the clocks are stable.
11314 *
11315 * So write it again.
11316 */
11317 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11318 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11319 udelay(200);
11320}
11321
11322static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11323 struct intel_shared_dpll *pll)
11324{
11325 struct drm_device *dev = dev_priv->dev;
11326 struct intel_crtc *crtc;
e7b903d2
DV
11327
11328 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11329 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11330 if (intel_crtc_to_shared_dpll(crtc) == pll)
11331 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11332 }
11333
15bdd4cf
DV
11334 I915_WRITE(PCH_DPLL(pll->id), 0);
11335 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11336 udelay(200);
11337}
11338
46edb027
DV
11339static char *ibx_pch_dpll_names[] = {
11340 "PCH DPLL A",
11341 "PCH DPLL B",
11342};
11343
7c74ade1 11344static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11345{
e7b903d2 11346 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11347 int i;
11348
7c74ade1 11349 dev_priv->num_shared_dpll = 2;
ee7b9f93 11350
e72f9fbf 11351 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11352 dev_priv->shared_dplls[i].id = i;
11353 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11354 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11355 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11356 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11357 dev_priv->shared_dplls[i].get_hw_state =
11358 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11359 }
11360}
11361
7c74ade1
DV
11362static void intel_shared_dpll_init(struct drm_device *dev)
11363{
e7b903d2 11364 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11365
11366 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11367 ibx_pch_dpll_init(dev);
11368 else
11369 dev_priv->num_shared_dpll = 0;
11370
11371 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11372}
11373
465c120c
MR
11374static int
11375intel_primary_plane_disable(struct drm_plane *plane)
11376{
11377 struct drm_device *dev = plane->dev;
11378 struct drm_i915_private *dev_priv = dev->dev_private;
11379 struct intel_plane *intel_plane = to_intel_plane(plane);
11380 struct intel_crtc *intel_crtc;
11381
11382 if (!plane->fb)
11383 return 0;
11384
11385 BUG_ON(!plane->crtc);
11386
11387 intel_crtc = to_intel_crtc(plane->crtc);
11388
11389 /*
11390 * Even though we checked plane->fb above, it's still possible that
11391 * the primary plane has been implicitly disabled because the crtc
11392 * coordinates given weren't visible, or because we detected
11393 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11394 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11395 * In either case, we need to unpin the FB and let the fb pointer get
11396 * updated, but otherwise we don't need to touch the hardware.
11397 */
11398 if (!intel_crtc->primary_enabled)
11399 goto disable_unpin;
11400
11401 intel_crtc_wait_for_pending_flips(plane->crtc);
11402 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11403 intel_plane->pipe);
465c120c 11404disable_unpin:
a071fa00
DV
11405 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11406 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11407 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11408 plane->fb = NULL;
11409
11410 return 0;
11411}
11412
11413static int
11414intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11415 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11416 unsigned int crtc_w, unsigned int crtc_h,
11417 uint32_t src_x, uint32_t src_y,
11418 uint32_t src_w, uint32_t src_h)
11419{
11420 struct drm_device *dev = crtc->dev;
11421 struct drm_i915_private *dev_priv = dev->dev_private;
11422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11423 struct intel_plane *intel_plane = to_intel_plane(plane);
a071fa00 11424 struct drm_i915_gem_object *obj, *old_obj = NULL;
465c120c
MR
11425 struct drm_rect dest = {
11426 /* integer pixels */
11427 .x1 = crtc_x,
11428 .y1 = crtc_y,
11429 .x2 = crtc_x + crtc_w,
11430 .y2 = crtc_y + crtc_h,
11431 };
11432 struct drm_rect src = {
11433 /* 16.16 fixed point */
11434 .x1 = src_x,
11435 .y1 = src_y,
11436 .x2 = src_x + src_w,
11437 .y2 = src_y + src_h,
11438 };
11439 const struct drm_rect clip = {
11440 /* integer pixels */
11441 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11442 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11443 };
11444 bool visible;
11445 int ret;
11446
11447 ret = drm_plane_helper_check_update(plane, crtc, fb,
11448 &src, &dest, &clip,
11449 DRM_PLANE_HELPER_NO_SCALING,
11450 DRM_PLANE_HELPER_NO_SCALING,
11451 false, true, &visible);
11452
11453 if (ret)
11454 return ret;
11455
a071fa00
DV
11456 if (plane->fb)
11457 old_obj = to_intel_framebuffer(plane->fb)->obj;
11458 obj = to_intel_framebuffer(fb)->obj;
11459
465c120c
MR
11460 /*
11461 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11462 * updating the fb pointer, and returning without touching the
11463 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11464 * turn on the display with all planes setup as desired.
11465 */
11466 if (!crtc->enabled) {
11467 /*
11468 * If we already called setplane while the crtc was disabled,
11469 * we may have an fb pinned; unpin it.
11470 */
11471 if (plane->fb)
a071fa00
DV
11472 intel_unpin_fb_obj(old_obj);
11473
11474 i915_gem_track_fb(old_obj, obj,
11475 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11476
11477 /* Pin and return without programming hardware */
a071fa00 11478 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11479 }
11480
11481 intel_crtc_wait_for_pending_flips(crtc);
11482
11483 /*
11484 * If clipping results in a non-visible primary plane, we'll disable
11485 * the primary plane. Note that this is a bit different than what
11486 * happens if userspace explicitly disables the plane by passing fb=0
11487 * because plane->fb still gets set and pinned.
11488 */
11489 if (!visible) {
11490 /*
11491 * Try to pin the new fb first so that we can bail out if we
11492 * fail.
11493 */
11494 if (plane->fb != fb) {
a071fa00 11495 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11496 if (ret)
11497 return ret;
11498 }
11499
a071fa00
DV
11500 i915_gem_track_fb(old_obj, obj,
11501 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11502
465c120c
MR
11503 if (intel_crtc->primary_enabled)
11504 intel_disable_primary_hw_plane(dev_priv,
11505 intel_plane->plane,
11506 intel_plane->pipe);
11507
11508
11509 if (plane->fb != fb)
11510 if (plane->fb)
a071fa00 11511 intel_unpin_fb_obj(old_obj);
465c120c
MR
11512
11513 return 0;
11514 }
11515
11516 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11517 if (ret)
11518 return ret;
11519
11520 if (!intel_crtc->primary_enabled)
11521 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11522 intel_crtc->pipe);
11523
11524 return 0;
11525}
11526
3d7d6510
MR
11527/* Common destruction function for both primary and cursor planes */
11528static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11529{
11530 struct intel_plane *intel_plane = to_intel_plane(plane);
11531 drm_plane_cleanup(plane);
11532 kfree(intel_plane);
11533}
11534
11535static const struct drm_plane_funcs intel_primary_plane_funcs = {
11536 .update_plane = intel_primary_plane_setplane,
11537 .disable_plane = intel_primary_plane_disable,
3d7d6510 11538 .destroy = intel_plane_destroy,
465c120c
MR
11539};
11540
11541static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11542 int pipe)
11543{
11544 struct intel_plane *primary;
11545 const uint32_t *intel_primary_formats;
11546 int num_formats;
11547
11548 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11549 if (primary == NULL)
11550 return NULL;
11551
11552 primary->can_scale = false;
11553 primary->max_downscale = 1;
11554 primary->pipe = pipe;
11555 primary->plane = pipe;
11556 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11557 primary->plane = !pipe;
11558
11559 if (INTEL_INFO(dev)->gen <= 3) {
11560 intel_primary_formats = intel_primary_formats_gen2;
11561 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11562 } else {
11563 intel_primary_formats = intel_primary_formats_gen4;
11564 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11565 }
11566
11567 drm_universal_plane_init(dev, &primary->base, 0,
11568 &intel_primary_plane_funcs,
11569 intel_primary_formats, num_formats,
11570 DRM_PLANE_TYPE_PRIMARY);
11571 return &primary->base;
11572}
11573
3d7d6510
MR
11574static int
11575intel_cursor_plane_disable(struct drm_plane *plane)
11576{
11577 if (!plane->fb)
11578 return 0;
11579
11580 BUG_ON(!plane->crtc);
11581
11582 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11583}
11584
11585static int
11586intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11587 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11588 unsigned int crtc_w, unsigned int crtc_h,
11589 uint32_t src_x, uint32_t src_y,
11590 uint32_t src_w, uint32_t src_h)
11591{
11592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11593 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11594 struct drm_i915_gem_object *obj = intel_fb->obj;
11595 struct drm_rect dest = {
11596 /* integer pixels */
11597 .x1 = crtc_x,
11598 .y1 = crtc_y,
11599 .x2 = crtc_x + crtc_w,
11600 .y2 = crtc_y + crtc_h,
11601 };
11602 struct drm_rect src = {
11603 /* 16.16 fixed point */
11604 .x1 = src_x,
11605 .y1 = src_y,
11606 .x2 = src_x + src_w,
11607 .y2 = src_y + src_h,
11608 };
11609 const struct drm_rect clip = {
11610 /* integer pixels */
11611 .x2 = intel_crtc->config.pipe_src_w,
11612 .y2 = intel_crtc->config.pipe_src_h,
11613 };
11614 bool visible;
11615 int ret;
11616
11617 ret = drm_plane_helper_check_update(plane, crtc, fb,
11618 &src, &dest, &clip,
11619 DRM_PLANE_HELPER_NO_SCALING,
11620 DRM_PLANE_HELPER_NO_SCALING,
11621 true, true, &visible);
11622 if (ret)
11623 return ret;
11624
11625 crtc->cursor_x = crtc_x;
11626 crtc->cursor_y = crtc_y;
11627 if (fb != crtc->cursor->fb) {
11628 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11629 } else {
11630 intel_crtc_update_cursor(crtc, visible);
11631 return 0;
11632 }
11633}
11634static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11635 .update_plane = intel_cursor_plane_update,
11636 .disable_plane = intel_cursor_plane_disable,
11637 .destroy = intel_plane_destroy,
11638};
11639
11640static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11641 int pipe)
11642{
11643 struct intel_plane *cursor;
11644
11645 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11646 if (cursor == NULL)
11647 return NULL;
11648
11649 cursor->can_scale = false;
11650 cursor->max_downscale = 1;
11651 cursor->pipe = pipe;
11652 cursor->plane = pipe;
11653
11654 drm_universal_plane_init(dev, &cursor->base, 0,
11655 &intel_cursor_plane_funcs,
11656 intel_cursor_formats,
11657 ARRAY_SIZE(intel_cursor_formats),
11658 DRM_PLANE_TYPE_CURSOR);
11659 return &cursor->base;
11660}
11661
b358d0a6 11662static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11663{
fbee40df 11664 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11665 struct intel_crtc *intel_crtc;
3d7d6510
MR
11666 struct drm_plane *primary = NULL;
11667 struct drm_plane *cursor = NULL;
465c120c 11668 int i, ret;
79e53945 11669
955382f3 11670 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11671 if (intel_crtc == NULL)
11672 return;
11673
465c120c 11674 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11675 if (!primary)
11676 goto fail;
11677
11678 cursor = intel_cursor_plane_create(dev, pipe);
11679 if (!cursor)
11680 goto fail;
11681
465c120c 11682 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11683 cursor, &intel_crtc_funcs);
11684 if (ret)
11685 goto fail;
79e53945
JB
11686
11687 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11688 for (i = 0; i < 256; i++) {
11689 intel_crtc->lut_r[i] = i;
11690 intel_crtc->lut_g[i] = i;
11691 intel_crtc->lut_b[i] = i;
11692 }
11693
1f1c2e24
VS
11694 /*
11695 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11696 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11697 */
80824003
JB
11698 intel_crtc->pipe = pipe;
11699 intel_crtc->plane = pipe;
3a77c4c4 11700 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11701 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11702 intel_crtc->plane = !pipe;
80824003
JB
11703 }
11704
4b0e333e
CW
11705 intel_crtc->cursor_base = ~0;
11706 intel_crtc->cursor_cntl = ~0;
11707
8d7849db
VS
11708 init_waitqueue_head(&intel_crtc->vbl_wait);
11709
22fd0fab
JB
11710 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11711 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11712 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11713 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11714
79e53945 11715 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11716
11717 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11718 return;
11719
11720fail:
11721 if (primary)
11722 drm_plane_cleanup(primary);
11723 if (cursor)
11724 drm_plane_cleanup(cursor);
11725 kfree(intel_crtc);
79e53945
JB
11726}
11727
752aa88a
JB
11728enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11729{
11730 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11731 struct drm_device *dev = connector->base.dev;
752aa88a 11732
51fd371b 11733 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11734
11735 if (!encoder)
11736 return INVALID_PIPE;
11737
11738 return to_intel_crtc(encoder->crtc)->pipe;
11739}
11740
08d7b3d1 11741int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11742 struct drm_file *file)
08d7b3d1 11743{
08d7b3d1 11744 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11745 struct drm_mode_object *drmmode_obj;
11746 struct intel_crtc *crtc;
08d7b3d1 11747
1cff8f6b
DV
11748 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11749 return -ENODEV;
08d7b3d1 11750
c05422d5
DV
11751 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11752 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11753
c05422d5 11754 if (!drmmode_obj) {
08d7b3d1 11755 DRM_ERROR("no such CRTC id\n");
3f2c2057 11756 return -ENOENT;
08d7b3d1
CW
11757 }
11758
c05422d5
DV
11759 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11760 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11761
c05422d5 11762 return 0;
08d7b3d1
CW
11763}
11764
66a9278e 11765static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11766{
66a9278e
DV
11767 struct drm_device *dev = encoder->base.dev;
11768 struct intel_encoder *source_encoder;
79e53945 11769 int index_mask = 0;
79e53945
JB
11770 int entry = 0;
11771
66a9278e
DV
11772 list_for_each_entry(source_encoder,
11773 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11774 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11775 index_mask |= (1 << entry);
11776
79e53945
JB
11777 entry++;
11778 }
4ef69c7a 11779
79e53945
JB
11780 return index_mask;
11781}
11782
4d302442
CW
11783static bool has_edp_a(struct drm_device *dev)
11784{
11785 struct drm_i915_private *dev_priv = dev->dev_private;
11786
11787 if (!IS_MOBILE(dev))
11788 return false;
11789
11790 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11791 return false;
11792
e3589908 11793 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11794 return false;
11795
11796 return true;
11797}
11798
ba0fbca4
DL
11799const char *intel_output_name(int output)
11800{
11801 static const char *names[] = {
11802 [INTEL_OUTPUT_UNUSED] = "Unused",
11803 [INTEL_OUTPUT_ANALOG] = "Analog",
11804 [INTEL_OUTPUT_DVO] = "DVO",
11805 [INTEL_OUTPUT_SDVO] = "SDVO",
11806 [INTEL_OUTPUT_LVDS] = "LVDS",
11807 [INTEL_OUTPUT_TVOUT] = "TV",
11808 [INTEL_OUTPUT_HDMI] = "HDMI",
11809 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11810 [INTEL_OUTPUT_EDP] = "eDP",
11811 [INTEL_OUTPUT_DSI] = "DSI",
11812 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11813 };
11814
11815 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11816 return "Invalid";
11817
11818 return names[output];
11819}
11820
84b4e042
JB
11821static bool intel_crt_present(struct drm_device *dev)
11822{
11823 struct drm_i915_private *dev_priv = dev->dev_private;
11824
11825 if (IS_ULT(dev))
11826 return false;
11827
11828 if (IS_CHERRYVIEW(dev))
11829 return false;
11830
11831 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11832 return false;
11833
11834 return true;
11835}
11836
79e53945
JB
11837static void intel_setup_outputs(struct drm_device *dev)
11838{
725e30ad 11839 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11840 struct intel_encoder *encoder;
cb0953d7 11841 bool dpd_is_edp = false;
79e53945 11842
c9093354 11843 intel_lvds_init(dev);
79e53945 11844
84b4e042 11845 if (intel_crt_present(dev))
79935fca 11846 intel_crt_init(dev);
cb0953d7 11847
affa9354 11848 if (HAS_DDI(dev)) {
0e72a5b5
ED
11849 int found;
11850
11851 /* Haswell uses DDI functions to detect digital outputs */
11852 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11853 /* DDI A only supports eDP */
11854 if (found)
11855 intel_ddi_init(dev, PORT_A);
11856
11857 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11858 * register */
11859 found = I915_READ(SFUSE_STRAP);
11860
11861 if (found & SFUSE_STRAP_DDIB_DETECTED)
11862 intel_ddi_init(dev, PORT_B);
11863 if (found & SFUSE_STRAP_DDIC_DETECTED)
11864 intel_ddi_init(dev, PORT_C);
11865 if (found & SFUSE_STRAP_DDID_DETECTED)
11866 intel_ddi_init(dev, PORT_D);
11867 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11868 int found;
5d8a7752 11869 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11870
11871 if (has_edp_a(dev))
11872 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11873
dc0fa718 11874 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11875 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11876 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11877 if (!found)
e2debe91 11878 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11879 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11880 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11881 }
11882
dc0fa718 11883 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11884 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11885
dc0fa718 11886 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11887 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11888
5eb08b69 11889 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11890 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11891
270b3042 11892 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11893 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11894 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11895 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11896 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11897 PORT_B);
11898 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11899 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11900 }
11901
6f6005a5
JB
11902 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11903 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11904 PORT_C);
11905 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11906 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11907 }
19c03924 11908
9418c1f1
VS
11909 if (IS_CHERRYVIEW(dev)) {
11910 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11911 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11912 PORT_D);
11913 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11914 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11915 }
11916 }
11917
3cfca973 11918 intel_dsi_init(dev);
103a196f 11919 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11920 bool found = false;
7d57382e 11921
e2debe91 11922 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11923 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11924 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11925 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11926 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11927 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11928 }
27185ae1 11929
e7281eab 11930 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11931 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11932 }
13520b05
KH
11933
11934 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11935
e2debe91 11936 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11937 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11938 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11939 }
27185ae1 11940
e2debe91 11941 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11942
b01f2c3a
JB
11943 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11944 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11945 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11946 }
e7281eab 11947 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11948 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11949 }
27185ae1 11950
b01f2c3a 11951 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11952 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11953 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11954 } else if (IS_GEN2(dev))
79e53945
JB
11955 intel_dvo_init(dev);
11956
103a196f 11957 if (SUPPORTS_TV(dev))
79e53945
JB
11958 intel_tv_init(dev);
11959
7c8f8a70
RV
11960 intel_edp_psr_init(dev);
11961
4ef69c7a
CW
11962 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11963 encoder->base.possible_crtcs = encoder->crtc_mask;
11964 encoder->base.possible_clones =
66a9278e 11965 intel_encoder_clones(encoder);
79e53945 11966 }
47356eb6 11967
dde86e2d 11968 intel_init_pch_refclk(dev);
270b3042
DV
11969
11970 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11971}
11972
11973static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11974{
60a5ca01 11975 struct drm_device *dev = fb->dev;
79e53945 11976 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11977
ef2d633e 11978 drm_framebuffer_cleanup(fb);
60a5ca01 11979 mutex_lock(&dev->struct_mutex);
ef2d633e 11980 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11981 drm_gem_object_unreference(&intel_fb->obj->base);
11982 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11983 kfree(intel_fb);
11984}
11985
11986static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11987 struct drm_file *file,
79e53945
JB
11988 unsigned int *handle)
11989{
11990 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11991 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11992
05394f39 11993 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11994}
11995
11996static const struct drm_framebuffer_funcs intel_fb_funcs = {
11997 .destroy = intel_user_framebuffer_destroy,
11998 .create_handle = intel_user_framebuffer_create_handle,
11999};
12000
b5ea642a
DV
12001static int intel_framebuffer_init(struct drm_device *dev,
12002 struct intel_framebuffer *intel_fb,
12003 struct drm_mode_fb_cmd2 *mode_cmd,
12004 struct drm_i915_gem_object *obj)
79e53945 12005{
a57ce0b2 12006 int aligned_height;
a35cdaa0 12007 int pitch_limit;
79e53945
JB
12008 int ret;
12009
dd4916c5
DV
12010 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12011
c16ed4be
CW
12012 if (obj->tiling_mode == I915_TILING_Y) {
12013 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12014 return -EINVAL;
c16ed4be 12015 }
57cd6508 12016
c16ed4be
CW
12017 if (mode_cmd->pitches[0] & 63) {
12018 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12019 mode_cmd->pitches[0]);
57cd6508 12020 return -EINVAL;
c16ed4be 12021 }
57cd6508 12022
a35cdaa0
CW
12023 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12024 pitch_limit = 32*1024;
12025 } else if (INTEL_INFO(dev)->gen >= 4) {
12026 if (obj->tiling_mode)
12027 pitch_limit = 16*1024;
12028 else
12029 pitch_limit = 32*1024;
12030 } else if (INTEL_INFO(dev)->gen >= 3) {
12031 if (obj->tiling_mode)
12032 pitch_limit = 8*1024;
12033 else
12034 pitch_limit = 16*1024;
12035 } else
12036 /* XXX DSPC is limited to 4k tiled */
12037 pitch_limit = 8*1024;
12038
12039 if (mode_cmd->pitches[0] > pitch_limit) {
12040 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12041 obj->tiling_mode ? "tiled" : "linear",
12042 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12043 return -EINVAL;
c16ed4be 12044 }
5d7bd705
VS
12045
12046 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12047 mode_cmd->pitches[0] != obj->stride) {
12048 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12049 mode_cmd->pitches[0], obj->stride);
5d7bd705 12050 return -EINVAL;
c16ed4be 12051 }
5d7bd705 12052
57779d06 12053 /* Reject formats not supported by any plane early. */
308e5bcb 12054 switch (mode_cmd->pixel_format) {
57779d06 12055 case DRM_FORMAT_C8:
04b3924d
VS
12056 case DRM_FORMAT_RGB565:
12057 case DRM_FORMAT_XRGB8888:
12058 case DRM_FORMAT_ARGB8888:
57779d06
VS
12059 break;
12060 case DRM_FORMAT_XRGB1555:
12061 case DRM_FORMAT_ARGB1555:
c16ed4be 12062 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12063 DRM_DEBUG("unsupported pixel format: %s\n",
12064 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12065 return -EINVAL;
c16ed4be 12066 }
57779d06
VS
12067 break;
12068 case DRM_FORMAT_XBGR8888:
12069 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12070 case DRM_FORMAT_XRGB2101010:
12071 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12072 case DRM_FORMAT_XBGR2101010:
12073 case DRM_FORMAT_ABGR2101010:
c16ed4be 12074 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12075 DRM_DEBUG("unsupported pixel format: %s\n",
12076 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12077 return -EINVAL;
c16ed4be 12078 }
b5626747 12079 break;
04b3924d
VS
12080 case DRM_FORMAT_YUYV:
12081 case DRM_FORMAT_UYVY:
12082 case DRM_FORMAT_YVYU:
12083 case DRM_FORMAT_VYUY:
c16ed4be 12084 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12085 DRM_DEBUG("unsupported pixel format: %s\n",
12086 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12087 return -EINVAL;
c16ed4be 12088 }
57cd6508
CW
12089 break;
12090 default:
4ee62c76
VS
12091 DRM_DEBUG("unsupported pixel format: %s\n",
12092 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12093 return -EINVAL;
12094 }
12095
90f9a336
VS
12096 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12097 if (mode_cmd->offsets[0] != 0)
12098 return -EINVAL;
12099
a57ce0b2
JB
12100 aligned_height = intel_align_height(dev, mode_cmd->height,
12101 obj->tiling_mode);
53155c0a
DV
12102 /* FIXME drm helper for size checks (especially planar formats)? */
12103 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12104 return -EINVAL;
12105
c7d73f6a
DV
12106 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12107 intel_fb->obj = obj;
80075d49 12108 intel_fb->obj->framebuffer_references++;
c7d73f6a 12109
79e53945
JB
12110 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12111 if (ret) {
12112 DRM_ERROR("framebuffer init failed %d\n", ret);
12113 return ret;
12114 }
12115
79e53945
JB
12116 return 0;
12117}
12118
79e53945
JB
12119static struct drm_framebuffer *
12120intel_user_framebuffer_create(struct drm_device *dev,
12121 struct drm_file *filp,
308e5bcb 12122 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12123{
05394f39 12124 struct drm_i915_gem_object *obj;
79e53945 12125
308e5bcb
JB
12126 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12127 mode_cmd->handles[0]));
c8725226 12128 if (&obj->base == NULL)
cce13ff7 12129 return ERR_PTR(-ENOENT);
79e53945 12130
d2dff872 12131 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12132}
12133
4520f53a 12134#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12135static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12136{
12137}
12138#endif
12139
79e53945 12140static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12141 .fb_create = intel_user_framebuffer_create,
0632fef6 12142 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12143};
12144
e70236a8
JB
12145/* Set up chip specific display functions */
12146static void intel_init_display(struct drm_device *dev)
12147{
12148 struct drm_i915_private *dev_priv = dev->dev_private;
12149
ee9300bb
DV
12150 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12151 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12152 else if (IS_CHERRYVIEW(dev))
12153 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12154 else if (IS_VALLEYVIEW(dev))
12155 dev_priv->display.find_dpll = vlv_find_best_dpll;
12156 else if (IS_PINEVIEW(dev))
12157 dev_priv->display.find_dpll = pnv_find_best_dpll;
12158 else
12159 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12160
affa9354 12161 if (HAS_DDI(dev)) {
0e8ffe1b 12162 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12163 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12164 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12165 dev_priv->display.crtc_enable = haswell_crtc_enable;
12166 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12167 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12168 dev_priv->display.update_primary_plane =
12169 ironlake_update_primary_plane;
09b4ddf9 12170 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12171 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12172 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12173 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12174 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12175 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12176 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12177 dev_priv->display.update_primary_plane =
12178 ironlake_update_primary_plane;
89b667f8
JB
12179 } else if (IS_VALLEYVIEW(dev)) {
12180 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12181 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12182 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12183 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12184 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12185 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12186 dev_priv->display.update_primary_plane =
12187 i9xx_update_primary_plane;
f564048e 12188 } else {
0e8ffe1b 12189 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12190 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12191 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12192 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12193 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12194 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12195 dev_priv->display.update_primary_plane =
12196 i9xx_update_primary_plane;
f564048e 12197 }
e70236a8 12198
e70236a8 12199 /* Returns the core display clock speed */
25eb05fc
JB
12200 if (IS_VALLEYVIEW(dev))
12201 dev_priv->display.get_display_clock_speed =
12202 valleyview_get_display_clock_speed;
12203 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12204 dev_priv->display.get_display_clock_speed =
12205 i945_get_display_clock_speed;
12206 else if (IS_I915G(dev))
12207 dev_priv->display.get_display_clock_speed =
12208 i915_get_display_clock_speed;
257a7ffc 12209 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12210 dev_priv->display.get_display_clock_speed =
12211 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12212 else if (IS_PINEVIEW(dev))
12213 dev_priv->display.get_display_clock_speed =
12214 pnv_get_display_clock_speed;
e70236a8
JB
12215 else if (IS_I915GM(dev))
12216 dev_priv->display.get_display_clock_speed =
12217 i915gm_get_display_clock_speed;
12218 else if (IS_I865G(dev))
12219 dev_priv->display.get_display_clock_speed =
12220 i865_get_display_clock_speed;
f0f8a9ce 12221 else if (IS_I85X(dev))
e70236a8
JB
12222 dev_priv->display.get_display_clock_speed =
12223 i855_get_display_clock_speed;
12224 else /* 852, 830 */
12225 dev_priv->display.get_display_clock_speed =
12226 i830_get_display_clock_speed;
12227
7f8a8569 12228 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12229 if (IS_GEN5(dev)) {
674cf967 12230 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12231 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12232 } else if (IS_GEN6(dev)) {
674cf967 12233 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12234 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12235 dev_priv->display.modeset_global_resources =
12236 snb_modeset_global_resources;
357555c0
JB
12237 } else if (IS_IVYBRIDGE(dev)) {
12238 /* FIXME: detect B0+ stepping and use auto training */
12239 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12240 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12241 dev_priv->display.modeset_global_resources =
12242 ivb_modeset_global_resources;
4e0bbc31 12243 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12244 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12245 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12246 dev_priv->display.modeset_global_resources =
12247 haswell_modeset_global_resources;
a0e63c22 12248 }
6067aaea 12249 } else if (IS_G4X(dev)) {
e0dac65e 12250 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12251 } else if (IS_VALLEYVIEW(dev)) {
12252 dev_priv->display.modeset_global_resources =
12253 valleyview_modeset_global_resources;
9ca2fe73 12254 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12255 }
8c9f3aaf
JB
12256
12257 /* Default just returns -ENODEV to indicate unsupported */
12258 dev_priv->display.queue_flip = intel_default_queue_flip;
12259
12260 switch (INTEL_INFO(dev)->gen) {
12261 case 2:
12262 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12263 break;
12264
12265 case 3:
12266 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12267 break;
12268
12269 case 4:
12270 case 5:
12271 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12272 break;
12273
12274 case 6:
12275 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12276 break;
7c9017e5 12277 case 7:
4e0bbc31 12278 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12279 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12280 break;
8c9f3aaf 12281 }
7bd688cd
JN
12282
12283 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12284}
12285
b690e96c
JB
12286/*
12287 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12288 * resume, or other times. This quirk makes sure that's the case for
12289 * affected systems.
12290 */
0206e353 12291static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12292{
12293 struct drm_i915_private *dev_priv = dev->dev_private;
12294
12295 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12296 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12297}
12298
435793df
KP
12299/*
12300 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12301 */
12302static void quirk_ssc_force_disable(struct drm_device *dev)
12303{
12304 struct drm_i915_private *dev_priv = dev->dev_private;
12305 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12306 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12307}
12308
4dca20ef 12309/*
5a15ab5b
CE
12310 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12311 * brightness value
4dca20ef
CE
12312 */
12313static void quirk_invert_brightness(struct drm_device *dev)
12314{
12315 struct drm_i915_private *dev_priv = dev->dev_private;
12316 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12317 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12318}
12319
b690e96c
JB
12320struct intel_quirk {
12321 int device;
12322 int subsystem_vendor;
12323 int subsystem_device;
12324 void (*hook)(struct drm_device *dev);
12325};
12326
5f85f176
EE
12327/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12328struct intel_dmi_quirk {
12329 void (*hook)(struct drm_device *dev);
12330 const struct dmi_system_id (*dmi_id_list)[];
12331};
12332
12333static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12334{
12335 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12336 return 1;
12337}
12338
12339static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12340 {
12341 .dmi_id_list = &(const struct dmi_system_id[]) {
12342 {
12343 .callback = intel_dmi_reverse_brightness,
12344 .ident = "NCR Corporation",
12345 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12346 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12347 },
12348 },
12349 { } /* terminating entry */
12350 },
12351 .hook = quirk_invert_brightness,
12352 },
12353};
12354
c43b5634 12355static struct intel_quirk intel_quirks[] = {
b690e96c 12356 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12357 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12358
b690e96c
JB
12359 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12360 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12361
b690e96c
JB
12362 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12363 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12364
435793df
KP
12365 /* Lenovo U160 cannot use SSC on LVDS */
12366 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12367
12368 /* Sony Vaio Y cannot use SSC on LVDS */
12369 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12370
be505f64
AH
12371 /* Acer Aspire 5734Z must invert backlight brightness */
12372 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12373
12374 /* Acer/eMachines G725 */
12375 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12376
12377 /* Acer/eMachines e725 */
12378 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12379
12380 /* Acer/Packard Bell NCL20 */
12381 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12382
12383 /* Acer Aspire 4736Z */
12384 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12385
12386 /* Acer Aspire 5336 */
12387 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12388};
12389
12390static void intel_init_quirks(struct drm_device *dev)
12391{
12392 struct pci_dev *d = dev->pdev;
12393 int i;
12394
12395 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12396 struct intel_quirk *q = &intel_quirks[i];
12397
12398 if (d->device == q->device &&
12399 (d->subsystem_vendor == q->subsystem_vendor ||
12400 q->subsystem_vendor == PCI_ANY_ID) &&
12401 (d->subsystem_device == q->subsystem_device ||
12402 q->subsystem_device == PCI_ANY_ID))
12403 q->hook(dev);
12404 }
5f85f176
EE
12405 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12406 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12407 intel_dmi_quirks[i].hook(dev);
12408 }
b690e96c
JB
12409}
12410
9cce37f4
JB
12411/* Disable the VGA plane that we never use */
12412static void i915_disable_vga(struct drm_device *dev)
12413{
12414 struct drm_i915_private *dev_priv = dev->dev_private;
12415 u8 sr1;
766aa1c4 12416 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12417
2b37c616 12418 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12419 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12420 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12421 sr1 = inb(VGA_SR_DATA);
12422 outb(sr1 | 1<<5, VGA_SR_DATA);
12423 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12424 udelay(300);
12425
12426 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12427 POSTING_READ(vga_reg);
12428}
12429
f817586c
DV
12430void intel_modeset_init_hw(struct drm_device *dev)
12431{
a8f78b58
ED
12432 intel_prepare_ddi(dev);
12433
f8bf63fd
VS
12434 if (IS_VALLEYVIEW(dev))
12435 vlv_update_cdclk(dev);
12436
f817586c
DV
12437 intel_init_clock_gating(dev);
12438
5382f5f3 12439 intel_reset_dpio(dev);
40e9cf64 12440
8090c6b9 12441 intel_enable_gt_powersave(dev);
f817586c
DV
12442}
12443
7d708ee4
ID
12444void intel_modeset_suspend_hw(struct drm_device *dev)
12445{
12446 intel_suspend_hw(dev);
12447}
12448
79e53945
JB
12449void intel_modeset_init(struct drm_device *dev)
12450{
652c393a 12451 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12452 int sprite, ret;
8cc87b75 12453 enum pipe pipe;
46f297fb 12454 struct intel_crtc *crtc;
79e53945
JB
12455
12456 drm_mode_config_init(dev);
12457
12458 dev->mode_config.min_width = 0;
12459 dev->mode_config.min_height = 0;
12460
019d96cb
DA
12461 dev->mode_config.preferred_depth = 24;
12462 dev->mode_config.prefer_shadow = 1;
12463
e6ecefaa 12464 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12465
b690e96c
JB
12466 intel_init_quirks(dev);
12467
1fa61106
ED
12468 intel_init_pm(dev);
12469
e3c74757
BW
12470 if (INTEL_INFO(dev)->num_pipes == 0)
12471 return;
12472
e70236a8
JB
12473 intel_init_display(dev);
12474
a6c45cf0
CW
12475 if (IS_GEN2(dev)) {
12476 dev->mode_config.max_width = 2048;
12477 dev->mode_config.max_height = 2048;
12478 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12479 dev->mode_config.max_width = 4096;
12480 dev->mode_config.max_height = 4096;
79e53945 12481 } else {
a6c45cf0
CW
12482 dev->mode_config.max_width = 8192;
12483 dev->mode_config.max_height = 8192;
79e53945 12484 }
068be561
DL
12485
12486 if (IS_GEN2(dev)) {
12487 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12488 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12489 } else {
12490 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12491 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12492 }
12493
5d4545ae 12494 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12495
28c97730 12496 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12497 INTEL_INFO(dev)->num_pipes,
12498 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12499
8cc87b75
DL
12500 for_each_pipe(pipe) {
12501 intel_crtc_init(dev, pipe);
1fe47785
DL
12502 for_each_sprite(pipe, sprite) {
12503 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12504 if (ret)
06da8da2 12505 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12506 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12507 }
79e53945
JB
12508 }
12509
f42bb70d 12510 intel_init_dpio(dev);
5382f5f3 12511 intel_reset_dpio(dev);
f42bb70d 12512
79f689aa 12513 intel_cpu_pll_init(dev);
e72f9fbf 12514 intel_shared_dpll_init(dev);
ee7b9f93 12515
9cce37f4
JB
12516 /* Just disable it once at startup */
12517 i915_disable_vga(dev);
79e53945 12518 intel_setup_outputs(dev);
11be49eb
CW
12519
12520 /* Just in case the BIOS is doing something questionable. */
12521 intel_disable_fbc(dev);
fa9fa083 12522
6e9f798d 12523 drm_modeset_lock_all(dev);
fa9fa083 12524 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12525 drm_modeset_unlock_all(dev);
46f297fb 12526
d3fcc808 12527 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12528 if (!crtc->active)
12529 continue;
12530
46f297fb 12531 /*
46f297fb
JB
12532 * Note that reserving the BIOS fb up front prevents us
12533 * from stuffing other stolen allocations like the ring
12534 * on top. This prevents some ugliness at boot time, and
12535 * can even allow for smooth boot transitions if the BIOS
12536 * fb is large enough for the active pipe configuration.
12537 */
12538 if (dev_priv->display.get_plane_config) {
12539 dev_priv->display.get_plane_config(crtc,
12540 &crtc->plane_config);
12541 /*
12542 * If the fb is shared between multiple heads, we'll
12543 * just get the first one.
12544 */
484b41dd 12545 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12546 }
46f297fb 12547 }
2c7111db
CW
12548}
12549
7fad798e
DV
12550static void intel_enable_pipe_a(struct drm_device *dev)
12551{
12552 struct intel_connector *connector;
12553 struct drm_connector *crt = NULL;
12554 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12555 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12556
12557 /* We can't just switch on the pipe A, we need to set things up with a
12558 * proper mode and output configuration. As a gross hack, enable pipe A
12559 * by enabling the load detect pipe once. */
12560 list_for_each_entry(connector,
12561 &dev->mode_config.connector_list,
12562 base.head) {
12563 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12564 crt = &connector->base;
12565 break;
12566 }
12567 }
12568
12569 if (!crt)
12570 return;
12571
51fd371b
RC
12572 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12573 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12574
652c393a 12575
7fad798e
DV
12576}
12577
fa555837
DV
12578static bool
12579intel_check_plane_mapping(struct intel_crtc *crtc)
12580{
7eb552ae
BW
12581 struct drm_device *dev = crtc->base.dev;
12582 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12583 u32 reg, val;
12584
7eb552ae 12585 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12586 return true;
12587
12588 reg = DSPCNTR(!crtc->plane);
12589 val = I915_READ(reg);
12590
12591 if ((val & DISPLAY_PLANE_ENABLE) &&
12592 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12593 return false;
12594
12595 return true;
12596}
12597
24929352
DV
12598static void intel_sanitize_crtc(struct intel_crtc *crtc)
12599{
12600 struct drm_device *dev = crtc->base.dev;
12601 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12602 u32 reg;
24929352 12603
24929352 12604 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12605 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12606 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12607
d3eaf884
VS
12608 /* restore vblank interrupts to correct state */
12609 if (crtc->active)
12610 drm_vblank_on(dev, crtc->pipe);
12611 else
12612 drm_vblank_off(dev, crtc->pipe);
12613
24929352 12614 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12615 * disable the crtc (and hence change the state) if it is wrong. Note
12616 * that gen4+ has a fixed plane -> pipe mapping. */
12617 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12618 struct intel_connector *connector;
12619 bool plane;
12620
24929352
DV
12621 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12622 crtc->base.base.id);
12623
12624 /* Pipe has the wrong plane attached and the plane is active.
12625 * Temporarily change the plane mapping and disable everything
12626 * ... */
12627 plane = crtc->plane;
12628 crtc->plane = !plane;
12629 dev_priv->display.crtc_disable(&crtc->base);
12630 crtc->plane = plane;
12631
12632 /* ... and break all links. */
12633 list_for_each_entry(connector, &dev->mode_config.connector_list,
12634 base.head) {
12635 if (connector->encoder->base.crtc != &crtc->base)
12636 continue;
12637
7f1950fb
EE
12638 connector->base.dpms = DRM_MODE_DPMS_OFF;
12639 connector->base.encoder = NULL;
24929352 12640 }
7f1950fb
EE
12641 /* multiple connectors may have the same encoder:
12642 * handle them and break crtc link separately */
12643 list_for_each_entry(connector, &dev->mode_config.connector_list,
12644 base.head)
12645 if (connector->encoder->base.crtc == &crtc->base) {
12646 connector->encoder->base.crtc = NULL;
12647 connector->encoder->connectors_active = false;
12648 }
24929352
DV
12649
12650 WARN_ON(crtc->active);
12651 crtc->base.enabled = false;
12652 }
24929352 12653
7fad798e
DV
12654 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12655 crtc->pipe == PIPE_A && !crtc->active) {
12656 /* BIOS forgot to enable pipe A, this mostly happens after
12657 * resume. Force-enable the pipe to fix this, the update_dpms
12658 * call below we restore the pipe to the right state, but leave
12659 * the required bits on. */
12660 intel_enable_pipe_a(dev);
12661 }
12662
24929352
DV
12663 /* Adjust the state of the output pipe according to whether we
12664 * have active connectors/encoders. */
12665 intel_crtc_update_dpms(&crtc->base);
12666
12667 if (crtc->active != crtc->base.enabled) {
12668 struct intel_encoder *encoder;
12669
12670 /* This can happen either due to bugs in the get_hw_state
12671 * functions or because the pipe is force-enabled due to the
12672 * pipe A quirk. */
12673 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12674 crtc->base.base.id,
12675 crtc->base.enabled ? "enabled" : "disabled",
12676 crtc->active ? "enabled" : "disabled");
12677
12678 crtc->base.enabled = crtc->active;
12679
12680 /* Because we only establish the connector -> encoder ->
12681 * crtc links if something is active, this means the
12682 * crtc is now deactivated. Break the links. connector
12683 * -> encoder links are only establish when things are
12684 * actually up, hence no need to break them. */
12685 WARN_ON(crtc->active);
12686
12687 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12688 WARN_ON(encoder->connectors_active);
12689 encoder->base.crtc = NULL;
12690 }
12691 }
c5ab3bc0
DV
12692
12693 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12694 /*
12695 * We start out with underrun reporting disabled to avoid races.
12696 * For correct bookkeeping mark this on active crtcs.
12697 *
c5ab3bc0
DV
12698 * Also on gmch platforms we dont have any hardware bits to
12699 * disable the underrun reporting. Which means we need to start
12700 * out with underrun reporting disabled also on inactive pipes,
12701 * since otherwise we'll complain about the garbage we read when
12702 * e.g. coming up after runtime pm.
12703 *
4cc31489
DV
12704 * No protection against concurrent access is required - at
12705 * worst a fifo underrun happens which also sets this to false.
12706 */
12707 crtc->cpu_fifo_underrun_disabled = true;
12708 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12709
12710 update_scanline_offset(crtc);
4cc31489 12711 }
24929352
DV
12712}
12713
12714static void intel_sanitize_encoder(struct intel_encoder *encoder)
12715{
12716 struct intel_connector *connector;
12717 struct drm_device *dev = encoder->base.dev;
12718
12719 /* We need to check both for a crtc link (meaning that the
12720 * encoder is active and trying to read from a pipe) and the
12721 * pipe itself being active. */
12722 bool has_active_crtc = encoder->base.crtc &&
12723 to_intel_crtc(encoder->base.crtc)->active;
12724
12725 if (encoder->connectors_active && !has_active_crtc) {
12726 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12727 encoder->base.base.id,
8e329a03 12728 encoder->base.name);
24929352
DV
12729
12730 /* Connector is active, but has no active pipe. This is
12731 * fallout from our resume register restoring. Disable
12732 * the encoder manually again. */
12733 if (encoder->base.crtc) {
12734 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12735 encoder->base.base.id,
8e329a03 12736 encoder->base.name);
24929352
DV
12737 encoder->disable(encoder);
12738 }
7f1950fb
EE
12739 encoder->base.crtc = NULL;
12740 encoder->connectors_active = false;
24929352
DV
12741
12742 /* Inconsistent output/port/pipe state happens presumably due to
12743 * a bug in one of the get_hw_state functions. Or someplace else
12744 * in our code, like the register restore mess on resume. Clamp
12745 * things to off as a safer default. */
12746 list_for_each_entry(connector,
12747 &dev->mode_config.connector_list,
12748 base.head) {
12749 if (connector->encoder != encoder)
12750 continue;
7f1950fb
EE
12751 connector->base.dpms = DRM_MODE_DPMS_OFF;
12752 connector->base.encoder = NULL;
24929352
DV
12753 }
12754 }
12755 /* Enabled encoders without active connectors will be fixed in
12756 * the crtc fixup. */
12757}
12758
04098753 12759void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12760{
12761 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12762 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12763
04098753
ID
12764 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12765 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12766 i915_disable_vga(dev);
12767 }
12768}
12769
12770void i915_redisable_vga(struct drm_device *dev)
12771{
12772 struct drm_i915_private *dev_priv = dev->dev_private;
12773
8dc8a27c
PZ
12774 /* This function can be called both from intel_modeset_setup_hw_state or
12775 * at a very early point in our resume sequence, where the power well
12776 * structures are not yet restored. Since this function is at a very
12777 * paranoid "someone might have enabled VGA while we were not looking"
12778 * level, just check if the power well is enabled instead of trying to
12779 * follow the "don't touch the power well if we don't need it" policy
12780 * the rest of the driver uses. */
04098753 12781 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12782 return;
12783
04098753 12784 i915_redisable_vga_power_on(dev);
0fde901f
KM
12785}
12786
98ec7739
VS
12787static bool primary_get_hw_state(struct intel_crtc *crtc)
12788{
12789 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12790
12791 if (!crtc->active)
12792 return false;
12793
12794 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12795}
12796
30e984df 12797static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12798{
12799 struct drm_i915_private *dev_priv = dev->dev_private;
12800 enum pipe pipe;
24929352
DV
12801 struct intel_crtc *crtc;
12802 struct intel_encoder *encoder;
12803 struct intel_connector *connector;
5358901f 12804 int i;
24929352 12805
d3fcc808 12806 for_each_intel_crtc(dev, crtc) {
88adfff1 12807 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12808
9953599b
DV
12809 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12810
0e8ffe1b
DV
12811 crtc->active = dev_priv->display.get_pipe_config(crtc,
12812 &crtc->config);
24929352
DV
12813
12814 crtc->base.enabled = crtc->active;
98ec7739 12815 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12816
12817 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12818 crtc->base.base.id,
12819 crtc->active ? "enabled" : "disabled");
12820 }
12821
5358901f 12822 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12823 if (HAS_DDI(dev))
6441ab5f
PZ
12824 intel_ddi_setup_hw_pll_state(dev);
12825
5358901f
DV
12826 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12827 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12828
12829 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12830 pll->active = 0;
d3fcc808 12831 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12832 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12833 pll->active++;
12834 }
12835 pll->refcount = pll->active;
12836
35c95375
DV
12837 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12838 pll->name, pll->refcount, pll->on);
5358901f
DV
12839 }
12840
24929352
DV
12841 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12842 base.head) {
12843 pipe = 0;
12844
12845 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12846 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12847 encoder->base.crtc = &crtc->base;
1d37b689 12848 encoder->get_config(encoder, &crtc->config);
24929352
DV
12849 } else {
12850 encoder->base.crtc = NULL;
12851 }
12852
12853 encoder->connectors_active = false;
6f2bcceb 12854 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12855 encoder->base.base.id,
8e329a03 12856 encoder->base.name,
24929352 12857 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12858 pipe_name(pipe));
24929352
DV
12859 }
12860
12861 list_for_each_entry(connector, &dev->mode_config.connector_list,
12862 base.head) {
12863 if (connector->get_hw_state(connector)) {
12864 connector->base.dpms = DRM_MODE_DPMS_ON;
12865 connector->encoder->connectors_active = true;
12866 connector->base.encoder = &connector->encoder->base;
12867 } else {
12868 connector->base.dpms = DRM_MODE_DPMS_OFF;
12869 connector->base.encoder = NULL;
12870 }
12871 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12872 connector->base.base.id,
c23cc417 12873 connector->base.name,
24929352
DV
12874 connector->base.encoder ? "enabled" : "disabled");
12875 }
30e984df
DV
12876}
12877
12878/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12879 * and i915 state tracking structures. */
12880void intel_modeset_setup_hw_state(struct drm_device *dev,
12881 bool force_restore)
12882{
12883 struct drm_i915_private *dev_priv = dev->dev_private;
12884 enum pipe pipe;
30e984df
DV
12885 struct intel_crtc *crtc;
12886 struct intel_encoder *encoder;
35c95375 12887 int i;
30e984df
DV
12888
12889 intel_modeset_readout_hw_state(dev);
24929352 12890
babea61d
JB
12891 /*
12892 * Now that we have the config, copy it to each CRTC struct
12893 * Note that this could go away if we move to using crtc_config
12894 * checking everywhere.
12895 */
d3fcc808 12896 for_each_intel_crtc(dev, crtc) {
d330a953 12897 if (crtc->active && i915.fastboot) {
f6a83288 12898 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12899 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12900 crtc->base.base.id);
12901 drm_mode_debug_printmodeline(&crtc->base.mode);
12902 }
12903 }
12904
24929352
DV
12905 /* HW state is read out, now we need to sanitize this mess. */
12906 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12907 base.head) {
12908 intel_sanitize_encoder(encoder);
12909 }
12910
12911 for_each_pipe(pipe) {
12912 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12913 intel_sanitize_crtc(crtc);
c0b03411 12914 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12915 }
9a935856 12916
35c95375
DV
12917 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12918 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12919
12920 if (!pll->on || pll->active)
12921 continue;
12922
12923 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12924
12925 pll->disable(dev_priv, pll);
12926 pll->on = false;
12927 }
12928
96f90c54 12929 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12930 ilk_wm_get_hw_state(dev);
12931
45e2b5f6 12932 if (force_restore) {
7d0bc1ea
VS
12933 i915_redisable_vga(dev);
12934
f30da187
DV
12935 /*
12936 * We need to use raw interfaces for restoring state to avoid
12937 * checking (bogus) intermediate states.
12938 */
45e2b5f6 12939 for_each_pipe(pipe) {
b5644d05
JB
12940 struct drm_crtc *crtc =
12941 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12942
12943 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12944 crtc->primary->fb);
45e2b5f6
DV
12945 }
12946 } else {
12947 intel_modeset_update_staged_output_state(dev);
12948 }
8af6cf88
DV
12949
12950 intel_modeset_check_state(dev);
2c7111db
CW
12951}
12952
12953void intel_modeset_gem_init(struct drm_device *dev)
12954{
484b41dd
JB
12955 struct drm_crtc *c;
12956 struct intel_framebuffer *fb;
12957
ae48434c
ID
12958 mutex_lock(&dev->struct_mutex);
12959 intel_init_gt_powersave(dev);
12960 mutex_unlock(&dev->struct_mutex);
12961
1833b134 12962 intel_modeset_init_hw(dev);
02e792fb
DV
12963
12964 intel_setup_overlay(dev);
484b41dd
JB
12965
12966 /*
12967 * Make sure any fbs we allocated at startup are properly
12968 * pinned & fenced. When we do the allocation it's too early
12969 * for this.
12970 */
12971 mutex_lock(&dev->struct_mutex);
70e1e0ec 12972 for_each_crtc(dev, c) {
66e514c1 12973 if (!c->primary->fb)
484b41dd
JB
12974 continue;
12975
66e514c1 12976 fb = to_intel_framebuffer(c->primary->fb);
484b41dd
JB
12977 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12978 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12979 to_intel_crtc(c)->pipe);
66e514c1
DA
12980 drm_framebuffer_unreference(c->primary->fb);
12981 c->primary->fb = NULL;
484b41dd
JB
12982 }
12983 }
12984 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12985}
12986
4932e2c3
ID
12987void intel_connector_unregister(struct intel_connector *intel_connector)
12988{
12989 struct drm_connector *connector = &intel_connector->base;
12990
12991 intel_panel_destroy_backlight(connector);
12992 drm_sysfs_connector_remove(connector);
12993}
12994
79e53945
JB
12995void intel_modeset_cleanup(struct drm_device *dev)
12996{
652c393a 12997 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12998 struct drm_connector *connector;
652c393a 12999
fd0c0642
DV
13000 /*
13001 * Interrupts and polling as the first thing to avoid creating havoc.
13002 * Too much stuff here (turning of rps, connectors, ...) would
13003 * experience fancy races otherwise.
13004 */
13005 drm_irq_uninstall(dev);
13006 cancel_work_sync(&dev_priv->hotplug_work);
13007 /*
13008 * Due to the hpd irq storm handling the hotplug work can re-arm the
13009 * poll handlers. Hence disable polling after hpd handling is shut down.
13010 */
f87ea761 13011 drm_kms_helper_poll_fini(dev);
fd0c0642 13012
652c393a
JB
13013 mutex_lock(&dev->struct_mutex);
13014
723bfd70
JB
13015 intel_unregister_dsm_handler();
13016
973d04f9 13017 intel_disable_fbc(dev);
e70236a8 13018
8090c6b9 13019 intel_disable_gt_powersave(dev);
0cdab21f 13020
930ebb46
DV
13021 ironlake_teardown_rc6(dev);
13022
69341a5e
KH
13023 mutex_unlock(&dev->struct_mutex);
13024
1630fe75
CW
13025 /* flush any delayed tasks or pending work */
13026 flush_scheduled_work();
13027
db31af1d
JN
13028 /* destroy the backlight and sysfs files before encoders/connectors */
13029 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13030 struct intel_connector *intel_connector;
13031
13032 intel_connector = to_intel_connector(connector);
13033 intel_connector->unregister(intel_connector);
db31af1d 13034 }
d9255d57 13035
79e53945 13036 drm_mode_config_cleanup(dev);
4d7bb011
DV
13037
13038 intel_cleanup_overlay(dev);
ae48434c
ID
13039
13040 mutex_lock(&dev->struct_mutex);
13041 intel_cleanup_gt_powersave(dev);
13042 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13043}
13044
f1c79df3
ZW
13045/*
13046 * Return which encoder is currently attached for connector.
13047 */
df0e9248 13048struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13049{
df0e9248
CW
13050 return &intel_attached_encoder(connector)->base;
13051}
f1c79df3 13052
df0e9248
CW
13053void intel_connector_attach_encoder(struct intel_connector *connector,
13054 struct intel_encoder *encoder)
13055{
13056 connector->encoder = encoder;
13057 drm_mode_connector_attach_encoder(&connector->base,
13058 &encoder->base);
79e53945 13059}
28d52043
DA
13060
13061/*
13062 * set vga decode state - true == enable VGA decode
13063 */
13064int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13065{
13066 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13067 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13068 u16 gmch_ctrl;
13069
75fa041d
CW
13070 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13071 DRM_ERROR("failed to read control word\n");
13072 return -EIO;
13073 }
13074
c0cc8a55
CW
13075 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13076 return 0;
13077
28d52043
DA
13078 if (state)
13079 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13080 else
13081 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13082
13083 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13084 DRM_ERROR("failed to write control word\n");
13085 return -EIO;
13086 }
13087
28d52043
DA
13088 return 0;
13089}
c4a1d9e4 13090
c4a1d9e4 13091struct intel_display_error_state {
ff57f1b0
PZ
13092
13093 u32 power_well_driver;
13094
63b66e5b
CW
13095 int num_transcoders;
13096
c4a1d9e4
CW
13097 struct intel_cursor_error_state {
13098 u32 control;
13099 u32 position;
13100 u32 base;
13101 u32 size;
52331309 13102 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13103
13104 struct intel_pipe_error_state {
ddf9c536 13105 bool power_domain_on;
c4a1d9e4 13106 u32 source;
f301b1e1 13107 u32 stat;
52331309 13108 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13109
13110 struct intel_plane_error_state {
13111 u32 control;
13112 u32 stride;
13113 u32 size;
13114 u32 pos;
13115 u32 addr;
13116 u32 surface;
13117 u32 tile_offset;
52331309 13118 } plane[I915_MAX_PIPES];
63b66e5b
CW
13119
13120 struct intel_transcoder_error_state {
ddf9c536 13121 bool power_domain_on;
63b66e5b
CW
13122 enum transcoder cpu_transcoder;
13123
13124 u32 conf;
13125
13126 u32 htotal;
13127 u32 hblank;
13128 u32 hsync;
13129 u32 vtotal;
13130 u32 vblank;
13131 u32 vsync;
13132 } transcoder[4];
c4a1d9e4
CW
13133};
13134
13135struct intel_display_error_state *
13136intel_display_capture_error_state(struct drm_device *dev)
13137{
fbee40df 13138 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13139 struct intel_display_error_state *error;
63b66e5b
CW
13140 int transcoders[] = {
13141 TRANSCODER_A,
13142 TRANSCODER_B,
13143 TRANSCODER_C,
13144 TRANSCODER_EDP,
13145 };
c4a1d9e4
CW
13146 int i;
13147
63b66e5b
CW
13148 if (INTEL_INFO(dev)->num_pipes == 0)
13149 return NULL;
13150
9d1cb914 13151 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13152 if (error == NULL)
13153 return NULL;
13154
190be112 13155 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13156 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13157
52331309 13158 for_each_pipe(i) {
ddf9c536 13159 error->pipe[i].power_domain_on =
bfafe93a
ID
13160 intel_display_power_enabled_unlocked(dev_priv,
13161 POWER_DOMAIN_PIPE(i));
ddf9c536 13162 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13163 continue;
13164
5efb3e28
VS
13165 error->cursor[i].control = I915_READ(CURCNTR(i));
13166 error->cursor[i].position = I915_READ(CURPOS(i));
13167 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13168
13169 error->plane[i].control = I915_READ(DSPCNTR(i));
13170 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13171 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13172 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13173 error->plane[i].pos = I915_READ(DSPPOS(i));
13174 }
ca291363
PZ
13175 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13176 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13177 if (INTEL_INFO(dev)->gen >= 4) {
13178 error->plane[i].surface = I915_READ(DSPSURF(i));
13179 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13180 }
13181
c4a1d9e4 13182 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13183
13184 if (!HAS_PCH_SPLIT(dev))
13185 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13186 }
13187
13188 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13189 if (HAS_DDI(dev_priv->dev))
13190 error->num_transcoders++; /* Account for eDP. */
13191
13192 for (i = 0; i < error->num_transcoders; i++) {
13193 enum transcoder cpu_transcoder = transcoders[i];
13194
ddf9c536 13195 error->transcoder[i].power_domain_on =
bfafe93a 13196 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13197 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13198 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13199 continue;
13200
63b66e5b
CW
13201 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13202
13203 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13204 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13205 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13206 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13207 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13208 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13209 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13210 }
13211
13212 return error;
13213}
13214
edc3d884
MK
13215#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13216
c4a1d9e4 13217void
edc3d884 13218intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13219 struct drm_device *dev,
13220 struct intel_display_error_state *error)
13221{
13222 int i;
13223
63b66e5b
CW
13224 if (!error)
13225 return;
13226
edc3d884 13227 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13228 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13229 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13230 error->power_well_driver);
52331309 13231 for_each_pipe(i) {
edc3d884 13232 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13233 err_printf(m, " Power: %s\n",
13234 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13235 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13236 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13237
13238 err_printf(m, "Plane [%d]:\n", i);
13239 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13240 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13241 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13242 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13243 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13244 }
4b71a570 13245 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13246 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13247 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13248 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13249 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13250 }
13251
edc3d884
MK
13252 err_printf(m, "Cursor [%d]:\n", i);
13253 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13254 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13255 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13256 }
63b66e5b
CW
13257
13258 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13259 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13260 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13261 err_printf(m, " Power: %s\n",
13262 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13263 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13264 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13265 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13266 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13267 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13268 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13269 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13270 }
c4a1d9e4 13271}