]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Make *_find_best_dpll() take an intel_crtc insted of drm_crtc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 97static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 98static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 99
0e32b39c
DA
100static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
101{
102 if (!connector->mst_port)
103 return connector->encoder;
104 else
105 return &connector->mst_port->mst_encoders[pipe]->base;
106}
107
79e53945 108typedef struct {
0206e353 109 int min, max;
79e53945
JB
110} intel_range_t;
111
112typedef struct {
0206e353
AJ
113 int dot_limit;
114 int p2_slow, p2_fast;
79e53945
JB
115} intel_p2_t;
116
d4906093
ML
117typedef struct intel_limit intel_limit_t;
118struct intel_limit {
0206e353
AJ
119 intel_range_t dot, vco, n, m, m1, m2, p, p1;
120 intel_p2_t p2;
d4906093 121};
79e53945 122
d2acd215
DV
123int
124intel_pch_rawclk(struct drm_device *dev)
125{
126 struct drm_i915_private *dev_priv = dev->dev_private;
127
128 WARN_ON(!HAS_PCH_SPLIT(dev));
129
130 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
131}
132
021357ac
CW
133static inline u32 /* units of 100MHz */
134intel_fdi_link_freq(struct drm_device *dev)
135{
8b99e68c
CW
136 if (IS_GEN5(dev)) {
137 struct drm_i915_private *dev_priv = dev->dev_private;
138 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
139 } else
140 return 27;
021357ac
CW
141}
142
5d536e28 143static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 144 .dot = { .min = 25000, .max = 350000 },
9c333719 145 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 146 .n = { .min = 2, .max = 16 },
0206e353
AJ
147 .m = { .min = 96, .max = 140 },
148 .m1 = { .min = 18, .max = 26 },
149 .m2 = { .min = 6, .max = 16 },
150 .p = { .min = 4, .max = 128 },
151 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
152 .p2 = { .dot_limit = 165000,
153 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
154};
155
5d536e28
DV
156static const intel_limit_t intel_limits_i8xx_dvo = {
157 .dot = { .min = 25000, .max = 350000 },
9c333719 158 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 159 .n = { .min = 2, .max = 16 },
5d536e28
DV
160 .m = { .min = 96, .max = 140 },
161 .m1 = { .min = 18, .max = 26 },
162 .m2 = { .min = 6, .max = 16 },
163 .p = { .min = 4, .max = 128 },
164 .p1 = { .min = 2, .max = 33 },
165 .p2 = { .dot_limit = 165000,
166 .p2_slow = 4, .p2_fast = 4 },
167};
168
e4b36699 169static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 170 .dot = { .min = 25000, .max = 350000 },
9c333719 171 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 172 .n = { .min = 2, .max = 16 },
0206e353
AJ
173 .m = { .min = 96, .max = 140 },
174 .m1 = { .min = 18, .max = 26 },
175 .m2 = { .min = 6, .max = 16 },
176 .p = { .min = 4, .max = 128 },
177 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
178 .p2 = { .dot_limit = 165000,
179 .p2_slow = 14, .p2_fast = 7 },
e4b36699 180};
273e27ca 181
e4b36699 182static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
183 .dot = { .min = 20000, .max = 400000 },
184 .vco = { .min = 1400000, .max = 2800000 },
185 .n = { .min = 1, .max = 6 },
186 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
187 .m1 = { .min = 8, .max = 18 },
188 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
189 .p = { .min = 5, .max = 80 },
190 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
191 .p2 = { .dot_limit = 200000,
192 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
193};
194
195static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
196 .dot = { .min = 20000, .max = 400000 },
197 .vco = { .min = 1400000, .max = 2800000 },
198 .n = { .min = 1, .max = 6 },
199 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
200 .m1 = { .min = 8, .max = 18 },
201 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
202 .p = { .min = 7, .max = 98 },
203 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
204 .p2 = { .dot_limit = 112000,
205 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
206};
207
273e27ca 208
e4b36699 209static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
210 .dot = { .min = 25000, .max = 270000 },
211 .vco = { .min = 1750000, .max = 3500000},
212 .n = { .min = 1, .max = 4 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 10, .max = 30 },
217 .p1 = { .min = 1, .max = 3},
218 .p2 = { .dot_limit = 270000,
219 .p2_slow = 10,
220 .p2_fast = 10
044c7c41 221 },
e4b36699
KP
222};
223
224static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
225 .dot = { .min = 22000, .max = 400000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 4 },
228 .m = { .min = 104, .max = 138 },
229 .m1 = { .min = 16, .max = 23 },
230 .m2 = { .min = 5, .max = 11 },
231 .p = { .min = 5, .max = 80 },
232 .p1 = { .min = 1, .max = 8},
233 .p2 = { .dot_limit = 165000,
234 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
235};
236
237static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
238 .dot = { .min = 20000, .max = 115000 },
239 .vco = { .min = 1750000, .max = 3500000 },
240 .n = { .min = 1, .max = 3 },
241 .m = { .min = 104, .max = 138 },
242 .m1 = { .min = 17, .max = 23 },
243 .m2 = { .min = 5, .max = 11 },
244 .p = { .min = 28, .max = 112 },
245 .p1 = { .min = 2, .max = 8 },
246 .p2 = { .dot_limit = 0,
247 .p2_slow = 14, .p2_fast = 14
044c7c41 248 },
e4b36699
KP
249};
250
251static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
252 .dot = { .min = 80000, .max = 224000 },
253 .vco = { .min = 1750000, .max = 3500000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 104, .max = 138 },
256 .m1 = { .min = 17, .max = 23 },
257 .m2 = { .min = 5, .max = 11 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 0,
261 .p2_slow = 7, .p2_fast = 7
044c7c41 262 },
e4b36699
KP
263};
264
f2b115e6 265static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
266 .dot = { .min = 20000, .max = 400000},
267 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 268 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
269 .n = { .min = 3, .max = 6 },
270 .m = { .min = 2, .max = 256 },
273e27ca 271 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
272 .m1 = { .min = 0, .max = 0 },
273 .m2 = { .min = 0, .max = 254 },
274 .p = { .min = 5, .max = 80 },
275 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
276 .p2 = { .dot_limit = 200000,
277 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
278};
279
f2b115e6 280static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
281 .dot = { .min = 20000, .max = 400000 },
282 .vco = { .min = 1700000, .max = 3500000 },
283 .n = { .min = 3, .max = 6 },
284 .m = { .min = 2, .max = 256 },
285 .m1 = { .min = 0, .max = 0 },
286 .m2 = { .min = 0, .max = 254 },
287 .p = { .min = 7, .max = 112 },
288 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
289 .p2 = { .dot_limit = 112000,
290 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
291};
292
273e27ca
EA
293/* Ironlake / Sandybridge
294 *
295 * We calculate clock using (register_value + 2) for N/M1/M2, so here
296 * the range value for them is (actual_value - 2).
297 */
b91ad0ec 298static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
299 .dot = { .min = 25000, .max = 350000 },
300 .vco = { .min = 1760000, .max = 3510000 },
301 .n = { .min = 1, .max = 5 },
302 .m = { .min = 79, .max = 127 },
303 .m1 = { .min = 12, .max = 22 },
304 .m2 = { .min = 5, .max = 9 },
305 .p = { .min = 5, .max = 80 },
306 .p1 = { .min = 1, .max = 8 },
307 .p2 = { .dot_limit = 225000,
308 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
309};
310
b91ad0ec 311static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
312 .dot = { .min = 25000, .max = 350000 },
313 .vco = { .min = 1760000, .max = 3510000 },
314 .n = { .min = 1, .max = 3 },
315 .m = { .min = 79, .max = 118 },
316 .m1 = { .min = 12, .max = 22 },
317 .m2 = { .min = 5, .max = 9 },
318 .p = { .min = 28, .max = 112 },
319 .p1 = { .min = 2, .max = 8 },
320 .p2 = { .dot_limit = 225000,
321 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
322};
323
324static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
325 .dot = { .min = 25000, .max = 350000 },
326 .vco = { .min = 1760000, .max = 3510000 },
327 .n = { .min = 1, .max = 3 },
328 .m = { .min = 79, .max = 127 },
329 .m1 = { .min = 12, .max = 22 },
330 .m2 = { .min = 5, .max = 9 },
331 .p = { .min = 14, .max = 56 },
332 .p1 = { .min = 2, .max = 8 },
333 .p2 = { .dot_limit = 225000,
334 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
335};
336
273e27ca 337/* LVDS 100mhz refclk limits. */
b91ad0ec 338static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
339 .dot = { .min = 25000, .max = 350000 },
340 .vco = { .min = 1760000, .max = 3510000 },
341 .n = { .min = 1, .max = 2 },
342 .m = { .min = 79, .max = 126 },
343 .m1 = { .min = 12, .max = 22 },
344 .m2 = { .min = 5, .max = 9 },
345 .p = { .min = 28, .max = 112 },
0206e353 346 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
347 .p2 = { .dot_limit = 225000,
348 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
349};
350
351static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
352 .dot = { .min = 25000, .max = 350000 },
353 .vco = { .min = 1760000, .max = 3510000 },
354 .n = { .min = 1, .max = 3 },
355 .m = { .min = 79, .max = 126 },
356 .m1 = { .min = 12, .max = 22 },
357 .m2 = { .min = 5, .max = 9 },
358 .p = { .min = 14, .max = 42 },
0206e353 359 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
360 .p2 = { .dot_limit = 225000,
361 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
362};
363
dc730512 364static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
365 /*
366 * These are the data rate limits (measured in fast clocks)
367 * since those are the strictest limits we have. The fast
368 * clock and actual rate limits are more relaxed, so checking
369 * them would make no difference.
370 */
371 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 372 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 373 .n = { .min = 1, .max = 7 },
a0c4da24
JB
374 .m1 = { .min = 2, .max = 3 },
375 .m2 = { .min = 11, .max = 156 },
b99ab663 376 .p1 = { .min = 2, .max = 3 },
5fdc9c49 377 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
378};
379
ef9348c8
CML
380static const intel_limit_t intel_limits_chv = {
381 /*
382 * These are the data rate limits (measured in fast clocks)
383 * since those are the strictest limits we have. The fast
384 * clock and actual rate limits are more relaxed, so checking
385 * them would make no difference.
386 */
387 .dot = { .min = 25000 * 5, .max = 540000 * 5},
388 .vco = { .min = 4860000, .max = 6700000 },
389 .n = { .min = 1, .max = 1 },
390 .m1 = { .min = 2, .max = 2 },
391 .m2 = { .min = 24 << 22, .max = 175 << 22 },
392 .p1 = { .min = 2, .max = 4 },
393 .p2 = { .p2_slow = 1, .p2_fast = 14 },
394};
395
6b4bf1c4
VS
396static void vlv_clock(int refclk, intel_clock_t *clock)
397{
398 clock->m = clock->m1 * clock->m2;
399 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
400 if (WARN_ON(clock->n == 0 || clock->p == 0))
401 return;
fb03ac01
VS
402 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
403 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
404}
405
e0638cdf
PZ
406/**
407 * Returns whether any output on the specified pipe is of the specified type
408 */
409static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
410{
411 struct drm_device *dev = crtc->dev;
412 struct intel_encoder *encoder;
413
414 for_each_encoder_on_crtc(dev, crtc, encoder)
415 if (encoder->type == type)
416 return true;
417
418 return false;
419}
420
1b894b59
CW
421static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422 int refclk)
2c07245f 423{
b91ad0ec 424 struct drm_device *dev = crtc->dev;
2c07245f 425 const intel_limit_t *limit;
b91ad0ec
ZW
426
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 428 if (intel_is_dual_link_lvds(dev)) {
1b894b59 429 if (refclk == 100000)
b91ad0ec
ZW
430 limit = &intel_limits_ironlake_dual_lvds_100m;
431 else
432 limit = &intel_limits_ironlake_dual_lvds;
433 } else {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_single_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_single_lvds;
438 }
c6bb3538 439 } else
b91ad0ec 440 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
441
442 return limit;
443}
444
044c7c41
ML
445static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446{
447 struct drm_device *dev = crtc->dev;
044c7c41
ML
448 const intel_limit_t *limit;
449
450 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev))
e4b36699 452 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 453 else
e4b36699 454 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
455 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 457 limit = &intel_limits_g4x_hdmi;
044c7c41 458 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 459 limit = &intel_limits_g4x_sdvo;
044c7c41 460 } else /* The option is for other outputs */
e4b36699 461 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
462
463 return limit;
464}
465
1b894b59 466static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
467{
468 struct drm_device *dev = crtc->dev;
469 const intel_limit_t *limit;
470
bad720ff 471 if (HAS_PCH_SPLIT(dev))
1b894b59 472 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 473 else if (IS_G4X(dev)) {
044c7c41 474 limit = intel_g4x_limit(crtc);
f2b115e6 475 } else if (IS_PINEVIEW(dev)) {
2177832f 476 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 477 limit = &intel_limits_pineview_lvds;
2177832f 478 else
f2b115e6 479 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
480 } else if (IS_CHERRYVIEW(dev)) {
481 limit = &intel_limits_chv;
a0c4da24 482 } else if (IS_VALLEYVIEW(dev)) {
dc730512 483 limit = &intel_limits_vlv;
a6c45cf0
CW
484 } else if (!IS_GEN2(dev)) {
485 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
486 limit = &intel_limits_i9xx_lvds;
487 else
488 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
489 } else {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 491 limit = &intel_limits_i8xx_lvds;
5d536e28 492 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 493 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
494 else
495 limit = &intel_limits_i8xx_dac;
79e53945
JB
496 }
497 return limit;
498}
499
f2b115e6
AJ
500/* m1 is reserved as 0 in Pineview, n is a ring counter */
501static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 502{
2177832f
SL
503 clock->m = clock->m2 + 2;
504 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
505 if (WARN_ON(clock->n == 0 || clock->p == 0))
506 return;
fb03ac01
VS
507 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
508 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
509}
510
7429e9d4
DV
511static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
512{
513 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
514}
515
ac58c3f0 516static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 517{
7429e9d4 518 clock->m = i9xx_dpll_compute_m(clock);
79e53945 519 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
520 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
521 return;
fb03ac01
VS
522 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
523 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
524}
525
ef9348c8
CML
526static void chv_clock(int refclk, intel_clock_t *clock)
527{
528 clock->m = clock->m1 * clock->m2;
529 clock->p = clock->p1 * clock->p2;
530 if (WARN_ON(clock->n == 0 || clock->p == 0))
531 return;
532 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
533 clock->n << 22);
534 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
535}
536
7c04d1d9 537#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
538/**
539 * Returns whether the given set of divisors are valid for a given refclk with
540 * the given connectors.
541 */
542
1b894b59
CW
543static bool intel_PLL_is_valid(struct drm_device *dev,
544 const intel_limit_t *limit,
545 const intel_clock_t *clock)
79e53945 546{
f01b7962
VS
547 if (clock->n < limit->n.min || limit->n.max < clock->n)
548 INTELPllInvalid("n out of range\n");
79e53945 549 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 550 INTELPllInvalid("p1 out of range\n");
79e53945 551 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 552 INTELPllInvalid("m2 out of range\n");
79e53945 553 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 554 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
555
556 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
557 if (clock->m1 <= clock->m2)
558 INTELPllInvalid("m1 <= m2\n");
559
560 if (!IS_VALLEYVIEW(dev)) {
561 if (clock->p < limit->p.min || limit->p.max < clock->p)
562 INTELPllInvalid("p out of range\n");
563 if (clock->m < limit->m.min || limit->m.max < clock->m)
564 INTELPllInvalid("m out of range\n");
565 }
566
79e53945 567 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 568 INTELPllInvalid("vco out of range\n");
79e53945
JB
569 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
570 * connector, etc., rather than just a single range.
571 */
572 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 573 INTELPllInvalid("dot out of range\n");
79e53945
JB
574
575 return true;
576}
577
d4906093 578static bool
a919ff14 579i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
580 int target, int refclk, intel_clock_t *match_clock,
581 intel_clock_t *best_clock)
79e53945 582{
a919ff14 583 struct drm_device *dev = crtc->base.dev;
79e53945 584 intel_clock_t clock;
79e53945
JB
585 int err = target;
586
a919ff14 587 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
79e53945 588 /*
a210b028
DV
589 * For LVDS just rely on its current settings for dual-channel.
590 * We haven't figured out how to reliably set up different
591 * single/dual channel state, if we even can.
79e53945 592 */
1974cad0 593 if (intel_is_dual_link_lvds(dev))
79e53945
JB
594 clock.p2 = limit->p2.p2_fast;
595 else
596 clock.p2 = limit->p2.p2_slow;
597 } else {
598 if (target < limit->p2.dot_limit)
599 clock.p2 = limit->p2.p2_slow;
600 else
601 clock.p2 = limit->p2.p2_fast;
602 }
603
0206e353 604 memset(best_clock, 0, sizeof(*best_clock));
79e53945 605
42158660
ZY
606 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607 clock.m1++) {
608 for (clock.m2 = limit->m2.min;
609 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 610 if (clock.m2 >= clock.m1)
42158660
ZY
611 break;
612 for (clock.n = limit->n.min;
613 clock.n <= limit->n.max; clock.n++) {
614 for (clock.p1 = limit->p1.min;
615 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
616 int this_err;
617
ac58c3f0
DV
618 i9xx_clock(refclk, &clock);
619 if (!intel_PLL_is_valid(dev, limit,
620 &clock))
621 continue;
622 if (match_clock &&
623 clock.p != match_clock->p)
624 continue;
625
626 this_err = abs(clock.dot - target);
627 if (this_err < err) {
628 *best_clock = clock;
629 err = this_err;
630 }
631 }
632 }
633 }
634 }
635
636 return (err != target);
637}
638
639static bool
a919ff14 640pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
641 int target, int refclk, intel_clock_t *match_clock,
642 intel_clock_t *best_clock)
79e53945 643{
a919ff14 644 struct drm_device *dev = crtc->base.dev;
79e53945 645 intel_clock_t clock;
79e53945
JB
646 int err = target;
647
a919ff14 648 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
79e53945 649 /*
a210b028
DV
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
79e53945 653 */
1974cad0 654 if (intel_is_dual_link_lvds(dev))
79e53945
JB
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
0206e353 665 memset(best_clock, 0, sizeof(*best_clock));
79e53945 666
42158660
ZY
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
671 for (clock.n = limit->n.min;
672 clock.n <= limit->n.max; clock.n++) {
673 for (clock.p1 = limit->p1.min;
674 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
675 int this_err;
676
ac58c3f0 677 pineview_clock(refclk, &clock);
1b894b59
CW
678 if (!intel_PLL_is_valid(dev, limit,
679 &clock))
79e53945 680 continue;
cec2f356
SP
681 if (match_clock &&
682 clock.p != match_clock->p)
683 continue;
79e53945
JB
684
685 this_err = abs(clock.dot - target);
686 if (this_err < err) {
687 *best_clock = clock;
688 err = this_err;
689 }
690 }
691 }
692 }
693 }
694
695 return (err != target);
696}
697
d4906093 698static bool
a919ff14 699g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
700 int target, int refclk, intel_clock_t *match_clock,
701 intel_clock_t *best_clock)
d4906093 702{
a919ff14 703 struct drm_device *dev = crtc->base.dev;
d4906093
ML
704 intel_clock_t clock;
705 int max_n;
706 bool found;
6ba770dc
AJ
707 /* approximately equals target * 0.00585 */
708 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
709 found = false;
710
a919ff14 711 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
1974cad0 712 if (intel_is_dual_link_lvds(dev))
d4906093
ML
713 clock.p2 = limit->p2.p2_fast;
714 else
715 clock.p2 = limit->p2.p2_slow;
716 } else {
717 if (target < limit->p2.dot_limit)
718 clock.p2 = limit->p2.p2_slow;
719 else
720 clock.p2 = limit->p2.p2_fast;
721 }
722
723 memset(best_clock, 0, sizeof(*best_clock));
724 max_n = limit->n.max;
f77f13e2 725 /* based on hardware requirement, prefer smaller n to precision */
d4906093 726 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 727 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
728 for (clock.m1 = limit->m1.max;
729 clock.m1 >= limit->m1.min; clock.m1--) {
730 for (clock.m2 = limit->m2.max;
731 clock.m2 >= limit->m2.min; clock.m2--) {
732 for (clock.p1 = limit->p1.max;
733 clock.p1 >= limit->p1.min; clock.p1--) {
734 int this_err;
735
ac58c3f0 736 i9xx_clock(refclk, &clock);
1b894b59
CW
737 if (!intel_PLL_is_valid(dev, limit,
738 &clock))
d4906093 739 continue;
1b894b59
CW
740
741 this_err = abs(clock.dot - target);
d4906093
ML
742 if (this_err < err_most) {
743 *best_clock = clock;
744 err_most = this_err;
745 max_n = clock.n;
746 found = true;
747 }
748 }
749 }
750 }
751 }
2c07245f
ZW
752 return found;
753}
754
a0c4da24 755static bool
a919ff14 756vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
757 int target, int refclk, intel_clock_t *match_clock,
758 intel_clock_t *best_clock)
a0c4da24 759{
a919ff14 760 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 761 intel_clock_t clock;
69e4f900 762 unsigned int bestppm = 1000000;
27e639bf
VS
763 /* min update 19.2 MHz */
764 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 765 bool found = false;
a0c4da24 766
6b4bf1c4
VS
767 target *= 5; /* fast clock */
768
769 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
770
771 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 772 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 773 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 774 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 775 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 776 clock.p = clock.p1 * clock.p2;
a0c4da24 777 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
779 unsigned int ppm, diff;
780
6b4bf1c4
VS
781 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
782 refclk * clock.m1);
783
784 vlv_clock(refclk, &clock);
43b0ac53 785
f01b7962
VS
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
43b0ac53
VS
788 continue;
789
6b4bf1c4
VS
790 diff = abs(clock.dot - target);
791 ppm = div_u64(1000000ULL * diff, target);
792
793 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 794 bestppm = 0;
6b4bf1c4 795 *best_clock = clock;
49e497ef 796 found = true;
43b0ac53 797 }
6b4bf1c4 798
c686122c 799 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 800 bestppm = ppm;
6b4bf1c4 801 *best_clock = clock;
49e497ef 802 found = true;
a0c4da24
JB
803 }
804 }
805 }
806 }
807 }
a0c4da24 808
49e497ef 809 return found;
a0c4da24 810}
a4fc5ed6 811
ef9348c8 812static bool
a919ff14 813chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
816{
a919ff14 817 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
818 intel_clock_t clock;
819 uint64_t m2;
820 int found = false;
821
822 memset(best_clock, 0, sizeof(*best_clock));
823
824 /*
825 * Based on hardware doc, the n always set to 1, and m1 always
826 * set to 2. If requires to support 200Mhz refclk, we need to
827 * revisit this because n may not 1 anymore.
828 */
829 clock.n = 1, clock.m1 = 2;
830 target *= 5; /* fast clock */
831
832 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
833 for (clock.p2 = limit->p2.p2_fast;
834 clock.p2 >= limit->p2.p2_slow;
835 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
836
837 clock.p = clock.p1 * clock.p2;
838
839 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
840 clock.n) << 22, refclk * clock.m1);
841
842 if (m2 > INT_MAX/clock.m1)
843 continue;
844
845 clock.m2 = m2;
846
847 chv_clock(refclk, &clock);
848
849 if (!intel_PLL_is_valid(dev, limit, &clock))
850 continue;
851
852 /* based on hardware requirement, prefer bigger p
853 */
854 if (clock.p > best_clock->p) {
855 *best_clock = clock;
856 found = true;
857 }
858 }
859 }
860
861 return found;
862}
863
20ddf665
VS
864bool intel_crtc_active(struct drm_crtc *crtc)
865{
866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
867
868 /* Be paranoid as we can arrive here with only partial
869 * state retrieved from the hardware during setup.
870 *
241bfc38 871 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
872 * as Haswell has gained clock readout/fastboot support.
873 *
66e514c1 874 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
875 * properly reconstruct framebuffers.
876 */
f4510a27 877 return intel_crtc->active && crtc->primary->fb &&
241bfc38 878 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
879}
880
a5c961d1
PZ
881enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
882 enum pipe pipe)
883{
884 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
886
3b117c8f 887 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
888}
889
fbf49ea2
VS
890static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
891{
892 struct drm_i915_private *dev_priv = dev->dev_private;
893 u32 reg = PIPEDSL(pipe);
894 u32 line1, line2;
895 u32 line_mask;
896
897 if (IS_GEN2(dev))
898 line_mask = DSL_LINEMASK_GEN2;
899 else
900 line_mask = DSL_LINEMASK_GEN3;
901
902 line1 = I915_READ(reg) & line_mask;
903 mdelay(5);
904 line2 = I915_READ(reg) & line_mask;
905
906 return line1 == line2;
907}
908
ab7ad7f6
KP
909/*
910 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 911 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
912 *
913 * After disabling a pipe, we can't wait for vblank in the usual way,
914 * spinning on the vblank interrupt status bit, since we won't actually
915 * see an interrupt when the pipe is disabled.
916 *
ab7ad7f6
KP
917 * On Gen4 and above:
918 * wait for the pipe register state bit to turn off
919 *
920 * Otherwise:
921 * wait for the display line value to settle (it usually
922 * ends up stopping at the start of the next frame).
58e10eb9 923 *
9d0498a2 924 */
575f7ab7 925static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 926{
575f7ab7 927 struct drm_device *dev = crtc->base.dev;
9d0498a2 928 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
929 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
930 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
931
932 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 933 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
934
935 /* Wait for the Pipe State to go off */
58e10eb9
CW
936 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
937 100))
284637d9 938 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 939 } else {
ab7ad7f6 940 /* Wait for the display line to settle */
fbf49ea2 941 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 942 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 943 }
79e53945
JB
944}
945
b0ea7d37
DL
946/*
947 * ibx_digital_port_connected - is the specified port connected?
948 * @dev_priv: i915 private structure
949 * @port: the port to test
950 *
951 * Returns true if @port is connected, false otherwise.
952 */
953bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
954 struct intel_digital_port *port)
955{
956 u32 bit;
957
c36346e3 958 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 959 switch (port->port) {
c36346e3
DL
960 case PORT_B:
961 bit = SDE_PORTB_HOTPLUG;
962 break;
963 case PORT_C:
964 bit = SDE_PORTC_HOTPLUG;
965 break;
966 case PORT_D:
967 bit = SDE_PORTD_HOTPLUG;
968 break;
969 default:
970 return true;
971 }
972 } else {
eba905b2 973 switch (port->port) {
c36346e3
DL
974 case PORT_B:
975 bit = SDE_PORTB_HOTPLUG_CPT;
976 break;
977 case PORT_C:
978 bit = SDE_PORTC_HOTPLUG_CPT;
979 break;
980 case PORT_D:
981 bit = SDE_PORTD_HOTPLUG_CPT;
982 break;
983 default:
984 return true;
985 }
b0ea7d37
DL
986 }
987
988 return I915_READ(SDEISR) & bit;
989}
990
b24e7179
JB
991static const char *state_string(bool enabled)
992{
993 return enabled ? "on" : "off";
994}
995
996/* Only for pre-ILK configs */
55607e8a
DV
997void assert_pll(struct drm_i915_private *dev_priv,
998 enum pipe pipe, bool state)
b24e7179
JB
999{
1000 int reg;
1001 u32 val;
1002 bool cur_state;
1003
1004 reg = DPLL(pipe);
1005 val = I915_READ(reg);
1006 cur_state = !!(val & DPLL_VCO_ENABLE);
1007 WARN(cur_state != state,
1008 "PLL state assertion failure (expected %s, current %s)\n",
1009 state_string(state), state_string(cur_state));
1010}
b24e7179 1011
23538ef1
JN
1012/* XXX: the dsi pll is shared between MIPI DSI ports */
1013static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1014{
1015 u32 val;
1016 bool cur_state;
1017
1018 mutex_lock(&dev_priv->dpio_lock);
1019 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1020 mutex_unlock(&dev_priv->dpio_lock);
1021
1022 cur_state = val & DSI_PLL_VCO_EN;
1023 WARN(cur_state != state,
1024 "DSI PLL state assertion failure (expected %s, current %s)\n",
1025 state_string(state), state_string(cur_state));
1026}
1027#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1028#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1029
55607e8a 1030struct intel_shared_dpll *
e2b78267
DV
1031intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1032{
1033 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1034
a43f6e0f 1035 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1036 return NULL;
1037
a43f6e0f 1038 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1039}
1040
040484af 1041/* For ILK+ */
55607e8a
DV
1042void assert_shared_dpll(struct drm_i915_private *dev_priv,
1043 struct intel_shared_dpll *pll,
1044 bool state)
040484af 1045{
040484af 1046 bool cur_state;
5358901f 1047 struct intel_dpll_hw_state hw_state;
040484af 1048
92b27b08 1049 if (WARN (!pll,
46edb027 1050 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1051 return;
ee7b9f93 1052
5358901f 1053 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1054 WARN(cur_state != state,
5358901f
DV
1055 "%s assertion failure (expected %s, current %s)\n",
1056 pll->name, state_string(state), state_string(cur_state));
040484af 1057}
040484af
JB
1058
1059static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1060 enum pipe pipe, bool state)
1061{
1062 int reg;
1063 u32 val;
1064 bool cur_state;
ad80a810
PZ
1065 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1066 pipe);
040484af 1067
affa9354
PZ
1068 if (HAS_DDI(dev_priv->dev)) {
1069 /* DDI does not have a specific FDI_TX register */
ad80a810 1070 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1071 val = I915_READ(reg);
ad80a810 1072 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1073 } else {
1074 reg = FDI_TX_CTL(pipe);
1075 val = I915_READ(reg);
1076 cur_state = !!(val & FDI_TX_ENABLE);
1077 }
040484af
JB
1078 WARN(cur_state != state,
1079 "FDI TX state assertion failure (expected %s, current %s)\n",
1080 state_string(state), state_string(cur_state));
1081}
1082#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1084
1085static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1087{
1088 int reg;
1089 u32 val;
1090 bool cur_state;
1091
d63fa0dc
PZ
1092 reg = FDI_RX_CTL(pipe);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1095 WARN(cur_state != state,
1096 "FDI RX state assertion failure (expected %s, current %s)\n",
1097 state_string(state), state_string(cur_state));
1098}
1099#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1100#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1101
1102static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1103 enum pipe pipe)
1104{
1105 int reg;
1106 u32 val;
1107
1108 /* ILK FDI PLL is always enabled */
3d13ef2e 1109 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1110 return;
1111
bf507ef7 1112 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1113 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1114 return;
1115
040484af
JB
1116 reg = FDI_TX_CTL(pipe);
1117 val = I915_READ(reg);
1118 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1119}
1120
55607e8a
DV
1121void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
040484af
JB
1123{
1124 int reg;
1125 u32 val;
55607e8a 1126 bool cur_state;
040484af
JB
1127
1128 reg = FDI_RX_CTL(pipe);
1129 val = I915_READ(reg);
55607e8a
DV
1130 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1131 WARN(cur_state != state,
1132 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
040484af
JB
1134}
1135
b680c37a
DV
1136void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1137 enum pipe pipe)
ea0760cf 1138{
bedd4dba
JN
1139 struct drm_device *dev = dev_priv->dev;
1140 int pp_reg;
ea0760cf
JB
1141 u32 val;
1142 enum pipe panel_pipe = PIPE_A;
0de3b485 1143 bool locked = true;
ea0760cf 1144
bedd4dba
JN
1145 if (WARN_ON(HAS_DDI(dev)))
1146 return;
1147
1148 if (HAS_PCH_SPLIT(dev)) {
1149 u32 port_sel;
1150
ea0760cf 1151 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1152 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1153
1154 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1155 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1156 panel_pipe = PIPE_B;
1157 /* XXX: else fix for eDP */
1158 } else if (IS_VALLEYVIEW(dev)) {
1159 /* presumably write lock depends on pipe, not port select */
1160 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1161 panel_pipe = pipe;
ea0760cf
JB
1162 } else {
1163 pp_reg = PP_CONTROL;
bedd4dba
JN
1164 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1165 panel_pipe = PIPE_B;
ea0760cf
JB
1166 }
1167
1168 val = I915_READ(pp_reg);
1169 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1170 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1171 locked = false;
1172
ea0760cf
JB
1173 WARN(panel_pipe == pipe && locked,
1174 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1175 pipe_name(pipe));
ea0760cf
JB
1176}
1177
93ce0ba6
JN
1178static void assert_cursor(struct drm_i915_private *dev_priv,
1179 enum pipe pipe, bool state)
1180{
1181 struct drm_device *dev = dev_priv->dev;
1182 bool cur_state;
1183
d9d82081 1184 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1185 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1186 else
5efb3e28 1187 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1188
1189 WARN(cur_state != state,
1190 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191 pipe_name(pipe), state_string(state), state_string(cur_state));
1192}
1193#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
b840d907
JB
1196void assert_pipe(struct drm_i915_private *dev_priv,
1197 enum pipe pipe, bool state)
b24e7179
JB
1198{
1199 int reg;
1200 u32 val;
63d7bbe9 1201 bool cur_state;
702e7a56
PZ
1202 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203 pipe);
b24e7179 1204
b6b5d049
VS
1205 /* if we need the pipe quirk it must be always on */
1206 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1207 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1208 state = true;
1209
f458ebbc 1210 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1211 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1212 cur_state = false;
1213 } else {
1214 reg = PIPECONF(cpu_transcoder);
1215 val = I915_READ(reg);
1216 cur_state = !!(val & PIPECONF_ENABLE);
1217 }
1218
63d7bbe9
JB
1219 WARN(cur_state != state,
1220 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1221 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1222}
1223
931872fc
CW
1224static void assert_plane(struct drm_i915_private *dev_priv,
1225 enum plane plane, bool state)
b24e7179
JB
1226{
1227 int reg;
1228 u32 val;
931872fc 1229 bool cur_state;
b24e7179
JB
1230
1231 reg = DSPCNTR(plane);
1232 val = I915_READ(reg);
931872fc
CW
1233 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1234 WARN(cur_state != state,
1235 "plane %c assertion failure (expected %s, current %s)\n",
1236 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1237}
1238
931872fc
CW
1239#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1240#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1241
b24e7179
JB
1242static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe)
1244{
653e1026 1245 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1246 int reg, i;
1247 u32 val;
1248 int cur_pipe;
1249
653e1026
VS
1250 /* Primary planes are fixed to pipes on gen4+ */
1251 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1252 reg = DSPCNTR(pipe);
1253 val = I915_READ(reg);
83f26f16 1254 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1255 "plane %c assertion failure, should be disabled but not\n",
1256 plane_name(pipe));
19ec1358 1257 return;
28c05794 1258 }
19ec1358 1259
b24e7179 1260 /* Need to check both planes against the pipe */
055e393f 1261 for_each_pipe(dev_priv, i) {
b24e7179
JB
1262 reg = DSPCNTR(i);
1263 val = I915_READ(reg);
1264 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1265 DISPPLANE_SEL_PIPE_SHIFT;
1266 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1267 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1268 plane_name(i), pipe_name(pipe));
b24e7179
JB
1269 }
1270}
1271
19332d7a
JB
1272static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1273 enum pipe pipe)
1274{
20674eef 1275 struct drm_device *dev = dev_priv->dev;
1fe47785 1276 int reg, sprite;
19332d7a
JB
1277 u32 val;
1278
7feb8b88
DL
1279 if (INTEL_INFO(dev)->gen >= 9) {
1280 for_each_sprite(pipe, sprite) {
1281 val = I915_READ(PLANE_CTL(pipe, sprite));
1282 WARN(val & PLANE_CTL_ENABLE,
1283 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1284 sprite, pipe_name(pipe));
1285 }
1286 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1287 for_each_sprite(pipe, sprite) {
1288 reg = SPCNTR(pipe, sprite);
20674eef 1289 val = I915_READ(reg);
83f26f16 1290 WARN(val & SP_ENABLE,
20674eef 1291 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1292 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1293 }
1294 } else if (INTEL_INFO(dev)->gen >= 7) {
1295 reg = SPRCTL(pipe);
19332d7a 1296 val = I915_READ(reg);
83f26f16 1297 WARN(val & SPRITE_ENABLE,
06da8da2 1298 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1299 plane_name(pipe), pipe_name(pipe));
1300 } else if (INTEL_INFO(dev)->gen >= 5) {
1301 reg = DVSCNTR(pipe);
19332d7a 1302 val = I915_READ(reg);
83f26f16 1303 WARN(val & DVS_ENABLE,
06da8da2 1304 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1305 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1306 }
1307}
1308
08c71e5e
VS
1309static void assert_vblank_disabled(struct drm_crtc *crtc)
1310{
1311 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1312 drm_crtc_vblank_put(crtc);
1313}
1314
89eff4be 1315static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1316{
1317 u32 val;
1318 bool enabled;
1319
89eff4be 1320 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1321
92f2584a
JB
1322 val = I915_READ(PCH_DREF_CONTROL);
1323 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1324 DREF_SUPERSPREAD_SOURCE_MASK));
1325 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1326}
1327
ab9412ba
DV
1328static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1329 enum pipe pipe)
92f2584a
JB
1330{
1331 int reg;
1332 u32 val;
1333 bool enabled;
1334
ab9412ba 1335 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1336 val = I915_READ(reg);
1337 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1338 WARN(enabled,
1339 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1340 pipe_name(pipe));
92f2584a
JB
1341}
1342
4e634389
KP
1343static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1344 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1345{
1346 if ((val & DP_PORT_EN) == 0)
1347 return false;
1348
1349 if (HAS_PCH_CPT(dev_priv->dev)) {
1350 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1351 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1352 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1353 return false;
44f37d1f
CML
1354 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1355 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1356 return false;
f0575e92
KP
1357 } else {
1358 if ((val & DP_PIPE_MASK) != (pipe << 30))
1359 return false;
1360 }
1361 return true;
1362}
1363
1519b995
KP
1364static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe, u32 val)
1366{
dc0fa718 1367 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1368 return false;
1369
1370 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1371 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1372 return false;
44f37d1f
CML
1373 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1374 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1375 return false;
1519b995 1376 } else {
dc0fa718 1377 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1378 return false;
1379 }
1380 return true;
1381}
1382
1383static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, u32 val)
1385{
1386 if ((val & LVDS_PORT_EN) == 0)
1387 return false;
1388
1389 if (HAS_PCH_CPT(dev_priv->dev)) {
1390 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1391 return false;
1392 } else {
1393 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1394 return false;
1395 }
1396 return true;
1397}
1398
1399static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1400 enum pipe pipe, u32 val)
1401{
1402 if ((val & ADPA_DAC_ENABLE) == 0)
1403 return false;
1404 if (HAS_PCH_CPT(dev_priv->dev)) {
1405 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1406 return false;
1407 } else {
1408 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1409 return false;
1410 }
1411 return true;
1412}
1413
291906f1 1414static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1415 enum pipe pipe, int reg, u32 port_sel)
291906f1 1416{
47a05eca 1417 u32 val = I915_READ(reg);
4e634389 1418 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1419 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1420 reg, pipe_name(pipe));
de9a35ab 1421
75c5da27
DV
1422 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1423 && (val & DP_PIPEB_SELECT),
de9a35ab 1424 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1425}
1426
1427static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, int reg)
1429{
47a05eca 1430 u32 val = I915_READ(reg);
b70ad586 1431 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1432 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1433 reg, pipe_name(pipe));
de9a35ab 1434
dc0fa718 1435 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1436 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1437 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1438}
1439
1440static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1441 enum pipe pipe)
1442{
1443 int reg;
1444 u32 val;
291906f1 1445
f0575e92
KP
1446 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1447 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1448 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1449
1450 reg = PCH_ADPA;
1451 val = I915_READ(reg);
b70ad586 1452 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1453 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1454 pipe_name(pipe));
291906f1
JB
1455
1456 reg = PCH_LVDS;
1457 val = I915_READ(reg);
b70ad586 1458 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1459 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1460 pipe_name(pipe));
291906f1 1461
e2debe91
PZ
1462 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1463 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1464 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1465}
1466
40e9cf64
JB
1467static void intel_init_dpio(struct drm_device *dev)
1468{
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470
1471 if (!IS_VALLEYVIEW(dev))
1472 return;
1473
a09caddd
CML
1474 /*
1475 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1476 * CHV x1 PHY (DP/HDMI D)
1477 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1478 */
1479 if (IS_CHERRYVIEW(dev)) {
1480 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1481 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1482 } else {
1483 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1484 }
5382f5f3
JB
1485}
1486
426115cf 1487static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1488{
426115cf
DV
1489 struct drm_device *dev = crtc->base.dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 int reg = DPLL(crtc->pipe);
1492 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1493
426115cf 1494 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1495
1496 /* No really, not for ILK+ */
1497 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1498
1499 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1500 if (IS_MOBILE(dev_priv->dev))
426115cf 1501 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1502
426115cf
DV
1503 I915_WRITE(reg, dpll);
1504 POSTING_READ(reg);
1505 udelay(150);
1506
1507 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1508 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1509
1510 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1511 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1512
1513 /* We do this three times for luck */
426115cf 1514 I915_WRITE(reg, dpll);
87442f73
DV
1515 POSTING_READ(reg);
1516 udelay(150); /* wait for warmup */
426115cf 1517 I915_WRITE(reg, dpll);
87442f73
DV
1518 POSTING_READ(reg);
1519 udelay(150); /* wait for warmup */
426115cf 1520 I915_WRITE(reg, dpll);
87442f73
DV
1521 POSTING_READ(reg);
1522 udelay(150); /* wait for warmup */
1523}
1524
9d556c99
CML
1525static void chv_enable_pll(struct intel_crtc *crtc)
1526{
1527 struct drm_device *dev = crtc->base.dev;
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529 int pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1531 u32 tmp;
1532
1533 assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1536
1537 mutex_lock(&dev_priv->dpio_lock);
1538
1539 /* Enable back the 10bit clock to display controller */
1540 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 tmp |= DPIO_DCLKP_EN;
1542 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544 /*
1545 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1546 */
1547 udelay(1);
1548
1549 /* Enable PLL */
a11b0703 1550 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1551
1552 /* Check PLL is locked */
a11b0703 1553 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555
a11b0703
VS
1556 /* not sure when this should be written */
1557 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1558 POSTING_READ(DPLL_MD(pipe));
1559
9d556c99
CML
1560 mutex_unlock(&dev_priv->dpio_lock);
1561}
1562
1c4e0274
VS
1563static int intel_num_dvo_pipes(struct drm_device *dev)
1564{
1565 struct intel_crtc *crtc;
1566 int count = 0;
1567
1568 for_each_intel_crtc(dev, crtc)
1569 count += crtc->active &&
1570 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1571
1572 return count;
1573}
1574
66e3d5c0 1575static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1576{
66e3d5c0
DV
1577 struct drm_device *dev = crtc->base.dev;
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 int reg = DPLL(crtc->pipe);
1580 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1581
66e3d5c0 1582 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1583
63d7bbe9 1584 /* No really, not for ILK+ */
3d13ef2e 1585 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1586
1587 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1588 if (IS_MOBILE(dev) && !IS_I830(dev))
1589 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1590
1c4e0274
VS
1591 /* Enable DVO 2x clock on both PLLs if necessary */
1592 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1593 /*
1594 * It appears to be important that we don't enable this
1595 * for the current pipe before otherwise configuring the
1596 * PLL. No idea how this should be handled if multiple
1597 * DVO outputs are enabled simultaneosly.
1598 */
1599 dpll |= DPLL_DVO_2X_MODE;
1600 I915_WRITE(DPLL(!crtc->pipe),
1601 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1602 }
66e3d5c0
DV
1603
1604 /* Wait for the clocks to stabilize. */
1605 POSTING_READ(reg);
1606 udelay(150);
1607
1608 if (INTEL_INFO(dev)->gen >= 4) {
1609 I915_WRITE(DPLL_MD(crtc->pipe),
1610 crtc->config.dpll_hw_state.dpll_md);
1611 } else {
1612 /* The pixel multiplier can only be updated once the
1613 * DPLL is enabled and the clocks are stable.
1614 *
1615 * So write it again.
1616 */
1617 I915_WRITE(reg, dpll);
1618 }
63d7bbe9
JB
1619
1620 /* We do this three times for luck */
66e3d5c0 1621 I915_WRITE(reg, dpll);
63d7bbe9
JB
1622 POSTING_READ(reg);
1623 udelay(150); /* wait for warmup */
66e3d5c0 1624 I915_WRITE(reg, dpll);
63d7bbe9
JB
1625 POSTING_READ(reg);
1626 udelay(150); /* wait for warmup */
66e3d5c0 1627 I915_WRITE(reg, dpll);
63d7bbe9
JB
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
1630}
1631
1632/**
50b44a44 1633 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1634 * @dev_priv: i915 private structure
1635 * @pipe: pipe PLL to disable
1636 *
1637 * Disable the PLL for @pipe, making sure the pipe is off first.
1638 *
1639 * Note! This is for pre-ILK only.
1640 */
1c4e0274 1641static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1642{
1c4e0274
VS
1643 struct drm_device *dev = crtc->base.dev;
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 enum pipe pipe = crtc->pipe;
1646
1647 /* Disable DVO 2x clock on both PLLs if necessary */
1648 if (IS_I830(dev) &&
1649 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1650 intel_num_dvo_pipes(dev) == 1) {
1651 I915_WRITE(DPLL(PIPE_B),
1652 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1653 I915_WRITE(DPLL(PIPE_A),
1654 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1655 }
1656
b6b5d049
VS
1657 /* Don't disable pipe or pipe PLLs if needed */
1658 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1659 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1660 return;
1661
1662 /* Make sure the pipe isn't still relying on us */
1663 assert_pipe_disabled(dev_priv, pipe);
1664
50b44a44
DV
1665 I915_WRITE(DPLL(pipe), 0);
1666 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1667}
1668
f6071166
JB
1669static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1670{
1671 u32 val = 0;
1672
1673 /* Make sure the pipe isn't still relying on us */
1674 assert_pipe_disabled(dev_priv, pipe);
1675
e5cbfbfb
ID
1676 /*
1677 * Leave integrated clock source and reference clock enabled for pipe B.
1678 * The latter is needed for VGA hotplug / manual detection.
1679 */
f6071166 1680 if (pipe == PIPE_B)
e5cbfbfb 1681 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1682 I915_WRITE(DPLL(pipe), val);
1683 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1684
1685}
1686
1687static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1688{
d752048d 1689 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1690 u32 val;
1691
a11b0703
VS
1692 /* Make sure the pipe isn't still relying on us */
1693 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1694
a11b0703 1695 /* Set PLL en = 0 */
d17ec4ce 1696 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1697 if (pipe != PIPE_A)
1698 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1699 I915_WRITE(DPLL(pipe), val);
1700 POSTING_READ(DPLL(pipe));
d752048d
VS
1701
1702 mutex_lock(&dev_priv->dpio_lock);
1703
1704 /* Disable 10bit clock to display controller */
1705 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1706 val &= ~DPIO_DCLKP_EN;
1707 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1708
61407f6d
VS
1709 /* disable left/right clock distribution */
1710 if (pipe != PIPE_B) {
1711 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1712 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1713 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1714 } else {
1715 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1716 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1717 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1718 }
1719
d752048d 1720 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1721}
1722
e4607fcf
CML
1723void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1724 struct intel_digital_port *dport)
89b667f8
JB
1725{
1726 u32 port_mask;
00fc31b7 1727 int dpll_reg;
89b667f8 1728
e4607fcf
CML
1729 switch (dport->port) {
1730 case PORT_B:
89b667f8 1731 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1732 dpll_reg = DPLL(0);
e4607fcf
CML
1733 break;
1734 case PORT_C:
89b667f8 1735 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1736 dpll_reg = DPLL(0);
1737 break;
1738 case PORT_D:
1739 port_mask = DPLL_PORTD_READY_MASK;
1740 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1741 break;
1742 default:
1743 BUG();
1744 }
89b667f8 1745
00fc31b7 1746 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1747 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1748 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1749}
1750
b14b1055
DV
1751static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1752{
1753 struct drm_device *dev = crtc->base.dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1756
be19f0ff
CW
1757 if (WARN_ON(pll == NULL))
1758 return;
1759
b14b1055
DV
1760 WARN_ON(!pll->refcount);
1761 if (pll->active == 0) {
1762 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1763 WARN_ON(pll->on);
1764 assert_shared_dpll_disabled(dev_priv, pll);
1765
1766 pll->mode_set(dev_priv, pll);
1767 }
1768}
1769
92f2584a 1770/**
85b3894f 1771 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1772 * @dev_priv: i915 private structure
1773 * @pipe: pipe PLL to enable
1774 *
1775 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1776 * drives the transcoder clock.
1777 */
85b3894f 1778static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1779{
3d13ef2e
DL
1780 struct drm_device *dev = crtc->base.dev;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1782 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1783
87a875bb 1784 if (WARN_ON(pll == NULL))
48da64a8
CW
1785 return;
1786
1787 if (WARN_ON(pll->refcount == 0))
1788 return;
ee7b9f93 1789
74dd6928 1790 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1791 pll->name, pll->active, pll->on,
e2b78267 1792 crtc->base.base.id);
92f2584a 1793
cdbd2316
DV
1794 if (pll->active++) {
1795 WARN_ON(!pll->on);
e9d6944e 1796 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1797 return;
1798 }
f4a091c7 1799 WARN_ON(pll->on);
ee7b9f93 1800
bd2bb1b9
PZ
1801 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1802
46edb027 1803 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1804 pll->enable(dev_priv, pll);
ee7b9f93 1805 pll->on = true;
92f2584a
JB
1806}
1807
f6daaec2 1808static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1809{
3d13ef2e
DL
1810 struct drm_device *dev = crtc->base.dev;
1811 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1812 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1813
92f2584a 1814 /* PCH only available on ILK+ */
3d13ef2e 1815 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1816 if (WARN_ON(pll == NULL))
ee7b9f93 1817 return;
92f2584a 1818
48da64a8
CW
1819 if (WARN_ON(pll->refcount == 0))
1820 return;
7a419866 1821
46edb027
DV
1822 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1823 pll->name, pll->active, pll->on,
e2b78267 1824 crtc->base.base.id);
7a419866 1825
48da64a8 1826 if (WARN_ON(pll->active == 0)) {
e9d6944e 1827 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1828 return;
1829 }
1830
e9d6944e 1831 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1832 WARN_ON(!pll->on);
cdbd2316 1833 if (--pll->active)
7a419866 1834 return;
ee7b9f93 1835
46edb027 1836 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1837 pll->disable(dev_priv, pll);
ee7b9f93 1838 pll->on = false;
bd2bb1b9
PZ
1839
1840 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1841}
1842
b8a4f404
PZ
1843static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1844 enum pipe pipe)
040484af 1845{
23670b32 1846 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1847 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1849 uint32_t reg, val, pipeconf_val;
040484af
JB
1850
1851 /* PCH only available on ILK+ */
55522f37 1852 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1853
1854 /* Make sure PCH DPLL is enabled */
e72f9fbf 1855 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1856 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1857
1858 /* FDI must be feeding us bits for PCH ports */
1859 assert_fdi_tx_enabled(dev_priv, pipe);
1860 assert_fdi_rx_enabled(dev_priv, pipe);
1861
23670b32
DV
1862 if (HAS_PCH_CPT(dev)) {
1863 /* Workaround: Set the timing override bit before enabling the
1864 * pch transcoder. */
1865 reg = TRANS_CHICKEN2(pipe);
1866 val = I915_READ(reg);
1867 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1868 I915_WRITE(reg, val);
59c859d6 1869 }
23670b32 1870
ab9412ba 1871 reg = PCH_TRANSCONF(pipe);
040484af 1872 val = I915_READ(reg);
5f7f726d 1873 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1874
1875 if (HAS_PCH_IBX(dev_priv->dev)) {
1876 /*
1877 * make the BPC in transcoder be consistent with
1878 * that in pipeconf reg.
1879 */
dfd07d72
DV
1880 val &= ~PIPECONF_BPC_MASK;
1881 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1882 }
5f7f726d
PZ
1883
1884 val &= ~TRANS_INTERLACE_MASK;
1885 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1886 if (HAS_PCH_IBX(dev_priv->dev) &&
1887 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1888 val |= TRANS_LEGACY_INTERLACED_ILK;
1889 else
1890 val |= TRANS_INTERLACED;
5f7f726d
PZ
1891 else
1892 val |= TRANS_PROGRESSIVE;
1893
040484af
JB
1894 I915_WRITE(reg, val | TRANS_ENABLE);
1895 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1896 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1897}
1898
8fb033d7 1899static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1900 enum transcoder cpu_transcoder)
040484af 1901{
8fb033d7 1902 u32 val, pipeconf_val;
8fb033d7
PZ
1903
1904 /* PCH only available on ILK+ */
55522f37 1905 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1906
8fb033d7 1907 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1908 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1909 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1910
223a6fdf
PZ
1911 /* Workaround: set timing override bit. */
1912 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1913 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1914 I915_WRITE(_TRANSA_CHICKEN2, val);
1915
25f3ef11 1916 val = TRANS_ENABLE;
937bb610 1917 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1918
9a76b1c6
PZ
1919 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1920 PIPECONF_INTERLACED_ILK)
a35f2679 1921 val |= TRANS_INTERLACED;
8fb033d7
PZ
1922 else
1923 val |= TRANS_PROGRESSIVE;
1924
ab9412ba
DV
1925 I915_WRITE(LPT_TRANSCONF, val);
1926 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1927 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1928}
1929
b8a4f404
PZ
1930static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1931 enum pipe pipe)
040484af 1932{
23670b32
DV
1933 struct drm_device *dev = dev_priv->dev;
1934 uint32_t reg, val;
040484af
JB
1935
1936 /* FDI relies on the transcoder */
1937 assert_fdi_tx_disabled(dev_priv, pipe);
1938 assert_fdi_rx_disabled(dev_priv, pipe);
1939
291906f1
JB
1940 /* Ports must be off as well */
1941 assert_pch_ports_disabled(dev_priv, pipe);
1942
ab9412ba 1943 reg = PCH_TRANSCONF(pipe);
040484af
JB
1944 val = I915_READ(reg);
1945 val &= ~TRANS_ENABLE;
1946 I915_WRITE(reg, val);
1947 /* wait for PCH transcoder off, transcoder state */
1948 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1949 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1950
1951 if (!HAS_PCH_IBX(dev)) {
1952 /* Workaround: Clear the timing override chicken bit again. */
1953 reg = TRANS_CHICKEN2(pipe);
1954 val = I915_READ(reg);
1955 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1956 I915_WRITE(reg, val);
1957 }
040484af
JB
1958}
1959
ab4d966c 1960static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1961{
8fb033d7
PZ
1962 u32 val;
1963
ab9412ba 1964 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1965 val &= ~TRANS_ENABLE;
ab9412ba 1966 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1967 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1968 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1969 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1970
1971 /* Workaround: clear timing override bit. */
1972 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1973 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1974 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1975}
1976
b24e7179 1977/**
309cfea8 1978 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1979 * @crtc: crtc responsible for the pipe
b24e7179 1980 *
0372264a 1981 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1982 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1983 */
e1fdc473 1984static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1985{
0372264a
PZ
1986 struct drm_device *dev = crtc->base.dev;
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1990 pipe);
1a240d4d 1991 enum pipe pch_transcoder;
b24e7179
JB
1992 int reg;
1993 u32 val;
1994
58c6eaa2 1995 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1996 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1997 assert_sprites_disabled(dev_priv, pipe);
1998
681e5811 1999 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2000 pch_transcoder = TRANSCODER_A;
2001 else
2002 pch_transcoder = pipe;
2003
b24e7179
JB
2004 /*
2005 * A pipe without a PLL won't actually be able to drive bits from
2006 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2007 * need the check.
2008 */
2009 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2010 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2011 assert_dsi_pll_enabled(dev_priv);
2012 else
2013 assert_pll_enabled(dev_priv, pipe);
040484af 2014 else {
30421c4f 2015 if (crtc->config.has_pch_encoder) {
040484af 2016 /* if driving the PCH, we need FDI enabled */
cc391bbb 2017 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2018 assert_fdi_tx_pll_enabled(dev_priv,
2019 (enum pipe) cpu_transcoder);
040484af
JB
2020 }
2021 /* FIXME: assert CPU port conditions for SNB+ */
2022 }
b24e7179 2023
702e7a56 2024 reg = PIPECONF(cpu_transcoder);
b24e7179 2025 val = I915_READ(reg);
7ad25d48 2026 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2027 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2028 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2029 return;
7ad25d48 2030 }
00d70b15
CW
2031
2032 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2033 POSTING_READ(reg);
b24e7179
JB
2034}
2035
2036/**
309cfea8 2037 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2038 * @crtc: crtc whose pipes is to be disabled
b24e7179 2039 *
575f7ab7
VS
2040 * Disable the pipe of @crtc, making sure that various hardware
2041 * specific requirements are met, if applicable, e.g. plane
2042 * disabled, panel fitter off, etc.
b24e7179
JB
2043 *
2044 * Will wait until the pipe has shut down before returning.
2045 */
575f7ab7 2046static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2047{
575f7ab7
VS
2048 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2049 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2050 enum pipe pipe = crtc->pipe;
b24e7179
JB
2051 int reg;
2052 u32 val;
2053
2054 /*
2055 * Make sure planes won't keep trying to pump pixels to us,
2056 * or we might hang the display.
2057 */
2058 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2059 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2060 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2061
702e7a56 2062 reg = PIPECONF(cpu_transcoder);
b24e7179 2063 val = I915_READ(reg);
00d70b15
CW
2064 if ((val & PIPECONF_ENABLE) == 0)
2065 return;
2066
67adc644
VS
2067 /*
2068 * Double wide has implications for planes
2069 * so best keep it disabled when not needed.
2070 */
2071 if (crtc->config.double_wide)
2072 val &= ~PIPECONF_DOUBLE_WIDE;
2073
2074 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2075 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2076 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2077 val &= ~PIPECONF_ENABLE;
2078
2079 I915_WRITE(reg, val);
2080 if ((val & PIPECONF_ENABLE) == 0)
2081 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2082}
2083
d74362c9
KP
2084/*
2085 * Plane regs are double buffered, going from enabled->disabled needs a
2086 * trigger in order to latch. The display address reg provides this.
2087 */
1dba99f4
VS
2088void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2089 enum plane plane)
d74362c9 2090{
3d13ef2e
DL
2091 struct drm_device *dev = dev_priv->dev;
2092 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2093
2094 I915_WRITE(reg, I915_READ(reg));
2095 POSTING_READ(reg);
d74362c9
KP
2096}
2097
b24e7179 2098/**
262ca2b0 2099 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2100 * @plane: plane to be enabled
2101 * @crtc: crtc for the plane
b24e7179 2102 *
fdd508a6 2103 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2104 */
fdd508a6
VS
2105static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2106 struct drm_crtc *crtc)
b24e7179 2107{
fdd508a6
VS
2108 struct drm_device *dev = plane->dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2111
2112 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2113 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2114
98ec7739
VS
2115 if (intel_crtc->primary_enabled)
2116 return;
0037f71c 2117
4c445e0e 2118 intel_crtc->primary_enabled = true;
939c2fe8 2119
fdd508a6
VS
2120 dev_priv->display.update_primary_plane(crtc, plane->fb,
2121 crtc->x, crtc->y);
33c3b0d1
VS
2122
2123 /*
2124 * BDW signals flip done immediately if the plane
2125 * is disabled, even if the plane enable is already
2126 * armed to occur at the next vblank :(
2127 */
2128 if (IS_BROADWELL(dev))
2129 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2130}
2131
b24e7179 2132/**
262ca2b0 2133 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2134 * @plane: plane to be disabled
2135 * @crtc: crtc for the plane
b24e7179 2136 *
fdd508a6 2137 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2138 */
fdd508a6
VS
2139static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2140 struct drm_crtc *crtc)
b24e7179 2141{
fdd508a6
VS
2142 struct drm_device *dev = plane->dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145
2146 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2147
98ec7739
VS
2148 if (!intel_crtc->primary_enabled)
2149 return;
0037f71c 2150
4c445e0e 2151 intel_crtc->primary_enabled = false;
939c2fe8 2152
fdd508a6
VS
2153 dev_priv->display.update_primary_plane(crtc, plane->fb,
2154 crtc->x, crtc->y);
b24e7179
JB
2155}
2156
693db184
CW
2157static bool need_vtd_wa(struct drm_device *dev)
2158{
2159#ifdef CONFIG_INTEL_IOMMU
2160 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2161 return true;
2162#endif
2163 return false;
2164}
2165
a57ce0b2
JB
2166static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2167{
2168 int tile_height;
2169
2170 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2171 return ALIGN(height, tile_height);
2172}
2173
127bd2ac 2174int
48b956c5 2175intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2176 struct drm_i915_gem_object *obj,
a4872ba6 2177 struct intel_engine_cs *pipelined)
6b95a207 2178{
ce453d81 2179 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2180 u32 alignment;
2181 int ret;
2182
ebcdd39e
MR
2183 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2184
05394f39 2185 switch (obj->tiling_mode) {
6b95a207 2186 case I915_TILING_NONE:
1fada4cc
DL
2187 if (INTEL_INFO(dev)->gen >= 9)
2188 alignment = 256 * 1024;
2189 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2190 alignment = 128 * 1024;
a6c45cf0 2191 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2192 alignment = 4 * 1024;
2193 else
2194 alignment = 64 * 1024;
6b95a207
KH
2195 break;
2196 case I915_TILING_X:
1fada4cc
DL
2197 if (INTEL_INFO(dev)->gen >= 9)
2198 alignment = 256 * 1024;
2199 else {
2200 /* pin() will align the object as required by fence */
2201 alignment = 0;
2202 }
6b95a207
KH
2203 break;
2204 case I915_TILING_Y:
80075d49 2205 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2206 return -EINVAL;
2207 default:
2208 BUG();
2209 }
2210
693db184
CW
2211 /* Note that the w/a also requires 64 PTE of padding following the
2212 * bo. We currently fill all unused PTE with the shadow page and so
2213 * we should always have valid PTE following the scanout preventing
2214 * the VT-d warning.
2215 */
2216 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2217 alignment = 256 * 1024;
2218
d6dd6843
PZ
2219 /*
2220 * Global gtt pte registers are special registers which actually forward
2221 * writes to a chunk of system memory. Which means that there is no risk
2222 * that the register values disappear as soon as we call
2223 * intel_runtime_pm_put(), so it is correct to wrap only the
2224 * pin/unpin/fence and not more.
2225 */
2226 intel_runtime_pm_get(dev_priv);
2227
ce453d81 2228 dev_priv->mm.interruptible = false;
2da3b9b9 2229 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2230 if (ret)
ce453d81 2231 goto err_interruptible;
6b95a207
KH
2232
2233 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2234 * fence, whereas 965+ only requires a fence if using
2235 * framebuffer compression. For simplicity, we always install
2236 * a fence as the cost is not that onerous.
2237 */
06d98131 2238 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2239 if (ret)
2240 goto err_unpin;
1690e1eb 2241
9a5a53b3 2242 i915_gem_object_pin_fence(obj);
6b95a207 2243
ce453d81 2244 dev_priv->mm.interruptible = true;
d6dd6843 2245 intel_runtime_pm_put(dev_priv);
6b95a207 2246 return 0;
48b956c5
CW
2247
2248err_unpin:
cc98b413 2249 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2250err_interruptible:
2251 dev_priv->mm.interruptible = true;
d6dd6843 2252 intel_runtime_pm_put(dev_priv);
48b956c5 2253 return ret;
6b95a207
KH
2254}
2255
1690e1eb
CW
2256void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2257{
ebcdd39e
MR
2258 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2259
1690e1eb 2260 i915_gem_object_unpin_fence(obj);
cc98b413 2261 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2262}
2263
c2c75131
DV
2264/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2265 * is assumed to be a power-of-two. */
bc752862
CW
2266unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2267 unsigned int tiling_mode,
2268 unsigned int cpp,
2269 unsigned int pitch)
c2c75131 2270{
bc752862
CW
2271 if (tiling_mode != I915_TILING_NONE) {
2272 unsigned int tile_rows, tiles;
c2c75131 2273
bc752862
CW
2274 tile_rows = *y / 8;
2275 *y %= 8;
c2c75131 2276
bc752862
CW
2277 tiles = *x / (512/cpp);
2278 *x %= 512/cpp;
2279
2280 return tile_rows * pitch * 8 + tiles * 4096;
2281 } else {
2282 unsigned int offset;
2283
2284 offset = *y * pitch + *x * cpp;
2285 *y = 0;
2286 *x = (offset & 4095) / cpp;
2287 return offset & -4096;
2288 }
c2c75131
DV
2289}
2290
46f297fb
JB
2291int intel_format_to_fourcc(int format)
2292{
2293 switch (format) {
2294 case DISPPLANE_8BPP:
2295 return DRM_FORMAT_C8;
2296 case DISPPLANE_BGRX555:
2297 return DRM_FORMAT_XRGB1555;
2298 case DISPPLANE_BGRX565:
2299 return DRM_FORMAT_RGB565;
2300 default:
2301 case DISPPLANE_BGRX888:
2302 return DRM_FORMAT_XRGB8888;
2303 case DISPPLANE_RGBX888:
2304 return DRM_FORMAT_XBGR8888;
2305 case DISPPLANE_BGRX101010:
2306 return DRM_FORMAT_XRGB2101010;
2307 case DISPPLANE_RGBX101010:
2308 return DRM_FORMAT_XBGR2101010;
2309 }
2310}
2311
484b41dd 2312static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2313 struct intel_plane_config *plane_config)
2314{
2315 struct drm_device *dev = crtc->base.dev;
2316 struct drm_i915_gem_object *obj = NULL;
2317 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2318 u32 base = plane_config->base;
2319
ff2652ea
CW
2320 if (plane_config->size == 0)
2321 return false;
2322
46f297fb
JB
2323 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2324 plane_config->size);
2325 if (!obj)
484b41dd 2326 return false;
46f297fb
JB
2327
2328 if (plane_config->tiled) {
2329 obj->tiling_mode = I915_TILING_X;
66e514c1 2330 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2331 }
2332
66e514c1
DA
2333 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2334 mode_cmd.width = crtc->base.primary->fb->width;
2335 mode_cmd.height = crtc->base.primary->fb->height;
2336 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2337
2338 mutex_lock(&dev->struct_mutex);
2339
66e514c1 2340 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2341 &mode_cmd, obj)) {
46f297fb
JB
2342 DRM_DEBUG_KMS("intel fb init failed\n");
2343 goto out_unref_obj;
2344 }
2345
a071fa00 2346 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2347 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2348
2349 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2350 return true;
46f297fb
JB
2351
2352out_unref_obj:
2353 drm_gem_object_unreference(&obj->base);
2354 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2355 return false;
2356}
2357
2358static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2359 struct intel_plane_config *plane_config)
2360{
2361 struct drm_device *dev = intel_crtc->base.dev;
2362 struct drm_crtc *c;
2363 struct intel_crtc *i;
2ff8fde1 2364 struct drm_i915_gem_object *obj;
484b41dd 2365
66e514c1 2366 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2367 return;
2368
2369 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2370 return;
2371
66e514c1
DA
2372 kfree(intel_crtc->base.primary->fb);
2373 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2374
2375 /*
2376 * Failed to alloc the obj, check to see if we should share
2377 * an fb with another CRTC instead
2378 */
70e1e0ec 2379 for_each_crtc(dev, c) {
484b41dd
JB
2380 i = to_intel_crtc(c);
2381
2382 if (c == &intel_crtc->base)
2383 continue;
2384
2ff8fde1
MR
2385 if (!i->active)
2386 continue;
2387
2388 obj = intel_fb_obj(c->primary->fb);
2389 if (obj == NULL)
484b41dd
JB
2390 continue;
2391
2ff8fde1 2392 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2393 drm_framebuffer_reference(c->primary->fb);
2394 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2395 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2396 break;
2397 }
2398 }
46f297fb
JB
2399}
2400
29b9bde6
DV
2401static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2402 struct drm_framebuffer *fb,
2403 int x, int y)
81255565
JB
2404{
2405 struct drm_device *dev = crtc->dev;
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2408 struct drm_i915_gem_object *obj;
81255565 2409 int plane = intel_crtc->plane;
e506a0c6 2410 unsigned long linear_offset;
81255565 2411 u32 dspcntr;
f45651ba 2412 u32 reg = DSPCNTR(plane);
48404c1e 2413 int pixel_size;
f45651ba 2414
fdd508a6
VS
2415 if (!intel_crtc->primary_enabled) {
2416 I915_WRITE(reg, 0);
2417 if (INTEL_INFO(dev)->gen >= 4)
2418 I915_WRITE(DSPSURF(plane), 0);
2419 else
2420 I915_WRITE(DSPADDR(plane), 0);
2421 POSTING_READ(reg);
2422 return;
2423 }
2424
c9ba6fad
VS
2425 obj = intel_fb_obj(fb);
2426 if (WARN_ON(obj == NULL))
2427 return;
2428
2429 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2430
f45651ba
VS
2431 dspcntr = DISPPLANE_GAMMA_ENABLE;
2432
fdd508a6 2433 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2434
2435 if (INTEL_INFO(dev)->gen < 4) {
2436 if (intel_crtc->pipe == PIPE_B)
2437 dspcntr |= DISPPLANE_SEL_PIPE_B;
2438
2439 /* pipesrc and dspsize control the size that is scaled from,
2440 * which should always be the user's requested size.
2441 */
2442 I915_WRITE(DSPSIZE(plane),
2443 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2444 (intel_crtc->config.pipe_src_w - 1));
2445 I915_WRITE(DSPPOS(plane), 0);
2446 }
81255565 2447
57779d06
VS
2448 switch (fb->pixel_format) {
2449 case DRM_FORMAT_C8:
81255565
JB
2450 dspcntr |= DISPPLANE_8BPP;
2451 break;
57779d06
VS
2452 case DRM_FORMAT_XRGB1555:
2453 case DRM_FORMAT_ARGB1555:
2454 dspcntr |= DISPPLANE_BGRX555;
81255565 2455 break;
57779d06
VS
2456 case DRM_FORMAT_RGB565:
2457 dspcntr |= DISPPLANE_BGRX565;
2458 break;
2459 case DRM_FORMAT_XRGB8888:
2460 case DRM_FORMAT_ARGB8888:
2461 dspcntr |= DISPPLANE_BGRX888;
2462 break;
2463 case DRM_FORMAT_XBGR8888:
2464 case DRM_FORMAT_ABGR8888:
2465 dspcntr |= DISPPLANE_RGBX888;
2466 break;
2467 case DRM_FORMAT_XRGB2101010:
2468 case DRM_FORMAT_ARGB2101010:
2469 dspcntr |= DISPPLANE_BGRX101010;
2470 break;
2471 case DRM_FORMAT_XBGR2101010:
2472 case DRM_FORMAT_ABGR2101010:
2473 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2474 break;
2475 default:
baba133a 2476 BUG();
81255565 2477 }
57779d06 2478
f45651ba
VS
2479 if (INTEL_INFO(dev)->gen >= 4 &&
2480 obj->tiling_mode != I915_TILING_NONE)
2481 dspcntr |= DISPPLANE_TILED;
81255565 2482
de1aa629
VS
2483 if (IS_G4X(dev))
2484 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2485
b9897127 2486 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2487
c2c75131
DV
2488 if (INTEL_INFO(dev)->gen >= 4) {
2489 intel_crtc->dspaddr_offset =
bc752862 2490 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2491 pixel_size,
bc752862 2492 fb->pitches[0]);
c2c75131
DV
2493 linear_offset -= intel_crtc->dspaddr_offset;
2494 } else {
e506a0c6 2495 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2496 }
e506a0c6 2497
48404c1e
SJ
2498 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2499 dspcntr |= DISPPLANE_ROTATE_180;
2500
2501 x += (intel_crtc->config.pipe_src_w - 1);
2502 y += (intel_crtc->config.pipe_src_h - 1);
2503
2504 /* Finding the last pixel of the last line of the display
2505 data and adding to linear_offset*/
2506 linear_offset +=
2507 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2508 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2509 }
2510
2511 I915_WRITE(reg, dspcntr);
2512
f343c5f6
BW
2513 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2514 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2515 fb->pitches[0]);
01f2c773 2516 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2517 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2518 I915_WRITE(DSPSURF(plane),
2519 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2520 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2521 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2522 } else
f343c5f6 2523 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2524 POSTING_READ(reg);
17638cd6
JB
2525}
2526
29b9bde6
DV
2527static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2528 struct drm_framebuffer *fb,
2529 int x, int y)
17638cd6
JB
2530{
2531 struct drm_device *dev = crtc->dev;
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2534 struct drm_i915_gem_object *obj;
17638cd6 2535 int plane = intel_crtc->plane;
e506a0c6 2536 unsigned long linear_offset;
17638cd6 2537 u32 dspcntr;
f45651ba 2538 u32 reg = DSPCNTR(plane);
48404c1e 2539 int pixel_size;
f45651ba 2540
fdd508a6
VS
2541 if (!intel_crtc->primary_enabled) {
2542 I915_WRITE(reg, 0);
2543 I915_WRITE(DSPSURF(plane), 0);
2544 POSTING_READ(reg);
2545 return;
2546 }
2547
c9ba6fad
VS
2548 obj = intel_fb_obj(fb);
2549 if (WARN_ON(obj == NULL))
2550 return;
2551
2552 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2553
f45651ba
VS
2554 dspcntr = DISPPLANE_GAMMA_ENABLE;
2555
fdd508a6 2556 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2557
2558 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2559 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2560
57779d06
VS
2561 switch (fb->pixel_format) {
2562 case DRM_FORMAT_C8:
17638cd6
JB
2563 dspcntr |= DISPPLANE_8BPP;
2564 break;
57779d06
VS
2565 case DRM_FORMAT_RGB565:
2566 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2567 break;
57779d06
VS
2568 case DRM_FORMAT_XRGB8888:
2569 case DRM_FORMAT_ARGB8888:
2570 dspcntr |= DISPPLANE_BGRX888;
2571 break;
2572 case DRM_FORMAT_XBGR8888:
2573 case DRM_FORMAT_ABGR8888:
2574 dspcntr |= DISPPLANE_RGBX888;
2575 break;
2576 case DRM_FORMAT_XRGB2101010:
2577 case DRM_FORMAT_ARGB2101010:
2578 dspcntr |= DISPPLANE_BGRX101010;
2579 break;
2580 case DRM_FORMAT_XBGR2101010:
2581 case DRM_FORMAT_ABGR2101010:
2582 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2583 break;
2584 default:
baba133a 2585 BUG();
17638cd6
JB
2586 }
2587
2588 if (obj->tiling_mode != I915_TILING_NONE)
2589 dspcntr |= DISPPLANE_TILED;
17638cd6 2590
f45651ba 2591 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2592 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2593
b9897127 2594 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2595 intel_crtc->dspaddr_offset =
bc752862 2596 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2597 pixel_size,
bc752862 2598 fb->pitches[0]);
c2c75131 2599 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2600 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2601 dspcntr |= DISPPLANE_ROTATE_180;
2602
2603 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2604 x += (intel_crtc->config.pipe_src_w - 1);
2605 y += (intel_crtc->config.pipe_src_h - 1);
2606
2607 /* Finding the last pixel of the last line of the display
2608 data and adding to linear_offset*/
2609 linear_offset +=
2610 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2611 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2612 }
2613 }
2614
2615 I915_WRITE(reg, dspcntr);
17638cd6 2616
f343c5f6
BW
2617 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2618 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2619 fb->pitches[0]);
01f2c773 2620 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2621 I915_WRITE(DSPSURF(plane),
2622 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2623 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2624 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2625 } else {
2626 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2627 I915_WRITE(DSPLINOFF(plane), linear_offset);
2628 }
17638cd6 2629 POSTING_READ(reg);
17638cd6
JB
2630}
2631
70d21f0e
DL
2632static void skylake_update_primary_plane(struct drm_crtc *crtc,
2633 struct drm_framebuffer *fb,
2634 int x, int y)
2635{
2636 struct drm_device *dev = crtc->dev;
2637 struct drm_i915_private *dev_priv = dev->dev_private;
2638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2639 struct intel_framebuffer *intel_fb;
2640 struct drm_i915_gem_object *obj;
2641 int pipe = intel_crtc->pipe;
2642 u32 plane_ctl, stride;
2643
2644 if (!intel_crtc->primary_enabled) {
2645 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2646 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2647 POSTING_READ(PLANE_CTL(pipe, 0));
2648 return;
2649 }
2650
2651 plane_ctl = PLANE_CTL_ENABLE |
2652 PLANE_CTL_PIPE_GAMMA_ENABLE |
2653 PLANE_CTL_PIPE_CSC_ENABLE;
2654
2655 switch (fb->pixel_format) {
2656 case DRM_FORMAT_RGB565:
2657 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2658 break;
2659 case DRM_FORMAT_XRGB8888:
2660 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2661 break;
2662 case DRM_FORMAT_XBGR8888:
2663 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2664 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2665 break;
2666 case DRM_FORMAT_XRGB2101010:
2667 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2668 break;
2669 case DRM_FORMAT_XBGR2101010:
2670 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2671 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2672 break;
2673 default:
2674 BUG();
2675 }
2676
2677 intel_fb = to_intel_framebuffer(fb);
2678 obj = intel_fb->obj;
2679
2680 /*
2681 * The stride is either expressed as a multiple of 64 bytes chunks for
2682 * linear buffers or in number of tiles for tiled buffers.
2683 */
2684 switch (obj->tiling_mode) {
2685 case I915_TILING_NONE:
2686 stride = fb->pitches[0] >> 6;
2687 break;
2688 case I915_TILING_X:
2689 plane_ctl |= PLANE_CTL_TILED_X;
2690 stride = fb->pitches[0] >> 9;
2691 break;
2692 default:
2693 BUG();
2694 }
2695
2696 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2697 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2698 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2699
2700 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2701
2702 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2703 i915_gem_obj_ggtt_offset(obj),
2704 x, y, fb->width, fb->height,
2705 fb->pitches[0]);
2706
2707 I915_WRITE(PLANE_POS(pipe, 0), 0);
2708 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2709 I915_WRITE(PLANE_SIZE(pipe, 0),
2710 (intel_crtc->config.pipe_src_h - 1) << 16 |
2711 (intel_crtc->config.pipe_src_w - 1));
2712 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2713 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2714
2715 POSTING_READ(PLANE_SURF(pipe, 0));
2716}
2717
17638cd6
JB
2718/* Assume fb object is pinned & idle & fenced and just update base pointers */
2719static int
2720intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2721 int x, int y, enum mode_set_atomic state)
2722{
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2725
6b8e6ed0
CW
2726 if (dev_priv->display.disable_fbc)
2727 dev_priv->display.disable_fbc(dev);
81255565 2728
29b9bde6
DV
2729 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2730
2731 return 0;
81255565
JB
2732}
2733
96a02917
VS
2734void intel_display_handle_reset(struct drm_device *dev)
2735{
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 struct drm_crtc *crtc;
2738
2739 /*
2740 * Flips in the rings have been nuked by the reset,
2741 * so complete all pending flips so that user space
2742 * will get its events and not get stuck.
2743 *
2744 * Also update the base address of all primary
2745 * planes to the the last fb to make sure we're
2746 * showing the correct fb after a reset.
2747 *
2748 * Need to make two loops over the crtcs so that we
2749 * don't try to grab a crtc mutex before the
2750 * pending_flip_queue really got woken up.
2751 */
2752
70e1e0ec 2753 for_each_crtc(dev, crtc) {
96a02917
VS
2754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2755 enum plane plane = intel_crtc->plane;
2756
2757 intel_prepare_page_flip(dev, plane);
2758 intel_finish_page_flip_plane(dev, plane);
2759 }
2760
70e1e0ec 2761 for_each_crtc(dev, crtc) {
96a02917
VS
2762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2763
51fd371b 2764 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2765 /*
2766 * FIXME: Once we have proper support for primary planes (and
2767 * disabling them without disabling the entire crtc) allow again
66e514c1 2768 * a NULL crtc->primary->fb.
947fdaad 2769 */
f4510a27 2770 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2771 dev_priv->display.update_primary_plane(crtc,
66e514c1 2772 crtc->primary->fb,
262ca2b0
MR
2773 crtc->x,
2774 crtc->y);
51fd371b 2775 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2776 }
2777}
2778
14667a4b
CW
2779static int
2780intel_finish_fb(struct drm_framebuffer *old_fb)
2781{
2ff8fde1 2782 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2783 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2784 bool was_interruptible = dev_priv->mm.interruptible;
2785 int ret;
2786
14667a4b
CW
2787 /* Big Hammer, we also need to ensure that any pending
2788 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2789 * current scanout is retired before unpinning the old
2790 * framebuffer.
2791 *
2792 * This should only fail upon a hung GPU, in which case we
2793 * can safely continue.
2794 */
2795 dev_priv->mm.interruptible = false;
2796 ret = i915_gem_object_finish_gpu(obj);
2797 dev_priv->mm.interruptible = was_interruptible;
2798
2799 return ret;
2800}
2801
7d5e3799
CW
2802static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2803{
2804 struct drm_device *dev = crtc->dev;
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2807 bool pending;
2808
2809 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2810 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2811 return false;
2812
5e2d7afc 2813 spin_lock_irq(&dev->event_lock);
7d5e3799 2814 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2815 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2816
2817 return pending;
2818}
2819
e30e8f75
GP
2820static void intel_update_pipe_size(struct intel_crtc *crtc)
2821{
2822 struct drm_device *dev = crtc->base.dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 const struct drm_display_mode *adjusted_mode;
2825
2826 if (!i915.fastboot)
2827 return;
2828
2829 /*
2830 * Update pipe size and adjust fitter if needed: the reason for this is
2831 * that in compute_mode_changes we check the native mode (not the pfit
2832 * mode) to see if we can flip rather than do a full mode set. In the
2833 * fastboot case, we'll flip, but if we don't update the pipesrc and
2834 * pfit state, we'll end up with a big fb scanned out into the wrong
2835 * sized surface.
2836 *
2837 * To fix this properly, we need to hoist the checks up into
2838 * compute_mode_changes (or above), check the actual pfit state and
2839 * whether the platform allows pfit disable with pipe active, and only
2840 * then update the pipesrc and pfit state, even on the flip path.
2841 */
2842
2843 adjusted_mode = &crtc->config.adjusted_mode;
2844
2845 I915_WRITE(PIPESRC(crtc->pipe),
2846 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2847 (adjusted_mode->crtc_vdisplay - 1));
2848 if (!crtc->config.pch_pfit.enabled &&
2849 (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) ||
2850 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))) {
2851 I915_WRITE(PF_CTL(crtc->pipe), 0);
2852 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2853 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2854 }
2855 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2856 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2857}
2858
5c3b82e2 2859static int
3c4fdcfb 2860intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2861 struct drm_framebuffer *fb)
79e53945
JB
2862{
2863 struct drm_device *dev = crtc->dev;
6b8e6ed0 2864 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2866 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2867 struct drm_framebuffer *old_fb = crtc->primary->fb;
2868 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2869 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2870 int ret;
79e53945 2871
7d5e3799
CW
2872 if (intel_crtc_has_pending_flip(crtc)) {
2873 DRM_ERROR("pipe is still busy with an old pageflip\n");
2874 return -EBUSY;
2875 }
2876
79e53945 2877 /* no fb bound */
94352cf9 2878 if (!fb) {
a5071c2f 2879 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2880 return 0;
2881 }
2882
7eb552ae 2883 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2884 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2885 plane_name(intel_crtc->plane),
2886 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2887 return -EINVAL;
79e53945
JB
2888 }
2889
5c3b82e2 2890 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2891 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2892 if (ret == 0)
91565c85 2893 i915_gem_track_fb(old_obj, obj,
a071fa00 2894 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2895 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2896 if (ret != 0) {
a5071c2f 2897 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2898 return ret;
2899 }
79e53945 2900
e30e8f75 2901 intel_update_pipe_size(intel_crtc);
4d6a3e63 2902
29b9bde6 2903 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2904
f99d7069
DV
2905 if (intel_crtc->active)
2906 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2907
f4510a27 2908 crtc->primary->fb = fb;
6c4c86f5
DV
2909 crtc->x = x;
2910 crtc->y = y;
94352cf9 2911
b7f1de28 2912 if (old_fb) {
d7697eea
DV
2913 if (intel_crtc->active && old_fb != fb)
2914 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2915 mutex_lock(&dev->struct_mutex);
2ff8fde1 2916 intel_unpin_fb_obj(old_obj);
8ac36ec1 2917 mutex_unlock(&dev->struct_mutex);
b7f1de28 2918 }
652c393a 2919
8ac36ec1 2920 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2921 intel_update_fbc(dev);
5c3b82e2 2922 mutex_unlock(&dev->struct_mutex);
79e53945 2923
5c3b82e2 2924 return 0;
79e53945
JB
2925}
2926
5e84e1a4
ZW
2927static void intel_fdi_normal_train(struct drm_crtc *crtc)
2928{
2929 struct drm_device *dev = crtc->dev;
2930 struct drm_i915_private *dev_priv = dev->dev_private;
2931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2932 int pipe = intel_crtc->pipe;
2933 u32 reg, temp;
2934
2935 /* enable normal train */
2936 reg = FDI_TX_CTL(pipe);
2937 temp = I915_READ(reg);
61e499bf 2938 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2939 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2940 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2941 } else {
2942 temp &= ~FDI_LINK_TRAIN_NONE;
2943 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2944 }
5e84e1a4
ZW
2945 I915_WRITE(reg, temp);
2946
2947 reg = FDI_RX_CTL(pipe);
2948 temp = I915_READ(reg);
2949 if (HAS_PCH_CPT(dev)) {
2950 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2951 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2952 } else {
2953 temp &= ~FDI_LINK_TRAIN_NONE;
2954 temp |= FDI_LINK_TRAIN_NONE;
2955 }
2956 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2957
2958 /* wait one idle pattern time */
2959 POSTING_READ(reg);
2960 udelay(1000);
357555c0
JB
2961
2962 /* IVB wants error correction enabled */
2963 if (IS_IVYBRIDGE(dev))
2964 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2965 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2966}
2967
1fbc0d78 2968static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2969{
1fbc0d78
DV
2970 return crtc->base.enabled && crtc->active &&
2971 crtc->config.has_pch_encoder;
1e833f40
DV
2972}
2973
01a415fd
DV
2974static void ivb_modeset_global_resources(struct drm_device *dev)
2975{
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 struct intel_crtc *pipe_B_crtc =
2978 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2979 struct intel_crtc *pipe_C_crtc =
2980 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2981 uint32_t temp;
2982
1e833f40
DV
2983 /*
2984 * When everything is off disable fdi C so that we could enable fdi B
2985 * with all lanes. Note that we don't care about enabled pipes without
2986 * an enabled pch encoder.
2987 */
2988 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2989 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2990 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2991 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2992
2993 temp = I915_READ(SOUTH_CHICKEN1);
2994 temp &= ~FDI_BC_BIFURCATION_SELECT;
2995 DRM_DEBUG_KMS("disabling fdi C rx\n");
2996 I915_WRITE(SOUTH_CHICKEN1, temp);
2997 }
2998}
2999
8db9d77b
ZW
3000/* The FDI link training functions for ILK/Ibexpeak. */
3001static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3002{
3003 struct drm_device *dev = crtc->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006 int pipe = intel_crtc->pipe;
5eddb70b 3007 u32 reg, temp, tries;
8db9d77b 3008
1c8562f6 3009 /* FDI needs bits from pipe first */
0fc932b8 3010 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3011
e1a44743
AJ
3012 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3013 for train result */
5eddb70b
CW
3014 reg = FDI_RX_IMR(pipe);
3015 temp = I915_READ(reg);
e1a44743
AJ
3016 temp &= ~FDI_RX_SYMBOL_LOCK;
3017 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3018 I915_WRITE(reg, temp);
3019 I915_READ(reg);
e1a44743
AJ
3020 udelay(150);
3021
8db9d77b 3022 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3023 reg = FDI_TX_CTL(pipe);
3024 temp = I915_READ(reg);
627eb5a3
DV
3025 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3026 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3027 temp &= ~FDI_LINK_TRAIN_NONE;
3028 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3029 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3030
5eddb70b
CW
3031 reg = FDI_RX_CTL(pipe);
3032 temp = I915_READ(reg);
8db9d77b
ZW
3033 temp &= ~FDI_LINK_TRAIN_NONE;
3034 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3035 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3036
3037 POSTING_READ(reg);
8db9d77b
ZW
3038 udelay(150);
3039
5b2adf89 3040 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3041 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3042 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3043 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3044
5eddb70b 3045 reg = FDI_RX_IIR(pipe);
e1a44743 3046 for (tries = 0; tries < 5; tries++) {
5eddb70b 3047 temp = I915_READ(reg);
8db9d77b
ZW
3048 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3049
3050 if ((temp & FDI_RX_BIT_LOCK)) {
3051 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3052 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3053 break;
3054 }
8db9d77b 3055 }
e1a44743 3056 if (tries == 5)
5eddb70b 3057 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3058
3059 /* Train 2 */
5eddb70b
CW
3060 reg = FDI_TX_CTL(pipe);
3061 temp = I915_READ(reg);
8db9d77b
ZW
3062 temp &= ~FDI_LINK_TRAIN_NONE;
3063 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3064 I915_WRITE(reg, temp);
8db9d77b 3065
5eddb70b
CW
3066 reg = FDI_RX_CTL(pipe);
3067 temp = I915_READ(reg);
8db9d77b
ZW
3068 temp &= ~FDI_LINK_TRAIN_NONE;
3069 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3070 I915_WRITE(reg, temp);
8db9d77b 3071
5eddb70b
CW
3072 POSTING_READ(reg);
3073 udelay(150);
8db9d77b 3074
5eddb70b 3075 reg = FDI_RX_IIR(pipe);
e1a44743 3076 for (tries = 0; tries < 5; tries++) {
5eddb70b 3077 temp = I915_READ(reg);
8db9d77b
ZW
3078 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3079
3080 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3081 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3082 DRM_DEBUG_KMS("FDI train 2 done.\n");
3083 break;
3084 }
8db9d77b 3085 }
e1a44743 3086 if (tries == 5)
5eddb70b 3087 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3088
3089 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3090
8db9d77b
ZW
3091}
3092
0206e353 3093static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3094 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3095 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3096 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3097 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3098};
3099
3100/* The FDI link training functions for SNB/Cougarpoint. */
3101static void gen6_fdi_link_train(struct drm_crtc *crtc)
3102{
3103 struct drm_device *dev = crtc->dev;
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3106 int pipe = intel_crtc->pipe;
fa37d39e 3107 u32 reg, temp, i, retry;
8db9d77b 3108
e1a44743
AJ
3109 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3110 for train result */
5eddb70b
CW
3111 reg = FDI_RX_IMR(pipe);
3112 temp = I915_READ(reg);
e1a44743
AJ
3113 temp &= ~FDI_RX_SYMBOL_LOCK;
3114 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3115 I915_WRITE(reg, temp);
3116
3117 POSTING_READ(reg);
e1a44743
AJ
3118 udelay(150);
3119
8db9d77b 3120 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3121 reg = FDI_TX_CTL(pipe);
3122 temp = I915_READ(reg);
627eb5a3
DV
3123 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3124 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3125 temp &= ~FDI_LINK_TRAIN_NONE;
3126 temp |= FDI_LINK_TRAIN_PATTERN_1;
3127 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3128 /* SNB-B */
3129 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3130 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3131
d74cf324
DV
3132 I915_WRITE(FDI_RX_MISC(pipe),
3133 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3134
5eddb70b
CW
3135 reg = FDI_RX_CTL(pipe);
3136 temp = I915_READ(reg);
8db9d77b
ZW
3137 if (HAS_PCH_CPT(dev)) {
3138 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3139 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3140 } else {
3141 temp &= ~FDI_LINK_TRAIN_NONE;
3142 temp |= FDI_LINK_TRAIN_PATTERN_1;
3143 }
5eddb70b
CW
3144 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3145
3146 POSTING_READ(reg);
8db9d77b
ZW
3147 udelay(150);
3148
0206e353 3149 for (i = 0; i < 4; i++) {
5eddb70b
CW
3150 reg = FDI_TX_CTL(pipe);
3151 temp = I915_READ(reg);
8db9d77b
ZW
3152 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3153 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3154 I915_WRITE(reg, temp);
3155
3156 POSTING_READ(reg);
8db9d77b
ZW
3157 udelay(500);
3158
fa37d39e
SP
3159 for (retry = 0; retry < 5; retry++) {
3160 reg = FDI_RX_IIR(pipe);
3161 temp = I915_READ(reg);
3162 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3163 if (temp & FDI_RX_BIT_LOCK) {
3164 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3165 DRM_DEBUG_KMS("FDI train 1 done.\n");
3166 break;
3167 }
3168 udelay(50);
8db9d77b 3169 }
fa37d39e
SP
3170 if (retry < 5)
3171 break;
8db9d77b
ZW
3172 }
3173 if (i == 4)
5eddb70b 3174 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3175
3176 /* Train 2 */
5eddb70b
CW
3177 reg = FDI_TX_CTL(pipe);
3178 temp = I915_READ(reg);
8db9d77b
ZW
3179 temp &= ~FDI_LINK_TRAIN_NONE;
3180 temp |= FDI_LINK_TRAIN_PATTERN_2;
3181 if (IS_GEN6(dev)) {
3182 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3183 /* SNB-B */
3184 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3185 }
5eddb70b 3186 I915_WRITE(reg, temp);
8db9d77b 3187
5eddb70b
CW
3188 reg = FDI_RX_CTL(pipe);
3189 temp = I915_READ(reg);
8db9d77b
ZW
3190 if (HAS_PCH_CPT(dev)) {
3191 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3192 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3193 } else {
3194 temp &= ~FDI_LINK_TRAIN_NONE;
3195 temp |= FDI_LINK_TRAIN_PATTERN_2;
3196 }
5eddb70b
CW
3197 I915_WRITE(reg, temp);
3198
3199 POSTING_READ(reg);
8db9d77b
ZW
3200 udelay(150);
3201
0206e353 3202 for (i = 0; i < 4; i++) {
5eddb70b
CW
3203 reg = FDI_TX_CTL(pipe);
3204 temp = I915_READ(reg);
8db9d77b
ZW
3205 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3206 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3207 I915_WRITE(reg, temp);
3208
3209 POSTING_READ(reg);
8db9d77b
ZW
3210 udelay(500);
3211
fa37d39e
SP
3212 for (retry = 0; retry < 5; retry++) {
3213 reg = FDI_RX_IIR(pipe);
3214 temp = I915_READ(reg);
3215 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3216 if (temp & FDI_RX_SYMBOL_LOCK) {
3217 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3218 DRM_DEBUG_KMS("FDI train 2 done.\n");
3219 break;
3220 }
3221 udelay(50);
8db9d77b 3222 }
fa37d39e
SP
3223 if (retry < 5)
3224 break;
8db9d77b
ZW
3225 }
3226 if (i == 4)
5eddb70b 3227 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3228
3229 DRM_DEBUG_KMS("FDI train done.\n");
3230}
3231
357555c0
JB
3232/* Manual link training for Ivy Bridge A0 parts */
3233static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3234{
3235 struct drm_device *dev = crtc->dev;
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3238 int pipe = intel_crtc->pipe;
139ccd3f 3239 u32 reg, temp, i, j;
357555c0
JB
3240
3241 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3242 for train result */
3243 reg = FDI_RX_IMR(pipe);
3244 temp = I915_READ(reg);
3245 temp &= ~FDI_RX_SYMBOL_LOCK;
3246 temp &= ~FDI_RX_BIT_LOCK;
3247 I915_WRITE(reg, temp);
3248
3249 POSTING_READ(reg);
3250 udelay(150);
3251
01a415fd
DV
3252 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3253 I915_READ(FDI_RX_IIR(pipe)));
3254
139ccd3f
JB
3255 /* Try each vswing and preemphasis setting twice before moving on */
3256 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3257 /* disable first in case we need to retry */
3258 reg = FDI_TX_CTL(pipe);
3259 temp = I915_READ(reg);
3260 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3261 temp &= ~FDI_TX_ENABLE;
3262 I915_WRITE(reg, temp);
357555c0 3263
139ccd3f
JB
3264 reg = FDI_RX_CTL(pipe);
3265 temp = I915_READ(reg);
3266 temp &= ~FDI_LINK_TRAIN_AUTO;
3267 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3268 temp &= ~FDI_RX_ENABLE;
3269 I915_WRITE(reg, temp);
357555c0 3270
139ccd3f 3271 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
139ccd3f
JB
3274 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3275 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3276 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3277 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3278 temp |= snb_b_fdi_train_param[j/2];
3279 temp |= FDI_COMPOSITE_SYNC;
3280 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3281
139ccd3f
JB
3282 I915_WRITE(FDI_RX_MISC(pipe),
3283 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3284
139ccd3f 3285 reg = FDI_RX_CTL(pipe);
357555c0 3286 temp = I915_READ(reg);
139ccd3f
JB
3287 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3288 temp |= FDI_COMPOSITE_SYNC;
3289 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3290
139ccd3f
JB
3291 POSTING_READ(reg);
3292 udelay(1); /* should be 0.5us */
357555c0 3293
139ccd3f
JB
3294 for (i = 0; i < 4; i++) {
3295 reg = FDI_RX_IIR(pipe);
3296 temp = I915_READ(reg);
3297 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3298
139ccd3f
JB
3299 if (temp & FDI_RX_BIT_LOCK ||
3300 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3301 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3302 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3303 i);
3304 break;
3305 }
3306 udelay(1); /* should be 0.5us */
3307 }
3308 if (i == 4) {
3309 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3310 continue;
3311 }
357555c0 3312
139ccd3f 3313 /* Train 2 */
357555c0
JB
3314 reg = FDI_TX_CTL(pipe);
3315 temp = I915_READ(reg);
139ccd3f
JB
3316 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3317 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3318 I915_WRITE(reg, temp);
3319
3320 reg = FDI_RX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3323 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3324 I915_WRITE(reg, temp);
3325
3326 POSTING_READ(reg);
139ccd3f 3327 udelay(2); /* should be 1.5us */
357555c0 3328
139ccd3f
JB
3329 for (i = 0; i < 4; i++) {
3330 reg = FDI_RX_IIR(pipe);
3331 temp = I915_READ(reg);
3332 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3333
139ccd3f
JB
3334 if (temp & FDI_RX_SYMBOL_LOCK ||
3335 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3336 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3337 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3338 i);
3339 goto train_done;
3340 }
3341 udelay(2); /* should be 1.5us */
357555c0 3342 }
139ccd3f
JB
3343 if (i == 4)
3344 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3345 }
357555c0 3346
139ccd3f 3347train_done:
357555c0
JB
3348 DRM_DEBUG_KMS("FDI train done.\n");
3349}
3350
88cefb6c 3351static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3352{
88cefb6c 3353 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3354 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3355 int pipe = intel_crtc->pipe;
5eddb70b 3356 u32 reg, temp;
79e53945 3357
c64e311e 3358
c98e9dcf 3359 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3360 reg = FDI_RX_CTL(pipe);
3361 temp = I915_READ(reg);
627eb5a3
DV
3362 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3363 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3364 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3365 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3366
3367 POSTING_READ(reg);
c98e9dcf
JB
3368 udelay(200);
3369
3370 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3371 temp = I915_READ(reg);
3372 I915_WRITE(reg, temp | FDI_PCDCLK);
3373
3374 POSTING_READ(reg);
c98e9dcf
JB
3375 udelay(200);
3376
20749730
PZ
3377 /* Enable CPU FDI TX PLL, always on for Ironlake */
3378 reg = FDI_TX_CTL(pipe);
3379 temp = I915_READ(reg);
3380 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3381 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3382
20749730
PZ
3383 POSTING_READ(reg);
3384 udelay(100);
6be4a607 3385 }
0e23b99d
JB
3386}
3387
88cefb6c
DV
3388static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3389{
3390 struct drm_device *dev = intel_crtc->base.dev;
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392 int pipe = intel_crtc->pipe;
3393 u32 reg, temp;
3394
3395 /* Switch from PCDclk to Rawclk */
3396 reg = FDI_RX_CTL(pipe);
3397 temp = I915_READ(reg);
3398 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3399
3400 /* Disable CPU FDI TX PLL */
3401 reg = FDI_TX_CTL(pipe);
3402 temp = I915_READ(reg);
3403 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3404
3405 POSTING_READ(reg);
3406 udelay(100);
3407
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3411
3412 /* Wait for the clocks to turn off. */
3413 POSTING_READ(reg);
3414 udelay(100);
3415}
3416
0fc932b8
JB
3417static void ironlake_fdi_disable(struct drm_crtc *crtc)
3418{
3419 struct drm_device *dev = crtc->dev;
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3422 int pipe = intel_crtc->pipe;
3423 u32 reg, temp;
3424
3425 /* disable CPU FDI tx and PCH FDI rx */
3426 reg = FDI_TX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3429 POSTING_READ(reg);
3430
3431 reg = FDI_RX_CTL(pipe);
3432 temp = I915_READ(reg);
3433 temp &= ~(0x7 << 16);
dfd07d72 3434 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3435 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3436
3437 POSTING_READ(reg);
3438 udelay(100);
3439
3440 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3441 if (HAS_PCH_IBX(dev))
6f06ce18 3442 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3443
3444 /* still set train pattern 1 */
3445 reg = FDI_TX_CTL(pipe);
3446 temp = I915_READ(reg);
3447 temp &= ~FDI_LINK_TRAIN_NONE;
3448 temp |= FDI_LINK_TRAIN_PATTERN_1;
3449 I915_WRITE(reg, temp);
3450
3451 reg = FDI_RX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 if (HAS_PCH_CPT(dev)) {
3454 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3455 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3456 } else {
3457 temp &= ~FDI_LINK_TRAIN_NONE;
3458 temp |= FDI_LINK_TRAIN_PATTERN_1;
3459 }
3460 /* BPC in FDI rx is consistent with that in PIPECONF */
3461 temp &= ~(0x07 << 16);
dfd07d72 3462 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3463 I915_WRITE(reg, temp);
3464
3465 POSTING_READ(reg);
3466 udelay(100);
3467}
3468
5dce5b93
CW
3469bool intel_has_pending_fb_unpin(struct drm_device *dev)
3470{
3471 struct intel_crtc *crtc;
3472
3473 /* Note that we don't need to be called with mode_config.lock here
3474 * as our list of CRTC objects is static for the lifetime of the
3475 * device and so cannot disappear as we iterate. Similarly, we can
3476 * happily treat the predicates as racy, atomic checks as userspace
3477 * cannot claim and pin a new fb without at least acquring the
3478 * struct_mutex and so serialising with us.
3479 */
d3fcc808 3480 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3481 if (atomic_read(&crtc->unpin_work_count) == 0)
3482 continue;
3483
3484 if (crtc->unpin_work)
3485 intel_wait_for_vblank(dev, crtc->pipe);
3486
3487 return true;
3488 }
3489
3490 return false;
3491}
3492
d6bbafa1
CW
3493static void page_flip_completed(struct intel_crtc *intel_crtc)
3494{
3495 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3496 struct intel_unpin_work *work = intel_crtc->unpin_work;
3497
3498 /* ensure that the unpin work is consistent wrt ->pending. */
3499 smp_rmb();
3500 intel_crtc->unpin_work = NULL;
3501
3502 if (work->event)
3503 drm_send_vblank_event(intel_crtc->base.dev,
3504 intel_crtc->pipe,
3505 work->event);
3506
3507 drm_crtc_vblank_put(&intel_crtc->base);
3508
3509 wake_up_all(&dev_priv->pending_flip_queue);
3510 queue_work(dev_priv->wq, &work->work);
3511
3512 trace_i915_flip_complete(intel_crtc->plane,
3513 work->pending_flip_obj);
3514}
3515
46a55d30 3516void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3517{
0f91128d 3518 struct drm_device *dev = crtc->dev;
5bb61643 3519 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3520
2c10d571 3521 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3522 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3523 !intel_crtc_has_pending_flip(crtc),
3524 60*HZ) == 0)) {
3525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3526
5e2d7afc 3527 spin_lock_irq(&dev->event_lock);
9c787942
CW
3528 if (intel_crtc->unpin_work) {
3529 WARN_ONCE(1, "Removing stuck page flip\n");
3530 page_flip_completed(intel_crtc);
3531 }
5e2d7afc 3532 spin_unlock_irq(&dev->event_lock);
9c787942 3533 }
5bb61643 3534
975d568a
CW
3535 if (crtc->primary->fb) {
3536 mutex_lock(&dev->struct_mutex);
3537 intel_finish_fb(crtc->primary->fb);
3538 mutex_unlock(&dev->struct_mutex);
3539 }
e6c3a2a6
CW
3540}
3541
e615efe4
ED
3542/* Program iCLKIP clock to the desired frequency */
3543static void lpt_program_iclkip(struct drm_crtc *crtc)
3544{
3545 struct drm_device *dev = crtc->dev;
3546 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3547 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3548 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3549 u32 temp;
3550
09153000
DV
3551 mutex_lock(&dev_priv->dpio_lock);
3552
e615efe4
ED
3553 /* It is necessary to ungate the pixclk gate prior to programming
3554 * the divisors, and gate it back when it is done.
3555 */
3556 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3557
3558 /* Disable SSCCTL */
3559 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3560 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3561 SBI_SSCCTL_DISABLE,
3562 SBI_ICLK);
e615efe4
ED
3563
3564 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3565 if (clock == 20000) {
e615efe4
ED
3566 auxdiv = 1;
3567 divsel = 0x41;
3568 phaseinc = 0x20;
3569 } else {
3570 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3571 * but the adjusted_mode->crtc_clock in in KHz. To get the
3572 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3573 * convert the virtual clock precision to KHz here for higher
3574 * precision.
3575 */
3576 u32 iclk_virtual_root_freq = 172800 * 1000;
3577 u32 iclk_pi_range = 64;
3578 u32 desired_divisor, msb_divisor_value, pi_value;
3579
12d7ceed 3580 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3581 msb_divisor_value = desired_divisor / iclk_pi_range;
3582 pi_value = desired_divisor % iclk_pi_range;
3583
3584 auxdiv = 0;
3585 divsel = msb_divisor_value - 2;
3586 phaseinc = pi_value;
3587 }
3588
3589 /* This should not happen with any sane values */
3590 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3591 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3592 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3593 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3594
3595 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3596 clock,
e615efe4
ED
3597 auxdiv,
3598 divsel,
3599 phasedir,
3600 phaseinc);
3601
3602 /* Program SSCDIVINTPHASE6 */
988d6ee8 3603 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3604 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3605 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3606 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3607 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3608 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3609 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3610 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3611
3612 /* Program SSCAUXDIV */
988d6ee8 3613 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3614 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3615 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3616 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3617
3618 /* Enable modulator and associated divider */
988d6ee8 3619 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3620 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3621 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3622
3623 /* Wait for initialization time */
3624 udelay(24);
3625
3626 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3627
3628 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3629}
3630
275f01b2
DV
3631static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3632 enum pipe pch_transcoder)
3633{
3634 struct drm_device *dev = crtc->base.dev;
3635 struct drm_i915_private *dev_priv = dev->dev_private;
3636 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3637
3638 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3639 I915_READ(HTOTAL(cpu_transcoder)));
3640 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3641 I915_READ(HBLANK(cpu_transcoder)));
3642 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3643 I915_READ(HSYNC(cpu_transcoder)));
3644
3645 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3646 I915_READ(VTOTAL(cpu_transcoder)));
3647 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3648 I915_READ(VBLANK(cpu_transcoder)));
3649 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3650 I915_READ(VSYNC(cpu_transcoder)));
3651 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3652 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3653}
3654
1fbc0d78
DV
3655static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3656{
3657 struct drm_i915_private *dev_priv = dev->dev_private;
3658 uint32_t temp;
3659
3660 temp = I915_READ(SOUTH_CHICKEN1);
3661 if (temp & FDI_BC_BIFURCATION_SELECT)
3662 return;
3663
3664 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3665 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3666
3667 temp |= FDI_BC_BIFURCATION_SELECT;
3668 DRM_DEBUG_KMS("enabling fdi C rx\n");
3669 I915_WRITE(SOUTH_CHICKEN1, temp);
3670 POSTING_READ(SOUTH_CHICKEN1);
3671}
3672
3673static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3674{
3675 struct drm_device *dev = intel_crtc->base.dev;
3676 struct drm_i915_private *dev_priv = dev->dev_private;
3677
3678 switch (intel_crtc->pipe) {
3679 case PIPE_A:
3680 break;
3681 case PIPE_B:
3682 if (intel_crtc->config.fdi_lanes > 2)
3683 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3684 else
3685 cpt_enable_fdi_bc_bifurcation(dev);
3686
3687 break;
3688 case PIPE_C:
3689 cpt_enable_fdi_bc_bifurcation(dev);
3690
3691 break;
3692 default:
3693 BUG();
3694 }
3695}
3696
f67a559d
JB
3697/*
3698 * Enable PCH resources required for PCH ports:
3699 * - PCH PLLs
3700 * - FDI training & RX/TX
3701 * - update transcoder timings
3702 * - DP transcoding bits
3703 * - transcoder
3704 */
3705static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3706{
3707 struct drm_device *dev = crtc->dev;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3710 int pipe = intel_crtc->pipe;
ee7b9f93 3711 u32 reg, temp;
2c07245f 3712
ab9412ba 3713 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3714
1fbc0d78
DV
3715 if (IS_IVYBRIDGE(dev))
3716 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3717
cd986abb
DV
3718 /* Write the TU size bits before fdi link training, so that error
3719 * detection works. */
3720 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3721 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3722
c98e9dcf 3723 /* For PCH output, training FDI link */
674cf967 3724 dev_priv->display.fdi_link_train(crtc);
2c07245f 3725
3ad8a208
DV
3726 /* We need to program the right clock selection before writing the pixel
3727 * mutliplier into the DPLL. */
303b81e0 3728 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3729 u32 sel;
4b645f14 3730
c98e9dcf 3731 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3732 temp |= TRANS_DPLL_ENABLE(pipe);
3733 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3734 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3735 temp |= sel;
3736 else
3737 temp &= ~sel;
c98e9dcf 3738 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3739 }
5eddb70b 3740
3ad8a208
DV
3741 /* XXX: pch pll's can be enabled any time before we enable the PCH
3742 * transcoder, and we actually should do this to not upset any PCH
3743 * transcoder that already use the clock when we share it.
3744 *
3745 * Note that enable_shared_dpll tries to do the right thing, but
3746 * get_shared_dpll unconditionally resets the pll - we need that to have
3747 * the right LVDS enable sequence. */
85b3894f 3748 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3749
d9b6cb56
JB
3750 /* set transcoder timing, panel must allow it */
3751 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3752 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3753
303b81e0 3754 intel_fdi_normal_train(crtc);
5e84e1a4 3755
c98e9dcf
JB
3756 /* For PCH DP, enable TRANS_DP_CTL */
3757 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3758 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3759 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3760 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3761 reg = TRANS_DP_CTL(pipe);
3762 temp = I915_READ(reg);
3763 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3764 TRANS_DP_SYNC_MASK |
3765 TRANS_DP_BPC_MASK);
5eddb70b
CW
3766 temp |= (TRANS_DP_OUTPUT_ENABLE |
3767 TRANS_DP_ENH_FRAMING);
9325c9f0 3768 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3769
3770 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3771 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3772 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3773 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3774
3775 switch (intel_trans_dp_port_sel(crtc)) {
3776 case PCH_DP_B:
5eddb70b 3777 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3778 break;
3779 case PCH_DP_C:
5eddb70b 3780 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3781 break;
3782 case PCH_DP_D:
5eddb70b 3783 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3784 break;
3785 default:
e95d41e1 3786 BUG();
32f9d658 3787 }
2c07245f 3788
5eddb70b 3789 I915_WRITE(reg, temp);
6be4a607 3790 }
b52eb4dc 3791
b8a4f404 3792 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3793}
3794
1507e5bd
PZ
3795static void lpt_pch_enable(struct drm_crtc *crtc)
3796{
3797 struct drm_device *dev = crtc->dev;
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3800 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3801
ab9412ba 3802 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3803
8c52b5e8 3804 lpt_program_iclkip(crtc);
1507e5bd 3805
0540e488 3806 /* Set transcoder timing. */
275f01b2 3807 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3808
937bb610 3809 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3810}
3811
716c2e55 3812void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3813{
e2b78267 3814 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3815
3816 if (pll == NULL)
3817 return;
3818
3819 if (pll->refcount == 0) {
46edb027 3820 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3821 return;
3822 }
3823
f4a091c7
DV
3824 if (--pll->refcount == 0) {
3825 WARN_ON(pll->on);
3826 WARN_ON(pll->active);
3827 }
3828
a43f6e0f 3829 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3830}
3831
716c2e55 3832struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3833{
e2b78267
DV
3834 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3835 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3836 enum intel_dpll_id i;
ee7b9f93 3837
ee7b9f93 3838 if (pll) {
46edb027
DV
3839 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3840 crtc->base.base.id, pll->name);
e2b78267 3841 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3842 }
3843
98b6bd99
DV
3844 if (HAS_PCH_IBX(dev_priv->dev)) {
3845 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3846 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3847 pll = &dev_priv->shared_dplls[i];
98b6bd99 3848
46edb027
DV
3849 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3850 crtc->base.base.id, pll->name);
98b6bd99 3851
f2a69f44
DV
3852 WARN_ON(pll->refcount);
3853
98b6bd99
DV
3854 goto found;
3855 }
3856
e72f9fbf
DV
3857 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3858 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3859
3860 /* Only want to check enabled timings first */
3861 if (pll->refcount == 0)
3862 continue;
3863
b89a1d39
DV
3864 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3865 sizeof(pll->hw_state)) == 0) {
46edb027 3866 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3867 crtc->base.base.id,
46edb027 3868 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3869
3870 goto found;
3871 }
3872 }
3873
3874 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3875 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3876 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3877 if (pll->refcount == 0) {
46edb027
DV
3878 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3879 crtc->base.base.id, pll->name);
ee7b9f93
JB
3880 goto found;
3881 }
3882 }
3883
3884 return NULL;
3885
3886found:
f2a69f44
DV
3887 if (pll->refcount == 0)
3888 pll->hw_state = crtc->config.dpll_hw_state;
3889
a43f6e0f 3890 crtc->config.shared_dpll = i;
46edb027
DV
3891 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3892 pipe_name(crtc->pipe));
ee7b9f93 3893
cdbd2316 3894 pll->refcount++;
e04c7350 3895
ee7b9f93
JB
3896 return pll;
3897}
3898
a1520318 3899static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3900{
3901 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3902 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3903 u32 temp;
3904
3905 temp = I915_READ(dslreg);
3906 udelay(500);
3907 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3908 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3909 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3910 }
3911}
3912
b074cec8
JB
3913static void ironlake_pfit_enable(struct intel_crtc *crtc)
3914{
3915 struct drm_device *dev = crtc->base.dev;
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917 int pipe = crtc->pipe;
3918
fd4daa9c 3919 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3920 /* Force use of hard-coded filter coefficients
3921 * as some pre-programmed values are broken,
3922 * e.g. x201.
3923 */
3924 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3925 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3926 PF_PIPE_SEL_IVB(pipe));
3927 else
3928 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3929 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3930 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3931 }
3932}
3933
bb53d4ae
VS
3934static void intel_enable_planes(struct drm_crtc *crtc)
3935{
3936 struct drm_device *dev = crtc->dev;
3937 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3938 struct drm_plane *plane;
bb53d4ae
VS
3939 struct intel_plane *intel_plane;
3940
af2b653b
MR
3941 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3942 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3943 if (intel_plane->pipe == pipe)
3944 intel_plane_restore(&intel_plane->base);
af2b653b 3945 }
bb53d4ae
VS
3946}
3947
3948static void intel_disable_planes(struct drm_crtc *crtc)
3949{
3950 struct drm_device *dev = crtc->dev;
3951 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3952 struct drm_plane *plane;
bb53d4ae
VS
3953 struct intel_plane *intel_plane;
3954
af2b653b
MR
3955 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3956 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3957 if (intel_plane->pipe == pipe)
3958 intel_plane_disable(&intel_plane->base);
af2b653b 3959 }
bb53d4ae
VS
3960}
3961
20bc8673 3962void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3963{
cea165c3
VS
3964 struct drm_device *dev = crtc->base.dev;
3965 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3966
3967 if (!crtc->config.ips_enabled)
3968 return;
3969
cea165c3
VS
3970 /* We can only enable IPS after we enable a plane and wait for a vblank */
3971 intel_wait_for_vblank(dev, crtc->pipe);
3972
d77e4531 3973 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3974 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3975 mutex_lock(&dev_priv->rps.hw_lock);
3976 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3977 mutex_unlock(&dev_priv->rps.hw_lock);
3978 /* Quoting Art Runyan: "its not safe to expect any particular
3979 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3980 * mailbox." Moreover, the mailbox may return a bogus state,
3981 * so we need to just enable it and continue on.
2a114cc1
BW
3982 */
3983 } else {
3984 I915_WRITE(IPS_CTL, IPS_ENABLE);
3985 /* The bit only becomes 1 in the next vblank, so this wait here
3986 * is essentially intel_wait_for_vblank. If we don't have this
3987 * and don't wait for vblanks until the end of crtc_enable, then
3988 * the HW state readout code will complain that the expected
3989 * IPS_CTL value is not the one we read. */
3990 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3991 DRM_ERROR("Timed out waiting for IPS enable\n");
3992 }
d77e4531
PZ
3993}
3994
20bc8673 3995void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3996{
3997 struct drm_device *dev = crtc->base.dev;
3998 struct drm_i915_private *dev_priv = dev->dev_private;
3999
4000 if (!crtc->config.ips_enabled)
4001 return;
4002
4003 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4004 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4005 mutex_lock(&dev_priv->rps.hw_lock);
4006 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4007 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4008 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4009 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4010 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4011 } else {
2a114cc1 4012 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4013 POSTING_READ(IPS_CTL);
4014 }
d77e4531
PZ
4015
4016 /* We need to wait for a vblank before we can disable the plane. */
4017 intel_wait_for_vblank(dev, crtc->pipe);
4018}
4019
4020/** Loads the palette/gamma unit for the CRTC with the prepared values */
4021static void intel_crtc_load_lut(struct drm_crtc *crtc)
4022{
4023 struct drm_device *dev = crtc->dev;
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4026 enum pipe pipe = intel_crtc->pipe;
4027 int palreg = PALETTE(pipe);
4028 int i;
4029 bool reenable_ips = false;
4030
4031 /* The clocks have to be on to load the palette. */
4032 if (!crtc->enabled || !intel_crtc->active)
4033 return;
4034
4035 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4036 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4037 assert_dsi_pll_enabled(dev_priv);
4038 else
4039 assert_pll_enabled(dev_priv, pipe);
4040 }
4041
4042 /* use legacy palette for Ironlake */
7a1db49a 4043 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4044 palreg = LGC_PALETTE(pipe);
4045
4046 /* Workaround : Do not read or write the pipe palette/gamma data while
4047 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4048 */
41e6fc4c 4049 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4050 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4051 GAMMA_MODE_MODE_SPLIT)) {
4052 hsw_disable_ips(intel_crtc);
4053 reenable_ips = true;
4054 }
4055
4056 for (i = 0; i < 256; i++) {
4057 I915_WRITE(palreg + 4 * i,
4058 (intel_crtc->lut_r[i] << 16) |
4059 (intel_crtc->lut_g[i] << 8) |
4060 intel_crtc->lut_b[i]);
4061 }
4062
4063 if (reenable_ips)
4064 hsw_enable_ips(intel_crtc);
4065}
4066
d3eedb1a
VS
4067static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4068{
4069 if (!enable && intel_crtc->overlay) {
4070 struct drm_device *dev = intel_crtc->base.dev;
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072
4073 mutex_lock(&dev->struct_mutex);
4074 dev_priv->mm.interruptible = false;
4075 (void) intel_overlay_switch_off(intel_crtc->overlay);
4076 dev_priv->mm.interruptible = true;
4077 mutex_unlock(&dev->struct_mutex);
4078 }
4079
4080 /* Let userspace switch the overlay on again. In most cases userspace
4081 * has to recompute where to put it anyway.
4082 */
4083}
4084
d3eedb1a 4085static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4086{
4087 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089 int pipe = intel_crtc->pipe;
a5c4d7bc 4090
fdd508a6 4091 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4092 intel_enable_planes(crtc);
4093 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4094 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4095
4096 hsw_enable_ips(intel_crtc);
4097
4098 mutex_lock(&dev->struct_mutex);
4099 intel_update_fbc(dev);
4100 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4101
4102 /*
4103 * FIXME: Once we grow proper nuclear flip support out of this we need
4104 * to compute the mask of flip planes precisely. For the time being
4105 * consider this a flip from a NULL plane.
4106 */
4107 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4108}
4109
d3eedb1a 4110static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4111{
4112 struct drm_device *dev = crtc->dev;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115 int pipe = intel_crtc->pipe;
4116 int plane = intel_crtc->plane;
4117
4118 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4119
4120 if (dev_priv->fbc.plane == plane)
4121 intel_disable_fbc(dev);
4122
4123 hsw_disable_ips(intel_crtc);
4124
d3eedb1a 4125 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4126 intel_crtc_update_cursor(crtc, false);
4127 intel_disable_planes(crtc);
fdd508a6 4128 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4129
f99d7069
DV
4130 /*
4131 * FIXME: Once we grow proper nuclear flip support out of this we need
4132 * to compute the mask of flip planes precisely. For the time being
4133 * consider this a flip to a NULL plane.
4134 */
4135 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4136}
4137
f67a559d
JB
4138static void ironlake_crtc_enable(struct drm_crtc *crtc)
4139{
4140 struct drm_device *dev = crtc->dev;
4141 struct drm_i915_private *dev_priv = dev->dev_private;
4142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4143 struct intel_encoder *encoder;
f67a559d 4144 int pipe = intel_crtc->pipe;
f67a559d 4145
08a48469
DV
4146 WARN_ON(!crtc->enabled);
4147
f67a559d
JB
4148 if (intel_crtc->active)
4149 return;
4150
b14b1055
DV
4151 if (intel_crtc->config.has_pch_encoder)
4152 intel_prepare_shared_dpll(intel_crtc);
4153
29407aab
DV
4154 if (intel_crtc->config.has_dp_encoder)
4155 intel_dp_set_m_n(intel_crtc);
4156
4157 intel_set_pipe_timings(intel_crtc);
4158
4159 if (intel_crtc->config.has_pch_encoder) {
4160 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4161 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4162 }
4163
4164 ironlake_set_pipeconf(crtc);
4165
f67a559d 4166 intel_crtc->active = true;
8664281b 4167
a72e4c9f
DV
4168 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4169 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4170
f6736a1a 4171 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4172 if (encoder->pre_enable)
4173 encoder->pre_enable(encoder);
f67a559d 4174
5bfe2ac0 4175 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4176 /* Note: FDI PLL enabling _must_ be done before we enable the
4177 * cpu pipes, hence this is separate from all the other fdi/pch
4178 * enabling. */
88cefb6c 4179 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4180 } else {
4181 assert_fdi_tx_disabled(dev_priv, pipe);
4182 assert_fdi_rx_disabled(dev_priv, pipe);
4183 }
f67a559d 4184
b074cec8 4185 ironlake_pfit_enable(intel_crtc);
f67a559d 4186
9c54c0dd
JB
4187 /*
4188 * On ILK+ LUT must be loaded before the pipe is running but with
4189 * clocks enabled
4190 */
4191 intel_crtc_load_lut(crtc);
4192
f37fcc2a 4193 intel_update_watermarks(crtc);
e1fdc473 4194 intel_enable_pipe(intel_crtc);
f67a559d 4195
5bfe2ac0 4196 if (intel_crtc->config.has_pch_encoder)
f67a559d 4197 ironlake_pch_enable(crtc);
c98e9dcf 4198
fa5c73b1
DV
4199 for_each_encoder_on_crtc(dev, crtc, encoder)
4200 encoder->enable(encoder);
61b77ddd
DV
4201
4202 if (HAS_PCH_CPT(dev))
a1520318 4203 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4204
4b3a9526
VS
4205 assert_vblank_disabled(crtc);
4206 drm_crtc_vblank_on(crtc);
4207
d3eedb1a 4208 intel_crtc_enable_planes(crtc);
6be4a607
JB
4209}
4210
42db64ef
PZ
4211/* IPS only exists on ULT machines and is tied to pipe A. */
4212static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4213{
f5adf94e 4214 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4215}
4216
e4916946
PZ
4217/*
4218 * This implements the workaround described in the "notes" section of the mode
4219 * set sequence documentation. When going from no pipes or single pipe to
4220 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4221 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4222 */
4223static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4224{
4225 struct drm_device *dev = crtc->base.dev;
4226 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4227
4228 /* We want to get the other_active_crtc only if there's only 1 other
4229 * active crtc. */
d3fcc808 4230 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4231 if (!crtc_it->active || crtc_it == crtc)
4232 continue;
4233
4234 if (other_active_crtc)
4235 return;
4236
4237 other_active_crtc = crtc_it;
4238 }
4239 if (!other_active_crtc)
4240 return;
4241
4242 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4243 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4244}
4245
4f771f10
PZ
4246static void haswell_crtc_enable(struct drm_crtc *crtc)
4247{
4248 struct drm_device *dev = crtc->dev;
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251 struct intel_encoder *encoder;
4252 int pipe = intel_crtc->pipe;
4f771f10
PZ
4253
4254 WARN_ON(!crtc->enabled);
4255
4256 if (intel_crtc->active)
4257 return;
4258
df8ad70c
DV
4259 if (intel_crtc_to_shared_dpll(intel_crtc))
4260 intel_enable_shared_dpll(intel_crtc);
4261
229fca97
DV
4262 if (intel_crtc->config.has_dp_encoder)
4263 intel_dp_set_m_n(intel_crtc);
4264
4265 intel_set_pipe_timings(intel_crtc);
4266
ebb69c95
CT
4267 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4268 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4269 intel_crtc->config.pixel_multiplier - 1);
4270 }
4271
229fca97
DV
4272 if (intel_crtc->config.has_pch_encoder) {
4273 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4274 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4275 }
4276
4277 haswell_set_pipeconf(crtc);
4278
4279 intel_set_pipe_csc(crtc);
4280
4f771f10 4281 intel_crtc->active = true;
8664281b 4282
a72e4c9f 4283 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4284 for_each_encoder_on_crtc(dev, crtc, encoder)
4285 if (encoder->pre_enable)
4286 encoder->pre_enable(encoder);
4287
4fe9467d 4288 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4289 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4290 true);
4fe9467d
ID
4291 dev_priv->display.fdi_link_train(crtc);
4292 }
4293
1f544388 4294 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4295
b074cec8 4296 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4297
4298 /*
4299 * On ILK+ LUT must be loaded before the pipe is running but with
4300 * clocks enabled
4301 */
4302 intel_crtc_load_lut(crtc);
4303
1f544388 4304 intel_ddi_set_pipe_settings(crtc);
8228c251 4305 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4306
f37fcc2a 4307 intel_update_watermarks(crtc);
e1fdc473 4308 intel_enable_pipe(intel_crtc);
42db64ef 4309
5bfe2ac0 4310 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4311 lpt_pch_enable(crtc);
4f771f10 4312
0e32b39c
DA
4313 if (intel_crtc->config.dp_encoder_is_mst)
4314 intel_ddi_set_vc_payload_alloc(crtc, true);
4315
8807e55b 4316 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4317 encoder->enable(encoder);
8807e55b
JN
4318 intel_opregion_notify_encoder(encoder, true);
4319 }
4f771f10 4320
4b3a9526
VS
4321 assert_vblank_disabled(crtc);
4322 drm_crtc_vblank_on(crtc);
4323
e4916946
PZ
4324 /* If we change the relative order between pipe/planes enabling, we need
4325 * to change the workaround. */
4326 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4327 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4328}
4329
3f8dce3a
DV
4330static void ironlake_pfit_disable(struct intel_crtc *crtc)
4331{
4332 struct drm_device *dev = crtc->base.dev;
4333 struct drm_i915_private *dev_priv = dev->dev_private;
4334 int pipe = crtc->pipe;
4335
4336 /* To avoid upsetting the power well on haswell only disable the pfit if
4337 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4338 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4339 I915_WRITE(PF_CTL(pipe), 0);
4340 I915_WRITE(PF_WIN_POS(pipe), 0);
4341 I915_WRITE(PF_WIN_SZ(pipe), 0);
4342 }
4343}
4344
6be4a607
JB
4345static void ironlake_crtc_disable(struct drm_crtc *crtc)
4346{
4347 struct drm_device *dev = crtc->dev;
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4350 struct intel_encoder *encoder;
6be4a607 4351 int pipe = intel_crtc->pipe;
5eddb70b 4352 u32 reg, temp;
b52eb4dc 4353
f7abfe8b
CW
4354 if (!intel_crtc->active)
4355 return;
4356
d3eedb1a 4357 intel_crtc_disable_planes(crtc);
a5c4d7bc 4358
4b3a9526
VS
4359 drm_crtc_vblank_off(crtc);
4360 assert_vblank_disabled(crtc);
4361
ea9d758d
DV
4362 for_each_encoder_on_crtc(dev, crtc, encoder)
4363 encoder->disable(encoder);
4364
d925c59a 4365 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4366 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4367
575f7ab7 4368 intel_disable_pipe(intel_crtc);
32f9d658 4369
3f8dce3a 4370 ironlake_pfit_disable(intel_crtc);
2c07245f 4371
bf49ec8c
DV
4372 for_each_encoder_on_crtc(dev, crtc, encoder)
4373 if (encoder->post_disable)
4374 encoder->post_disable(encoder);
2c07245f 4375
d925c59a
DV
4376 if (intel_crtc->config.has_pch_encoder) {
4377 ironlake_fdi_disable(crtc);
913d8d11 4378
d925c59a 4379 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4380 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4381
d925c59a
DV
4382 if (HAS_PCH_CPT(dev)) {
4383 /* disable TRANS_DP_CTL */
4384 reg = TRANS_DP_CTL(pipe);
4385 temp = I915_READ(reg);
4386 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4387 TRANS_DP_PORT_SEL_MASK);
4388 temp |= TRANS_DP_PORT_SEL_NONE;
4389 I915_WRITE(reg, temp);
4390
4391 /* disable DPLL_SEL */
4392 temp = I915_READ(PCH_DPLL_SEL);
11887397 4393 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4394 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4395 }
e3421a18 4396
d925c59a 4397 /* disable PCH DPLL */
e72f9fbf 4398 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4399
d925c59a
DV
4400 ironlake_fdi_pll_disable(intel_crtc);
4401 }
6b383a7f 4402
f7abfe8b 4403 intel_crtc->active = false;
46ba614c 4404 intel_update_watermarks(crtc);
d1ebd816
BW
4405
4406 mutex_lock(&dev->struct_mutex);
6b383a7f 4407 intel_update_fbc(dev);
d1ebd816 4408 mutex_unlock(&dev->struct_mutex);
6be4a607 4409}
1b3c7a47 4410
4f771f10 4411static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4412{
4f771f10
PZ
4413 struct drm_device *dev = crtc->dev;
4414 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4416 struct intel_encoder *encoder;
3b117c8f 4417 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4418
4f771f10
PZ
4419 if (!intel_crtc->active)
4420 return;
4421
d3eedb1a 4422 intel_crtc_disable_planes(crtc);
dda9a66a 4423
4b3a9526
VS
4424 drm_crtc_vblank_off(crtc);
4425 assert_vblank_disabled(crtc);
4426
8807e55b
JN
4427 for_each_encoder_on_crtc(dev, crtc, encoder) {
4428 intel_opregion_notify_encoder(encoder, false);
4f771f10 4429 encoder->disable(encoder);
8807e55b 4430 }
4f771f10 4431
8664281b 4432 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4433 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4434 false);
575f7ab7 4435 intel_disable_pipe(intel_crtc);
4f771f10 4436
a4bf214f
VS
4437 if (intel_crtc->config.dp_encoder_is_mst)
4438 intel_ddi_set_vc_payload_alloc(crtc, false);
4439
ad80a810 4440 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4441
3f8dce3a 4442 ironlake_pfit_disable(intel_crtc);
4f771f10 4443
1f544388 4444 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4445
88adfff1 4446 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4447 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4448 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4449 true);
1ad960f2 4450 intel_ddi_fdi_disable(crtc);
83616634 4451 }
4f771f10 4452
97b040aa
ID
4453 for_each_encoder_on_crtc(dev, crtc, encoder)
4454 if (encoder->post_disable)
4455 encoder->post_disable(encoder);
4456
4f771f10 4457 intel_crtc->active = false;
46ba614c 4458 intel_update_watermarks(crtc);
4f771f10
PZ
4459
4460 mutex_lock(&dev->struct_mutex);
4461 intel_update_fbc(dev);
4462 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4463
4464 if (intel_crtc_to_shared_dpll(intel_crtc))
4465 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4466}
4467
ee7b9f93
JB
4468static void ironlake_crtc_off(struct drm_crtc *crtc)
4469{
4470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4471 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4472}
4473
6441ab5f 4474
2dd24552
JB
4475static void i9xx_pfit_enable(struct intel_crtc *crtc)
4476{
4477 struct drm_device *dev = crtc->base.dev;
4478 struct drm_i915_private *dev_priv = dev->dev_private;
4479 struct intel_crtc_config *pipe_config = &crtc->config;
4480
328d8e82 4481 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4482 return;
4483
2dd24552 4484 /*
c0b03411
DV
4485 * The panel fitter should only be adjusted whilst the pipe is disabled,
4486 * according to register description and PRM.
2dd24552 4487 */
c0b03411
DV
4488 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4489 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4490
b074cec8
JB
4491 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4492 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4493
4494 /* Border color in case we don't scale up to the full screen. Black by
4495 * default, change to something else for debugging. */
4496 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4497}
4498
d05410f9
DA
4499static enum intel_display_power_domain port_to_power_domain(enum port port)
4500{
4501 switch (port) {
4502 case PORT_A:
4503 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4504 case PORT_B:
4505 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4506 case PORT_C:
4507 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4508 case PORT_D:
4509 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4510 default:
4511 WARN_ON_ONCE(1);
4512 return POWER_DOMAIN_PORT_OTHER;
4513 }
4514}
4515
77d22dca
ID
4516#define for_each_power_domain(domain, mask) \
4517 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4518 if ((1 << (domain)) & (mask))
4519
319be8ae
ID
4520enum intel_display_power_domain
4521intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4522{
4523 struct drm_device *dev = intel_encoder->base.dev;
4524 struct intel_digital_port *intel_dig_port;
4525
4526 switch (intel_encoder->type) {
4527 case INTEL_OUTPUT_UNKNOWN:
4528 /* Only DDI platforms should ever use this output type */
4529 WARN_ON_ONCE(!HAS_DDI(dev));
4530 case INTEL_OUTPUT_DISPLAYPORT:
4531 case INTEL_OUTPUT_HDMI:
4532 case INTEL_OUTPUT_EDP:
4533 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4534 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4535 case INTEL_OUTPUT_DP_MST:
4536 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4537 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4538 case INTEL_OUTPUT_ANALOG:
4539 return POWER_DOMAIN_PORT_CRT;
4540 case INTEL_OUTPUT_DSI:
4541 return POWER_DOMAIN_PORT_DSI;
4542 default:
4543 return POWER_DOMAIN_PORT_OTHER;
4544 }
4545}
4546
4547static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4548{
319be8ae
ID
4549 struct drm_device *dev = crtc->dev;
4550 struct intel_encoder *intel_encoder;
4551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4552 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4553 unsigned long mask;
4554 enum transcoder transcoder;
4555
4556 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4557
4558 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4559 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4560 if (intel_crtc->config.pch_pfit.enabled ||
4561 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4562 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4563
319be8ae
ID
4564 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4565 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4566
77d22dca
ID
4567 return mask;
4568}
4569
77d22dca
ID
4570static void modeset_update_crtc_power_domains(struct drm_device *dev)
4571{
4572 struct drm_i915_private *dev_priv = dev->dev_private;
4573 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4574 struct intel_crtc *crtc;
4575
4576 /*
4577 * First get all needed power domains, then put all unneeded, to avoid
4578 * any unnecessary toggling of the power wells.
4579 */
d3fcc808 4580 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4581 enum intel_display_power_domain domain;
4582
4583 if (!crtc->base.enabled)
4584 continue;
4585
319be8ae 4586 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4587
4588 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4589 intel_display_power_get(dev_priv, domain);
4590 }
4591
d3fcc808 4592 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4593 enum intel_display_power_domain domain;
4594
4595 for_each_power_domain(domain, crtc->enabled_power_domains)
4596 intel_display_power_put(dev_priv, domain);
4597
4598 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4599 }
4600
4601 intel_display_set_init_power(dev_priv, false);
4602}
4603
dfcab17e 4604/* returns HPLL frequency in kHz */
f8bf63fd 4605static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4606{
586f49dc 4607 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4608
586f49dc
JB
4609 /* Obtain SKU information */
4610 mutex_lock(&dev_priv->dpio_lock);
4611 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4612 CCK_FUSE_HPLL_FREQ_MASK;
4613 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4614
dfcab17e 4615 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4616}
4617
f8bf63fd
VS
4618static void vlv_update_cdclk(struct drm_device *dev)
4619{
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621
4622 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4623 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4624 dev_priv->vlv_cdclk_freq);
4625
4626 /*
4627 * Program the gmbus_freq based on the cdclk frequency.
4628 * BSpec erroneously claims we should aim for 4MHz, but
4629 * in fact 1MHz is the correct frequency.
4630 */
4631 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4632}
4633
30a970c6
JB
4634/* Adjust CDclk dividers to allow high res or save power if possible */
4635static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4636{
4637 struct drm_i915_private *dev_priv = dev->dev_private;
4638 u32 val, cmd;
4639
d197b7d3 4640 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4641
dfcab17e 4642 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4643 cmd = 2;
dfcab17e 4644 else if (cdclk == 266667)
30a970c6
JB
4645 cmd = 1;
4646 else
4647 cmd = 0;
4648
4649 mutex_lock(&dev_priv->rps.hw_lock);
4650 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4651 val &= ~DSPFREQGUAR_MASK;
4652 val |= (cmd << DSPFREQGUAR_SHIFT);
4653 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4654 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4655 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4656 50)) {
4657 DRM_ERROR("timed out waiting for CDclk change\n");
4658 }
4659 mutex_unlock(&dev_priv->rps.hw_lock);
4660
dfcab17e 4661 if (cdclk == 400000) {
30a970c6
JB
4662 u32 divider, vco;
4663
4664 vco = valleyview_get_vco(dev_priv);
dfcab17e 4665 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4666
4667 mutex_lock(&dev_priv->dpio_lock);
4668 /* adjust cdclk divider */
4669 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4670 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4671 val |= divider;
4672 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4673
4674 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4675 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4676 50))
4677 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4678 mutex_unlock(&dev_priv->dpio_lock);
4679 }
4680
4681 mutex_lock(&dev_priv->dpio_lock);
4682 /* adjust self-refresh exit latency value */
4683 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4684 val &= ~0x7f;
4685
4686 /*
4687 * For high bandwidth configs, we set a higher latency in the bunit
4688 * so that the core display fetch happens in time to avoid underruns.
4689 */
dfcab17e 4690 if (cdclk == 400000)
30a970c6
JB
4691 val |= 4500 / 250; /* 4.5 usec */
4692 else
4693 val |= 3000 / 250; /* 3.0 usec */
4694 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4695 mutex_unlock(&dev_priv->dpio_lock);
4696
f8bf63fd 4697 vlv_update_cdclk(dev);
30a970c6
JB
4698}
4699
383c5a6a
VS
4700static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4701{
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 u32 val, cmd;
4704
4705 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4706
4707 switch (cdclk) {
4708 case 400000:
4709 cmd = 3;
4710 break;
4711 case 333333:
4712 case 320000:
4713 cmd = 2;
4714 break;
4715 case 266667:
4716 cmd = 1;
4717 break;
4718 case 200000:
4719 cmd = 0;
4720 break;
4721 default:
4722 WARN_ON(1);
4723 return;
4724 }
4725
4726 mutex_lock(&dev_priv->rps.hw_lock);
4727 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4728 val &= ~DSPFREQGUAR_MASK_CHV;
4729 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4730 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4731 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4732 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4733 50)) {
4734 DRM_ERROR("timed out waiting for CDclk change\n");
4735 }
4736 mutex_unlock(&dev_priv->rps.hw_lock);
4737
4738 vlv_update_cdclk(dev);
4739}
4740
30a970c6
JB
4741static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4742 int max_pixclk)
4743{
29dc7ef3
VS
4744 int vco = valleyview_get_vco(dev_priv);
4745 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4746
d49a340d
VS
4747 /* FIXME: Punit isn't quite ready yet */
4748 if (IS_CHERRYVIEW(dev_priv->dev))
4749 return 400000;
4750
30a970c6
JB
4751 /*
4752 * Really only a few cases to deal with, as only 4 CDclks are supported:
4753 * 200MHz
4754 * 267MHz
29dc7ef3 4755 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4756 * 400MHz
4757 * So we check to see whether we're above 90% of the lower bin and
4758 * adjust if needed.
e37c67a1
VS
4759 *
4760 * We seem to get an unstable or solid color picture at 200MHz.
4761 * Not sure what's wrong. For now use 200MHz only when all pipes
4762 * are off.
30a970c6 4763 */
29dc7ef3 4764 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4765 return 400000;
4766 else if (max_pixclk > 266667*9/10)
29dc7ef3 4767 return freq_320;
e37c67a1 4768 else if (max_pixclk > 0)
dfcab17e 4769 return 266667;
e37c67a1
VS
4770 else
4771 return 200000;
30a970c6
JB
4772}
4773
2f2d7aa1
VS
4774/* compute the max pixel clock for new configuration */
4775static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4776{
4777 struct drm_device *dev = dev_priv->dev;
4778 struct intel_crtc *intel_crtc;
4779 int max_pixclk = 0;
4780
d3fcc808 4781 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4782 if (intel_crtc->new_enabled)
30a970c6 4783 max_pixclk = max(max_pixclk,
2f2d7aa1 4784 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4785 }
4786
4787 return max_pixclk;
4788}
4789
4790static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4791 unsigned *prepare_pipes)
30a970c6
JB
4792{
4793 struct drm_i915_private *dev_priv = dev->dev_private;
4794 struct intel_crtc *intel_crtc;
2f2d7aa1 4795 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4796
d60c4473
ID
4797 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4798 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4799 return;
4800
2f2d7aa1 4801 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4802 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4803 if (intel_crtc->base.enabled)
4804 *prepare_pipes |= (1 << intel_crtc->pipe);
4805}
4806
4807static void valleyview_modeset_global_resources(struct drm_device *dev)
4808{
4809 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4810 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4811 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4812
383c5a6a
VS
4813 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4814 if (IS_CHERRYVIEW(dev))
4815 cherryview_set_cdclk(dev, req_cdclk);
4816 else
4817 valleyview_set_cdclk(dev, req_cdclk);
4818 }
4819
77961eb9 4820 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4821}
4822
89b667f8
JB
4823static void valleyview_crtc_enable(struct drm_crtc *crtc)
4824{
4825 struct drm_device *dev = crtc->dev;
a72e4c9f 4826 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4828 struct intel_encoder *encoder;
4829 int pipe = intel_crtc->pipe;
23538ef1 4830 bool is_dsi;
89b667f8
JB
4831
4832 WARN_ON(!crtc->enabled);
4833
4834 if (intel_crtc->active)
4835 return;
4836
8525a235
SK
4837 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4838
1ae0d137
VS
4839 if (!is_dsi) {
4840 if (IS_CHERRYVIEW(dev))
4841 chv_prepare_pll(intel_crtc);
4842 else
4843 vlv_prepare_pll(intel_crtc);
4844 }
5b18e57c
DV
4845
4846 if (intel_crtc->config.has_dp_encoder)
4847 intel_dp_set_m_n(intel_crtc);
4848
4849 intel_set_pipe_timings(intel_crtc);
4850
5b18e57c
DV
4851 i9xx_set_pipeconf(intel_crtc);
4852
89b667f8 4853 intel_crtc->active = true;
89b667f8 4854
a72e4c9f 4855 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4856
89b667f8
JB
4857 for_each_encoder_on_crtc(dev, crtc, encoder)
4858 if (encoder->pre_pll_enable)
4859 encoder->pre_pll_enable(encoder);
4860
9d556c99
CML
4861 if (!is_dsi) {
4862 if (IS_CHERRYVIEW(dev))
4863 chv_enable_pll(intel_crtc);
4864 else
4865 vlv_enable_pll(intel_crtc);
4866 }
89b667f8
JB
4867
4868 for_each_encoder_on_crtc(dev, crtc, encoder)
4869 if (encoder->pre_enable)
4870 encoder->pre_enable(encoder);
4871
2dd24552
JB
4872 i9xx_pfit_enable(intel_crtc);
4873
63cbb074
VS
4874 intel_crtc_load_lut(crtc);
4875
f37fcc2a 4876 intel_update_watermarks(crtc);
e1fdc473 4877 intel_enable_pipe(intel_crtc);
be6a6f8e 4878
5004945f
JN
4879 for_each_encoder_on_crtc(dev, crtc, encoder)
4880 encoder->enable(encoder);
9ab0460b 4881
4b3a9526
VS
4882 assert_vblank_disabled(crtc);
4883 drm_crtc_vblank_on(crtc);
4884
9ab0460b 4885 intel_crtc_enable_planes(crtc);
d40d9187 4886
56b80e1f 4887 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4888 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
4889}
4890
f13c2ef3
DV
4891static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4892{
4893 struct drm_device *dev = crtc->base.dev;
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895
4896 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4897 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4898}
4899
0b8765c6 4900static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4901{
4902 struct drm_device *dev = crtc->dev;
a72e4c9f 4903 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 4904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4905 struct intel_encoder *encoder;
79e53945 4906 int pipe = intel_crtc->pipe;
79e53945 4907
08a48469
DV
4908 WARN_ON(!crtc->enabled);
4909
f7abfe8b
CW
4910 if (intel_crtc->active)
4911 return;
4912
f13c2ef3
DV
4913 i9xx_set_pll_dividers(intel_crtc);
4914
5b18e57c
DV
4915 if (intel_crtc->config.has_dp_encoder)
4916 intel_dp_set_m_n(intel_crtc);
4917
4918 intel_set_pipe_timings(intel_crtc);
4919
5b18e57c
DV
4920 i9xx_set_pipeconf(intel_crtc);
4921
f7abfe8b 4922 intel_crtc->active = true;
6b383a7f 4923
4a3436e8 4924 if (!IS_GEN2(dev))
a72e4c9f 4925 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4926
9d6d9f19
MK
4927 for_each_encoder_on_crtc(dev, crtc, encoder)
4928 if (encoder->pre_enable)
4929 encoder->pre_enable(encoder);
4930
f6736a1a
DV
4931 i9xx_enable_pll(intel_crtc);
4932
2dd24552
JB
4933 i9xx_pfit_enable(intel_crtc);
4934
63cbb074
VS
4935 intel_crtc_load_lut(crtc);
4936
f37fcc2a 4937 intel_update_watermarks(crtc);
e1fdc473 4938 intel_enable_pipe(intel_crtc);
be6a6f8e 4939
fa5c73b1
DV
4940 for_each_encoder_on_crtc(dev, crtc, encoder)
4941 encoder->enable(encoder);
9ab0460b 4942
4b3a9526
VS
4943 assert_vblank_disabled(crtc);
4944 drm_crtc_vblank_on(crtc);
4945
9ab0460b 4946 intel_crtc_enable_planes(crtc);
d40d9187 4947
4a3436e8
VS
4948 /*
4949 * Gen2 reports pipe underruns whenever all planes are disabled.
4950 * So don't enable underrun reporting before at least some planes
4951 * are enabled.
4952 * FIXME: Need to fix the logic to work when we turn off all planes
4953 * but leave the pipe running.
4954 */
4955 if (IS_GEN2(dev))
a72e4c9f 4956 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4957
56b80e1f 4958 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4959 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 4960}
79e53945 4961
87476d63
DV
4962static void i9xx_pfit_disable(struct intel_crtc *crtc)
4963{
4964 struct drm_device *dev = crtc->base.dev;
4965 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4966
328d8e82
DV
4967 if (!crtc->config.gmch_pfit.control)
4968 return;
87476d63 4969
328d8e82 4970 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4971
328d8e82
DV
4972 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4973 I915_READ(PFIT_CONTROL));
4974 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4975}
4976
0b8765c6
JB
4977static void i9xx_crtc_disable(struct drm_crtc *crtc)
4978{
4979 struct drm_device *dev = crtc->dev;
4980 struct drm_i915_private *dev_priv = dev->dev_private;
4981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4982 struct intel_encoder *encoder;
0b8765c6 4983 int pipe = intel_crtc->pipe;
ef9c3aee 4984
f7abfe8b
CW
4985 if (!intel_crtc->active)
4986 return;
4987
4a3436e8
VS
4988 /*
4989 * Gen2 reports pipe underruns whenever all planes are disabled.
4990 * So diasble underrun reporting before all the planes get disabled.
4991 * FIXME: Need to fix the logic to work when we turn off all planes
4992 * but leave the pipe running.
4993 */
4994 if (IS_GEN2(dev))
a72e4c9f 4995 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 4996
564ed191
ID
4997 /*
4998 * Vblank time updates from the shadow to live plane control register
4999 * are blocked if the memory self-refresh mode is active at that
5000 * moment. So to make sure the plane gets truly disabled, disable
5001 * first the self-refresh mode. The self-refresh enable bit in turn
5002 * will be checked/applied by the HW only at the next frame start
5003 * event which is after the vblank start event, so we need to have a
5004 * wait-for-vblank between disabling the plane and the pipe.
5005 */
5006 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5007 intel_crtc_disable_planes(crtc);
5008
6304cd91
VS
5009 /*
5010 * On gen2 planes are double buffered but the pipe isn't, so we must
5011 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5012 * We also need to wait on all gmch platforms because of the
5013 * self-refresh mode constraint explained above.
6304cd91 5014 */
564ed191 5015 intel_wait_for_vblank(dev, pipe);
6304cd91 5016
4b3a9526
VS
5017 drm_crtc_vblank_off(crtc);
5018 assert_vblank_disabled(crtc);
5019
5020 for_each_encoder_on_crtc(dev, crtc, encoder)
5021 encoder->disable(encoder);
5022
575f7ab7 5023 intel_disable_pipe(intel_crtc);
24a1f16d 5024
87476d63 5025 i9xx_pfit_disable(intel_crtc);
24a1f16d 5026
89b667f8
JB
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 if (encoder->post_disable)
5029 encoder->post_disable(encoder);
5030
076ed3b2
CML
5031 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
5032 if (IS_CHERRYVIEW(dev))
5033 chv_disable_pll(dev_priv, pipe);
5034 else if (IS_VALLEYVIEW(dev))
5035 vlv_disable_pll(dev_priv, pipe);
5036 else
1c4e0274 5037 i9xx_disable_pll(intel_crtc);
076ed3b2 5038 }
0b8765c6 5039
4a3436e8 5040 if (!IS_GEN2(dev))
a72e4c9f 5041 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5042
f7abfe8b 5043 intel_crtc->active = false;
46ba614c 5044 intel_update_watermarks(crtc);
f37fcc2a 5045
efa9624e 5046 mutex_lock(&dev->struct_mutex);
6b383a7f 5047 intel_update_fbc(dev);
efa9624e 5048 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5049}
5050
ee7b9f93
JB
5051static void i9xx_crtc_off(struct drm_crtc *crtc)
5052{
5053}
5054
976f8a20
DV
5055static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5056 bool enabled)
2c07245f
ZW
5057{
5058 struct drm_device *dev = crtc->dev;
5059 struct drm_i915_master_private *master_priv;
5060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5061 int pipe = intel_crtc->pipe;
79e53945
JB
5062
5063 if (!dev->primary->master)
5064 return;
5065
5066 master_priv = dev->primary->master->driver_priv;
5067 if (!master_priv->sarea_priv)
5068 return;
5069
79e53945
JB
5070 switch (pipe) {
5071 case 0:
5072 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5073 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5074 break;
5075 case 1:
5076 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5077 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5078 break;
5079 default:
9db4a9c7 5080 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5081 break;
5082 }
79e53945
JB
5083}
5084
b04c5bd6
BF
5085/* Master function to enable/disable CRTC and corresponding power wells */
5086void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5087{
5088 struct drm_device *dev = crtc->dev;
5089 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5091 enum intel_display_power_domain domain;
5092 unsigned long domains;
976f8a20 5093
0e572fe7
DV
5094 if (enable) {
5095 if (!intel_crtc->active) {
e1e9fb84
DV
5096 domains = get_crtc_power_domains(crtc);
5097 for_each_power_domain(domain, domains)
5098 intel_display_power_get(dev_priv, domain);
5099 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5100
5101 dev_priv->display.crtc_enable(crtc);
5102 }
5103 } else {
5104 if (intel_crtc->active) {
5105 dev_priv->display.crtc_disable(crtc);
5106
e1e9fb84
DV
5107 domains = intel_crtc->enabled_power_domains;
5108 for_each_power_domain(domain, domains)
5109 intel_display_power_put(dev_priv, domain);
5110 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5111 }
5112 }
b04c5bd6
BF
5113}
5114
5115/**
5116 * Sets the power management mode of the pipe and plane.
5117 */
5118void intel_crtc_update_dpms(struct drm_crtc *crtc)
5119{
5120 struct drm_device *dev = crtc->dev;
5121 struct intel_encoder *intel_encoder;
5122 bool enable = false;
5123
5124 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5125 enable |= intel_encoder->connectors_active;
5126
5127 intel_crtc_control(crtc, enable);
976f8a20
DV
5128
5129 intel_crtc_update_sarea(crtc, enable);
5130}
5131
cdd59983
CW
5132static void intel_crtc_disable(struct drm_crtc *crtc)
5133{
cdd59983 5134 struct drm_device *dev = crtc->dev;
976f8a20 5135 struct drm_connector *connector;
ee7b9f93 5136 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5137 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5138 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5139
976f8a20
DV
5140 /* crtc should still be enabled when we disable it. */
5141 WARN_ON(!crtc->enabled);
5142
5143 dev_priv->display.crtc_disable(crtc);
5144 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5145 dev_priv->display.off(crtc);
5146
f4510a27 5147 if (crtc->primary->fb) {
cdd59983 5148 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5149 intel_unpin_fb_obj(old_obj);
5150 i915_gem_track_fb(old_obj, NULL,
5151 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5152 mutex_unlock(&dev->struct_mutex);
f4510a27 5153 crtc->primary->fb = NULL;
976f8a20
DV
5154 }
5155
5156 /* Update computed state. */
5157 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5158 if (!connector->encoder || !connector->encoder->crtc)
5159 continue;
5160
5161 if (connector->encoder->crtc != crtc)
5162 continue;
5163
5164 connector->dpms = DRM_MODE_DPMS_OFF;
5165 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5166 }
5167}
5168
ea5b213a 5169void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5170{
4ef69c7a 5171 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5172
ea5b213a
CW
5173 drm_encoder_cleanup(encoder);
5174 kfree(intel_encoder);
7e7d76c3
JB
5175}
5176
9237329d 5177/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5178 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5179 * state of the entire output pipe. */
9237329d 5180static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5181{
5ab432ef
DV
5182 if (mode == DRM_MODE_DPMS_ON) {
5183 encoder->connectors_active = true;
5184
b2cabb0e 5185 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5186 } else {
5187 encoder->connectors_active = false;
5188
b2cabb0e 5189 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5190 }
79e53945
JB
5191}
5192
0a91ca29
DV
5193/* Cross check the actual hw state with our own modeset state tracking (and it's
5194 * internal consistency). */
b980514c 5195static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5196{
0a91ca29
DV
5197 if (connector->get_hw_state(connector)) {
5198 struct intel_encoder *encoder = connector->encoder;
5199 struct drm_crtc *crtc;
5200 bool encoder_enabled;
5201 enum pipe pipe;
5202
5203 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5204 connector->base.base.id,
c23cc417 5205 connector->base.name);
0a91ca29 5206
0e32b39c
DA
5207 /* there is no real hw state for MST connectors */
5208 if (connector->mst_port)
5209 return;
5210
0a91ca29
DV
5211 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5212 "wrong connector dpms state\n");
5213 WARN(connector->base.encoder != &encoder->base,
5214 "active connector not linked to encoder\n");
0a91ca29 5215
36cd7444
DA
5216 if (encoder) {
5217 WARN(!encoder->connectors_active,
5218 "encoder->connectors_active not set\n");
5219
5220 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5221 WARN(!encoder_enabled, "encoder not enabled\n");
5222 if (WARN_ON(!encoder->base.crtc))
5223 return;
0a91ca29 5224
36cd7444 5225 crtc = encoder->base.crtc;
0a91ca29 5226
36cd7444
DA
5227 WARN(!crtc->enabled, "crtc not enabled\n");
5228 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5229 WARN(pipe != to_intel_crtc(crtc)->pipe,
5230 "encoder active on the wrong pipe\n");
5231 }
0a91ca29 5232 }
79e53945
JB
5233}
5234
5ab432ef
DV
5235/* Even simpler default implementation, if there's really no special case to
5236 * consider. */
5237void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5238{
5ab432ef
DV
5239 /* All the simple cases only support two dpms states. */
5240 if (mode != DRM_MODE_DPMS_ON)
5241 mode = DRM_MODE_DPMS_OFF;
d4270e57 5242
5ab432ef
DV
5243 if (mode == connector->dpms)
5244 return;
5245
5246 connector->dpms = mode;
5247
5248 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5249 if (connector->encoder)
5250 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5251
b980514c 5252 intel_modeset_check_state(connector->dev);
79e53945
JB
5253}
5254
f0947c37
DV
5255/* Simple connector->get_hw_state implementation for encoders that support only
5256 * one connector and no cloning and hence the encoder state determines the state
5257 * of the connector. */
5258bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5259{
24929352 5260 enum pipe pipe = 0;
f0947c37 5261 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5262
f0947c37 5263 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5264}
5265
1857e1da
DV
5266static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5267 struct intel_crtc_config *pipe_config)
5268{
5269 struct drm_i915_private *dev_priv = dev->dev_private;
5270 struct intel_crtc *pipe_B_crtc =
5271 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5272
5273 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5274 pipe_name(pipe), pipe_config->fdi_lanes);
5275 if (pipe_config->fdi_lanes > 4) {
5276 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5277 pipe_name(pipe), pipe_config->fdi_lanes);
5278 return false;
5279 }
5280
bafb6553 5281 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5282 if (pipe_config->fdi_lanes > 2) {
5283 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5284 pipe_config->fdi_lanes);
5285 return false;
5286 } else {
5287 return true;
5288 }
5289 }
5290
5291 if (INTEL_INFO(dev)->num_pipes == 2)
5292 return true;
5293
5294 /* Ivybridge 3 pipe is really complicated */
5295 switch (pipe) {
5296 case PIPE_A:
5297 return true;
5298 case PIPE_B:
5299 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5300 pipe_config->fdi_lanes > 2) {
5301 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5302 pipe_name(pipe), pipe_config->fdi_lanes);
5303 return false;
5304 }
5305 return true;
5306 case PIPE_C:
1e833f40 5307 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5308 pipe_B_crtc->config.fdi_lanes <= 2) {
5309 if (pipe_config->fdi_lanes > 2) {
5310 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5311 pipe_name(pipe), pipe_config->fdi_lanes);
5312 return false;
5313 }
5314 } else {
5315 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5316 return false;
5317 }
5318 return true;
5319 default:
5320 BUG();
5321 }
5322}
5323
e29c22c0
DV
5324#define RETRY 1
5325static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5326 struct intel_crtc_config *pipe_config)
877d48d5 5327{
1857e1da 5328 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5329 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5330 int lane, link_bw, fdi_dotclock;
e29c22c0 5331 bool setup_ok, needs_recompute = false;
877d48d5 5332
e29c22c0 5333retry:
877d48d5
DV
5334 /* FDI is a binary signal running at ~2.7GHz, encoding
5335 * each output octet as 10 bits. The actual frequency
5336 * is stored as a divider into a 100MHz clock, and the
5337 * mode pixel clock is stored in units of 1KHz.
5338 * Hence the bw of each lane in terms of the mode signal
5339 * is:
5340 */
5341 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5342
241bfc38 5343 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5344
2bd89a07 5345 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5346 pipe_config->pipe_bpp);
5347
5348 pipe_config->fdi_lanes = lane;
5349
2bd89a07 5350 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5351 link_bw, &pipe_config->fdi_m_n);
1857e1da 5352
e29c22c0
DV
5353 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5354 intel_crtc->pipe, pipe_config);
5355 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5356 pipe_config->pipe_bpp -= 2*3;
5357 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5358 pipe_config->pipe_bpp);
5359 needs_recompute = true;
5360 pipe_config->bw_constrained = true;
5361
5362 goto retry;
5363 }
5364
5365 if (needs_recompute)
5366 return RETRY;
5367
5368 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5369}
5370
42db64ef
PZ
5371static void hsw_compute_ips_config(struct intel_crtc *crtc,
5372 struct intel_crtc_config *pipe_config)
5373{
d330a953 5374 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5375 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5376 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5377}
5378
a43f6e0f 5379static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5380 struct intel_crtc_config *pipe_config)
79e53945 5381{
a43f6e0f 5382 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5383 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5384
ad3a4479 5385 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5386 if (INTEL_INFO(dev)->gen < 4) {
5387 struct drm_i915_private *dev_priv = dev->dev_private;
5388 int clock_limit =
5389 dev_priv->display.get_display_clock_speed(dev);
5390
5391 /*
5392 * Enable pixel doubling when the dot clock
5393 * is > 90% of the (display) core speed.
5394 *
b397c96b
VS
5395 * GDG double wide on either pipe,
5396 * otherwise pipe A only.
cf532bb2 5397 */
b397c96b 5398 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5399 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5400 clock_limit *= 2;
cf532bb2 5401 pipe_config->double_wide = true;
ad3a4479
VS
5402 }
5403
241bfc38 5404 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5405 return -EINVAL;
2c07245f 5406 }
89749350 5407
1d1d0e27
VS
5408 /*
5409 * Pipe horizontal size must be even in:
5410 * - DVO ganged mode
5411 * - LVDS dual channel mode
5412 * - Double wide pipe
5413 */
5414 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5415 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5416 pipe_config->pipe_src_w &= ~1;
5417
8693a824
DL
5418 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5419 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5420 */
5421 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5422 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5423 return -EINVAL;
44f46b42 5424
bd080ee5 5425 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5426 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5427 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5428 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5429 * for lvds. */
5430 pipe_config->pipe_bpp = 8*3;
5431 }
5432
f5adf94e 5433 if (HAS_IPS(dev))
a43f6e0f
DV
5434 hsw_compute_ips_config(crtc, pipe_config);
5435
12030431
DV
5436 /*
5437 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5438 * old clock survives for now.
5439 */
5440 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5441 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5442
877d48d5 5443 if (pipe_config->has_pch_encoder)
a43f6e0f 5444 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5445
e29c22c0 5446 return 0;
79e53945
JB
5447}
5448
25eb05fc
JB
5449static int valleyview_get_display_clock_speed(struct drm_device *dev)
5450{
d197b7d3
VS
5451 struct drm_i915_private *dev_priv = dev->dev_private;
5452 int vco = valleyview_get_vco(dev_priv);
5453 u32 val;
5454 int divider;
5455
d49a340d
VS
5456 /* FIXME: Punit isn't quite ready yet */
5457 if (IS_CHERRYVIEW(dev))
5458 return 400000;
5459
d197b7d3
VS
5460 mutex_lock(&dev_priv->dpio_lock);
5461 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5462 mutex_unlock(&dev_priv->dpio_lock);
5463
5464 divider = val & DISPLAY_FREQUENCY_VALUES;
5465
7d007f40
VS
5466 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5467 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5468 "cdclk change in progress\n");
5469
d197b7d3 5470 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5471}
5472
e70236a8
JB
5473static int i945_get_display_clock_speed(struct drm_device *dev)
5474{
5475 return 400000;
5476}
79e53945 5477
e70236a8 5478static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5479{
e70236a8
JB
5480 return 333000;
5481}
79e53945 5482
e70236a8
JB
5483static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5484{
5485 return 200000;
5486}
79e53945 5487
257a7ffc
DV
5488static int pnv_get_display_clock_speed(struct drm_device *dev)
5489{
5490 u16 gcfgc = 0;
5491
5492 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5493
5494 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5495 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5496 return 267000;
5497 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5498 return 333000;
5499 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5500 return 444000;
5501 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5502 return 200000;
5503 default:
5504 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5505 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5506 return 133000;
5507 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5508 return 167000;
5509 }
5510}
5511
e70236a8
JB
5512static int i915gm_get_display_clock_speed(struct drm_device *dev)
5513{
5514 u16 gcfgc = 0;
79e53945 5515
e70236a8
JB
5516 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5517
5518 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5519 return 133000;
5520 else {
5521 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5522 case GC_DISPLAY_CLOCK_333_MHZ:
5523 return 333000;
5524 default:
5525 case GC_DISPLAY_CLOCK_190_200_MHZ:
5526 return 190000;
79e53945 5527 }
e70236a8
JB
5528 }
5529}
5530
5531static int i865_get_display_clock_speed(struct drm_device *dev)
5532{
5533 return 266000;
5534}
5535
5536static int i855_get_display_clock_speed(struct drm_device *dev)
5537{
5538 u16 hpllcc = 0;
5539 /* Assume that the hardware is in the high speed state. This
5540 * should be the default.
5541 */
5542 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5543 case GC_CLOCK_133_200:
5544 case GC_CLOCK_100_200:
5545 return 200000;
5546 case GC_CLOCK_166_250:
5547 return 250000;
5548 case GC_CLOCK_100_133:
79e53945 5549 return 133000;
e70236a8 5550 }
79e53945 5551
e70236a8
JB
5552 /* Shouldn't happen */
5553 return 0;
5554}
79e53945 5555
e70236a8
JB
5556static int i830_get_display_clock_speed(struct drm_device *dev)
5557{
5558 return 133000;
79e53945
JB
5559}
5560
2c07245f 5561static void
a65851af 5562intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5563{
a65851af
VS
5564 while (*num > DATA_LINK_M_N_MASK ||
5565 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5566 *num >>= 1;
5567 *den >>= 1;
5568 }
5569}
5570
a65851af
VS
5571static void compute_m_n(unsigned int m, unsigned int n,
5572 uint32_t *ret_m, uint32_t *ret_n)
5573{
5574 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5575 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5576 intel_reduce_m_n_ratio(ret_m, ret_n);
5577}
5578
e69d0bc1
DV
5579void
5580intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5581 int pixel_clock, int link_clock,
5582 struct intel_link_m_n *m_n)
2c07245f 5583{
e69d0bc1 5584 m_n->tu = 64;
a65851af
VS
5585
5586 compute_m_n(bits_per_pixel * pixel_clock,
5587 link_clock * nlanes * 8,
5588 &m_n->gmch_m, &m_n->gmch_n);
5589
5590 compute_m_n(pixel_clock, link_clock,
5591 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5592}
5593
a7615030
CW
5594static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5595{
d330a953
JN
5596 if (i915.panel_use_ssc >= 0)
5597 return i915.panel_use_ssc != 0;
41aa3448 5598 return dev_priv->vbt.lvds_use_ssc
435793df 5599 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5600}
5601
c65d77d8
JB
5602static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5603{
5604 struct drm_device *dev = crtc->dev;
5605 struct drm_i915_private *dev_priv = dev->dev_private;
5606 int refclk;
5607
a0c4da24 5608 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5609 refclk = 100000;
a0c4da24 5610 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5611 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5612 refclk = dev_priv->vbt.lvds_ssc_freq;
5613 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5614 } else if (!IS_GEN2(dev)) {
5615 refclk = 96000;
5616 } else {
5617 refclk = 48000;
5618 }
5619
5620 return refclk;
5621}
5622
7429e9d4 5623static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5624{
7df00d7a 5625 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5626}
f47709a9 5627
7429e9d4
DV
5628static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5629{
5630 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5631}
5632
f47709a9 5633static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5634 intel_clock_t *reduced_clock)
5635{
f47709a9 5636 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5637 u32 fp, fp2 = 0;
5638
5639 if (IS_PINEVIEW(dev)) {
7429e9d4 5640 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5641 if (reduced_clock)
7429e9d4 5642 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5643 } else {
7429e9d4 5644 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5645 if (reduced_clock)
7429e9d4 5646 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5647 }
5648
8bcc2795 5649 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5650
f47709a9
DV
5651 crtc->lowfreq_avail = false;
5652 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5653 reduced_clock && i915.powersave) {
8bcc2795 5654 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5655 crtc->lowfreq_avail = true;
a7516a05 5656 } else {
8bcc2795 5657 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5658 }
5659}
5660
5e69f97f
CML
5661static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5662 pipe)
89b667f8
JB
5663{
5664 u32 reg_val;
5665
5666 /*
5667 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5668 * and set it to a reasonable value instead.
5669 */
ab3c759a 5670 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5671 reg_val &= 0xffffff00;
5672 reg_val |= 0x00000030;
ab3c759a 5673 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5674
ab3c759a 5675 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5676 reg_val &= 0x8cffffff;
5677 reg_val = 0x8c000000;
ab3c759a 5678 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5679
ab3c759a 5680 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5681 reg_val &= 0xffffff00;
ab3c759a 5682 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5683
ab3c759a 5684 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5685 reg_val &= 0x00ffffff;
5686 reg_val |= 0xb0000000;
ab3c759a 5687 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5688}
5689
b551842d
DV
5690static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5691 struct intel_link_m_n *m_n)
5692{
5693 struct drm_device *dev = crtc->base.dev;
5694 struct drm_i915_private *dev_priv = dev->dev_private;
5695 int pipe = crtc->pipe;
5696
e3b95f1e
DV
5697 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5698 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5699 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5700 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5701}
5702
5703static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5704 struct intel_link_m_n *m_n,
5705 struct intel_link_m_n *m2_n2)
b551842d
DV
5706{
5707 struct drm_device *dev = crtc->base.dev;
5708 struct drm_i915_private *dev_priv = dev->dev_private;
5709 int pipe = crtc->pipe;
5710 enum transcoder transcoder = crtc->config.cpu_transcoder;
5711
5712 if (INTEL_INFO(dev)->gen >= 5) {
5713 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5714 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5715 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5716 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5717 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5718 * for gen < 8) and if DRRS is supported (to make sure the
5719 * registers are not unnecessarily accessed).
5720 */
5721 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5722 crtc->config.has_drrs) {
5723 I915_WRITE(PIPE_DATA_M2(transcoder),
5724 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5725 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5726 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5727 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5728 }
b551842d 5729 } else {
e3b95f1e
DV
5730 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5731 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5732 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5733 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5734 }
5735}
5736
f769cd24 5737void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5738{
5739 if (crtc->config.has_pch_encoder)
5740 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5741 else
f769cd24
VK
5742 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5743 &crtc->config.dp_m2_n2);
03afc4a2
DV
5744}
5745
f47709a9 5746static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5747{
5748 u32 dpll, dpll_md;
5749
5750 /*
5751 * Enable DPIO clock input. We should never disable the reference
5752 * clock for pipe B, since VGA hotplug / manual detection depends
5753 * on it.
5754 */
5755 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5756 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5757 /* We should never disable this, set it here for state tracking */
5758 if (crtc->pipe == PIPE_B)
5759 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5760 dpll |= DPLL_VCO_ENABLE;
5761 crtc->config.dpll_hw_state.dpll = dpll;
5762
5763 dpll_md = (crtc->config.pixel_multiplier - 1)
5764 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5765 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5766}
5767
5768static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5769{
f47709a9 5770 struct drm_device *dev = crtc->base.dev;
a0c4da24 5771 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5772 int pipe = crtc->pipe;
bdd4b6a6 5773 u32 mdiv;
a0c4da24 5774 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5775 u32 coreclk, reg_val;
a0c4da24 5776
09153000
DV
5777 mutex_lock(&dev_priv->dpio_lock);
5778
f47709a9
DV
5779 bestn = crtc->config.dpll.n;
5780 bestm1 = crtc->config.dpll.m1;
5781 bestm2 = crtc->config.dpll.m2;
5782 bestp1 = crtc->config.dpll.p1;
5783 bestp2 = crtc->config.dpll.p2;
a0c4da24 5784
89b667f8
JB
5785 /* See eDP HDMI DPIO driver vbios notes doc */
5786
5787 /* PLL B needs special handling */
bdd4b6a6 5788 if (pipe == PIPE_B)
5e69f97f 5789 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5790
5791 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5792 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5793
5794 /* Disable target IRef on PLL */
ab3c759a 5795 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5796 reg_val &= 0x00ffffff;
ab3c759a 5797 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5798
5799 /* Disable fast lock */
ab3c759a 5800 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5801
5802 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5803 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5804 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5805 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5806 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5807
5808 /*
5809 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5810 * but we don't support that).
5811 * Note: don't use the DAC post divider as it seems unstable.
5812 */
5813 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5814 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5815
a0c4da24 5816 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5817 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5818
89b667f8 5819 /* Set HBR and RBR LPF coefficients */
ff9a6750 5820 if (crtc->config.port_clock == 162000 ||
99750bd4 5821 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5822 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5823 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5824 0x009f0003);
89b667f8 5825 else
ab3c759a 5826 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5827 0x00d0000f);
5828
5829 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5830 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5831 /* Use SSC source */
bdd4b6a6 5832 if (pipe == PIPE_A)
ab3c759a 5833 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5834 0x0df40000);
5835 else
ab3c759a 5836 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5837 0x0df70000);
5838 } else { /* HDMI or VGA */
5839 /* Use bend source */
bdd4b6a6 5840 if (pipe == PIPE_A)
ab3c759a 5841 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5842 0x0df70000);
5843 else
ab3c759a 5844 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5845 0x0df40000);
5846 }
a0c4da24 5847
ab3c759a 5848 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5849 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5850 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5851 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5852 coreclk |= 0x01000000;
ab3c759a 5853 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5854
ab3c759a 5855 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5856 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5857}
5858
9d556c99 5859static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5860{
5861 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5862 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5863 DPLL_VCO_ENABLE;
5864 if (crtc->pipe != PIPE_A)
5865 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5866
5867 crtc->config.dpll_hw_state.dpll_md =
5868 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5869}
5870
5871static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5872{
5873 struct drm_device *dev = crtc->base.dev;
5874 struct drm_i915_private *dev_priv = dev->dev_private;
5875 int pipe = crtc->pipe;
5876 int dpll_reg = DPLL(crtc->pipe);
5877 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5878 u32 loopfilter, intcoeff;
9d556c99
CML
5879 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5880 int refclk;
5881
9d556c99
CML
5882 bestn = crtc->config.dpll.n;
5883 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5884 bestm1 = crtc->config.dpll.m1;
5885 bestm2 = crtc->config.dpll.m2 >> 22;
5886 bestp1 = crtc->config.dpll.p1;
5887 bestp2 = crtc->config.dpll.p2;
5888
5889 /*
5890 * Enable Refclk and SSC
5891 */
a11b0703
VS
5892 I915_WRITE(dpll_reg,
5893 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5894
5895 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5896
9d556c99
CML
5897 /* p1 and p2 divider */
5898 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5899 5 << DPIO_CHV_S1_DIV_SHIFT |
5900 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5901 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5902 1 << DPIO_CHV_K_DIV_SHIFT);
5903
5904 /* Feedback post-divider - m2 */
5905 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5906
5907 /* Feedback refclk divider - n and m1 */
5908 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5909 DPIO_CHV_M1_DIV_BY_2 |
5910 1 << DPIO_CHV_N_DIV_SHIFT);
5911
5912 /* M2 fraction division */
5913 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5914
5915 /* M2 fraction division enable */
5916 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5917 DPIO_CHV_FRAC_DIV_EN |
5918 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5919
5920 /* Loop filter */
5921 refclk = i9xx_get_refclk(&crtc->base, 0);
5922 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5923 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5924 if (refclk == 100000)
5925 intcoeff = 11;
5926 else if (refclk == 38400)
5927 intcoeff = 10;
5928 else
5929 intcoeff = 9;
5930 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5931 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5932
5933 /* AFC Recal */
5934 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5935 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5936 DPIO_AFC_RECAL);
5937
5938 mutex_unlock(&dev_priv->dpio_lock);
5939}
5940
f47709a9
DV
5941static void i9xx_update_pll(struct intel_crtc *crtc,
5942 intel_clock_t *reduced_clock,
eb1cbe48
DV
5943 int num_connectors)
5944{
f47709a9 5945 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5946 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5947 u32 dpll;
5948 bool is_sdvo;
f47709a9 5949 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5950
f47709a9 5951 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5952
f47709a9
DV
5953 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5954 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5955
5956 dpll = DPLL_VGA_MODE_DIS;
5957
f47709a9 5958 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5959 dpll |= DPLLB_MODE_LVDS;
5960 else
5961 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5962
ef1b460d 5963 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5964 dpll |= (crtc->config.pixel_multiplier - 1)
5965 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5966 }
198a037f
DV
5967
5968 if (is_sdvo)
4a33e48d 5969 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5970
f47709a9 5971 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5972 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5973
5974 /* compute bitmask from p1 value */
5975 if (IS_PINEVIEW(dev))
5976 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5977 else {
5978 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5979 if (IS_G4X(dev) && reduced_clock)
5980 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5981 }
5982 switch (clock->p2) {
5983 case 5:
5984 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5985 break;
5986 case 7:
5987 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5988 break;
5989 case 10:
5990 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5991 break;
5992 case 14:
5993 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5994 break;
5995 }
5996 if (INTEL_INFO(dev)->gen >= 4)
5997 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5998
09ede541 5999 if (crtc->config.sdvo_tv_clock)
eb1cbe48 6000 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 6001 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6002 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6003 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6004 else
6005 dpll |= PLL_REF_INPUT_DREFCLK;
6006
6007 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
6008 crtc->config.dpll_hw_state.dpll = dpll;
6009
eb1cbe48 6010 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
6011 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
6012 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 6013 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6014 }
6015}
6016
f47709a9 6017static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6018 intel_clock_t *reduced_clock,
eb1cbe48
DV
6019 int num_connectors)
6020{
f47709a9 6021 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6022 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6023 u32 dpll;
f47709a9 6024 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 6025
f47709a9 6026 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6027
eb1cbe48
DV
6028 dpll = DPLL_VGA_MODE_DIS;
6029
f47709a9 6030 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6031 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6032 } else {
6033 if (clock->p1 == 2)
6034 dpll |= PLL_P1_DIVIDE_BY_TWO;
6035 else
6036 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6037 if (clock->p2 == 4)
6038 dpll |= PLL_P2_DIVIDE_BY_4;
6039 }
6040
1c4e0274 6041 if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4a33e48d
DV
6042 dpll |= DPLL_DVO_2X_MODE;
6043
f47709a9 6044 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6045 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6046 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6047 else
6048 dpll |= PLL_REF_INPUT_DREFCLK;
6049
6050 dpll |= DPLL_VCO_ENABLE;
8bcc2795 6051 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6052}
6053
8a654f3b 6054static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6055{
6056 struct drm_device *dev = intel_crtc->base.dev;
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6059 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6060 struct drm_display_mode *adjusted_mode =
6061 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6062 uint32_t crtc_vtotal, crtc_vblank_end;
6063 int vsyncshift = 0;
4d8a62ea
DV
6064
6065 /* We need to be careful not to changed the adjusted mode, for otherwise
6066 * the hw state checker will get angry at the mismatch. */
6067 crtc_vtotal = adjusted_mode->crtc_vtotal;
6068 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6069
609aeaca 6070 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6071 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6072 crtc_vtotal -= 1;
6073 crtc_vblank_end -= 1;
609aeaca
VS
6074
6075 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6076 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6077 else
6078 vsyncshift = adjusted_mode->crtc_hsync_start -
6079 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6080 if (vsyncshift < 0)
6081 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6082 }
6083
6084 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6085 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6086
fe2b8f9d 6087 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6088 (adjusted_mode->crtc_hdisplay - 1) |
6089 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6090 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6091 (adjusted_mode->crtc_hblank_start - 1) |
6092 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6093 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6094 (adjusted_mode->crtc_hsync_start - 1) |
6095 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6096
fe2b8f9d 6097 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6098 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6099 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6100 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6101 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6102 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6103 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6104 (adjusted_mode->crtc_vsync_start - 1) |
6105 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6106
b5e508d4
PZ
6107 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6108 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6109 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6110 * bits. */
6111 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6112 (pipe == PIPE_B || pipe == PIPE_C))
6113 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6114
b0e77b9c
PZ
6115 /* pipesrc controls the size that is scaled from, which should
6116 * always be the user's requested size.
6117 */
6118 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6119 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6120 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6121}
6122
1bd1bd80
DV
6123static void intel_get_pipe_timings(struct intel_crtc *crtc,
6124 struct intel_crtc_config *pipe_config)
6125{
6126 struct drm_device *dev = crtc->base.dev;
6127 struct drm_i915_private *dev_priv = dev->dev_private;
6128 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6129 uint32_t tmp;
6130
6131 tmp = I915_READ(HTOTAL(cpu_transcoder));
6132 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6133 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6134 tmp = I915_READ(HBLANK(cpu_transcoder));
6135 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6136 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6137 tmp = I915_READ(HSYNC(cpu_transcoder));
6138 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6139 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6140
6141 tmp = I915_READ(VTOTAL(cpu_transcoder));
6142 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6143 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6144 tmp = I915_READ(VBLANK(cpu_transcoder));
6145 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6146 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6147 tmp = I915_READ(VSYNC(cpu_transcoder));
6148 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6149 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6150
6151 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6152 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6153 pipe_config->adjusted_mode.crtc_vtotal += 1;
6154 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6155 }
6156
6157 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6158 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6159 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6160
6161 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6162 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6163}
6164
f6a83288
DV
6165void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6166 struct intel_crtc_config *pipe_config)
babea61d 6167{
f6a83288
DV
6168 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6169 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6170 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6171 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6172
f6a83288
DV
6173 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6174 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6175 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6176 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6177
f6a83288 6178 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6179
f6a83288
DV
6180 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6181 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6182}
6183
84b046f3
DV
6184static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6185{
6186 struct drm_device *dev = intel_crtc->base.dev;
6187 struct drm_i915_private *dev_priv = dev->dev_private;
6188 uint32_t pipeconf;
6189
9f11a9e4 6190 pipeconf = 0;
84b046f3 6191
b6b5d049
VS
6192 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6193 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6194 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6195
cf532bb2
VS
6196 if (intel_crtc->config.double_wide)
6197 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6198
ff9ce46e
DV
6199 /* only g4x and later have fancy bpc/dither controls */
6200 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6201 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6202 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6203 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6204 PIPECONF_DITHER_TYPE_SP;
84b046f3 6205
ff9ce46e
DV
6206 switch (intel_crtc->config.pipe_bpp) {
6207 case 18:
6208 pipeconf |= PIPECONF_6BPC;
6209 break;
6210 case 24:
6211 pipeconf |= PIPECONF_8BPC;
6212 break;
6213 case 30:
6214 pipeconf |= PIPECONF_10BPC;
6215 break;
6216 default:
6217 /* Case prevented by intel_choose_pipe_bpp_dither. */
6218 BUG();
84b046f3
DV
6219 }
6220 }
6221
6222 if (HAS_PIPE_CXSR(dev)) {
6223 if (intel_crtc->lowfreq_avail) {
6224 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6225 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6226 } else {
6227 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6228 }
6229 }
6230
efc2cfff
VS
6231 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6232 if (INTEL_INFO(dev)->gen < 4 ||
6233 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6234 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6235 else
6236 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6237 } else
84b046f3
DV
6238 pipeconf |= PIPECONF_PROGRESSIVE;
6239
9f11a9e4
DV
6240 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6241 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6242
84b046f3
DV
6243 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6244 POSTING_READ(PIPECONF(intel_crtc->pipe));
6245}
6246
f564048e 6247static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6248 int x, int y,
94352cf9 6249 struct drm_framebuffer *fb)
79e53945
JB
6250{
6251 struct drm_device *dev = crtc->dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6254 int refclk, num_connectors = 0;
652c393a 6255 intel_clock_t clock, reduced_clock;
a16af721 6256 bool ok, has_reduced_clock = false;
e9fd1c02 6257 bool is_lvds = false, is_dsi = false;
5eddb70b 6258 struct intel_encoder *encoder;
d4906093 6259 const intel_limit_t *limit;
79e53945 6260
6c2b7c12 6261 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6262 switch (encoder->type) {
79e53945
JB
6263 case INTEL_OUTPUT_LVDS:
6264 is_lvds = true;
6265 break;
e9fd1c02
JN
6266 case INTEL_OUTPUT_DSI:
6267 is_dsi = true;
6268 break;
79e53945 6269 }
43565a06 6270
c751ce4f 6271 num_connectors++;
79e53945
JB
6272 }
6273
f2335330 6274 if (is_dsi)
5b18e57c 6275 return 0;
f2335330
JN
6276
6277 if (!intel_crtc->config.clock_set) {
6278 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6279
e9fd1c02
JN
6280 /*
6281 * Returns a set of divisors for the desired target clock with
6282 * the given refclk, or FALSE. The returned values represent
6283 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6284 * 2) / p1 / p2.
6285 */
6286 limit = intel_limit(crtc, refclk);
a919ff14 6287 ok = dev_priv->display.find_dpll(limit, intel_crtc,
e9fd1c02
JN
6288 intel_crtc->config.port_clock,
6289 refclk, NULL, &clock);
f2335330 6290 if (!ok) {
e9fd1c02
JN
6291 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6292 return -EINVAL;
6293 }
79e53945 6294
f2335330
JN
6295 if (is_lvds && dev_priv->lvds_downclock_avail) {
6296 /*
6297 * Ensure we match the reduced clock's P to the target
6298 * clock. If the clocks don't match, we can't switch
6299 * the display clock by using the FP0/FP1. In such case
6300 * we will disable the LVDS downclock feature.
6301 */
6302 has_reduced_clock =
a919ff14 6303 dev_priv->display.find_dpll(limit, intel_crtc,
f2335330
JN
6304 dev_priv->lvds_downclock,
6305 refclk, &clock,
6306 &reduced_clock);
6307 }
6308 /* Compat-code for transition, will disappear. */
f47709a9
DV
6309 intel_crtc->config.dpll.n = clock.n;
6310 intel_crtc->config.dpll.m1 = clock.m1;
6311 intel_crtc->config.dpll.m2 = clock.m2;
6312 intel_crtc->config.dpll.p1 = clock.p1;
6313 intel_crtc->config.dpll.p2 = clock.p2;
6314 }
7026d4ac 6315
e9fd1c02 6316 if (IS_GEN2(dev)) {
8a654f3b 6317 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6318 has_reduced_clock ? &reduced_clock : NULL,
6319 num_connectors);
9d556c99
CML
6320 } else if (IS_CHERRYVIEW(dev)) {
6321 chv_update_pll(intel_crtc);
e9fd1c02 6322 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6323 vlv_update_pll(intel_crtc);
e9fd1c02 6324 } else {
f47709a9 6325 i9xx_update_pll(intel_crtc,
eb1cbe48 6326 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6327 num_connectors);
e9fd1c02 6328 }
79e53945 6329
c8f7a0db 6330 return 0;
f564048e
EA
6331}
6332
2fa2fe9a
DV
6333static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6334 struct intel_crtc_config *pipe_config)
6335{
6336 struct drm_device *dev = crtc->base.dev;
6337 struct drm_i915_private *dev_priv = dev->dev_private;
6338 uint32_t tmp;
6339
dc9e7dec
VS
6340 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6341 return;
6342
2fa2fe9a 6343 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6344 if (!(tmp & PFIT_ENABLE))
6345 return;
2fa2fe9a 6346
06922821 6347 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6348 if (INTEL_INFO(dev)->gen < 4) {
6349 if (crtc->pipe != PIPE_B)
6350 return;
2fa2fe9a
DV
6351 } else {
6352 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6353 return;
6354 }
6355
06922821 6356 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6357 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6358 if (INTEL_INFO(dev)->gen < 5)
6359 pipe_config->gmch_pfit.lvds_border_bits =
6360 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6361}
6362
acbec814
JB
6363static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6364 struct intel_crtc_config *pipe_config)
6365{
6366 struct drm_device *dev = crtc->base.dev;
6367 struct drm_i915_private *dev_priv = dev->dev_private;
6368 int pipe = pipe_config->cpu_transcoder;
6369 intel_clock_t clock;
6370 u32 mdiv;
662c6ecb 6371 int refclk = 100000;
acbec814 6372
f573de5a
SK
6373 /* In case of MIPI DPLL will not even be used */
6374 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6375 return;
6376
acbec814 6377 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6378 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6379 mutex_unlock(&dev_priv->dpio_lock);
6380
6381 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6382 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6383 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6384 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6385 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6386
f646628b 6387 vlv_clock(refclk, &clock);
acbec814 6388
f646628b
VS
6389 /* clock.dot is the fast clock */
6390 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6391}
6392
1ad292b5
JB
6393static void i9xx_get_plane_config(struct intel_crtc *crtc,
6394 struct intel_plane_config *plane_config)
6395{
6396 struct drm_device *dev = crtc->base.dev;
6397 struct drm_i915_private *dev_priv = dev->dev_private;
6398 u32 val, base, offset;
6399 int pipe = crtc->pipe, plane = crtc->plane;
6400 int fourcc, pixel_format;
6401 int aligned_height;
6402
66e514c1
DA
6403 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6404 if (!crtc->base.primary->fb) {
1ad292b5
JB
6405 DRM_DEBUG_KMS("failed to alloc fb\n");
6406 return;
6407 }
6408
6409 val = I915_READ(DSPCNTR(plane));
6410
6411 if (INTEL_INFO(dev)->gen >= 4)
6412 if (val & DISPPLANE_TILED)
6413 plane_config->tiled = true;
6414
6415 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6416 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6417 crtc->base.primary->fb->pixel_format = fourcc;
6418 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6419 drm_format_plane_cpp(fourcc, 0) * 8;
6420
6421 if (INTEL_INFO(dev)->gen >= 4) {
6422 if (plane_config->tiled)
6423 offset = I915_READ(DSPTILEOFF(plane));
6424 else
6425 offset = I915_READ(DSPLINOFF(plane));
6426 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6427 } else {
6428 base = I915_READ(DSPADDR(plane));
6429 }
6430 plane_config->base = base;
6431
6432 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6433 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6434 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6435
6436 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6437 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6438
66e514c1 6439 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6440 plane_config->tiled);
6441
1267a26b
FF
6442 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6443 aligned_height);
1ad292b5
JB
6444
6445 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6446 pipe, plane, crtc->base.primary->fb->width,
6447 crtc->base.primary->fb->height,
6448 crtc->base.primary->fb->bits_per_pixel, base,
6449 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6450 plane_config->size);
6451
6452}
6453
70b23a98
VS
6454static void chv_crtc_clock_get(struct intel_crtc *crtc,
6455 struct intel_crtc_config *pipe_config)
6456{
6457 struct drm_device *dev = crtc->base.dev;
6458 struct drm_i915_private *dev_priv = dev->dev_private;
6459 int pipe = pipe_config->cpu_transcoder;
6460 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6461 intel_clock_t clock;
6462 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6463 int refclk = 100000;
6464
6465 mutex_lock(&dev_priv->dpio_lock);
6466 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6467 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6468 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6469 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6470 mutex_unlock(&dev_priv->dpio_lock);
6471
6472 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6473 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6474 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6475 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6476 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6477
6478 chv_clock(refclk, &clock);
6479
6480 /* clock.dot is the fast clock */
6481 pipe_config->port_clock = clock.dot / 5;
6482}
6483
0e8ffe1b
DV
6484static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6485 struct intel_crtc_config *pipe_config)
6486{
6487 struct drm_device *dev = crtc->base.dev;
6488 struct drm_i915_private *dev_priv = dev->dev_private;
6489 uint32_t tmp;
6490
f458ebbc
DV
6491 if (!intel_display_power_is_enabled(dev_priv,
6492 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6493 return false;
6494
e143a21c 6495 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6496 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6497
0e8ffe1b
DV
6498 tmp = I915_READ(PIPECONF(crtc->pipe));
6499 if (!(tmp & PIPECONF_ENABLE))
6500 return false;
6501
42571aef
VS
6502 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6503 switch (tmp & PIPECONF_BPC_MASK) {
6504 case PIPECONF_6BPC:
6505 pipe_config->pipe_bpp = 18;
6506 break;
6507 case PIPECONF_8BPC:
6508 pipe_config->pipe_bpp = 24;
6509 break;
6510 case PIPECONF_10BPC:
6511 pipe_config->pipe_bpp = 30;
6512 break;
6513 default:
6514 break;
6515 }
6516 }
6517
b5a9fa09
DV
6518 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6519 pipe_config->limited_color_range = true;
6520
282740f7
VS
6521 if (INTEL_INFO(dev)->gen < 4)
6522 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6523
1bd1bd80
DV
6524 intel_get_pipe_timings(crtc, pipe_config);
6525
2fa2fe9a
DV
6526 i9xx_get_pfit_config(crtc, pipe_config);
6527
6c49f241
DV
6528 if (INTEL_INFO(dev)->gen >= 4) {
6529 tmp = I915_READ(DPLL_MD(crtc->pipe));
6530 pipe_config->pixel_multiplier =
6531 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6532 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6533 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6534 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6535 tmp = I915_READ(DPLL(crtc->pipe));
6536 pipe_config->pixel_multiplier =
6537 ((tmp & SDVO_MULTIPLIER_MASK)
6538 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6539 } else {
6540 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6541 * port and will be fixed up in the encoder->get_config
6542 * function. */
6543 pipe_config->pixel_multiplier = 1;
6544 }
8bcc2795
DV
6545 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6546 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6547 /*
6548 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6549 * on 830. Filter it out here so that we don't
6550 * report errors due to that.
6551 */
6552 if (IS_I830(dev))
6553 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6554
8bcc2795
DV
6555 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6556 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6557 } else {
6558 /* Mask out read-only status bits. */
6559 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6560 DPLL_PORTC_READY_MASK |
6561 DPLL_PORTB_READY_MASK);
8bcc2795 6562 }
6c49f241 6563
70b23a98
VS
6564 if (IS_CHERRYVIEW(dev))
6565 chv_crtc_clock_get(crtc, pipe_config);
6566 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6567 vlv_crtc_clock_get(crtc, pipe_config);
6568 else
6569 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6570
0e8ffe1b
DV
6571 return true;
6572}
6573
dde86e2d 6574static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6575{
6576 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6577 struct intel_encoder *encoder;
74cfd7ac 6578 u32 val, final;
13d83a67 6579 bool has_lvds = false;
199e5d79 6580 bool has_cpu_edp = false;
199e5d79 6581 bool has_panel = false;
99eb6a01
KP
6582 bool has_ck505 = false;
6583 bool can_ssc = false;
13d83a67
JB
6584
6585 /* We need to take the global config into account */
b2784e15 6586 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6587 switch (encoder->type) {
6588 case INTEL_OUTPUT_LVDS:
6589 has_panel = true;
6590 has_lvds = true;
6591 break;
6592 case INTEL_OUTPUT_EDP:
6593 has_panel = true;
2de6905f 6594 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6595 has_cpu_edp = true;
6596 break;
13d83a67
JB
6597 }
6598 }
6599
99eb6a01 6600 if (HAS_PCH_IBX(dev)) {
41aa3448 6601 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6602 can_ssc = has_ck505;
6603 } else {
6604 has_ck505 = false;
6605 can_ssc = true;
6606 }
6607
2de6905f
ID
6608 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6609 has_panel, has_lvds, has_ck505);
13d83a67
JB
6610
6611 /* Ironlake: try to setup display ref clock before DPLL
6612 * enabling. This is only under driver's control after
6613 * PCH B stepping, previous chipset stepping should be
6614 * ignoring this setting.
6615 */
74cfd7ac
CW
6616 val = I915_READ(PCH_DREF_CONTROL);
6617
6618 /* As we must carefully and slowly disable/enable each source in turn,
6619 * compute the final state we want first and check if we need to
6620 * make any changes at all.
6621 */
6622 final = val;
6623 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6624 if (has_ck505)
6625 final |= DREF_NONSPREAD_CK505_ENABLE;
6626 else
6627 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6628
6629 final &= ~DREF_SSC_SOURCE_MASK;
6630 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6631 final &= ~DREF_SSC1_ENABLE;
6632
6633 if (has_panel) {
6634 final |= DREF_SSC_SOURCE_ENABLE;
6635
6636 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6637 final |= DREF_SSC1_ENABLE;
6638
6639 if (has_cpu_edp) {
6640 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6641 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6642 else
6643 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6644 } else
6645 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6646 } else {
6647 final |= DREF_SSC_SOURCE_DISABLE;
6648 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6649 }
6650
6651 if (final == val)
6652 return;
6653
13d83a67 6654 /* Always enable nonspread source */
74cfd7ac 6655 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6656
99eb6a01 6657 if (has_ck505)
74cfd7ac 6658 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6659 else
74cfd7ac 6660 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6661
199e5d79 6662 if (has_panel) {
74cfd7ac
CW
6663 val &= ~DREF_SSC_SOURCE_MASK;
6664 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6665
199e5d79 6666 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6667 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6668 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6669 val |= DREF_SSC1_ENABLE;
e77166b5 6670 } else
74cfd7ac 6671 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6672
6673 /* Get SSC going before enabling the outputs */
74cfd7ac 6674 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6675 POSTING_READ(PCH_DREF_CONTROL);
6676 udelay(200);
6677
74cfd7ac 6678 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6679
6680 /* Enable CPU source on CPU attached eDP */
199e5d79 6681 if (has_cpu_edp) {
99eb6a01 6682 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6683 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6684 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6685 } else
74cfd7ac 6686 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6687 } else
74cfd7ac 6688 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6689
74cfd7ac 6690 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6691 POSTING_READ(PCH_DREF_CONTROL);
6692 udelay(200);
6693 } else {
6694 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6695
74cfd7ac 6696 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6697
6698 /* Turn off CPU output */
74cfd7ac 6699 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6700
74cfd7ac 6701 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6702 POSTING_READ(PCH_DREF_CONTROL);
6703 udelay(200);
6704
6705 /* Turn off the SSC source */
74cfd7ac
CW
6706 val &= ~DREF_SSC_SOURCE_MASK;
6707 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6708
6709 /* Turn off SSC1 */
74cfd7ac 6710 val &= ~DREF_SSC1_ENABLE;
199e5d79 6711
74cfd7ac 6712 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6713 POSTING_READ(PCH_DREF_CONTROL);
6714 udelay(200);
6715 }
74cfd7ac
CW
6716
6717 BUG_ON(val != final);
13d83a67
JB
6718}
6719
f31f2d55 6720static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6721{
f31f2d55 6722 uint32_t tmp;
dde86e2d 6723
0ff066a9
PZ
6724 tmp = I915_READ(SOUTH_CHICKEN2);
6725 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6726 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6727
0ff066a9
PZ
6728 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6729 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6730 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6731
0ff066a9
PZ
6732 tmp = I915_READ(SOUTH_CHICKEN2);
6733 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6734 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6735
0ff066a9
PZ
6736 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6737 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6738 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6739}
6740
6741/* WaMPhyProgramming:hsw */
6742static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6743{
6744 uint32_t tmp;
dde86e2d
PZ
6745
6746 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6747 tmp &= ~(0xFF << 24);
6748 tmp |= (0x12 << 24);
6749 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6750
dde86e2d
PZ
6751 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6752 tmp |= (1 << 11);
6753 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6754
6755 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6756 tmp |= (1 << 11);
6757 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6758
dde86e2d
PZ
6759 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6760 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6761 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6762
6763 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6764 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6765 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6766
0ff066a9
PZ
6767 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6768 tmp &= ~(7 << 13);
6769 tmp |= (5 << 13);
6770 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6771
0ff066a9
PZ
6772 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6773 tmp &= ~(7 << 13);
6774 tmp |= (5 << 13);
6775 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6776
6777 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6778 tmp &= ~0xFF;
6779 tmp |= 0x1C;
6780 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6781
6782 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6783 tmp &= ~0xFF;
6784 tmp |= 0x1C;
6785 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6786
6787 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6788 tmp &= ~(0xFF << 16);
6789 tmp |= (0x1C << 16);
6790 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6791
6792 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6793 tmp &= ~(0xFF << 16);
6794 tmp |= (0x1C << 16);
6795 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6796
0ff066a9
PZ
6797 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6798 tmp |= (1 << 27);
6799 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6800
0ff066a9
PZ
6801 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6802 tmp |= (1 << 27);
6803 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6804
0ff066a9
PZ
6805 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6806 tmp &= ~(0xF << 28);
6807 tmp |= (4 << 28);
6808 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6809
0ff066a9
PZ
6810 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6811 tmp &= ~(0xF << 28);
6812 tmp |= (4 << 28);
6813 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6814}
6815
2fa86a1f
PZ
6816/* Implements 3 different sequences from BSpec chapter "Display iCLK
6817 * Programming" based on the parameters passed:
6818 * - Sequence to enable CLKOUT_DP
6819 * - Sequence to enable CLKOUT_DP without spread
6820 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6821 */
6822static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6823 bool with_fdi)
f31f2d55
PZ
6824{
6825 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6826 uint32_t reg, tmp;
6827
6828 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6829 with_spread = true;
6830 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6831 with_fdi, "LP PCH doesn't have FDI\n"))
6832 with_fdi = false;
f31f2d55
PZ
6833
6834 mutex_lock(&dev_priv->dpio_lock);
6835
6836 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6837 tmp &= ~SBI_SSCCTL_DISABLE;
6838 tmp |= SBI_SSCCTL_PATHALT;
6839 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6840
6841 udelay(24);
6842
2fa86a1f
PZ
6843 if (with_spread) {
6844 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6845 tmp &= ~SBI_SSCCTL_PATHALT;
6846 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6847
2fa86a1f
PZ
6848 if (with_fdi) {
6849 lpt_reset_fdi_mphy(dev_priv);
6850 lpt_program_fdi_mphy(dev_priv);
6851 }
6852 }
dde86e2d 6853
2fa86a1f
PZ
6854 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6855 SBI_GEN0 : SBI_DBUFF0;
6856 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6857 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6858 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6859
6860 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6861}
6862
47701c3b
PZ
6863/* Sequence to disable CLKOUT_DP */
6864static void lpt_disable_clkout_dp(struct drm_device *dev)
6865{
6866 struct drm_i915_private *dev_priv = dev->dev_private;
6867 uint32_t reg, tmp;
6868
6869 mutex_lock(&dev_priv->dpio_lock);
6870
6871 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6872 SBI_GEN0 : SBI_DBUFF0;
6873 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6874 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6875 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6876
6877 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6878 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6879 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6880 tmp |= SBI_SSCCTL_PATHALT;
6881 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6882 udelay(32);
6883 }
6884 tmp |= SBI_SSCCTL_DISABLE;
6885 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6886 }
6887
6888 mutex_unlock(&dev_priv->dpio_lock);
6889}
6890
bf8fa3d3
PZ
6891static void lpt_init_pch_refclk(struct drm_device *dev)
6892{
bf8fa3d3
PZ
6893 struct intel_encoder *encoder;
6894 bool has_vga = false;
6895
b2784e15 6896 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6897 switch (encoder->type) {
6898 case INTEL_OUTPUT_ANALOG:
6899 has_vga = true;
6900 break;
6901 }
6902 }
6903
47701c3b
PZ
6904 if (has_vga)
6905 lpt_enable_clkout_dp(dev, true, true);
6906 else
6907 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6908}
6909
dde86e2d
PZ
6910/*
6911 * Initialize reference clocks when the driver loads
6912 */
6913void intel_init_pch_refclk(struct drm_device *dev)
6914{
6915 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6916 ironlake_init_pch_refclk(dev);
6917 else if (HAS_PCH_LPT(dev))
6918 lpt_init_pch_refclk(dev);
6919}
6920
d9d444cb
JB
6921static int ironlake_get_refclk(struct drm_crtc *crtc)
6922{
6923 struct drm_device *dev = crtc->dev;
6924 struct drm_i915_private *dev_priv = dev->dev_private;
6925 struct intel_encoder *encoder;
d9d444cb
JB
6926 int num_connectors = 0;
6927 bool is_lvds = false;
6928
6c2b7c12 6929 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6930 switch (encoder->type) {
6931 case INTEL_OUTPUT_LVDS:
6932 is_lvds = true;
6933 break;
d9d444cb
JB
6934 }
6935 num_connectors++;
6936 }
6937
6938 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6939 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6940 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6941 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6942 }
6943
6944 return 120000;
6945}
6946
6ff93609 6947static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6948{
c8203565 6949 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6951 int pipe = intel_crtc->pipe;
c8203565
PZ
6952 uint32_t val;
6953
78114071 6954 val = 0;
c8203565 6955
965e0c48 6956 switch (intel_crtc->config.pipe_bpp) {
c8203565 6957 case 18:
dfd07d72 6958 val |= PIPECONF_6BPC;
c8203565
PZ
6959 break;
6960 case 24:
dfd07d72 6961 val |= PIPECONF_8BPC;
c8203565
PZ
6962 break;
6963 case 30:
dfd07d72 6964 val |= PIPECONF_10BPC;
c8203565
PZ
6965 break;
6966 case 36:
dfd07d72 6967 val |= PIPECONF_12BPC;
c8203565
PZ
6968 break;
6969 default:
cc769b62
PZ
6970 /* Case prevented by intel_choose_pipe_bpp_dither. */
6971 BUG();
c8203565
PZ
6972 }
6973
d8b32247 6974 if (intel_crtc->config.dither)
c8203565
PZ
6975 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6976
6ff93609 6977 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6978 val |= PIPECONF_INTERLACED_ILK;
6979 else
6980 val |= PIPECONF_PROGRESSIVE;
6981
50f3b016 6982 if (intel_crtc->config.limited_color_range)
3685a8f3 6983 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6984
c8203565
PZ
6985 I915_WRITE(PIPECONF(pipe), val);
6986 POSTING_READ(PIPECONF(pipe));
6987}
6988
86d3efce
VS
6989/*
6990 * Set up the pipe CSC unit.
6991 *
6992 * Currently only full range RGB to limited range RGB conversion
6993 * is supported, but eventually this should handle various
6994 * RGB<->YCbCr scenarios as well.
6995 */
50f3b016 6996static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6997{
6998 struct drm_device *dev = crtc->dev;
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7001 int pipe = intel_crtc->pipe;
7002 uint16_t coeff = 0x7800; /* 1.0 */
7003
7004 /*
7005 * TODO: Check what kind of values actually come out of the pipe
7006 * with these coeff/postoff values and adjust to get the best
7007 * accuracy. Perhaps we even need to take the bpc value into
7008 * consideration.
7009 */
7010
50f3b016 7011 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7012 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7013
7014 /*
7015 * GY/GU and RY/RU should be the other way around according
7016 * to BSpec, but reality doesn't agree. Just set them up in
7017 * a way that results in the correct picture.
7018 */
7019 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7020 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7021
7022 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7023 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7024
7025 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7026 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7027
7028 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7029 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7030 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7031
7032 if (INTEL_INFO(dev)->gen > 6) {
7033 uint16_t postoff = 0;
7034
50f3b016 7035 if (intel_crtc->config.limited_color_range)
32cf0cb0 7036 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7037
7038 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7039 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7040 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7041
7042 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7043 } else {
7044 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7045
50f3b016 7046 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7047 mode |= CSC_BLACK_SCREEN_OFFSET;
7048
7049 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7050 }
7051}
7052
6ff93609 7053static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7054{
756f85cf
PZ
7055 struct drm_device *dev = crtc->dev;
7056 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7058 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7059 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7060 uint32_t val;
7061
3eff4faa 7062 val = 0;
ee2b0b38 7063
756f85cf 7064 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7065 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7066
6ff93609 7067 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7068 val |= PIPECONF_INTERLACED_ILK;
7069 else
7070 val |= PIPECONF_PROGRESSIVE;
7071
702e7a56
PZ
7072 I915_WRITE(PIPECONF(cpu_transcoder), val);
7073 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7074
7075 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7076 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7077
3cdf122c 7078 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7079 val = 0;
7080
7081 switch (intel_crtc->config.pipe_bpp) {
7082 case 18:
7083 val |= PIPEMISC_DITHER_6_BPC;
7084 break;
7085 case 24:
7086 val |= PIPEMISC_DITHER_8_BPC;
7087 break;
7088 case 30:
7089 val |= PIPEMISC_DITHER_10_BPC;
7090 break;
7091 case 36:
7092 val |= PIPEMISC_DITHER_12_BPC;
7093 break;
7094 default:
7095 /* Case prevented by pipe_config_set_bpp. */
7096 BUG();
7097 }
7098
7099 if (intel_crtc->config.dither)
7100 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7101
7102 I915_WRITE(PIPEMISC(pipe), val);
7103 }
ee2b0b38
PZ
7104}
7105
6591c6e4 7106static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7107 intel_clock_t *clock,
7108 bool *has_reduced_clock,
7109 intel_clock_t *reduced_clock)
7110{
7111 struct drm_device *dev = crtc->dev;
7112 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7114 int refclk;
d4906093 7115 const intel_limit_t *limit;
a16af721 7116 bool ret, is_lvds = false;
79e53945 7117
6e2cc096 7118 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7119
d9d444cb 7120 refclk = ironlake_get_refclk(crtc);
79e53945 7121
d4906093
ML
7122 /*
7123 * Returns a set of divisors for the desired target clock with the given
7124 * refclk, or FALSE. The returned values represent the clock equation:
7125 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7126 */
1b894b59 7127 limit = intel_limit(crtc, refclk);
a919ff14
ACO
7128 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7129 intel_crtc->config.port_clock,
ee9300bb 7130 refclk, NULL, clock);
6591c6e4
PZ
7131 if (!ret)
7132 return false;
cda4b7d3 7133
ddc9003c 7134 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7135 /*
7136 * Ensure we match the reduced clock's P to the target clock.
7137 * If the clocks don't match, we can't switch the display clock
7138 * by using the FP0/FP1. In such case we will disable the LVDS
7139 * downclock feature.
7140 */
ee9300bb 7141 *has_reduced_clock =
a919ff14 7142 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7143 dev_priv->lvds_downclock,
7144 refclk, clock,
7145 reduced_clock);
652c393a 7146 }
61e9653f 7147
6591c6e4
PZ
7148 return true;
7149}
7150
d4b1931c
PZ
7151int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7152{
7153 /*
7154 * Account for spread spectrum to avoid
7155 * oversubscribing the link. Max center spread
7156 * is 2.5%; use 5% for safety's sake.
7157 */
7158 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7159 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7160}
7161
7429e9d4 7162static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7163{
7429e9d4 7164 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7165}
7166
de13a2e3 7167static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7168 u32 *fp,
9a7c7890 7169 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7170{
de13a2e3 7171 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7172 struct drm_device *dev = crtc->dev;
7173 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7174 struct intel_encoder *intel_encoder;
7175 uint32_t dpll;
6cc5f341 7176 int factor, num_connectors = 0;
09ede541 7177 bool is_lvds = false, is_sdvo = false;
79e53945 7178
de13a2e3
PZ
7179 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7180 switch (intel_encoder->type) {
79e53945
JB
7181 case INTEL_OUTPUT_LVDS:
7182 is_lvds = true;
7183 break;
7184 case INTEL_OUTPUT_SDVO:
7d57382e 7185 case INTEL_OUTPUT_HDMI:
79e53945 7186 is_sdvo = true;
79e53945 7187 break;
79e53945 7188 }
43565a06 7189
c751ce4f 7190 num_connectors++;
79e53945 7191 }
79e53945 7192
c1858123 7193 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7194 factor = 21;
7195 if (is_lvds) {
7196 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7197 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7198 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7199 factor = 25;
09ede541 7200 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7201 factor = 20;
c1858123 7202
7429e9d4 7203 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7204 *fp |= FP_CB_TUNE;
2c07245f 7205
9a7c7890
DV
7206 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7207 *fp2 |= FP_CB_TUNE;
7208
5eddb70b 7209 dpll = 0;
2c07245f 7210
a07d6787
EA
7211 if (is_lvds)
7212 dpll |= DPLLB_MODE_LVDS;
7213 else
7214 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7215
ef1b460d
DV
7216 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7217 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7218
7219 if (is_sdvo)
4a33e48d 7220 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7221 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7222 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7223
a07d6787 7224 /* compute bitmask from p1 value */
7429e9d4 7225 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7226 /* also FPA1 */
7429e9d4 7227 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7228
7429e9d4 7229 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7230 case 5:
7231 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7232 break;
7233 case 7:
7234 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7235 break;
7236 case 10:
7237 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7238 break;
7239 case 14:
7240 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7241 break;
79e53945
JB
7242 }
7243
b4c09f3b 7244 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7245 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7246 else
7247 dpll |= PLL_REF_INPUT_DREFCLK;
7248
959e16d6 7249 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7250}
7251
7252static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7253 int x, int y,
7254 struct drm_framebuffer *fb)
7255{
7256 struct drm_device *dev = crtc->dev;
de13a2e3 7257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3 7258 intel_clock_t clock, reduced_clock;
cbbab5bd 7259 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7260 bool ok, has_reduced_clock = false;
8b47047b 7261 bool is_lvds = false;
e2b78267 7262 struct intel_shared_dpll *pll;
de13a2e3 7263
6e2cc096 7264 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7265
5dc5298b
PZ
7266 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7267 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7268
ff9a6750 7269 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7270 &has_reduced_clock, &reduced_clock);
ee9300bb 7271 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7272 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7273 return -EINVAL;
79e53945 7274 }
f47709a9
DV
7275 /* Compat-code for transition, will disappear. */
7276 if (!intel_crtc->config.clock_set) {
7277 intel_crtc->config.dpll.n = clock.n;
7278 intel_crtc->config.dpll.m1 = clock.m1;
7279 intel_crtc->config.dpll.m2 = clock.m2;
7280 intel_crtc->config.dpll.p1 = clock.p1;
7281 intel_crtc->config.dpll.p2 = clock.p2;
7282 }
79e53945 7283
5dc5298b 7284 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7285 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7286 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7287 if (has_reduced_clock)
7429e9d4 7288 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7289
7429e9d4 7290 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7291 &fp, &reduced_clock,
7292 has_reduced_clock ? &fp2 : NULL);
7293
959e16d6 7294 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7295 intel_crtc->config.dpll_hw_state.fp0 = fp;
7296 if (has_reduced_clock)
7297 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7298 else
7299 intel_crtc->config.dpll_hw_state.fp1 = fp;
7300
b89a1d39 7301 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7302 if (pll == NULL) {
84f44ce7 7303 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7304 pipe_name(intel_crtc->pipe));
4b645f14
JB
7305 return -EINVAL;
7306 }
ee7b9f93 7307 } else
e72f9fbf 7308 intel_put_shared_dpll(intel_crtc);
79e53945 7309
d330a953 7310 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7311 intel_crtc->lowfreq_avail = true;
7312 else
7313 intel_crtc->lowfreq_avail = false;
e2b78267 7314
c8f7a0db 7315 return 0;
79e53945
JB
7316}
7317
eb14cb74
VS
7318static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7319 struct intel_link_m_n *m_n)
7320{
7321 struct drm_device *dev = crtc->base.dev;
7322 struct drm_i915_private *dev_priv = dev->dev_private;
7323 enum pipe pipe = crtc->pipe;
7324
7325 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7326 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7327 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7328 & ~TU_SIZE_MASK;
7329 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7330 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7331 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7332}
7333
7334static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7335 enum transcoder transcoder,
b95af8be
VK
7336 struct intel_link_m_n *m_n,
7337 struct intel_link_m_n *m2_n2)
72419203
DV
7338{
7339 struct drm_device *dev = crtc->base.dev;
7340 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7341 enum pipe pipe = crtc->pipe;
72419203 7342
eb14cb74
VS
7343 if (INTEL_INFO(dev)->gen >= 5) {
7344 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7345 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7346 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7347 & ~TU_SIZE_MASK;
7348 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7349 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7350 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7351 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7352 * gen < 8) and if DRRS is supported (to make sure the
7353 * registers are not unnecessarily read).
7354 */
7355 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7356 crtc->config.has_drrs) {
7357 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7358 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7359 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7360 & ~TU_SIZE_MASK;
7361 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7362 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7363 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7364 }
eb14cb74
VS
7365 } else {
7366 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7367 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7368 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7369 & ~TU_SIZE_MASK;
7370 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7371 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7372 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7373 }
7374}
7375
7376void intel_dp_get_m_n(struct intel_crtc *crtc,
7377 struct intel_crtc_config *pipe_config)
7378{
7379 if (crtc->config.has_pch_encoder)
7380 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7381 else
7382 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7383 &pipe_config->dp_m_n,
7384 &pipe_config->dp_m2_n2);
eb14cb74 7385}
72419203 7386
eb14cb74
VS
7387static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7388 struct intel_crtc_config *pipe_config)
7389{
7390 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7391 &pipe_config->fdi_m_n, NULL);
72419203
DV
7392}
7393
2fa2fe9a
DV
7394static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7395 struct intel_crtc_config *pipe_config)
7396{
7397 struct drm_device *dev = crtc->base.dev;
7398 struct drm_i915_private *dev_priv = dev->dev_private;
7399 uint32_t tmp;
7400
7401 tmp = I915_READ(PF_CTL(crtc->pipe));
7402
7403 if (tmp & PF_ENABLE) {
fd4daa9c 7404 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7405 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7406 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7407
7408 /* We currently do not free assignements of panel fitters on
7409 * ivb/hsw (since we don't use the higher upscaling modes which
7410 * differentiates them) so just WARN about this case for now. */
7411 if (IS_GEN7(dev)) {
7412 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7413 PF_PIPE_SEL_IVB(crtc->pipe));
7414 }
2fa2fe9a 7415 }
79e53945
JB
7416}
7417
4c6baa59
JB
7418static void ironlake_get_plane_config(struct intel_crtc *crtc,
7419 struct intel_plane_config *plane_config)
7420{
7421 struct drm_device *dev = crtc->base.dev;
7422 struct drm_i915_private *dev_priv = dev->dev_private;
7423 u32 val, base, offset;
7424 int pipe = crtc->pipe, plane = crtc->plane;
7425 int fourcc, pixel_format;
7426 int aligned_height;
7427
66e514c1
DA
7428 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7429 if (!crtc->base.primary->fb) {
4c6baa59
JB
7430 DRM_DEBUG_KMS("failed to alloc fb\n");
7431 return;
7432 }
7433
7434 val = I915_READ(DSPCNTR(plane));
7435
7436 if (INTEL_INFO(dev)->gen >= 4)
7437 if (val & DISPPLANE_TILED)
7438 plane_config->tiled = true;
7439
7440 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7441 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7442 crtc->base.primary->fb->pixel_format = fourcc;
7443 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7444 drm_format_plane_cpp(fourcc, 0) * 8;
7445
7446 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7447 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7448 offset = I915_READ(DSPOFFSET(plane));
7449 } else {
7450 if (plane_config->tiled)
7451 offset = I915_READ(DSPTILEOFF(plane));
7452 else
7453 offset = I915_READ(DSPLINOFF(plane));
7454 }
7455 plane_config->base = base;
7456
7457 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7458 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7459 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7460
7461 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7462 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7463
66e514c1 7464 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7465 plane_config->tiled);
7466
1267a26b
FF
7467 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7468 aligned_height);
4c6baa59
JB
7469
7470 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7471 pipe, plane, crtc->base.primary->fb->width,
7472 crtc->base.primary->fb->height,
7473 crtc->base.primary->fb->bits_per_pixel, base,
7474 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7475 plane_config->size);
7476}
7477
0e8ffe1b
DV
7478static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7479 struct intel_crtc_config *pipe_config)
7480{
7481 struct drm_device *dev = crtc->base.dev;
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483 uint32_t tmp;
7484
f458ebbc
DV
7485 if (!intel_display_power_is_enabled(dev_priv,
7486 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7487 return false;
7488
e143a21c 7489 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7490 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7491
0e8ffe1b
DV
7492 tmp = I915_READ(PIPECONF(crtc->pipe));
7493 if (!(tmp & PIPECONF_ENABLE))
7494 return false;
7495
42571aef
VS
7496 switch (tmp & PIPECONF_BPC_MASK) {
7497 case PIPECONF_6BPC:
7498 pipe_config->pipe_bpp = 18;
7499 break;
7500 case PIPECONF_8BPC:
7501 pipe_config->pipe_bpp = 24;
7502 break;
7503 case PIPECONF_10BPC:
7504 pipe_config->pipe_bpp = 30;
7505 break;
7506 case PIPECONF_12BPC:
7507 pipe_config->pipe_bpp = 36;
7508 break;
7509 default:
7510 break;
7511 }
7512
b5a9fa09
DV
7513 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7514 pipe_config->limited_color_range = true;
7515
ab9412ba 7516 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7517 struct intel_shared_dpll *pll;
7518
88adfff1
DV
7519 pipe_config->has_pch_encoder = true;
7520
627eb5a3
DV
7521 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7522 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7523 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7524
7525 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7526
c0d43d62 7527 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7528 pipe_config->shared_dpll =
7529 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7530 } else {
7531 tmp = I915_READ(PCH_DPLL_SEL);
7532 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7533 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7534 else
7535 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7536 }
66e985c0
DV
7537
7538 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7539
7540 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7541 &pipe_config->dpll_hw_state));
c93f54cf
DV
7542
7543 tmp = pipe_config->dpll_hw_state.dpll;
7544 pipe_config->pixel_multiplier =
7545 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7546 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7547
7548 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7549 } else {
7550 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7551 }
7552
1bd1bd80
DV
7553 intel_get_pipe_timings(crtc, pipe_config);
7554
2fa2fe9a
DV
7555 ironlake_get_pfit_config(crtc, pipe_config);
7556
0e8ffe1b
DV
7557 return true;
7558}
7559
be256dc7
PZ
7560static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7561{
7562 struct drm_device *dev = dev_priv->dev;
be256dc7 7563 struct intel_crtc *crtc;
be256dc7 7564
d3fcc808 7565 for_each_intel_crtc(dev, crtc)
798183c5 7566 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7567 pipe_name(crtc->pipe));
7568
7569 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7570 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7571 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7572 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7573 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7574 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7575 "CPU PWM1 enabled\n");
c5107b87
PZ
7576 if (IS_HASWELL(dev))
7577 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7578 "CPU PWM2 enabled\n");
be256dc7
PZ
7579 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7580 "PCH PWM1 enabled\n");
7581 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7582 "Utility pin enabled\n");
7583 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7584
9926ada1
PZ
7585 /*
7586 * In theory we can still leave IRQs enabled, as long as only the HPD
7587 * interrupts remain enabled. We used to check for that, but since it's
7588 * gen-specific and since we only disable LCPLL after we fully disable
7589 * the interrupts, the check below should be enough.
7590 */
9df7575f 7591 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7592}
7593
9ccd5aeb
PZ
7594static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7595{
7596 struct drm_device *dev = dev_priv->dev;
7597
7598 if (IS_HASWELL(dev))
7599 return I915_READ(D_COMP_HSW);
7600 else
7601 return I915_READ(D_COMP_BDW);
7602}
7603
3c4c9b81
PZ
7604static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7605{
7606 struct drm_device *dev = dev_priv->dev;
7607
7608 if (IS_HASWELL(dev)) {
7609 mutex_lock(&dev_priv->rps.hw_lock);
7610 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7611 val))
f475dadf 7612 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7613 mutex_unlock(&dev_priv->rps.hw_lock);
7614 } else {
9ccd5aeb
PZ
7615 I915_WRITE(D_COMP_BDW, val);
7616 POSTING_READ(D_COMP_BDW);
3c4c9b81 7617 }
be256dc7
PZ
7618}
7619
7620/*
7621 * This function implements pieces of two sequences from BSpec:
7622 * - Sequence for display software to disable LCPLL
7623 * - Sequence for display software to allow package C8+
7624 * The steps implemented here are just the steps that actually touch the LCPLL
7625 * register. Callers should take care of disabling all the display engine
7626 * functions, doing the mode unset, fixing interrupts, etc.
7627 */
6ff58d53
PZ
7628static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7629 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7630{
7631 uint32_t val;
7632
7633 assert_can_disable_lcpll(dev_priv);
7634
7635 val = I915_READ(LCPLL_CTL);
7636
7637 if (switch_to_fclk) {
7638 val |= LCPLL_CD_SOURCE_FCLK;
7639 I915_WRITE(LCPLL_CTL, val);
7640
7641 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7642 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7643 DRM_ERROR("Switching to FCLK failed\n");
7644
7645 val = I915_READ(LCPLL_CTL);
7646 }
7647
7648 val |= LCPLL_PLL_DISABLE;
7649 I915_WRITE(LCPLL_CTL, val);
7650 POSTING_READ(LCPLL_CTL);
7651
7652 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7653 DRM_ERROR("LCPLL still locked\n");
7654
9ccd5aeb 7655 val = hsw_read_dcomp(dev_priv);
be256dc7 7656 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7657 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7658 ndelay(100);
7659
9ccd5aeb
PZ
7660 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7661 1))
be256dc7
PZ
7662 DRM_ERROR("D_COMP RCOMP still in progress\n");
7663
7664 if (allow_power_down) {
7665 val = I915_READ(LCPLL_CTL);
7666 val |= LCPLL_POWER_DOWN_ALLOW;
7667 I915_WRITE(LCPLL_CTL, val);
7668 POSTING_READ(LCPLL_CTL);
7669 }
7670}
7671
7672/*
7673 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7674 * source.
7675 */
6ff58d53 7676static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7677{
7678 uint32_t val;
7679
7680 val = I915_READ(LCPLL_CTL);
7681
7682 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7683 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7684 return;
7685
a8a8bd54
PZ
7686 /*
7687 * Make sure we're not on PC8 state before disabling PC8, otherwise
7688 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7689 *
7690 * The other problem is that hsw_restore_lcpll() is called as part of
7691 * the runtime PM resume sequence, so we can't just call
7692 * gen6_gt_force_wake_get() because that function calls
7693 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7694 * while we are on the resume sequence. So to solve this problem we have
7695 * to call special forcewake code that doesn't touch runtime PM and
7696 * doesn't enable the forcewake delayed work.
7697 */
d2e40e27 7698 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7699 if (dev_priv->uncore.forcewake_count++ == 0)
7700 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7701 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7702
be256dc7
PZ
7703 if (val & LCPLL_POWER_DOWN_ALLOW) {
7704 val &= ~LCPLL_POWER_DOWN_ALLOW;
7705 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7706 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7707 }
7708
9ccd5aeb 7709 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7710 val |= D_COMP_COMP_FORCE;
7711 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7712 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7713
7714 val = I915_READ(LCPLL_CTL);
7715 val &= ~LCPLL_PLL_DISABLE;
7716 I915_WRITE(LCPLL_CTL, val);
7717
7718 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7719 DRM_ERROR("LCPLL not locked yet\n");
7720
7721 if (val & LCPLL_CD_SOURCE_FCLK) {
7722 val = I915_READ(LCPLL_CTL);
7723 val &= ~LCPLL_CD_SOURCE_FCLK;
7724 I915_WRITE(LCPLL_CTL, val);
7725
7726 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7727 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7728 DRM_ERROR("Switching back to LCPLL failed\n");
7729 }
215733fa 7730
a8a8bd54 7731 /* See the big comment above. */
d2e40e27 7732 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7733 if (--dev_priv->uncore.forcewake_count == 0)
7734 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7735 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7736}
7737
765dab67
PZ
7738/*
7739 * Package states C8 and deeper are really deep PC states that can only be
7740 * reached when all the devices on the system allow it, so even if the graphics
7741 * device allows PC8+, it doesn't mean the system will actually get to these
7742 * states. Our driver only allows PC8+ when going into runtime PM.
7743 *
7744 * The requirements for PC8+ are that all the outputs are disabled, the power
7745 * well is disabled and most interrupts are disabled, and these are also
7746 * requirements for runtime PM. When these conditions are met, we manually do
7747 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7748 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7749 * hang the machine.
7750 *
7751 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7752 * the state of some registers, so when we come back from PC8+ we need to
7753 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7754 * need to take care of the registers kept by RC6. Notice that this happens even
7755 * if we don't put the device in PCI D3 state (which is what currently happens
7756 * because of the runtime PM support).
7757 *
7758 * For more, read "Display Sequences for Package C8" on the hardware
7759 * documentation.
7760 */
a14cb6fc 7761void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7762{
c67a470b
PZ
7763 struct drm_device *dev = dev_priv->dev;
7764 uint32_t val;
7765
c67a470b
PZ
7766 DRM_DEBUG_KMS("Enabling package C8+\n");
7767
c67a470b
PZ
7768 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7769 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7770 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7771 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7772 }
7773
7774 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7775 hsw_disable_lcpll(dev_priv, true, true);
7776}
7777
a14cb6fc 7778void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7779{
7780 struct drm_device *dev = dev_priv->dev;
7781 uint32_t val;
7782
c67a470b
PZ
7783 DRM_DEBUG_KMS("Disabling package C8+\n");
7784
7785 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7786 lpt_init_pch_refclk(dev);
7787
7788 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7789 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7790 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7791 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7792 }
7793
7794 intel_prepare_ddi(dev);
c67a470b
PZ
7795}
7796
9a952a0d
PZ
7797static void snb_modeset_global_resources(struct drm_device *dev)
7798{
7799 modeset_update_crtc_power_domains(dev);
7800}
7801
4f074129
ID
7802static void haswell_modeset_global_resources(struct drm_device *dev)
7803{
da723569 7804 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7805}
7806
09b4ddf9 7807static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7808 int x, int y,
7809 struct drm_framebuffer *fb)
7810{
09b4ddf9 7811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7812
566b734a 7813 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7814 return -EINVAL;
716c2e55 7815
644cef34
DV
7816 intel_crtc->lowfreq_avail = false;
7817
c8f7a0db 7818 return 0;
79e53945
JB
7819}
7820
7d2c8175
DL
7821static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7822 enum port port,
7823 struct intel_crtc_config *pipe_config)
7824{
7825 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7826
7827 switch (pipe_config->ddi_pll_sel) {
7828 case PORT_CLK_SEL_WRPLL1:
7829 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7830 break;
7831 case PORT_CLK_SEL_WRPLL2:
7832 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7833 break;
7834 }
7835}
7836
26804afd
DV
7837static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7838 struct intel_crtc_config *pipe_config)
7839{
7840 struct drm_device *dev = crtc->base.dev;
7841 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7842 struct intel_shared_dpll *pll;
26804afd
DV
7843 enum port port;
7844 uint32_t tmp;
7845
7846 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7847
7848 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7849
7d2c8175 7850 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7851
d452c5b6
DV
7852 if (pipe_config->shared_dpll >= 0) {
7853 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7854
7855 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7856 &pipe_config->dpll_hw_state));
7857 }
7858
26804afd
DV
7859 /*
7860 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7861 * DDI E. So just check whether this pipe is wired to DDI E and whether
7862 * the PCH transcoder is on.
7863 */
ca370455
DL
7864 if (INTEL_INFO(dev)->gen < 9 &&
7865 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
7866 pipe_config->has_pch_encoder = true;
7867
7868 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7869 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7870 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7871
7872 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7873 }
7874}
7875
0e8ffe1b
DV
7876static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7877 struct intel_crtc_config *pipe_config)
7878{
7879 struct drm_device *dev = crtc->base.dev;
7880 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7881 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7882 uint32_t tmp;
7883
f458ebbc 7884 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
7885 POWER_DOMAIN_PIPE(crtc->pipe)))
7886 return false;
7887
e143a21c 7888 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7889 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7890
eccb140b
DV
7891 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7892 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7893 enum pipe trans_edp_pipe;
7894 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7895 default:
7896 WARN(1, "unknown pipe linked to edp transcoder\n");
7897 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7898 case TRANS_DDI_EDP_INPUT_A_ON:
7899 trans_edp_pipe = PIPE_A;
7900 break;
7901 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7902 trans_edp_pipe = PIPE_B;
7903 break;
7904 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7905 trans_edp_pipe = PIPE_C;
7906 break;
7907 }
7908
7909 if (trans_edp_pipe == crtc->pipe)
7910 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7911 }
7912
f458ebbc 7913 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 7914 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7915 return false;
7916
eccb140b 7917 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7918 if (!(tmp & PIPECONF_ENABLE))
7919 return false;
7920
26804afd 7921 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7922
1bd1bd80
DV
7923 intel_get_pipe_timings(crtc, pipe_config);
7924
2fa2fe9a 7925 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
f458ebbc 7926 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
2fa2fe9a 7927 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7928
e59150dc
JB
7929 if (IS_HASWELL(dev))
7930 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7931 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7932
ebb69c95
CT
7933 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
7934 pipe_config->pixel_multiplier =
7935 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
7936 } else {
7937 pipe_config->pixel_multiplier = 1;
7938 }
6c49f241 7939
0e8ffe1b
DV
7940 return true;
7941}
7942
1a91510d
JN
7943static struct {
7944 int clock;
7945 u32 config;
7946} hdmi_audio_clock[] = {
7947 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7948 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7949 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7950 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7951 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7952 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7953 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7954 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7955 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7956 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7957};
7958
7959/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7960static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7961{
7962 int i;
7963
7964 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7965 if (mode->clock == hdmi_audio_clock[i].clock)
7966 break;
7967 }
7968
7969 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7970 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7971 i = 1;
7972 }
7973
7974 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7975 hdmi_audio_clock[i].clock,
7976 hdmi_audio_clock[i].config);
7977
7978 return hdmi_audio_clock[i].config;
7979}
7980
3a9627f4
WF
7981static bool intel_eld_uptodate(struct drm_connector *connector,
7982 int reg_eldv, uint32_t bits_eldv,
7983 int reg_elda, uint32_t bits_elda,
7984 int reg_edid)
7985{
7986 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7987 uint8_t *eld = connector->eld;
7988 uint32_t i;
7989
7990 i = I915_READ(reg_eldv);
7991 i &= bits_eldv;
7992
7993 if (!eld[0])
7994 return !i;
7995
7996 if (!i)
7997 return false;
7998
7999 i = I915_READ(reg_elda);
8000 i &= ~bits_elda;
8001 I915_WRITE(reg_elda, i);
8002
8003 for (i = 0; i < eld[2]; i++)
8004 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
8005 return false;
8006
8007 return true;
8008}
8009
e0dac65e 8010static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
8011 struct drm_crtc *crtc,
8012 struct drm_display_mode *mode)
e0dac65e
WF
8013{
8014 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8015 uint8_t *eld = connector->eld;
8016 uint32_t eldv;
8017 uint32_t len;
8018 uint32_t i;
8019
8020 i = I915_READ(G4X_AUD_VID_DID);
8021
8022 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
8023 eldv = G4X_ELDV_DEVCL_DEVBLC;
8024 else
8025 eldv = G4X_ELDV_DEVCTG;
8026
3a9627f4
WF
8027 if (intel_eld_uptodate(connector,
8028 G4X_AUD_CNTL_ST, eldv,
8029 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
8030 G4X_HDMIW_HDMIEDID))
8031 return;
8032
e0dac65e
WF
8033 i = I915_READ(G4X_AUD_CNTL_ST);
8034 i &= ~(eldv | G4X_ELD_ADDR);
8035 len = (i >> 9) & 0x1f; /* ELD buffer size */
8036 I915_WRITE(G4X_AUD_CNTL_ST, i);
8037
8038 if (!eld[0])
8039 return;
8040
8041 len = min_t(uint8_t, eld[2], len);
8042 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8043 for (i = 0; i < len; i++)
8044 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8045
8046 i = I915_READ(G4X_AUD_CNTL_ST);
8047 i |= eldv;
8048 I915_WRITE(G4X_AUD_CNTL_ST, i);
8049}
8050
83358c85 8051static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
8052 struct drm_crtc *crtc,
8053 struct drm_display_mode *mode)
83358c85
WX
8054{
8055 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8056 uint8_t *eld = connector->eld;
83358c85
WX
8057 uint32_t eldv;
8058 uint32_t i;
8059 int len;
8060 int pipe = to_intel_crtc(crtc)->pipe;
8061 int tmp;
8062
8063 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8064 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8065 int aud_config = HSW_AUD_CFG(pipe);
8066 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8067
83358c85
WX
8068 /* Audio output enable */
8069 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8070 tmp = I915_READ(aud_cntrl_st2);
8071 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8072 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 8073 POSTING_READ(aud_cntrl_st2);
83358c85 8074
c7905792 8075 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
8076
8077 /* Set ELD valid state */
8078 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8079 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
8080 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8081 I915_WRITE(aud_cntrl_st2, tmp);
8082 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8083 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8084
8085 /* Enable HDMI mode */
8086 tmp = I915_READ(aud_config);
7e7cb34f 8087 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8088 /* clear N_programing_enable and N_value_index */
8089 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8090 I915_WRITE(aud_config, tmp);
8091
8092 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8093
8094 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8095
8096 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8097 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8098 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8099 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8100 } else {
8101 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8102 }
83358c85
WX
8103
8104 if (intel_eld_uptodate(connector,
8105 aud_cntrl_st2, eldv,
8106 aud_cntl_st, IBX_ELD_ADDRESS,
8107 hdmiw_hdmiedid))
8108 return;
8109
8110 i = I915_READ(aud_cntrl_st2);
8111 i &= ~eldv;
8112 I915_WRITE(aud_cntrl_st2, i);
8113
8114 if (!eld[0])
8115 return;
8116
8117 i = I915_READ(aud_cntl_st);
8118 i &= ~IBX_ELD_ADDRESS;
8119 I915_WRITE(aud_cntl_st, i);
8120 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8121 DRM_DEBUG_DRIVER("port num:%d\n", i);
8122
8123 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8124 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8125 for (i = 0; i < len; i++)
8126 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8127
8128 i = I915_READ(aud_cntrl_st2);
8129 i |= eldv;
8130 I915_WRITE(aud_cntrl_st2, i);
8131
8132}
8133
e0dac65e 8134static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8135 struct drm_crtc *crtc,
8136 struct drm_display_mode *mode)
e0dac65e
WF
8137{
8138 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8139 uint8_t *eld = connector->eld;
8140 uint32_t eldv;
8141 uint32_t i;
8142 int len;
8143 int hdmiw_hdmiedid;
b6daa025 8144 int aud_config;
e0dac65e
WF
8145 int aud_cntl_st;
8146 int aud_cntrl_st2;
9b138a83 8147 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8148
b3f33cbf 8149 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8150 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8151 aud_config = IBX_AUD_CFG(pipe);
8152 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8153 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8154 } else if (IS_VALLEYVIEW(connector->dev)) {
8155 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8156 aud_config = VLV_AUD_CFG(pipe);
8157 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8158 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8159 } else {
9b138a83
WX
8160 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8161 aud_config = CPT_AUD_CFG(pipe);
8162 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8163 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8164 }
8165
9b138a83 8166 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8167
9ca2fe73
ML
8168 if (IS_VALLEYVIEW(connector->dev)) {
8169 struct intel_encoder *intel_encoder;
8170 struct intel_digital_port *intel_dig_port;
8171
8172 intel_encoder = intel_attached_encoder(connector);
8173 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8174 i = intel_dig_port->port;
8175 } else {
8176 i = I915_READ(aud_cntl_st);
8177 i = (i >> 29) & DIP_PORT_SEL_MASK;
8178 /* DIP_Port_Select, 0x1 = PortB */
8179 }
8180
e0dac65e
WF
8181 if (!i) {
8182 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8183 /* operate blindly on all ports */
1202b4c6
WF
8184 eldv = IBX_ELD_VALIDB;
8185 eldv |= IBX_ELD_VALIDB << 4;
8186 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8187 } else {
2582a850 8188 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8189 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8190 }
8191
3a9627f4
WF
8192 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8193 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8194 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8195 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8196 } else {
8197 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8198 }
e0dac65e 8199
3a9627f4
WF
8200 if (intel_eld_uptodate(connector,
8201 aud_cntrl_st2, eldv,
8202 aud_cntl_st, IBX_ELD_ADDRESS,
8203 hdmiw_hdmiedid))
8204 return;
8205
e0dac65e
WF
8206 i = I915_READ(aud_cntrl_st2);
8207 i &= ~eldv;
8208 I915_WRITE(aud_cntrl_st2, i);
8209
8210 if (!eld[0])
8211 return;
8212
e0dac65e 8213 i = I915_READ(aud_cntl_st);
1202b4c6 8214 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8215 I915_WRITE(aud_cntl_st, i);
8216
8217 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8218 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8219 for (i = 0; i < len; i++)
8220 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8221
8222 i = I915_READ(aud_cntrl_st2);
8223 i |= eldv;
8224 I915_WRITE(aud_cntrl_st2, i);
8225}
8226
8227void intel_write_eld(struct drm_encoder *encoder,
8228 struct drm_display_mode *mode)
8229{
8230 struct drm_crtc *crtc = encoder->crtc;
8231 struct drm_connector *connector;
8232 struct drm_device *dev = encoder->dev;
8233 struct drm_i915_private *dev_priv = dev->dev_private;
8234
8235 connector = drm_select_eld(encoder, mode);
8236 if (!connector)
8237 return;
8238
8239 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8240 connector->base.id,
c23cc417 8241 connector->name,
e0dac65e 8242 connector->encoder->base.id,
8e329a03 8243 connector->encoder->name);
e0dac65e
WF
8244
8245 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8246
8247 if (dev_priv->display.write_eld)
34427052 8248 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8249}
8250
560b85bb
CW
8251static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8252{
8253 struct drm_device *dev = crtc->dev;
8254 struct drm_i915_private *dev_priv = dev->dev_private;
8255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8256 uint32_t cntl = 0, size = 0;
560b85bb 8257
dc41c154
VS
8258 if (base) {
8259 unsigned int width = intel_crtc->cursor_width;
8260 unsigned int height = intel_crtc->cursor_height;
8261 unsigned int stride = roundup_pow_of_two(width) * 4;
8262
8263 switch (stride) {
8264 default:
8265 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8266 width, stride);
8267 stride = 256;
8268 /* fallthrough */
8269 case 256:
8270 case 512:
8271 case 1024:
8272 case 2048:
8273 break;
4b0e333e
CW
8274 }
8275
dc41c154
VS
8276 cntl |= CURSOR_ENABLE |
8277 CURSOR_GAMMA_ENABLE |
8278 CURSOR_FORMAT_ARGB |
8279 CURSOR_STRIDE(stride);
8280
8281 size = (height << 12) | width;
4b0e333e 8282 }
560b85bb 8283
dc41c154
VS
8284 if (intel_crtc->cursor_cntl != 0 &&
8285 (intel_crtc->cursor_base != base ||
8286 intel_crtc->cursor_size != size ||
8287 intel_crtc->cursor_cntl != cntl)) {
8288 /* On these chipsets we can only modify the base/size/stride
8289 * whilst the cursor is disabled.
8290 */
8291 I915_WRITE(_CURACNTR, 0);
4b0e333e 8292 POSTING_READ(_CURACNTR);
dc41c154 8293 intel_crtc->cursor_cntl = 0;
4b0e333e 8294 }
560b85bb 8295
99d1f387 8296 if (intel_crtc->cursor_base != base) {
9db4a9c7 8297 I915_WRITE(_CURABASE, base);
99d1f387
VS
8298 intel_crtc->cursor_base = base;
8299 }
4726e0b0 8300
dc41c154
VS
8301 if (intel_crtc->cursor_size != size) {
8302 I915_WRITE(CURSIZE, size);
8303 intel_crtc->cursor_size = size;
4b0e333e 8304 }
560b85bb 8305
4b0e333e 8306 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8307 I915_WRITE(_CURACNTR, cntl);
8308 POSTING_READ(_CURACNTR);
4b0e333e 8309 intel_crtc->cursor_cntl = cntl;
560b85bb 8310 }
560b85bb
CW
8311}
8312
560b85bb 8313static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8314{
8315 struct drm_device *dev = crtc->dev;
8316 struct drm_i915_private *dev_priv = dev->dev_private;
8317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8318 int pipe = intel_crtc->pipe;
4b0e333e
CW
8319 uint32_t cntl;
8320
8321 cntl = 0;
8322 if (base) {
8323 cntl = MCURSOR_GAMMA_ENABLE;
8324 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8325 case 64:
8326 cntl |= CURSOR_MODE_64_ARGB_AX;
8327 break;
8328 case 128:
8329 cntl |= CURSOR_MODE_128_ARGB_AX;
8330 break;
8331 case 256:
8332 cntl |= CURSOR_MODE_256_ARGB_AX;
8333 break;
8334 default:
8335 WARN_ON(1);
8336 return;
65a21cd6 8337 }
4b0e333e 8338 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8339
8340 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8341 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8342 }
65a21cd6 8343
4b0e333e
CW
8344 if (intel_crtc->cursor_cntl != cntl) {
8345 I915_WRITE(CURCNTR(pipe), cntl);
8346 POSTING_READ(CURCNTR(pipe));
8347 intel_crtc->cursor_cntl = cntl;
65a21cd6 8348 }
4b0e333e 8349
65a21cd6 8350 /* and commit changes on next vblank */
5efb3e28
VS
8351 I915_WRITE(CURBASE(pipe), base);
8352 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8353
8354 intel_crtc->cursor_base = base;
65a21cd6
JB
8355}
8356
cda4b7d3 8357/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8358static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8359 bool on)
cda4b7d3
CW
8360{
8361 struct drm_device *dev = crtc->dev;
8362 struct drm_i915_private *dev_priv = dev->dev_private;
8363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8364 int pipe = intel_crtc->pipe;
3d7d6510
MR
8365 int x = crtc->cursor_x;
8366 int y = crtc->cursor_y;
d6e4db15 8367 u32 base = 0, pos = 0;
cda4b7d3 8368
d6e4db15 8369 if (on)
cda4b7d3 8370 base = intel_crtc->cursor_addr;
cda4b7d3 8371
d6e4db15
VS
8372 if (x >= intel_crtc->config.pipe_src_w)
8373 base = 0;
8374
8375 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8376 base = 0;
8377
8378 if (x < 0) {
efc9064e 8379 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8380 base = 0;
8381
8382 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8383 x = -x;
8384 }
8385 pos |= x << CURSOR_X_SHIFT;
8386
8387 if (y < 0) {
efc9064e 8388 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8389 base = 0;
8390
8391 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8392 y = -y;
8393 }
8394 pos |= y << CURSOR_Y_SHIFT;
8395
4b0e333e 8396 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8397 return;
8398
5efb3e28
VS
8399 I915_WRITE(CURPOS(pipe), pos);
8400
8ac54669 8401 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8402 i845_update_cursor(crtc, base);
8403 else
8404 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8405}
8406
dc41c154
VS
8407static bool cursor_size_ok(struct drm_device *dev,
8408 uint32_t width, uint32_t height)
8409{
8410 if (width == 0 || height == 0)
8411 return false;
8412
8413 /*
8414 * 845g/865g are special in that they are only limited by
8415 * the width of their cursors, the height is arbitrary up to
8416 * the precision of the register. Everything else requires
8417 * square cursors, limited to a few power-of-two sizes.
8418 */
8419 if (IS_845G(dev) || IS_I865G(dev)) {
8420 if ((width & 63) != 0)
8421 return false;
8422
8423 if (width > (IS_845G(dev) ? 64 : 512))
8424 return false;
8425
8426 if (height > 1023)
8427 return false;
8428 } else {
8429 switch (width | height) {
8430 case 256:
8431 case 128:
8432 if (IS_GEN2(dev))
8433 return false;
8434 case 64:
8435 break;
8436 default:
8437 return false;
8438 }
8439 }
8440
8441 return true;
8442}
8443
e3287951
MR
8444static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8445 struct drm_i915_gem_object *obj,
8446 uint32_t width, uint32_t height)
79e53945
JB
8447{
8448 struct drm_device *dev = crtc->dev;
8449 struct drm_i915_private *dev_priv = dev->dev_private;
8450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8451 enum pipe pipe = intel_crtc->pipe;
757f9a3e 8452 unsigned old_width;
cda4b7d3 8453 uint32_t addr;
3f8bc370 8454 int ret;
79e53945 8455
79e53945 8456 /* if we want to turn off the cursor ignore width and height */
e3287951 8457 if (!obj) {
28c97730 8458 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8459 addr = 0;
5004417d 8460 mutex_lock(&dev->struct_mutex);
3f8bc370 8461 goto finish;
79e53945
JB
8462 }
8463
71acb5eb 8464 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8465 mutex_lock(&dev->struct_mutex);
3d13ef2e 8466 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8467 unsigned alignment;
8468
d6dd6843
PZ
8469 /*
8470 * Global gtt pte registers are special registers which actually
8471 * forward writes to a chunk of system memory. Which means that
8472 * there is no risk that the register values disappear as soon
8473 * as we call intel_runtime_pm_put(), so it is correct to wrap
8474 * only the pin/unpin/fence and not more.
8475 */
8476 intel_runtime_pm_get(dev_priv);
8477
693db184
CW
8478 /* Note that the w/a also requires 2 PTE of padding following
8479 * the bo. We currently fill all unused PTE with the shadow
8480 * page and so we should always have valid PTE following the
8481 * cursor preventing the VT-d warning.
8482 */
8483 alignment = 0;
8484 if (need_vtd_wa(dev))
8485 alignment = 64*1024;
8486
8487 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8488 if (ret) {
3b25b31f 8489 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8490 intel_runtime_pm_put(dev_priv);
2da3b9b9 8491 goto fail_locked;
e7b526bb
CW
8492 }
8493
d9e86c0e
CW
8494 ret = i915_gem_object_put_fence(obj);
8495 if (ret) {
3b25b31f 8496 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8497 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8498 goto fail_unpin;
8499 }
8500
f343c5f6 8501 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8502
8503 intel_runtime_pm_put(dev_priv);
71acb5eb 8504 } else {
6eeefaf3 8505 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8506 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8507 if (ret) {
3b25b31f 8508 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8509 goto fail_locked;
71acb5eb 8510 }
00731155 8511 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8512 }
8513
3f8bc370 8514 finish:
3f8bc370 8515 if (intel_crtc->cursor_bo) {
00731155 8516 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8517 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8518 }
80824003 8519
a071fa00
DV
8520 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8521 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8522 mutex_unlock(&dev->struct_mutex);
3f8bc370 8523
64f962e3
CW
8524 old_width = intel_crtc->cursor_width;
8525
3f8bc370 8526 intel_crtc->cursor_addr = addr;
05394f39 8527 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8528 intel_crtc->cursor_width = width;
8529 intel_crtc->cursor_height = height;
8530
64f962e3
CW
8531 if (intel_crtc->active) {
8532 if (old_width != width)
8533 intel_update_watermarks(crtc);
f2f5f771 8534 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8535 }
3f8bc370 8536
f99d7069
DV
8537 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8538
79e53945 8539 return 0;
e7b526bb 8540fail_unpin:
cc98b413 8541 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8542fail_locked:
34b8686e
DA
8543 mutex_unlock(&dev->struct_mutex);
8544 return ret;
79e53945
JB
8545}
8546
79e53945 8547static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8548 u16 *blue, uint32_t start, uint32_t size)
79e53945 8549{
7203425a 8550 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8552
7203425a 8553 for (i = start; i < end; i++) {
79e53945
JB
8554 intel_crtc->lut_r[i] = red[i] >> 8;
8555 intel_crtc->lut_g[i] = green[i] >> 8;
8556 intel_crtc->lut_b[i] = blue[i] >> 8;
8557 }
8558
8559 intel_crtc_load_lut(crtc);
8560}
8561
79e53945
JB
8562/* VESA 640x480x72Hz mode to set on the pipe */
8563static struct drm_display_mode load_detect_mode = {
8564 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8565 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8566};
8567
a8bb6818
DV
8568struct drm_framebuffer *
8569__intel_framebuffer_create(struct drm_device *dev,
8570 struct drm_mode_fb_cmd2 *mode_cmd,
8571 struct drm_i915_gem_object *obj)
d2dff872
CW
8572{
8573 struct intel_framebuffer *intel_fb;
8574 int ret;
8575
8576 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8577 if (!intel_fb) {
8578 drm_gem_object_unreference_unlocked(&obj->base);
8579 return ERR_PTR(-ENOMEM);
8580 }
8581
8582 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8583 if (ret)
8584 goto err;
d2dff872
CW
8585
8586 return &intel_fb->base;
dd4916c5
DV
8587err:
8588 drm_gem_object_unreference_unlocked(&obj->base);
8589 kfree(intel_fb);
8590
8591 return ERR_PTR(ret);
d2dff872
CW
8592}
8593
b5ea642a 8594static struct drm_framebuffer *
a8bb6818
DV
8595intel_framebuffer_create(struct drm_device *dev,
8596 struct drm_mode_fb_cmd2 *mode_cmd,
8597 struct drm_i915_gem_object *obj)
8598{
8599 struct drm_framebuffer *fb;
8600 int ret;
8601
8602 ret = i915_mutex_lock_interruptible(dev);
8603 if (ret)
8604 return ERR_PTR(ret);
8605 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8606 mutex_unlock(&dev->struct_mutex);
8607
8608 return fb;
8609}
8610
d2dff872
CW
8611static u32
8612intel_framebuffer_pitch_for_width(int width, int bpp)
8613{
8614 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8615 return ALIGN(pitch, 64);
8616}
8617
8618static u32
8619intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8620{
8621 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8622 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8623}
8624
8625static struct drm_framebuffer *
8626intel_framebuffer_create_for_mode(struct drm_device *dev,
8627 struct drm_display_mode *mode,
8628 int depth, int bpp)
8629{
8630 struct drm_i915_gem_object *obj;
0fed39bd 8631 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8632
8633 obj = i915_gem_alloc_object(dev,
8634 intel_framebuffer_size_for_mode(mode, bpp));
8635 if (obj == NULL)
8636 return ERR_PTR(-ENOMEM);
8637
8638 mode_cmd.width = mode->hdisplay;
8639 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8640 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8641 bpp);
5ca0c34a 8642 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8643
8644 return intel_framebuffer_create(dev, &mode_cmd, obj);
8645}
8646
8647static struct drm_framebuffer *
8648mode_fits_in_fbdev(struct drm_device *dev,
8649 struct drm_display_mode *mode)
8650{
4520f53a 8651#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8652 struct drm_i915_private *dev_priv = dev->dev_private;
8653 struct drm_i915_gem_object *obj;
8654 struct drm_framebuffer *fb;
8655
4c0e5528 8656 if (!dev_priv->fbdev)
d2dff872
CW
8657 return NULL;
8658
4c0e5528 8659 if (!dev_priv->fbdev->fb)
d2dff872
CW
8660 return NULL;
8661
4c0e5528
DV
8662 obj = dev_priv->fbdev->fb->obj;
8663 BUG_ON(!obj);
8664
8bcd4553 8665 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8666 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8667 fb->bits_per_pixel))
d2dff872
CW
8668 return NULL;
8669
01f2c773 8670 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8671 return NULL;
8672
8673 return fb;
4520f53a
DV
8674#else
8675 return NULL;
8676#endif
d2dff872
CW
8677}
8678
d2434ab7 8679bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8680 struct drm_display_mode *mode,
51fd371b
RC
8681 struct intel_load_detect_pipe *old,
8682 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8683{
8684 struct intel_crtc *intel_crtc;
d2434ab7
DV
8685 struct intel_encoder *intel_encoder =
8686 intel_attached_encoder(connector);
79e53945 8687 struct drm_crtc *possible_crtc;
4ef69c7a 8688 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8689 struct drm_crtc *crtc = NULL;
8690 struct drm_device *dev = encoder->dev;
94352cf9 8691 struct drm_framebuffer *fb;
51fd371b
RC
8692 struct drm_mode_config *config = &dev->mode_config;
8693 int ret, i = -1;
79e53945 8694
d2dff872 8695 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8696 connector->base.id, connector->name,
8e329a03 8697 encoder->base.id, encoder->name);
d2dff872 8698
51fd371b
RC
8699retry:
8700 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8701 if (ret)
8702 goto fail_unlock;
6e9f798d 8703
79e53945
JB
8704 /*
8705 * Algorithm gets a little messy:
7a5e4805 8706 *
79e53945
JB
8707 * - if the connector already has an assigned crtc, use it (but make
8708 * sure it's on first)
7a5e4805 8709 *
79e53945
JB
8710 * - try to find the first unused crtc that can drive this connector,
8711 * and use that if we find one
79e53945
JB
8712 */
8713
8714 /* See if we already have a CRTC for this connector */
8715 if (encoder->crtc) {
8716 crtc = encoder->crtc;
8261b191 8717
51fd371b
RC
8718 ret = drm_modeset_lock(&crtc->mutex, ctx);
8719 if (ret)
8720 goto fail_unlock;
7b24056b 8721
24218aac 8722 old->dpms_mode = connector->dpms;
8261b191
CW
8723 old->load_detect_temp = false;
8724
8725 /* Make sure the crtc and connector are running */
24218aac
DV
8726 if (connector->dpms != DRM_MODE_DPMS_ON)
8727 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8728
7173188d 8729 return true;
79e53945
JB
8730 }
8731
8732 /* Find an unused one (if possible) */
70e1e0ec 8733 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8734 i++;
8735 if (!(encoder->possible_crtcs & (1 << i)))
8736 continue;
a459249c
VS
8737 if (possible_crtc->enabled)
8738 continue;
8739 /* This can occur when applying the pipe A quirk on resume. */
8740 if (to_intel_crtc(possible_crtc)->new_enabled)
8741 continue;
8742
8743 crtc = possible_crtc;
8744 break;
79e53945
JB
8745 }
8746
8747 /*
8748 * If we didn't find an unused CRTC, don't use any.
8749 */
8750 if (!crtc) {
7173188d 8751 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8752 goto fail_unlock;
79e53945
JB
8753 }
8754
51fd371b
RC
8755 ret = drm_modeset_lock(&crtc->mutex, ctx);
8756 if (ret)
8757 goto fail_unlock;
fc303101
DV
8758 intel_encoder->new_crtc = to_intel_crtc(crtc);
8759 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8760
8761 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8762 intel_crtc->new_enabled = true;
8763 intel_crtc->new_config = &intel_crtc->config;
24218aac 8764 old->dpms_mode = connector->dpms;
8261b191 8765 old->load_detect_temp = true;
d2dff872 8766 old->release_fb = NULL;
79e53945 8767
6492711d
CW
8768 if (!mode)
8769 mode = &load_detect_mode;
79e53945 8770
d2dff872
CW
8771 /* We need a framebuffer large enough to accommodate all accesses
8772 * that the plane may generate whilst we perform load detection.
8773 * We can not rely on the fbcon either being present (we get called
8774 * during its initialisation to detect all boot displays, or it may
8775 * not even exist) or that it is large enough to satisfy the
8776 * requested mode.
8777 */
94352cf9
DV
8778 fb = mode_fits_in_fbdev(dev, mode);
8779 if (fb == NULL) {
d2dff872 8780 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8781 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8782 old->release_fb = fb;
d2dff872
CW
8783 } else
8784 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8785 if (IS_ERR(fb)) {
d2dff872 8786 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8787 goto fail;
79e53945 8788 }
79e53945 8789
c0c36b94 8790 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8791 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8792 if (old->release_fb)
8793 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8794 goto fail;
79e53945 8795 }
7173188d 8796
79e53945 8797 /* let the connector get through one full cycle before testing */
9d0498a2 8798 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8799 return true;
412b61d8
VS
8800
8801 fail:
8802 intel_crtc->new_enabled = crtc->enabled;
8803 if (intel_crtc->new_enabled)
8804 intel_crtc->new_config = &intel_crtc->config;
8805 else
8806 intel_crtc->new_config = NULL;
51fd371b
RC
8807fail_unlock:
8808 if (ret == -EDEADLK) {
8809 drm_modeset_backoff(ctx);
8810 goto retry;
8811 }
8812
412b61d8 8813 return false;
79e53945
JB
8814}
8815
d2434ab7 8816void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8817 struct intel_load_detect_pipe *old)
79e53945 8818{
d2434ab7
DV
8819 struct intel_encoder *intel_encoder =
8820 intel_attached_encoder(connector);
4ef69c7a 8821 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8822 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8824
d2dff872 8825 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8826 connector->base.id, connector->name,
8e329a03 8827 encoder->base.id, encoder->name);
d2dff872 8828
8261b191 8829 if (old->load_detect_temp) {
fc303101
DV
8830 to_intel_connector(connector)->new_encoder = NULL;
8831 intel_encoder->new_crtc = NULL;
412b61d8
VS
8832 intel_crtc->new_enabled = false;
8833 intel_crtc->new_config = NULL;
fc303101 8834 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8835
36206361
DV
8836 if (old->release_fb) {
8837 drm_framebuffer_unregister_private(old->release_fb);
8838 drm_framebuffer_unreference(old->release_fb);
8839 }
d2dff872 8840
0622a53c 8841 return;
79e53945
JB
8842 }
8843
c751ce4f 8844 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8845 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8846 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8847}
8848
da4a1efa
VS
8849static int i9xx_pll_refclk(struct drm_device *dev,
8850 const struct intel_crtc_config *pipe_config)
8851{
8852 struct drm_i915_private *dev_priv = dev->dev_private;
8853 u32 dpll = pipe_config->dpll_hw_state.dpll;
8854
8855 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8856 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8857 else if (HAS_PCH_SPLIT(dev))
8858 return 120000;
8859 else if (!IS_GEN2(dev))
8860 return 96000;
8861 else
8862 return 48000;
8863}
8864
79e53945 8865/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8866static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8867 struct intel_crtc_config *pipe_config)
79e53945 8868{
f1f644dc 8869 struct drm_device *dev = crtc->base.dev;
79e53945 8870 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8871 int pipe = pipe_config->cpu_transcoder;
293623f7 8872 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8873 u32 fp;
8874 intel_clock_t clock;
da4a1efa 8875 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8876
8877 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8878 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8879 else
293623f7 8880 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8881
8882 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8883 if (IS_PINEVIEW(dev)) {
8884 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8885 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8886 } else {
8887 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8888 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8889 }
8890
a6c45cf0 8891 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8892 if (IS_PINEVIEW(dev))
8893 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8894 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8895 else
8896 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8897 DPLL_FPA01_P1_POST_DIV_SHIFT);
8898
8899 switch (dpll & DPLL_MODE_MASK) {
8900 case DPLLB_MODE_DAC_SERIAL:
8901 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8902 5 : 10;
8903 break;
8904 case DPLLB_MODE_LVDS:
8905 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8906 7 : 14;
8907 break;
8908 default:
28c97730 8909 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8910 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8911 return;
79e53945
JB
8912 }
8913
ac58c3f0 8914 if (IS_PINEVIEW(dev))
da4a1efa 8915 pineview_clock(refclk, &clock);
ac58c3f0 8916 else
da4a1efa 8917 i9xx_clock(refclk, &clock);
79e53945 8918 } else {
0fb58223 8919 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8920 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8921
8922 if (is_lvds) {
8923 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8924 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8925
8926 if (lvds & LVDS_CLKB_POWER_UP)
8927 clock.p2 = 7;
8928 else
8929 clock.p2 = 14;
79e53945
JB
8930 } else {
8931 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8932 clock.p1 = 2;
8933 else {
8934 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8935 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8936 }
8937 if (dpll & PLL_P2_DIVIDE_BY_4)
8938 clock.p2 = 4;
8939 else
8940 clock.p2 = 2;
79e53945 8941 }
da4a1efa
VS
8942
8943 i9xx_clock(refclk, &clock);
79e53945
JB
8944 }
8945
18442d08
VS
8946 /*
8947 * This value includes pixel_multiplier. We will use
241bfc38 8948 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8949 * encoder's get_config() function.
8950 */
8951 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8952}
8953
6878da05
VS
8954int intel_dotclock_calculate(int link_freq,
8955 const struct intel_link_m_n *m_n)
f1f644dc 8956{
f1f644dc
JB
8957 /*
8958 * The calculation for the data clock is:
1041a02f 8959 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8960 * But we want to avoid losing precison if possible, so:
1041a02f 8961 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8962 *
8963 * and the link clock is simpler:
1041a02f 8964 * link_clock = (m * link_clock) / n
f1f644dc
JB
8965 */
8966
6878da05
VS
8967 if (!m_n->link_n)
8968 return 0;
f1f644dc 8969
6878da05
VS
8970 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8971}
f1f644dc 8972
18442d08
VS
8973static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8974 struct intel_crtc_config *pipe_config)
6878da05
VS
8975{
8976 struct drm_device *dev = crtc->base.dev;
79e53945 8977
18442d08
VS
8978 /* read out port_clock from the DPLL */
8979 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8980
f1f644dc 8981 /*
18442d08 8982 * This value does not include pixel_multiplier.
241bfc38 8983 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8984 * agree once we know their relationship in the encoder's
8985 * get_config() function.
79e53945 8986 */
241bfc38 8987 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8988 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8989 &pipe_config->fdi_m_n);
79e53945
JB
8990}
8991
8992/** Returns the currently programmed mode of the given pipe. */
8993struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8994 struct drm_crtc *crtc)
8995{
548f245b 8996 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8998 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8999 struct drm_display_mode *mode;
f1f644dc 9000 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
9001 int htot = I915_READ(HTOTAL(cpu_transcoder));
9002 int hsync = I915_READ(HSYNC(cpu_transcoder));
9003 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9004 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9005 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9006
9007 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9008 if (!mode)
9009 return NULL;
9010
f1f644dc
JB
9011 /*
9012 * Construct a pipe_config sufficient for getting the clock info
9013 * back out of crtc_clock_get.
9014 *
9015 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9016 * to use a real value here instead.
9017 */
293623f7 9018 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9019 pipe_config.pixel_multiplier = 1;
293623f7
VS
9020 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9021 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9022 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9023 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9024
773ae034 9025 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9026 mode->hdisplay = (htot & 0xffff) + 1;
9027 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9028 mode->hsync_start = (hsync & 0xffff) + 1;
9029 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9030 mode->vdisplay = (vtot & 0xffff) + 1;
9031 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9032 mode->vsync_start = (vsync & 0xffff) + 1;
9033 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9034
9035 drm_mode_set_name(mode);
79e53945
JB
9036
9037 return mode;
9038}
9039
652c393a
JB
9040static void intel_decrease_pllclock(struct drm_crtc *crtc)
9041{
9042 struct drm_device *dev = crtc->dev;
fbee40df 9043 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9045
baff296c 9046 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9047 return;
9048
9049 if (!dev_priv->lvds_downclock_avail)
9050 return;
9051
9052 /*
9053 * Since this is called by a timer, we should never get here in
9054 * the manual case.
9055 */
9056 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9057 int pipe = intel_crtc->pipe;
9058 int dpll_reg = DPLL(pipe);
9059 int dpll;
f6e5b160 9060
44d98a61 9061 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9062
8ac5a6d5 9063 assert_panel_unlocked(dev_priv, pipe);
652c393a 9064
dc257cf1 9065 dpll = I915_READ(dpll_reg);
652c393a
JB
9066 dpll |= DISPLAY_RATE_SELECT_FPA1;
9067 I915_WRITE(dpll_reg, dpll);
9d0498a2 9068 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9069 dpll = I915_READ(dpll_reg);
9070 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9071 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9072 }
9073
9074}
9075
f047e395
CW
9076void intel_mark_busy(struct drm_device *dev)
9077{
c67a470b
PZ
9078 struct drm_i915_private *dev_priv = dev->dev_private;
9079
f62a0076
CW
9080 if (dev_priv->mm.busy)
9081 return;
9082
43694d69 9083 intel_runtime_pm_get(dev_priv);
c67a470b 9084 i915_update_gfx_val(dev_priv);
f62a0076 9085 dev_priv->mm.busy = true;
f047e395
CW
9086}
9087
9088void intel_mark_idle(struct drm_device *dev)
652c393a 9089{
c67a470b 9090 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9091 struct drm_crtc *crtc;
652c393a 9092
f62a0076
CW
9093 if (!dev_priv->mm.busy)
9094 return;
9095
9096 dev_priv->mm.busy = false;
9097
d330a953 9098 if (!i915.powersave)
bb4cdd53 9099 goto out;
652c393a 9100
70e1e0ec 9101 for_each_crtc(dev, crtc) {
f4510a27 9102 if (!crtc->primary->fb)
652c393a
JB
9103 continue;
9104
725a5b54 9105 intel_decrease_pllclock(crtc);
652c393a 9106 }
b29c19b6 9107
3d13ef2e 9108 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9109 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9110
9111out:
43694d69 9112 intel_runtime_pm_put(dev_priv);
652c393a
JB
9113}
9114
79e53945
JB
9115static void intel_crtc_destroy(struct drm_crtc *crtc)
9116{
9117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9118 struct drm_device *dev = crtc->dev;
9119 struct intel_unpin_work *work;
67e77c5a 9120
5e2d7afc 9121 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9122 work = intel_crtc->unpin_work;
9123 intel_crtc->unpin_work = NULL;
5e2d7afc 9124 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9125
9126 if (work) {
9127 cancel_work_sync(&work->work);
9128 kfree(work);
9129 }
79e53945
JB
9130
9131 drm_crtc_cleanup(crtc);
67e77c5a 9132
79e53945
JB
9133 kfree(intel_crtc);
9134}
9135
6b95a207
KH
9136static void intel_unpin_work_fn(struct work_struct *__work)
9137{
9138 struct intel_unpin_work *work =
9139 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9140 struct drm_device *dev = work->crtc->dev;
f99d7069 9141 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9142
b4a98e57 9143 mutex_lock(&dev->struct_mutex);
1690e1eb 9144 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9145 drm_gem_object_unreference(&work->pending_flip_obj->base);
9146 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9147
b4a98e57
CW
9148 intel_update_fbc(dev);
9149 mutex_unlock(&dev->struct_mutex);
9150
f99d7069
DV
9151 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9152
b4a98e57
CW
9153 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9154 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9155
6b95a207
KH
9156 kfree(work);
9157}
9158
1afe3e9d 9159static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9160 struct drm_crtc *crtc)
6b95a207 9161{
6b95a207
KH
9162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9163 struct intel_unpin_work *work;
6b95a207
KH
9164 unsigned long flags;
9165
9166 /* Ignore early vblank irqs */
9167 if (intel_crtc == NULL)
9168 return;
9169
f326038a
DV
9170 /*
9171 * This is called both by irq handlers and the reset code (to complete
9172 * lost pageflips) so needs the full irqsave spinlocks.
9173 */
6b95a207
KH
9174 spin_lock_irqsave(&dev->event_lock, flags);
9175 work = intel_crtc->unpin_work;
e7d841ca
CW
9176
9177 /* Ensure we don't miss a work->pending update ... */
9178 smp_rmb();
9179
9180 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9181 spin_unlock_irqrestore(&dev->event_lock, flags);
9182 return;
9183 }
9184
d6bbafa1 9185 page_flip_completed(intel_crtc);
0af7e4df 9186
6b95a207 9187 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9188}
9189
1afe3e9d
JB
9190void intel_finish_page_flip(struct drm_device *dev, int pipe)
9191{
fbee40df 9192 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9193 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9194
49b14a5c 9195 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9196}
9197
9198void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9199{
fbee40df 9200 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9201 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9202
49b14a5c 9203 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9204}
9205
75f7f3ec
VS
9206/* Is 'a' after or equal to 'b'? */
9207static bool g4x_flip_count_after_eq(u32 a, u32 b)
9208{
9209 return !((a - b) & 0x80000000);
9210}
9211
9212static bool page_flip_finished(struct intel_crtc *crtc)
9213{
9214 struct drm_device *dev = crtc->base.dev;
9215 struct drm_i915_private *dev_priv = dev->dev_private;
9216
9217 /*
9218 * The relevant registers doen't exist on pre-ctg.
9219 * As the flip done interrupt doesn't trigger for mmio
9220 * flips on gmch platforms, a flip count check isn't
9221 * really needed there. But since ctg has the registers,
9222 * include it in the check anyway.
9223 */
9224 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9225 return true;
9226
9227 /*
9228 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9229 * used the same base address. In that case the mmio flip might
9230 * have completed, but the CS hasn't even executed the flip yet.
9231 *
9232 * A flip count check isn't enough as the CS might have updated
9233 * the base address just after start of vblank, but before we
9234 * managed to process the interrupt. This means we'd complete the
9235 * CS flip too soon.
9236 *
9237 * Combining both checks should get us a good enough result. It may
9238 * still happen that the CS flip has been executed, but has not
9239 * yet actually completed. But in case the base address is the same
9240 * anyway, we don't really care.
9241 */
9242 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9243 crtc->unpin_work->gtt_offset &&
9244 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9245 crtc->unpin_work->flip_count);
9246}
9247
6b95a207
KH
9248void intel_prepare_page_flip(struct drm_device *dev, int plane)
9249{
fbee40df 9250 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9251 struct intel_crtc *intel_crtc =
9252 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9253 unsigned long flags;
9254
f326038a
DV
9255
9256 /*
9257 * This is called both by irq handlers and the reset code (to complete
9258 * lost pageflips) so needs the full irqsave spinlocks.
9259 *
9260 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9261 * generate a page-flip completion irq, i.e. every modeset
9262 * is also accompanied by a spurious intel_prepare_page_flip().
9263 */
6b95a207 9264 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9265 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9266 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9267 spin_unlock_irqrestore(&dev->event_lock, flags);
9268}
9269
eba905b2 9270static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9271{
9272 /* Ensure that the work item is consistent when activating it ... */
9273 smp_wmb();
9274 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9275 /* and that it is marked active as soon as the irq could fire. */
9276 smp_wmb();
9277}
9278
8c9f3aaf
JB
9279static int intel_gen2_queue_flip(struct drm_device *dev,
9280 struct drm_crtc *crtc,
9281 struct drm_framebuffer *fb,
ed8d1975 9282 struct drm_i915_gem_object *obj,
a4872ba6 9283 struct intel_engine_cs *ring,
ed8d1975 9284 uint32_t flags)
8c9f3aaf 9285{
8c9f3aaf 9286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9287 u32 flip_mask;
9288 int ret;
9289
6d90c952 9290 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9291 if (ret)
4fa62c89 9292 return ret;
8c9f3aaf
JB
9293
9294 /* Can't queue multiple flips, so wait for the previous
9295 * one to finish before executing the next.
9296 */
9297 if (intel_crtc->plane)
9298 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9299 else
9300 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9301 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9302 intel_ring_emit(ring, MI_NOOP);
9303 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9304 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9305 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9306 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9307 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9308
9309 intel_mark_page_flip_active(intel_crtc);
09246732 9310 __intel_ring_advance(ring);
83d4092b 9311 return 0;
8c9f3aaf
JB
9312}
9313
9314static int intel_gen3_queue_flip(struct drm_device *dev,
9315 struct drm_crtc *crtc,
9316 struct drm_framebuffer *fb,
ed8d1975 9317 struct drm_i915_gem_object *obj,
a4872ba6 9318 struct intel_engine_cs *ring,
ed8d1975 9319 uint32_t flags)
8c9f3aaf 9320{
8c9f3aaf 9321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9322 u32 flip_mask;
9323 int ret;
9324
6d90c952 9325 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9326 if (ret)
4fa62c89 9327 return ret;
8c9f3aaf
JB
9328
9329 if (intel_crtc->plane)
9330 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9331 else
9332 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9333 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9334 intel_ring_emit(ring, MI_NOOP);
9335 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9336 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9337 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9338 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9339 intel_ring_emit(ring, MI_NOOP);
9340
e7d841ca 9341 intel_mark_page_flip_active(intel_crtc);
09246732 9342 __intel_ring_advance(ring);
83d4092b 9343 return 0;
8c9f3aaf
JB
9344}
9345
9346static int intel_gen4_queue_flip(struct drm_device *dev,
9347 struct drm_crtc *crtc,
9348 struct drm_framebuffer *fb,
ed8d1975 9349 struct drm_i915_gem_object *obj,
a4872ba6 9350 struct intel_engine_cs *ring,
ed8d1975 9351 uint32_t flags)
8c9f3aaf
JB
9352{
9353 struct drm_i915_private *dev_priv = dev->dev_private;
9354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9355 uint32_t pf, pipesrc;
9356 int ret;
9357
6d90c952 9358 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9359 if (ret)
4fa62c89 9360 return ret;
8c9f3aaf
JB
9361
9362 /* i965+ uses the linear or tiled offsets from the
9363 * Display Registers (which do not change across a page-flip)
9364 * so we need only reprogram the base address.
9365 */
6d90c952
DV
9366 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9367 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9368 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9369 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9370 obj->tiling_mode);
8c9f3aaf
JB
9371
9372 /* XXX Enabling the panel-fitter across page-flip is so far
9373 * untested on non-native modes, so ignore it for now.
9374 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9375 */
9376 pf = 0;
9377 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9378 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9379
9380 intel_mark_page_flip_active(intel_crtc);
09246732 9381 __intel_ring_advance(ring);
83d4092b 9382 return 0;
8c9f3aaf
JB
9383}
9384
9385static int intel_gen6_queue_flip(struct drm_device *dev,
9386 struct drm_crtc *crtc,
9387 struct drm_framebuffer *fb,
ed8d1975 9388 struct drm_i915_gem_object *obj,
a4872ba6 9389 struct intel_engine_cs *ring,
ed8d1975 9390 uint32_t flags)
8c9f3aaf
JB
9391{
9392 struct drm_i915_private *dev_priv = dev->dev_private;
9393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9394 uint32_t pf, pipesrc;
9395 int ret;
9396
6d90c952 9397 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9398 if (ret)
4fa62c89 9399 return ret;
8c9f3aaf 9400
6d90c952
DV
9401 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9402 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9403 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9404 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9405
dc257cf1
DV
9406 /* Contrary to the suggestions in the documentation,
9407 * "Enable Panel Fitter" does not seem to be required when page
9408 * flipping with a non-native mode, and worse causes a normal
9409 * modeset to fail.
9410 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9411 */
9412 pf = 0;
8c9f3aaf 9413 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9414 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9415
9416 intel_mark_page_flip_active(intel_crtc);
09246732 9417 __intel_ring_advance(ring);
83d4092b 9418 return 0;
8c9f3aaf
JB
9419}
9420
7c9017e5
JB
9421static int intel_gen7_queue_flip(struct drm_device *dev,
9422 struct drm_crtc *crtc,
9423 struct drm_framebuffer *fb,
ed8d1975 9424 struct drm_i915_gem_object *obj,
a4872ba6 9425 struct intel_engine_cs *ring,
ed8d1975 9426 uint32_t flags)
7c9017e5 9427{
7c9017e5 9428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9429 uint32_t plane_bit = 0;
ffe74d75
CW
9430 int len, ret;
9431
eba905b2 9432 switch (intel_crtc->plane) {
cb05d8de
DV
9433 case PLANE_A:
9434 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9435 break;
9436 case PLANE_B:
9437 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9438 break;
9439 case PLANE_C:
9440 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9441 break;
9442 default:
9443 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9444 return -ENODEV;
cb05d8de
DV
9445 }
9446
ffe74d75 9447 len = 4;
f476828a 9448 if (ring->id == RCS) {
ffe74d75 9449 len += 6;
f476828a
DL
9450 /*
9451 * On Gen 8, SRM is now taking an extra dword to accommodate
9452 * 48bits addresses, and we need a NOOP for the batch size to
9453 * stay even.
9454 */
9455 if (IS_GEN8(dev))
9456 len += 2;
9457 }
ffe74d75 9458
f66fab8e
VS
9459 /*
9460 * BSpec MI_DISPLAY_FLIP for IVB:
9461 * "The full packet must be contained within the same cache line."
9462 *
9463 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9464 * cacheline, if we ever start emitting more commands before
9465 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9466 * then do the cacheline alignment, and finally emit the
9467 * MI_DISPLAY_FLIP.
9468 */
9469 ret = intel_ring_cacheline_align(ring);
9470 if (ret)
4fa62c89 9471 return ret;
f66fab8e 9472
ffe74d75 9473 ret = intel_ring_begin(ring, len);
7c9017e5 9474 if (ret)
4fa62c89 9475 return ret;
7c9017e5 9476
ffe74d75
CW
9477 /* Unmask the flip-done completion message. Note that the bspec says that
9478 * we should do this for both the BCS and RCS, and that we must not unmask
9479 * more than one flip event at any time (or ensure that one flip message
9480 * can be sent by waiting for flip-done prior to queueing new flips).
9481 * Experimentation says that BCS works despite DERRMR masking all
9482 * flip-done completion events and that unmasking all planes at once
9483 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9484 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9485 */
9486 if (ring->id == RCS) {
9487 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9488 intel_ring_emit(ring, DERRMR);
9489 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9490 DERRMR_PIPEB_PRI_FLIP_DONE |
9491 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9492 if (IS_GEN8(dev))
9493 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9494 MI_SRM_LRM_GLOBAL_GTT);
9495 else
9496 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9497 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9498 intel_ring_emit(ring, DERRMR);
9499 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9500 if (IS_GEN8(dev)) {
9501 intel_ring_emit(ring, 0);
9502 intel_ring_emit(ring, MI_NOOP);
9503 }
ffe74d75
CW
9504 }
9505
cb05d8de 9506 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9507 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9508 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9509 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9510
9511 intel_mark_page_flip_active(intel_crtc);
09246732 9512 __intel_ring_advance(ring);
83d4092b 9513 return 0;
7c9017e5
JB
9514}
9515
84c33a64
SG
9516static bool use_mmio_flip(struct intel_engine_cs *ring,
9517 struct drm_i915_gem_object *obj)
9518{
9519 /*
9520 * This is not being used for older platforms, because
9521 * non-availability of flip done interrupt forces us to use
9522 * CS flips. Older platforms derive flip done using some clever
9523 * tricks involving the flip_pending status bits and vblank irqs.
9524 * So using MMIO flips there would disrupt this mechanism.
9525 */
9526
8e09bf83
CW
9527 if (ring == NULL)
9528 return true;
9529
84c33a64
SG
9530 if (INTEL_INFO(ring->dev)->gen < 5)
9531 return false;
9532
9533 if (i915.use_mmio_flip < 0)
9534 return false;
9535 else if (i915.use_mmio_flip > 0)
9536 return true;
14bf993e
OM
9537 else if (i915.enable_execlists)
9538 return true;
84c33a64
SG
9539 else
9540 return ring != obj->ring;
9541}
9542
9543static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9544{
9545 struct drm_device *dev = intel_crtc->base.dev;
9546 struct drm_i915_private *dev_priv = dev->dev_private;
9547 struct intel_framebuffer *intel_fb =
9548 to_intel_framebuffer(intel_crtc->base.primary->fb);
9549 struct drm_i915_gem_object *obj = intel_fb->obj;
9550 u32 dspcntr;
9551 u32 reg;
9552
9553 intel_mark_page_flip_active(intel_crtc);
9554
9555 reg = DSPCNTR(intel_crtc->plane);
9556 dspcntr = I915_READ(reg);
9557
9558 if (INTEL_INFO(dev)->gen >= 4) {
9559 if (obj->tiling_mode != I915_TILING_NONE)
9560 dspcntr |= DISPPLANE_TILED;
9561 else
9562 dspcntr &= ~DISPPLANE_TILED;
9563 }
9564 I915_WRITE(reg, dspcntr);
9565
9566 I915_WRITE(DSPSURF(intel_crtc->plane),
9567 intel_crtc->unpin_work->gtt_offset);
9568 POSTING_READ(DSPSURF(intel_crtc->plane));
9569}
9570
9571static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9572{
9573 struct intel_engine_cs *ring;
9574 int ret;
9575
9576 lockdep_assert_held(&obj->base.dev->struct_mutex);
9577
9578 if (!obj->last_write_seqno)
9579 return 0;
9580
9581 ring = obj->ring;
9582
9583 if (i915_seqno_passed(ring->get_seqno(ring, true),
9584 obj->last_write_seqno))
9585 return 0;
9586
9587 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9588 if (ret)
9589 return ret;
9590
9591 if (WARN_ON(!ring->irq_get(ring)))
9592 return 0;
9593
9594 return 1;
9595}
9596
9597void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9598{
9599 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9600 struct intel_crtc *intel_crtc;
9601 unsigned long irq_flags;
9602 u32 seqno;
9603
9604 seqno = ring->get_seqno(ring, false);
9605
9606 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9607 for_each_intel_crtc(ring->dev, intel_crtc) {
9608 struct intel_mmio_flip *mmio_flip;
9609
9610 mmio_flip = &intel_crtc->mmio_flip;
9611 if (mmio_flip->seqno == 0)
9612 continue;
9613
9614 if (ring->id != mmio_flip->ring_id)
9615 continue;
9616
9617 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9618 intel_do_mmio_flip(intel_crtc);
9619 mmio_flip->seqno = 0;
9620 ring->irq_put(ring);
9621 }
9622 }
9623 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9624}
9625
9626static int intel_queue_mmio_flip(struct drm_device *dev,
9627 struct drm_crtc *crtc,
9628 struct drm_framebuffer *fb,
9629 struct drm_i915_gem_object *obj,
9630 struct intel_engine_cs *ring,
9631 uint32_t flags)
9632{
9633 struct drm_i915_private *dev_priv = dev->dev_private;
9634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64
SG
9635 int ret;
9636
9637 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9638 return -EBUSY;
9639
9640 ret = intel_postpone_flip(obj);
9641 if (ret < 0)
9642 return ret;
9643 if (ret == 0) {
9644 intel_do_mmio_flip(intel_crtc);
9645 return 0;
9646 }
9647
24955f24 9648 spin_lock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9649 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9650 intel_crtc->mmio_flip.ring_id = obj->ring->id;
24955f24 9651 spin_unlock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9652
9653 /*
9654 * Double check to catch cases where irq fired before
9655 * mmio flip data was ready
9656 */
9657 intel_notify_mmio_flip(obj->ring);
9658 return 0;
9659}
9660
8c9f3aaf
JB
9661static int intel_default_queue_flip(struct drm_device *dev,
9662 struct drm_crtc *crtc,
9663 struct drm_framebuffer *fb,
ed8d1975 9664 struct drm_i915_gem_object *obj,
a4872ba6 9665 struct intel_engine_cs *ring,
ed8d1975 9666 uint32_t flags)
8c9f3aaf
JB
9667{
9668 return -ENODEV;
9669}
9670
d6bbafa1
CW
9671static bool __intel_pageflip_stall_check(struct drm_device *dev,
9672 struct drm_crtc *crtc)
9673{
9674 struct drm_i915_private *dev_priv = dev->dev_private;
9675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9676 struct intel_unpin_work *work = intel_crtc->unpin_work;
9677 u32 addr;
9678
9679 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9680 return true;
9681
9682 if (!work->enable_stall_check)
9683 return false;
9684
9685 if (work->flip_ready_vblank == 0) {
9686 if (work->flip_queued_ring &&
9687 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9688 work->flip_queued_seqno))
9689 return false;
9690
9691 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9692 }
9693
9694 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9695 return false;
9696
9697 /* Potential stall - if we see that the flip has happened,
9698 * assume a missed interrupt. */
9699 if (INTEL_INFO(dev)->gen >= 4)
9700 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9701 else
9702 addr = I915_READ(DSPADDR(intel_crtc->plane));
9703
9704 /* There is a potential issue here with a false positive after a flip
9705 * to the same address. We could address this by checking for a
9706 * non-incrementing frame counter.
9707 */
9708 return addr == work->gtt_offset;
9709}
9710
9711void intel_check_page_flip(struct drm_device *dev, int pipe)
9712{
9713 struct drm_i915_private *dev_priv = dev->dev_private;
9714 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9716
9717 WARN_ON(!in_irq());
d6bbafa1
CW
9718
9719 if (crtc == NULL)
9720 return;
9721
f326038a 9722 spin_lock(&dev->event_lock);
d6bbafa1
CW
9723 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9724 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9725 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9726 page_flip_completed(intel_crtc);
9727 }
f326038a 9728 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9729}
9730
6b95a207
KH
9731static int intel_crtc_page_flip(struct drm_crtc *crtc,
9732 struct drm_framebuffer *fb,
ed8d1975
KP
9733 struct drm_pending_vblank_event *event,
9734 uint32_t page_flip_flags)
6b95a207
KH
9735{
9736 struct drm_device *dev = crtc->dev;
9737 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9738 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9739 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9741 enum pipe pipe = intel_crtc->pipe;
6b95a207 9742 struct intel_unpin_work *work;
a4872ba6 9743 struct intel_engine_cs *ring;
52e68630 9744 int ret;
6b95a207 9745
2ff8fde1
MR
9746 /*
9747 * drm_mode_page_flip_ioctl() should already catch this, but double
9748 * check to be safe. In the future we may enable pageflipping from
9749 * a disabled primary plane.
9750 */
9751 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9752 return -EBUSY;
9753
e6a595d2 9754 /* Can't change pixel format via MI display flips. */
f4510a27 9755 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9756 return -EINVAL;
9757
9758 /*
9759 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9760 * Note that pitch changes could also affect these register.
9761 */
9762 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9763 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9764 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9765 return -EINVAL;
9766
f900db47
CW
9767 if (i915_terminally_wedged(&dev_priv->gpu_error))
9768 goto out_hang;
9769
b14c5679 9770 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9771 if (work == NULL)
9772 return -ENOMEM;
9773
6b95a207 9774 work->event = event;
b4a98e57 9775 work->crtc = crtc;
2ff8fde1 9776 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9777 INIT_WORK(&work->work, intel_unpin_work_fn);
9778
87b6b101 9779 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9780 if (ret)
9781 goto free_work;
9782
6b95a207 9783 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9784 spin_lock_irq(&dev->event_lock);
6b95a207 9785 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9786 /* Before declaring the flip queue wedged, check if
9787 * the hardware completed the operation behind our backs.
9788 */
9789 if (__intel_pageflip_stall_check(dev, crtc)) {
9790 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9791 page_flip_completed(intel_crtc);
9792 } else {
9793 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9794 spin_unlock_irq(&dev->event_lock);
468f0b44 9795
d6bbafa1
CW
9796 drm_crtc_vblank_put(crtc);
9797 kfree(work);
9798 return -EBUSY;
9799 }
6b95a207
KH
9800 }
9801 intel_crtc->unpin_work = work;
5e2d7afc 9802 spin_unlock_irq(&dev->event_lock);
6b95a207 9803
b4a98e57
CW
9804 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9805 flush_workqueue(dev_priv->wq);
9806
79158103
CW
9807 ret = i915_mutex_lock_interruptible(dev);
9808 if (ret)
9809 goto cleanup;
6b95a207 9810
75dfca80 9811 /* Reference the objects for the scheduled work. */
05394f39
CW
9812 drm_gem_object_reference(&work->old_fb_obj->base);
9813 drm_gem_object_reference(&obj->base);
6b95a207 9814
f4510a27 9815 crtc->primary->fb = fb;
96b099fd 9816
e1f99ce6 9817 work->pending_flip_obj = obj;
e1f99ce6 9818
b4a98e57 9819 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9820 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9821
75f7f3ec 9822 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9823 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9824
4fa62c89
VS
9825 if (IS_VALLEYVIEW(dev)) {
9826 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9827 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9828 /* vlv: DISPLAY_FLIP fails to change tiling */
9829 ring = NULL;
2a92d5bc
CW
9830 } else if (IS_IVYBRIDGE(dev)) {
9831 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9832 } else if (INTEL_INFO(dev)->gen >= 7) {
9833 ring = obj->ring;
9834 if (ring == NULL || ring->id != RCS)
9835 ring = &dev_priv->ring[BCS];
9836 } else {
9837 ring = &dev_priv->ring[RCS];
9838 }
9839
9840 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9841 if (ret)
9842 goto cleanup_pending;
6b95a207 9843
4fa62c89
VS
9844 work->gtt_offset =
9845 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9846
d6bbafa1 9847 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9848 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9849 page_flip_flags);
d6bbafa1
CW
9850 if (ret)
9851 goto cleanup_unpin;
9852
9853 work->flip_queued_seqno = obj->last_write_seqno;
9854 work->flip_queued_ring = obj->ring;
9855 } else {
84c33a64 9856 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9857 page_flip_flags);
9858 if (ret)
9859 goto cleanup_unpin;
9860
9861 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9862 work->flip_queued_ring = ring;
9863 }
9864
9865 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9866 work->enable_stall_check = true;
4fa62c89 9867
a071fa00
DV
9868 i915_gem_track_fb(work->old_fb_obj, obj,
9869 INTEL_FRONTBUFFER_PRIMARY(pipe));
9870
7782de3b 9871 intel_disable_fbc(dev);
f99d7069 9872 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9873 mutex_unlock(&dev->struct_mutex);
9874
e5510fac
JB
9875 trace_i915_flip_request(intel_crtc->plane, obj);
9876
6b95a207 9877 return 0;
96b099fd 9878
4fa62c89
VS
9879cleanup_unpin:
9880 intel_unpin_fb_obj(obj);
8c9f3aaf 9881cleanup_pending:
b4a98e57 9882 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9883 crtc->primary->fb = old_fb;
05394f39
CW
9884 drm_gem_object_unreference(&work->old_fb_obj->base);
9885 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9886 mutex_unlock(&dev->struct_mutex);
9887
79158103 9888cleanup:
5e2d7afc 9889 spin_lock_irq(&dev->event_lock);
96b099fd 9890 intel_crtc->unpin_work = NULL;
5e2d7afc 9891 spin_unlock_irq(&dev->event_lock);
96b099fd 9892
87b6b101 9893 drm_crtc_vblank_put(crtc);
7317c75e 9894free_work:
96b099fd
CW
9895 kfree(work);
9896
f900db47
CW
9897 if (ret == -EIO) {
9898out_hang:
9899 intel_crtc_wait_for_pending_flips(crtc);
9900 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9901 if (ret == 0 && event) {
5e2d7afc 9902 spin_lock_irq(&dev->event_lock);
a071fa00 9903 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9904 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9905 }
f900db47 9906 }
96b099fd 9907 return ret;
6b95a207
KH
9908}
9909
f6e5b160 9910static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9911 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9912 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9913};
9914
9a935856
DV
9915/**
9916 * intel_modeset_update_staged_output_state
9917 *
9918 * Updates the staged output configuration state, e.g. after we've read out the
9919 * current hw state.
9920 */
9921static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9922{
7668851f 9923 struct intel_crtc *crtc;
9a935856
DV
9924 struct intel_encoder *encoder;
9925 struct intel_connector *connector;
f6e5b160 9926
9a935856
DV
9927 list_for_each_entry(connector, &dev->mode_config.connector_list,
9928 base.head) {
9929 connector->new_encoder =
9930 to_intel_encoder(connector->base.encoder);
9931 }
f6e5b160 9932
b2784e15 9933 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9934 encoder->new_crtc =
9935 to_intel_crtc(encoder->base.crtc);
9936 }
7668851f 9937
d3fcc808 9938 for_each_intel_crtc(dev, crtc) {
7668851f 9939 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9940
9941 if (crtc->new_enabled)
9942 crtc->new_config = &crtc->config;
9943 else
9944 crtc->new_config = NULL;
7668851f 9945 }
f6e5b160
CW
9946}
9947
9a935856
DV
9948/**
9949 * intel_modeset_commit_output_state
9950 *
9951 * This function copies the stage display pipe configuration to the real one.
9952 */
9953static void intel_modeset_commit_output_state(struct drm_device *dev)
9954{
7668851f 9955 struct intel_crtc *crtc;
9a935856
DV
9956 struct intel_encoder *encoder;
9957 struct intel_connector *connector;
f6e5b160 9958
9a935856
DV
9959 list_for_each_entry(connector, &dev->mode_config.connector_list,
9960 base.head) {
9961 connector->base.encoder = &connector->new_encoder->base;
9962 }
f6e5b160 9963
b2784e15 9964 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9965 encoder->base.crtc = &encoder->new_crtc->base;
9966 }
7668851f 9967
d3fcc808 9968 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9969 crtc->base.enabled = crtc->new_enabled;
9970 }
9a935856
DV
9971}
9972
050f7aeb 9973static void
eba905b2 9974connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9975 struct intel_crtc_config *pipe_config)
9976{
9977 int bpp = pipe_config->pipe_bpp;
9978
9979 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9980 connector->base.base.id,
c23cc417 9981 connector->base.name);
050f7aeb
DV
9982
9983 /* Don't use an invalid EDID bpc value */
9984 if (connector->base.display_info.bpc &&
9985 connector->base.display_info.bpc * 3 < bpp) {
9986 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9987 bpp, connector->base.display_info.bpc*3);
9988 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9989 }
9990
9991 /* Clamp bpp to 8 on screens without EDID 1.4 */
9992 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9993 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9994 bpp);
9995 pipe_config->pipe_bpp = 24;
9996 }
9997}
9998
4e53c2e0 9999static int
050f7aeb
DV
10000compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10001 struct drm_framebuffer *fb,
10002 struct intel_crtc_config *pipe_config)
4e53c2e0 10003{
050f7aeb
DV
10004 struct drm_device *dev = crtc->base.dev;
10005 struct intel_connector *connector;
4e53c2e0
DV
10006 int bpp;
10007
d42264b1
DV
10008 switch (fb->pixel_format) {
10009 case DRM_FORMAT_C8:
4e53c2e0
DV
10010 bpp = 8*3; /* since we go through a colormap */
10011 break;
d42264b1
DV
10012 case DRM_FORMAT_XRGB1555:
10013 case DRM_FORMAT_ARGB1555:
10014 /* checked in intel_framebuffer_init already */
10015 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10016 return -EINVAL;
10017 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10018 bpp = 6*3; /* min is 18bpp */
10019 break;
d42264b1
DV
10020 case DRM_FORMAT_XBGR8888:
10021 case DRM_FORMAT_ABGR8888:
10022 /* checked in intel_framebuffer_init already */
10023 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10024 return -EINVAL;
10025 case DRM_FORMAT_XRGB8888:
10026 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10027 bpp = 8*3;
10028 break;
d42264b1
DV
10029 case DRM_FORMAT_XRGB2101010:
10030 case DRM_FORMAT_ARGB2101010:
10031 case DRM_FORMAT_XBGR2101010:
10032 case DRM_FORMAT_ABGR2101010:
10033 /* checked in intel_framebuffer_init already */
10034 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10035 return -EINVAL;
4e53c2e0
DV
10036 bpp = 10*3;
10037 break;
baba133a 10038 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10039 default:
10040 DRM_DEBUG_KMS("unsupported depth\n");
10041 return -EINVAL;
10042 }
10043
4e53c2e0
DV
10044 pipe_config->pipe_bpp = bpp;
10045
10046 /* Clamp display bpp to EDID value */
10047 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10048 base.head) {
1b829e05
DV
10049 if (!connector->new_encoder ||
10050 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10051 continue;
10052
050f7aeb 10053 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10054 }
10055
10056 return bpp;
10057}
10058
644db711
DV
10059static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10060{
10061 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10062 "type: 0x%x flags: 0x%x\n",
1342830c 10063 mode->crtc_clock,
644db711
DV
10064 mode->crtc_hdisplay, mode->crtc_hsync_start,
10065 mode->crtc_hsync_end, mode->crtc_htotal,
10066 mode->crtc_vdisplay, mode->crtc_vsync_start,
10067 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10068}
10069
c0b03411
DV
10070static void intel_dump_pipe_config(struct intel_crtc *crtc,
10071 struct intel_crtc_config *pipe_config,
10072 const char *context)
10073{
10074 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10075 context, pipe_name(crtc->pipe));
10076
10077 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10078 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10079 pipe_config->pipe_bpp, pipe_config->dither);
10080 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10081 pipe_config->has_pch_encoder,
10082 pipe_config->fdi_lanes,
10083 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10084 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10085 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10086 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10087 pipe_config->has_dp_encoder,
10088 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10089 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10090 pipe_config->dp_m_n.tu);
b95af8be
VK
10091
10092 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10093 pipe_config->has_dp_encoder,
10094 pipe_config->dp_m2_n2.gmch_m,
10095 pipe_config->dp_m2_n2.gmch_n,
10096 pipe_config->dp_m2_n2.link_m,
10097 pipe_config->dp_m2_n2.link_n,
10098 pipe_config->dp_m2_n2.tu);
10099
c0b03411
DV
10100 DRM_DEBUG_KMS("requested mode:\n");
10101 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10102 DRM_DEBUG_KMS("adjusted mode:\n");
10103 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10104 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10105 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10106 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10107 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10108 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10109 pipe_config->gmch_pfit.control,
10110 pipe_config->gmch_pfit.pgm_ratios,
10111 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10112 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10113 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10114 pipe_config->pch_pfit.size,
10115 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10116 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10117 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10118}
10119
bc079e8b
VS
10120static bool encoders_cloneable(const struct intel_encoder *a,
10121 const struct intel_encoder *b)
accfc0c5 10122{
bc079e8b
VS
10123 /* masks could be asymmetric, so check both ways */
10124 return a == b || (a->cloneable & (1 << b->type) &&
10125 b->cloneable & (1 << a->type));
10126}
10127
10128static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10129 struct intel_encoder *encoder)
10130{
10131 struct drm_device *dev = crtc->base.dev;
10132 struct intel_encoder *source_encoder;
10133
b2784e15 10134 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10135 if (source_encoder->new_crtc != crtc)
10136 continue;
10137
10138 if (!encoders_cloneable(encoder, source_encoder))
10139 return false;
10140 }
10141
10142 return true;
10143}
10144
10145static bool check_encoder_cloning(struct intel_crtc *crtc)
10146{
10147 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10148 struct intel_encoder *encoder;
10149
b2784e15 10150 for_each_intel_encoder(dev, encoder) {
bc079e8b 10151 if (encoder->new_crtc != crtc)
accfc0c5
DV
10152 continue;
10153
bc079e8b
VS
10154 if (!check_single_encoder_cloning(crtc, encoder))
10155 return false;
accfc0c5
DV
10156 }
10157
bc079e8b 10158 return true;
accfc0c5
DV
10159}
10160
b8cecdf5
DV
10161static struct intel_crtc_config *
10162intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10163 struct drm_framebuffer *fb,
b8cecdf5 10164 struct drm_display_mode *mode)
ee7b9f93 10165{
7758a113 10166 struct drm_device *dev = crtc->dev;
7758a113 10167 struct intel_encoder *encoder;
b8cecdf5 10168 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10169 int plane_bpp, ret = -EINVAL;
10170 bool retry = true;
ee7b9f93 10171
bc079e8b 10172 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10173 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10174 return ERR_PTR(-EINVAL);
10175 }
10176
b8cecdf5
DV
10177 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10178 if (!pipe_config)
7758a113
DV
10179 return ERR_PTR(-ENOMEM);
10180
b8cecdf5
DV
10181 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10182 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10183
e143a21c
DV
10184 pipe_config->cpu_transcoder =
10185 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10186 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10187
2960bc9c
ID
10188 /*
10189 * Sanitize sync polarity flags based on requested ones. If neither
10190 * positive or negative polarity is requested, treat this as meaning
10191 * negative polarity.
10192 */
10193 if (!(pipe_config->adjusted_mode.flags &
10194 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10195 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10196
10197 if (!(pipe_config->adjusted_mode.flags &
10198 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10199 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10200
050f7aeb
DV
10201 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10202 * plane pixel format and any sink constraints into account. Returns the
10203 * source plane bpp so that dithering can be selected on mismatches
10204 * after encoders and crtc also have had their say. */
10205 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10206 fb, pipe_config);
4e53c2e0
DV
10207 if (plane_bpp < 0)
10208 goto fail;
10209
e41a56be
VS
10210 /*
10211 * Determine the real pipe dimensions. Note that stereo modes can
10212 * increase the actual pipe size due to the frame doubling and
10213 * insertion of additional space for blanks between the frame. This
10214 * is stored in the crtc timings. We use the requested mode to do this
10215 * computation to clearly distinguish it from the adjusted mode, which
10216 * can be changed by the connectors in the below retry loop.
10217 */
10218 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10219 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10220 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10221
e29c22c0 10222encoder_retry:
ef1b460d 10223 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10224 pipe_config->port_clock = 0;
ef1b460d 10225 pipe_config->pixel_multiplier = 1;
ff9a6750 10226
135c81b8 10227 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10228 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10229
7758a113
DV
10230 /* Pass our mode to the connectors and the CRTC to give them a chance to
10231 * adjust it according to limitations or connector properties, and also
10232 * a chance to reject the mode entirely.
47f1c6c9 10233 */
b2784e15 10234 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10235
7758a113
DV
10236 if (&encoder->new_crtc->base != crtc)
10237 continue;
7ae89233 10238
efea6e8e
DV
10239 if (!(encoder->compute_config(encoder, pipe_config))) {
10240 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10241 goto fail;
10242 }
ee7b9f93 10243 }
47f1c6c9 10244
ff9a6750
DV
10245 /* Set default port clock if not overwritten by the encoder. Needs to be
10246 * done afterwards in case the encoder adjusts the mode. */
10247 if (!pipe_config->port_clock)
241bfc38
DL
10248 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10249 * pipe_config->pixel_multiplier;
ff9a6750 10250
a43f6e0f 10251 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10252 if (ret < 0) {
7758a113
DV
10253 DRM_DEBUG_KMS("CRTC fixup failed\n");
10254 goto fail;
ee7b9f93 10255 }
e29c22c0
DV
10256
10257 if (ret == RETRY) {
10258 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10259 ret = -EINVAL;
10260 goto fail;
10261 }
10262
10263 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10264 retry = false;
10265 goto encoder_retry;
10266 }
10267
4e53c2e0
DV
10268 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10269 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10270 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10271
b8cecdf5 10272 return pipe_config;
7758a113 10273fail:
b8cecdf5 10274 kfree(pipe_config);
e29c22c0 10275 return ERR_PTR(ret);
ee7b9f93 10276}
47f1c6c9 10277
e2e1ed41
DV
10278/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10279 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10280static void
10281intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10282 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10283{
10284 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10285 struct drm_device *dev = crtc->dev;
10286 struct intel_encoder *encoder;
10287 struct intel_connector *connector;
10288 struct drm_crtc *tmp_crtc;
79e53945 10289
e2e1ed41 10290 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10291
e2e1ed41
DV
10292 /* Check which crtcs have changed outputs connected to them, these need
10293 * to be part of the prepare_pipes mask. We don't (yet) support global
10294 * modeset across multiple crtcs, so modeset_pipes will only have one
10295 * bit set at most. */
10296 list_for_each_entry(connector, &dev->mode_config.connector_list,
10297 base.head) {
10298 if (connector->base.encoder == &connector->new_encoder->base)
10299 continue;
79e53945 10300
e2e1ed41
DV
10301 if (connector->base.encoder) {
10302 tmp_crtc = connector->base.encoder->crtc;
10303
10304 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10305 }
10306
10307 if (connector->new_encoder)
10308 *prepare_pipes |=
10309 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10310 }
10311
b2784e15 10312 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10313 if (encoder->base.crtc == &encoder->new_crtc->base)
10314 continue;
10315
10316 if (encoder->base.crtc) {
10317 tmp_crtc = encoder->base.crtc;
10318
10319 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10320 }
10321
10322 if (encoder->new_crtc)
10323 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10324 }
10325
7668851f 10326 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10327 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10328 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10329 continue;
7e7d76c3 10330
7668851f 10331 if (!intel_crtc->new_enabled)
e2e1ed41 10332 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10333 else
10334 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10335 }
10336
e2e1ed41
DV
10337
10338 /* set_mode is also used to update properties on life display pipes. */
10339 intel_crtc = to_intel_crtc(crtc);
7668851f 10340 if (intel_crtc->new_enabled)
e2e1ed41
DV
10341 *prepare_pipes |= 1 << intel_crtc->pipe;
10342
b6c5164d
DV
10343 /*
10344 * For simplicity do a full modeset on any pipe where the output routing
10345 * changed. We could be more clever, but that would require us to be
10346 * more careful with calling the relevant encoder->mode_set functions.
10347 */
e2e1ed41
DV
10348 if (*prepare_pipes)
10349 *modeset_pipes = *prepare_pipes;
10350
10351 /* ... and mask these out. */
10352 *modeset_pipes &= ~(*disable_pipes);
10353 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10354
10355 /*
10356 * HACK: We don't (yet) fully support global modesets. intel_set_config
10357 * obies this rule, but the modeset restore mode of
10358 * intel_modeset_setup_hw_state does not.
10359 */
10360 *modeset_pipes &= 1 << intel_crtc->pipe;
10361 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10362
10363 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10364 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10365}
79e53945 10366
ea9d758d 10367static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10368{
ea9d758d 10369 struct drm_encoder *encoder;
f6e5b160 10370 struct drm_device *dev = crtc->dev;
f6e5b160 10371
ea9d758d
DV
10372 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10373 if (encoder->crtc == crtc)
10374 return true;
10375
10376 return false;
10377}
10378
10379static void
10380intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10381{
10382 struct intel_encoder *intel_encoder;
10383 struct intel_crtc *intel_crtc;
10384 struct drm_connector *connector;
10385
b2784e15 10386 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10387 if (!intel_encoder->base.crtc)
10388 continue;
10389
10390 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10391
10392 if (prepare_pipes & (1 << intel_crtc->pipe))
10393 intel_encoder->connectors_active = false;
10394 }
10395
10396 intel_modeset_commit_output_state(dev);
10397
7668851f 10398 /* Double check state. */
d3fcc808 10399 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10400 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10401 WARN_ON(intel_crtc->new_config &&
10402 intel_crtc->new_config != &intel_crtc->config);
10403 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10404 }
10405
10406 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10407 if (!connector->encoder || !connector->encoder->crtc)
10408 continue;
10409
10410 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10411
10412 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10413 struct drm_property *dpms_property =
10414 dev->mode_config.dpms_property;
10415
ea9d758d 10416 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10417 drm_object_property_set_value(&connector->base,
68d34720
DV
10418 dpms_property,
10419 DRM_MODE_DPMS_ON);
ea9d758d
DV
10420
10421 intel_encoder = to_intel_encoder(connector->encoder);
10422 intel_encoder->connectors_active = true;
10423 }
10424 }
10425
10426}
10427
3bd26263 10428static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10429{
3bd26263 10430 int diff;
f1f644dc
JB
10431
10432 if (clock1 == clock2)
10433 return true;
10434
10435 if (!clock1 || !clock2)
10436 return false;
10437
10438 diff = abs(clock1 - clock2);
10439
10440 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10441 return true;
10442
10443 return false;
10444}
10445
25c5b266
DV
10446#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10447 list_for_each_entry((intel_crtc), \
10448 &(dev)->mode_config.crtc_list, \
10449 base.head) \
0973f18f 10450 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10451
0e8ffe1b 10452static bool
2fa2fe9a
DV
10453intel_pipe_config_compare(struct drm_device *dev,
10454 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10455 struct intel_crtc_config *pipe_config)
10456{
66e985c0
DV
10457#define PIPE_CONF_CHECK_X(name) \
10458 if (current_config->name != pipe_config->name) { \
10459 DRM_ERROR("mismatch in " #name " " \
10460 "(expected 0x%08x, found 0x%08x)\n", \
10461 current_config->name, \
10462 pipe_config->name); \
10463 return false; \
10464 }
10465
08a24034
DV
10466#define PIPE_CONF_CHECK_I(name) \
10467 if (current_config->name != pipe_config->name) { \
10468 DRM_ERROR("mismatch in " #name " " \
10469 "(expected %i, found %i)\n", \
10470 current_config->name, \
10471 pipe_config->name); \
10472 return false; \
88adfff1
DV
10473 }
10474
b95af8be
VK
10475/* This is required for BDW+ where there is only one set of registers for
10476 * switching between high and low RR.
10477 * This macro can be used whenever a comparison has to be made between one
10478 * hw state and multiple sw state variables.
10479 */
10480#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10481 if ((current_config->name != pipe_config->name) && \
10482 (current_config->alt_name != pipe_config->name)) { \
10483 DRM_ERROR("mismatch in " #name " " \
10484 "(expected %i or %i, found %i)\n", \
10485 current_config->name, \
10486 current_config->alt_name, \
10487 pipe_config->name); \
10488 return false; \
10489 }
10490
1bd1bd80
DV
10491#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10492 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10493 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10494 "(expected %i, found %i)\n", \
10495 current_config->name & (mask), \
10496 pipe_config->name & (mask)); \
10497 return false; \
10498 }
10499
5e550656
VS
10500#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10501 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10502 DRM_ERROR("mismatch in " #name " " \
10503 "(expected %i, found %i)\n", \
10504 current_config->name, \
10505 pipe_config->name); \
10506 return false; \
10507 }
10508
bb760063
DV
10509#define PIPE_CONF_QUIRK(quirk) \
10510 ((current_config->quirks | pipe_config->quirks) & (quirk))
10511
eccb140b
DV
10512 PIPE_CONF_CHECK_I(cpu_transcoder);
10513
08a24034
DV
10514 PIPE_CONF_CHECK_I(has_pch_encoder);
10515 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10516 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10517 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10518 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10519 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10520 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10521
eb14cb74 10522 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10523
10524 if (INTEL_INFO(dev)->gen < 8) {
10525 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10526 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10527 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10528 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10529 PIPE_CONF_CHECK_I(dp_m_n.tu);
10530
10531 if (current_config->has_drrs) {
10532 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10533 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10534 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10535 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10536 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10537 }
10538 } else {
10539 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10540 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10541 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10542 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10543 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10544 }
eb14cb74 10545
1bd1bd80
DV
10546 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10547 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10548 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10549 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10550 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10551 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10552
10553 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10554 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10555 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10556 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10557 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10558 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10559
c93f54cf 10560 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10561 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10562 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10563 IS_VALLEYVIEW(dev))
10564 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10565
9ed109a7
DV
10566 PIPE_CONF_CHECK_I(has_audio);
10567
1bd1bd80
DV
10568 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10569 DRM_MODE_FLAG_INTERLACE);
10570
bb760063
DV
10571 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10572 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10573 DRM_MODE_FLAG_PHSYNC);
10574 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10575 DRM_MODE_FLAG_NHSYNC);
10576 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10577 DRM_MODE_FLAG_PVSYNC);
10578 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10579 DRM_MODE_FLAG_NVSYNC);
10580 }
045ac3b5 10581
37327abd
VS
10582 PIPE_CONF_CHECK_I(pipe_src_w);
10583 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10584
9953599b
DV
10585 /*
10586 * FIXME: BIOS likes to set up a cloned config with lvds+external
10587 * screen. Since we don't yet re-compute the pipe config when moving
10588 * just the lvds port away to another pipe the sw tracking won't match.
10589 *
10590 * Proper atomic modesets with recomputed global state will fix this.
10591 * Until then just don't check gmch state for inherited modes.
10592 */
10593 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10594 PIPE_CONF_CHECK_I(gmch_pfit.control);
10595 /* pfit ratios are autocomputed by the hw on gen4+ */
10596 if (INTEL_INFO(dev)->gen < 4)
10597 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10598 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10599 }
10600
fd4daa9c
CW
10601 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10602 if (current_config->pch_pfit.enabled) {
10603 PIPE_CONF_CHECK_I(pch_pfit.pos);
10604 PIPE_CONF_CHECK_I(pch_pfit.size);
10605 }
2fa2fe9a 10606
e59150dc
JB
10607 /* BDW+ don't expose a synchronous way to read the state */
10608 if (IS_HASWELL(dev))
10609 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10610
282740f7
VS
10611 PIPE_CONF_CHECK_I(double_wide);
10612
26804afd
DV
10613 PIPE_CONF_CHECK_X(ddi_pll_sel);
10614
c0d43d62 10615 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10616 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10617 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10618 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10619 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10620 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10621
42571aef
VS
10622 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10623 PIPE_CONF_CHECK_I(pipe_bpp);
10624
a9a7e98a
JB
10625 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10626 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10627
66e985c0 10628#undef PIPE_CONF_CHECK_X
08a24034 10629#undef PIPE_CONF_CHECK_I
b95af8be 10630#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10631#undef PIPE_CONF_CHECK_FLAGS
5e550656 10632#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10633#undef PIPE_CONF_QUIRK
88adfff1 10634
0e8ffe1b
DV
10635 return true;
10636}
10637
91d1b4bd
DV
10638static void
10639check_connector_state(struct drm_device *dev)
8af6cf88 10640{
8af6cf88
DV
10641 struct intel_connector *connector;
10642
10643 list_for_each_entry(connector, &dev->mode_config.connector_list,
10644 base.head) {
10645 /* This also checks the encoder/connector hw state with the
10646 * ->get_hw_state callbacks. */
10647 intel_connector_check_state(connector);
10648
10649 WARN(&connector->new_encoder->base != connector->base.encoder,
10650 "connector's staged encoder doesn't match current encoder\n");
10651 }
91d1b4bd
DV
10652}
10653
10654static void
10655check_encoder_state(struct drm_device *dev)
10656{
10657 struct intel_encoder *encoder;
10658 struct intel_connector *connector;
8af6cf88 10659
b2784e15 10660 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10661 bool enabled = false;
10662 bool active = false;
10663 enum pipe pipe, tracked_pipe;
10664
10665 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10666 encoder->base.base.id,
8e329a03 10667 encoder->base.name);
8af6cf88
DV
10668
10669 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10670 "encoder's stage crtc doesn't match current crtc\n");
10671 WARN(encoder->connectors_active && !encoder->base.crtc,
10672 "encoder's active_connectors set, but no crtc\n");
10673
10674 list_for_each_entry(connector, &dev->mode_config.connector_list,
10675 base.head) {
10676 if (connector->base.encoder != &encoder->base)
10677 continue;
10678 enabled = true;
10679 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10680 active = true;
10681 }
0e32b39c
DA
10682 /*
10683 * for MST connectors if we unplug the connector is gone
10684 * away but the encoder is still connected to a crtc
10685 * until a modeset happens in response to the hotplug.
10686 */
10687 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10688 continue;
10689
8af6cf88
DV
10690 WARN(!!encoder->base.crtc != enabled,
10691 "encoder's enabled state mismatch "
10692 "(expected %i, found %i)\n",
10693 !!encoder->base.crtc, enabled);
10694 WARN(active && !encoder->base.crtc,
10695 "active encoder with no crtc\n");
10696
10697 WARN(encoder->connectors_active != active,
10698 "encoder's computed active state doesn't match tracked active state "
10699 "(expected %i, found %i)\n", active, encoder->connectors_active);
10700
10701 active = encoder->get_hw_state(encoder, &pipe);
10702 WARN(active != encoder->connectors_active,
10703 "encoder's hw state doesn't match sw tracking "
10704 "(expected %i, found %i)\n",
10705 encoder->connectors_active, active);
10706
10707 if (!encoder->base.crtc)
10708 continue;
10709
10710 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10711 WARN(active && pipe != tracked_pipe,
10712 "active encoder's pipe doesn't match"
10713 "(expected %i, found %i)\n",
10714 tracked_pipe, pipe);
10715
10716 }
91d1b4bd
DV
10717}
10718
10719static void
10720check_crtc_state(struct drm_device *dev)
10721{
fbee40df 10722 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10723 struct intel_crtc *crtc;
10724 struct intel_encoder *encoder;
10725 struct intel_crtc_config pipe_config;
8af6cf88 10726
d3fcc808 10727 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10728 bool enabled = false;
10729 bool active = false;
10730
045ac3b5
JB
10731 memset(&pipe_config, 0, sizeof(pipe_config));
10732
8af6cf88
DV
10733 DRM_DEBUG_KMS("[CRTC:%d]\n",
10734 crtc->base.base.id);
10735
10736 WARN(crtc->active && !crtc->base.enabled,
10737 "active crtc, but not enabled in sw tracking\n");
10738
b2784e15 10739 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10740 if (encoder->base.crtc != &crtc->base)
10741 continue;
10742 enabled = true;
10743 if (encoder->connectors_active)
10744 active = true;
10745 }
6c49f241 10746
8af6cf88
DV
10747 WARN(active != crtc->active,
10748 "crtc's computed active state doesn't match tracked active state "
10749 "(expected %i, found %i)\n", active, crtc->active);
10750 WARN(enabled != crtc->base.enabled,
10751 "crtc's computed enabled state doesn't match tracked enabled state "
10752 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10753
0e8ffe1b
DV
10754 active = dev_priv->display.get_pipe_config(crtc,
10755 &pipe_config);
d62cf62a 10756
b6b5d049
VS
10757 /* hw state is inconsistent with the pipe quirk */
10758 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10759 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10760 active = crtc->active;
10761
b2784e15 10762 for_each_intel_encoder(dev, encoder) {
3eaba51c 10763 enum pipe pipe;
6c49f241
DV
10764 if (encoder->base.crtc != &crtc->base)
10765 continue;
1d37b689 10766 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10767 encoder->get_config(encoder, &pipe_config);
10768 }
10769
0e8ffe1b
DV
10770 WARN(crtc->active != active,
10771 "crtc active state doesn't match with hw state "
10772 "(expected %i, found %i)\n", crtc->active, active);
10773
c0b03411
DV
10774 if (active &&
10775 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10776 WARN(1, "pipe state doesn't match!\n");
10777 intel_dump_pipe_config(crtc, &pipe_config,
10778 "[hw state]");
10779 intel_dump_pipe_config(crtc, &crtc->config,
10780 "[sw state]");
10781 }
8af6cf88
DV
10782 }
10783}
10784
91d1b4bd
DV
10785static void
10786check_shared_dpll_state(struct drm_device *dev)
10787{
fbee40df 10788 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10789 struct intel_crtc *crtc;
10790 struct intel_dpll_hw_state dpll_hw_state;
10791 int i;
5358901f
DV
10792
10793 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10794 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10795 int enabled_crtcs = 0, active_crtcs = 0;
10796 bool active;
10797
10798 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10799
10800 DRM_DEBUG_KMS("%s\n", pll->name);
10801
10802 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10803
10804 WARN(pll->active > pll->refcount,
10805 "more active pll users than references: %i vs %i\n",
10806 pll->active, pll->refcount);
10807 WARN(pll->active && !pll->on,
10808 "pll in active use but not on in sw tracking\n");
35c95375
DV
10809 WARN(pll->on && !pll->active,
10810 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10811 WARN(pll->on != active,
10812 "pll on state mismatch (expected %i, found %i)\n",
10813 pll->on, active);
10814
d3fcc808 10815 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10816 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10817 enabled_crtcs++;
10818 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10819 active_crtcs++;
10820 }
10821 WARN(pll->active != active_crtcs,
10822 "pll active crtcs mismatch (expected %i, found %i)\n",
10823 pll->active, active_crtcs);
10824 WARN(pll->refcount != enabled_crtcs,
10825 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10826 pll->refcount, enabled_crtcs);
66e985c0
DV
10827
10828 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10829 sizeof(dpll_hw_state)),
10830 "pll hw state mismatch\n");
5358901f 10831 }
8af6cf88
DV
10832}
10833
91d1b4bd
DV
10834void
10835intel_modeset_check_state(struct drm_device *dev)
10836{
10837 check_connector_state(dev);
10838 check_encoder_state(dev);
10839 check_crtc_state(dev);
10840 check_shared_dpll_state(dev);
10841}
10842
18442d08
VS
10843void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10844 int dotclock)
10845{
10846 /*
10847 * FDI already provided one idea for the dotclock.
10848 * Yell if the encoder disagrees.
10849 */
241bfc38 10850 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10851 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10852 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10853}
10854
80715b2f
VS
10855static void update_scanline_offset(struct intel_crtc *crtc)
10856{
10857 struct drm_device *dev = crtc->base.dev;
10858
10859 /*
10860 * The scanline counter increments at the leading edge of hsync.
10861 *
10862 * On most platforms it starts counting from vtotal-1 on the
10863 * first active line. That means the scanline counter value is
10864 * always one less than what we would expect. Ie. just after
10865 * start of vblank, which also occurs at start of hsync (on the
10866 * last active line), the scanline counter will read vblank_start-1.
10867 *
10868 * On gen2 the scanline counter starts counting from 1 instead
10869 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10870 * to keep the value positive), instead of adding one.
10871 *
10872 * On HSW+ the behaviour of the scanline counter depends on the output
10873 * type. For DP ports it behaves like most other platforms, but on HDMI
10874 * there's an extra 1 line difference. So we need to add two instead of
10875 * one to the value.
10876 */
10877 if (IS_GEN2(dev)) {
10878 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10879 int vtotal;
10880
10881 vtotal = mode->crtc_vtotal;
10882 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10883 vtotal /= 2;
10884
10885 crtc->scanline_offset = vtotal - 1;
10886 } else if (HAS_DDI(dev) &&
10887 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10888 crtc->scanline_offset = 2;
10889 } else
10890 crtc->scanline_offset = 1;
10891}
10892
f30da187
DV
10893static int __intel_set_mode(struct drm_crtc *crtc,
10894 struct drm_display_mode *mode,
10895 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10896{
10897 struct drm_device *dev = crtc->dev;
fbee40df 10898 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10899 struct drm_display_mode *saved_mode;
b8cecdf5 10900 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10901 struct intel_crtc *intel_crtc;
10902 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10903 int ret = 0;
a6778b3c 10904
4b4b9238 10905 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10906 if (!saved_mode)
10907 return -ENOMEM;
a6778b3c 10908
e2e1ed41 10909 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10910 &prepare_pipes, &disable_pipes);
10911
3ac18232 10912 *saved_mode = crtc->mode;
a6778b3c 10913
25c5b266
DV
10914 /* Hack: Because we don't (yet) support global modeset on multiple
10915 * crtcs, we don't keep track of the new mode for more than one crtc.
10916 * Hence simply check whether any bit is set in modeset_pipes in all the
10917 * pieces of code that are not yet converted to deal with mutliple crtcs
10918 * changing their mode at the same time. */
25c5b266 10919 if (modeset_pipes) {
4e53c2e0 10920 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10921 if (IS_ERR(pipe_config)) {
10922 ret = PTR_ERR(pipe_config);
10923 pipe_config = NULL;
10924
3ac18232 10925 goto out;
25c5b266 10926 }
c0b03411
DV
10927 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10928 "[modeset]");
50741abc 10929 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10930 }
a6778b3c 10931
30a970c6
JB
10932 /*
10933 * See if the config requires any additional preparation, e.g.
10934 * to adjust global state with pipes off. We need to do this
10935 * here so we can get the modeset_pipe updated config for the new
10936 * mode set on this crtc. For other crtcs we need to use the
10937 * adjusted_mode bits in the crtc directly.
10938 */
c164f833 10939 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10940 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10941
c164f833
VS
10942 /* may have added more to prepare_pipes than we should */
10943 prepare_pipes &= ~disable_pipes;
10944 }
10945
460da916
DV
10946 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10947 intel_crtc_disable(&intel_crtc->base);
10948
ea9d758d
DV
10949 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10950 if (intel_crtc->base.enabled)
10951 dev_priv->display.crtc_disable(&intel_crtc->base);
10952 }
a6778b3c 10953
6c4c86f5
DV
10954 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10955 * to set it here already despite that we pass it down the callchain.
f6e5b160 10956 */
b8cecdf5 10957 if (modeset_pipes) {
25c5b266 10958 crtc->mode = *mode;
b8cecdf5
DV
10959 /* mode_set/enable/disable functions rely on a correct pipe
10960 * config. */
10961 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10962 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10963
10964 /*
10965 * Calculate and store various constants which
10966 * are later needed by vblank and swap-completion
10967 * timestamping. They are derived from true hwmode.
10968 */
10969 drm_calc_timestamping_constants(crtc,
10970 &pipe_config->adjusted_mode);
b8cecdf5 10971 }
7758a113 10972
ea9d758d
DV
10973 /* Only after disabling all output pipelines that will be changed can we
10974 * update the the output configuration. */
10975 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10976
47fab737
DV
10977 if (dev_priv->display.modeset_global_resources)
10978 dev_priv->display.modeset_global_resources(dev);
10979
a6778b3c
DV
10980 /* Set up the DPLL and any encoders state that needs to adjust or depend
10981 * on the DPLL.
f6e5b160 10982 */
25c5b266 10983 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10984 struct drm_framebuffer *old_fb = crtc->primary->fb;
10985 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10986 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10987
10988 mutex_lock(&dev->struct_mutex);
10989 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10990 obj,
4c10794f
DV
10991 NULL);
10992 if (ret != 0) {
10993 DRM_ERROR("pin & fence failed\n");
10994 mutex_unlock(&dev->struct_mutex);
10995 goto done;
10996 }
2ff8fde1 10997 if (old_fb)
a071fa00 10998 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10999 i915_gem_track_fb(old_obj, obj,
11000 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11001 mutex_unlock(&dev->struct_mutex);
11002
11003 crtc->primary->fb = fb;
11004 crtc->x = x;
11005 crtc->y = y;
11006
4271b753
DV
11007 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11008 x, y, fb);
c0c36b94
CW
11009 if (ret)
11010 goto done;
a6778b3c
DV
11011 }
11012
11013 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11014 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11015 update_scanline_offset(intel_crtc);
11016
25c5b266 11017 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11018 }
a6778b3c 11019
a6778b3c
DV
11020 /* FIXME: add subpixel order */
11021done:
4b4b9238 11022 if (ret && crtc->enabled)
3ac18232 11023 crtc->mode = *saved_mode;
a6778b3c 11024
3ac18232 11025out:
b8cecdf5 11026 kfree(pipe_config);
3ac18232 11027 kfree(saved_mode);
a6778b3c 11028 return ret;
f6e5b160
CW
11029}
11030
e7457a9a
DL
11031static int intel_set_mode(struct drm_crtc *crtc,
11032 struct drm_display_mode *mode,
11033 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11034{
11035 int ret;
11036
11037 ret = __intel_set_mode(crtc, mode, x, y, fb);
11038
11039 if (ret == 0)
11040 intel_modeset_check_state(crtc->dev);
11041
11042 return ret;
11043}
11044
c0c36b94
CW
11045void intel_crtc_restore_mode(struct drm_crtc *crtc)
11046{
f4510a27 11047 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11048}
11049
25c5b266
DV
11050#undef for_each_intel_crtc_masked
11051
d9e55608
DV
11052static void intel_set_config_free(struct intel_set_config *config)
11053{
11054 if (!config)
11055 return;
11056
1aa4b628
DV
11057 kfree(config->save_connector_encoders);
11058 kfree(config->save_encoder_crtcs);
7668851f 11059 kfree(config->save_crtc_enabled);
d9e55608
DV
11060 kfree(config);
11061}
11062
85f9eb71
DV
11063static int intel_set_config_save_state(struct drm_device *dev,
11064 struct intel_set_config *config)
11065{
7668851f 11066 struct drm_crtc *crtc;
85f9eb71
DV
11067 struct drm_encoder *encoder;
11068 struct drm_connector *connector;
11069 int count;
11070
7668851f
VS
11071 config->save_crtc_enabled =
11072 kcalloc(dev->mode_config.num_crtc,
11073 sizeof(bool), GFP_KERNEL);
11074 if (!config->save_crtc_enabled)
11075 return -ENOMEM;
11076
1aa4b628
DV
11077 config->save_encoder_crtcs =
11078 kcalloc(dev->mode_config.num_encoder,
11079 sizeof(struct drm_crtc *), GFP_KERNEL);
11080 if (!config->save_encoder_crtcs)
85f9eb71
DV
11081 return -ENOMEM;
11082
1aa4b628
DV
11083 config->save_connector_encoders =
11084 kcalloc(dev->mode_config.num_connector,
11085 sizeof(struct drm_encoder *), GFP_KERNEL);
11086 if (!config->save_connector_encoders)
85f9eb71
DV
11087 return -ENOMEM;
11088
11089 /* Copy data. Note that driver private data is not affected.
11090 * Should anything bad happen only the expected state is
11091 * restored, not the drivers personal bookkeeping.
11092 */
7668851f 11093 count = 0;
70e1e0ec 11094 for_each_crtc(dev, crtc) {
7668851f
VS
11095 config->save_crtc_enabled[count++] = crtc->enabled;
11096 }
11097
85f9eb71
DV
11098 count = 0;
11099 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11100 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11101 }
11102
11103 count = 0;
11104 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11105 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11106 }
11107
11108 return 0;
11109}
11110
11111static void intel_set_config_restore_state(struct drm_device *dev,
11112 struct intel_set_config *config)
11113{
7668851f 11114 struct intel_crtc *crtc;
9a935856
DV
11115 struct intel_encoder *encoder;
11116 struct intel_connector *connector;
85f9eb71
DV
11117 int count;
11118
7668851f 11119 count = 0;
d3fcc808 11120 for_each_intel_crtc(dev, crtc) {
7668851f 11121 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11122
11123 if (crtc->new_enabled)
11124 crtc->new_config = &crtc->config;
11125 else
11126 crtc->new_config = NULL;
7668851f
VS
11127 }
11128
85f9eb71 11129 count = 0;
b2784e15 11130 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11131 encoder->new_crtc =
11132 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11133 }
11134
11135 count = 0;
9a935856
DV
11136 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11137 connector->new_encoder =
11138 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11139 }
11140}
11141
e3de42b6 11142static bool
2e57f47d 11143is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11144{
11145 int i;
11146
2e57f47d
CW
11147 if (set->num_connectors == 0)
11148 return false;
11149
11150 if (WARN_ON(set->connectors == NULL))
11151 return false;
11152
11153 for (i = 0; i < set->num_connectors; i++)
11154 if (set->connectors[i]->encoder &&
11155 set->connectors[i]->encoder->crtc == set->crtc &&
11156 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11157 return true;
11158
11159 return false;
11160}
11161
5e2b584e
DV
11162static void
11163intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11164 struct intel_set_config *config)
11165{
11166
11167 /* We should be able to check here if the fb has the same properties
11168 * and then just flip_or_move it */
2e57f47d
CW
11169 if (is_crtc_connector_off(set)) {
11170 config->mode_changed = true;
f4510a27 11171 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11172 /*
11173 * If we have no fb, we can only flip as long as the crtc is
11174 * active, otherwise we need a full mode set. The crtc may
11175 * be active if we've only disabled the primary plane, or
11176 * in fastboot situations.
11177 */
f4510a27 11178 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11179 struct intel_crtc *intel_crtc =
11180 to_intel_crtc(set->crtc);
11181
3b150f08 11182 if (intel_crtc->active) {
319d9827
JB
11183 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11184 config->fb_changed = true;
11185 } else {
11186 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11187 config->mode_changed = true;
11188 }
5e2b584e
DV
11189 } else if (set->fb == NULL) {
11190 config->mode_changed = true;
72f4901e 11191 } else if (set->fb->pixel_format !=
f4510a27 11192 set->crtc->primary->fb->pixel_format) {
5e2b584e 11193 config->mode_changed = true;
e3de42b6 11194 } else {
5e2b584e 11195 config->fb_changed = true;
e3de42b6 11196 }
5e2b584e
DV
11197 }
11198
835c5873 11199 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11200 config->fb_changed = true;
11201
11202 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11203 DRM_DEBUG_KMS("modes are different, full mode set\n");
11204 drm_mode_debug_printmodeline(&set->crtc->mode);
11205 drm_mode_debug_printmodeline(set->mode);
11206 config->mode_changed = true;
11207 }
a1d95703
CW
11208
11209 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11210 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11211}
11212
2e431051 11213static int
9a935856
DV
11214intel_modeset_stage_output_state(struct drm_device *dev,
11215 struct drm_mode_set *set,
11216 struct intel_set_config *config)
50f56119 11217{
9a935856
DV
11218 struct intel_connector *connector;
11219 struct intel_encoder *encoder;
7668851f 11220 struct intel_crtc *crtc;
f3f08572 11221 int ro;
50f56119 11222
9abdda74 11223 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11224 * of connectors. For paranoia, double-check this. */
11225 WARN_ON(!set->fb && (set->num_connectors != 0));
11226 WARN_ON(set->fb && (set->num_connectors == 0));
11227
9a935856
DV
11228 list_for_each_entry(connector, &dev->mode_config.connector_list,
11229 base.head) {
11230 /* Otherwise traverse passed in connector list and get encoders
11231 * for them. */
50f56119 11232 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11233 if (set->connectors[ro] == &connector->base) {
0e32b39c 11234 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11235 break;
11236 }
11237 }
11238
9a935856
DV
11239 /* If we disable the crtc, disable all its connectors. Also, if
11240 * the connector is on the changing crtc but not on the new
11241 * connector list, disable it. */
11242 if ((!set->fb || ro == set->num_connectors) &&
11243 connector->base.encoder &&
11244 connector->base.encoder->crtc == set->crtc) {
11245 connector->new_encoder = NULL;
11246
11247 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11248 connector->base.base.id,
c23cc417 11249 connector->base.name);
9a935856
DV
11250 }
11251
11252
11253 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11254 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11255 config->mode_changed = true;
50f56119
DV
11256 }
11257 }
9a935856 11258 /* connector->new_encoder is now updated for all connectors. */
50f56119 11259
9a935856 11260 /* Update crtc of enabled connectors. */
9a935856
DV
11261 list_for_each_entry(connector, &dev->mode_config.connector_list,
11262 base.head) {
7668851f
VS
11263 struct drm_crtc *new_crtc;
11264
9a935856 11265 if (!connector->new_encoder)
50f56119
DV
11266 continue;
11267
9a935856 11268 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11269
11270 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11271 if (set->connectors[ro] == &connector->base)
50f56119
DV
11272 new_crtc = set->crtc;
11273 }
11274
11275 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11276 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11277 new_crtc)) {
5e2b584e 11278 return -EINVAL;
50f56119 11279 }
0e32b39c 11280 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11281
11282 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11283 connector->base.base.id,
c23cc417 11284 connector->base.name,
9a935856
DV
11285 new_crtc->base.id);
11286 }
11287
11288 /* Check for any encoders that needs to be disabled. */
b2784e15 11289 for_each_intel_encoder(dev, encoder) {
5a65f358 11290 int num_connectors = 0;
9a935856
DV
11291 list_for_each_entry(connector,
11292 &dev->mode_config.connector_list,
11293 base.head) {
11294 if (connector->new_encoder == encoder) {
11295 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11296 num_connectors++;
9a935856
DV
11297 }
11298 }
5a65f358
PZ
11299
11300 if (num_connectors == 0)
11301 encoder->new_crtc = NULL;
11302 else if (num_connectors > 1)
11303 return -EINVAL;
11304
9a935856
DV
11305 /* Only now check for crtc changes so we don't miss encoders
11306 * that will be disabled. */
11307 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11308 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11309 config->mode_changed = true;
50f56119
DV
11310 }
11311 }
9a935856 11312 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11313 list_for_each_entry(connector, &dev->mode_config.connector_list,
11314 base.head) {
11315 if (connector->new_encoder)
11316 if (connector->new_encoder != connector->encoder)
11317 connector->encoder = connector->new_encoder;
11318 }
d3fcc808 11319 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11320 crtc->new_enabled = false;
11321
b2784e15 11322 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11323 if (encoder->new_crtc == crtc) {
11324 crtc->new_enabled = true;
11325 break;
11326 }
11327 }
11328
11329 if (crtc->new_enabled != crtc->base.enabled) {
11330 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11331 crtc->new_enabled ? "en" : "dis");
11332 config->mode_changed = true;
11333 }
7bd0a8e7
VS
11334
11335 if (crtc->new_enabled)
11336 crtc->new_config = &crtc->config;
11337 else
11338 crtc->new_config = NULL;
7668851f
VS
11339 }
11340
2e431051
DV
11341 return 0;
11342}
11343
7d00a1f5
VS
11344static void disable_crtc_nofb(struct intel_crtc *crtc)
11345{
11346 struct drm_device *dev = crtc->base.dev;
11347 struct intel_encoder *encoder;
11348 struct intel_connector *connector;
11349
11350 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11351 pipe_name(crtc->pipe));
11352
11353 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11354 if (connector->new_encoder &&
11355 connector->new_encoder->new_crtc == crtc)
11356 connector->new_encoder = NULL;
11357 }
11358
b2784e15 11359 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11360 if (encoder->new_crtc == crtc)
11361 encoder->new_crtc = NULL;
11362 }
11363
11364 crtc->new_enabled = false;
7bd0a8e7 11365 crtc->new_config = NULL;
7d00a1f5
VS
11366}
11367
2e431051
DV
11368static int intel_crtc_set_config(struct drm_mode_set *set)
11369{
11370 struct drm_device *dev;
2e431051
DV
11371 struct drm_mode_set save_set;
11372 struct intel_set_config *config;
11373 int ret;
2e431051 11374
8d3e375e
DV
11375 BUG_ON(!set);
11376 BUG_ON(!set->crtc);
11377 BUG_ON(!set->crtc->helper_private);
2e431051 11378
7e53f3a4
DV
11379 /* Enforce sane interface api - has been abused by the fb helper. */
11380 BUG_ON(!set->mode && set->fb);
11381 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11382
2e431051
DV
11383 if (set->fb) {
11384 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11385 set->crtc->base.id, set->fb->base.id,
11386 (int)set->num_connectors, set->x, set->y);
11387 } else {
11388 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11389 }
11390
11391 dev = set->crtc->dev;
11392
11393 ret = -ENOMEM;
11394 config = kzalloc(sizeof(*config), GFP_KERNEL);
11395 if (!config)
11396 goto out_config;
11397
11398 ret = intel_set_config_save_state(dev, config);
11399 if (ret)
11400 goto out_config;
11401
11402 save_set.crtc = set->crtc;
11403 save_set.mode = &set->crtc->mode;
11404 save_set.x = set->crtc->x;
11405 save_set.y = set->crtc->y;
f4510a27 11406 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11407
11408 /* Compute whether we need a full modeset, only an fb base update or no
11409 * change at all. In the future we might also check whether only the
11410 * mode changed, e.g. for LVDS where we only change the panel fitter in
11411 * such cases. */
11412 intel_set_config_compute_mode_changes(set, config);
11413
9a935856 11414 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11415 if (ret)
11416 goto fail;
11417
5e2b584e 11418 if (config->mode_changed) {
c0c36b94
CW
11419 ret = intel_set_mode(set->crtc, set->mode,
11420 set->x, set->y, set->fb);
5e2b584e 11421 } else if (config->fb_changed) {
3b150f08
MR
11422 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11423
4878cae2
VS
11424 intel_crtc_wait_for_pending_flips(set->crtc);
11425
4f660f49 11426 ret = intel_pipe_set_base(set->crtc,
94352cf9 11427 set->x, set->y, set->fb);
3b150f08
MR
11428
11429 /*
11430 * We need to make sure the primary plane is re-enabled if it
11431 * has previously been turned off.
11432 */
11433 if (!intel_crtc->primary_enabled && ret == 0) {
11434 WARN_ON(!intel_crtc->active);
fdd508a6 11435 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11436 }
11437
7ca51a3a
JB
11438 /*
11439 * In the fastboot case this may be our only check of the
11440 * state after boot. It would be better to only do it on
11441 * the first update, but we don't have a nice way of doing that
11442 * (and really, set_config isn't used much for high freq page
11443 * flipping, so increasing its cost here shouldn't be a big
11444 * deal).
11445 */
d330a953 11446 if (i915.fastboot && ret == 0)
7ca51a3a 11447 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11448 }
11449
2d05eae1 11450 if (ret) {
bf67dfeb
DV
11451 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11452 set->crtc->base.id, ret);
50f56119 11453fail:
2d05eae1 11454 intel_set_config_restore_state(dev, config);
50f56119 11455
7d00a1f5
VS
11456 /*
11457 * HACK: if the pipe was on, but we didn't have a framebuffer,
11458 * force the pipe off to avoid oopsing in the modeset code
11459 * due to fb==NULL. This should only happen during boot since
11460 * we don't yet reconstruct the FB from the hardware state.
11461 */
11462 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11463 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11464
2d05eae1
CW
11465 /* Try to restore the config */
11466 if (config->mode_changed &&
11467 intel_set_mode(save_set.crtc, save_set.mode,
11468 save_set.x, save_set.y, save_set.fb))
11469 DRM_ERROR("failed to restore config after modeset failure\n");
11470 }
50f56119 11471
d9e55608
DV
11472out_config:
11473 intel_set_config_free(config);
50f56119
DV
11474 return ret;
11475}
f6e5b160
CW
11476
11477static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11478 .gamma_set = intel_crtc_gamma_set,
50f56119 11479 .set_config = intel_crtc_set_config,
f6e5b160
CW
11480 .destroy = intel_crtc_destroy,
11481 .page_flip = intel_crtc_page_flip,
11482};
11483
5358901f
DV
11484static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11485 struct intel_shared_dpll *pll,
11486 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11487{
5358901f 11488 uint32_t val;
ee7b9f93 11489
f458ebbc 11490 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11491 return false;
11492
5358901f 11493 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11494 hw_state->dpll = val;
11495 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11496 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11497
11498 return val & DPLL_VCO_ENABLE;
11499}
11500
15bdd4cf
DV
11501static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11502 struct intel_shared_dpll *pll)
11503{
11504 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11505 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11506}
11507
e7b903d2
DV
11508static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11509 struct intel_shared_dpll *pll)
11510{
e7b903d2 11511 /* PCH refclock must be enabled first */
89eff4be 11512 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11513
15bdd4cf
DV
11514 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11515
11516 /* Wait for the clocks to stabilize. */
11517 POSTING_READ(PCH_DPLL(pll->id));
11518 udelay(150);
11519
11520 /* The pixel multiplier can only be updated once the
11521 * DPLL is enabled and the clocks are stable.
11522 *
11523 * So write it again.
11524 */
11525 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11526 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11527 udelay(200);
11528}
11529
11530static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11531 struct intel_shared_dpll *pll)
11532{
11533 struct drm_device *dev = dev_priv->dev;
11534 struct intel_crtc *crtc;
e7b903d2
DV
11535
11536 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11537 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11538 if (intel_crtc_to_shared_dpll(crtc) == pll)
11539 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11540 }
11541
15bdd4cf
DV
11542 I915_WRITE(PCH_DPLL(pll->id), 0);
11543 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11544 udelay(200);
11545}
11546
46edb027
DV
11547static char *ibx_pch_dpll_names[] = {
11548 "PCH DPLL A",
11549 "PCH DPLL B",
11550};
11551
7c74ade1 11552static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11553{
e7b903d2 11554 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11555 int i;
11556
7c74ade1 11557 dev_priv->num_shared_dpll = 2;
ee7b9f93 11558
e72f9fbf 11559 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11560 dev_priv->shared_dplls[i].id = i;
11561 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11562 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11563 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11564 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11565 dev_priv->shared_dplls[i].get_hw_state =
11566 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11567 }
11568}
11569
7c74ade1
DV
11570static void intel_shared_dpll_init(struct drm_device *dev)
11571{
e7b903d2 11572 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11573
9cd86933
DV
11574 if (HAS_DDI(dev))
11575 intel_ddi_pll_init(dev);
11576 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11577 ibx_pch_dpll_init(dev);
11578 else
11579 dev_priv->num_shared_dpll = 0;
11580
11581 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11582}
11583
465c120c
MR
11584static int
11585intel_primary_plane_disable(struct drm_plane *plane)
11586{
11587 struct drm_device *dev = plane->dev;
465c120c
MR
11588 struct intel_crtc *intel_crtc;
11589
11590 if (!plane->fb)
11591 return 0;
11592
11593 BUG_ON(!plane->crtc);
11594
11595 intel_crtc = to_intel_crtc(plane->crtc);
11596
11597 /*
11598 * Even though we checked plane->fb above, it's still possible that
11599 * the primary plane has been implicitly disabled because the crtc
11600 * coordinates given weren't visible, or because we detected
11601 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11602 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11603 * In either case, we need to unpin the FB and let the fb pointer get
11604 * updated, but otherwise we don't need to touch the hardware.
11605 */
11606 if (!intel_crtc->primary_enabled)
11607 goto disable_unpin;
11608
11609 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11610 intel_disable_primary_hw_plane(plane, plane->crtc);
11611
465c120c 11612disable_unpin:
4c34574f 11613 mutex_lock(&dev->struct_mutex);
2ff8fde1 11614 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11615 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11616 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11617 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11618 plane->fb = NULL;
11619
11620 return 0;
11621}
11622
11623static int
3c692a41
GP
11624intel_check_primary_plane(struct drm_plane *plane,
11625 struct intel_plane_state *state)
11626{
11627 struct drm_crtc *crtc = state->crtc;
11628 struct drm_framebuffer *fb = state->fb;
11629 struct drm_rect *dest = &state->dst;
11630 struct drm_rect *src = &state->src;
11631 const struct drm_rect *clip = &state->clip;
ccc759dc 11632 int ret;
3c692a41 11633
ccc759dc 11634 ret = drm_plane_helper_check_update(plane, crtc, fb,
3c692a41
GP
11635 src, dest, clip,
11636 DRM_PLANE_HELPER_NO_SCALING,
11637 DRM_PLANE_HELPER_NO_SCALING,
11638 false, true, &state->visible);
ccc759dc
GP
11639 if (ret)
11640 return ret;
11641
11642 /* no fb bound */
11643 if (state->visible && !fb) {
11644 DRM_ERROR("No FB bound\n");
11645 return -EINVAL;
11646 }
11647
11648 return 0;
3c692a41
GP
11649}
11650
11651static int
11652intel_commit_primary_plane(struct drm_plane *plane,
11653 struct intel_plane_state *state)
465c120c 11654{
3c692a41
GP
11655 struct drm_crtc *crtc = state->crtc;
11656 struct drm_framebuffer *fb = state->fb;
465c120c 11657 struct drm_device *dev = crtc->dev;
48404c1e 11658 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc
GP
11660 enum pipe pipe = intel_crtc->pipe;
11661 struct drm_framebuffer *old_fb = plane->fb;
2ff8fde1
MR
11662 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11663 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
ce54d85a 11664 struct intel_plane *intel_plane = to_intel_plane(plane);
3c692a41 11665 struct drm_rect *src = &state->src;
465c120c
MR
11666 int ret;
11667
465c120c
MR
11668 intel_crtc_wait_for_pending_flips(crtc);
11669
ccc759dc
GP
11670 if (intel_crtc_has_pending_flip(crtc)) {
11671 DRM_ERROR("pipe is still busy with an old pageflip\n");
11672 return -EBUSY;
11673 }
11674
11675 if (plane->fb != fb) {
4c34574f 11676 mutex_lock(&dev->struct_mutex);
ccc759dc
GP
11677 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11678 if (ret == 0)
11679 i915_gem_track_fb(old_obj, obj,
11680 INTEL_FRONTBUFFER_PRIMARY(pipe));
11681 mutex_unlock(&dev->struct_mutex);
11682 if (ret != 0) {
11683 DRM_DEBUG_KMS("pin & fence failed\n");
11684 return ret;
11685 }
11686 }
11687
11688 crtc->primary->fb = fb;
11689 crtc->x = src->x1;
11690 crtc->y = src->y1;
11691
11692 intel_plane->crtc_x = state->orig_dst.x1;
11693 intel_plane->crtc_y = state->orig_dst.y1;
11694 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11695 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11696 intel_plane->src_x = state->orig_src.x1;
11697 intel_plane->src_y = state->orig_src.y1;
11698 intel_plane->src_w = drm_rect_width(&state->orig_src);
11699 intel_plane->src_h = drm_rect_height(&state->orig_src);
11700 intel_plane->obj = obj;
4c34574f 11701
ccc759dc 11702 if (intel_crtc->active) {
465c120c 11703 /*
ccc759dc
GP
11704 * FBC does not work on some platforms for rotated
11705 * planes, so disable it when rotation is not 0 and
11706 * update it when rotation is set back to 0.
11707 *
11708 * FIXME: This is redundant with the fbc update done in
11709 * the primary plane enable function except that that
11710 * one is done too late. We eventually need to unify
11711 * this.
465c120c 11712 */
ccc759dc
GP
11713 if (intel_crtc->primary_enabled &&
11714 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11715 dev_priv->fbc.plane == intel_crtc->plane &&
11716 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11717 intel_disable_fbc(dev);
465c120c
MR
11718 }
11719
ccc759dc
GP
11720 if (state->visible) {
11721 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11722
ccc759dc
GP
11723 /* FIXME: kill this fastboot hack */
11724 intel_update_pipe_size(intel_crtc);
465c120c 11725
ccc759dc 11726 intel_crtc->primary_enabled = true;
465c120c 11727
ccc759dc
GP
11728 dev_priv->display.update_primary_plane(crtc, plane->fb,
11729 crtc->x, crtc->y);
4c34574f 11730
48404c1e 11731 /*
ccc759dc
GP
11732 * BDW signals flip done immediately if the plane
11733 * is disabled, even if the plane enable is already
11734 * armed to occur at the next vblank :(
48404c1e 11735 */
ccc759dc
GP
11736 if (IS_BROADWELL(dev) && !was_enabled)
11737 intel_wait_for_vblank(dev, intel_crtc->pipe);
11738 } else {
11739 /*
11740 * If clipping results in a non-visible primary plane,
11741 * we'll disable the primary plane. Note that this is
11742 * a bit different than what happens if userspace
11743 * explicitly disables the plane by passing fb=0
11744 * because plane->fb still gets set and pinned.
11745 */
11746 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11747 }
465c120c 11748
ccc759dc
GP
11749 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11750
11751 mutex_lock(&dev->struct_mutex);
11752 intel_update_fbc(dev);
11753 mutex_unlock(&dev->struct_mutex);
ce54d85a 11754 }
465c120c 11755
ccc759dc
GP
11756 if (old_fb && old_fb != fb) {
11757 if (intel_crtc->active)
11758 intel_wait_for_vblank(dev, intel_crtc->pipe);
11759
11760 mutex_lock(&dev->struct_mutex);
11761 intel_unpin_fb_obj(old_obj);
11762 mutex_unlock(&dev->struct_mutex);
11763 }
465c120c
MR
11764
11765 return 0;
11766}
11767
3c692a41
GP
11768static int
11769intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11770 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11771 unsigned int crtc_w, unsigned int crtc_h,
11772 uint32_t src_x, uint32_t src_y,
11773 uint32_t src_w, uint32_t src_h)
11774{
11775 struct intel_plane_state state;
11776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11777 int ret;
11778
11779 state.crtc = crtc;
11780 state.fb = fb;
11781
11782 /* sample coordinates in 16.16 fixed point */
11783 state.src.x1 = src_x;
11784 state.src.x2 = src_x + src_w;
11785 state.src.y1 = src_y;
11786 state.src.y2 = src_y + src_h;
11787
11788 /* integer pixels */
11789 state.dst.x1 = crtc_x;
11790 state.dst.x2 = crtc_x + crtc_w;
11791 state.dst.y1 = crtc_y;
11792 state.dst.y2 = crtc_y + crtc_h;
11793
11794 state.clip.x1 = 0;
11795 state.clip.y1 = 0;
11796 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11797 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11798
11799 state.orig_src = state.src;
11800 state.orig_dst = state.dst;
11801
11802 ret = intel_check_primary_plane(plane, &state);
11803 if (ret)
11804 return ret;
11805
11806 intel_commit_primary_plane(plane, &state);
11807
11808 return 0;
11809}
11810
3d7d6510
MR
11811/* Common destruction function for both primary and cursor planes */
11812static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11813{
11814 struct intel_plane *intel_plane = to_intel_plane(plane);
11815 drm_plane_cleanup(plane);
11816 kfree(intel_plane);
11817}
11818
11819static const struct drm_plane_funcs intel_primary_plane_funcs = {
11820 .update_plane = intel_primary_plane_setplane,
11821 .disable_plane = intel_primary_plane_disable,
3d7d6510 11822 .destroy = intel_plane_destroy,
48404c1e 11823 .set_property = intel_plane_set_property
465c120c
MR
11824};
11825
11826static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11827 int pipe)
11828{
11829 struct intel_plane *primary;
11830 const uint32_t *intel_primary_formats;
11831 int num_formats;
11832
11833 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11834 if (primary == NULL)
11835 return NULL;
11836
11837 primary->can_scale = false;
11838 primary->max_downscale = 1;
11839 primary->pipe = pipe;
11840 primary->plane = pipe;
48404c1e 11841 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11842 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11843 primary->plane = !pipe;
11844
11845 if (INTEL_INFO(dev)->gen <= 3) {
11846 intel_primary_formats = intel_primary_formats_gen2;
11847 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11848 } else {
11849 intel_primary_formats = intel_primary_formats_gen4;
11850 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11851 }
11852
11853 drm_universal_plane_init(dev, &primary->base, 0,
11854 &intel_primary_plane_funcs,
11855 intel_primary_formats, num_formats,
11856 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11857
11858 if (INTEL_INFO(dev)->gen >= 4) {
11859 if (!dev->mode_config.rotation_property)
11860 dev->mode_config.rotation_property =
11861 drm_mode_create_rotation_property(dev,
11862 BIT(DRM_ROTATE_0) |
11863 BIT(DRM_ROTATE_180));
11864 if (dev->mode_config.rotation_property)
11865 drm_object_attach_property(&primary->base.base,
11866 dev->mode_config.rotation_property,
11867 primary->rotation);
11868 }
11869
465c120c
MR
11870 return &primary->base;
11871}
11872
3d7d6510
MR
11873static int
11874intel_cursor_plane_disable(struct drm_plane *plane)
11875{
11876 if (!plane->fb)
11877 return 0;
11878
11879 BUG_ON(!plane->crtc);
11880
11881 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11882}
11883
11884static int
852e787c
GP
11885intel_check_cursor_plane(struct drm_plane *plane,
11886 struct intel_plane_state *state)
3d7d6510 11887{
852e787c 11888 struct drm_crtc *crtc = state->crtc;
757f9a3e 11889 struct drm_device *dev = crtc->dev;
852e787c
GP
11890 struct drm_framebuffer *fb = state->fb;
11891 struct drm_rect *dest = &state->dst;
11892 struct drm_rect *src = &state->src;
11893 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
11894 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11895 int crtc_w, crtc_h;
11896 unsigned stride;
11897 int ret;
3d7d6510 11898
757f9a3e 11899 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 11900 src, dest, clip,
3d7d6510
MR
11901 DRM_PLANE_HELPER_NO_SCALING,
11902 DRM_PLANE_HELPER_NO_SCALING,
852e787c 11903 true, true, &state->visible);
757f9a3e
GP
11904 if (ret)
11905 return ret;
11906
11907
11908 /* if we want to turn off the cursor ignore width and height */
11909 if (!obj)
11910 return 0;
11911
757f9a3e
GP
11912 /* Check for which cursor types we support */
11913 crtc_w = drm_rect_width(&state->orig_dst);
11914 crtc_h = drm_rect_height(&state->orig_dst);
11915 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11916 DRM_DEBUG("Cursor dimension not supported\n");
11917 return -EINVAL;
11918 }
11919
11920 stride = roundup_pow_of_two(crtc_w) * 4;
11921 if (obj->base.size < stride * crtc_h) {
11922 DRM_DEBUG_KMS("buffer is too small\n");
11923 return -ENOMEM;
11924 }
11925
e391ea88
GP
11926 if (fb == crtc->cursor->fb)
11927 return 0;
11928
757f9a3e
GP
11929 /* we only need to pin inside GTT if cursor is non-phy */
11930 mutex_lock(&dev->struct_mutex);
11931 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11932 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11933 ret = -EINVAL;
11934 }
11935 mutex_unlock(&dev->struct_mutex);
11936
11937 return ret;
852e787c 11938}
3d7d6510 11939
852e787c
GP
11940static int
11941intel_commit_cursor_plane(struct drm_plane *plane,
11942 struct intel_plane_state *state)
11943{
11944 struct drm_crtc *crtc = state->crtc;
11945 struct drm_framebuffer *fb = state->fb;
11946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11947 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11948 struct drm_i915_gem_object *obj = intel_fb->obj;
11949 int crtc_w, crtc_h;
11950
11951 crtc->cursor_x = state->orig_dst.x1;
11952 crtc->cursor_y = state->orig_dst.y1;
3d7d6510 11953 if (fb != crtc->cursor->fb) {
852e787c
GP
11954 crtc_w = drm_rect_width(&state->orig_dst);
11955 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
11956 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11957 } else {
852e787c 11958 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
11959
11960 intel_frontbuffer_flip(crtc->dev,
11961 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11962
3d7d6510
MR
11963 return 0;
11964 }
11965}
852e787c
GP
11966
11967static int
11968intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11969 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11970 unsigned int crtc_w, unsigned int crtc_h,
11971 uint32_t src_x, uint32_t src_y,
11972 uint32_t src_w, uint32_t src_h)
11973{
11974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11975 struct intel_plane_state state;
11976 int ret;
11977
11978 state.crtc = crtc;
11979 state.fb = fb;
11980
11981 /* sample coordinates in 16.16 fixed point */
11982 state.src.x1 = src_x;
11983 state.src.x2 = src_x + src_w;
11984 state.src.y1 = src_y;
11985 state.src.y2 = src_y + src_h;
11986
11987 /* integer pixels */
11988 state.dst.x1 = crtc_x;
11989 state.dst.x2 = crtc_x + crtc_w;
11990 state.dst.y1 = crtc_y;
11991 state.dst.y2 = crtc_y + crtc_h;
11992
11993 state.clip.x1 = 0;
11994 state.clip.y1 = 0;
11995 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11996 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11997
11998 state.orig_src = state.src;
11999 state.orig_dst = state.dst;
12000
12001 ret = intel_check_cursor_plane(plane, &state);
12002 if (ret)
12003 return ret;
12004
12005 return intel_commit_cursor_plane(plane, &state);
12006}
12007
3d7d6510
MR
12008static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12009 .update_plane = intel_cursor_plane_update,
12010 .disable_plane = intel_cursor_plane_disable,
12011 .destroy = intel_plane_destroy,
12012};
12013
12014static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12015 int pipe)
12016{
12017 struct intel_plane *cursor;
12018
12019 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12020 if (cursor == NULL)
12021 return NULL;
12022
12023 cursor->can_scale = false;
12024 cursor->max_downscale = 1;
12025 cursor->pipe = pipe;
12026 cursor->plane = pipe;
12027
12028 drm_universal_plane_init(dev, &cursor->base, 0,
12029 &intel_cursor_plane_funcs,
12030 intel_cursor_formats,
12031 ARRAY_SIZE(intel_cursor_formats),
12032 DRM_PLANE_TYPE_CURSOR);
12033 return &cursor->base;
12034}
12035
b358d0a6 12036static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12037{
fbee40df 12038 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12039 struct intel_crtc *intel_crtc;
3d7d6510
MR
12040 struct drm_plane *primary = NULL;
12041 struct drm_plane *cursor = NULL;
465c120c 12042 int i, ret;
79e53945 12043
955382f3 12044 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12045 if (intel_crtc == NULL)
12046 return;
12047
465c120c 12048 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12049 if (!primary)
12050 goto fail;
12051
12052 cursor = intel_cursor_plane_create(dev, pipe);
12053 if (!cursor)
12054 goto fail;
12055
465c120c 12056 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12057 cursor, &intel_crtc_funcs);
12058 if (ret)
12059 goto fail;
79e53945
JB
12060
12061 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12062 for (i = 0; i < 256; i++) {
12063 intel_crtc->lut_r[i] = i;
12064 intel_crtc->lut_g[i] = i;
12065 intel_crtc->lut_b[i] = i;
12066 }
12067
1f1c2e24
VS
12068 /*
12069 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12070 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12071 */
80824003
JB
12072 intel_crtc->pipe = pipe;
12073 intel_crtc->plane = pipe;
3a77c4c4 12074 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12075 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12076 intel_crtc->plane = !pipe;
80824003
JB
12077 }
12078
4b0e333e
CW
12079 intel_crtc->cursor_base = ~0;
12080 intel_crtc->cursor_cntl = ~0;
dc41c154 12081 intel_crtc->cursor_size = ~0;
8d7849db 12082
22fd0fab
JB
12083 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12084 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12085 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12086 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12087
79e53945 12088 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12089
12090 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12091 return;
12092
12093fail:
12094 if (primary)
12095 drm_plane_cleanup(primary);
12096 if (cursor)
12097 drm_plane_cleanup(cursor);
12098 kfree(intel_crtc);
79e53945
JB
12099}
12100
752aa88a
JB
12101enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12102{
12103 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12104 struct drm_device *dev = connector->base.dev;
752aa88a 12105
51fd371b 12106 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12107
12108 if (!encoder)
12109 return INVALID_PIPE;
12110
12111 return to_intel_crtc(encoder->crtc)->pipe;
12112}
12113
08d7b3d1 12114int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12115 struct drm_file *file)
08d7b3d1 12116{
08d7b3d1 12117 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12118 struct drm_crtc *drmmode_crtc;
c05422d5 12119 struct intel_crtc *crtc;
08d7b3d1 12120
1cff8f6b
DV
12121 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12122 return -ENODEV;
08d7b3d1 12123
7707e653 12124 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12125
7707e653 12126 if (!drmmode_crtc) {
08d7b3d1 12127 DRM_ERROR("no such CRTC id\n");
3f2c2057 12128 return -ENOENT;
08d7b3d1
CW
12129 }
12130
7707e653 12131 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12132 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12133
c05422d5 12134 return 0;
08d7b3d1
CW
12135}
12136
66a9278e 12137static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12138{
66a9278e
DV
12139 struct drm_device *dev = encoder->base.dev;
12140 struct intel_encoder *source_encoder;
79e53945 12141 int index_mask = 0;
79e53945
JB
12142 int entry = 0;
12143
b2784e15 12144 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12145 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12146 index_mask |= (1 << entry);
12147
79e53945
JB
12148 entry++;
12149 }
4ef69c7a 12150
79e53945
JB
12151 return index_mask;
12152}
12153
4d302442
CW
12154static bool has_edp_a(struct drm_device *dev)
12155{
12156 struct drm_i915_private *dev_priv = dev->dev_private;
12157
12158 if (!IS_MOBILE(dev))
12159 return false;
12160
12161 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12162 return false;
12163
e3589908 12164 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12165 return false;
12166
12167 return true;
12168}
12169
ba0fbca4
DL
12170const char *intel_output_name(int output)
12171{
12172 static const char *names[] = {
12173 [INTEL_OUTPUT_UNUSED] = "Unused",
12174 [INTEL_OUTPUT_ANALOG] = "Analog",
12175 [INTEL_OUTPUT_DVO] = "DVO",
12176 [INTEL_OUTPUT_SDVO] = "SDVO",
12177 [INTEL_OUTPUT_LVDS] = "LVDS",
12178 [INTEL_OUTPUT_TVOUT] = "TV",
12179 [INTEL_OUTPUT_HDMI] = "HDMI",
12180 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12181 [INTEL_OUTPUT_EDP] = "eDP",
12182 [INTEL_OUTPUT_DSI] = "DSI",
12183 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12184 };
12185
12186 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12187 return "Invalid";
12188
12189 return names[output];
12190}
12191
84b4e042
JB
12192static bool intel_crt_present(struct drm_device *dev)
12193{
12194 struct drm_i915_private *dev_priv = dev->dev_private;
12195
884497ed
DL
12196 if (INTEL_INFO(dev)->gen >= 9)
12197 return false;
12198
cf404ce4 12199 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12200 return false;
12201
12202 if (IS_CHERRYVIEW(dev))
12203 return false;
12204
12205 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12206 return false;
12207
12208 return true;
12209}
12210
79e53945
JB
12211static void intel_setup_outputs(struct drm_device *dev)
12212{
725e30ad 12213 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12214 struct intel_encoder *encoder;
cb0953d7 12215 bool dpd_is_edp = false;
79e53945 12216
c9093354 12217 intel_lvds_init(dev);
79e53945 12218
84b4e042 12219 if (intel_crt_present(dev))
79935fca 12220 intel_crt_init(dev);
cb0953d7 12221
affa9354 12222 if (HAS_DDI(dev)) {
0e72a5b5
ED
12223 int found;
12224
12225 /* Haswell uses DDI functions to detect digital outputs */
12226 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12227 /* DDI A only supports eDP */
12228 if (found)
12229 intel_ddi_init(dev, PORT_A);
12230
12231 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12232 * register */
12233 found = I915_READ(SFUSE_STRAP);
12234
12235 if (found & SFUSE_STRAP_DDIB_DETECTED)
12236 intel_ddi_init(dev, PORT_B);
12237 if (found & SFUSE_STRAP_DDIC_DETECTED)
12238 intel_ddi_init(dev, PORT_C);
12239 if (found & SFUSE_STRAP_DDID_DETECTED)
12240 intel_ddi_init(dev, PORT_D);
12241 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12242 int found;
5d8a7752 12243 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12244
12245 if (has_edp_a(dev))
12246 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12247
dc0fa718 12248 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12249 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12250 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12251 if (!found)
e2debe91 12252 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12253 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12254 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12255 }
12256
dc0fa718 12257 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12258 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12259
dc0fa718 12260 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12261 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12262
5eb08b69 12263 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12264 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12265
270b3042 12266 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12267 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12268 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12269 /*
12270 * The DP_DETECTED bit is the latched state of the DDC
12271 * SDA pin at boot. However since eDP doesn't require DDC
12272 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12273 * eDP ports may have been muxed to an alternate function.
12274 * Thus we can't rely on the DP_DETECTED bit alone to detect
12275 * eDP ports. Consult the VBT as well as DP_DETECTED to
12276 * detect eDP ports.
12277 */
12278 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12279 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12280 PORT_B);
e17ac6db
VS
12281 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12282 intel_dp_is_edp(dev, PORT_B))
12283 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12284
e17ac6db 12285 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12286 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12287 PORT_C);
e17ac6db
VS
12288 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12289 intel_dp_is_edp(dev, PORT_C))
12290 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12291
9418c1f1 12292 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12293 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12294 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12295 PORT_D);
e17ac6db
VS
12296 /* eDP not supported on port D, so don't check VBT */
12297 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12298 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12299 }
12300
3cfca973 12301 intel_dsi_init(dev);
103a196f 12302 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12303 bool found = false;
7d57382e 12304
e2debe91 12305 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12306 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12307 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12308 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12309 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12310 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12311 }
27185ae1 12312
e7281eab 12313 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12314 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12315 }
13520b05
KH
12316
12317 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12318
e2debe91 12319 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12320 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12321 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12322 }
27185ae1 12323
e2debe91 12324 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12325
b01f2c3a
JB
12326 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12327 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12328 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12329 }
e7281eab 12330 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12331 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12332 }
27185ae1 12333
b01f2c3a 12334 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12335 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12336 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12337 } else if (IS_GEN2(dev))
79e53945
JB
12338 intel_dvo_init(dev);
12339
103a196f 12340 if (SUPPORTS_TV(dev))
79e53945
JB
12341 intel_tv_init(dev);
12342
7c8f8a70
RV
12343 intel_edp_psr_init(dev);
12344
b2784e15 12345 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12346 encoder->base.possible_crtcs = encoder->crtc_mask;
12347 encoder->base.possible_clones =
66a9278e 12348 intel_encoder_clones(encoder);
79e53945 12349 }
47356eb6 12350
dde86e2d 12351 intel_init_pch_refclk(dev);
270b3042
DV
12352
12353 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12354}
12355
12356static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12357{
60a5ca01 12358 struct drm_device *dev = fb->dev;
79e53945 12359 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12360
ef2d633e 12361 drm_framebuffer_cleanup(fb);
60a5ca01 12362 mutex_lock(&dev->struct_mutex);
ef2d633e 12363 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12364 drm_gem_object_unreference(&intel_fb->obj->base);
12365 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12366 kfree(intel_fb);
12367}
12368
12369static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12370 struct drm_file *file,
79e53945
JB
12371 unsigned int *handle)
12372{
12373 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12374 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12375
05394f39 12376 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12377}
12378
12379static const struct drm_framebuffer_funcs intel_fb_funcs = {
12380 .destroy = intel_user_framebuffer_destroy,
12381 .create_handle = intel_user_framebuffer_create_handle,
12382};
12383
b5ea642a
DV
12384static int intel_framebuffer_init(struct drm_device *dev,
12385 struct intel_framebuffer *intel_fb,
12386 struct drm_mode_fb_cmd2 *mode_cmd,
12387 struct drm_i915_gem_object *obj)
79e53945 12388{
a57ce0b2 12389 int aligned_height;
a35cdaa0 12390 int pitch_limit;
79e53945
JB
12391 int ret;
12392
dd4916c5
DV
12393 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12394
c16ed4be
CW
12395 if (obj->tiling_mode == I915_TILING_Y) {
12396 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12397 return -EINVAL;
c16ed4be 12398 }
57cd6508 12399
c16ed4be
CW
12400 if (mode_cmd->pitches[0] & 63) {
12401 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12402 mode_cmd->pitches[0]);
57cd6508 12403 return -EINVAL;
c16ed4be 12404 }
57cd6508 12405
a35cdaa0
CW
12406 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12407 pitch_limit = 32*1024;
12408 } else if (INTEL_INFO(dev)->gen >= 4) {
12409 if (obj->tiling_mode)
12410 pitch_limit = 16*1024;
12411 else
12412 pitch_limit = 32*1024;
12413 } else if (INTEL_INFO(dev)->gen >= 3) {
12414 if (obj->tiling_mode)
12415 pitch_limit = 8*1024;
12416 else
12417 pitch_limit = 16*1024;
12418 } else
12419 /* XXX DSPC is limited to 4k tiled */
12420 pitch_limit = 8*1024;
12421
12422 if (mode_cmd->pitches[0] > pitch_limit) {
12423 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12424 obj->tiling_mode ? "tiled" : "linear",
12425 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12426 return -EINVAL;
c16ed4be 12427 }
5d7bd705
VS
12428
12429 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12430 mode_cmd->pitches[0] != obj->stride) {
12431 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12432 mode_cmd->pitches[0], obj->stride);
5d7bd705 12433 return -EINVAL;
c16ed4be 12434 }
5d7bd705 12435
57779d06 12436 /* Reject formats not supported by any plane early. */
308e5bcb 12437 switch (mode_cmd->pixel_format) {
57779d06 12438 case DRM_FORMAT_C8:
04b3924d
VS
12439 case DRM_FORMAT_RGB565:
12440 case DRM_FORMAT_XRGB8888:
12441 case DRM_FORMAT_ARGB8888:
57779d06
VS
12442 break;
12443 case DRM_FORMAT_XRGB1555:
12444 case DRM_FORMAT_ARGB1555:
c16ed4be 12445 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12446 DRM_DEBUG("unsupported pixel format: %s\n",
12447 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12448 return -EINVAL;
c16ed4be 12449 }
57779d06
VS
12450 break;
12451 case DRM_FORMAT_XBGR8888:
12452 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12453 case DRM_FORMAT_XRGB2101010:
12454 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12455 case DRM_FORMAT_XBGR2101010:
12456 case DRM_FORMAT_ABGR2101010:
c16ed4be 12457 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12458 DRM_DEBUG("unsupported pixel format: %s\n",
12459 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12460 return -EINVAL;
c16ed4be 12461 }
b5626747 12462 break;
04b3924d
VS
12463 case DRM_FORMAT_YUYV:
12464 case DRM_FORMAT_UYVY:
12465 case DRM_FORMAT_YVYU:
12466 case DRM_FORMAT_VYUY:
c16ed4be 12467 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12468 DRM_DEBUG("unsupported pixel format: %s\n",
12469 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12470 return -EINVAL;
c16ed4be 12471 }
57cd6508
CW
12472 break;
12473 default:
4ee62c76
VS
12474 DRM_DEBUG("unsupported pixel format: %s\n",
12475 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12476 return -EINVAL;
12477 }
12478
90f9a336
VS
12479 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12480 if (mode_cmd->offsets[0] != 0)
12481 return -EINVAL;
12482
a57ce0b2
JB
12483 aligned_height = intel_align_height(dev, mode_cmd->height,
12484 obj->tiling_mode);
53155c0a
DV
12485 /* FIXME drm helper for size checks (especially planar formats)? */
12486 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12487 return -EINVAL;
12488
c7d73f6a
DV
12489 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12490 intel_fb->obj = obj;
80075d49 12491 intel_fb->obj->framebuffer_references++;
c7d73f6a 12492
79e53945
JB
12493 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12494 if (ret) {
12495 DRM_ERROR("framebuffer init failed %d\n", ret);
12496 return ret;
12497 }
12498
79e53945
JB
12499 return 0;
12500}
12501
79e53945
JB
12502static struct drm_framebuffer *
12503intel_user_framebuffer_create(struct drm_device *dev,
12504 struct drm_file *filp,
308e5bcb 12505 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12506{
05394f39 12507 struct drm_i915_gem_object *obj;
79e53945 12508
308e5bcb
JB
12509 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12510 mode_cmd->handles[0]));
c8725226 12511 if (&obj->base == NULL)
cce13ff7 12512 return ERR_PTR(-ENOENT);
79e53945 12513
d2dff872 12514 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12515}
12516
4520f53a 12517#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12518static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12519{
12520}
12521#endif
12522
79e53945 12523static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12524 .fb_create = intel_user_framebuffer_create,
0632fef6 12525 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12526};
12527
e70236a8
JB
12528/* Set up chip specific display functions */
12529static void intel_init_display(struct drm_device *dev)
12530{
12531 struct drm_i915_private *dev_priv = dev->dev_private;
12532
ee9300bb
DV
12533 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12534 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12535 else if (IS_CHERRYVIEW(dev))
12536 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12537 else if (IS_VALLEYVIEW(dev))
12538 dev_priv->display.find_dpll = vlv_find_best_dpll;
12539 else if (IS_PINEVIEW(dev))
12540 dev_priv->display.find_dpll = pnv_find_best_dpll;
12541 else
12542 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12543
affa9354 12544 if (HAS_DDI(dev)) {
0e8ffe1b 12545 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12546 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12547 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12548 dev_priv->display.crtc_enable = haswell_crtc_enable;
12549 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12550 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12551 if (INTEL_INFO(dev)->gen >= 9)
12552 dev_priv->display.update_primary_plane =
12553 skylake_update_primary_plane;
12554 else
12555 dev_priv->display.update_primary_plane =
12556 ironlake_update_primary_plane;
09b4ddf9 12557 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12558 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12559 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12560 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12561 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12562 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12563 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12564 dev_priv->display.update_primary_plane =
12565 ironlake_update_primary_plane;
89b667f8
JB
12566 } else if (IS_VALLEYVIEW(dev)) {
12567 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12568 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12569 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12570 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12571 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12572 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12573 dev_priv->display.update_primary_plane =
12574 i9xx_update_primary_plane;
f564048e 12575 } else {
0e8ffe1b 12576 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12577 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12578 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12579 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12580 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12581 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12582 dev_priv->display.update_primary_plane =
12583 i9xx_update_primary_plane;
f564048e 12584 }
e70236a8 12585
e70236a8 12586 /* Returns the core display clock speed */
25eb05fc
JB
12587 if (IS_VALLEYVIEW(dev))
12588 dev_priv->display.get_display_clock_speed =
12589 valleyview_get_display_clock_speed;
12590 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12591 dev_priv->display.get_display_clock_speed =
12592 i945_get_display_clock_speed;
12593 else if (IS_I915G(dev))
12594 dev_priv->display.get_display_clock_speed =
12595 i915_get_display_clock_speed;
257a7ffc 12596 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12597 dev_priv->display.get_display_clock_speed =
12598 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12599 else if (IS_PINEVIEW(dev))
12600 dev_priv->display.get_display_clock_speed =
12601 pnv_get_display_clock_speed;
e70236a8
JB
12602 else if (IS_I915GM(dev))
12603 dev_priv->display.get_display_clock_speed =
12604 i915gm_get_display_clock_speed;
12605 else if (IS_I865G(dev))
12606 dev_priv->display.get_display_clock_speed =
12607 i865_get_display_clock_speed;
f0f8a9ce 12608 else if (IS_I85X(dev))
e70236a8
JB
12609 dev_priv->display.get_display_clock_speed =
12610 i855_get_display_clock_speed;
12611 else /* 852, 830 */
12612 dev_priv->display.get_display_clock_speed =
12613 i830_get_display_clock_speed;
12614
3bb11b53 12615 if (IS_G4X(dev)) {
e0dac65e 12616 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12617 } else if (IS_GEN5(dev)) {
12618 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12619 dev_priv->display.write_eld = ironlake_write_eld;
12620 } else if (IS_GEN6(dev)) {
12621 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12622 dev_priv->display.write_eld = ironlake_write_eld;
12623 dev_priv->display.modeset_global_resources =
12624 snb_modeset_global_resources;
12625 } else if (IS_IVYBRIDGE(dev)) {
12626 /* FIXME: detect B0+ stepping and use auto training */
12627 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12628 dev_priv->display.write_eld = ironlake_write_eld;
12629 dev_priv->display.modeset_global_resources =
12630 ivb_modeset_global_resources;
059b2fe9 12631 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12632 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12633 dev_priv->display.write_eld = haswell_write_eld;
12634 dev_priv->display.modeset_global_resources =
12635 haswell_modeset_global_resources;
30a970c6
JB
12636 } else if (IS_VALLEYVIEW(dev)) {
12637 dev_priv->display.modeset_global_resources =
12638 valleyview_modeset_global_resources;
9ca2fe73 12639 dev_priv->display.write_eld = ironlake_write_eld;
02c29259
S
12640 } else if (INTEL_INFO(dev)->gen >= 9) {
12641 dev_priv->display.write_eld = haswell_write_eld;
12642 dev_priv->display.modeset_global_resources =
12643 haswell_modeset_global_resources;
e70236a8 12644 }
8c9f3aaf
JB
12645
12646 /* Default just returns -ENODEV to indicate unsupported */
12647 dev_priv->display.queue_flip = intel_default_queue_flip;
12648
12649 switch (INTEL_INFO(dev)->gen) {
12650 case 2:
12651 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12652 break;
12653
12654 case 3:
12655 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12656 break;
12657
12658 case 4:
12659 case 5:
12660 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12661 break;
12662
12663 case 6:
12664 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12665 break;
7c9017e5 12666 case 7:
4e0bbc31 12667 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12668 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12669 break;
8c9f3aaf 12670 }
7bd688cd
JN
12671
12672 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12673
12674 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12675}
12676
b690e96c
JB
12677/*
12678 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12679 * resume, or other times. This quirk makes sure that's the case for
12680 * affected systems.
12681 */
0206e353 12682static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12683{
12684 struct drm_i915_private *dev_priv = dev->dev_private;
12685
12686 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12687 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12688}
12689
b6b5d049
VS
12690static void quirk_pipeb_force(struct drm_device *dev)
12691{
12692 struct drm_i915_private *dev_priv = dev->dev_private;
12693
12694 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12695 DRM_INFO("applying pipe b force quirk\n");
12696}
12697
435793df
KP
12698/*
12699 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12700 */
12701static void quirk_ssc_force_disable(struct drm_device *dev)
12702{
12703 struct drm_i915_private *dev_priv = dev->dev_private;
12704 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12705 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12706}
12707
4dca20ef 12708/*
5a15ab5b
CE
12709 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12710 * brightness value
4dca20ef
CE
12711 */
12712static void quirk_invert_brightness(struct drm_device *dev)
12713{
12714 struct drm_i915_private *dev_priv = dev->dev_private;
12715 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12716 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12717}
12718
9c72cc6f
SD
12719/* Some VBT's incorrectly indicate no backlight is present */
12720static void quirk_backlight_present(struct drm_device *dev)
12721{
12722 struct drm_i915_private *dev_priv = dev->dev_private;
12723 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12724 DRM_INFO("applying backlight present quirk\n");
12725}
12726
b690e96c
JB
12727struct intel_quirk {
12728 int device;
12729 int subsystem_vendor;
12730 int subsystem_device;
12731 void (*hook)(struct drm_device *dev);
12732};
12733
5f85f176
EE
12734/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12735struct intel_dmi_quirk {
12736 void (*hook)(struct drm_device *dev);
12737 const struct dmi_system_id (*dmi_id_list)[];
12738};
12739
12740static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12741{
12742 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12743 return 1;
12744}
12745
12746static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12747 {
12748 .dmi_id_list = &(const struct dmi_system_id[]) {
12749 {
12750 .callback = intel_dmi_reverse_brightness,
12751 .ident = "NCR Corporation",
12752 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12753 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12754 },
12755 },
12756 { } /* terminating entry */
12757 },
12758 .hook = quirk_invert_brightness,
12759 },
12760};
12761
c43b5634 12762static struct intel_quirk intel_quirks[] = {
b690e96c 12763 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12764 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12765
b690e96c
JB
12766 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12767 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12768
b690e96c
JB
12769 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12770 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12771
5f080c0f
VS
12772 /* 830 needs to leave pipe A & dpll A up */
12773 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12774
b6b5d049
VS
12775 /* 830 needs to leave pipe B & dpll B up */
12776 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12777
435793df
KP
12778 /* Lenovo U160 cannot use SSC on LVDS */
12779 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12780
12781 /* Sony Vaio Y cannot use SSC on LVDS */
12782 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12783
be505f64
AH
12784 /* Acer Aspire 5734Z must invert backlight brightness */
12785 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12786
12787 /* Acer/eMachines G725 */
12788 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12789
12790 /* Acer/eMachines e725 */
12791 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12792
12793 /* Acer/Packard Bell NCL20 */
12794 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12795
12796 /* Acer Aspire 4736Z */
12797 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12798
12799 /* Acer Aspire 5336 */
12800 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12801
12802 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12803 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12804
dfb3d47b
SD
12805 /* Acer C720 Chromebook (Core i3 4005U) */
12806 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12807
d4967d8c
SD
12808 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12809 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12810
12811 /* HP Chromebook 14 (Celeron 2955U) */
12812 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12813};
12814
12815static void intel_init_quirks(struct drm_device *dev)
12816{
12817 struct pci_dev *d = dev->pdev;
12818 int i;
12819
12820 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12821 struct intel_quirk *q = &intel_quirks[i];
12822
12823 if (d->device == q->device &&
12824 (d->subsystem_vendor == q->subsystem_vendor ||
12825 q->subsystem_vendor == PCI_ANY_ID) &&
12826 (d->subsystem_device == q->subsystem_device ||
12827 q->subsystem_device == PCI_ANY_ID))
12828 q->hook(dev);
12829 }
5f85f176
EE
12830 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12831 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12832 intel_dmi_quirks[i].hook(dev);
12833 }
b690e96c
JB
12834}
12835
9cce37f4
JB
12836/* Disable the VGA plane that we never use */
12837static void i915_disable_vga(struct drm_device *dev)
12838{
12839 struct drm_i915_private *dev_priv = dev->dev_private;
12840 u8 sr1;
766aa1c4 12841 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12842
2b37c616 12843 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12844 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12845 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12846 sr1 = inb(VGA_SR_DATA);
12847 outb(sr1 | 1<<5, VGA_SR_DATA);
12848 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12849 udelay(300);
12850
69769f9a
VS
12851 /*
12852 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12853 * from S3 without preserving (some of?) the other bits.
12854 */
12855 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12856 POSTING_READ(vga_reg);
12857}
12858
f817586c
DV
12859void intel_modeset_init_hw(struct drm_device *dev)
12860{
a8f78b58
ED
12861 intel_prepare_ddi(dev);
12862
f8bf63fd
VS
12863 if (IS_VALLEYVIEW(dev))
12864 vlv_update_cdclk(dev);
12865
f817586c
DV
12866 intel_init_clock_gating(dev);
12867
8090c6b9 12868 intel_enable_gt_powersave(dev);
f817586c
DV
12869}
12870
79e53945
JB
12871void intel_modeset_init(struct drm_device *dev)
12872{
652c393a 12873 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12874 int sprite, ret;
8cc87b75 12875 enum pipe pipe;
46f297fb 12876 struct intel_crtc *crtc;
79e53945
JB
12877
12878 drm_mode_config_init(dev);
12879
12880 dev->mode_config.min_width = 0;
12881 dev->mode_config.min_height = 0;
12882
019d96cb
DA
12883 dev->mode_config.preferred_depth = 24;
12884 dev->mode_config.prefer_shadow = 1;
12885
e6ecefaa 12886 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12887
b690e96c
JB
12888 intel_init_quirks(dev);
12889
1fa61106
ED
12890 intel_init_pm(dev);
12891
e3c74757
BW
12892 if (INTEL_INFO(dev)->num_pipes == 0)
12893 return;
12894
e70236a8
JB
12895 intel_init_display(dev);
12896
a6c45cf0
CW
12897 if (IS_GEN2(dev)) {
12898 dev->mode_config.max_width = 2048;
12899 dev->mode_config.max_height = 2048;
12900 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12901 dev->mode_config.max_width = 4096;
12902 dev->mode_config.max_height = 4096;
79e53945 12903 } else {
a6c45cf0
CW
12904 dev->mode_config.max_width = 8192;
12905 dev->mode_config.max_height = 8192;
79e53945 12906 }
068be561 12907
dc41c154
VS
12908 if (IS_845G(dev) || IS_I865G(dev)) {
12909 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12910 dev->mode_config.cursor_height = 1023;
12911 } else if (IS_GEN2(dev)) {
068be561
DL
12912 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12913 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12914 } else {
12915 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12916 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12917 }
12918
5d4545ae 12919 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12920
28c97730 12921 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12922 INTEL_INFO(dev)->num_pipes,
12923 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12924
055e393f 12925 for_each_pipe(dev_priv, pipe) {
8cc87b75 12926 intel_crtc_init(dev, pipe);
1fe47785
DL
12927 for_each_sprite(pipe, sprite) {
12928 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12929 if (ret)
06da8da2 12930 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12931 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12932 }
79e53945
JB
12933 }
12934
f42bb70d
JB
12935 intel_init_dpio(dev);
12936
e72f9fbf 12937 intel_shared_dpll_init(dev);
ee7b9f93 12938
69769f9a
VS
12939 /* save the BIOS value before clobbering it */
12940 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12941 /* Just disable it once at startup */
12942 i915_disable_vga(dev);
79e53945 12943 intel_setup_outputs(dev);
11be49eb
CW
12944
12945 /* Just in case the BIOS is doing something questionable. */
12946 intel_disable_fbc(dev);
fa9fa083 12947
6e9f798d 12948 drm_modeset_lock_all(dev);
fa9fa083 12949 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12950 drm_modeset_unlock_all(dev);
46f297fb 12951
d3fcc808 12952 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12953 if (!crtc->active)
12954 continue;
12955
46f297fb 12956 /*
46f297fb
JB
12957 * Note that reserving the BIOS fb up front prevents us
12958 * from stuffing other stolen allocations like the ring
12959 * on top. This prevents some ugliness at boot time, and
12960 * can even allow for smooth boot transitions if the BIOS
12961 * fb is large enough for the active pipe configuration.
12962 */
12963 if (dev_priv->display.get_plane_config) {
12964 dev_priv->display.get_plane_config(crtc,
12965 &crtc->plane_config);
12966 /*
12967 * If the fb is shared between multiple heads, we'll
12968 * just get the first one.
12969 */
484b41dd 12970 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12971 }
46f297fb 12972 }
2c7111db
CW
12973}
12974
7fad798e
DV
12975static void intel_enable_pipe_a(struct drm_device *dev)
12976{
12977 struct intel_connector *connector;
12978 struct drm_connector *crt = NULL;
12979 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12980 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12981
12982 /* We can't just switch on the pipe A, we need to set things up with a
12983 * proper mode and output configuration. As a gross hack, enable pipe A
12984 * by enabling the load detect pipe once. */
12985 list_for_each_entry(connector,
12986 &dev->mode_config.connector_list,
12987 base.head) {
12988 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12989 crt = &connector->base;
12990 break;
12991 }
12992 }
12993
12994 if (!crt)
12995 return;
12996
208bf9fd
VS
12997 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12998 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12999}
13000
fa555837
DV
13001static bool
13002intel_check_plane_mapping(struct intel_crtc *crtc)
13003{
7eb552ae
BW
13004 struct drm_device *dev = crtc->base.dev;
13005 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13006 u32 reg, val;
13007
7eb552ae 13008 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13009 return true;
13010
13011 reg = DSPCNTR(!crtc->plane);
13012 val = I915_READ(reg);
13013
13014 if ((val & DISPLAY_PLANE_ENABLE) &&
13015 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13016 return false;
13017
13018 return true;
13019}
13020
24929352
DV
13021static void intel_sanitize_crtc(struct intel_crtc *crtc)
13022{
13023 struct drm_device *dev = crtc->base.dev;
13024 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13025 u32 reg;
24929352 13026
24929352 13027 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13028 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13029 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13030
d3eaf884 13031 /* restore vblank interrupts to correct state */
d297e103
VS
13032 if (crtc->active) {
13033 update_scanline_offset(crtc);
d3eaf884 13034 drm_vblank_on(dev, crtc->pipe);
d297e103 13035 } else
d3eaf884
VS
13036 drm_vblank_off(dev, crtc->pipe);
13037
24929352 13038 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13039 * disable the crtc (and hence change the state) if it is wrong. Note
13040 * that gen4+ has a fixed plane -> pipe mapping. */
13041 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13042 struct intel_connector *connector;
13043 bool plane;
13044
24929352
DV
13045 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13046 crtc->base.base.id);
13047
13048 /* Pipe has the wrong plane attached and the plane is active.
13049 * Temporarily change the plane mapping and disable everything
13050 * ... */
13051 plane = crtc->plane;
13052 crtc->plane = !plane;
9c8958bc 13053 crtc->primary_enabled = true;
24929352
DV
13054 dev_priv->display.crtc_disable(&crtc->base);
13055 crtc->plane = plane;
13056
13057 /* ... and break all links. */
13058 list_for_each_entry(connector, &dev->mode_config.connector_list,
13059 base.head) {
13060 if (connector->encoder->base.crtc != &crtc->base)
13061 continue;
13062
7f1950fb
EE
13063 connector->base.dpms = DRM_MODE_DPMS_OFF;
13064 connector->base.encoder = NULL;
24929352 13065 }
7f1950fb
EE
13066 /* multiple connectors may have the same encoder:
13067 * handle them and break crtc link separately */
13068 list_for_each_entry(connector, &dev->mode_config.connector_list,
13069 base.head)
13070 if (connector->encoder->base.crtc == &crtc->base) {
13071 connector->encoder->base.crtc = NULL;
13072 connector->encoder->connectors_active = false;
13073 }
24929352
DV
13074
13075 WARN_ON(crtc->active);
13076 crtc->base.enabled = false;
13077 }
24929352 13078
7fad798e
DV
13079 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13080 crtc->pipe == PIPE_A && !crtc->active) {
13081 /* BIOS forgot to enable pipe A, this mostly happens after
13082 * resume. Force-enable the pipe to fix this, the update_dpms
13083 * call below we restore the pipe to the right state, but leave
13084 * the required bits on. */
13085 intel_enable_pipe_a(dev);
13086 }
13087
24929352
DV
13088 /* Adjust the state of the output pipe according to whether we
13089 * have active connectors/encoders. */
13090 intel_crtc_update_dpms(&crtc->base);
13091
13092 if (crtc->active != crtc->base.enabled) {
13093 struct intel_encoder *encoder;
13094
13095 /* This can happen either due to bugs in the get_hw_state
13096 * functions or because the pipe is force-enabled due to the
13097 * pipe A quirk. */
13098 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13099 crtc->base.base.id,
13100 crtc->base.enabled ? "enabled" : "disabled",
13101 crtc->active ? "enabled" : "disabled");
13102
13103 crtc->base.enabled = crtc->active;
13104
13105 /* Because we only establish the connector -> encoder ->
13106 * crtc links if something is active, this means the
13107 * crtc is now deactivated. Break the links. connector
13108 * -> encoder links are only establish when things are
13109 * actually up, hence no need to break them. */
13110 WARN_ON(crtc->active);
13111
13112 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13113 WARN_ON(encoder->connectors_active);
13114 encoder->base.crtc = NULL;
13115 }
13116 }
c5ab3bc0 13117
a3ed6aad 13118 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13119 /*
13120 * We start out with underrun reporting disabled to avoid races.
13121 * For correct bookkeeping mark this on active crtcs.
13122 *
c5ab3bc0
DV
13123 * Also on gmch platforms we dont have any hardware bits to
13124 * disable the underrun reporting. Which means we need to start
13125 * out with underrun reporting disabled also on inactive pipes,
13126 * since otherwise we'll complain about the garbage we read when
13127 * e.g. coming up after runtime pm.
13128 *
4cc31489
DV
13129 * No protection against concurrent access is required - at
13130 * worst a fifo underrun happens which also sets this to false.
13131 */
13132 crtc->cpu_fifo_underrun_disabled = true;
13133 crtc->pch_fifo_underrun_disabled = true;
13134 }
24929352
DV
13135}
13136
13137static void intel_sanitize_encoder(struct intel_encoder *encoder)
13138{
13139 struct intel_connector *connector;
13140 struct drm_device *dev = encoder->base.dev;
13141
13142 /* We need to check both for a crtc link (meaning that the
13143 * encoder is active and trying to read from a pipe) and the
13144 * pipe itself being active. */
13145 bool has_active_crtc = encoder->base.crtc &&
13146 to_intel_crtc(encoder->base.crtc)->active;
13147
13148 if (encoder->connectors_active && !has_active_crtc) {
13149 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13150 encoder->base.base.id,
8e329a03 13151 encoder->base.name);
24929352
DV
13152
13153 /* Connector is active, but has no active pipe. This is
13154 * fallout from our resume register restoring. Disable
13155 * the encoder manually again. */
13156 if (encoder->base.crtc) {
13157 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13158 encoder->base.base.id,
8e329a03 13159 encoder->base.name);
24929352 13160 encoder->disable(encoder);
a62d1497
VS
13161 if (encoder->post_disable)
13162 encoder->post_disable(encoder);
24929352 13163 }
7f1950fb
EE
13164 encoder->base.crtc = NULL;
13165 encoder->connectors_active = false;
24929352
DV
13166
13167 /* Inconsistent output/port/pipe state happens presumably due to
13168 * a bug in one of the get_hw_state functions. Or someplace else
13169 * in our code, like the register restore mess on resume. Clamp
13170 * things to off as a safer default. */
13171 list_for_each_entry(connector,
13172 &dev->mode_config.connector_list,
13173 base.head) {
13174 if (connector->encoder != encoder)
13175 continue;
7f1950fb
EE
13176 connector->base.dpms = DRM_MODE_DPMS_OFF;
13177 connector->base.encoder = NULL;
24929352
DV
13178 }
13179 }
13180 /* Enabled encoders without active connectors will be fixed in
13181 * the crtc fixup. */
13182}
13183
04098753 13184void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13185{
13186 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13187 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13188
04098753
ID
13189 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13190 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13191 i915_disable_vga(dev);
13192 }
13193}
13194
13195void i915_redisable_vga(struct drm_device *dev)
13196{
13197 struct drm_i915_private *dev_priv = dev->dev_private;
13198
8dc8a27c
PZ
13199 /* This function can be called both from intel_modeset_setup_hw_state or
13200 * at a very early point in our resume sequence, where the power well
13201 * structures are not yet restored. Since this function is at a very
13202 * paranoid "someone might have enabled VGA while we were not looking"
13203 * level, just check if the power well is enabled instead of trying to
13204 * follow the "don't touch the power well if we don't need it" policy
13205 * the rest of the driver uses. */
f458ebbc 13206 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13207 return;
13208
04098753 13209 i915_redisable_vga_power_on(dev);
0fde901f
KM
13210}
13211
98ec7739
VS
13212static bool primary_get_hw_state(struct intel_crtc *crtc)
13213{
13214 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13215
13216 if (!crtc->active)
13217 return false;
13218
13219 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13220}
13221
30e984df 13222static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13223{
13224 struct drm_i915_private *dev_priv = dev->dev_private;
13225 enum pipe pipe;
24929352
DV
13226 struct intel_crtc *crtc;
13227 struct intel_encoder *encoder;
13228 struct intel_connector *connector;
5358901f 13229 int i;
24929352 13230
d3fcc808 13231 for_each_intel_crtc(dev, crtc) {
88adfff1 13232 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13233
9953599b
DV
13234 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13235
0e8ffe1b
DV
13236 crtc->active = dev_priv->display.get_pipe_config(crtc,
13237 &crtc->config);
24929352
DV
13238
13239 crtc->base.enabled = crtc->active;
98ec7739 13240 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13241
13242 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13243 crtc->base.base.id,
13244 crtc->active ? "enabled" : "disabled");
13245 }
13246
5358901f
DV
13247 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13248 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13249
13250 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13251 pll->active = 0;
d3fcc808 13252 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13253 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13254 pll->active++;
13255 }
13256 pll->refcount = pll->active;
13257
35c95375
DV
13258 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13259 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13260
13261 if (pll->refcount)
13262 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13263 }
13264
b2784e15 13265 for_each_intel_encoder(dev, encoder) {
24929352
DV
13266 pipe = 0;
13267
13268 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13269 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13270 encoder->base.crtc = &crtc->base;
1d37b689 13271 encoder->get_config(encoder, &crtc->config);
24929352
DV
13272 } else {
13273 encoder->base.crtc = NULL;
13274 }
13275
13276 encoder->connectors_active = false;
6f2bcceb 13277 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13278 encoder->base.base.id,
8e329a03 13279 encoder->base.name,
24929352 13280 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13281 pipe_name(pipe));
24929352
DV
13282 }
13283
13284 list_for_each_entry(connector, &dev->mode_config.connector_list,
13285 base.head) {
13286 if (connector->get_hw_state(connector)) {
13287 connector->base.dpms = DRM_MODE_DPMS_ON;
13288 connector->encoder->connectors_active = true;
13289 connector->base.encoder = &connector->encoder->base;
13290 } else {
13291 connector->base.dpms = DRM_MODE_DPMS_OFF;
13292 connector->base.encoder = NULL;
13293 }
13294 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13295 connector->base.base.id,
c23cc417 13296 connector->base.name,
24929352
DV
13297 connector->base.encoder ? "enabled" : "disabled");
13298 }
30e984df
DV
13299}
13300
13301/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13302 * and i915 state tracking structures. */
13303void intel_modeset_setup_hw_state(struct drm_device *dev,
13304 bool force_restore)
13305{
13306 struct drm_i915_private *dev_priv = dev->dev_private;
13307 enum pipe pipe;
30e984df
DV
13308 struct intel_crtc *crtc;
13309 struct intel_encoder *encoder;
35c95375 13310 int i;
30e984df
DV
13311
13312 intel_modeset_readout_hw_state(dev);
24929352 13313
babea61d
JB
13314 /*
13315 * Now that we have the config, copy it to each CRTC struct
13316 * Note that this could go away if we move to using crtc_config
13317 * checking everywhere.
13318 */
d3fcc808 13319 for_each_intel_crtc(dev, crtc) {
d330a953 13320 if (crtc->active && i915.fastboot) {
f6a83288 13321 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13322 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13323 crtc->base.base.id);
13324 drm_mode_debug_printmodeline(&crtc->base.mode);
13325 }
13326 }
13327
24929352 13328 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13329 for_each_intel_encoder(dev, encoder) {
24929352
DV
13330 intel_sanitize_encoder(encoder);
13331 }
13332
055e393f 13333 for_each_pipe(dev_priv, pipe) {
24929352
DV
13334 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13335 intel_sanitize_crtc(crtc);
c0b03411 13336 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13337 }
9a935856 13338
35c95375
DV
13339 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13340 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13341
13342 if (!pll->on || pll->active)
13343 continue;
13344
13345 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13346
13347 pll->disable(dev_priv, pll);
13348 pll->on = false;
13349 }
13350
96f90c54 13351 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13352 ilk_wm_get_hw_state(dev);
13353
45e2b5f6 13354 if (force_restore) {
7d0bc1ea
VS
13355 i915_redisable_vga(dev);
13356
f30da187
DV
13357 /*
13358 * We need to use raw interfaces for restoring state to avoid
13359 * checking (bogus) intermediate states.
13360 */
055e393f 13361 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13362 struct drm_crtc *crtc =
13363 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13364
13365 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13366 crtc->primary->fb);
45e2b5f6
DV
13367 }
13368 } else {
13369 intel_modeset_update_staged_output_state(dev);
13370 }
8af6cf88
DV
13371
13372 intel_modeset_check_state(dev);
2c7111db
CW
13373}
13374
13375void intel_modeset_gem_init(struct drm_device *dev)
13376{
484b41dd 13377 struct drm_crtc *c;
2ff8fde1 13378 struct drm_i915_gem_object *obj;
484b41dd 13379
ae48434c
ID
13380 mutex_lock(&dev->struct_mutex);
13381 intel_init_gt_powersave(dev);
13382 mutex_unlock(&dev->struct_mutex);
13383
1833b134 13384 intel_modeset_init_hw(dev);
02e792fb
DV
13385
13386 intel_setup_overlay(dev);
484b41dd
JB
13387
13388 /*
13389 * Make sure any fbs we allocated at startup are properly
13390 * pinned & fenced. When we do the allocation it's too early
13391 * for this.
13392 */
13393 mutex_lock(&dev->struct_mutex);
70e1e0ec 13394 for_each_crtc(dev, c) {
2ff8fde1
MR
13395 obj = intel_fb_obj(c->primary->fb);
13396 if (obj == NULL)
484b41dd
JB
13397 continue;
13398
2ff8fde1 13399 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13400 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13401 to_intel_crtc(c)->pipe);
66e514c1
DA
13402 drm_framebuffer_unreference(c->primary->fb);
13403 c->primary->fb = NULL;
484b41dd
JB
13404 }
13405 }
13406 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13407}
13408
4932e2c3
ID
13409void intel_connector_unregister(struct intel_connector *intel_connector)
13410{
13411 struct drm_connector *connector = &intel_connector->base;
13412
13413 intel_panel_destroy_backlight(connector);
34ea3d38 13414 drm_connector_unregister(connector);
4932e2c3
ID
13415}
13416
79e53945
JB
13417void intel_modeset_cleanup(struct drm_device *dev)
13418{
652c393a 13419 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13420 struct drm_connector *connector;
652c393a 13421
fd0c0642
DV
13422 /*
13423 * Interrupts and polling as the first thing to avoid creating havoc.
13424 * Too much stuff here (turning of rps, connectors, ...) would
13425 * experience fancy races otherwise.
13426 */
2aeb7d3a 13427 intel_irq_uninstall(dev_priv);
eb21b92b 13428
fd0c0642
DV
13429 /*
13430 * Due to the hpd irq storm handling the hotplug work can re-arm the
13431 * poll handlers. Hence disable polling after hpd handling is shut down.
13432 */
f87ea761 13433 drm_kms_helper_poll_fini(dev);
fd0c0642 13434
652c393a
JB
13435 mutex_lock(&dev->struct_mutex);
13436
723bfd70
JB
13437 intel_unregister_dsm_handler();
13438
973d04f9 13439 intel_disable_fbc(dev);
e70236a8 13440
8090c6b9 13441 intel_disable_gt_powersave(dev);
0cdab21f 13442
930ebb46
DV
13443 ironlake_teardown_rc6(dev);
13444
69341a5e
KH
13445 mutex_unlock(&dev->struct_mutex);
13446
1630fe75
CW
13447 /* flush any delayed tasks or pending work */
13448 flush_scheduled_work();
13449
db31af1d
JN
13450 /* destroy the backlight and sysfs files before encoders/connectors */
13451 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13452 struct intel_connector *intel_connector;
13453
13454 intel_connector = to_intel_connector(connector);
13455 intel_connector->unregister(intel_connector);
db31af1d 13456 }
d9255d57 13457
79e53945 13458 drm_mode_config_cleanup(dev);
4d7bb011
DV
13459
13460 intel_cleanup_overlay(dev);
ae48434c
ID
13461
13462 mutex_lock(&dev->struct_mutex);
13463 intel_cleanup_gt_powersave(dev);
13464 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13465}
13466
f1c79df3
ZW
13467/*
13468 * Return which encoder is currently attached for connector.
13469 */
df0e9248 13470struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13471{
df0e9248
CW
13472 return &intel_attached_encoder(connector)->base;
13473}
f1c79df3 13474
df0e9248
CW
13475void intel_connector_attach_encoder(struct intel_connector *connector,
13476 struct intel_encoder *encoder)
13477{
13478 connector->encoder = encoder;
13479 drm_mode_connector_attach_encoder(&connector->base,
13480 &encoder->base);
79e53945 13481}
28d52043
DA
13482
13483/*
13484 * set vga decode state - true == enable VGA decode
13485 */
13486int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13487{
13488 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13489 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13490 u16 gmch_ctrl;
13491
75fa041d
CW
13492 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13493 DRM_ERROR("failed to read control word\n");
13494 return -EIO;
13495 }
13496
c0cc8a55
CW
13497 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13498 return 0;
13499
28d52043
DA
13500 if (state)
13501 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13502 else
13503 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13504
13505 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13506 DRM_ERROR("failed to write control word\n");
13507 return -EIO;
13508 }
13509
28d52043
DA
13510 return 0;
13511}
c4a1d9e4 13512
c4a1d9e4 13513struct intel_display_error_state {
ff57f1b0
PZ
13514
13515 u32 power_well_driver;
13516
63b66e5b
CW
13517 int num_transcoders;
13518
c4a1d9e4
CW
13519 struct intel_cursor_error_state {
13520 u32 control;
13521 u32 position;
13522 u32 base;
13523 u32 size;
52331309 13524 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13525
13526 struct intel_pipe_error_state {
ddf9c536 13527 bool power_domain_on;
c4a1d9e4 13528 u32 source;
f301b1e1 13529 u32 stat;
52331309 13530 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13531
13532 struct intel_plane_error_state {
13533 u32 control;
13534 u32 stride;
13535 u32 size;
13536 u32 pos;
13537 u32 addr;
13538 u32 surface;
13539 u32 tile_offset;
52331309 13540 } plane[I915_MAX_PIPES];
63b66e5b
CW
13541
13542 struct intel_transcoder_error_state {
ddf9c536 13543 bool power_domain_on;
63b66e5b
CW
13544 enum transcoder cpu_transcoder;
13545
13546 u32 conf;
13547
13548 u32 htotal;
13549 u32 hblank;
13550 u32 hsync;
13551 u32 vtotal;
13552 u32 vblank;
13553 u32 vsync;
13554 } transcoder[4];
c4a1d9e4
CW
13555};
13556
13557struct intel_display_error_state *
13558intel_display_capture_error_state(struct drm_device *dev)
13559{
fbee40df 13560 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13561 struct intel_display_error_state *error;
63b66e5b
CW
13562 int transcoders[] = {
13563 TRANSCODER_A,
13564 TRANSCODER_B,
13565 TRANSCODER_C,
13566 TRANSCODER_EDP,
13567 };
c4a1d9e4
CW
13568 int i;
13569
63b66e5b
CW
13570 if (INTEL_INFO(dev)->num_pipes == 0)
13571 return NULL;
13572
9d1cb914 13573 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13574 if (error == NULL)
13575 return NULL;
13576
190be112 13577 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13578 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13579
055e393f 13580 for_each_pipe(dev_priv, i) {
ddf9c536 13581 error->pipe[i].power_domain_on =
f458ebbc
DV
13582 __intel_display_power_is_enabled(dev_priv,
13583 POWER_DOMAIN_PIPE(i));
ddf9c536 13584 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13585 continue;
13586
5efb3e28
VS
13587 error->cursor[i].control = I915_READ(CURCNTR(i));
13588 error->cursor[i].position = I915_READ(CURPOS(i));
13589 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13590
13591 error->plane[i].control = I915_READ(DSPCNTR(i));
13592 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13593 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13594 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13595 error->plane[i].pos = I915_READ(DSPPOS(i));
13596 }
ca291363
PZ
13597 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13598 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13599 if (INTEL_INFO(dev)->gen >= 4) {
13600 error->plane[i].surface = I915_READ(DSPSURF(i));
13601 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13602 }
13603
c4a1d9e4 13604 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13605
3abfce77 13606 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13607 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13608 }
13609
13610 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13611 if (HAS_DDI(dev_priv->dev))
13612 error->num_transcoders++; /* Account for eDP. */
13613
13614 for (i = 0; i < error->num_transcoders; i++) {
13615 enum transcoder cpu_transcoder = transcoders[i];
13616
ddf9c536 13617 error->transcoder[i].power_domain_on =
f458ebbc 13618 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13619 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13620 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13621 continue;
13622
63b66e5b
CW
13623 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13624
13625 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13626 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13627 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13628 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13629 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13630 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13631 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13632 }
13633
13634 return error;
13635}
13636
edc3d884
MK
13637#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13638
c4a1d9e4 13639void
edc3d884 13640intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13641 struct drm_device *dev,
13642 struct intel_display_error_state *error)
13643{
055e393f 13644 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13645 int i;
13646
63b66e5b
CW
13647 if (!error)
13648 return;
13649
edc3d884 13650 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13651 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13652 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13653 error->power_well_driver);
055e393f 13654 for_each_pipe(dev_priv, i) {
edc3d884 13655 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13656 err_printf(m, " Power: %s\n",
13657 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13658 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13659 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13660
13661 err_printf(m, "Plane [%d]:\n", i);
13662 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13663 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13664 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13665 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13666 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13667 }
4b71a570 13668 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13669 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13670 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13671 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13672 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13673 }
13674
edc3d884
MK
13675 err_printf(m, "Cursor [%d]:\n", i);
13676 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13677 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13678 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13679 }
63b66e5b
CW
13680
13681 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13682 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13683 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13684 err_printf(m, " Power: %s\n",
13685 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13686 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13687 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13688 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13689 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13690 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13691 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13692 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13693 }
c4a1d9e4 13694}
e2fcdaa9
VS
13695
13696void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13697{
13698 struct intel_crtc *crtc;
13699
13700 for_each_intel_crtc(dev, crtc) {
13701 struct intel_unpin_work *work;
e2fcdaa9 13702
5e2d7afc 13703 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13704
13705 work = crtc->unpin_work;
13706
13707 if (work && work->event &&
13708 work->event->base.file_priv == file) {
13709 kfree(work->event);
13710 work->event = NULL;
13711 }
13712
5e2d7afc 13713 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13714 }
13715}