]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: add POWER_DOMAIN_PLLS
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
076ed3b2
CML
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
076ed3b2 1538 }
40e9cf64
JB
1539}
1540
426115cf 1541static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1542{
426115cf
DV
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1547
426115cf 1548 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1555 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1556
426115cf
DV
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1566
1567 /* We do this three times for luck */
426115cf 1568 I915_WRITE(reg, dpll);
87442f73
DV
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
426115cf 1571 I915_WRITE(reg, dpll);
87442f73
DV
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
426115cf 1574 I915_WRITE(reg, dpll);
87442f73
DV
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577}
1578
9d556c99
CML
1579static void chv_enable_pll(struct intel_crtc *crtc)
1580{
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
a11b0703 1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1605
1606 /* Check PLL is locked */
a11b0703 1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
a11b0703
VS
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
9d556c99
CML
1614 mutex_unlock(&dev_priv->dpio_lock);
1615}
1616
66e3d5c0 1617static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1618{
66e3d5c0
DV
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1623
66e3d5c0 1624 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1625
63d7bbe9 1626 /* No really, not for ILK+ */
3d13ef2e 1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1628
1629 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1632
66e3d5c0
DV
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
63d7bbe9
JB
1650
1651 /* We do this three times for luck */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
66e3d5c0 1655 I915_WRITE(reg, dpll);
63d7bbe9
JB
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
66e3d5c0 1658 I915_WRITE(reg, dpll);
63d7bbe9
JB
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661}
1662
1663/**
50b44a44 1664 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
50b44a44 1672static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1673{
63d7bbe9
JB
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
50b44a44
DV
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1683}
1684
f6071166
JB
1685static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686{
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
e5cbfbfb
ID
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
f6071166 1696 if (pipe == PIPE_B)
e5cbfbfb 1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1700
1701}
1702
1703static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704{
d752048d 1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1706 u32 val;
1707
a11b0703
VS
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1710
a11b0703
VS
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
d752048d
VS
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
61407f6d
VS
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
d752048d 1736 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1737}
1738
e4607fcf
CML
1739void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
89b667f8
JB
1741{
1742 u32 port_mask;
00fc31b7 1743 int dpll_reg;
89b667f8 1744
e4607fcf
CML
1745 switch (dport->port) {
1746 case PORT_B:
89b667f8 1747 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1748 dpll_reg = DPLL(0);
e4607fcf
CML
1749 break;
1750 case PORT_C:
89b667f8 1751 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1757 break;
1758 default:
1759 BUG();
1760 }
89b667f8 1761
00fc31b7 1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1764 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1765}
1766
b14b1055
DV
1767static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768{
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
be19f0ff
CW
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
b14b1055
DV
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784}
1785
92f2584a 1786/**
85b3894f 1787 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
85b3894f 1794static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1795{
3d13ef2e
DL
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1799
87a875bb 1800 if (WARN_ON(pll == NULL))
48da64a8
CW
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
ee7b9f93 1805
46edb027
DV
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
e2b78267 1808 crtc->base.base.id);
92f2584a 1809
cdbd2316
DV
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
e9d6944e 1812 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1813 return;
1814 }
f4a091c7 1815 WARN_ON(pll->on);
ee7b9f93 1816
bd2bb1b9
PZ
1817 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1818
46edb027 1819 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1820 pll->enable(dev_priv, pll);
ee7b9f93 1821 pll->on = true;
92f2584a
JB
1822}
1823
e2b78267 1824static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1825{
3d13ef2e
DL
1826 struct drm_device *dev = crtc->base.dev;
1827 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1828 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1829
92f2584a 1830 /* PCH only available on ILK+ */
3d13ef2e 1831 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1832 if (WARN_ON(pll == NULL))
ee7b9f93 1833 return;
92f2584a 1834
48da64a8
CW
1835 if (WARN_ON(pll->refcount == 0))
1836 return;
7a419866 1837
46edb027
DV
1838 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1839 pll->name, pll->active, pll->on,
e2b78267 1840 crtc->base.base.id);
7a419866 1841
48da64a8 1842 if (WARN_ON(pll->active == 0)) {
e9d6944e 1843 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1844 return;
1845 }
1846
e9d6944e 1847 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1848 WARN_ON(!pll->on);
cdbd2316 1849 if (--pll->active)
7a419866 1850 return;
ee7b9f93 1851
46edb027 1852 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1853 pll->disable(dev_priv, pll);
ee7b9f93 1854 pll->on = false;
bd2bb1b9
PZ
1855
1856 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1857}
1858
b8a4f404
PZ
1859static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1860 enum pipe pipe)
040484af 1861{
23670b32 1862 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1863 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1865 uint32_t reg, val, pipeconf_val;
040484af
JB
1866
1867 /* PCH only available on ILK+ */
3d13ef2e 1868 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1869
1870 /* Make sure PCH DPLL is enabled */
e72f9fbf 1871 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1872 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1873
1874 /* FDI must be feeding us bits for PCH ports */
1875 assert_fdi_tx_enabled(dev_priv, pipe);
1876 assert_fdi_rx_enabled(dev_priv, pipe);
1877
23670b32
DV
1878 if (HAS_PCH_CPT(dev)) {
1879 /* Workaround: Set the timing override bit before enabling the
1880 * pch transcoder. */
1881 reg = TRANS_CHICKEN2(pipe);
1882 val = I915_READ(reg);
1883 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1884 I915_WRITE(reg, val);
59c859d6 1885 }
23670b32 1886
ab9412ba 1887 reg = PCH_TRANSCONF(pipe);
040484af 1888 val = I915_READ(reg);
5f7f726d 1889 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1890
1891 if (HAS_PCH_IBX(dev_priv->dev)) {
1892 /*
1893 * make the BPC in transcoder be consistent with
1894 * that in pipeconf reg.
1895 */
dfd07d72
DV
1896 val &= ~PIPECONF_BPC_MASK;
1897 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1898 }
5f7f726d
PZ
1899
1900 val &= ~TRANS_INTERLACE_MASK;
1901 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1902 if (HAS_PCH_IBX(dev_priv->dev) &&
1903 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1904 val |= TRANS_LEGACY_INTERLACED_ILK;
1905 else
1906 val |= TRANS_INTERLACED;
5f7f726d
PZ
1907 else
1908 val |= TRANS_PROGRESSIVE;
1909
040484af
JB
1910 I915_WRITE(reg, val | TRANS_ENABLE);
1911 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1912 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1913}
1914
8fb033d7 1915static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1916 enum transcoder cpu_transcoder)
040484af 1917{
8fb033d7 1918 u32 val, pipeconf_val;
8fb033d7
PZ
1919
1920 /* PCH only available on ILK+ */
3d13ef2e 1921 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1922
8fb033d7 1923 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1924 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1925 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1926
223a6fdf
PZ
1927 /* Workaround: set timing override bit. */
1928 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1929 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1930 I915_WRITE(_TRANSA_CHICKEN2, val);
1931
25f3ef11 1932 val = TRANS_ENABLE;
937bb610 1933 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1934
9a76b1c6
PZ
1935 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1936 PIPECONF_INTERLACED_ILK)
a35f2679 1937 val |= TRANS_INTERLACED;
8fb033d7
PZ
1938 else
1939 val |= TRANS_PROGRESSIVE;
1940
ab9412ba
DV
1941 I915_WRITE(LPT_TRANSCONF, val);
1942 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1943 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1944}
1945
b8a4f404
PZ
1946static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1947 enum pipe pipe)
040484af 1948{
23670b32
DV
1949 struct drm_device *dev = dev_priv->dev;
1950 uint32_t reg, val;
040484af
JB
1951
1952 /* FDI relies on the transcoder */
1953 assert_fdi_tx_disabled(dev_priv, pipe);
1954 assert_fdi_rx_disabled(dev_priv, pipe);
1955
291906f1
JB
1956 /* Ports must be off as well */
1957 assert_pch_ports_disabled(dev_priv, pipe);
1958
ab9412ba 1959 reg = PCH_TRANSCONF(pipe);
040484af
JB
1960 val = I915_READ(reg);
1961 val &= ~TRANS_ENABLE;
1962 I915_WRITE(reg, val);
1963 /* wait for PCH transcoder off, transcoder state */
1964 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1965 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1966
1967 if (!HAS_PCH_IBX(dev)) {
1968 /* Workaround: Clear the timing override chicken bit again. */
1969 reg = TRANS_CHICKEN2(pipe);
1970 val = I915_READ(reg);
1971 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1972 I915_WRITE(reg, val);
1973 }
040484af
JB
1974}
1975
ab4d966c 1976static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1977{
8fb033d7
PZ
1978 u32 val;
1979
ab9412ba 1980 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1981 val &= ~TRANS_ENABLE;
ab9412ba 1982 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1983 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1984 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1985 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1986
1987 /* Workaround: clear timing override bit. */
1988 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1989 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1990 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1991}
1992
b24e7179 1993/**
309cfea8 1994 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1995 * @crtc: crtc responsible for the pipe
b24e7179 1996 *
0372264a 1997 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1998 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1999 */
e1fdc473 2000static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2001{
0372264a
PZ
2002 struct drm_device *dev = crtc->base.dev;
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2005 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2006 pipe);
1a240d4d 2007 enum pipe pch_transcoder;
b24e7179
JB
2008 int reg;
2009 u32 val;
2010
58c6eaa2 2011 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2012 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2013 assert_sprites_disabled(dev_priv, pipe);
2014
681e5811 2015 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2016 pch_transcoder = TRANSCODER_A;
2017 else
2018 pch_transcoder = pipe;
2019
b24e7179
JB
2020 /*
2021 * A pipe without a PLL won't actually be able to drive bits from
2022 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2023 * need the check.
2024 */
2025 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2026 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2027 assert_dsi_pll_enabled(dev_priv);
2028 else
2029 assert_pll_enabled(dev_priv, pipe);
040484af 2030 else {
30421c4f 2031 if (crtc->config.has_pch_encoder) {
040484af 2032 /* if driving the PCH, we need FDI enabled */
cc391bbb 2033 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2034 assert_fdi_tx_pll_enabled(dev_priv,
2035 (enum pipe) cpu_transcoder);
040484af
JB
2036 }
2037 /* FIXME: assert CPU port conditions for SNB+ */
2038 }
b24e7179 2039
702e7a56 2040 reg = PIPECONF(cpu_transcoder);
b24e7179 2041 val = I915_READ(reg);
7ad25d48
PZ
2042 if (val & PIPECONF_ENABLE) {
2043 WARN_ON(!(pipe == PIPE_A &&
2044 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2045 return;
7ad25d48 2046 }
00d70b15
CW
2047
2048 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2049 POSTING_READ(reg);
b24e7179
JB
2050}
2051
2052/**
309cfea8 2053 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2054 * @dev_priv: i915 private structure
2055 * @pipe: pipe to disable
2056 *
2057 * Disable @pipe, making sure that various hardware specific requirements
2058 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2059 *
2060 * @pipe should be %PIPE_A or %PIPE_B.
2061 *
2062 * Will wait until the pipe has shut down before returning.
2063 */
2064static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2065 enum pipe pipe)
2066{
702e7a56
PZ
2067 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2068 pipe);
b24e7179
JB
2069 int reg;
2070 u32 val;
2071
2072 /*
2073 * Make sure planes won't keep trying to pump pixels to us,
2074 * or we might hang the display.
2075 */
2076 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2077 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2078 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2079
2080 /* Don't disable pipe A or pipe A PLLs if needed */
2081 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2082 return;
2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
2089 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2090 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2091}
2092
d74362c9
KP
2093/*
2094 * Plane regs are double buffered, going from enabled->disabled needs a
2095 * trigger in order to latch. The display address reg provides this.
2096 */
1dba99f4
VS
2097void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2098 enum plane plane)
d74362c9 2099{
3d13ef2e
DL
2100 struct drm_device *dev = dev_priv->dev;
2101 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2102
2103 I915_WRITE(reg, I915_READ(reg));
2104 POSTING_READ(reg);
d74362c9
KP
2105}
2106
b24e7179 2107/**
262ca2b0 2108 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2109 * @dev_priv: i915 private structure
2110 * @plane: plane to enable
2111 * @pipe: pipe being fed
2112 *
2113 * Enable @plane on @pipe, making sure that @pipe is running first.
2114 */
262ca2b0
MR
2115static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2116 enum plane plane, enum pipe pipe)
b24e7179 2117{
33c3b0d1 2118 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2119 struct intel_crtc *intel_crtc =
2120 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2121 int reg;
2122 u32 val;
2123
2124 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2125 assert_pipe_enabled(dev_priv, pipe);
2126
98ec7739
VS
2127 if (intel_crtc->primary_enabled)
2128 return;
0037f71c 2129
4c445e0e 2130 intel_crtc->primary_enabled = true;
939c2fe8 2131
b24e7179
JB
2132 reg = DSPCNTR(plane);
2133 val = I915_READ(reg);
10efa932 2134 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2135
2136 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2137 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2138
2139 /*
2140 * BDW signals flip done immediately if the plane
2141 * is disabled, even if the plane enable is already
2142 * armed to occur at the next vblank :(
2143 */
2144 if (IS_BROADWELL(dev))
2145 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2146}
2147
b24e7179 2148/**
262ca2b0 2149 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2150 * @dev_priv: i915 private structure
2151 * @plane: plane to disable
2152 * @pipe: pipe consuming the data
2153 *
2154 * Disable @plane; should be an independent operation.
2155 */
262ca2b0
MR
2156static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2157 enum plane plane, enum pipe pipe)
b24e7179 2158{
939c2fe8
VS
2159 struct intel_crtc *intel_crtc =
2160 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2161 int reg;
2162 u32 val;
2163
98ec7739
VS
2164 if (!intel_crtc->primary_enabled)
2165 return;
0037f71c 2166
4c445e0e 2167 intel_crtc->primary_enabled = false;
939c2fe8 2168
b24e7179
JB
2169 reg = DSPCNTR(plane);
2170 val = I915_READ(reg);
10efa932 2171 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2172
2173 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2174 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2175}
2176
693db184
CW
2177static bool need_vtd_wa(struct drm_device *dev)
2178{
2179#ifdef CONFIG_INTEL_IOMMU
2180 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2181 return true;
2182#endif
2183 return false;
2184}
2185
a57ce0b2
JB
2186static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2187{
2188 int tile_height;
2189
2190 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2191 return ALIGN(height, tile_height);
2192}
2193
127bd2ac 2194int
48b956c5 2195intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2196 struct drm_i915_gem_object *obj,
a4872ba6 2197 struct intel_engine_cs *pipelined)
6b95a207 2198{
ce453d81 2199 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2200 u32 alignment;
2201 int ret;
2202
ebcdd39e
MR
2203 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2204
05394f39 2205 switch (obj->tiling_mode) {
6b95a207 2206 case I915_TILING_NONE:
534843da
CW
2207 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2208 alignment = 128 * 1024;
a6c45cf0 2209 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2210 alignment = 4 * 1024;
2211 else
2212 alignment = 64 * 1024;
6b95a207
KH
2213 break;
2214 case I915_TILING_X:
2215 /* pin() will align the object as required by fence */
2216 alignment = 0;
2217 break;
2218 case I915_TILING_Y:
80075d49 2219 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2220 return -EINVAL;
2221 default:
2222 BUG();
2223 }
2224
693db184
CW
2225 /* Note that the w/a also requires 64 PTE of padding following the
2226 * bo. We currently fill all unused PTE with the shadow page and so
2227 * we should always have valid PTE following the scanout preventing
2228 * the VT-d warning.
2229 */
2230 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2231 alignment = 256 * 1024;
2232
ce453d81 2233 dev_priv->mm.interruptible = false;
2da3b9b9 2234 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2235 if (ret)
ce453d81 2236 goto err_interruptible;
6b95a207
KH
2237
2238 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2239 * fence, whereas 965+ only requires a fence if using
2240 * framebuffer compression. For simplicity, we always install
2241 * a fence as the cost is not that onerous.
2242 */
06d98131 2243 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2244 if (ret)
2245 goto err_unpin;
1690e1eb 2246
9a5a53b3 2247 i915_gem_object_pin_fence(obj);
6b95a207 2248
ce453d81 2249 dev_priv->mm.interruptible = true;
6b95a207 2250 return 0;
48b956c5
CW
2251
2252err_unpin:
cc98b413 2253 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2254err_interruptible:
2255 dev_priv->mm.interruptible = true;
48b956c5 2256 return ret;
6b95a207
KH
2257}
2258
1690e1eb
CW
2259void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2260{
ebcdd39e
MR
2261 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2262
1690e1eb 2263 i915_gem_object_unpin_fence(obj);
cc98b413 2264 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2265}
2266
c2c75131
DV
2267/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2268 * is assumed to be a power-of-two. */
bc752862
CW
2269unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2270 unsigned int tiling_mode,
2271 unsigned int cpp,
2272 unsigned int pitch)
c2c75131 2273{
bc752862
CW
2274 if (tiling_mode != I915_TILING_NONE) {
2275 unsigned int tile_rows, tiles;
c2c75131 2276
bc752862
CW
2277 tile_rows = *y / 8;
2278 *y %= 8;
c2c75131 2279
bc752862
CW
2280 tiles = *x / (512/cpp);
2281 *x %= 512/cpp;
2282
2283 return tile_rows * pitch * 8 + tiles * 4096;
2284 } else {
2285 unsigned int offset;
2286
2287 offset = *y * pitch + *x * cpp;
2288 *y = 0;
2289 *x = (offset & 4095) / cpp;
2290 return offset & -4096;
2291 }
c2c75131
DV
2292}
2293
46f297fb
JB
2294int intel_format_to_fourcc(int format)
2295{
2296 switch (format) {
2297 case DISPPLANE_8BPP:
2298 return DRM_FORMAT_C8;
2299 case DISPPLANE_BGRX555:
2300 return DRM_FORMAT_XRGB1555;
2301 case DISPPLANE_BGRX565:
2302 return DRM_FORMAT_RGB565;
2303 default:
2304 case DISPPLANE_BGRX888:
2305 return DRM_FORMAT_XRGB8888;
2306 case DISPPLANE_RGBX888:
2307 return DRM_FORMAT_XBGR8888;
2308 case DISPPLANE_BGRX101010:
2309 return DRM_FORMAT_XRGB2101010;
2310 case DISPPLANE_RGBX101010:
2311 return DRM_FORMAT_XBGR2101010;
2312 }
2313}
2314
484b41dd 2315static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2316 struct intel_plane_config *plane_config)
2317{
2318 struct drm_device *dev = crtc->base.dev;
2319 struct drm_i915_gem_object *obj = NULL;
2320 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2321 u32 base = plane_config->base;
2322
ff2652ea
CW
2323 if (plane_config->size == 0)
2324 return false;
2325
46f297fb
JB
2326 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2327 plane_config->size);
2328 if (!obj)
484b41dd 2329 return false;
46f297fb
JB
2330
2331 if (plane_config->tiled) {
2332 obj->tiling_mode = I915_TILING_X;
66e514c1 2333 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2334 }
2335
66e514c1
DA
2336 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2337 mode_cmd.width = crtc->base.primary->fb->width;
2338 mode_cmd.height = crtc->base.primary->fb->height;
2339 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2340
2341 mutex_lock(&dev->struct_mutex);
2342
66e514c1 2343 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2344 &mode_cmd, obj)) {
46f297fb
JB
2345 DRM_DEBUG_KMS("intel fb init failed\n");
2346 goto out_unref_obj;
2347 }
2348
a071fa00 2349 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2350 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2351
2352 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2353 return true;
46f297fb
JB
2354
2355out_unref_obj:
2356 drm_gem_object_unreference(&obj->base);
2357 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2358 return false;
2359}
2360
2361static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2362 struct intel_plane_config *plane_config)
2363{
2364 struct drm_device *dev = intel_crtc->base.dev;
2365 struct drm_crtc *c;
2366 struct intel_crtc *i;
2ff8fde1 2367 struct drm_i915_gem_object *obj;
484b41dd 2368
66e514c1 2369 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2370 return;
2371
2372 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2373 return;
2374
66e514c1
DA
2375 kfree(intel_crtc->base.primary->fb);
2376 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2377
2378 /*
2379 * Failed to alloc the obj, check to see if we should share
2380 * an fb with another CRTC instead
2381 */
70e1e0ec 2382 for_each_crtc(dev, c) {
484b41dd
JB
2383 i = to_intel_crtc(c);
2384
2385 if (c == &intel_crtc->base)
2386 continue;
2387
2ff8fde1
MR
2388 if (!i->active)
2389 continue;
2390
2391 obj = intel_fb_obj(c->primary->fb);
2392 if (obj == NULL)
484b41dd
JB
2393 continue;
2394
2ff8fde1 2395 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2396 drm_framebuffer_reference(c->primary->fb);
2397 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2398 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2399 break;
2400 }
2401 }
46f297fb
JB
2402}
2403
29b9bde6
DV
2404static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2405 struct drm_framebuffer *fb,
2406 int x, int y)
81255565
JB
2407{
2408 struct drm_device *dev = crtc->dev;
2409 struct drm_i915_private *dev_priv = dev->dev_private;
2410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2411 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2412 int plane = intel_crtc->plane;
e506a0c6 2413 unsigned long linear_offset;
81255565 2414 u32 dspcntr;
5eddb70b 2415 u32 reg;
81255565 2416
5eddb70b
CW
2417 reg = DSPCNTR(plane);
2418 dspcntr = I915_READ(reg);
81255565
JB
2419 /* Mask out pixel format bits in case we change it */
2420 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2421 switch (fb->pixel_format) {
2422 case DRM_FORMAT_C8:
81255565
JB
2423 dspcntr |= DISPPLANE_8BPP;
2424 break;
57779d06
VS
2425 case DRM_FORMAT_XRGB1555:
2426 case DRM_FORMAT_ARGB1555:
2427 dspcntr |= DISPPLANE_BGRX555;
81255565 2428 break;
57779d06
VS
2429 case DRM_FORMAT_RGB565:
2430 dspcntr |= DISPPLANE_BGRX565;
2431 break;
2432 case DRM_FORMAT_XRGB8888:
2433 case DRM_FORMAT_ARGB8888:
2434 dspcntr |= DISPPLANE_BGRX888;
2435 break;
2436 case DRM_FORMAT_XBGR8888:
2437 case DRM_FORMAT_ABGR8888:
2438 dspcntr |= DISPPLANE_RGBX888;
2439 break;
2440 case DRM_FORMAT_XRGB2101010:
2441 case DRM_FORMAT_ARGB2101010:
2442 dspcntr |= DISPPLANE_BGRX101010;
2443 break;
2444 case DRM_FORMAT_XBGR2101010:
2445 case DRM_FORMAT_ABGR2101010:
2446 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2447 break;
2448 default:
baba133a 2449 BUG();
81255565 2450 }
57779d06 2451
a6c45cf0 2452 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2453 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2454 dspcntr |= DISPPLANE_TILED;
2455 else
2456 dspcntr &= ~DISPPLANE_TILED;
2457 }
2458
de1aa629
VS
2459 if (IS_G4X(dev))
2460 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2461
5eddb70b 2462 I915_WRITE(reg, dspcntr);
81255565 2463
e506a0c6 2464 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2465
c2c75131
DV
2466 if (INTEL_INFO(dev)->gen >= 4) {
2467 intel_crtc->dspaddr_offset =
bc752862
CW
2468 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2469 fb->bits_per_pixel / 8,
2470 fb->pitches[0]);
c2c75131
DV
2471 linear_offset -= intel_crtc->dspaddr_offset;
2472 } else {
e506a0c6 2473 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2474 }
e506a0c6 2475
f343c5f6
BW
2476 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2477 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2478 fb->pitches[0]);
01f2c773 2479 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2480 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2481 I915_WRITE(DSPSURF(plane),
2482 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2483 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2484 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2485 } else
f343c5f6 2486 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2487 POSTING_READ(reg);
17638cd6
JB
2488}
2489
29b9bde6
DV
2490static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2491 struct drm_framebuffer *fb,
2492 int x, int y)
17638cd6
JB
2493{
2494 struct drm_device *dev = crtc->dev;
2495 struct drm_i915_private *dev_priv = dev->dev_private;
2496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2497 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2498 int plane = intel_crtc->plane;
e506a0c6 2499 unsigned long linear_offset;
17638cd6
JB
2500 u32 dspcntr;
2501 u32 reg;
2502
17638cd6
JB
2503 reg = DSPCNTR(plane);
2504 dspcntr = I915_READ(reg);
2505 /* Mask out pixel format bits in case we change it */
2506 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2507 switch (fb->pixel_format) {
2508 case DRM_FORMAT_C8:
17638cd6
JB
2509 dspcntr |= DISPPLANE_8BPP;
2510 break;
57779d06
VS
2511 case DRM_FORMAT_RGB565:
2512 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2513 break;
57779d06
VS
2514 case DRM_FORMAT_XRGB8888:
2515 case DRM_FORMAT_ARGB8888:
2516 dspcntr |= DISPPLANE_BGRX888;
2517 break;
2518 case DRM_FORMAT_XBGR8888:
2519 case DRM_FORMAT_ABGR8888:
2520 dspcntr |= DISPPLANE_RGBX888;
2521 break;
2522 case DRM_FORMAT_XRGB2101010:
2523 case DRM_FORMAT_ARGB2101010:
2524 dspcntr |= DISPPLANE_BGRX101010;
2525 break;
2526 case DRM_FORMAT_XBGR2101010:
2527 case DRM_FORMAT_ABGR2101010:
2528 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2529 break;
2530 default:
baba133a 2531 BUG();
17638cd6
JB
2532 }
2533
2534 if (obj->tiling_mode != I915_TILING_NONE)
2535 dspcntr |= DISPPLANE_TILED;
2536 else
2537 dspcntr &= ~DISPPLANE_TILED;
2538
b42c6009 2539 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2540 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2541 else
2542 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2543
2544 I915_WRITE(reg, dspcntr);
2545
e506a0c6 2546 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2547 intel_crtc->dspaddr_offset =
bc752862
CW
2548 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2549 fb->bits_per_pixel / 8,
2550 fb->pitches[0]);
c2c75131 2551 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2552
f343c5f6
BW
2553 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2554 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2555 fb->pitches[0]);
01f2c773 2556 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2557 I915_WRITE(DSPSURF(plane),
2558 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2559 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2560 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2561 } else {
2562 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2563 I915_WRITE(DSPLINOFF(plane), linear_offset);
2564 }
17638cd6 2565 POSTING_READ(reg);
17638cd6
JB
2566}
2567
2568/* Assume fb object is pinned & idle & fenced and just update base pointers */
2569static int
2570intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2571 int x, int y, enum mode_set_atomic state)
2572{
2573 struct drm_device *dev = crtc->dev;
2574 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2575
6b8e6ed0
CW
2576 if (dev_priv->display.disable_fbc)
2577 dev_priv->display.disable_fbc(dev);
cc36513c 2578 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2579
29b9bde6
DV
2580 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2581
2582 return 0;
81255565
JB
2583}
2584
96a02917
VS
2585void intel_display_handle_reset(struct drm_device *dev)
2586{
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 struct drm_crtc *crtc;
2589
2590 /*
2591 * Flips in the rings have been nuked by the reset,
2592 * so complete all pending flips so that user space
2593 * will get its events and not get stuck.
2594 *
2595 * Also update the base address of all primary
2596 * planes to the the last fb to make sure we're
2597 * showing the correct fb after a reset.
2598 *
2599 * Need to make two loops over the crtcs so that we
2600 * don't try to grab a crtc mutex before the
2601 * pending_flip_queue really got woken up.
2602 */
2603
70e1e0ec 2604 for_each_crtc(dev, crtc) {
96a02917
VS
2605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2606 enum plane plane = intel_crtc->plane;
2607
2608 intel_prepare_page_flip(dev, plane);
2609 intel_finish_page_flip_plane(dev, plane);
2610 }
2611
70e1e0ec 2612 for_each_crtc(dev, crtc) {
96a02917
VS
2613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2614
51fd371b 2615 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2616 /*
2617 * FIXME: Once we have proper support for primary planes (and
2618 * disabling them without disabling the entire crtc) allow again
66e514c1 2619 * a NULL crtc->primary->fb.
947fdaad 2620 */
f4510a27 2621 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2622 dev_priv->display.update_primary_plane(crtc,
66e514c1 2623 crtc->primary->fb,
262ca2b0
MR
2624 crtc->x,
2625 crtc->y);
51fd371b 2626 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2627 }
2628}
2629
14667a4b
CW
2630static int
2631intel_finish_fb(struct drm_framebuffer *old_fb)
2632{
2ff8fde1 2633 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2634 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2635 bool was_interruptible = dev_priv->mm.interruptible;
2636 int ret;
2637
14667a4b
CW
2638 /* Big Hammer, we also need to ensure that any pending
2639 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2640 * current scanout is retired before unpinning the old
2641 * framebuffer.
2642 *
2643 * This should only fail upon a hung GPU, in which case we
2644 * can safely continue.
2645 */
2646 dev_priv->mm.interruptible = false;
2647 ret = i915_gem_object_finish_gpu(obj);
2648 dev_priv->mm.interruptible = was_interruptible;
2649
2650 return ret;
2651}
2652
7d5e3799
CW
2653static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2654{
2655 struct drm_device *dev = crtc->dev;
2656 struct drm_i915_private *dev_priv = dev->dev_private;
2657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2658 unsigned long flags;
2659 bool pending;
2660
2661 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2662 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2663 return false;
2664
2665 spin_lock_irqsave(&dev->event_lock, flags);
2666 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2667 spin_unlock_irqrestore(&dev->event_lock, flags);
2668
2669 return pending;
2670}
2671
5c3b82e2 2672static int
3c4fdcfb 2673intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2674 struct drm_framebuffer *fb)
79e53945
JB
2675{
2676 struct drm_device *dev = crtc->dev;
6b8e6ed0 2677 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2679 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2680 struct drm_framebuffer *old_fb = crtc->primary->fb;
2681 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2682 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2683 int ret;
79e53945 2684
7d5e3799
CW
2685 if (intel_crtc_has_pending_flip(crtc)) {
2686 DRM_ERROR("pipe is still busy with an old pageflip\n");
2687 return -EBUSY;
2688 }
2689
79e53945 2690 /* no fb bound */
94352cf9 2691 if (!fb) {
a5071c2f 2692 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2693 return 0;
2694 }
2695
7eb552ae 2696 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2697 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2698 plane_name(intel_crtc->plane),
2699 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2700 return -EINVAL;
79e53945
JB
2701 }
2702
5c3b82e2 2703 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2704 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2705 if (ret == 0)
91565c85 2706 i915_gem_track_fb(old_obj, obj,
a071fa00 2707 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2708 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2709 if (ret != 0) {
a5071c2f 2710 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2711 return ret;
2712 }
79e53945 2713
bb2043de
DL
2714 /*
2715 * Update pipe size and adjust fitter if needed: the reason for this is
2716 * that in compute_mode_changes we check the native mode (not the pfit
2717 * mode) to see if we can flip rather than do a full mode set. In the
2718 * fastboot case, we'll flip, but if we don't update the pipesrc and
2719 * pfit state, we'll end up with a big fb scanned out into the wrong
2720 * sized surface.
2721 *
2722 * To fix this properly, we need to hoist the checks up into
2723 * compute_mode_changes (or above), check the actual pfit state and
2724 * whether the platform allows pfit disable with pipe active, and only
2725 * then update the pipesrc and pfit state, even on the flip path.
2726 */
d330a953 2727 if (i915.fastboot) {
d7bf63f2
DL
2728 const struct drm_display_mode *adjusted_mode =
2729 &intel_crtc->config.adjusted_mode;
2730
4d6a3e63 2731 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2732 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2733 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2734 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2735 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2736 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2737 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2738 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2739 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2740 }
0637d60d
JB
2741 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2742 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2743 }
2744
29b9bde6 2745 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2746
f99d7069
DV
2747 if (intel_crtc->active)
2748 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2749
f4510a27 2750 crtc->primary->fb = fb;
6c4c86f5
DV
2751 crtc->x = x;
2752 crtc->y = y;
94352cf9 2753
b7f1de28 2754 if (old_fb) {
d7697eea
DV
2755 if (intel_crtc->active && old_fb != fb)
2756 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
2ff8fde1 2758 intel_unpin_fb_obj(old_obj);
8ac36ec1 2759 mutex_unlock(&dev->struct_mutex);
b7f1de28 2760 }
652c393a 2761
8ac36ec1 2762 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2763 intel_update_fbc(dev);
5c3b82e2 2764 mutex_unlock(&dev->struct_mutex);
79e53945 2765
5c3b82e2 2766 return 0;
79e53945
JB
2767}
2768
5e84e1a4
ZW
2769static void intel_fdi_normal_train(struct drm_crtc *crtc)
2770{
2771 struct drm_device *dev = crtc->dev;
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 int pipe = intel_crtc->pipe;
2775 u32 reg, temp;
2776
2777 /* enable normal train */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
61e499bf 2780 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2781 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2783 } else {
2784 temp &= ~FDI_LINK_TRAIN_NONE;
2785 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2786 }
5e84e1a4
ZW
2787 I915_WRITE(reg, temp);
2788
2789 reg = FDI_RX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if (HAS_PCH_CPT(dev)) {
2792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2794 } else {
2795 temp &= ~FDI_LINK_TRAIN_NONE;
2796 temp |= FDI_LINK_TRAIN_NONE;
2797 }
2798 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2799
2800 /* wait one idle pattern time */
2801 POSTING_READ(reg);
2802 udelay(1000);
357555c0
JB
2803
2804 /* IVB wants error correction enabled */
2805 if (IS_IVYBRIDGE(dev))
2806 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2807 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2808}
2809
1fbc0d78 2810static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2811{
1fbc0d78
DV
2812 return crtc->base.enabled && crtc->active &&
2813 crtc->config.has_pch_encoder;
1e833f40
DV
2814}
2815
01a415fd
DV
2816static void ivb_modeset_global_resources(struct drm_device *dev)
2817{
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 struct intel_crtc *pipe_B_crtc =
2820 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2821 struct intel_crtc *pipe_C_crtc =
2822 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2823 uint32_t temp;
2824
1e833f40
DV
2825 /*
2826 * When everything is off disable fdi C so that we could enable fdi B
2827 * with all lanes. Note that we don't care about enabled pipes without
2828 * an enabled pch encoder.
2829 */
2830 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2831 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2832 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2833 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2834
2835 temp = I915_READ(SOUTH_CHICKEN1);
2836 temp &= ~FDI_BC_BIFURCATION_SELECT;
2837 DRM_DEBUG_KMS("disabling fdi C rx\n");
2838 I915_WRITE(SOUTH_CHICKEN1, temp);
2839 }
2840}
2841
8db9d77b
ZW
2842/* The FDI link training functions for ILK/Ibexpeak. */
2843static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2844{
2845 struct drm_device *dev = crtc->dev;
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2848 int pipe = intel_crtc->pipe;
5eddb70b 2849 u32 reg, temp, tries;
8db9d77b 2850
1c8562f6 2851 /* FDI needs bits from pipe first */
0fc932b8 2852 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2853
e1a44743
AJ
2854 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2855 for train result */
5eddb70b
CW
2856 reg = FDI_RX_IMR(pipe);
2857 temp = I915_READ(reg);
e1a44743
AJ
2858 temp &= ~FDI_RX_SYMBOL_LOCK;
2859 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2860 I915_WRITE(reg, temp);
2861 I915_READ(reg);
e1a44743
AJ
2862 udelay(150);
2863
8db9d77b 2864 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2865 reg = FDI_TX_CTL(pipe);
2866 temp = I915_READ(reg);
627eb5a3
DV
2867 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2868 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2871 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2872
5eddb70b
CW
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
8db9d77b
ZW
2875 temp &= ~FDI_LINK_TRAIN_NONE;
2876 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2877 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2878
2879 POSTING_READ(reg);
8db9d77b
ZW
2880 udelay(150);
2881
5b2adf89 2882 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2883 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2884 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2885 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2886
5eddb70b 2887 reg = FDI_RX_IIR(pipe);
e1a44743 2888 for (tries = 0; tries < 5; tries++) {
5eddb70b 2889 temp = I915_READ(reg);
8db9d77b
ZW
2890 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2891
2892 if ((temp & FDI_RX_BIT_LOCK)) {
2893 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2894 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2895 break;
2896 }
8db9d77b 2897 }
e1a44743 2898 if (tries == 5)
5eddb70b 2899 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2900
2901 /* Train 2 */
5eddb70b
CW
2902 reg = FDI_TX_CTL(pipe);
2903 temp = I915_READ(reg);
8db9d77b
ZW
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2906 I915_WRITE(reg, temp);
8db9d77b 2907
5eddb70b
CW
2908 reg = FDI_RX_CTL(pipe);
2909 temp = I915_READ(reg);
8db9d77b
ZW
2910 temp &= ~FDI_LINK_TRAIN_NONE;
2911 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2912 I915_WRITE(reg, temp);
8db9d77b 2913
5eddb70b
CW
2914 POSTING_READ(reg);
2915 udelay(150);
8db9d77b 2916
5eddb70b 2917 reg = FDI_RX_IIR(pipe);
e1a44743 2918 for (tries = 0; tries < 5; tries++) {
5eddb70b 2919 temp = I915_READ(reg);
8db9d77b
ZW
2920 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2921
2922 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2923 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2924 DRM_DEBUG_KMS("FDI train 2 done.\n");
2925 break;
2926 }
8db9d77b 2927 }
e1a44743 2928 if (tries == 5)
5eddb70b 2929 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2930
2931 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2932
8db9d77b
ZW
2933}
2934
0206e353 2935static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2936 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2937 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2938 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2939 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2940};
2941
2942/* The FDI link training functions for SNB/Cougarpoint. */
2943static void gen6_fdi_link_train(struct drm_crtc *crtc)
2944{
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 int pipe = intel_crtc->pipe;
fa37d39e 2949 u32 reg, temp, i, retry;
8db9d77b 2950
e1a44743
AJ
2951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2952 for train result */
5eddb70b
CW
2953 reg = FDI_RX_IMR(pipe);
2954 temp = I915_READ(reg);
e1a44743
AJ
2955 temp &= ~FDI_RX_SYMBOL_LOCK;
2956 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2957 I915_WRITE(reg, temp);
2958
2959 POSTING_READ(reg);
e1a44743
AJ
2960 udelay(150);
2961
8db9d77b 2962 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2963 reg = FDI_TX_CTL(pipe);
2964 temp = I915_READ(reg);
627eb5a3
DV
2965 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2966 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2967 temp &= ~FDI_LINK_TRAIN_NONE;
2968 temp |= FDI_LINK_TRAIN_PATTERN_1;
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 /* SNB-B */
2971 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2972 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2973
d74cf324
DV
2974 I915_WRITE(FDI_RX_MISC(pipe),
2975 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2976
5eddb70b
CW
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
8db9d77b
ZW
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1;
2985 }
5eddb70b
CW
2986 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2987
2988 POSTING_READ(reg);
8db9d77b
ZW
2989 udelay(150);
2990
0206e353 2991 for (i = 0; i < 4; i++) {
5eddb70b
CW
2992 reg = FDI_TX_CTL(pipe);
2993 temp = I915_READ(reg);
8db9d77b
ZW
2994 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2995 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2996 I915_WRITE(reg, temp);
2997
2998 POSTING_READ(reg);
8db9d77b
ZW
2999 udelay(500);
3000
fa37d39e
SP
3001 for (retry = 0; retry < 5; retry++) {
3002 reg = FDI_RX_IIR(pipe);
3003 temp = I915_READ(reg);
3004 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3005 if (temp & FDI_RX_BIT_LOCK) {
3006 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3007 DRM_DEBUG_KMS("FDI train 1 done.\n");
3008 break;
3009 }
3010 udelay(50);
8db9d77b 3011 }
fa37d39e
SP
3012 if (retry < 5)
3013 break;
8db9d77b
ZW
3014 }
3015 if (i == 4)
5eddb70b 3016 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3017
3018 /* Train 2 */
5eddb70b
CW
3019 reg = FDI_TX_CTL(pipe);
3020 temp = I915_READ(reg);
8db9d77b
ZW
3021 temp &= ~FDI_LINK_TRAIN_NONE;
3022 temp |= FDI_LINK_TRAIN_PATTERN_2;
3023 if (IS_GEN6(dev)) {
3024 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3025 /* SNB-B */
3026 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3027 }
5eddb70b 3028 I915_WRITE(reg, temp);
8db9d77b 3029
5eddb70b
CW
3030 reg = FDI_RX_CTL(pipe);
3031 temp = I915_READ(reg);
8db9d77b
ZW
3032 if (HAS_PCH_CPT(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3034 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_PATTERN_2;
3038 }
5eddb70b
CW
3039 I915_WRITE(reg, temp);
3040
3041 POSTING_READ(reg);
8db9d77b
ZW
3042 udelay(150);
3043
0206e353 3044 for (i = 0; i < 4; i++) {
5eddb70b
CW
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
8db9d77b
ZW
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3049 I915_WRITE(reg, temp);
3050
3051 POSTING_READ(reg);
8db9d77b
ZW
3052 udelay(500);
3053
fa37d39e
SP
3054 for (retry = 0; retry < 5; retry++) {
3055 reg = FDI_RX_IIR(pipe);
3056 temp = I915_READ(reg);
3057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3058 if (temp & FDI_RX_SYMBOL_LOCK) {
3059 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3060 DRM_DEBUG_KMS("FDI train 2 done.\n");
3061 break;
3062 }
3063 udelay(50);
8db9d77b 3064 }
fa37d39e
SP
3065 if (retry < 5)
3066 break;
8db9d77b
ZW
3067 }
3068 if (i == 4)
5eddb70b 3069 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3070
3071 DRM_DEBUG_KMS("FDI train done.\n");
3072}
3073
357555c0
JB
3074/* Manual link training for Ivy Bridge A0 parts */
3075static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3076{
3077 struct drm_device *dev = crtc->dev;
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 int pipe = intel_crtc->pipe;
139ccd3f 3081 u32 reg, temp, i, j;
357555c0
JB
3082
3083 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3084 for train result */
3085 reg = FDI_RX_IMR(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~FDI_RX_SYMBOL_LOCK;
3088 temp &= ~FDI_RX_BIT_LOCK;
3089 I915_WRITE(reg, temp);
3090
3091 POSTING_READ(reg);
3092 udelay(150);
3093
01a415fd
DV
3094 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3095 I915_READ(FDI_RX_IIR(pipe)));
3096
139ccd3f
JB
3097 /* Try each vswing and preemphasis setting twice before moving on */
3098 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3099 /* disable first in case we need to retry */
3100 reg = FDI_TX_CTL(pipe);
3101 temp = I915_READ(reg);
3102 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3103 temp &= ~FDI_TX_ENABLE;
3104 I915_WRITE(reg, temp);
357555c0 3105
139ccd3f
JB
3106 reg = FDI_RX_CTL(pipe);
3107 temp = I915_READ(reg);
3108 temp &= ~FDI_LINK_TRAIN_AUTO;
3109 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3110 temp &= ~FDI_RX_ENABLE;
3111 I915_WRITE(reg, temp);
357555c0 3112
139ccd3f 3113 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
139ccd3f
JB
3116 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3117 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3118 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3119 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3120 temp |= snb_b_fdi_train_param[j/2];
3121 temp |= FDI_COMPOSITE_SYNC;
3122 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3123
139ccd3f
JB
3124 I915_WRITE(FDI_RX_MISC(pipe),
3125 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3126
139ccd3f 3127 reg = FDI_RX_CTL(pipe);
357555c0 3128 temp = I915_READ(reg);
139ccd3f
JB
3129 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3130 temp |= FDI_COMPOSITE_SYNC;
3131 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3132
139ccd3f
JB
3133 POSTING_READ(reg);
3134 udelay(1); /* should be 0.5us */
357555c0 3135
139ccd3f
JB
3136 for (i = 0; i < 4; i++) {
3137 reg = FDI_RX_IIR(pipe);
3138 temp = I915_READ(reg);
3139 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3140
139ccd3f
JB
3141 if (temp & FDI_RX_BIT_LOCK ||
3142 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3143 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3144 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3145 i);
3146 break;
3147 }
3148 udelay(1); /* should be 0.5us */
3149 }
3150 if (i == 4) {
3151 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3152 continue;
3153 }
357555c0 3154
139ccd3f 3155 /* Train 2 */
357555c0
JB
3156 reg = FDI_TX_CTL(pipe);
3157 temp = I915_READ(reg);
139ccd3f
JB
3158 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3159 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3160 I915_WRITE(reg, temp);
3161
3162 reg = FDI_RX_CTL(pipe);
3163 temp = I915_READ(reg);
3164 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3165 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3166 I915_WRITE(reg, temp);
3167
3168 POSTING_READ(reg);
139ccd3f 3169 udelay(2); /* should be 1.5us */
357555c0 3170
139ccd3f
JB
3171 for (i = 0; i < 4; i++) {
3172 reg = FDI_RX_IIR(pipe);
3173 temp = I915_READ(reg);
3174 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3175
139ccd3f
JB
3176 if (temp & FDI_RX_SYMBOL_LOCK ||
3177 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3178 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3179 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3180 i);
3181 goto train_done;
3182 }
3183 udelay(2); /* should be 1.5us */
357555c0 3184 }
139ccd3f
JB
3185 if (i == 4)
3186 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3187 }
357555c0 3188
139ccd3f 3189train_done:
357555c0
JB
3190 DRM_DEBUG_KMS("FDI train done.\n");
3191}
3192
88cefb6c 3193static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3194{
88cefb6c 3195 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3196 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3197 int pipe = intel_crtc->pipe;
5eddb70b 3198 u32 reg, temp;
79e53945 3199
c64e311e 3200
c98e9dcf 3201 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3202 reg = FDI_RX_CTL(pipe);
3203 temp = I915_READ(reg);
627eb5a3
DV
3204 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3205 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3206 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3207 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3208
3209 POSTING_READ(reg);
c98e9dcf
JB
3210 udelay(200);
3211
3212 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3213 temp = I915_READ(reg);
3214 I915_WRITE(reg, temp | FDI_PCDCLK);
3215
3216 POSTING_READ(reg);
c98e9dcf
JB
3217 udelay(200);
3218
20749730
PZ
3219 /* Enable CPU FDI TX PLL, always on for Ironlake */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3223 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3224
20749730
PZ
3225 POSTING_READ(reg);
3226 udelay(100);
6be4a607 3227 }
0e23b99d
JB
3228}
3229
88cefb6c
DV
3230static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3231{
3232 struct drm_device *dev = intel_crtc->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 int pipe = intel_crtc->pipe;
3235 u32 reg, temp;
3236
3237 /* Switch from PCDclk to Rawclk */
3238 reg = FDI_RX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3241
3242 /* Disable CPU FDI TX PLL */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3246
3247 POSTING_READ(reg);
3248 udelay(100);
3249
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
3252 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3253
3254 /* Wait for the clocks to turn off. */
3255 POSTING_READ(reg);
3256 udelay(100);
3257}
3258
0fc932b8
JB
3259static void ironlake_fdi_disable(struct drm_crtc *crtc)
3260{
3261 struct drm_device *dev = crtc->dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3264 int pipe = intel_crtc->pipe;
3265 u32 reg, temp;
3266
3267 /* disable CPU FDI tx and PCH FDI rx */
3268 reg = FDI_TX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3271 POSTING_READ(reg);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~(0x7 << 16);
dfd07d72 3276 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3277 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3278
3279 POSTING_READ(reg);
3280 udelay(100);
3281
3282 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3283 if (HAS_PCH_IBX(dev))
6f06ce18 3284 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3285
3286 /* still set train pattern 1 */
3287 reg = FDI_TX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_1;
3291 I915_WRITE(reg, temp);
3292
3293 reg = FDI_RX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if (HAS_PCH_CPT(dev)) {
3296 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3298 } else {
3299 temp &= ~FDI_LINK_TRAIN_NONE;
3300 temp |= FDI_LINK_TRAIN_PATTERN_1;
3301 }
3302 /* BPC in FDI rx is consistent with that in PIPECONF */
3303 temp &= ~(0x07 << 16);
dfd07d72 3304 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3305 I915_WRITE(reg, temp);
3306
3307 POSTING_READ(reg);
3308 udelay(100);
3309}
3310
5dce5b93
CW
3311bool intel_has_pending_fb_unpin(struct drm_device *dev)
3312{
3313 struct intel_crtc *crtc;
3314
3315 /* Note that we don't need to be called with mode_config.lock here
3316 * as our list of CRTC objects is static for the lifetime of the
3317 * device and so cannot disappear as we iterate. Similarly, we can
3318 * happily treat the predicates as racy, atomic checks as userspace
3319 * cannot claim and pin a new fb without at least acquring the
3320 * struct_mutex and so serialising with us.
3321 */
d3fcc808 3322 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3323 if (atomic_read(&crtc->unpin_work_count) == 0)
3324 continue;
3325
3326 if (crtc->unpin_work)
3327 intel_wait_for_vblank(dev, crtc->pipe);
3328
3329 return true;
3330 }
3331
3332 return false;
3333}
3334
46a55d30 3335void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3336{
0f91128d 3337 struct drm_device *dev = crtc->dev;
5bb61643 3338 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3339
f4510a27 3340 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3341 return;
3342
2c10d571
DV
3343 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3344
eed6d67d
DV
3345 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3346 !intel_crtc_has_pending_flip(crtc),
3347 60*HZ) == 0);
5bb61643 3348
0f91128d 3349 mutex_lock(&dev->struct_mutex);
f4510a27 3350 intel_finish_fb(crtc->primary->fb);
0f91128d 3351 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3352}
3353
e615efe4
ED
3354/* Program iCLKIP clock to the desired frequency */
3355static void lpt_program_iclkip(struct drm_crtc *crtc)
3356{
3357 struct drm_device *dev = crtc->dev;
3358 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3359 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3360 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3361 u32 temp;
3362
09153000
DV
3363 mutex_lock(&dev_priv->dpio_lock);
3364
e615efe4
ED
3365 /* It is necessary to ungate the pixclk gate prior to programming
3366 * the divisors, and gate it back when it is done.
3367 */
3368 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3369
3370 /* Disable SSCCTL */
3371 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3372 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3373 SBI_SSCCTL_DISABLE,
3374 SBI_ICLK);
e615efe4
ED
3375
3376 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3377 if (clock == 20000) {
e615efe4
ED
3378 auxdiv = 1;
3379 divsel = 0x41;
3380 phaseinc = 0x20;
3381 } else {
3382 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3383 * but the adjusted_mode->crtc_clock in in KHz. To get the
3384 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3385 * convert the virtual clock precision to KHz here for higher
3386 * precision.
3387 */
3388 u32 iclk_virtual_root_freq = 172800 * 1000;
3389 u32 iclk_pi_range = 64;
3390 u32 desired_divisor, msb_divisor_value, pi_value;
3391
12d7ceed 3392 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3393 msb_divisor_value = desired_divisor / iclk_pi_range;
3394 pi_value = desired_divisor % iclk_pi_range;
3395
3396 auxdiv = 0;
3397 divsel = msb_divisor_value - 2;
3398 phaseinc = pi_value;
3399 }
3400
3401 /* This should not happen with any sane values */
3402 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3403 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3404 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3405 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3406
3407 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3408 clock,
e615efe4
ED
3409 auxdiv,
3410 divsel,
3411 phasedir,
3412 phaseinc);
3413
3414 /* Program SSCDIVINTPHASE6 */
988d6ee8 3415 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3416 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3417 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3418 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3419 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3420 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3421 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3422 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3423
3424 /* Program SSCAUXDIV */
988d6ee8 3425 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3426 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3427 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Enable modulator and associated divider */
988d6ee8 3431 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3432 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3433 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3434
3435 /* Wait for initialization time */
3436 udelay(24);
3437
3438 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3439
3440 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3441}
3442
275f01b2
DV
3443static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3444 enum pipe pch_transcoder)
3445{
3446 struct drm_device *dev = crtc->base.dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3449
3450 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3451 I915_READ(HTOTAL(cpu_transcoder)));
3452 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3453 I915_READ(HBLANK(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3455 I915_READ(HSYNC(cpu_transcoder)));
3456
3457 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3458 I915_READ(VTOTAL(cpu_transcoder)));
3459 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3460 I915_READ(VBLANK(cpu_transcoder)));
3461 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3462 I915_READ(VSYNC(cpu_transcoder)));
3463 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3464 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3465}
3466
1fbc0d78
DV
3467static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3468{
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t temp;
3471
3472 temp = I915_READ(SOUTH_CHICKEN1);
3473 if (temp & FDI_BC_BIFURCATION_SELECT)
3474 return;
3475
3476 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3477 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3478
3479 temp |= FDI_BC_BIFURCATION_SELECT;
3480 DRM_DEBUG_KMS("enabling fdi C rx\n");
3481 I915_WRITE(SOUTH_CHICKEN1, temp);
3482 POSTING_READ(SOUTH_CHICKEN1);
3483}
3484
3485static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3486{
3487 struct drm_device *dev = intel_crtc->base.dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490 switch (intel_crtc->pipe) {
3491 case PIPE_A:
3492 break;
3493 case PIPE_B:
3494 if (intel_crtc->config.fdi_lanes > 2)
3495 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3496 else
3497 cpt_enable_fdi_bc_bifurcation(dev);
3498
3499 break;
3500 case PIPE_C:
3501 cpt_enable_fdi_bc_bifurcation(dev);
3502
3503 break;
3504 default:
3505 BUG();
3506 }
3507}
3508
f67a559d
JB
3509/*
3510 * Enable PCH resources required for PCH ports:
3511 * - PCH PLLs
3512 * - FDI training & RX/TX
3513 * - update transcoder timings
3514 * - DP transcoding bits
3515 * - transcoder
3516 */
3517static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3518{
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 int pipe = intel_crtc->pipe;
ee7b9f93 3523 u32 reg, temp;
2c07245f 3524
ab9412ba 3525 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3526
1fbc0d78
DV
3527 if (IS_IVYBRIDGE(dev))
3528 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3529
cd986abb
DV
3530 /* Write the TU size bits before fdi link training, so that error
3531 * detection works. */
3532 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3533 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3534
c98e9dcf 3535 /* For PCH output, training FDI link */
674cf967 3536 dev_priv->display.fdi_link_train(crtc);
2c07245f 3537
3ad8a208
DV
3538 /* We need to program the right clock selection before writing the pixel
3539 * mutliplier into the DPLL. */
303b81e0 3540 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3541 u32 sel;
4b645f14 3542
c98e9dcf 3543 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3544 temp |= TRANS_DPLL_ENABLE(pipe);
3545 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3546 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3547 temp |= sel;
3548 else
3549 temp &= ~sel;
c98e9dcf 3550 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3551 }
5eddb70b 3552
3ad8a208
DV
3553 /* XXX: pch pll's can be enabled any time before we enable the PCH
3554 * transcoder, and we actually should do this to not upset any PCH
3555 * transcoder that already use the clock when we share it.
3556 *
3557 * Note that enable_shared_dpll tries to do the right thing, but
3558 * get_shared_dpll unconditionally resets the pll - we need that to have
3559 * the right LVDS enable sequence. */
85b3894f 3560 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3561
d9b6cb56
JB
3562 /* set transcoder timing, panel must allow it */
3563 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3564 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3565
303b81e0 3566 intel_fdi_normal_train(crtc);
5e84e1a4 3567
c98e9dcf
JB
3568 /* For PCH DP, enable TRANS_DP_CTL */
3569 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3570 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3571 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3572 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3573 reg = TRANS_DP_CTL(pipe);
3574 temp = I915_READ(reg);
3575 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3576 TRANS_DP_SYNC_MASK |
3577 TRANS_DP_BPC_MASK);
5eddb70b
CW
3578 temp |= (TRANS_DP_OUTPUT_ENABLE |
3579 TRANS_DP_ENH_FRAMING);
9325c9f0 3580 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3581
3582 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3583 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3584 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3585 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3586
3587 switch (intel_trans_dp_port_sel(crtc)) {
3588 case PCH_DP_B:
5eddb70b 3589 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3590 break;
3591 case PCH_DP_C:
5eddb70b 3592 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3593 break;
3594 case PCH_DP_D:
5eddb70b 3595 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3596 break;
3597 default:
e95d41e1 3598 BUG();
32f9d658 3599 }
2c07245f 3600
5eddb70b 3601 I915_WRITE(reg, temp);
6be4a607 3602 }
b52eb4dc 3603
b8a4f404 3604 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3605}
3606
1507e5bd
PZ
3607static void lpt_pch_enable(struct drm_crtc *crtc)
3608{
3609 struct drm_device *dev = crtc->dev;
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3612 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3613
ab9412ba 3614 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3615
8c52b5e8 3616 lpt_program_iclkip(crtc);
1507e5bd 3617
0540e488 3618 /* Set transcoder timing. */
275f01b2 3619 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3620
937bb610 3621 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3622}
3623
e2b78267 3624static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3625{
e2b78267 3626 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3627
3628 if (pll == NULL)
3629 return;
3630
3631 if (pll->refcount == 0) {
46edb027 3632 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3633 return;
3634 }
3635
f4a091c7
DV
3636 if (--pll->refcount == 0) {
3637 WARN_ON(pll->on);
3638 WARN_ON(pll->active);
3639 }
3640
a43f6e0f 3641 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3642}
3643
b89a1d39 3644static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3645{
e2b78267
DV
3646 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3647 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3648 enum intel_dpll_id i;
ee7b9f93 3649
ee7b9f93 3650 if (pll) {
46edb027
DV
3651 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3652 crtc->base.base.id, pll->name);
e2b78267 3653 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3654 }
3655
98b6bd99
DV
3656 if (HAS_PCH_IBX(dev_priv->dev)) {
3657 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3658 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3659 pll = &dev_priv->shared_dplls[i];
98b6bd99 3660
46edb027
DV
3661 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3662 crtc->base.base.id, pll->name);
98b6bd99 3663
f2a69f44
DV
3664 WARN_ON(pll->refcount);
3665
98b6bd99
DV
3666 goto found;
3667 }
3668
e72f9fbf
DV
3669 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3670 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3671
3672 /* Only want to check enabled timings first */
3673 if (pll->refcount == 0)
3674 continue;
3675
b89a1d39
DV
3676 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3677 sizeof(pll->hw_state)) == 0) {
46edb027 3678 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3679 crtc->base.base.id,
46edb027 3680 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3681
3682 goto found;
3683 }
3684 }
3685
3686 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3687 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3688 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3689 if (pll->refcount == 0) {
46edb027
DV
3690 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3691 crtc->base.base.id, pll->name);
ee7b9f93
JB
3692 goto found;
3693 }
3694 }
3695
3696 return NULL;
3697
3698found:
f2a69f44
DV
3699 if (pll->refcount == 0)
3700 pll->hw_state = crtc->config.dpll_hw_state;
3701
a43f6e0f 3702 crtc->config.shared_dpll = i;
46edb027
DV
3703 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3704 pipe_name(crtc->pipe));
ee7b9f93 3705
cdbd2316 3706 pll->refcount++;
e04c7350 3707
ee7b9f93
JB
3708 return pll;
3709}
3710
a1520318 3711static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3712{
3713 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3714 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3715 u32 temp;
3716
3717 temp = I915_READ(dslreg);
3718 udelay(500);
3719 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3720 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3721 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3722 }
3723}
3724
b074cec8
JB
3725static void ironlake_pfit_enable(struct intel_crtc *crtc)
3726{
3727 struct drm_device *dev = crtc->base.dev;
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 int pipe = crtc->pipe;
3730
fd4daa9c 3731 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3732 /* Force use of hard-coded filter coefficients
3733 * as some pre-programmed values are broken,
3734 * e.g. x201.
3735 */
3736 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3737 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3738 PF_PIPE_SEL_IVB(pipe));
3739 else
3740 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3741 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3742 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3743 }
3744}
3745
bb53d4ae
VS
3746static void intel_enable_planes(struct drm_crtc *crtc)
3747{
3748 struct drm_device *dev = crtc->dev;
3749 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3750 struct drm_plane *plane;
bb53d4ae
VS
3751 struct intel_plane *intel_plane;
3752
af2b653b
MR
3753 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3754 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3755 if (intel_plane->pipe == pipe)
3756 intel_plane_restore(&intel_plane->base);
af2b653b 3757 }
bb53d4ae
VS
3758}
3759
3760static void intel_disable_planes(struct drm_crtc *crtc)
3761{
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3764 struct drm_plane *plane;
bb53d4ae
VS
3765 struct intel_plane *intel_plane;
3766
af2b653b
MR
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_disable(&intel_plane->base);
af2b653b 3771 }
bb53d4ae
VS
3772}
3773
20bc8673 3774void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3775{
cea165c3
VS
3776 struct drm_device *dev = crtc->base.dev;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3778
3779 if (!crtc->config.ips_enabled)
3780 return;
3781
cea165c3
VS
3782 /* We can only enable IPS after we enable a plane and wait for a vblank */
3783 intel_wait_for_vblank(dev, crtc->pipe);
3784
d77e4531 3785 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3786 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3789 mutex_unlock(&dev_priv->rps.hw_lock);
3790 /* Quoting Art Runyan: "its not safe to expect any particular
3791 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3792 * mailbox." Moreover, the mailbox may return a bogus state,
3793 * so we need to just enable it and continue on.
2a114cc1
BW
3794 */
3795 } else {
3796 I915_WRITE(IPS_CTL, IPS_ENABLE);
3797 /* The bit only becomes 1 in the next vblank, so this wait here
3798 * is essentially intel_wait_for_vblank. If we don't have this
3799 * and don't wait for vblanks until the end of crtc_enable, then
3800 * the HW state readout code will complain that the expected
3801 * IPS_CTL value is not the one we read. */
3802 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3803 DRM_ERROR("Timed out waiting for IPS enable\n");
3804 }
d77e4531
PZ
3805}
3806
20bc8673 3807void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3808{
3809 struct drm_device *dev = crtc->base.dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811
3812 if (!crtc->config.ips_enabled)
3813 return;
3814
3815 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3816 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3817 mutex_lock(&dev_priv->rps.hw_lock);
3818 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3819 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3820 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3821 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3822 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3823 } else {
2a114cc1 3824 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3825 POSTING_READ(IPS_CTL);
3826 }
d77e4531
PZ
3827
3828 /* We need to wait for a vblank before we can disable the plane. */
3829 intel_wait_for_vblank(dev, crtc->pipe);
3830}
3831
3832/** Loads the palette/gamma unit for the CRTC with the prepared values */
3833static void intel_crtc_load_lut(struct drm_crtc *crtc)
3834{
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3838 enum pipe pipe = intel_crtc->pipe;
3839 int palreg = PALETTE(pipe);
3840 int i;
3841 bool reenable_ips = false;
3842
3843 /* The clocks have to be on to load the palette. */
3844 if (!crtc->enabled || !intel_crtc->active)
3845 return;
3846
3847 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3848 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3849 assert_dsi_pll_enabled(dev_priv);
3850 else
3851 assert_pll_enabled(dev_priv, pipe);
3852 }
3853
3854 /* use legacy palette for Ironlake */
3855 if (HAS_PCH_SPLIT(dev))
3856 palreg = LGC_PALETTE(pipe);
3857
3858 /* Workaround : Do not read or write the pipe palette/gamma data while
3859 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3860 */
41e6fc4c 3861 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3862 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3863 GAMMA_MODE_MODE_SPLIT)) {
3864 hsw_disable_ips(intel_crtc);
3865 reenable_ips = true;
3866 }
3867
3868 for (i = 0; i < 256; i++) {
3869 I915_WRITE(palreg + 4 * i,
3870 (intel_crtc->lut_r[i] << 16) |
3871 (intel_crtc->lut_g[i] << 8) |
3872 intel_crtc->lut_b[i]);
3873 }
3874
3875 if (reenable_ips)
3876 hsw_enable_ips(intel_crtc);
3877}
3878
d3eedb1a
VS
3879static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3880{
3881 if (!enable && intel_crtc->overlay) {
3882 struct drm_device *dev = intel_crtc->base.dev;
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884
3885 mutex_lock(&dev->struct_mutex);
3886 dev_priv->mm.interruptible = false;
3887 (void) intel_overlay_switch_off(intel_crtc->overlay);
3888 dev_priv->mm.interruptible = true;
3889 mutex_unlock(&dev->struct_mutex);
3890 }
3891
3892 /* Let userspace switch the overlay on again. In most cases userspace
3893 * has to recompute where to put it anyway.
3894 */
3895}
3896
d3eedb1a 3897static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3898{
3899 struct drm_device *dev = crtc->dev;
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902 int pipe = intel_crtc->pipe;
3903 int plane = intel_crtc->plane;
3904
f98551ae
VS
3905 drm_vblank_on(dev, pipe);
3906
a5c4d7bc
VS
3907 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3908 intel_enable_planes(crtc);
3909 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3910 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3911
3912 hsw_enable_ips(intel_crtc);
3913
3914 mutex_lock(&dev->struct_mutex);
3915 intel_update_fbc(dev);
3916 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3917
3918 /*
3919 * FIXME: Once we grow proper nuclear flip support out of this we need
3920 * to compute the mask of flip planes precisely. For the time being
3921 * consider this a flip from a NULL plane.
3922 */
3923 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3924}
3925
d3eedb1a 3926static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3927{
3928 struct drm_device *dev = crtc->dev;
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3931 int pipe = intel_crtc->pipe;
3932 int plane = intel_crtc->plane;
3933
3934 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3935
3936 if (dev_priv->fbc.plane == plane)
3937 intel_disable_fbc(dev);
3938
3939 hsw_disable_ips(intel_crtc);
3940
d3eedb1a 3941 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3942 intel_crtc_update_cursor(crtc, false);
3943 intel_disable_planes(crtc);
3944 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3945
f99d7069
DV
3946 /*
3947 * FIXME: Once we grow proper nuclear flip support out of this we need
3948 * to compute the mask of flip planes precisely. For the time being
3949 * consider this a flip to a NULL plane.
3950 */
3951 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3952
f98551ae 3953 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3954}
3955
f67a559d
JB
3956static void ironlake_crtc_enable(struct drm_crtc *crtc)
3957{
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3961 struct intel_encoder *encoder;
f67a559d 3962 int pipe = intel_crtc->pipe;
29407aab 3963 enum plane plane = intel_crtc->plane;
f67a559d 3964
08a48469
DV
3965 WARN_ON(!crtc->enabled);
3966
f67a559d
JB
3967 if (intel_crtc->active)
3968 return;
3969
b14b1055
DV
3970 if (intel_crtc->config.has_pch_encoder)
3971 intel_prepare_shared_dpll(intel_crtc);
3972
29407aab
DV
3973 if (intel_crtc->config.has_dp_encoder)
3974 intel_dp_set_m_n(intel_crtc);
3975
3976 intel_set_pipe_timings(intel_crtc);
3977
3978 if (intel_crtc->config.has_pch_encoder) {
3979 intel_cpu_transcoder_set_m_n(intel_crtc,
3980 &intel_crtc->config.fdi_m_n);
3981 }
3982
3983 ironlake_set_pipeconf(crtc);
3984
3985 /* Set up the display plane register */
3986 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3987 POSTING_READ(DSPCNTR(plane));
3988
3989 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3990 crtc->x, crtc->y);
3991
f67a559d 3992 intel_crtc->active = true;
8664281b
PZ
3993
3994 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3995 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3996
f6736a1a 3997 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3998 if (encoder->pre_enable)
3999 encoder->pre_enable(encoder);
f67a559d 4000
5bfe2ac0 4001 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4002 /* Note: FDI PLL enabling _must_ be done before we enable the
4003 * cpu pipes, hence this is separate from all the other fdi/pch
4004 * enabling. */
88cefb6c 4005 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4006 } else {
4007 assert_fdi_tx_disabled(dev_priv, pipe);
4008 assert_fdi_rx_disabled(dev_priv, pipe);
4009 }
f67a559d 4010
b074cec8 4011 ironlake_pfit_enable(intel_crtc);
f67a559d 4012
9c54c0dd
JB
4013 /*
4014 * On ILK+ LUT must be loaded before the pipe is running but with
4015 * clocks enabled
4016 */
4017 intel_crtc_load_lut(crtc);
4018
f37fcc2a 4019 intel_update_watermarks(crtc);
e1fdc473 4020 intel_enable_pipe(intel_crtc);
f67a559d 4021
5bfe2ac0 4022 if (intel_crtc->config.has_pch_encoder)
f67a559d 4023 ironlake_pch_enable(crtc);
c98e9dcf 4024
fa5c73b1
DV
4025 for_each_encoder_on_crtc(dev, crtc, encoder)
4026 encoder->enable(encoder);
61b77ddd
DV
4027
4028 if (HAS_PCH_CPT(dev))
a1520318 4029 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4030
d3eedb1a 4031 intel_crtc_enable_planes(crtc);
6be4a607
JB
4032}
4033
42db64ef
PZ
4034/* IPS only exists on ULT machines and is tied to pipe A. */
4035static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4036{
f5adf94e 4037 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4038}
4039
e4916946
PZ
4040/*
4041 * This implements the workaround described in the "notes" section of the mode
4042 * set sequence documentation. When going from no pipes or single pipe to
4043 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4044 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4045 */
4046static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4047{
4048 struct drm_device *dev = crtc->base.dev;
4049 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4050
4051 /* We want to get the other_active_crtc only if there's only 1 other
4052 * active crtc. */
d3fcc808 4053 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4054 if (!crtc_it->active || crtc_it == crtc)
4055 continue;
4056
4057 if (other_active_crtc)
4058 return;
4059
4060 other_active_crtc = crtc_it;
4061 }
4062 if (!other_active_crtc)
4063 return;
4064
4065 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4066 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4067}
4068
4f771f10
PZ
4069static void haswell_crtc_enable(struct drm_crtc *crtc)
4070{
4071 struct drm_device *dev = crtc->dev;
4072 struct drm_i915_private *dev_priv = dev->dev_private;
4073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074 struct intel_encoder *encoder;
4075 int pipe = intel_crtc->pipe;
229fca97 4076 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4077
4078 WARN_ON(!crtc->enabled);
4079
4080 if (intel_crtc->active)
4081 return;
4082
229fca97
DV
4083 if (intel_crtc->config.has_dp_encoder)
4084 intel_dp_set_m_n(intel_crtc);
4085
4086 intel_set_pipe_timings(intel_crtc);
4087
4088 if (intel_crtc->config.has_pch_encoder) {
4089 intel_cpu_transcoder_set_m_n(intel_crtc,
4090 &intel_crtc->config.fdi_m_n);
4091 }
4092
4093 haswell_set_pipeconf(crtc);
4094
4095 intel_set_pipe_csc(crtc);
4096
4097 /* Set up the display plane register */
4098 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4099 POSTING_READ(DSPCNTR(plane));
4100
4101 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4102 crtc->x, crtc->y);
4103
4f771f10 4104 intel_crtc->active = true;
8664281b
PZ
4105
4106 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4107 for_each_encoder_on_crtc(dev, crtc, encoder)
4108 if (encoder->pre_enable)
4109 encoder->pre_enable(encoder);
4110
4fe9467d
ID
4111 if (intel_crtc->config.has_pch_encoder) {
4112 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4113 dev_priv->display.fdi_link_train(crtc);
4114 }
4115
1f544388 4116 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4117
b074cec8 4118 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4119
4120 /*
4121 * On ILK+ LUT must be loaded before the pipe is running but with
4122 * clocks enabled
4123 */
4124 intel_crtc_load_lut(crtc);
4125
1f544388 4126 intel_ddi_set_pipe_settings(crtc);
8228c251 4127 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4128
f37fcc2a 4129 intel_update_watermarks(crtc);
e1fdc473 4130 intel_enable_pipe(intel_crtc);
42db64ef 4131
5bfe2ac0 4132 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4133 lpt_pch_enable(crtc);
4f771f10 4134
8807e55b 4135 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4136 encoder->enable(encoder);
8807e55b
JN
4137 intel_opregion_notify_encoder(encoder, true);
4138 }
4f771f10 4139
e4916946
PZ
4140 /* If we change the relative order between pipe/planes enabling, we need
4141 * to change the workaround. */
4142 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4143 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4144}
4145
3f8dce3a
DV
4146static void ironlake_pfit_disable(struct intel_crtc *crtc)
4147{
4148 struct drm_device *dev = crtc->base.dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 int pipe = crtc->pipe;
4151
4152 /* To avoid upsetting the power well on haswell only disable the pfit if
4153 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4154 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4155 I915_WRITE(PF_CTL(pipe), 0);
4156 I915_WRITE(PF_WIN_POS(pipe), 0);
4157 I915_WRITE(PF_WIN_SZ(pipe), 0);
4158 }
4159}
4160
6be4a607
JB
4161static void ironlake_crtc_disable(struct drm_crtc *crtc)
4162{
4163 struct drm_device *dev = crtc->dev;
4164 struct drm_i915_private *dev_priv = dev->dev_private;
4165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4166 struct intel_encoder *encoder;
6be4a607 4167 int pipe = intel_crtc->pipe;
5eddb70b 4168 u32 reg, temp;
b52eb4dc 4169
f7abfe8b
CW
4170 if (!intel_crtc->active)
4171 return;
4172
d3eedb1a 4173 intel_crtc_disable_planes(crtc);
a5c4d7bc 4174
ea9d758d
DV
4175 for_each_encoder_on_crtc(dev, crtc, encoder)
4176 encoder->disable(encoder);
4177
d925c59a
DV
4178 if (intel_crtc->config.has_pch_encoder)
4179 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4180
b24e7179 4181 intel_disable_pipe(dev_priv, pipe);
32f9d658 4182
3f8dce3a 4183 ironlake_pfit_disable(intel_crtc);
2c07245f 4184
bf49ec8c
DV
4185 for_each_encoder_on_crtc(dev, crtc, encoder)
4186 if (encoder->post_disable)
4187 encoder->post_disable(encoder);
2c07245f 4188
d925c59a
DV
4189 if (intel_crtc->config.has_pch_encoder) {
4190 ironlake_fdi_disable(crtc);
913d8d11 4191
d925c59a
DV
4192 ironlake_disable_pch_transcoder(dev_priv, pipe);
4193 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4194
d925c59a
DV
4195 if (HAS_PCH_CPT(dev)) {
4196 /* disable TRANS_DP_CTL */
4197 reg = TRANS_DP_CTL(pipe);
4198 temp = I915_READ(reg);
4199 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4200 TRANS_DP_PORT_SEL_MASK);
4201 temp |= TRANS_DP_PORT_SEL_NONE;
4202 I915_WRITE(reg, temp);
4203
4204 /* disable DPLL_SEL */
4205 temp = I915_READ(PCH_DPLL_SEL);
11887397 4206 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4207 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4208 }
e3421a18 4209
d925c59a 4210 /* disable PCH DPLL */
e72f9fbf 4211 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4212
d925c59a
DV
4213 ironlake_fdi_pll_disable(intel_crtc);
4214 }
6b383a7f 4215
f7abfe8b 4216 intel_crtc->active = false;
46ba614c 4217 intel_update_watermarks(crtc);
d1ebd816
BW
4218
4219 mutex_lock(&dev->struct_mutex);
6b383a7f 4220 intel_update_fbc(dev);
d1ebd816 4221 mutex_unlock(&dev->struct_mutex);
6be4a607 4222}
1b3c7a47 4223
4f771f10 4224static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4225{
4f771f10
PZ
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4229 struct intel_encoder *encoder;
4230 int pipe = intel_crtc->pipe;
3b117c8f 4231 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4232
4f771f10
PZ
4233 if (!intel_crtc->active)
4234 return;
4235
d3eedb1a 4236 intel_crtc_disable_planes(crtc);
dda9a66a 4237
8807e55b
JN
4238 for_each_encoder_on_crtc(dev, crtc, encoder) {
4239 intel_opregion_notify_encoder(encoder, false);
4f771f10 4240 encoder->disable(encoder);
8807e55b 4241 }
4f771f10 4242
8664281b
PZ
4243 if (intel_crtc->config.has_pch_encoder)
4244 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4245 intel_disable_pipe(dev_priv, pipe);
4246
ad80a810 4247 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4248
3f8dce3a 4249 ironlake_pfit_disable(intel_crtc);
4f771f10 4250
1f544388 4251 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4252
88adfff1 4253 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4254 lpt_disable_pch_transcoder(dev_priv);
8664281b 4255 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4256 intel_ddi_fdi_disable(crtc);
83616634 4257 }
4f771f10 4258
97b040aa
ID
4259 for_each_encoder_on_crtc(dev, crtc, encoder)
4260 if (encoder->post_disable)
4261 encoder->post_disable(encoder);
4262
4f771f10 4263 intel_crtc->active = false;
46ba614c 4264 intel_update_watermarks(crtc);
4f771f10
PZ
4265
4266 mutex_lock(&dev->struct_mutex);
4267 intel_update_fbc(dev);
4268 mutex_unlock(&dev->struct_mutex);
4269}
4270
ee7b9f93
JB
4271static void ironlake_crtc_off(struct drm_crtc *crtc)
4272{
4273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4274 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4275}
4276
6441ab5f
PZ
4277static void haswell_crtc_off(struct drm_crtc *crtc)
4278{
4279 intel_ddi_put_crtc_pll(crtc);
4280}
4281
2dd24552
JB
4282static void i9xx_pfit_enable(struct intel_crtc *crtc)
4283{
4284 struct drm_device *dev = crtc->base.dev;
4285 struct drm_i915_private *dev_priv = dev->dev_private;
4286 struct intel_crtc_config *pipe_config = &crtc->config;
4287
328d8e82 4288 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4289 return;
4290
2dd24552 4291 /*
c0b03411
DV
4292 * The panel fitter should only be adjusted whilst the pipe is disabled,
4293 * according to register description and PRM.
2dd24552 4294 */
c0b03411
DV
4295 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4296 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4297
b074cec8
JB
4298 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4299 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4300
4301 /* Border color in case we don't scale up to the full screen. Black by
4302 * default, change to something else for debugging. */
4303 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4304}
4305
77d22dca
ID
4306#define for_each_power_domain(domain, mask) \
4307 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4308 if ((1 << (domain)) & (mask))
4309
319be8ae
ID
4310enum intel_display_power_domain
4311intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4312{
4313 struct drm_device *dev = intel_encoder->base.dev;
4314 struct intel_digital_port *intel_dig_port;
4315
4316 switch (intel_encoder->type) {
4317 case INTEL_OUTPUT_UNKNOWN:
4318 /* Only DDI platforms should ever use this output type */
4319 WARN_ON_ONCE(!HAS_DDI(dev));
4320 case INTEL_OUTPUT_DISPLAYPORT:
4321 case INTEL_OUTPUT_HDMI:
4322 case INTEL_OUTPUT_EDP:
4323 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4324 switch (intel_dig_port->port) {
4325 case PORT_A:
4326 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4327 case PORT_B:
4328 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4329 case PORT_C:
4330 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4331 case PORT_D:
4332 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4333 default:
4334 WARN_ON_ONCE(1);
4335 return POWER_DOMAIN_PORT_OTHER;
4336 }
4337 case INTEL_OUTPUT_ANALOG:
4338 return POWER_DOMAIN_PORT_CRT;
4339 case INTEL_OUTPUT_DSI:
4340 return POWER_DOMAIN_PORT_DSI;
4341 default:
4342 return POWER_DOMAIN_PORT_OTHER;
4343 }
4344}
4345
4346static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4347{
319be8ae
ID
4348 struct drm_device *dev = crtc->dev;
4349 struct intel_encoder *intel_encoder;
4350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4351 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4352 unsigned long mask;
4353 enum transcoder transcoder;
4354
4355 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4356
4357 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4358 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4359 if (intel_crtc->config.pch_pfit.enabled ||
4360 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4361 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4362
319be8ae
ID
4363 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4364 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4365
77d22dca
ID
4366 return mask;
4367}
4368
4369void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4370 bool enable)
4371{
4372 if (dev_priv->power_domains.init_power_on == enable)
4373 return;
4374
4375 if (enable)
4376 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4377 else
4378 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4379
4380 dev_priv->power_domains.init_power_on = enable;
4381}
4382
4383static void modeset_update_crtc_power_domains(struct drm_device *dev)
4384{
4385 struct drm_i915_private *dev_priv = dev->dev_private;
4386 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4387 struct intel_crtc *crtc;
4388
4389 /*
4390 * First get all needed power domains, then put all unneeded, to avoid
4391 * any unnecessary toggling of the power wells.
4392 */
d3fcc808 4393 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4394 enum intel_display_power_domain domain;
4395
4396 if (!crtc->base.enabled)
4397 continue;
4398
319be8ae 4399 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4400
4401 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4402 intel_display_power_get(dev_priv, domain);
4403 }
4404
d3fcc808 4405 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4406 enum intel_display_power_domain domain;
4407
4408 for_each_power_domain(domain, crtc->enabled_power_domains)
4409 intel_display_power_put(dev_priv, domain);
4410
4411 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4412 }
4413
4414 intel_display_set_init_power(dev_priv, false);
4415}
4416
dfcab17e 4417/* returns HPLL frequency in kHz */
f8bf63fd 4418static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4419{
586f49dc 4420 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4421
586f49dc
JB
4422 /* Obtain SKU information */
4423 mutex_lock(&dev_priv->dpio_lock);
4424 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4425 CCK_FUSE_HPLL_FREQ_MASK;
4426 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4427
dfcab17e 4428 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4429}
4430
f8bf63fd
VS
4431static void vlv_update_cdclk(struct drm_device *dev)
4432{
4433 struct drm_i915_private *dev_priv = dev->dev_private;
4434
4435 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4436 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4437 dev_priv->vlv_cdclk_freq);
4438
4439 /*
4440 * Program the gmbus_freq based on the cdclk frequency.
4441 * BSpec erroneously claims we should aim for 4MHz, but
4442 * in fact 1MHz is the correct frequency.
4443 */
4444 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4445}
4446
30a970c6
JB
4447/* Adjust CDclk dividers to allow high res or save power if possible */
4448static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4449{
4450 struct drm_i915_private *dev_priv = dev->dev_private;
4451 u32 val, cmd;
4452
d197b7d3 4453 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4454
dfcab17e 4455 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4456 cmd = 2;
dfcab17e 4457 else if (cdclk == 266667)
30a970c6
JB
4458 cmd = 1;
4459 else
4460 cmd = 0;
4461
4462 mutex_lock(&dev_priv->rps.hw_lock);
4463 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4464 val &= ~DSPFREQGUAR_MASK;
4465 val |= (cmd << DSPFREQGUAR_SHIFT);
4466 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4467 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4468 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4469 50)) {
4470 DRM_ERROR("timed out waiting for CDclk change\n");
4471 }
4472 mutex_unlock(&dev_priv->rps.hw_lock);
4473
dfcab17e 4474 if (cdclk == 400000) {
30a970c6
JB
4475 u32 divider, vco;
4476
4477 vco = valleyview_get_vco(dev_priv);
dfcab17e 4478 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4479
4480 mutex_lock(&dev_priv->dpio_lock);
4481 /* adjust cdclk divider */
4482 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4483 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4484 val |= divider;
4485 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4486
4487 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4488 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4489 50))
4490 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4491 mutex_unlock(&dev_priv->dpio_lock);
4492 }
4493
4494 mutex_lock(&dev_priv->dpio_lock);
4495 /* adjust self-refresh exit latency value */
4496 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4497 val &= ~0x7f;
4498
4499 /*
4500 * For high bandwidth configs, we set a higher latency in the bunit
4501 * so that the core display fetch happens in time to avoid underruns.
4502 */
dfcab17e 4503 if (cdclk == 400000)
30a970c6
JB
4504 val |= 4500 / 250; /* 4.5 usec */
4505 else
4506 val |= 3000 / 250; /* 3.0 usec */
4507 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4508 mutex_unlock(&dev_priv->dpio_lock);
4509
f8bf63fd 4510 vlv_update_cdclk(dev);
30a970c6
JB
4511}
4512
30a970c6
JB
4513static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4514 int max_pixclk)
4515{
29dc7ef3
VS
4516 int vco = valleyview_get_vco(dev_priv);
4517 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4518
30a970c6
JB
4519 /*
4520 * Really only a few cases to deal with, as only 4 CDclks are supported:
4521 * 200MHz
4522 * 267MHz
29dc7ef3 4523 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4524 * 400MHz
4525 * So we check to see whether we're above 90% of the lower bin and
4526 * adjust if needed.
e37c67a1
VS
4527 *
4528 * We seem to get an unstable or solid color picture at 200MHz.
4529 * Not sure what's wrong. For now use 200MHz only when all pipes
4530 * are off.
30a970c6 4531 */
29dc7ef3 4532 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4533 return 400000;
4534 else if (max_pixclk > 266667*9/10)
29dc7ef3 4535 return freq_320;
e37c67a1 4536 else if (max_pixclk > 0)
dfcab17e 4537 return 266667;
e37c67a1
VS
4538 else
4539 return 200000;
30a970c6
JB
4540}
4541
2f2d7aa1
VS
4542/* compute the max pixel clock for new configuration */
4543static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4544{
4545 struct drm_device *dev = dev_priv->dev;
4546 struct intel_crtc *intel_crtc;
4547 int max_pixclk = 0;
4548
d3fcc808 4549 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4550 if (intel_crtc->new_enabled)
30a970c6 4551 max_pixclk = max(max_pixclk,
2f2d7aa1 4552 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4553 }
4554
4555 return max_pixclk;
4556}
4557
4558static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4559 unsigned *prepare_pipes)
30a970c6
JB
4560{
4561 struct drm_i915_private *dev_priv = dev->dev_private;
4562 struct intel_crtc *intel_crtc;
2f2d7aa1 4563 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4564
d60c4473
ID
4565 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4566 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4567 return;
4568
2f2d7aa1 4569 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4570 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4571 if (intel_crtc->base.enabled)
4572 *prepare_pipes |= (1 << intel_crtc->pipe);
4573}
4574
4575static void valleyview_modeset_global_resources(struct drm_device *dev)
4576{
4577 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4578 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4579 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4580
d60c4473 4581 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4582 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4583 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4584}
4585
89b667f8
JB
4586static void valleyview_crtc_enable(struct drm_crtc *crtc)
4587{
4588 struct drm_device *dev = crtc->dev;
5b18e57c 4589 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4591 struct intel_encoder *encoder;
4592 int pipe = intel_crtc->pipe;
5b18e57c 4593 int plane = intel_crtc->plane;
23538ef1 4594 bool is_dsi;
5b18e57c 4595 u32 dspcntr;
89b667f8
JB
4596
4597 WARN_ON(!crtc->enabled);
4598
4599 if (intel_crtc->active)
4600 return;
4601
8525a235
SK
4602 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4603
4604 if (!is_dsi && !IS_CHERRYVIEW(dev))
4605 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4606
5b18e57c
DV
4607 /* Set up the display plane register */
4608 dspcntr = DISPPLANE_GAMMA_ENABLE;
4609
4610 if (intel_crtc->config.has_dp_encoder)
4611 intel_dp_set_m_n(intel_crtc);
4612
4613 intel_set_pipe_timings(intel_crtc);
4614
4615 /* pipesrc and dspsize control the size that is scaled from,
4616 * which should always be the user's requested size.
4617 */
4618 I915_WRITE(DSPSIZE(plane),
4619 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4620 (intel_crtc->config.pipe_src_w - 1));
4621 I915_WRITE(DSPPOS(plane), 0);
4622
4623 i9xx_set_pipeconf(intel_crtc);
4624
4625 I915_WRITE(DSPCNTR(plane), dspcntr);
4626 POSTING_READ(DSPCNTR(plane));
4627
4628 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4629 crtc->x, crtc->y);
4630
89b667f8 4631 intel_crtc->active = true;
89b667f8 4632
4a3436e8
VS
4633 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4634
89b667f8
JB
4635 for_each_encoder_on_crtc(dev, crtc, encoder)
4636 if (encoder->pre_pll_enable)
4637 encoder->pre_pll_enable(encoder);
4638
9d556c99
CML
4639 if (!is_dsi) {
4640 if (IS_CHERRYVIEW(dev))
4641 chv_enable_pll(intel_crtc);
4642 else
4643 vlv_enable_pll(intel_crtc);
4644 }
89b667f8
JB
4645
4646 for_each_encoder_on_crtc(dev, crtc, encoder)
4647 if (encoder->pre_enable)
4648 encoder->pre_enable(encoder);
4649
2dd24552
JB
4650 i9xx_pfit_enable(intel_crtc);
4651
63cbb074
VS
4652 intel_crtc_load_lut(crtc);
4653
f37fcc2a 4654 intel_update_watermarks(crtc);
e1fdc473 4655 intel_enable_pipe(intel_crtc);
be6a6f8e 4656
5004945f
JN
4657 for_each_encoder_on_crtc(dev, crtc, encoder)
4658 encoder->enable(encoder);
9ab0460b
VS
4659
4660 intel_crtc_enable_planes(crtc);
d40d9187 4661
56b80e1f
VS
4662 /* Underruns don't raise interrupts, so check manually. */
4663 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4664}
4665
f13c2ef3
DV
4666static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4667{
4668 struct drm_device *dev = crtc->base.dev;
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670
4671 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4672 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4673}
4674
0b8765c6 4675static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4676{
4677 struct drm_device *dev = crtc->dev;
5b18e57c 4678 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4680 struct intel_encoder *encoder;
79e53945 4681 int pipe = intel_crtc->pipe;
5b18e57c
DV
4682 int plane = intel_crtc->plane;
4683 u32 dspcntr;
79e53945 4684
08a48469
DV
4685 WARN_ON(!crtc->enabled);
4686
f7abfe8b
CW
4687 if (intel_crtc->active)
4688 return;
4689
f13c2ef3
DV
4690 i9xx_set_pll_dividers(intel_crtc);
4691
5b18e57c
DV
4692 /* Set up the display plane register */
4693 dspcntr = DISPPLANE_GAMMA_ENABLE;
4694
4695 if (pipe == 0)
4696 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4697 else
4698 dspcntr |= DISPPLANE_SEL_PIPE_B;
4699
4700 if (intel_crtc->config.has_dp_encoder)
4701 intel_dp_set_m_n(intel_crtc);
4702
4703 intel_set_pipe_timings(intel_crtc);
4704
4705 /* pipesrc and dspsize control the size that is scaled from,
4706 * which should always be the user's requested size.
4707 */
4708 I915_WRITE(DSPSIZE(plane),
4709 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4710 (intel_crtc->config.pipe_src_w - 1));
4711 I915_WRITE(DSPPOS(plane), 0);
4712
4713 i9xx_set_pipeconf(intel_crtc);
4714
4715 I915_WRITE(DSPCNTR(plane), dspcntr);
4716 POSTING_READ(DSPCNTR(plane));
4717
4718 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4719 crtc->x, crtc->y);
4720
f7abfe8b 4721 intel_crtc->active = true;
6b383a7f 4722
4a3436e8
VS
4723 if (!IS_GEN2(dev))
4724 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4725
9d6d9f19
MK
4726 for_each_encoder_on_crtc(dev, crtc, encoder)
4727 if (encoder->pre_enable)
4728 encoder->pre_enable(encoder);
4729
f6736a1a
DV
4730 i9xx_enable_pll(intel_crtc);
4731
2dd24552
JB
4732 i9xx_pfit_enable(intel_crtc);
4733
63cbb074
VS
4734 intel_crtc_load_lut(crtc);
4735
f37fcc2a 4736 intel_update_watermarks(crtc);
e1fdc473 4737 intel_enable_pipe(intel_crtc);
be6a6f8e 4738
fa5c73b1
DV
4739 for_each_encoder_on_crtc(dev, crtc, encoder)
4740 encoder->enable(encoder);
9ab0460b
VS
4741
4742 intel_crtc_enable_planes(crtc);
d40d9187 4743
4a3436e8
VS
4744 /*
4745 * Gen2 reports pipe underruns whenever all planes are disabled.
4746 * So don't enable underrun reporting before at least some planes
4747 * are enabled.
4748 * FIXME: Need to fix the logic to work when we turn off all planes
4749 * but leave the pipe running.
4750 */
4751 if (IS_GEN2(dev))
4752 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4753
56b80e1f
VS
4754 /* Underruns don't raise interrupts, so check manually. */
4755 i9xx_check_fifo_underruns(dev);
0b8765c6 4756}
79e53945 4757
87476d63
DV
4758static void i9xx_pfit_disable(struct intel_crtc *crtc)
4759{
4760 struct drm_device *dev = crtc->base.dev;
4761 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4762
328d8e82
DV
4763 if (!crtc->config.gmch_pfit.control)
4764 return;
87476d63 4765
328d8e82 4766 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4767
328d8e82
DV
4768 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4769 I915_READ(PFIT_CONTROL));
4770 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4771}
4772
0b8765c6
JB
4773static void i9xx_crtc_disable(struct drm_crtc *crtc)
4774{
4775 struct drm_device *dev = crtc->dev;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4778 struct intel_encoder *encoder;
0b8765c6 4779 int pipe = intel_crtc->pipe;
ef9c3aee 4780
f7abfe8b
CW
4781 if (!intel_crtc->active)
4782 return;
4783
4a3436e8
VS
4784 /*
4785 * Gen2 reports pipe underruns whenever all planes are disabled.
4786 * So diasble underrun reporting before all the planes get disabled.
4787 * FIXME: Need to fix the logic to work when we turn off all planes
4788 * but leave the pipe running.
4789 */
4790 if (IS_GEN2(dev))
4791 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4792
564ed191
ID
4793 /*
4794 * Vblank time updates from the shadow to live plane control register
4795 * are blocked if the memory self-refresh mode is active at that
4796 * moment. So to make sure the plane gets truly disabled, disable
4797 * first the self-refresh mode. The self-refresh enable bit in turn
4798 * will be checked/applied by the HW only at the next frame start
4799 * event which is after the vblank start event, so we need to have a
4800 * wait-for-vblank between disabling the plane and the pipe.
4801 */
4802 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4803 intel_crtc_disable_planes(crtc);
4804
ea9d758d
DV
4805 for_each_encoder_on_crtc(dev, crtc, encoder)
4806 encoder->disable(encoder);
4807
6304cd91
VS
4808 /*
4809 * On gen2 planes are double buffered but the pipe isn't, so we must
4810 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4811 * We also need to wait on all gmch platforms because of the
4812 * self-refresh mode constraint explained above.
6304cd91 4813 */
564ed191 4814 intel_wait_for_vblank(dev, pipe);
6304cd91 4815
b24e7179 4816 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4817
87476d63 4818 i9xx_pfit_disable(intel_crtc);
24a1f16d 4819
89b667f8
JB
4820 for_each_encoder_on_crtc(dev, crtc, encoder)
4821 if (encoder->post_disable)
4822 encoder->post_disable(encoder);
4823
076ed3b2
CML
4824 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4825 if (IS_CHERRYVIEW(dev))
4826 chv_disable_pll(dev_priv, pipe);
4827 else if (IS_VALLEYVIEW(dev))
4828 vlv_disable_pll(dev_priv, pipe);
4829 else
4830 i9xx_disable_pll(dev_priv, pipe);
4831 }
0b8765c6 4832
4a3436e8
VS
4833 if (!IS_GEN2(dev))
4834 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4835
f7abfe8b 4836 intel_crtc->active = false;
46ba614c 4837 intel_update_watermarks(crtc);
f37fcc2a 4838
efa9624e 4839 mutex_lock(&dev->struct_mutex);
6b383a7f 4840 intel_update_fbc(dev);
efa9624e 4841 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4842}
4843
ee7b9f93
JB
4844static void i9xx_crtc_off(struct drm_crtc *crtc)
4845{
4846}
4847
976f8a20
DV
4848static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4849 bool enabled)
2c07245f
ZW
4850{
4851 struct drm_device *dev = crtc->dev;
4852 struct drm_i915_master_private *master_priv;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 int pipe = intel_crtc->pipe;
79e53945
JB
4855
4856 if (!dev->primary->master)
4857 return;
4858
4859 master_priv = dev->primary->master->driver_priv;
4860 if (!master_priv->sarea_priv)
4861 return;
4862
79e53945
JB
4863 switch (pipe) {
4864 case 0:
4865 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4866 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4867 break;
4868 case 1:
4869 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4870 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4871 break;
4872 default:
9db4a9c7 4873 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4874 break;
4875 }
79e53945
JB
4876}
4877
976f8a20
DV
4878/**
4879 * Sets the power management mode of the pipe and plane.
4880 */
4881void intel_crtc_update_dpms(struct drm_crtc *crtc)
4882{
4883 struct drm_device *dev = crtc->dev;
4884 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4886 struct intel_encoder *intel_encoder;
0e572fe7
DV
4887 enum intel_display_power_domain domain;
4888 unsigned long domains;
976f8a20
DV
4889 bool enable = false;
4890
4891 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4892 enable |= intel_encoder->connectors_active;
4893
0e572fe7
DV
4894 if (enable) {
4895 if (!intel_crtc->active) {
4896 /*
4897 * FIXME: DDI plls and relevant code isn't converted
4898 * yet, so do runtime PM for DPMS only for all other
4899 * platforms for now.
4900 */
4901 if (!HAS_DDI(dev)) {
4902 domains = get_crtc_power_domains(crtc);
4903 for_each_power_domain(domain, domains)
4904 intel_display_power_get(dev_priv, domain);
4905 intel_crtc->enabled_power_domains = domains;
4906 }
4907
4908 dev_priv->display.crtc_enable(crtc);
4909 }
4910 } else {
4911 if (intel_crtc->active) {
4912 dev_priv->display.crtc_disable(crtc);
4913
4914 if (!HAS_DDI(dev)) {
4915 domains = intel_crtc->enabled_power_domains;
4916 for_each_power_domain(domain, domains)
4917 intel_display_power_put(dev_priv, domain);
4918 intel_crtc->enabled_power_domains = 0;
4919 }
4920 }
4921 }
976f8a20
DV
4922
4923 intel_crtc_update_sarea(crtc, enable);
4924}
4925
cdd59983
CW
4926static void intel_crtc_disable(struct drm_crtc *crtc)
4927{
cdd59983 4928 struct drm_device *dev = crtc->dev;
976f8a20 4929 struct drm_connector *connector;
ee7b9f93 4930 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4931 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4932 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4933
976f8a20
DV
4934 /* crtc should still be enabled when we disable it. */
4935 WARN_ON(!crtc->enabled);
4936
4937 dev_priv->display.crtc_disable(crtc);
4938 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4939 dev_priv->display.off(crtc);
4940
931872fc 4941 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4942 assert_cursor_disabled(dev_priv, pipe);
4943 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4944
f4510a27 4945 if (crtc->primary->fb) {
cdd59983 4946 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4947 intel_unpin_fb_obj(old_obj);
4948 i915_gem_track_fb(old_obj, NULL,
4949 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4950 mutex_unlock(&dev->struct_mutex);
f4510a27 4951 crtc->primary->fb = NULL;
976f8a20
DV
4952 }
4953
4954 /* Update computed state. */
4955 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4956 if (!connector->encoder || !connector->encoder->crtc)
4957 continue;
4958
4959 if (connector->encoder->crtc != crtc)
4960 continue;
4961
4962 connector->dpms = DRM_MODE_DPMS_OFF;
4963 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4964 }
4965}
4966
ea5b213a 4967void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4968{
4ef69c7a 4969 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4970
ea5b213a
CW
4971 drm_encoder_cleanup(encoder);
4972 kfree(intel_encoder);
7e7d76c3
JB
4973}
4974
9237329d 4975/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4976 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4977 * state of the entire output pipe. */
9237329d 4978static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4979{
5ab432ef
DV
4980 if (mode == DRM_MODE_DPMS_ON) {
4981 encoder->connectors_active = true;
4982
b2cabb0e 4983 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4984 } else {
4985 encoder->connectors_active = false;
4986
b2cabb0e 4987 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4988 }
79e53945
JB
4989}
4990
0a91ca29
DV
4991/* Cross check the actual hw state with our own modeset state tracking (and it's
4992 * internal consistency). */
b980514c 4993static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4994{
0a91ca29
DV
4995 if (connector->get_hw_state(connector)) {
4996 struct intel_encoder *encoder = connector->encoder;
4997 struct drm_crtc *crtc;
4998 bool encoder_enabled;
4999 enum pipe pipe;
5000
5001 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5002 connector->base.base.id,
c23cc417 5003 connector->base.name);
0a91ca29
DV
5004
5005 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5006 "wrong connector dpms state\n");
5007 WARN(connector->base.encoder != &encoder->base,
5008 "active connector not linked to encoder\n");
5009 WARN(!encoder->connectors_active,
5010 "encoder->connectors_active not set\n");
5011
5012 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5013 WARN(!encoder_enabled, "encoder not enabled\n");
5014 if (WARN_ON(!encoder->base.crtc))
5015 return;
5016
5017 crtc = encoder->base.crtc;
5018
5019 WARN(!crtc->enabled, "crtc not enabled\n");
5020 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5021 WARN(pipe != to_intel_crtc(crtc)->pipe,
5022 "encoder active on the wrong pipe\n");
5023 }
79e53945
JB
5024}
5025
5ab432ef
DV
5026/* Even simpler default implementation, if there's really no special case to
5027 * consider. */
5028void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5029{
5ab432ef
DV
5030 /* All the simple cases only support two dpms states. */
5031 if (mode != DRM_MODE_DPMS_ON)
5032 mode = DRM_MODE_DPMS_OFF;
d4270e57 5033
5ab432ef
DV
5034 if (mode == connector->dpms)
5035 return;
5036
5037 connector->dpms = mode;
5038
5039 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5040 if (connector->encoder)
5041 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5042
b980514c 5043 intel_modeset_check_state(connector->dev);
79e53945
JB
5044}
5045
f0947c37
DV
5046/* Simple connector->get_hw_state implementation for encoders that support only
5047 * one connector and no cloning and hence the encoder state determines the state
5048 * of the connector. */
5049bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5050{
24929352 5051 enum pipe pipe = 0;
f0947c37 5052 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5053
f0947c37 5054 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5055}
5056
1857e1da
DV
5057static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5058 struct intel_crtc_config *pipe_config)
5059{
5060 struct drm_i915_private *dev_priv = dev->dev_private;
5061 struct intel_crtc *pipe_B_crtc =
5062 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5063
5064 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5065 pipe_name(pipe), pipe_config->fdi_lanes);
5066 if (pipe_config->fdi_lanes > 4) {
5067 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5068 pipe_name(pipe), pipe_config->fdi_lanes);
5069 return false;
5070 }
5071
bafb6553 5072 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5073 if (pipe_config->fdi_lanes > 2) {
5074 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5075 pipe_config->fdi_lanes);
5076 return false;
5077 } else {
5078 return true;
5079 }
5080 }
5081
5082 if (INTEL_INFO(dev)->num_pipes == 2)
5083 return true;
5084
5085 /* Ivybridge 3 pipe is really complicated */
5086 switch (pipe) {
5087 case PIPE_A:
5088 return true;
5089 case PIPE_B:
5090 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5091 pipe_config->fdi_lanes > 2) {
5092 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5093 pipe_name(pipe), pipe_config->fdi_lanes);
5094 return false;
5095 }
5096 return true;
5097 case PIPE_C:
1e833f40 5098 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5099 pipe_B_crtc->config.fdi_lanes <= 2) {
5100 if (pipe_config->fdi_lanes > 2) {
5101 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5102 pipe_name(pipe), pipe_config->fdi_lanes);
5103 return false;
5104 }
5105 } else {
5106 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5107 return false;
5108 }
5109 return true;
5110 default:
5111 BUG();
5112 }
5113}
5114
e29c22c0
DV
5115#define RETRY 1
5116static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5117 struct intel_crtc_config *pipe_config)
877d48d5 5118{
1857e1da 5119 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5120 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5121 int lane, link_bw, fdi_dotclock;
e29c22c0 5122 bool setup_ok, needs_recompute = false;
877d48d5 5123
e29c22c0 5124retry:
877d48d5
DV
5125 /* FDI is a binary signal running at ~2.7GHz, encoding
5126 * each output octet as 10 bits. The actual frequency
5127 * is stored as a divider into a 100MHz clock, and the
5128 * mode pixel clock is stored in units of 1KHz.
5129 * Hence the bw of each lane in terms of the mode signal
5130 * is:
5131 */
5132 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5133
241bfc38 5134 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5135
2bd89a07 5136 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5137 pipe_config->pipe_bpp);
5138
5139 pipe_config->fdi_lanes = lane;
5140
2bd89a07 5141 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5142 link_bw, &pipe_config->fdi_m_n);
1857e1da 5143
e29c22c0
DV
5144 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5145 intel_crtc->pipe, pipe_config);
5146 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5147 pipe_config->pipe_bpp -= 2*3;
5148 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5149 pipe_config->pipe_bpp);
5150 needs_recompute = true;
5151 pipe_config->bw_constrained = true;
5152
5153 goto retry;
5154 }
5155
5156 if (needs_recompute)
5157 return RETRY;
5158
5159 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5160}
5161
42db64ef
PZ
5162static void hsw_compute_ips_config(struct intel_crtc *crtc,
5163 struct intel_crtc_config *pipe_config)
5164{
d330a953 5165 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5166 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5167 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5168}
5169
a43f6e0f 5170static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5171 struct intel_crtc_config *pipe_config)
79e53945 5172{
a43f6e0f 5173 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5174 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5175
ad3a4479 5176 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5177 if (INTEL_INFO(dev)->gen < 4) {
5178 struct drm_i915_private *dev_priv = dev->dev_private;
5179 int clock_limit =
5180 dev_priv->display.get_display_clock_speed(dev);
5181
5182 /*
5183 * Enable pixel doubling when the dot clock
5184 * is > 90% of the (display) core speed.
5185 *
b397c96b
VS
5186 * GDG double wide on either pipe,
5187 * otherwise pipe A only.
cf532bb2 5188 */
b397c96b 5189 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5190 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5191 clock_limit *= 2;
cf532bb2 5192 pipe_config->double_wide = true;
ad3a4479
VS
5193 }
5194
241bfc38 5195 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5196 return -EINVAL;
2c07245f 5197 }
89749350 5198
1d1d0e27
VS
5199 /*
5200 * Pipe horizontal size must be even in:
5201 * - DVO ganged mode
5202 * - LVDS dual channel mode
5203 * - Double wide pipe
5204 */
5205 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5206 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5207 pipe_config->pipe_src_w &= ~1;
5208
8693a824
DL
5209 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5210 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5211 */
5212 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5213 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5214 return -EINVAL;
44f46b42 5215
bd080ee5 5216 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5217 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5218 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5219 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5220 * for lvds. */
5221 pipe_config->pipe_bpp = 8*3;
5222 }
5223
f5adf94e 5224 if (HAS_IPS(dev))
a43f6e0f
DV
5225 hsw_compute_ips_config(crtc, pipe_config);
5226
5227 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5228 * clock survives for now. */
5229 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5230 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5231
877d48d5 5232 if (pipe_config->has_pch_encoder)
a43f6e0f 5233 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5234
e29c22c0 5235 return 0;
79e53945
JB
5236}
5237
25eb05fc
JB
5238static int valleyview_get_display_clock_speed(struct drm_device *dev)
5239{
d197b7d3
VS
5240 struct drm_i915_private *dev_priv = dev->dev_private;
5241 int vco = valleyview_get_vco(dev_priv);
5242 u32 val;
5243 int divider;
5244
5245 mutex_lock(&dev_priv->dpio_lock);
5246 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5247 mutex_unlock(&dev_priv->dpio_lock);
5248
5249 divider = val & DISPLAY_FREQUENCY_VALUES;
5250
7d007f40
VS
5251 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5252 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5253 "cdclk change in progress\n");
5254
d197b7d3 5255 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5256}
5257
e70236a8
JB
5258static int i945_get_display_clock_speed(struct drm_device *dev)
5259{
5260 return 400000;
5261}
79e53945 5262
e70236a8 5263static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5264{
e70236a8
JB
5265 return 333000;
5266}
79e53945 5267
e70236a8
JB
5268static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5269{
5270 return 200000;
5271}
79e53945 5272
257a7ffc
DV
5273static int pnv_get_display_clock_speed(struct drm_device *dev)
5274{
5275 u16 gcfgc = 0;
5276
5277 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5278
5279 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5280 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5281 return 267000;
5282 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5283 return 333000;
5284 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5285 return 444000;
5286 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5287 return 200000;
5288 default:
5289 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5290 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5291 return 133000;
5292 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5293 return 167000;
5294 }
5295}
5296
e70236a8
JB
5297static int i915gm_get_display_clock_speed(struct drm_device *dev)
5298{
5299 u16 gcfgc = 0;
79e53945 5300
e70236a8
JB
5301 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5302
5303 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5304 return 133000;
5305 else {
5306 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5307 case GC_DISPLAY_CLOCK_333_MHZ:
5308 return 333000;
5309 default:
5310 case GC_DISPLAY_CLOCK_190_200_MHZ:
5311 return 190000;
79e53945 5312 }
e70236a8
JB
5313 }
5314}
5315
5316static int i865_get_display_clock_speed(struct drm_device *dev)
5317{
5318 return 266000;
5319}
5320
5321static int i855_get_display_clock_speed(struct drm_device *dev)
5322{
5323 u16 hpllcc = 0;
5324 /* Assume that the hardware is in the high speed state. This
5325 * should be the default.
5326 */
5327 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5328 case GC_CLOCK_133_200:
5329 case GC_CLOCK_100_200:
5330 return 200000;
5331 case GC_CLOCK_166_250:
5332 return 250000;
5333 case GC_CLOCK_100_133:
79e53945 5334 return 133000;
e70236a8 5335 }
79e53945 5336
e70236a8
JB
5337 /* Shouldn't happen */
5338 return 0;
5339}
79e53945 5340
e70236a8
JB
5341static int i830_get_display_clock_speed(struct drm_device *dev)
5342{
5343 return 133000;
79e53945
JB
5344}
5345
2c07245f 5346static void
a65851af 5347intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5348{
a65851af
VS
5349 while (*num > DATA_LINK_M_N_MASK ||
5350 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5351 *num >>= 1;
5352 *den >>= 1;
5353 }
5354}
5355
a65851af
VS
5356static void compute_m_n(unsigned int m, unsigned int n,
5357 uint32_t *ret_m, uint32_t *ret_n)
5358{
5359 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5360 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5361 intel_reduce_m_n_ratio(ret_m, ret_n);
5362}
5363
e69d0bc1
DV
5364void
5365intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5366 int pixel_clock, int link_clock,
5367 struct intel_link_m_n *m_n)
2c07245f 5368{
e69d0bc1 5369 m_n->tu = 64;
a65851af
VS
5370
5371 compute_m_n(bits_per_pixel * pixel_clock,
5372 link_clock * nlanes * 8,
5373 &m_n->gmch_m, &m_n->gmch_n);
5374
5375 compute_m_n(pixel_clock, link_clock,
5376 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5377}
5378
a7615030
CW
5379static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5380{
d330a953
JN
5381 if (i915.panel_use_ssc >= 0)
5382 return i915.panel_use_ssc != 0;
41aa3448 5383 return dev_priv->vbt.lvds_use_ssc
435793df 5384 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5385}
5386
c65d77d8
JB
5387static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5388{
5389 struct drm_device *dev = crtc->dev;
5390 struct drm_i915_private *dev_priv = dev->dev_private;
5391 int refclk;
5392
a0c4da24 5393 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5394 refclk = 100000;
a0c4da24 5395 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5396 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5397 refclk = dev_priv->vbt.lvds_ssc_freq;
5398 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5399 } else if (!IS_GEN2(dev)) {
5400 refclk = 96000;
5401 } else {
5402 refclk = 48000;
5403 }
5404
5405 return refclk;
5406}
5407
7429e9d4 5408static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5409{
7df00d7a 5410 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5411}
f47709a9 5412
7429e9d4
DV
5413static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5414{
5415 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5416}
5417
f47709a9 5418static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5419 intel_clock_t *reduced_clock)
5420{
f47709a9 5421 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5422 u32 fp, fp2 = 0;
5423
5424 if (IS_PINEVIEW(dev)) {
7429e9d4 5425 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5426 if (reduced_clock)
7429e9d4 5427 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5428 } else {
7429e9d4 5429 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5430 if (reduced_clock)
7429e9d4 5431 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5432 }
5433
8bcc2795 5434 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5435
f47709a9
DV
5436 crtc->lowfreq_avail = false;
5437 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5438 reduced_clock && i915.powersave) {
8bcc2795 5439 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5440 crtc->lowfreq_avail = true;
a7516a05 5441 } else {
8bcc2795 5442 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5443 }
5444}
5445
5e69f97f
CML
5446static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5447 pipe)
89b667f8
JB
5448{
5449 u32 reg_val;
5450
5451 /*
5452 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5453 * and set it to a reasonable value instead.
5454 */
ab3c759a 5455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5456 reg_val &= 0xffffff00;
5457 reg_val |= 0x00000030;
ab3c759a 5458 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5459
ab3c759a 5460 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5461 reg_val &= 0x8cffffff;
5462 reg_val = 0x8c000000;
ab3c759a 5463 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5464
ab3c759a 5465 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5466 reg_val &= 0xffffff00;
ab3c759a 5467 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5468
ab3c759a 5469 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5470 reg_val &= 0x00ffffff;
5471 reg_val |= 0xb0000000;
ab3c759a 5472 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5473}
5474
b551842d
DV
5475static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5476 struct intel_link_m_n *m_n)
5477{
5478 struct drm_device *dev = crtc->base.dev;
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 int pipe = crtc->pipe;
5481
e3b95f1e
DV
5482 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5483 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5484 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5485 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5486}
5487
5488static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5489 struct intel_link_m_n *m_n)
5490{
5491 struct drm_device *dev = crtc->base.dev;
5492 struct drm_i915_private *dev_priv = dev->dev_private;
5493 int pipe = crtc->pipe;
5494 enum transcoder transcoder = crtc->config.cpu_transcoder;
5495
5496 if (INTEL_INFO(dev)->gen >= 5) {
5497 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5498 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5499 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5500 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5501 } else {
e3b95f1e
DV
5502 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5503 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5504 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5505 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5506 }
5507}
5508
03afc4a2
DV
5509static void intel_dp_set_m_n(struct intel_crtc *crtc)
5510{
5511 if (crtc->config.has_pch_encoder)
5512 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5513 else
5514 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5515}
5516
f47709a9 5517static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5518{
5519 u32 dpll, dpll_md;
5520
5521 /*
5522 * Enable DPIO clock input. We should never disable the reference
5523 * clock for pipe B, since VGA hotplug / manual detection depends
5524 * on it.
5525 */
5526 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5527 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5528 /* We should never disable this, set it here for state tracking */
5529 if (crtc->pipe == PIPE_B)
5530 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5531 dpll |= DPLL_VCO_ENABLE;
5532 crtc->config.dpll_hw_state.dpll = dpll;
5533
5534 dpll_md = (crtc->config.pixel_multiplier - 1)
5535 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5536 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5537}
5538
5539static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5540{
f47709a9 5541 struct drm_device *dev = crtc->base.dev;
a0c4da24 5542 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5543 int pipe = crtc->pipe;
bdd4b6a6 5544 u32 mdiv;
a0c4da24 5545 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5546 u32 coreclk, reg_val;
a0c4da24 5547
09153000
DV
5548 mutex_lock(&dev_priv->dpio_lock);
5549
f47709a9
DV
5550 bestn = crtc->config.dpll.n;
5551 bestm1 = crtc->config.dpll.m1;
5552 bestm2 = crtc->config.dpll.m2;
5553 bestp1 = crtc->config.dpll.p1;
5554 bestp2 = crtc->config.dpll.p2;
a0c4da24 5555
89b667f8
JB
5556 /* See eDP HDMI DPIO driver vbios notes doc */
5557
5558 /* PLL B needs special handling */
bdd4b6a6 5559 if (pipe == PIPE_B)
5e69f97f 5560 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5561
5562 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5563 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5564
5565 /* Disable target IRef on PLL */
ab3c759a 5566 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5567 reg_val &= 0x00ffffff;
ab3c759a 5568 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5569
5570 /* Disable fast lock */
ab3c759a 5571 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5572
5573 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5574 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5575 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5576 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5577 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5578
5579 /*
5580 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5581 * but we don't support that).
5582 * Note: don't use the DAC post divider as it seems unstable.
5583 */
5584 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5585 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5586
a0c4da24 5587 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5588 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5589
89b667f8 5590 /* Set HBR and RBR LPF coefficients */
ff9a6750 5591 if (crtc->config.port_clock == 162000 ||
99750bd4 5592 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5593 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5595 0x009f0003);
89b667f8 5596 else
ab3c759a 5597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5598 0x00d0000f);
5599
5600 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5601 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5602 /* Use SSC source */
bdd4b6a6 5603 if (pipe == PIPE_A)
ab3c759a 5604 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5605 0x0df40000);
5606 else
ab3c759a 5607 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5608 0x0df70000);
5609 } else { /* HDMI or VGA */
5610 /* Use bend source */
bdd4b6a6 5611 if (pipe == PIPE_A)
ab3c759a 5612 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5613 0x0df70000);
5614 else
ab3c759a 5615 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5616 0x0df40000);
5617 }
a0c4da24 5618
ab3c759a 5619 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5620 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5621 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5622 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5623 coreclk |= 0x01000000;
ab3c759a 5624 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5625
ab3c759a 5626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5627 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5628}
5629
9d556c99
CML
5630static void chv_update_pll(struct intel_crtc *crtc)
5631{
5632 struct drm_device *dev = crtc->base.dev;
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634 int pipe = crtc->pipe;
5635 int dpll_reg = DPLL(crtc->pipe);
5636 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5637 u32 loopfilter, intcoeff;
9d556c99
CML
5638 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5639 int refclk;
5640
a11b0703
VS
5641 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5642 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5643 DPLL_VCO_ENABLE;
5644 if (pipe != PIPE_A)
5645 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5646
5647 crtc->config.dpll_hw_state.dpll_md =
5648 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5649
5650 bestn = crtc->config.dpll.n;
5651 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5652 bestm1 = crtc->config.dpll.m1;
5653 bestm2 = crtc->config.dpll.m2 >> 22;
5654 bestp1 = crtc->config.dpll.p1;
5655 bestp2 = crtc->config.dpll.p2;
5656
5657 /*
5658 * Enable Refclk and SSC
5659 */
a11b0703
VS
5660 I915_WRITE(dpll_reg,
5661 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5662
5663 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5664
9d556c99
CML
5665 /* p1 and p2 divider */
5666 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5667 5 << DPIO_CHV_S1_DIV_SHIFT |
5668 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5669 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5670 1 << DPIO_CHV_K_DIV_SHIFT);
5671
5672 /* Feedback post-divider - m2 */
5673 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5674
5675 /* Feedback refclk divider - n and m1 */
5676 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5677 DPIO_CHV_M1_DIV_BY_2 |
5678 1 << DPIO_CHV_N_DIV_SHIFT);
5679
5680 /* M2 fraction division */
5681 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5682
5683 /* M2 fraction division enable */
5684 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5685 DPIO_CHV_FRAC_DIV_EN |
5686 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5687
5688 /* Loop filter */
5689 refclk = i9xx_get_refclk(&crtc->base, 0);
5690 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5691 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5692 if (refclk == 100000)
5693 intcoeff = 11;
5694 else if (refclk == 38400)
5695 intcoeff = 10;
5696 else
5697 intcoeff = 9;
5698 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5699 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5700
5701 /* AFC Recal */
5702 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5703 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5704 DPIO_AFC_RECAL);
5705
5706 mutex_unlock(&dev_priv->dpio_lock);
5707}
5708
f47709a9
DV
5709static void i9xx_update_pll(struct intel_crtc *crtc,
5710 intel_clock_t *reduced_clock,
eb1cbe48
DV
5711 int num_connectors)
5712{
f47709a9 5713 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5714 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5715 u32 dpll;
5716 bool is_sdvo;
f47709a9 5717 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5718
f47709a9 5719 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5720
f47709a9
DV
5721 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5722 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5723
5724 dpll = DPLL_VGA_MODE_DIS;
5725
f47709a9 5726 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5727 dpll |= DPLLB_MODE_LVDS;
5728 else
5729 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5730
ef1b460d 5731 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5732 dpll |= (crtc->config.pixel_multiplier - 1)
5733 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5734 }
198a037f
DV
5735
5736 if (is_sdvo)
4a33e48d 5737 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5738
f47709a9 5739 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5740 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5741
5742 /* compute bitmask from p1 value */
5743 if (IS_PINEVIEW(dev))
5744 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5745 else {
5746 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5747 if (IS_G4X(dev) && reduced_clock)
5748 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5749 }
5750 switch (clock->p2) {
5751 case 5:
5752 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5753 break;
5754 case 7:
5755 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5756 break;
5757 case 10:
5758 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5759 break;
5760 case 14:
5761 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5762 break;
5763 }
5764 if (INTEL_INFO(dev)->gen >= 4)
5765 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5766
09ede541 5767 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5768 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5769 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5770 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5771 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5772 else
5773 dpll |= PLL_REF_INPUT_DREFCLK;
5774
5775 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5776 crtc->config.dpll_hw_state.dpll = dpll;
5777
eb1cbe48 5778 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5779 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5780 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5781 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5782 }
5783}
5784
f47709a9 5785static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5786 intel_clock_t *reduced_clock,
eb1cbe48
DV
5787 int num_connectors)
5788{
f47709a9 5789 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5790 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5791 u32 dpll;
f47709a9 5792 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5793
f47709a9 5794 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5795
eb1cbe48
DV
5796 dpll = DPLL_VGA_MODE_DIS;
5797
f47709a9 5798 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5799 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5800 } else {
5801 if (clock->p1 == 2)
5802 dpll |= PLL_P1_DIVIDE_BY_TWO;
5803 else
5804 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5805 if (clock->p2 == 4)
5806 dpll |= PLL_P2_DIVIDE_BY_4;
5807 }
5808
4a33e48d
DV
5809 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5810 dpll |= DPLL_DVO_2X_MODE;
5811
f47709a9 5812 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5813 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5814 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5815 else
5816 dpll |= PLL_REF_INPUT_DREFCLK;
5817
5818 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5819 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5820}
5821
8a654f3b 5822static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5823{
5824 struct drm_device *dev = intel_crtc->base.dev;
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5827 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5828 struct drm_display_mode *adjusted_mode =
5829 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5830 uint32_t crtc_vtotal, crtc_vblank_end;
5831 int vsyncshift = 0;
4d8a62ea
DV
5832
5833 /* We need to be careful not to changed the adjusted mode, for otherwise
5834 * the hw state checker will get angry at the mismatch. */
5835 crtc_vtotal = adjusted_mode->crtc_vtotal;
5836 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5837
609aeaca 5838 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5839 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5840 crtc_vtotal -= 1;
5841 crtc_vblank_end -= 1;
609aeaca
VS
5842
5843 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5844 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5845 else
5846 vsyncshift = adjusted_mode->crtc_hsync_start -
5847 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5848 if (vsyncshift < 0)
5849 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5850 }
5851
5852 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5853 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5854
fe2b8f9d 5855 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5856 (adjusted_mode->crtc_hdisplay - 1) |
5857 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5858 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5859 (adjusted_mode->crtc_hblank_start - 1) |
5860 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5861 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5862 (adjusted_mode->crtc_hsync_start - 1) |
5863 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5864
fe2b8f9d 5865 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5866 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5867 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5868 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5869 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5870 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5871 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5872 (adjusted_mode->crtc_vsync_start - 1) |
5873 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5874
b5e508d4
PZ
5875 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5876 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5877 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5878 * bits. */
5879 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5880 (pipe == PIPE_B || pipe == PIPE_C))
5881 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5882
b0e77b9c
PZ
5883 /* pipesrc controls the size that is scaled from, which should
5884 * always be the user's requested size.
5885 */
5886 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5887 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5888 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5889}
5890
1bd1bd80
DV
5891static void intel_get_pipe_timings(struct intel_crtc *crtc,
5892 struct intel_crtc_config *pipe_config)
5893{
5894 struct drm_device *dev = crtc->base.dev;
5895 struct drm_i915_private *dev_priv = dev->dev_private;
5896 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5897 uint32_t tmp;
5898
5899 tmp = I915_READ(HTOTAL(cpu_transcoder));
5900 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5901 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5902 tmp = I915_READ(HBLANK(cpu_transcoder));
5903 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5904 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5905 tmp = I915_READ(HSYNC(cpu_transcoder));
5906 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5907 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5908
5909 tmp = I915_READ(VTOTAL(cpu_transcoder));
5910 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5911 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5912 tmp = I915_READ(VBLANK(cpu_transcoder));
5913 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5914 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5915 tmp = I915_READ(VSYNC(cpu_transcoder));
5916 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5917 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5918
5919 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5920 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5921 pipe_config->adjusted_mode.crtc_vtotal += 1;
5922 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5923 }
5924
5925 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5926 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5927 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5928
5929 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5930 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5931}
5932
f6a83288
DV
5933void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5934 struct intel_crtc_config *pipe_config)
babea61d 5935{
f6a83288
DV
5936 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5937 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5938 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5939 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5940
f6a83288
DV
5941 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5942 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5943 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5944 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5945
f6a83288 5946 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5947
f6a83288
DV
5948 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5949 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5950}
5951
84b046f3
DV
5952static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5953{
5954 struct drm_device *dev = intel_crtc->base.dev;
5955 struct drm_i915_private *dev_priv = dev->dev_private;
5956 uint32_t pipeconf;
5957
9f11a9e4 5958 pipeconf = 0;
84b046f3 5959
67c72a12
DV
5960 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5961 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5962 pipeconf |= PIPECONF_ENABLE;
5963
cf532bb2
VS
5964 if (intel_crtc->config.double_wide)
5965 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5966
ff9ce46e
DV
5967 /* only g4x and later have fancy bpc/dither controls */
5968 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5969 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5970 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5971 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5972 PIPECONF_DITHER_TYPE_SP;
84b046f3 5973
ff9ce46e
DV
5974 switch (intel_crtc->config.pipe_bpp) {
5975 case 18:
5976 pipeconf |= PIPECONF_6BPC;
5977 break;
5978 case 24:
5979 pipeconf |= PIPECONF_8BPC;
5980 break;
5981 case 30:
5982 pipeconf |= PIPECONF_10BPC;
5983 break;
5984 default:
5985 /* Case prevented by intel_choose_pipe_bpp_dither. */
5986 BUG();
84b046f3
DV
5987 }
5988 }
5989
5990 if (HAS_PIPE_CXSR(dev)) {
5991 if (intel_crtc->lowfreq_avail) {
5992 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5993 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5994 } else {
5995 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
5996 }
5997 }
5998
efc2cfff
VS
5999 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6000 if (INTEL_INFO(dev)->gen < 4 ||
6001 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6002 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6003 else
6004 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6005 } else
84b046f3
DV
6006 pipeconf |= PIPECONF_PROGRESSIVE;
6007
9f11a9e4
DV
6008 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6009 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6010
84b046f3
DV
6011 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6012 POSTING_READ(PIPECONF(intel_crtc->pipe));
6013}
6014
f564048e 6015static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6016 int x, int y,
94352cf9 6017 struct drm_framebuffer *fb)
79e53945
JB
6018{
6019 struct drm_device *dev = crtc->dev;
6020 struct drm_i915_private *dev_priv = dev->dev_private;
6021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6022 int refclk, num_connectors = 0;
652c393a 6023 intel_clock_t clock, reduced_clock;
a16af721 6024 bool ok, has_reduced_clock = false;
e9fd1c02 6025 bool is_lvds = false, is_dsi = false;
5eddb70b 6026 struct intel_encoder *encoder;
d4906093 6027 const intel_limit_t *limit;
79e53945 6028
6c2b7c12 6029 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6030 switch (encoder->type) {
79e53945
JB
6031 case INTEL_OUTPUT_LVDS:
6032 is_lvds = true;
6033 break;
e9fd1c02
JN
6034 case INTEL_OUTPUT_DSI:
6035 is_dsi = true;
6036 break;
79e53945 6037 }
43565a06 6038
c751ce4f 6039 num_connectors++;
79e53945
JB
6040 }
6041
f2335330 6042 if (is_dsi)
5b18e57c 6043 return 0;
f2335330
JN
6044
6045 if (!intel_crtc->config.clock_set) {
6046 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6047
e9fd1c02
JN
6048 /*
6049 * Returns a set of divisors for the desired target clock with
6050 * the given refclk, or FALSE. The returned values represent
6051 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6052 * 2) / p1 / p2.
6053 */
6054 limit = intel_limit(crtc, refclk);
6055 ok = dev_priv->display.find_dpll(limit, crtc,
6056 intel_crtc->config.port_clock,
6057 refclk, NULL, &clock);
f2335330 6058 if (!ok) {
e9fd1c02
JN
6059 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6060 return -EINVAL;
6061 }
79e53945 6062
f2335330
JN
6063 if (is_lvds && dev_priv->lvds_downclock_avail) {
6064 /*
6065 * Ensure we match the reduced clock's P to the target
6066 * clock. If the clocks don't match, we can't switch
6067 * the display clock by using the FP0/FP1. In such case
6068 * we will disable the LVDS downclock feature.
6069 */
6070 has_reduced_clock =
6071 dev_priv->display.find_dpll(limit, crtc,
6072 dev_priv->lvds_downclock,
6073 refclk, &clock,
6074 &reduced_clock);
6075 }
6076 /* Compat-code for transition, will disappear. */
f47709a9
DV
6077 intel_crtc->config.dpll.n = clock.n;
6078 intel_crtc->config.dpll.m1 = clock.m1;
6079 intel_crtc->config.dpll.m2 = clock.m2;
6080 intel_crtc->config.dpll.p1 = clock.p1;
6081 intel_crtc->config.dpll.p2 = clock.p2;
6082 }
7026d4ac 6083
e9fd1c02 6084 if (IS_GEN2(dev)) {
8a654f3b 6085 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6086 has_reduced_clock ? &reduced_clock : NULL,
6087 num_connectors);
9d556c99
CML
6088 } else if (IS_CHERRYVIEW(dev)) {
6089 chv_update_pll(intel_crtc);
e9fd1c02 6090 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6091 vlv_update_pll(intel_crtc);
e9fd1c02 6092 } else {
f47709a9 6093 i9xx_update_pll(intel_crtc,
eb1cbe48 6094 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6095 num_connectors);
e9fd1c02 6096 }
79e53945 6097
c8f7a0db 6098 return 0;
f564048e
EA
6099}
6100
2fa2fe9a
DV
6101static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6102 struct intel_crtc_config *pipe_config)
6103{
6104 struct drm_device *dev = crtc->base.dev;
6105 struct drm_i915_private *dev_priv = dev->dev_private;
6106 uint32_t tmp;
6107
dc9e7dec
VS
6108 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6109 return;
6110
2fa2fe9a 6111 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6112 if (!(tmp & PFIT_ENABLE))
6113 return;
2fa2fe9a 6114
06922821 6115 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6116 if (INTEL_INFO(dev)->gen < 4) {
6117 if (crtc->pipe != PIPE_B)
6118 return;
2fa2fe9a
DV
6119 } else {
6120 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6121 return;
6122 }
6123
06922821 6124 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6125 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6126 if (INTEL_INFO(dev)->gen < 5)
6127 pipe_config->gmch_pfit.lvds_border_bits =
6128 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6129}
6130
acbec814
JB
6131static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6132 struct intel_crtc_config *pipe_config)
6133{
6134 struct drm_device *dev = crtc->base.dev;
6135 struct drm_i915_private *dev_priv = dev->dev_private;
6136 int pipe = pipe_config->cpu_transcoder;
6137 intel_clock_t clock;
6138 u32 mdiv;
662c6ecb 6139 int refclk = 100000;
acbec814
JB
6140
6141 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6142 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6143 mutex_unlock(&dev_priv->dpio_lock);
6144
6145 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6146 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6147 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6148 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6149 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6150
f646628b 6151 vlv_clock(refclk, &clock);
acbec814 6152
f646628b
VS
6153 /* clock.dot is the fast clock */
6154 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6155}
6156
1ad292b5
JB
6157static void i9xx_get_plane_config(struct intel_crtc *crtc,
6158 struct intel_plane_config *plane_config)
6159{
6160 struct drm_device *dev = crtc->base.dev;
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 u32 val, base, offset;
6163 int pipe = crtc->pipe, plane = crtc->plane;
6164 int fourcc, pixel_format;
6165 int aligned_height;
6166
66e514c1
DA
6167 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6168 if (!crtc->base.primary->fb) {
1ad292b5
JB
6169 DRM_DEBUG_KMS("failed to alloc fb\n");
6170 return;
6171 }
6172
6173 val = I915_READ(DSPCNTR(plane));
6174
6175 if (INTEL_INFO(dev)->gen >= 4)
6176 if (val & DISPPLANE_TILED)
6177 plane_config->tiled = true;
6178
6179 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6180 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6181 crtc->base.primary->fb->pixel_format = fourcc;
6182 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6183 drm_format_plane_cpp(fourcc, 0) * 8;
6184
6185 if (INTEL_INFO(dev)->gen >= 4) {
6186 if (plane_config->tiled)
6187 offset = I915_READ(DSPTILEOFF(plane));
6188 else
6189 offset = I915_READ(DSPLINOFF(plane));
6190 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6191 } else {
6192 base = I915_READ(DSPADDR(plane));
6193 }
6194 plane_config->base = base;
6195
6196 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6197 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6198 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6199
6200 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6201 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6202
66e514c1 6203 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6204 plane_config->tiled);
6205
1267a26b
FF
6206 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6207 aligned_height);
1ad292b5
JB
6208
6209 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6210 pipe, plane, crtc->base.primary->fb->width,
6211 crtc->base.primary->fb->height,
6212 crtc->base.primary->fb->bits_per_pixel, base,
6213 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6214 plane_config->size);
6215
6216}
6217
70b23a98
VS
6218static void chv_crtc_clock_get(struct intel_crtc *crtc,
6219 struct intel_crtc_config *pipe_config)
6220{
6221 struct drm_device *dev = crtc->base.dev;
6222 struct drm_i915_private *dev_priv = dev->dev_private;
6223 int pipe = pipe_config->cpu_transcoder;
6224 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6225 intel_clock_t clock;
6226 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6227 int refclk = 100000;
6228
6229 mutex_lock(&dev_priv->dpio_lock);
6230 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6231 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6232 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6233 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6234 mutex_unlock(&dev_priv->dpio_lock);
6235
6236 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6237 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6238 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6239 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6240 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6241
6242 chv_clock(refclk, &clock);
6243
6244 /* clock.dot is the fast clock */
6245 pipe_config->port_clock = clock.dot / 5;
6246}
6247
0e8ffe1b
DV
6248static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6249 struct intel_crtc_config *pipe_config)
6250{
6251 struct drm_device *dev = crtc->base.dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 uint32_t tmp;
6254
b5482bd0
ID
6255 if (!intel_display_power_enabled(dev_priv,
6256 POWER_DOMAIN_PIPE(crtc->pipe)))
6257 return false;
6258
e143a21c 6259 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6260 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6261
0e8ffe1b
DV
6262 tmp = I915_READ(PIPECONF(crtc->pipe));
6263 if (!(tmp & PIPECONF_ENABLE))
6264 return false;
6265
42571aef
VS
6266 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6267 switch (tmp & PIPECONF_BPC_MASK) {
6268 case PIPECONF_6BPC:
6269 pipe_config->pipe_bpp = 18;
6270 break;
6271 case PIPECONF_8BPC:
6272 pipe_config->pipe_bpp = 24;
6273 break;
6274 case PIPECONF_10BPC:
6275 pipe_config->pipe_bpp = 30;
6276 break;
6277 default:
6278 break;
6279 }
6280 }
6281
b5a9fa09
DV
6282 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6283 pipe_config->limited_color_range = true;
6284
282740f7
VS
6285 if (INTEL_INFO(dev)->gen < 4)
6286 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6287
1bd1bd80
DV
6288 intel_get_pipe_timings(crtc, pipe_config);
6289
2fa2fe9a
DV
6290 i9xx_get_pfit_config(crtc, pipe_config);
6291
6c49f241
DV
6292 if (INTEL_INFO(dev)->gen >= 4) {
6293 tmp = I915_READ(DPLL_MD(crtc->pipe));
6294 pipe_config->pixel_multiplier =
6295 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6296 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6297 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6298 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6299 tmp = I915_READ(DPLL(crtc->pipe));
6300 pipe_config->pixel_multiplier =
6301 ((tmp & SDVO_MULTIPLIER_MASK)
6302 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6303 } else {
6304 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6305 * port and will be fixed up in the encoder->get_config
6306 * function. */
6307 pipe_config->pixel_multiplier = 1;
6308 }
8bcc2795
DV
6309 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6310 if (!IS_VALLEYVIEW(dev)) {
6311 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6312 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6313 } else {
6314 /* Mask out read-only status bits. */
6315 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6316 DPLL_PORTC_READY_MASK |
6317 DPLL_PORTB_READY_MASK);
8bcc2795 6318 }
6c49f241 6319
70b23a98
VS
6320 if (IS_CHERRYVIEW(dev))
6321 chv_crtc_clock_get(crtc, pipe_config);
6322 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6323 vlv_crtc_clock_get(crtc, pipe_config);
6324 else
6325 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6326
0e8ffe1b
DV
6327 return true;
6328}
6329
dde86e2d 6330static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6331{
6332 struct drm_i915_private *dev_priv = dev->dev_private;
6333 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6334 struct intel_encoder *encoder;
74cfd7ac 6335 u32 val, final;
13d83a67 6336 bool has_lvds = false;
199e5d79 6337 bool has_cpu_edp = false;
199e5d79 6338 bool has_panel = false;
99eb6a01
KP
6339 bool has_ck505 = false;
6340 bool can_ssc = false;
13d83a67
JB
6341
6342 /* We need to take the global config into account */
199e5d79
KP
6343 list_for_each_entry(encoder, &mode_config->encoder_list,
6344 base.head) {
6345 switch (encoder->type) {
6346 case INTEL_OUTPUT_LVDS:
6347 has_panel = true;
6348 has_lvds = true;
6349 break;
6350 case INTEL_OUTPUT_EDP:
6351 has_panel = true;
2de6905f 6352 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6353 has_cpu_edp = true;
6354 break;
13d83a67
JB
6355 }
6356 }
6357
99eb6a01 6358 if (HAS_PCH_IBX(dev)) {
41aa3448 6359 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6360 can_ssc = has_ck505;
6361 } else {
6362 has_ck505 = false;
6363 can_ssc = true;
6364 }
6365
2de6905f
ID
6366 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6367 has_panel, has_lvds, has_ck505);
13d83a67
JB
6368
6369 /* Ironlake: try to setup display ref clock before DPLL
6370 * enabling. This is only under driver's control after
6371 * PCH B stepping, previous chipset stepping should be
6372 * ignoring this setting.
6373 */
74cfd7ac
CW
6374 val = I915_READ(PCH_DREF_CONTROL);
6375
6376 /* As we must carefully and slowly disable/enable each source in turn,
6377 * compute the final state we want first and check if we need to
6378 * make any changes at all.
6379 */
6380 final = val;
6381 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6382 if (has_ck505)
6383 final |= DREF_NONSPREAD_CK505_ENABLE;
6384 else
6385 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6386
6387 final &= ~DREF_SSC_SOURCE_MASK;
6388 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6389 final &= ~DREF_SSC1_ENABLE;
6390
6391 if (has_panel) {
6392 final |= DREF_SSC_SOURCE_ENABLE;
6393
6394 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6395 final |= DREF_SSC1_ENABLE;
6396
6397 if (has_cpu_edp) {
6398 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6399 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6400 else
6401 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6402 } else
6403 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6404 } else {
6405 final |= DREF_SSC_SOURCE_DISABLE;
6406 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6407 }
6408
6409 if (final == val)
6410 return;
6411
13d83a67 6412 /* Always enable nonspread source */
74cfd7ac 6413 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6414
99eb6a01 6415 if (has_ck505)
74cfd7ac 6416 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6417 else
74cfd7ac 6418 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6419
199e5d79 6420 if (has_panel) {
74cfd7ac
CW
6421 val &= ~DREF_SSC_SOURCE_MASK;
6422 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6423
199e5d79 6424 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6425 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6426 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6427 val |= DREF_SSC1_ENABLE;
e77166b5 6428 } else
74cfd7ac 6429 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6430
6431 /* Get SSC going before enabling the outputs */
74cfd7ac 6432 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6433 POSTING_READ(PCH_DREF_CONTROL);
6434 udelay(200);
6435
74cfd7ac 6436 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6437
6438 /* Enable CPU source on CPU attached eDP */
199e5d79 6439 if (has_cpu_edp) {
99eb6a01 6440 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6441 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6442 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6443 } else
74cfd7ac 6444 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6445 } else
74cfd7ac 6446 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6447
74cfd7ac 6448 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6449 POSTING_READ(PCH_DREF_CONTROL);
6450 udelay(200);
6451 } else {
6452 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6453
74cfd7ac 6454 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6455
6456 /* Turn off CPU output */
74cfd7ac 6457 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6458
74cfd7ac 6459 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6460 POSTING_READ(PCH_DREF_CONTROL);
6461 udelay(200);
6462
6463 /* Turn off the SSC source */
74cfd7ac
CW
6464 val &= ~DREF_SSC_SOURCE_MASK;
6465 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6466
6467 /* Turn off SSC1 */
74cfd7ac 6468 val &= ~DREF_SSC1_ENABLE;
199e5d79 6469
74cfd7ac 6470 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6471 POSTING_READ(PCH_DREF_CONTROL);
6472 udelay(200);
6473 }
74cfd7ac
CW
6474
6475 BUG_ON(val != final);
13d83a67
JB
6476}
6477
f31f2d55 6478static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6479{
f31f2d55 6480 uint32_t tmp;
dde86e2d 6481
0ff066a9
PZ
6482 tmp = I915_READ(SOUTH_CHICKEN2);
6483 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6484 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6485
0ff066a9
PZ
6486 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6487 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6488 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6489
0ff066a9
PZ
6490 tmp = I915_READ(SOUTH_CHICKEN2);
6491 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6492 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6493
0ff066a9
PZ
6494 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6495 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6496 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6497}
6498
6499/* WaMPhyProgramming:hsw */
6500static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6501{
6502 uint32_t tmp;
dde86e2d
PZ
6503
6504 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6505 tmp &= ~(0xFF << 24);
6506 tmp |= (0x12 << 24);
6507 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6508
dde86e2d
PZ
6509 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6510 tmp |= (1 << 11);
6511 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6512
6513 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6514 tmp |= (1 << 11);
6515 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6516
dde86e2d
PZ
6517 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6518 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6519 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6520
6521 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6522 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6523 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6524
0ff066a9
PZ
6525 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6526 tmp &= ~(7 << 13);
6527 tmp |= (5 << 13);
6528 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6529
0ff066a9
PZ
6530 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6531 tmp &= ~(7 << 13);
6532 tmp |= (5 << 13);
6533 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6534
6535 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6536 tmp &= ~0xFF;
6537 tmp |= 0x1C;
6538 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6539
6540 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6541 tmp &= ~0xFF;
6542 tmp |= 0x1C;
6543 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6544
6545 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6546 tmp &= ~(0xFF << 16);
6547 tmp |= (0x1C << 16);
6548 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6549
6550 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6551 tmp &= ~(0xFF << 16);
6552 tmp |= (0x1C << 16);
6553 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6554
0ff066a9
PZ
6555 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6556 tmp |= (1 << 27);
6557 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6558
0ff066a9
PZ
6559 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6560 tmp |= (1 << 27);
6561 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6562
0ff066a9
PZ
6563 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6564 tmp &= ~(0xF << 28);
6565 tmp |= (4 << 28);
6566 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6567
0ff066a9
PZ
6568 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6569 tmp &= ~(0xF << 28);
6570 tmp |= (4 << 28);
6571 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6572}
6573
2fa86a1f
PZ
6574/* Implements 3 different sequences from BSpec chapter "Display iCLK
6575 * Programming" based on the parameters passed:
6576 * - Sequence to enable CLKOUT_DP
6577 * - Sequence to enable CLKOUT_DP without spread
6578 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6579 */
6580static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6581 bool with_fdi)
f31f2d55
PZ
6582{
6583 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6584 uint32_t reg, tmp;
6585
6586 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6587 with_spread = true;
6588 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6589 with_fdi, "LP PCH doesn't have FDI\n"))
6590 with_fdi = false;
f31f2d55
PZ
6591
6592 mutex_lock(&dev_priv->dpio_lock);
6593
6594 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6595 tmp &= ~SBI_SSCCTL_DISABLE;
6596 tmp |= SBI_SSCCTL_PATHALT;
6597 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6598
6599 udelay(24);
6600
2fa86a1f
PZ
6601 if (with_spread) {
6602 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6603 tmp &= ~SBI_SSCCTL_PATHALT;
6604 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6605
2fa86a1f
PZ
6606 if (with_fdi) {
6607 lpt_reset_fdi_mphy(dev_priv);
6608 lpt_program_fdi_mphy(dev_priv);
6609 }
6610 }
dde86e2d 6611
2fa86a1f
PZ
6612 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6613 SBI_GEN0 : SBI_DBUFF0;
6614 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6615 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6616 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6617
6618 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6619}
6620
47701c3b
PZ
6621/* Sequence to disable CLKOUT_DP */
6622static void lpt_disable_clkout_dp(struct drm_device *dev)
6623{
6624 struct drm_i915_private *dev_priv = dev->dev_private;
6625 uint32_t reg, tmp;
6626
6627 mutex_lock(&dev_priv->dpio_lock);
6628
6629 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6630 SBI_GEN0 : SBI_DBUFF0;
6631 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6632 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6633 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6634
6635 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6636 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6637 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6638 tmp |= SBI_SSCCTL_PATHALT;
6639 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6640 udelay(32);
6641 }
6642 tmp |= SBI_SSCCTL_DISABLE;
6643 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6644 }
6645
6646 mutex_unlock(&dev_priv->dpio_lock);
6647}
6648
bf8fa3d3
PZ
6649static void lpt_init_pch_refclk(struct drm_device *dev)
6650{
6651 struct drm_mode_config *mode_config = &dev->mode_config;
6652 struct intel_encoder *encoder;
6653 bool has_vga = false;
6654
6655 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6656 switch (encoder->type) {
6657 case INTEL_OUTPUT_ANALOG:
6658 has_vga = true;
6659 break;
6660 }
6661 }
6662
47701c3b
PZ
6663 if (has_vga)
6664 lpt_enable_clkout_dp(dev, true, true);
6665 else
6666 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6667}
6668
dde86e2d
PZ
6669/*
6670 * Initialize reference clocks when the driver loads
6671 */
6672void intel_init_pch_refclk(struct drm_device *dev)
6673{
6674 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6675 ironlake_init_pch_refclk(dev);
6676 else if (HAS_PCH_LPT(dev))
6677 lpt_init_pch_refclk(dev);
6678}
6679
d9d444cb
JB
6680static int ironlake_get_refclk(struct drm_crtc *crtc)
6681{
6682 struct drm_device *dev = crtc->dev;
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684 struct intel_encoder *encoder;
d9d444cb
JB
6685 int num_connectors = 0;
6686 bool is_lvds = false;
6687
6c2b7c12 6688 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6689 switch (encoder->type) {
6690 case INTEL_OUTPUT_LVDS:
6691 is_lvds = true;
6692 break;
d9d444cb
JB
6693 }
6694 num_connectors++;
6695 }
6696
6697 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6698 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6699 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6700 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6701 }
6702
6703 return 120000;
6704}
6705
6ff93609 6706static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6707{
c8203565 6708 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6710 int pipe = intel_crtc->pipe;
c8203565
PZ
6711 uint32_t val;
6712
78114071 6713 val = 0;
c8203565 6714
965e0c48 6715 switch (intel_crtc->config.pipe_bpp) {
c8203565 6716 case 18:
dfd07d72 6717 val |= PIPECONF_6BPC;
c8203565
PZ
6718 break;
6719 case 24:
dfd07d72 6720 val |= PIPECONF_8BPC;
c8203565
PZ
6721 break;
6722 case 30:
dfd07d72 6723 val |= PIPECONF_10BPC;
c8203565
PZ
6724 break;
6725 case 36:
dfd07d72 6726 val |= PIPECONF_12BPC;
c8203565
PZ
6727 break;
6728 default:
cc769b62
PZ
6729 /* Case prevented by intel_choose_pipe_bpp_dither. */
6730 BUG();
c8203565
PZ
6731 }
6732
d8b32247 6733 if (intel_crtc->config.dither)
c8203565
PZ
6734 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6735
6ff93609 6736 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6737 val |= PIPECONF_INTERLACED_ILK;
6738 else
6739 val |= PIPECONF_PROGRESSIVE;
6740
50f3b016 6741 if (intel_crtc->config.limited_color_range)
3685a8f3 6742 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6743
c8203565
PZ
6744 I915_WRITE(PIPECONF(pipe), val);
6745 POSTING_READ(PIPECONF(pipe));
6746}
6747
86d3efce
VS
6748/*
6749 * Set up the pipe CSC unit.
6750 *
6751 * Currently only full range RGB to limited range RGB conversion
6752 * is supported, but eventually this should handle various
6753 * RGB<->YCbCr scenarios as well.
6754 */
50f3b016 6755static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6756{
6757 struct drm_device *dev = crtc->dev;
6758 struct drm_i915_private *dev_priv = dev->dev_private;
6759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6760 int pipe = intel_crtc->pipe;
6761 uint16_t coeff = 0x7800; /* 1.0 */
6762
6763 /*
6764 * TODO: Check what kind of values actually come out of the pipe
6765 * with these coeff/postoff values and adjust to get the best
6766 * accuracy. Perhaps we even need to take the bpc value into
6767 * consideration.
6768 */
6769
50f3b016 6770 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6771 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6772
6773 /*
6774 * GY/GU and RY/RU should be the other way around according
6775 * to BSpec, but reality doesn't agree. Just set them up in
6776 * a way that results in the correct picture.
6777 */
6778 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6779 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6780
6781 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6782 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6783
6784 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6785 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6786
6787 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6788 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6789 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6790
6791 if (INTEL_INFO(dev)->gen > 6) {
6792 uint16_t postoff = 0;
6793
50f3b016 6794 if (intel_crtc->config.limited_color_range)
32cf0cb0 6795 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6796
6797 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6798 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6799 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6800
6801 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6802 } else {
6803 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6804
50f3b016 6805 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6806 mode |= CSC_BLACK_SCREEN_OFFSET;
6807
6808 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6809 }
6810}
6811
6ff93609 6812static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6813{
756f85cf
PZ
6814 struct drm_device *dev = crtc->dev;
6815 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6817 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6818 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6819 uint32_t val;
6820
3eff4faa 6821 val = 0;
ee2b0b38 6822
756f85cf 6823 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6824 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6825
6ff93609 6826 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6827 val |= PIPECONF_INTERLACED_ILK;
6828 else
6829 val |= PIPECONF_PROGRESSIVE;
6830
702e7a56
PZ
6831 I915_WRITE(PIPECONF(cpu_transcoder), val);
6832 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6833
6834 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6835 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6836
6837 if (IS_BROADWELL(dev)) {
6838 val = 0;
6839
6840 switch (intel_crtc->config.pipe_bpp) {
6841 case 18:
6842 val |= PIPEMISC_DITHER_6_BPC;
6843 break;
6844 case 24:
6845 val |= PIPEMISC_DITHER_8_BPC;
6846 break;
6847 case 30:
6848 val |= PIPEMISC_DITHER_10_BPC;
6849 break;
6850 case 36:
6851 val |= PIPEMISC_DITHER_12_BPC;
6852 break;
6853 default:
6854 /* Case prevented by pipe_config_set_bpp. */
6855 BUG();
6856 }
6857
6858 if (intel_crtc->config.dither)
6859 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6860
6861 I915_WRITE(PIPEMISC(pipe), val);
6862 }
ee2b0b38
PZ
6863}
6864
6591c6e4 6865static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6866 intel_clock_t *clock,
6867 bool *has_reduced_clock,
6868 intel_clock_t *reduced_clock)
6869{
6870 struct drm_device *dev = crtc->dev;
6871 struct drm_i915_private *dev_priv = dev->dev_private;
6872 struct intel_encoder *intel_encoder;
6873 int refclk;
d4906093 6874 const intel_limit_t *limit;
a16af721 6875 bool ret, is_lvds = false;
79e53945 6876
6591c6e4
PZ
6877 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6878 switch (intel_encoder->type) {
79e53945
JB
6879 case INTEL_OUTPUT_LVDS:
6880 is_lvds = true;
6881 break;
79e53945
JB
6882 }
6883 }
6884
d9d444cb 6885 refclk = ironlake_get_refclk(crtc);
79e53945 6886
d4906093
ML
6887 /*
6888 * Returns a set of divisors for the desired target clock with the given
6889 * refclk, or FALSE. The returned values represent the clock equation:
6890 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6891 */
1b894b59 6892 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6893 ret = dev_priv->display.find_dpll(limit, crtc,
6894 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6895 refclk, NULL, clock);
6591c6e4
PZ
6896 if (!ret)
6897 return false;
cda4b7d3 6898
ddc9003c 6899 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6900 /*
6901 * Ensure we match the reduced clock's P to the target clock.
6902 * If the clocks don't match, we can't switch the display clock
6903 * by using the FP0/FP1. In such case we will disable the LVDS
6904 * downclock feature.
6905 */
ee9300bb
DV
6906 *has_reduced_clock =
6907 dev_priv->display.find_dpll(limit, crtc,
6908 dev_priv->lvds_downclock,
6909 refclk, clock,
6910 reduced_clock);
652c393a 6911 }
61e9653f 6912
6591c6e4
PZ
6913 return true;
6914}
6915
d4b1931c
PZ
6916int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6917{
6918 /*
6919 * Account for spread spectrum to avoid
6920 * oversubscribing the link. Max center spread
6921 * is 2.5%; use 5% for safety's sake.
6922 */
6923 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6924 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6925}
6926
7429e9d4 6927static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6928{
7429e9d4 6929 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6930}
6931
de13a2e3 6932static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6933 u32 *fp,
9a7c7890 6934 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6935{
de13a2e3 6936 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6937 struct drm_device *dev = crtc->dev;
6938 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6939 struct intel_encoder *intel_encoder;
6940 uint32_t dpll;
6cc5f341 6941 int factor, num_connectors = 0;
09ede541 6942 bool is_lvds = false, is_sdvo = false;
79e53945 6943
de13a2e3
PZ
6944 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6945 switch (intel_encoder->type) {
79e53945
JB
6946 case INTEL_OUTPUT_LVDS:
6947 is_lvds = true;
6948 break;
6949 case INTEL_OUTPUT_SDVO:
7d57382e 6950 case INTEL_OUTPUT_HDMI:
79e53945 6951 is_sdvo = true;
79e53945 6952 break;
79e53945 6953 }
43565a06 6954
c751ce4f 6955 num_connectors++;
79e53945 6956 }
79e53945 6957
c1858123 6958 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6959 factor = 21;
6960 if (is_lvds) {
6961 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6962 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6963 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6964 factor = 25;
09ede541 6965 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6966 factor = 20;
c1858123 6967
7429e9d4 6968 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6969 *fp |= FP_CB_TUNE;
2c07245f 6970
9a7c7890
DV
6971 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6972 *fp2 |= FP_CB_TUNE;
6973
5eddb70b 6974 dpll = 0;
2c07245f 6975
a07d6787
EA
6976 if (is_lvds)
6977 dpll |= DPLLB_MODE_LVDS;
6978 else
6979 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6980
ef1b460d
DV
6981 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6982 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6983
6984 if (is_sdvo)
4a33e48d 6985 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6986 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6987 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6988
a07d6787 6989 /* compute bitmask from p1 value */
7429e9d4 6990 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6991 /* also FPA1 */
7429e9d4 6992 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6993
7429e9d4 6994 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
6995 case 5:
6996 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6997 break;
6998 case 7:
6999 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7000 break;
7001 case 10:
7002 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7003 break;
7004 case 14:
7005 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7006 break;
79e53945
JB
7007 }
7008
b4c09f3b 7009 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7010 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7011 else
7012 dpll |= PLL_REF_INPUT_DREFCLK;
7013
959e16d6 7014 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7015}
7016
7017static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7018 int x, int y,
7019 struct drm_framebuffer *fb)
7020{
7021 struct drm_device *dev = crtc->dev;
de13a2e3 7022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7023 int num_connectors = 0;
7024 intel_clock_t clock, reduced_clock;
cbbab5bd 7025 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7026 bool ok, has_reduced_clock = false;
8b47047b 7027 bool is_lvds = false;
de13a2e3 7028 struct intel_encoder *encoder;
e2b78267 7029 struct intel_shared_dpll *pll;
de13a2e3
PZ
7030
7031 for_each_encoder_on_crtc(dev, crtc, encoder) {
7032 switch (encoder->type) {
7033 case INTEL_OUTPUT_LVDS:
7034 is_lvds = true;
7035 break;
de13a2e3
PZ
7036 }
7037
7038 num_connectors++;
a07d6787 7039 }
79e53945 7040
5dc5298b
PZ
7041 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7042 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7043
ff9a6750 7044 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7045 &has_reduced_clock, &reduced_clock);
ee9300bb 7046 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7047 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7048 return -EINVAL;
79e53945 7049 }
f47709a9
DV
7050 /* Compat-code for transition, will disappear. */
7051 if (!intel_crtc->config.clock_set) {
7052 intel_crtc->config.dpll.n = clock.n;
7053 intel_crtc->config.dpll.m1 = clock.m1;
7054 intel_crtc->config.dpll.m2 = clock.m2;
7055 intel_crtc->config.dpll.p1 = clock.p1;
7056 intel_crtc->config.dpll.p2 = clock.p2;
7057 }
79e53945 7058
5dc5298b 7059 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7060 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7061 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7062 if (has_reduced_clock)
7429e9d4 7063 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7064
7429e9d4 7065 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7066 &fp, &reduced_clock,
7067 has_reduced_clock ? &fp2 : NULL);
7068
959e16d6 7069 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7070 intel_crtc->config.dpll_hw_state.fp0 = fp;
7071 if (has_reduced_clock)
7072 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7073 else
7074 intel_crtc->config.dpll_hw_state.fp1 = fp;
7075
b89a1d39 7076 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7077 if (pll == NULL) {
84f44ce7 7078 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7079 pipe_name(intel_crtc->pipe));
4b645f14
JB
7080 return -EINVAL;
7081 }
ee7b9f93 7082 } else
e72f9fbf 7083 intel_put_shared_dpll(intel_crtc);
79e53945 7084
d330a953 7085 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7086 intel_crtc->lowfreq_avail = true;
7087 else
7088 intel_crtc->lowfreq_avail = false;
e2b78267 7089
c8f7a0db 7090 return 0;
79e53945
JB
7091}
7092
eb14cb74
VS
7093static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7094 struct intel_link_m_n *m_n)
7095{
7096 struct drm_device *dev = crtc->base.dev;
7097 struct drm_i915_private *dev_priv = dev->dev_private;
7098 enum pipe pipe = crtc->pipe;
7099
7100 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7101 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7102 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7103 & ~TU_SIZE_MASK;
7104 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7105 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7106 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7107}
7108
7109static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7110 enum transcoder transcoder,
7111 struct intel_link_m_n *m_n)
72419203
DV
7112{
7113 struct drm_device *dev = crtc->base.dev;
7114 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7115 enum pipe pipe = crtc->pipe;
72419203 7116
eb14cb74
VS
7117 if (INTEL_INFO(dev)->gen >= 5) {
7118 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7119 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7120 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7121 & ~TU_SIZE_MASK;
7122 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7123 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7124 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7125 } else {
7126 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7127 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7128 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7129 & ~TU_SIZE_MASK;
7130 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7131 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7132 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7133 }
7134}
7135
7136void intel_dp_get_m_n(struct intel_crtc *crtc,
7137 struct intel_crtc_config *pipe_config)
7138{
7139 if (crtc->config.has_pch_encoder)
7140 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7141 else
7142 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7143 &pipe_config->dp_m_n);
7144}
72419203 7145
eb14cb74
VS
7146static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7147 struct intel_crtc_config *pipe_config)
7148{
7149 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7150 &pipe_config->fdi_m_n);
72419203
DV
7151}
7152
2fa2fe9a
DV
7153static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7154 struct intel_crtc_config *pipe_config)
7155{
7156 struct drm_device *dev = crtc->base.dev;
7157 struct drm_i915_private *dev_priv = dev->dev_private;
7158 uint32_t tmp;
7159
7160 tmp = I915_READ(PF_CTL(crtc->pipe));
7161
7162 if (tmp & PF_ENABLE) {
fd4daa9c 7163 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7164 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7165 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7166
7167 /* We currently do not free assignements of panel fitters on
7168 * ivb/hsw (since we don't use the higher upscaling modes which
7169 * differentiates them) so just WARN about this case for now. */
7170 if (IS_GEN7(dev)) {
7171 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7172 PF_PIPE_SEL_IVB(crtc->pipe));
7173 }
2fa2fe9a 7174 }
79e53945
JB
7175}
7176
4c6baa59
JB
7177static void ironlake_get_plane_config(struct intel_crtc *crtc,
7178 struct intel_plane_config *plane_config)
7179{
7180 struct drm_device *dev = crtc->base.dev;
7181 struct drm_i915_private *dev_priv = dev->dev_private;
7182 u32 val, base, offset;
7183 int pipe = crtc->pipe, plane = crtc->plane;
7184 int fourcc, pixel_format;
7185 int aligned_height;
7186
66e514c1
DA
7187 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7188 if (!crtc->base.primary->fb) {
4c6baa59
JB
7189 DRM_DEBUG_KMS("failed to alloc fb\n");
7190 return;
7191 }
7192
7193 val = I915_READ(DSPCNTR(plane));
7194
7195 if (INTEL_INFO(dev)->gen >= 4)
7196 if (val & DISPPLANE_TILED)
7197 plane_config->tiled = true;
7198
7199 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7200 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7201 crtc->base.primary->fb->pixel_format = fourcc;
7202 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7203 drm_format_plane_cpp(fourcc, 0) * 8;
7204
7205 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7206 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7207 offset = I915_READ(DSPOFFSET(plane));
7208 } else {
7209 if (plane_config->tiled)
7210 offset = I915_READ(DSPTILEOFF(plane));
7211 else
7212 offset = I915_READ(DSPLINOFF(plane));
7213 }
7214 plane_config->base = base;
7215
7216 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7217 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7218 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7219
7220 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7221 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7222
66e514c1 7223 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7224 plane_config->tiled);
7225
1267a26b
FF
7226 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7227 aligned_height);
4c6baa59
JB
7228
7229 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7230 pipe, plane, crtc->base.primary->fb->width,
7231 crtc->base.primary->fb->height,
7232 crtc->base.primary->fb->bits_per_pixel, base,
7233 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7234 plane_config->size);
7235}
7236
0e8ffe1b
DV
7237static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7238 struct intel_crtc_config *pipe_config)
7239{
7240 struct drm_device *dev = crtc->base.dev;
7241 struct drm_i915_private *dev_priv = dev->dev_private;
7242 uint32_t tmp;
7243
e143a21c 7244 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7245 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7246
0e8ffe1b
DV
7247 tmp = I915_READ(PIPECONF(crtc->pipe));
7248 if (!(tmp & PIPECONF_ENABLE))
7249 return false;
7250
42571aef
VS
7251 switch (tmp & PIPECONF_BPC_MASK) {
7252 case PIPECONF_6BPC:
7253 pipe_config->pipe_bpp = 18;
7254 break;
7255 case PIPECONF_8BPC:
7256 pipe_config->pipe_bpp = 24;
7257 break;
7258 case PIPECONF_10BPC:
7259 pipe_config->pipe_bpp = 30;
7260 break;
7261 case PIPECONF_12BPC:
7262 pipe_config->pipe_bpp = 36;
7263 break;
7264 default:
7265 break;
7266 }
7267
b5a9fa09
DV
7268 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7269 pipe_config->limited_color_range = true;
7270
ab9412ba 7271 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7272 struct intel_shared_dpll *pll;
7273
88adfff1
DV
7274 pipe_config->has_pch_encoder = true;
7275
627eb5a3
DV
7276 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7277 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7278 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7279
7280 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7281
c0d43d62 7282 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7283 pipe_config->shared_dpll =
7284 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7285 } else {
7286 tmp = I915_READ(PCH_DPLL_SEL);
7287 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7288 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7289 else
7290 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7291 }
66e985c0
DV
7292
7293 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7294
7295 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7296 &pipe_config->dpll_hw_state));
c93f54cf
DV
7297
7298 tmp = pipe_config->dpll_hw_state.dpll;
7299 pipe_config->pixel_multiplier =
7300 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7301 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7302
7303 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7304 } else {
7305 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7306 }
7307
1bd1bd80
DV
7308 intel_get_pipe_timings(crtc, pipe_config);
7309
2fa2fe9a
DV
7310 ironlake_get_pfit_config(crtc, pipe_config);
7311
0e8ffe1b
DV
7312 return true;
7313}
7314
be256dc7
PZ
7315static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7316{
7317 struct drm_device *dev = dev_priv->dev;
be256dc7 7318 struct intel_crtc *crtc;
be256dc7 7319
d3fcc808 7320 for_each_intel_crtc(dev, crtc)
798183c5 7321 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7322 pipe_name(crtc->pipe));
7323
7324 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7325 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7326 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7327 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7328 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7329 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7330 "CPU PWM1 enabled\n");
7331 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7332 "CPU PWM2 enabled\n");
7333 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7334 "PCH PWM1 enabled\n");
7335 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7336 "Utility pin enabled\n");
7337 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7338
9926ada1
PZ
7339 /*
7340 * In theory we can still leave IRQs enabled, as long as only the HPD
7341 * interrupts remain enabled. We used to check for that, but since it's
7342 * gen-specific and since we only disable LCPLL after we fully disable
7343 * the interrupts, the check below should be enough.
7344 */
7345 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7346}
7347
9ccd5aeb
PZ
7348static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7349{
7350 struct drm_device *dev = dev_priv->dev;
7351
7352 if (IS_HASWELL(dev))
7353 return I915_READ(D_COMP_HSW);
7354 else
7355 return I915_READ(D_COMP_BDW);
7356}
7357
3c4c9b81
PZ
7358static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7359{
7360 struct drm_device *dev = dev_priv->dev;
7361
7362 if (IS_HASWELL(dev)) {
7363 mutex_lock(&dev_priv->rps.hw_lock);
7364 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7365 val))
f475dadf 7366 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7367 mutex_unlock(&dev_priv->rps.hw_lock);
7368 } else {
9ccd5aeb
PZ
7369 I915_WRITE(D_COMP_BDW, val);
7370 POSTING_READ(D_COMP_BDW);
3c4c9b81 7371 }
be256dc7
PZ
7372}
7373
7374/*
7375 * This function implements pieces of two sequences from BSpec:
7376 * - Sequence for display software to disable LCPLL
7377 * - Sequence for display software to allow package C8+
7378 * The steps implemented here are just the steps that actually touch the LCPLL
7379 * register. Callers should take care of disabling all the display engine
7380 * functions, doing the mode unset, fixing interrupts, etc.
7381 */
6ff58d53
PZ
7382static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7383 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7384{
7385 uint32_t val;
7386
7387 assert_can_disable_lcpll(dev_priv);
7388
7389 val = I915_READ(LCPLL_CTL);
7390
7391 if (switch_to_fclk) {
7392 val |= LCPLL_CD_SOURCE_FCLK;
7393 I915_WRITE(LCPLL_CTL, val);
7394
7395 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7396 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7397 DRM_ERROR("Switching to FCLK failed\n");
7398
7399 val = I915_READ(LCPLL_CTL);
7400 }
7401
7402 val |= LCPLL_PLL_DISABLE;
7403 I915_WRITE(LCPLL_CTL, val);
7404 POSTING_READ(LCPLL_CTL);
7405
7406 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7407 DRM_ERROR("LCPLL still locked\n");
7408
9ccd5aeb 7409 val = hsw_read_dcomp(dev_priv);
be256dc7 7410 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7411 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7412 ndelay(100);
7413
9ccd5aeb
PZ
7414 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7415 1))
be256dc7
PZ
7416 DRM_ERROR("D_COMP RCOMP still in progress\n");
7417
7418 if (allow_power_down) {
7419 val = I915_READ(LCPLL_CTL);
7420 val |= LCPLL_POWER_DOWN_ALLOW;
7421 I915_WRITE(LCPLL_CTL, val);
7422 POSTING_READ(LCPLL_CTL);
7423 }
7424}
7425
7426/*
7427 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7428 * source.
7429 */
6ff58d53 7430static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7431{
7432 uint32_t val;
a8a8bd54 7433 unsigned long irqflags;
be256dc7
PZ
7434
7435 val = I915_READ(LCPLL_CTL);
7436
7437 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7438 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7439 return;
7440
a8a8bd54
PZ
7441 /*
7442 * Make sure we're not on PC8 state before disabling PC8, otherwise
7443 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7444 *
7445 * The other problem is that hsw_restore_lcpll() is called as part of
7446 * the runtime PM resume sequence, so we can't just call
7447 * gen6_gt_force_wake_get() because that function calls
7448 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7449 * while we are on the resume sequence. So to solve this problem we have
7450 * to call special forcewake code that doesn't touch runtime PM and
7451 * doesn't enable the forcewake delayed work.
7452 */
7453 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7454 if (dev_priv->uncore.forcewake_count++ == 0)
7455 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7456 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7457
be256dc7
PZ
7458 if (val & LCPLL_POWER_DOWN_ALLOW) {
7459 val &= ~LCPLL_POWER_DOWN_ALLOW;
7460 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7461 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7462 }
7463
9ccd5aeb 7464 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7465 val |= D_COMP_COMP_FORCE;
7466 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7467 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7468
7469 val = I915_READ(LCPLL_CTL);
7470 val &= ~LCPLL_PLL_DISABLE;
7471 I915_WRITE(LCPLL_CTL, val);
7472
7473 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7474 DRM_ERROR("LCPLL not locked yet\n");
7475
7476 if (val & LCPLL_CD_SOURCE_FCLK) {
7477 val = I915_READ(LCPLL_CTL);
7478 val &= ~LCPLL_CD_SOURCE_FCLK;
7479 I915_WRITE(LCPLL_CTL, val);
7480
7481 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7482 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7483 DRM_ERROR("Switching back to LCPLL failed\n");
7484 }
215733fa 7485
a8a8bd54
PZ
7486 /* See the big comment above. */
7487 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7488 if (--dev_priv->uncore.forcewake_count == 0)
7489 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7490 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7491}
7492
765dab67
PZ
7493/*
7494 * Package states C8 and deeper are really deep PC states that can only be
7495 * reached when all the devices on the system allow it, so even if the graphics
7496 * device allows PC8+, it doesn't mean the system will actually get to these
7497 * states. Our driver only allows PC8+ when going into runtime PM.
7498 *
7499 * The requirements for PC8+ are that all the outputs are disabled, the power
7500 * well is disabled and most interrupts are disabled, and these are also
7501 * requirements for runtime PM. When these conditions are met, we manually do
7502 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7503 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7504 * hang the machine.
7505 *
7506 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7507 * the state of some registers, so when we come back from PC8+ we need to
7508 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7509 * need to take care of the registers kept by RC6. Notice that this happens even
7510 * if we don't put the device in PCI D3 state (which is what currently happens
7511 * because of the runtime PM support).
7512 *
7513 * For more, read "Display Sequences for Package C8" on the hardware
7514 * documentation.
7515 */
a14cb6fc 7516void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7517{
c67a470b
PZ
7518 struct drm_device *dev = dev_priv->dev;
7519 uint32_t val;
7520
c67a470b
PZ
7521 DRM_DEBUG_KMS("Enabling package C8+\n");
7522
c67a470b
PZ
7523 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7524 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7525 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7526 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7527 }
7528
7529 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7530 hsw_disable_lcpll(dev_priv, true, true);
7531}
7532
a14cb6fc 7533void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7534{
7535 struct drm_device *dev = dev_priv->dev;
7536 uint32_t val;
7537
c67a470b
PZ
7538 DRM_DEBUG_KMS("Disabling package C8+\n");
7539
7540 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7541 lpt_init_pch_refclk(dev);
7542
7543 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7544 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7545 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7546 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7547 }
7548
7549 intel_prepare_ddi(dev);
c67a470b
PZ
7550}
7551
9a952a0d
PZ
7552static void snb_modeset_global_resources(struct drm_device *dev)
7553{
7554 modeset_update_crtc_power_domains(dev);
7555}
7556
4f074129
ID
7557static void haswell_modeset_global_resources(struct drm_device *dev)
7558{
da723569 7559 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7560}
7561
09b4ddf9 7562static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7563 int x, int y,
7564 struct drm_framebuffer *fb)
7565{
09b4ddf9 7566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7567
566b734a 7568 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7569 return -EINVAL;
566b734a 7570 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7571
644cef34
DV
7572 intel_crtc->lowfreq_avail = false;
7573
c8f7a0db 7574 return 0;
79e53945
JB
7575}
7576
26804afd
DV
7577static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7578 struct intel_crtc_config *pipe_config)
7579{
7580 struct drm_device *dev = crtc->base.dev;
7581 struct drm_i915_private *dev_priv = dev->dev_private;
7582 enum port port;
7583 uint32_t tmp;
7584
7585 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7586
7587 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7588
7589 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7590
7591 switch (pipe_config->ddi_pll_sel) {
7592 case PORT_CLK_SEL_WRPLL1:
7593 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7594 break;
7595 case PORT_CLK_SEL_WRPLL2:
7596 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7597 break;
7598 }
7599
26804afd
DV
7600 /*
7601 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7602 * DDI E. So just check whether this pipe is wired to DDI E and whether
7603 * the PCH transcoder is on.
7604 */
7605 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7606 pipe_config->has_pch_encoder = true;
7607
7608 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7609 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7610 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7611
7612 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7613 }
7614}
7615
0e8ffe1b
DV
7616static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7617 struct intel_crtc_config *pipe_config)
7618{
7619 struct drm_device *dev = crtc->base.dev;
7620 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7621 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7622 uint32_t tmp;
7623
b5482bd0
ID
7624 if (!intel_display_power_enabled(dev_priv,
7625 POWER_DOMAIN_PIPE(crtc->pipe)))
7626 return false;
7627
e143a21c 7628 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7629 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7630
eccb140b
DV
7631 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7632 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7633 enum pipe trans_edp_pipe;
7634 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7635 default:
7636 WARN(1, "unknown pipe linked to edp transcoder\n");
7637 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7638 case TRANS_DDI_EDP_INPUT_A_ON:
7639 trans_edp_pipe = PIPE_A;
7640 break;
7641 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7642 trans_edp_pipe = PIPE_B;
7643 break;
7644 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7645 trans_edp_pipe = PIPE_C;
7646 break;
7647 }
7648
7649 if (trans_edp_pipe == crtc->pipe)
7650 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7651 }
7652
da7e29bd 7653 if (!intel_display_power_enabled(dev_priv,
eccb140b 7654 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7655 return false;
7656
eccb140b 7657 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7658 if (!(tmp & PIPECONF_ENABLE))
7659 return false;
7660
26804afd 7661 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7662
1bd1bd80
DV
7663 intel_get_pipe_timings(crtc, pipe_config);
7664
2fa2fe9a 7665 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7666 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7667 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7668
e59150dc
JB
7669 if (IS_HASWELL(dev))
7670 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7671 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7672
6c49f241
DV
7673 pipe_config->pixel_multiplier = 1;
7674
0e8ffe1b
DV
7675 return true;
7676}
7677
1a91510d
JN
7678static struct {
7679 int clock;
7680 u32 config;
7681} hdmi_audio_clock[] = {
7682 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7683 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7684 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7685 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7686 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7687 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7688 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7689 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7690 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7691 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7692};
7693
7694/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7695static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7696{
7697 int i;
7698
7699 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7700 if (mode->clock == hdmi_audio_clock[i].clock)
7701 break;
7702 }
7703
7704 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7705 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7706 i = 1;
7707 }
7708
7709 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7710 hdmi_audio_clock[i].clock,
7711 hdmi_audio_clock[i].config);
7712
7713 return hdmi_audio_clock[i].config;
7714}
7715
3a9627f4
WF
7716static bool intel_eld_uptodate(struct drm_connector *connector,
7717 int reg_eldv, uint32_t bits_eldv,
7718 int reg_elda, uint32_t bits_elda,
7719 int reg_edid)
7720{
7721 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7722 uint8_t *eld = connector->eld;
7723 uint32_t i;
7724
7725 i = I915_READ(reg_eldv);
7726 i &= bits_eldv;
7727
7728 if (!eld[0])
7729 return !i;
7730
7731 if (!i)
7732 return false;
7733
7734 i = I915_READ(reg_elda);
7735 i &= ~bits_elda;
7736 I915_WRITE(reg_elda, i);
7737
7738 for (i = 0; i < eld[2]; i++)
7739 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7740 return false;
7741
7742 return true;
7743}
7744
e0dac65e 7745static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7746 struct drm_crtc *crtc,
7747 struct drm_display_mode *mode)
e0dac65e
WF
7748{
7749 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7750 uint8_t *eld = connector->eld;
7751 uint32_t eldv;
7752 uint32_t len;
7753 uint32_t i;
7754
7755 i = I915_READ(G4X_AUD_VID_DID);
7756
7757 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7758 eldv = G4X_ELDV_DEVCL_DEVBLC;
7759 else
7760 eldv = G4X_ELDV_DEVCTG;
7761
3a9627f4
WF
7762 if (intel_eld_uptodate(connector,
7763 G4X_AUD_CNTL_ST, eldv,
7764 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7765 G4X_HDMIW_HDMIEDID))
7766 return;
7767
e0dac65e
WF
7768 i = I915_READ(G4X_AUD_CNTL_ST);
7769 i &= ~(eldv | G4X_ELD_ADDR);
7770 len = (i >> 9) & 0x1f; /* ELD buffer size */
7771 I915_WRITE(G4X_AUD_CNTL_ST, i);
7772
7773 if (!eld[0])
7774 return;
7775
7776 len = min_t(uint8_t, eld[2], len);
7777 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7778 for (i = 0; i < len; i++)
7779 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7780
7781 i = I915_READ(G4X_AUD_CNTL_ST);
7782 i |= eldv;
7783 I915_WRITE(G4X_AUD_CNTL_ST, i);
7784}
7785
83358c85 7786static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7787 struct drm_crtc *crtc,
7788 struct drm_display_mode *mode)
83358c85
WX
7789{
7790 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7791 uint8_t *eld = connector->eld;
83358c85
WX
7792 uint32_t eldv;
7793 uint32_t i;
7794 int len;
7795 int pipe = to_intel_crtc(crtc)->pipe;
7796 int tmp;
7797
7798 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7799 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7800 int aud_config = HSW_AUD_CFG(pipe);
7801 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7802
83358c85
WX
7803 /* Audio output enable */
7804 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7805 tmp = I915_READ(aud_cntrl_st2);
7806 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7807 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7808 POSTING_READ(aud_cntrl_st2);
83358c85 7809
c7905792 7810 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7811
7812 /* Set ELD valid state */
7813 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7814 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7815 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7816 I915_WRITE(aud_cntrl_st2, tmp);
7817 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7818 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7819
7820 /* Enable HDMI mode */
7821 tmp = I915_READ(aud_config);
7e7cb34f 7822 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7823 /* clear N_programing_enable and N_value_index */
7824 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7825 I915_WRITE(aud_config, tmp);
7826
7827 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7828
7829 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7830
7831 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7832 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7833 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7834 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7835 } else {
7836 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7837 }
83358c85
WX
7838
7839 if (intel_eld_uptodate(connector,
7840 aud_cntrl_st2, eldv,
7841 aud_cntl_st, IBX_ELD_ADDRESS,
7842 hdmiw_hdmiedid))
7843 return;
7844
7845 i = I915_READ(aud_cntrl_st2);
7846 i &= ~eldv;
7847 I915_WRITE(aud_cntrl_st2, i);
7848
7849 if (!eld[0])
7850 return;
7851
7852 i = I915_READ(aud_cntl_st);
7853 i &= ~IBX_ELD_ADDRESS;
7854 I915_WRITE(aud_cntl_st, i);
7855 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7856 DRM_DEBUG_DRIVER("port num:%d\n", i);
7857
7858 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7859 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7860 for (i = 0; i < len; i++)
7861 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7862
7863 i = I915_READ(aud_cntrl_st2);
7864 i |= eldv;
7865 I915_WRITE(aud_cntrl_st2, i);
7866
7867}
7868
e0dac65e 7869static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7870 struct drm_crtc *crtc,
7871 struct drm_display_mode *mode)
e0dac65e
WF
7872{
7873 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7874 uint8_t *eld = connector->eld;
7875 uint32_t eldv;
7876 uint32_t i;
7877 int len;
7878 int hdmiw_hdmiedid;
b6daa025 7879 int aud_config;
e0dac65e
WF
7880 int aud_cntl_st;
7881 int aud_cntrl_st2;
9b138a83 7882 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7883
b3f33cbf 7884 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7885 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7886 aud_config = IBX_AUD_CFG(pipe);
7887 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7888 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7889 } else if (IS_VALLEYVIEW(connector->dev)) {
7890 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7891 aud_config = VLV_AUD_CFG(pipe);
7892 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7893 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7894 } else {
9b138a83
WX
7895 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7896 aud_config = CPT_AUD_CFG(pipe);
7897 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7898 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7899 }
7900
9b138a83 7901 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7902
9ca2fe73
ML
7903 if (IS_VALLEYVIEW(connector->dev)) {
7904 struct intel_encoder *intel_encoder;
7905 struct intel_digital_port *intel_dig_port;
7906
7907 intel_encoder = intel_attached_encoder(connector);
7908 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7909 i = intel_dig_port->port;
7910 } else {
7911 i = I915_READ(aud_cntl_st);
7912 i = (i >> 29) & DIP_PORT_SEL_MASK;
7913 /* DIP_Port_Select, 0x1 = PortB */
7914 }
7915
e0dac65e
WF
7916 if (!i) {
7917 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7918 /* operate blindly on all ports */
1202b4c6
WF
7919 eldv = IBX_ELD_VALIDB;
7920 eldv |= IBX_ELD_VALIDB << 4;
7921 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7922 } else {
2582a850 7923 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7924 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7925 }
7926
3a9627f4
WF
7927 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7928 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7929 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7930 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7931 } else {
7932 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7933 }
e0dac65e 7934
3a9627f4
WF
7935 if (intel_eld_uptodate(connector,
7936 aud_cntrl_st2, eldv,
7937 aud_cntl_st, IBX_ELD_ADDRESS,
7938 hdmiw_hdmiedid))
7939 return;
7940
e0dac65e
WF
7941 i = I915_READ(aud_cntrl_st2);
7942 i &= ~eldv;
7943 I915_WRITE(aud_cntrl_st2, i);
7944
7945 if (!eld[0])
7946 return;
7947
e0dac65e 7948 i = I915_READ(aud_cntl_st);
1202b4c6 7949 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7950 I915_WRITE(aud_cntl_st, i);
7951
7952 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7953 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7954 for (i = 0; i < len; i++)
7955 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7956
7957 i = I915_READ(aud_cntrl_st2);
7958 i |= eldv;
7959 I915_WRITE(aud_cntrl_st2, i);
7960}
7961
7962void intel_write_eld(struct drm_encoder *encoder,
7963 struct drm_display_mode *mode)
7964{
7965 struct drm_crtc *crtc = encoder->crtc;
7966 struct drm_connector *connector;
7967 struct drm_device *dev = encoder->dev;
7968 struct drm_i915_private *dev_priv = dev->dev_private;
7969
7970 connector = drm_select_eld(encoder, mode);
7971 if (!connector)
7972 return;
7973
7974 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7975 connector->base.id,
c23cc417 7976 connector->name,
e0dac65e 7977 connector->encoder->base.id,
8e329a03 7978 connector->encoder->name);
e0dac65e
WF
7979
7980 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7981
7982 if (dev_priv->display.write_eld)
34427052 7983 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7984}
7985
560b85bb
CW
7986static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7987{
7988 struct drm_device *dev = crtc->dev;
7989 struct drm_i915_private *dev_priv = dev->dev_private;
7990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7991 uint32_t cntl;
560b85bb 7992
4b0e333e 7993 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7994 /* On these chipsets we can only modify the base whilst
7995 * the cursor is disabled.
7996 */
4b0e333e
CW
7997 if (intel_crtc->cursor_cntl) {
7998 I915_WRITE(_CURACNTR, 0);
7999 POSTING_READ(_CURACNTR);
8000 intel_crtc->cursor_cntl = 0;
8001 }
8002
9db4a9c7 8003 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8004 POSTING_READ(_CURABASE);
8005 }
560b85bb 8006
4b0e333e
CW
8007 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8008 cntl = 0;
8009 if (base)
8010 cntl = (CURSOR_ENABLE |
560b85bb 8011 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8012 CURSOR_FORMAT_ARGB);
8013 if (intel_crtc->cursor_cntl != cntl) {
8014 I915_WRITE(_CURACNTR, cntl);
8015 POSTING_READ(_CURACNTR);
8016 intel_crtc->cursor_cntl = cntl;
8017 }
560b85bb
CW
8018}
8019
8020static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8021{
8022 struct drm_device *dev = crtc->dev;
8023 struct drm_i915_private *dev_priv = dev->dev_private;
8024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8025 int pipe = intel_crtc->pipe;
4b0e333e 8026 uint32_t cntl;
4726e0b0 8027
4b0e333e
CW
8028 cntl = 0;
8029 if (base) {
8030 cntl = MCURSOR_GAMMA_ENABLE;
8031 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8032 case 64:
8033 cntl |= CURSOR_MODE_64_ARGB_AX;
8034 break;
8035 case 128:
8036 cntl |= CURSOR_MODE_128_ARGB_AX;
8037 break;
8038 case 256:
8039 cntl |= CURSOR_MODE_256_ARGB_AX;
8040 break;
8041 default:
8042 WARN_ON(1);
8043 return;
560b85bb 8044 }
4b0e333e
CW
8045 cntl |= pipe << 28; /* Connect to correct pipe */
8046 }
8047 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8048 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8049 POSTING_READ(CURCNTR(pipe));
8050 intel_crtc->cursor_cntl = cntl;
560b85bb 8051 }
4b0e333e 8052
560b85bb 8053 /* and commit changes on next vblank */
9db4a9c7 8054 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8055 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8056}
8057
65a21cd6
JB
8058static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8059{
8060 struct drm_device *dev = crtc->dev;
8061 struct drm_i915_private *dev_priv = dev->dev_private;
8062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8063 int pipe = intel_crtc->pipe;
4b0e333e
CW
8064 uint32_t cntl;
8065
8066 cntl = 0;
8067 if (base) {
8068 cntl = MCURSOR_GAMMA_ENABLE;
8069 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8070 case 64:
8071 cntl |= CURSOR_MODE_64_ARGB_AX;
8072 break;
8073 case 128:
8074 cntl |= CURSOR_MODE_128_ARGB_AX;
8075 break;
8076 case 256:
8077 cntl |= CURSOR_MODE_256_ARGB_AX;
8078 break;
8079 default:
8080 WARN_ON(1);
8081 return;
65a21cd6 8082 }
4b0e333e
CW
8083 }
8084 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8085 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8086
4b0e333e
CW
8087 if (intel_crtc->cursor_cntl != cntl) {
8088 I915_WRITE(CURCNTR(pipe), cntl);
8089 POSTING_READ(CURCNTR(pipe));
8090 intel_crtc->cursor_cntl = cntl;
65a21cd6 8091 }
4b0e333e 8092
65a21cd6 8093 /* and commit changes on next vblank */
5efb3e28
VS
8094 I915_WRITE(CURBASE(pipe), base);
8095 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8096}
8097
cda4b7d3 8098/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8099static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8100 bool on)
cda4b7d3
CW
8101{
8102 struct drm_device *dev = crtc->dev;
8103 struct drm_i915_private *dev_priv = dev->dev_private;
8104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8105 int pipe = intel_crtc->pipe;
3d7d6510
MR
8106 int x = crtc->cursor_x;
8107 int y = crtc->cursor_y;
d6e4db15 8108 u32 base = 0, pos = 0;
cda4b7d3 8109
d6e4db15 8110 if (on)
cda4b7d3 8111 base = intel_crtc->cursor_addr;
cda4b7d3 8112
d6e4db15
VS
8113 if (x >= intel_crtc->config.pipe_src_w)
8114 base = 0;
8115
8116 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8117 base = 0;
8118
8119 if (x < 0) {
efc9064e 8120 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8121 base = 0;
8122
8123 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8124 x = -x;
8125 }
8126 pos |= x << CURSOR_X_SHIFT;
8127
8128 if (y < 0) {
efc9064e 8129 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8130 base = 0;
8131
8132 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8133 y = -y;
8134 }
8135 pos |= y << CURSOR_Y_SHIFT;
8136
4b0e333e 8137 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8138 return;
8139
5efb3e28
VS
8140 I915_WRITE(CURPOS(pipe), pos);
8141
8142 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8143 ivb_update_cursor(crtc, base);
5efb3e28
VS
8144 else if (IS_845G(dev) || IS_I865G(dev))
8145 i845_update_cursor(crtc, base);
8146 else
8147 i9xx_update_cursor(crtc, base);
4b0e333e 8148 intel_crtc->cursor_base = base;
cda4b7d3
CW
8149}
8150
e3287951
MR
8151/*
8152 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8153 *
8154 * Note that the object's reference will be consumed if the update fails. If
8155 * the update succeeds, the reference of the old object (if any) will be
8156 * consumed.
8157 */
8158static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8159 struct drm_i915_gem_object *obj,
8160 uint32_t width, uint32_t height)
79e53945
JB
8161{
8162 struct drm_device *dev = crtc->dev;
8163 struct drm_i915_private *dev_priv = dev->dev_private;
8164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8165 enum pipe pipe = intel_crtc->pipe;
64f962e3 8166 unsigned old_width;
cda4b7d3 8167 uint32_t addr;
3f8bc370 8168 int ret;
79e53945 8169
79e53945 8170 /* if we want to turn off the cursor ignore width and height */
e3287951 8171 if (!obj) {
28c97730 8172 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8173 addr = 0;
05394f39 8174 obj = NULL;
5004417d 8175 mutex_lock(&dev->struct_mutex);
3f8bc370 8176 goto finish;
79e53945
JB
8177 }
8178
4726e0b0
SK
8179 /* Check for which cursor types we support */
8180 if (!((width == 64 && height == 64) ||
8181 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8182 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8183 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8184 return -EINVAL;
8185 }
8186
05394f39 8187 if (obj->base.size < width * height * 4) {
e3287951 8188 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8189 ret = -ENOMEM;
8190 goto fail;
79e53945
JB
8191 }
8192
71acb5eb 8193 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8194 mutex_lock(&dev->struct_mutex);
3d13ef2e 8195 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8196 unsigned alignment;
8197
d9e86c0e 8198 if (obj->tiling_mode) {
3b25b31f 8199 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8200 ret = -EINVAL;
8201 goto fail_locked;
8202 }
8203
693db184
CW
8204 /* Note that the w/a also requires 2 PTE of padding following
8205 * the bo. We currently fill all unused PTE with the shadow
8206 * page and so we should always have valid PTE following the
8207 * cursor preventing the VT-d warning.
8208 */
8209 alignment = 0;
8210 if (need_vtd_wa(dev))
8211 alignment = 64*1024;
8212
8213 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8214 if (ret) {
3b25b31f 8215 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8216 goto fail_locked;
e7b526bb
CW
8217 }
8218
d9e86c0e
CW
8219 ret = i915_gem_object_put_fence(obj);
8220 if (ret) {
3b25b31f 8221 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8222 goto fail_unpin;
8223 }
8224
f343c5f6 8225 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8226 } else {
6eeefaf3 8227 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8228 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8229 if (ret) {
3b25b31f 8230 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8231 goto fail_locked;
71acb5eb 8232 }
00731155 8233 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8234 }
8235
a6c45cf0 8236 if (IS_GEN2(dev))
14b60391
JB
8237 I915_WRITE(CURSIZE, (height << 12) | width);
8238
3f8bc370 8239 finish:
3f8bc370 8240 if (intel_crtc->cursor_bo) {
00731155 8241 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8242 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8243 }
80824003 8244
a071fa00
DV
8245 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8246 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8247 mutex_unlock(&dev->struct_mutex);
3f8bc370 8248
64f962e3
CW
8249 old_width = intel_crtc->cursor_width;
8250
3f8bc370 8251 intel_crtc->cursor_addr = addr;
05394f39 8252 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8253 intel_crtc->cursor_width = width;
8254 intel_crtc->cursor_height = height;
8255
64f962e3
CW
8256 if (intel_crtc->active) {
8257 if (old_width != width)
8258 intel_update_watermarks(crtc);
f2f5f771 8259 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8260 }
3f8bc370 8261
f99d7069
DV
8262 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8263
79e53945 8264 return 0;
e7b526bb 8265fail_unpin:
cc98b413 8266 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8267fail_locked:
34b8686e 8268 mutex_unlock(&dev->struct_mutex);
bc9025bd 8269fail:
05394f39 8270 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8271 return ret;
79e53945
JB
8272}
8273
79e53945 8274static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8275 u16 *blue, uint32_t start, uint32_t size)
79e53945 8276{
7203425a 8277 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8279
7203425a 8280 for (i = start; i < end; i++) {
79e53945
JB
8281 intel_crtc->lut_r[i] = red[i] >> 8;
8282 intel_crtc->lut_g[i] = green[i] >> 8;
8283 intel_crtc->lut_b[i] = blue[i] >> 8;
8284 }
8285
8286 intel_crtc_load_lut(crtc);
8287}
8288
79e53945
JB
8289/* VESA 640x480x72Hz mode to set on the pipe */
8290static struct drm_display_mode load_detect_mode = {
8291 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8292 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8293};
8294
a8bb6818
DV
8295struct drm_framebuffer *
8296__intel_framebuffer_create(struct drm_device *dev,
8297 struct drm_mode_fb_cmd2 *mode_cmd,
8298 struct drm_i915_gem_object *obj)
d2dff872
CW
8299{
8300 struct intel_framebuffer *intel_fb;
8301 int ret;
8302
8303 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8304 if (!intel_fb) {
8305 drm_gem_object_unreference_unlocked(&obj->base);
8306 return ERR_PTR(-ENOMEM);
8307 }
8308
8309 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8310 if (ret)
8311 goto err;
d2dff872
CW
8312
8313 return &intel_fb->base;
dd4916c5
DV
8314err:
8315 drm_gem_object_unreference_unlocked(&obj->base);
8316 kfree(intel_fb);
8317
8318 return ERR_PTR(ret);
d2dff872
CW
8319}
8320
b5ea642a 8321static struct drm_framebuffer *
a8bb6818
DV
8322intel_framebuffer_create(struct drm_device *dev,
8323 struct drm_mode_fb_cmd2 *mode_cmd,
8324 struct drm_i915_gem_object *obj)
8325{
8326 struct drm_framebuffer *fb;
8327 int ret;
8328
8329 ret = i915_mutex_lock_interruptible(dev);
8330 if (ret)
8331 return ERR_PTR(ret);
8332 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8333 mutex_unlock(&dev->struct_mutex);
8334
8335 return fb;
8336}
8337
d2dff872
CW
8338static u32
8339intel_framebuffer_pitch_for_width(int width, int bpp)
8340{
8341 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8342 return ALIGN(pitch, 64);
8343}
8344
8345static u32
8346intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8347{
8348 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8349 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8350}
8351
8352static struct drm_framebuffer *
8353intel_framebuffer_create_for_mode(struct drm_device *dev,
8354 struct drm_display_mode *mode,
8355 int depth, int bpp)
8356{
8357 struct drm_i915_gem_object *obj;
0fed39bd 8358 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8359
8360 obj = i915_gem_alloc_object(dev,
8361 intel_framebuffer_size_for_mode(mode, bpp));
8362 if (obj == NULL)
8363 return ERR_PTR(-ENOMEM);
8364
8365 mode_cmd.width = mode->hdisplay;
8366 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8367 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8368 bpp);
5ca0c34a 8369 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8370
8371 return intel_framebuffer_create(dev, &mode_cmd, obj);
8372}
8373
8374static struct drm_framebuffer *
8375mode_fits_in_fbdev(struct drm_device *dev,
8376 struct drm_display_mode *mode)
8377{
4520f53a 8378#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8379 struct drm_i915_private *dev_priv = dev->dev_private;
8380 struct drm_i915_gem_object *obj;
8381 struct drm_framebuffer *fb;
8382
4c0e5528 8383 if (!dev_priv->fbdev)
d2dff872
CW
8384 return NULL;
8385
4c0e5528 8386 if (!dev_priv->fbdev->fb)
d2dff872
CW
8387 return NULL;
8388
4c0e5528
DV
8389 obj = dev_priv->fbdev->fb->obj;
8390 BUG_ON(!obj);
8391
8bcd4553 8392 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8393 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8394 fb->bits_per_pixel))
d2dff872
CW
8395 return NULL;
8396
01f2c773 8397 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8398 return NULL;
8399
8400 return fb;
4520f53a
DV
8401#else
8402 return NULL;
8403#endif
d2dff872
CW
8404}
8405
d2434ab7 8406bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8407 struct drm_display_mode *mode,
51fd371b
RC
8408 struct intel_load_detect_pipe *old,
8409 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8410{
8411 struct intel_crtc *intel_crtc;
d2434ab7
DV
8412 struct intel_encoder *intel_encoder =
8413 intel_attached_encoder(connector);
79e53945 8414 struct drm_crtc *possible_crtc;
4ef69c7a 8415 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8416 struct drm_crtc *crtc = NULL;
8417 struct drm_device *dev = encoder->dev;
94352cf9 8418 struct drm_framebuffer *fb;
51fd371b
RC
8419 struct drm_mode_config *config = &dev->mode_config;
8420 int ret, i = -1;
79e53945 8421
d2dff872 8422 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8423 connector->base.id, connector->name,
8e329a03 8424 encoder->base.id, encoder->name);
d2dff872 8425
51fd371b
RC
8426 drm_modeset_acquire_init(ctx, 0);
8427
8428retry:
8429 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8430 if (ret)
8431 goto fail_unlock;
6e9f798d 8432
79e53945
JB
8433 /*
8434 * Algorithm gets a little messy:
7a5e4805 8435 *
79e53945
JB
8436 * - if the connector already has an assigned crtc, use it (but make
8437 * sure it's on first)
7a5e4805 8438 *
79e53945
JB
8439 * - try to find the first unused crtc that can drive this connector,
8440 * and use that if we find one
79e53945
JB
8441 */
8442
8443 /* See if we already have a CRTC for this connector */
8444 if (encoder->crtc) {
8445 crtc = encoder->crtc;
8261b191 8446
51fd371b
RC
8447 ret = drm_modeset_lock(&crtc->mutex, ctx);
8448 if (ret)
8449 goto fail_unlock;
7b24056b 8450
24218aac 8451 old->dpms_mode = connector->dpms;
8261b191
CW
8452 old->load_detect_temp = false;
8453
8454 /* Make sure the crtc and connector are running */
24218aac
DV
8455 if (connector->dpms != DRM_MODE_DPMS_ON)
8456 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8457
7173188d 8458 return true;
79e53945
JB
8459 }
8460
8461 /* Find an unused one (if possible) */
70e1e0ec 8462 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8463 i++;
8464 if (!(encoder->possible_crtcs & (1 << i)))
8465 continue;
8466 if (!possible_crtc->enabled) {
8467 crtc = possible_crtc;
8468 break;
8469 }
79e53945
JB
8470 }
8471
8472 /*
8473 * If we didn't find an unused CRTC, don't use any.
8474 */
8475 if (!crtc) {
7173188d 8476 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8477 goto fail_unlock;
79e53945
JB
8478 }
8479
51fd371b
RC
8480 ret = drm_modeset_lock(&crtc->mutex, ctx);
8481 if (ret)
8482 goto fail_unlock;
fc303101
DV
8483 intel_encoder->new_crtc = to_intel_crtc(crtc);
8484 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8485
8486 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8487 intel_crtc->new_enabled = true;
8488 intel_crtc->new_config = &intel_crtc->config;
24218aac 8489 old->dpms_mode = connector->dpms;
8261b191 8490 old->load_detect_temp = true;
d2dff872 8491 old->release_fb = NULL;
79e53945 8492
6492711d
CW
8493 if (!mode)
8494 mode = &load_detect_mode;
79e53945 8495
d2dff872
CW
8496 /* We need a framebuffer large enough to accommodate all accesses
8497 * that the plane may generate whilst we perform load detection.
8498 * We can not rely on the fbcon either being present (we get called
8499 * during its initialisation to detect all boot displays, or it may
8500 * not even exist) or that it is large enough to satisfy the
8501 * requested mode.
8502 */
94352cf9
DV
8503 fb = mode_fits_in_fbdev(dev, mode);
8504 if (fb == NULL) {
d2dff872 8505 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8506 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8507 old->release_fb = fb;
d2dff872
CW
8508 } else
8509 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8510 if (IS_ERR(fb)) {
d2dff872 8511 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8512 goto fail;
79e53945 8513 }
79e53945 8514
c0c36b94 8515 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8516 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8517 if (old->release_fb)
8518 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8519 goto fail;
79e53945 8520 }
7173188d 8521
79e53945 8522 /* let the connector get through one full cycle before testing */
9d0498a2 8523 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8524 return true;
412b61d8
VS
8525
8526 fail:
8527 intel_crtc->new_enabled = crtc->enabled;
8528 if (intel_crtc->new_enabled)
8529 intel_crtc->new_config = &intel_crtc->config;
8530 else
8531 intel_crtc->new_config = NULL;
51fd371b
RC
8532fail_unlock:
8533 if (ret == -EDEADLK) {
8534 drm_modeset_backoff(ctx);
8535 goto retry;
8536 }
8537
8538 drm_modeset_drop_locks(ctx);
8539 drm_modeset_acquire_fini(ctx);
6e9f798d 8540
412b61d8 8541 return false;
79e53945
JB
8542}
8543
d2434ab7 8544void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8545 struct intel_load_detect_pipe *old,
8546 struct drm_modeset_acquire_ctx *ctx)
79e53945 8547{
d2434ab7
DV
8548 struct intel_encoder *intel_encoder =
8549 intel_attached_encoder(connector);
4ef69c7a 8550 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8551 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8553
d2dff872 8554 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8555 connector->base.id, connector->name,
8e329a03 8556 encoder->base.id, encoder->name);
d2dff872 8557
8261b191 8558 if (old->load_detect_temp) {
fc303101
DV
8559 to_intel_connector(connector)->new_encoder = NULL;
8560 intel_encoder->new_crtc = NULL;
412b61d8
VS
8561 intel_crtc->new_enabled = false;
8562 intel_crtc->new_config = NULL;
fc303101 8563 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8564
36206361
DV
8565 if (old->release_fb) {
8566 drm_framebuffer_unregister_private(old->release_fb);
8567 drm_framebuffer_unreference(old->release_fb);
8568 }
d2dff872 8569
51fd371b 8570 goto unlock;
0622a53c 8571 return;
79e53945
JB
8572 }
8573
c751ce4f 8574 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8575 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8576 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8577
51fd371b
RC
8578unlock:
8579 drm_modeset_drop_locks(ctx);
8580 drm_modeset_acquire_fini(ctx);
79e53945
JB
8581}
8582
da4a1efa
VS
8583static int i9xx_pll_refclk(struct drm_device *dev,
8584 const struct intel_crtc_config *pipe_config)
8585{
8586 struct drm_i915_private *dev_priv = dev->dev_private;
8587 u32 dpll = pipe_config->dpll_hw_state.dpll;
8588
8589 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8590 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8591 else if (HAS_PCH_SPLIT(dev))
8592 return 120000;
8593 else if (!IS_GEN2(dev))
8594 return 96000;
8595 else
8596 return 48000;
8597}
8598
79e53945 8599/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8600static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8601 struct intel_crtc_config *pipe_config)
79e53945 8602{
f1f644dc 8603 struct drm_device *dev = crtc->base.dev;
79e53945 8604 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8605 int pipe = pipe_config->cpu_transcoder;
293623f7 8606 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8607 u32 fp;
8608 intel_clock_t clock;
da4a1efa 8609 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8610
8611 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8612 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8613 else
293623f7 8614 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8615
8616 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8617 if (IS_PINEVIEW(dev)) {
8618 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8619 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8620 } else {
8621 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8622 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8623 }
8624
a6c45cf0 8625 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8626 if (IS_PINEVIEW(dev))
8627 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8628 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8629 else
8630 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8631 DPLL_FPA01_P1_POST_DIV_SHIFT);
8632
8633 switch (dpll & DPLL_MODE_MASK) {
8634 case DPLLB_MODE_DAC_SERIAL:
8635 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8636 5 : 10;
8637 break;
8638 case DPLLB_MODE_LVDS:
8639 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8640 7 : 14;
8641 break;
8642 default:
28c97730 8643 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8644 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8645 return;
79e53945
JB
8646 }
8647
ac58c3f0 8648 if (IS_PINEVIEW(dev))
da4a1efa 8649 pineview_clock(refclk, &clock);
ac58c3f0 8650 else
da4a1efa 8651 i9xx_clock(refclk, &clock);
79e53945 8652 } else {
0fb58223 8653 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8654 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8655
8656 if (is_lvds) {
8657 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8658 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8659
8660 if (lvds & LVDS_CLKB_POWER_UP)
8661 clock.p2 = 7;
8662 else
8663 clock.p2 = 14;
79e53945
JB
8664 } else {
8665 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8666 clock.p1 = 2;
8667 else {
8668 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8669 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8670 }
8671 if (dpll & PLL_P2_DIVIDE_BY_4)
8672 clock.p2 = 4;
8673 else
8674 clock.p2 = 2;
79e53945 8675 }
da4a1efa
VS
8676
8677 i9xx_clock(refclk, &clock);
79e53945
JB
8678 }
8679
18442d08
VS
8680 /*
8681 * This value includes pixel_multiplier. We will use
241bfc38 8682 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8683 * encoder's get_config() function.
8684 */
8685 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8686}
8687
6878da05
VS
8688int intel_dotclock_calculate(int link_freq,
8689 const struct intel_link_m_n *m_n)
f1f644dc 8690{
f1f644dc
JB
8691 /*
8692 * The calculation for the data clock is:
1041a02f 8693 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8694 * But we want to avoid losing precison if possible, so:
1041a02f 8695 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8696 *
8697 * and the link clock is simpler:
1041a02f 8698 * link_clock = (m * link_clock) / n
f1f644dc
JB
8699 */
8700
6878da05
VS
8701 if (!m_n->link_n)
8702 return 0;
f1f644dc 8703
6878da05
VS
8704 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8705}
f1f644dc 8706
18442d08
VS
8707static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8708 struct intel_crtc_config *pipe_config)
6878da05
VS
8709{
8710 struct drm_device *dev = crtc->base.dev;
79e53945 8711
18442d08
VS
8712 /* read out port_clock from the DPLL */
8713 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8714
f1f644dc 8715 /*
18442d08 8716 * This value does not include pixel_multiplier.
241bfc38 8717 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8718 * agree once we know their relationship in the encoder's
8719 * get_config() function.
79e53945 8720 */
241bfc38 8721 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8722 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8723 &pipe_config->fdi_m_n);
79e53945
JB
8724}
8725
8726/** Returns the currently programmed mode of the given pipe. */
8727struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8728 struct drm_crtc *crtc)
8729{
548f245b 8730 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8732 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8733 struct drm_display_mode *mode;
f1f644dc 8734 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8735 int htot = I915_READ(HTOTAL(cpu_transcoder));
8736 int hsync = I915_READ(HSYNC(cpu_transcoder));
8737 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8738 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8739 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8740
8741 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8742 if (!mode)
8743 return NULL;
8744
f1f644dc
JB
8745 /*
8746 * Construct a pipe_config sufficient for getting the clock info
8747 * back out of crtc_clock_get.
8748 *
8749 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8750 * to use a real value here instead.
8751 */
293623f7 8752 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8753 pipe_config.pixel_multiplier = 1;
293623f7
VS
8754 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8755 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8756 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8757 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8758
773ae034 8759 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8760 mode->hdisplay = (htot & 0xffff) + 1;
8761 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8762 mode->hsync_start = (hsync & 0xffff) + 1;
8763 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8764 mode->vdisplay = (vtot & 0xffff) + 1;
8765 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8766 mode->vsync_start = (vsync & 0xffff) + 1;
8767 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8768
8769 drm_mode_set_name(mode);
79e53945
JB
8770
8771 return mode;
8772}
8773
cc36513c
DV
8774static void intel_increase_pllclock(struct drm_device *dev,
8775 enum pipe pipe)
652c393a 8776{
fbee40df 8777 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8778 int dpll_reg = DPLL(pipe);
8779 int dpll;
652c393a 8780
bad720ff 8781 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8782 return;
8783
8784 if (!dev_priv->lvds_downclock_avail)
8785 return;
8786
dbdc6479 8787 dpll = I915_READ(dpll_reg);
652c393a 8788 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8789 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8790
8ac5a6d5 8791 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8792
8793 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8794 I915_WRITE(dpll_reg, dpll);
9d0498a2 8795 intel_wait_for_vblank(dev, pipe);
dbdc6479 8796
652c393a
JB
8797 dpll = I915_READ(dpll_reg);
8798 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8799 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8800 }
652c393a
JB
8801}
8802
8803static void intel_decrease_pllclock(struct drm_crtc *crtc)
8804{
8805 struct drm_device *dev = crtc->dev;
fbee40df 8806 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8808
bad720ff 8809 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8810 return;
8811
8812 if (!dev_priv->lvds_downclock_avail)
8813 return;
8814
8815 /*
8816 * Since this is called by a timer, we should never get here in
8817 * the manual case.
8818 */
8819 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8820 int pipe = intel_crtc->pipe;
8821 int dpll_reg = DPLL(pipe);
8822 int dpll;
f6e5b160 8823
44d98a61 8824 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8825
8ac5a6d5 8826 assert_panel_unlocked(dev_priv, pipe);
652c393a 8827
dc257cf1 8828 dpll = I915_READ(dpll_reg);
652c393a
JB
8829 dpll |= DISPLAY_RATE_SELECT_FPA1;
8830 I915_WRITE(dpll_reg, dpll);
9d0498a2 8831 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8832 dpll = I915_READ(dpll_reg);
8833 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8834 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8835 }
8836
8837}
8838
f047e395
CW
8839void intel_mark_busy(struct drm_device *dev)
8840{
c67a470b
PZ
8841 struct drm_i915_private *dev_priv = dev->dev_private;
8842
f62a0076
CW
8843 if (dev_priv->mm.busy)
8844 return;
8845
43694d69 8846 intel_runtime_pm_get(dev_priv);
c67a470b 8847 i915_update_gfx_val(dev_priv);
f62a0076 8848 dev_priv->mm.busy = true;
f047e395
CW
8849}
8850
8851void intel_mark_idle(struct drm_device *dev)
652c393a 8852{
c67a470b 8853 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8854 struct drm_crtc *crtc;
652c393a 8855
f62a0076
CW
8856 if (!dev_priv->mm.busy)
8857 return;
8858
8859 dev_priv->mm.busy = false;
8860
d330a953 8861 if (!i915.powersave)
bb4cdd53 8862 goto out;
652c393a 8863
70e1e0ec 8864 for_each_crtc(dev, crtc) {
f4510a27 8865 if (!crtc->primary->fb)
652c393a
JB
8866 continue;
8867
725a5b54 8868 intel_decrease_pllclock(crtc);
652c393a 8869 }
b29c19b6 8870
3d13ef2e 8871 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8872 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8873
8874out:
43694d69 8875 intel_runtime_pm_put(dev_priv);
652c393a
JB
8876}
8877
7c8f8a70 8878
f99d7069
DV
8879/**
8880 * intel_mark_fb_busy - mark given planes as busy
8881 * @dev: DRM device
8882 * @frontbuffer_bits: bits for the affected planes
8883 * @ring: optional ring for asynchronous commands
8884 *
8885 * This function gets called every time the screen contents change. It can be
8886 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8887 */
8888static void intel_mark_fb_busy(struct drm_device *dev,
8889 unsigned frontbuffer_bits,
8890 struct intel_engine_cs *ring)
652c393a 8891{
cc36513c 8892 enum pipe pipe;
652c393a 8893
d330a953 8894 if (!i915.powersave)
acb87dfb
CW
8895 return;
8896
cc36513c 8897 for_each_pipe(pipe) {
f99d7069 8898 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8899 continue;
8900
cc36513c 8901 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8902 if (ring && intel_fbc_enabled(dev))
8903 ring->fbc_dirty = true;
652c393a
JB
8904 }
8905}
8906
f99d7069
DV
8907/**
8908 * intel_fb_obj_invalidate - invalidate frontbuffer object
8909 * @obj: GEM object to invalidate
8910 * @ring: set for asynchronous rendering
8911 *
8912 * This function gets called every time rendering on the given object starts and
8913 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8914 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8915 * until the rendering completes or a flip on this frontbuffer plane is
8916 * scheduled.
8917 */
8918void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8919 struct intel_engine_cs *ring)
8920{
8921 struct drm_device *dev = obj->base.dev;
8922 struct drm_i915_private *dev_priv = dev->dev_private;
8923
8924 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8925
8926 if (!obj->frontbuffer_bits)
8927 return;
8928
8929 if (ring) {
8930 mutex_lock(&dev_priv->fb_tracking.lock);
8931 dev_priv->fb_tracking.busy_bits
8932 |= obj->frontbuffer_bits;
8933 dev_priv->fb_tracking.flip_bits
8934 &= ~obj->frontbuffer_bits;
8935 mutex_unlock(&dev_priv->fb_tracking.lock);
8936 }
8937
8938 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8939
8940 intel_edp_psr_exit(dev);
8941}
8942
8943/**
8944 * intel_frontbuffer_flush - flush frontbuffer
8945 * @dev: DRM device
8946 * @frontbuffer_bits: frontbuffer plane tracking bits
8947 *
8948 * This function gets called every time rendering on the given planes has
8949 * completed and frontbuffer caching can be started again. Flushes will get
8950 * delayed if they're blocked by some oustanding asynchronous rendering.
8951 *
8952 * Can be called without any locks held.
8953 */
8954void intel_frontbuffer_flush(struct drm_device *dev,
8955 unsigned frontbuffer_bits)
8956{
8957 struct drm_i915_private *dev_priv = dev->dev_private;
8958
8959 /* Delay flushing when rings are still busy.*/
8960 mutex_lock(&dev_priv->fb_tracking.lock);
8961 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8962 mutex_unlock(&dev_priv->fb_tracking.lock);
8963
8964 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8965
8966 intel_edp_psr_exit(dev);
8967}
8968
8969/**
8970 * intel_fb_obj_flush - flush frontbuffer object
8971 * @obj: GEM object to flush
8972 * @retire: set when retiring asynchronous rendering
8973 *
8974 * This function gets called every time rendering on the given object has
8975 * completed and frontbuffer caching can be started again. If @retire is true
8976 * then any delayed flushes will be unblocked.
8977 */
8978void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8979 bool retire)
8980{
8981 struct drm_device *dev = obj->base.dev;
8982 struct drm_i915_private *dev_priv = dev->dev_private;
8983 unsigned frontbuffer_bits;
8984
8985 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8986
8987 if (!obj->frontbuffer_bits)
8988 return;
8989
8990 frontbuffer_bits = obj->frontbuffer_bits;
8991
8992 if (retire) {
8993 mutex_lock(&dev_priv->fb_tracking.lock);
8994 /* Filter out new bits since rendering started. */
8995 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8996
8997 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8998 mutex_unlock(&dev_priv->fb_tracking.lock);
8999 }
9000
9001 intel_frontbuffer_flush(dev, frontbuffer_bits);
9002}
9003
9004/**
9005 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9006 * @dev: DRM device
9007 * @frontbuffer_bits: frontbuffer plane tracking bits
9008 *
9009 * This function gets called after scheduling a flip on @obj. The actual
9010 * frontbuffer flushing will be delayed until completion is signalled with
9011 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9012 * flush will be cancelled.
9013 *
9014 * Can be called without any locks held.
9015 */
9016void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9017 unsigned frontbuffer_bits)
9018{
9019 struct drm_i915_private *dev_priv = dev->dev_private;
9020
9021 mutex_lock(&dev_priv->fb_tracking.lock);
9022 dev_priv->fb_tracking.flip_bits
9023 |= frontbuffer_bits;
9024 mutex_unlock(&dev_priv->fb_tracking.lock);
9025}
9026
9027/**
9028 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9029 * @dev: DRM device
9030 * @frontbuffer_bits: frontbuffer plane tracking bits
9031 *
9032 * This function gets called after the flip has been latched and will complete
9033 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9034 *
9035 * Can be called without any locks held.
9036 */
9037void intel_frontbuffer_flip_complete(struct drm_device *dev,
9038 unsigned frontbuffer_bits)
9039{
9040 struct drm_i915_private *dev_priv = dev->dev_private;
9041
9042 mutex_lock(&dev_priv->fb_tracking.lock);
9043 /* Mask any cancelled flips. */
9044 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9045 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9046 mutex_unlock(&dev_priv->fb_tracking.lock);
9047
9048 intel_frontbuffer_flush(dev, frontbuffer_bits);
9049}
9050
79e53945
JB
9051static void intel_crtc_destroy(struct drm_crtc *crtc)
9052{
9053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9054 struct drm_device *dev = crtc->dev;
9055 struct intel_unpin_work *work;
9056 unsigned long flags;
9057
9058 spin_lock_irqsave(&dev->event_lock, flags);
9059 work = intel_crtc->unpin_work;
9060 intel_crtc->unpin_work = NULL;
9061 spin_unlock_irqrestore(&dev->event_lock, flags);
9062
9063 if (work) {
9064 cancel_work_sync(&work->work);
9065 kfree(work);
9066 }
79e53945
JB
9067
9068 drm_crtc_cleanup(crtc);
67e77c5a 9069
79e53945
JB
9070 kfree(intel_crtc);
9071}
9072
6b95a207
KH
9073static void intel_unpin_work_fn(struct work_struct *__work)
9074{
9075 struct intel_unpin_work *work =
9076 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9077 struct drm_device *dev = work->crtc->dev;
f99d7069 9078 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9079
b4a98e57 9080 mutex_lock(&dev->struct_mutex);
1690e1eb 9081 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9082 drm_gem_object_unreference(&work->pending_flip_obj->base);
9083 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9084
b4a98e57
CW
9085 intel_update_fbc(dev);
9086 mutex_unlock(&dev->struct_mutex);
9087
f99d7069
DV
9088 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9089
b4a98e57
CW
9090 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9091 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9092
6b95a207
KH
9093 kfree(work);
9094}
9095
1afe3e9d 9096static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9097 struct drm_crtc *crtc)
6b95a207 9098{
fbee40df 9099 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9101 struct intel_unpin_work *work;
6b95a207
KH
9102 unsigned long flags;
9103
9104 /* Ignore early vblank irqs */
9105 if (intel_crtc == NULL)
9106 return;
9107
9108 spin_lock_irqsave(&dev->event_lock, flags);
9109 work = intel_crtc->unpin_work;
e7d841ca
CW
9110
9111 /* Ensure we don't miss a work->pending update ... */
9112 smp_rmb();
9113
9114 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9115 spin_unlock_irqrestore(&dev->event_lock, flags);
9116 return;
9117 }
9118
e7d841ca
CW
9119 /* and that the unpin work is consistent wrt ->pending. */
9120 smp_rmb();
9121
6b95a207 9122 intel_crtc->unpin_work = NULL;
6b95a207 9123
45a066eb
RC
9124 if (work->event)
9125 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9126
87b6b101 9127 drm_crtc_vblank_put(crtc);
0af7e4df 9128
6b95a207
KH
9129 spin_unlock_irqrestore(&dev->event_lock, flags);
9130
2c10d571 9131 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9132
9133 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9134
9135 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9136}
9137
1afe3e9d
JB
9138void intel_finish_page_flip(struct drm_device *dev, int pipe)
9139{
fbee40df 9140 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9141 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9142
49b14a5c 9143 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9144}
9145
9146void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9147{
fbee40df 9148 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9149 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9150
49b14a5c 9151 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9152}
9153
75f7f3ec
VS
9154/* Is 'a' after or equal to 'b'? */
9155static bool g4x_flip_count_after_eq(u32 a, u32 b)
9156{
9157 return !((a - b) & 0x80000000);
9158}
9159
9160static bool page_flip_finished(struct intel_crtc *crtc)
9161{
9162 struct drm_device *dev = crtc->base.dev;
9163 struct drm_i915_private *dev_priv = dev->dev_private;
9164
9165 /*
9166 * The relevant registers doen't exist on pre-ctg.
9167 * As the flip done interrupt doesn't trigger for mmio
9168 * flips on gmch platforms, a flip count check isn't
9169 * really needed there. But since ctg has the registers,
9170 * include it in the check anyway.
9171 */
9172 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9173 return true;
9174
9175 /*
9176 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9177 * used the same base address. In that case the mmio flip might
9178 * have completed, but the CS hasn't even executed the flip yet.
9179 *
9180 * A flip count check isn't enough as the CS might have updated
9181 * the base address just after start of vblank, but before we
9182 * managed to process the interrupt. This means we'd complete the
9183 * CS flip too soon.
9184 *
9185 * Combining both checks should get us a good enough result. It may
9186 * still happen that the CS flip has been executed, but has not
9187 * yet actually completed. But in case the base address is the same
9188 * anyway, we don't really care.
9189 */
9190 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9191 crtc->unpin_work->gtt_offset &&
9192 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9193 crtc->unpin_work->flip_count);
9194}
9195
6b95a207
KH
9196void intel_prepare_page_flip(struct drm_device *dev, int plane)
9197{
fbee40df 9198 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9199 struct intel_crtc *intel_crtc =
9200 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9201 unsigned long flags;
9202
e7d841ca
CW
9203 /* NB: An MMIO update of the plane base pointer will also
9204 * generate a page-flip completion irq, i.e. every modeset
9205 * is also accompanied by a spurious intel_prepare_page_flip().
9206 */
6b95a207 9207 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9208 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9209 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9210 spin_unlock_irqrestore(&dev->event_lock, flags);
9211}
9212
eba905b2 9213static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9214{
9215 /* Ensure that the work item is consistent when activating it ... */
9216 smp_wmb();
9217 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9218 /* and that it is marked active as soon as the irq could fire. */
9219 smp_wmb();
9220}
9221
8c9f3aaf
JB
9222static int intel_gen2_queue_flip(struct drm_device *dev,
9223 struct drm_crtc *crtc,
9224 struct drm_framebuffer *fb,
ed8d1975 9225 struct drm_i915_gem_object *obj,
a4872ba6 9226 struct intel_engine_cs *ring,
ed8d1975 9227 uint32_t flags)
8c9f3aaf 9228{
8c9f3aaf 9229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9230 u32 flip_mask;
9231 int ret;
9232
6d90c952 9233 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9234 if (ret)
4fa62c89 9235 return ret;
8c9f3aaf
JB
9236
9237 /* Can't queue multiple flips, so wait for the previous
9238 * one to finish before executing the next.
9239 */
9240 if (intel_crtc->plane)
9241 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9242 else
9243 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9244 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9245 intel_ring_emit(ring, MI_NOOP);
9246 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9247 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9248 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9249 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9250 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9251
9252 intel_mark_page_flip_active(intel_crtc);
09246732 9253 __intel_ring_advance(ring);
83d4092b 9254 return 0;
8c9f3aaf
JB
9255}
9256
9257static int intel_gen3_queue_flip(struct drm_device *dev,
9258 struct drm_crtc *crtc,
9259 struct drm_framebuffer *fb,
ed8d1975 9260 struct drm_i915_gem_object *obj,
a4872ba6 9261 struct intel_engine_cs *ring,
ed8d1975 9262 uint32_t flags)
8c9f3aaf 9263{
8c9f3aaf 9264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9265 u32 flip_mask;
9266 int ret;
9267
6d90c952 9268 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9269 if (ret)
4fa62c89 9270 return ret;
8c9f3aaf
JB
9271
9272 if (intel_crtc->plane)
9273 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9274 else
9275 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9276 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9277 intel_ring_emit(ring, MI_NOOP);
9278 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9279 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9280 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9281 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9282 intel_ring_emit(ring, MI_NOOP);
9283
e7d841ca 9284 intel_mark_page_flip_active(intel_crtc);
09246732 9285 __intel_ring_advance(ring);
83d4092b 9286 return 0;
8c9f3aaf
JB
9287}
9288
9289static int intel_gen4_queue_flip(struct drm_device *dev,
9290 struct drm_crtc *crtc,
9291 struct drm_framebuffer *fb,
ed8d1975 9292 struct drm_i915_gem_object *obj,
a4872ba6 9293 struct intel_engine_cs *ring,
ed8d1975 9294 uint32_t flags)
8c9f3aaf
JB
9295{
9296 struct drm_i915_private *dev_priv = dev->dev_private;
9297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9298 uint32_t pf, pipesrc;
9299 int ret;
9300
6d90c952 9301 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9302 if (ret)
4fa62c89 9303 return ret;
8c9f3aaf
JB
9304
9305 /* i965+ uses the linear or tiled offsets from the
9306 * Display Registers (which do not change across a page-flip)
9307 * so we need only reprogram the base address.
9308 */
6d90c952
DV
9309 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9310 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9311 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9312 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9313 obj->tiling_mode);
8c9f3aaf
JB
9314
9315 /* XXX Enabling the panel-fitter across page-flip is so far
9316 * untested on non-native modes, so ignore it for now.
9317 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9318 */
9319 pf = 0;
9320 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9321 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9322
9323 intel_mark_page_flip_active(intel_crtc);
09246732 9324 __intel_ring_advance(ring);
83d4092b 9325 return 0;
8c9f3aaf
JB
9326}
9327
9328static int intel_gen6_queue_flip(struct drm_device *dev,
9329 struct drm_crtc *crtc,
9330 struct drm_framebuffer *fb,
ed8d1975 9331 struct drm_i915_gem_object *obj,
a4872ba6 9332 struct intel_engine_cs *ring,
ed8d1975 9333 uint32_t flags)
8c9f3aaf
JB
9334{
9335 struct drm_i915_private *dev_priv = dev->dev_private;
9336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9337 uint32_t pf, pipesrc;
9338 int ret;
9339
6d90c952 9340 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9341 if (ret)
4fa62c89 9342 return ret;
8c9f3aaf 9343
6d90c952
DV
9344 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9345 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9346 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9347 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9348
dc257cf1
DV
9349 /* Contrary to the suggestions in the documentation,
9350 * "Enable Panel Fitter" does not seem to be required when page
9351 * flipping with a non-native mode, and worse causes a normal
9352 * modeset to fail.
9353 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9354 */
9355 pf = 0;
8c9f3aaf 9356 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9357 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9358
9359 intel_mark_page_flip_active(intel_crtc);
09246732 9360 __intel_ring_advance(ring);
83d4092b 9361 return 0;
8c9f3aaf
JB
9362}
9363
7c9017e5
JB
9364static int intel_gen7_queue_flip(struct drm_device *dev,
9365 struct drm_crtc *crtc,
9366 struct drm_framebuffer *fb,
ed8d1975 9367 struct drm_i915_gem_object *obj,
a4872ba6 9368 struct intel_engine_cs *ring,
ed8d1975 9369 uint32_t flags)
7c9017e5 9370{
7c9017e5 9371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9372 uint32_t plane_bit = 0;
ffe74d75
CW
9373 int len, ret;
9374
eba905b2 9375 switch (intel_crtc->plane) {
cb05d8de
DV
9376 case PLANE_A:
9377 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9378 break;
9379 case PLANE_B:
9380 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9381 break;
9382 case PLANE_C:
9383 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9384 break;
9385 default:
9386 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9387 return -ENODEV;
cb05d8de
DV
9388 }
9389
ffe74d75 9390 len = 4;
f476828a 9391 if (ring->id == RCS) {
ffe74d75 9392 len += 6;
f476828a
DL
9393 /*
9394 * On Gen 8, SRM is now taking an extra dword to accommodate
9395 * 48bits addresses, and we need a NOOP for the batch size to
9396 * stay even.
9397 */
9398 if (IS_GEN8(dev))
9399 len += 2;
9400 }
ffe74d75 9401
f66fab8e
VS
9402 /*
9403 * BSpec MI_DISPLAY_FLIP for IVB:
9404 * "The full packet must be contained within the same cache line."
9405 *
9406 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9407 * cacheline, if we ever start emitting more commands before
9408 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9409 * then do the cacheline alignment, and finally emit the
9410 * MI_DISPLAY_FLIP.
9411 */
9412 ret = intel_ring_cacheline_align(ring);
9413 if (ret)
4fa62c89 9414 return ret;
f66fab8e 9415
ffe74d75 9416 ret = intel_ring_begin(ring, len);
7c9017e5 9417 if (ret)
4fa62c89 9418 return ret;
7c9017e5 9419
ffe74d75
CW
9420 /* Unmask the flip-done completion message. Note that the bspec says that
9421 * we should do this for both the BCS and RCS, and that we must not unmask
9422 * more than one flip event at any time (or ensure that one flip message
9423 * can be sent by waiting for flip-done prior to queueing new flips).
9424 * Experimentation says that BCS works despite DERRMR masking all
9425 * flip-done completion events and that unmasking all planes at once
9426 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9427 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9428 */
9429 if (ring->id == RCS) {
9430 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9431 intel_ring_emit(ring, DERRMR);
9432 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9433 DERRMR_PIPEB_PRI_FLIP_DONE |
9434 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9435 if (IS_GEN8(dev))
9436 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9437 MI_SRM_LRM_GLOBAL_GTT);
9438 else
9439 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9440 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9441 intel_ring_emit(ring, DERRMR);
9442 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9443 if (IS_GEN8(dev)) {
9444 intel_ring_emit(ring, 0);
9445 intel_ring_emit(ring, MI_NOOP);
9446 }
ffe74d75
CW
9447 }
9448
cb05d8de 9449 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9450 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9451 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9452 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9453
9454 intel_mark_page_flip_active(intel_crtc);
09246732 9455 __intel_ring_advance(ring);
83d4092b 9456 return 0;
7c9017e5
JB
9457}
9458
84c33a64
SG
9459static bool use_mmio_flip(struct intel_engine_cs *ring,
9460 struct drm_i915_gem_object *obj)
9461{
9462 /*
9463 * This is not being used for older platforms, because
9464 * non-availability of flip done interrupt forces us to use
9465 * CS flips. Older platforms derive flip done using some clever
9466 * tricks involving the flip_pending status bits and vblank irqs.
9467 * So using MMIO flips there would disrupt this mechanism.
9468 */
9469
8e09bf83
CW
9470 if (ring == NULL)
9471 return true;
9472
84c33a64
SG
9473 if (INTEL_INFO(ring->dev)->gen < 5)
9474 return false;
9475
9476 if (i915.use_mmio_flip < 0)
9477 return false;
9478 else if (i915.use_mmio_flip > 0)
9479 return true;
9480 else
9481 return ring != obj->ring;
9482}
9483
9484static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9485{
9486 struct drm_device *dev = intel_crtc->base.dev;
9487 struct drm_i915_private *dev_priv = dev->dev_private;
9488 struct intel_framebuffer *intel_fb =
9489 to_intel_framebuffer(intel_crtc->base.primary->fb);
9490 struct drm_i915_gem_object *obj = intel_fb->obj;
9491 u32 dspcntr;
9492 u32 reg;
9493
9494 intel_mark_page_flip_active(intel_crtc);
9495
9496 reg = DSPCNTR(intel_crtc->plane);
9497 dspcntr = I915_READ(reg);
9498
9499 if (INTEL_INFO(dev)->gen >= 4) {
9500 if (obj->tiling_mode != I915_TILING_NONE)
9501 dspcntr |= DISPPLANE_TILED;
9502 else
9503 dspcntr &= ~DISPPLANE_TILED;
9504 }
9505 I915_WRITE(reg, dspcntr);
9506
9507 I915_WRITE(DSPSURF(intel_crtc->plane),
9508 intel_crtc->unpin_work->gtt_offset);
9509 POSTING_READ(DSPSURF(intel_crtc->plane));
9510}
9511
9512static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9513{
9514 struct intel_engine_cs *ring;
9515 int ret;
9516
9517 lockdep_assert_held(&obj->base.dev->struct_mutex);
9518
9519 if (!obj->last_write_seqno)
9520 return 0;
9521
9522 ring = obj->ring;
9523
9524 if (i915_seqno_passed(ring->get_seqno(ring, true),
9525 obj->last_write_seqno))
9526 return 0;
9527
9528 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9529 if (ret)
9530 return ret;
9531
9532 if (WARN_ON(!ring->irq_get(ring)))
9533 return 0;
9534
9535 return 1;
9536}
9537
9538void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9539{
9540 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9541 struct intel_crtc *intel_crtc;
9542 unsigned long irq_flags;
9543 u32 seqno;
9544
9545 seqno = ring->get_seqno(ring, false);
9546
9547 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9548 for_each_intel_crtc(ring->dev, intel_crtc) {
9549 struct intel_mmio_flip *mmio_flip;
9550
9551 mmio_flip = &intel_crtc->mmio_flip;
9552 if (mmio_flip->seqno == 0)
9553 continue;
9554
9555 if (ring->id != mmio_flip->ring_id)
9556 continue;
9557
9558 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9559 intel_do_mmio_flip(intel_crtc);
9560 mmio_flip->seqno = 0;
9561 ring->irq_put(ring);
9562 }
9563 }
9564 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9565}
9566
9567static int intel_queue_mmio_flip(struct drm_device *dev,
9568 struct drm_crtc *crtc,
9569 struct drm_framebuffer *fb,
9570 struct drm_i915_gem_object *obj,
9571 struct intel_engine_cs *ring,
9572 uint32_t flags)
9573{
9574 struct drm_i915_private *dev_priv = dev->dev_private;
9575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576 unsigned long irq_flags;
9577 int ret;
9578
9579 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9580 return -EBUSY;
9581
9582 ret = intel_postpone_flip(obj);
9583 if (ret < 0)
9584 return ret;
9585 if (ret == 0) {
9586 intel_do_mmio_flip(intel_crtc);
9587 return 0;
9588 }
9589
9590 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9591 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9592 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9593 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9594
9595 /*
9596 * Double check to catch cases where irq fired before
9597 * mmio flip data was ready
9598 */
9599 intel_notify_mmio_flip(obj->ring);
9600 return 0;
9601}
9602
8c9f3aaf
JB
9603static int intel_default_queue_flip(struct drm_device *dev,
9604 struct drm_crtc *crtc,
9605 struct drm_framebuffer *fb,
ed8d1975 9606 struct drm_i915_gem_object *obj,
a4872ba6 9607 struct intel_engine_cs *ring,
ed8d1975 9608 uint32_t flags)
8c9f3aaf
JB
9609{
9610 return -ENODEV;
9611}
9612
6b95a207
KH
9613static int intel_crtc_page_flip(struct drm_crtc *crtc,
9614 struct drm_framebuffer *fb,
ed8d1975
KP
9615 struct drm_pending_vblank_event *event,
9616 uint32_t page_flip_flags)
6b95a207
KH
9617{
9618 struct drm_device *dev = crtc->dev;
9619 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9620 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9621 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9623 enum pipe pipe = intel_crtc->pipe;
6b95a207 9624 struct intel_unpin_work *work;
a4872ba6 9625 struct intel_engine_cs *ring;
8c9f3aaf 9626 unsigned long flags;
52e68630 9627 int ret;
6b95a207 9628
2ff8fde1
MR
9629 /*
9630 * drm_mode_page_flip_ioctl() should already catch this, but double
9631 * check to be safe. In the future we may enable pageflipping from
9632 * a disabled primary plane.
9633 */
9634 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9635 return -EBUSY;
9636
e6a595d2 9637 /* Can't change pixel format via MI display flips. */
f4510a27 9638 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9639 return -EINVAL;
9640
9641 /*
9642 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9643 * Note that pitch changes could also affect these register.
9644 */
9645 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9646 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9647 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9648 return -EINVAL;
9649
f900db47
CW
9650 if (i915_terminally_wedged(&dev_priv->gpu_error))
9651 goto out_hang;
9652
b14c5679 9653 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9654 if (work == NULL)
9655 return -ENOMEM;
9656
6b95a207 9657 work->event = event;
b4a98e57 9658 work->crtc = crtc;
2ff8fde1 9659 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9660 INIT_WORK(&work->work, intel_unpin_work_fn);
9661
87b6b101 9662 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9663 if (ret)
9664 goto free_work;
9665
6b95a207
KH
9666 /* We borrow the event spin lock for protecting unpin_work */
9667 spin_lock_irqsave(&dev->event_lock, flags);
9668 if (intel_crtc->unpin_work) {
9669 spin_unlock_irqrestore(&dev->event_lock, flags);
9670 kfree(work);
87b6b101 9671 drm_crtc_vblank_put(crtc);
468f0b44
CW
9672
9673 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9674 return -EBUSY;
9675 }
9676 intel_crtc->unpin_work = work;
9677 spin_unlock_irqrestore(&dev->event_lock, flags);
9678
b4a98e57
CW
9679 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9680 flush_workqueue(dev_priv->wq);
9681
79158103
CW
9682 ret = i915_mutex_lock_interruptible(dev);
9683 if (ret)
9684 goto cleanup;
6b95a207 9685
75dfca80 9686 /* Reference the objects for the scheduled work. */
05394f39
CW
9687 drm_gem_object_reference(&work->old_fb_obj->base);
9688 drm_gem_object_reference(&obj->base);
6b95a207 9689
f4510a27 9690 crtc->primary->fb = fb;
96b099fd 9691
e1f99ce6 9692 work->pending_flip_obj = obj;
e1f99ce6 9693
4e5359cd
SF
9694 work->enable_stall_check = true;
9695
b4a98e57 9696 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9697 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9698
75f7f3ec 9699 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9700 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9701
4fa62c89
VS
9702 if (IS_VALLEYVIEW(dev)) {
9703 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9704 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9705 /* vlv: DISPLAY_FLIP fails to change tiling */
9706 ring = NULL;
2a92d5bc
CW
9707 } else if (IS_IVYBRIDGE(dev)) {
9708 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9709 } else if (INTEL_INFO(dev)->gen >= 7) {
9710 ring = obj->ring;
9711 if (ring == NULL || ring->id != RCS)
9712 ring = &dev_priv->ring[BCS];
9713 } else {
9714 ring = &dev_priv->ring[RCS];
9715 }
9716
9717 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9718 if (ret)
9719 goto cleanup_pending;
6b95a207 9720
4fa62c89
VS
9721 work->gtt_offset =
9722 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9723
84c33a64
SG
9724 if (use_mmio_flip(ring, obj))
9725 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9726 page_flip_flags);
9727 else
9728 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9729 page_flip_flags);
4fa62c89
VS
9730 if (ret)
9731 goto cleanup_unpin;
9732
a071fa00
DV
9733 i915_gem_track_fb(work->old_fb_obj, obj,
9734 INTEL_FRONTBUFFER_PRIMARY(pipe));
9735
7782de3b 9736 intel_disable_fbc(dev);
f99d7069 9737 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9738 mutex_unlock(&dev->struct_mutex);
9739
e5510fac
JB
9740 trace_i915_flip_request(intel_crtc->plane, obj);
9741
6b95a207 9742 return 0;
96b099fd 9743
4fa62c89
VS
9744cleanup_unpin:
9745 intel_unpin_fb_obj(obj);
8c9f3aaf 9746cleanup_pending:
b4a98e57 9747 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9748 crtc->primary->fb = old_fb;
05394f39
CW
9749 drm_gem_object_unreference(&work->old_fb_obj->base);
9750 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9751 mutex_unlock(&dev->struct_mutex);
9752
79158103 9753cleanup:
96b099fd
CW
9754 spin_lock_irqsave(&dev->event_lock, flags);
9755 intel_crtc->unpin_work = NULL;
9756 spin_unlock_irqrestore(&dev->event_lock, flags);
9757
87b6b101 9758 drm_crtc_vblank_put(crtc);
7317c75e 9759free_work:
96b099fd
CW
9760 kfree(work);
9761
f900db47
CW
9762 if (ret == -EIO) {
9763out_hang:
9764 intel_crtc_wait_for_pending_flips(crtc);
9765 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9766 if (ret == 0 && event)
a071fa00 9767 drm_send_vblank_event(dev, pipe, event);
f900db47 9768 }
96b099fd 9769 return ret;
6b95a207
KH
9770}
9771
f6e5b160 9772static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9773 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9774 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9775};
9776
9a935856
DV
9777/**
9778 * intel_modeset_update_staged_output_state
9779 *
9780 * Updates the staged output configuration state, e.g. after we've read out the
9781 * current hw state.
9782 */
9783static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9784{
7668851f 9785 struct intel_crtc *crtc;
9a935856
DV
9786 struct intel_encoder *encoder;
9787 struct intel_connector *connector;
f6e5b160 9788
9a935856
DV
9789 list_for_each_entry(connector, &dev->mode_config.connector_list,
9790 base.head) {
9791 connector->new_encoder =
9792 to_intel_encoder(connector->base.encoder);
9793 }
f6e5b160 9794
9a935856
DV
9795 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9796 base.head) {
9797 encoder->new_crtc =
9798 to_intel_crtc(encoder->base.crtc);
9799 }
7668851f 9800
d3fcc808 9801 for_each_intel_crtc(dev, crtc) {
7668851f 9802 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9803
9804 if (crtc->new_enabled)
9805 crtc->new_config = &crtc->config;
9806 else
9807 crtc->new_config = NULL;
7668851f 9808 }
f6e5b160
CW
9809}
9810
9a935856
DV
9811/**
9812 * intel_modeset_commit_output_state
9813 *
9814 * This function copies the stage display pipe configuration to the real one.
9815 */
9816static void intel_modeset_commit_output_state(struct drm_device *dev)
9817{
7668851f 9818 struct intel_crtc *crtc;
9a935856
DV
9819 struct intel_encoder *encoder;
9820 struct intel_connector *connector;
f6e5b160 9821
9a935856
DV
9822 list_for_each_entry(connector, &dev->mode_config.connector_list,
9823 base.head) {
9824 connector->base.encoder = &connector->new_encoder->base;
9825 }
f6e5b160 9826
9a935856
DV
9827 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9828 base.head) {
9829 encoder->base.crtc = &encoder->new_crtc->base;
9830 }
7668851f 9831
d3fcc808 9832 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9833 crtc->base.enabled = crtc->new_enabled;
9834 }
9a935856
DV
9835}
9836
050f7aeb 9837static void
eba905b2 9838connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9839 struct intel_crtc_config *pipe_config)
9840{
9841 int bpp = pipe_config->pipe_bpp;
9842
9843 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9844 connector->base.base.id,
c23cc417 9845 connector->base.name);
050f7aeb
DV
9846
9847 /* Don't use an invalid EDID bpc value */
9848 if (connector->base.display_info.bpc &&
9849 connector->base.display_info.bpc * 3 < bpp) {
9850 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9851 bpp, connector->base.display_info.bpc*3);
9852 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9853 }
9854
9855 /* Clamp bpp to 8 on screens without EDID 1.4 */
9856 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9857 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9858 bpp);
9859 pipe_config->pipe_bpp = 24;
9860 }
9861}
9862
4e53c2e0 9863static int
050f7aeb
DV
9864compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9865 struct drm_framebuffer *fb,
9866 struct intel_crtc_config *pipe_config)
4e53c2e0 9867{
050f7aeb
DV
9868 struct drm_device *dev = crtc->base.dev;
9869 struct intel_connector *connector;
4e53c2e0
DV
9870 int bpp;
9871
d42264b1
DV
9872 switch (fb->pixel_format) {
9873 case DRM_FORMAT_C8:
4e53c2e0
DV
9874 bpp = 8*3; /* since we go through a colormap */
9875 break;
d42264b1
DV
9876 case DRM_FORMAT_XRGB1555:
9877 case DRM_FORMAT_ARGB1555:
9878 /* checked in intel_framebuffer_init already */
9879 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9880 return -EINVAL;
9881 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9882 bpp = 6*3; /* min is 18bpp */
9883 break;
d42264b1
DV
9884 case DRM_FORMAT_XBGR8888:
9885 case DRM_FORMAT_ABGR8888:
9886 /* checked in intel_framebuffer_init already */
9887 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9888 return -EINVAL;
9889 case DRM_FORMAT_XRGB8888:
9890 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9891 bpp = 8*3;
9892 break;
d42264b1
DV
9893 case DRM_FORMAT_XRGB2101010:
9894 case DRM_FORMAT_ARGB2101010:
9895 case DRM_FORMAT_XBGR2101010:
9896 case DRM_FORMAT_ABGR2101010:
9897 /* checked in intel_framebuffer_init already */
9898 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9899 return -EINVAL;
4e53c2e0
DV
9900 bpp = 10*3;
9901 break;
baba133a 9902 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9903 default:
9904 DRM_DEBUG_KMS("unsupported depth\n");
9905 return -EINVAL;
9906 }
9907
4e53c2e0
DV
9908 pipe_config->pipe_bpp = bpp;
9909
9910 /* Clamp display bpp to EDID value */
9911 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9912 base.head) {
1b829e05
DV
9913 if (!connector->new_encoder ||
9914 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9915 continue;
9916
050f7aeb 9917 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9918 }
9919
9920 return bpp;
9921}
9922
644db711
DV
9923static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9924{
9925 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9926 "type: 0x%x flags: 0x%x\n",
1342830c 9927 mode->crtc_clock,
644db711
DV
9928 mode->crtc_hdisplay, mode->crtc_hsync_start,
9929 mode->crtc_hsync_end, mode->crtc_htotal,
9930 mode->crtc_vdisplay, mode->crtc_vsync_start,
9931 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9932}
9933
c0b03411
DV
9934static void intel_dump_pipe_config(struct intel_crtc *crtc,
9935 struct intel_crtc_config *pipe_config,
9936 const char *context)
9937{
9938 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9939 context, pipe_name(crtc->pipe));
9940
9941 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9942 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9943 pipe_config->pipe_bpp, pipe_config->dither);
9944 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9945 pipe_config->has_pch_encoder,
9946 pipe_config->fdi_lanes,
9947 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9948 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9949 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9950 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9951 pipe_config->has_dp_encoder,
9952 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9953 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9954 pipe_config->dp_m_n.tu);
c0b03411
DV
9955 DRM_DEBUG_KMS("requested mode:\n");
9956 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9957 DRM_DEBUG_KMS("adjusted mode:\n");
9958 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9959 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9960 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9961 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9962 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9963 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9964 pipe_config->gmch_pfit.control,
9965 pipe_config->gmch_pfit.pgm_ratios,
9966 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9967 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9968 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9969 pipe_config->pch_pfit.size,
9970 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9971 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9972 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9973}
9974
bc079e8b
VS
9975static bool encoders_cloneable(const struct intel_encoder *a,
9976 const struct intel_encoder *b)
accfc0c5 9977{
bc079e8b
VS
9978 /* masks could be asymmetric, so check both ways */
9979 return a == b || (a->cloneable & (1 << b->type) &&
9980 b->cloneable & (1 << a->type));
9981}
9982
9983static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9984 struct intel_encoder *encoder)
9985{
9986 struct drm_device *dev = crtc->base.dev;
9987 struct intel_encoder *source_encoder;
9988
9989 list_for_each_entry(source_encoder,
9990 &dev->mode_config.encoder_list, base.head) {
9991 if (source_encoder->new_crtc != crtc)
9992 continue;
9993
9994 if (!encoders_cloneable(encoder, source_encoder))
9995 return false;
9996 }
9997
9998 return true;
9999}
10000
10001static bool check_encoder_cloning(struct intel_crtc *crtc)
10002{
10003 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10004 struct intel_encoder *encoder;
10005
bc079e8b
VS
10006 list_for_each_entry(encoder,
10007 &dev->mode_config.encoder_list, base.head) {
10008 if (encoder->new_crtc != crtc)
accfc0c5
DV
10009 continue;
10010
bc079e8b
VS
10011 if (!check_single_encoder_cloning(crtc, encoder))
10012 return false;
accfc0c5
DV
10013 }
10014
bc079e8b 10015 return true;
accfc0c5
DV
10016}
10017
b8cecdf5
DV
10018static struct intel_crtc_config *
10019intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10020 struct drm_framebuffer *fb,
b8cecdf5 10021 struct drm_display_mode *mode)
ee7b9f93 10022{
7758a113 10023 struct drm_device *dev = crtc->dev;
7758a113 10024 struct intel_encoder *encoder;
b8cecdf5 10025 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10026 int plane_bpp, ret = -EINVAL;
10027 bool retry = true;
ee7b9f93 10028
bc079e8b 10029 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10030 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10031 return ERR_PTR(-EINVAL);
10032 }
10033
b8cecdf5
DV
10034 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10035 if (!pipe_config)
7758a113
DV
10036 return ERR_PTR(-ENOMEM);
10037
b8cecdf5
DV
10038 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10039 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10040
e143a21c
DV
10041 pipe_config->cpu_transcoder =
10042 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10043 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10044
2960bc9c
ID
10045 /*
10046 * Sanitize sync polarity flags based on requested ones. If neither
10047 * positive or negative polarity is requested, treat this as meaning
10048 * negative polarity.
10049 */
10050 if (!(pipe_config->adjusted_mode.flags &
10051 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10052 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10053
10054 if (!(pipe_config->adjusted_mode.flags &
10055 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10056 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10057
050f7aeb
DV
10058 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10059 * plane pixel format and any sink constraints into account. Returns the
10060 * source plane bpp so that dithering can be selected on mismatches
10061 * after encoders and crtc also have had their say. */
10062 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10063 fb, pipe_config);
4e53c2e0
DV
10064 if (plane_bpp < 0)
10065 goto fail;
10066
e41a56be
VS
10067 /*
10068 * Determine the real pipe dimensions. Note that stereo modes can
10069 * increase the actual pipe size due to the frame doubling and
10070 * insertion of additional space for blanks between the frame. This
10071 * is stored in the crtc timings. We use the requested mode to do this
10072 * computation to clearly distinguish it from the adjusted mode, which
10073 * can be changed by the connectors in the below retry loop.
10074 */
10075 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10076 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10077 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10078
e29c22c0 10079encoder_retry:
ef1b460d 10080 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10081 pipe_config->port_clock = 0;
ef1b460d 10082 pipe_config->pixel_multiplier = 1;
ff9a6750 10083
135c81b8 10084 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10085 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10086
7758a113
DV
10087 /* Pass our mode to the connectors and the CRTC to give them a chance to
10088 * adjust it according to limitations or connector properties, and also
10089 * a chance to reject the mode entirely.
47f1c6c9 10090 */
7758a113
DV
10091 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10092 base.head) {
47f1c6c9 10093
7758a113
DV
10094 if (&encoder->new_crtc->base != crtc)
10095 continue;
7ae89233 10096
efea6e8e
DV
10097 if (!(encoder->compute_config(encoder, pipe_config))) {
10098 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10099 goto fail;
10100 }
ee7b9f93 10101 }
47f1c6c9 10102
ff9a6750
DV
10103 /* Set default port clock if not overwritten by the encoder. Needs to be
10104 * done afterwards in case the encoder adjusts the mode. */
10105 if (!pipe_config->port_clock)
241bfc38
DL
10106 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10107 * pipe_config->pixel_multiplier;
ff9a6750 10108
a43f6e0f 10109 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10110 if (ret < 0) {
7758a113
DV
10111 DRM_DEBUG_KMS("CRTC fixup failed\n");
10112 goto fail;
ee7b9f93 10113 }
e29c22c0
DV
10114
10115 if (ret == RETRY) {
10116 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10117 ret = -EINVAL;
10118 goto fail;
10119 }
10120
10121 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10122 retry = false;
10123 goto encoder_retry;
10124 }
10125
4e53c2e0
DV
10126 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10127 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10128 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10129
b8cecdf5 10130 return pipe_config;
7758a113 10131fail:
b8cecdf5 10132 kfree(pipe_config);
e29c22c0 10133 return ERR_PTR(ret);
ee7b9f93 10134}
47f1c6c9 10135
e2e1ed41
DV
10136/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10137 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10138static void
10139intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10140 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10141{
10142 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10143 struct drm_device *dev = crtc->dev;
10144 struct intel_encoder *encoder;
10145 struct intel_connector *connector;
10146 struct drm_crtc *tmp_crtc;
79e53945 10147
e2e1ed41 10148 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10149
e2e1ed41
DV
10150 /* Check which crtcs have changed outputs connected to them, these need
10151 * to be part of the prepare_pipes mask. We don't (yet) support global
10152 * modeset across multiple crtcs, so modeset_pipes will only have one
10153 * bit set at most. */
10154 list_for_each_entry(connector, &dev->mode_config.connector_list,
10155 base.head) {
10156 if (connector->base.encoder == &connector->new_encoder->base)
10157 continue;
79e53945 10158
e2e1ed41
DV
10159 if (connector->base.encoder) {
10160 tmp_crtc = connector->base.encoder->crtc;
10161
10162 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10163 }
10164
10165 if (connector->new_encoder)
10166 *prepare_pipes |=
10167 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10168 }
10169
e2e1ed41
DV
10170 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10171 base.head) {
10172 if (encoder->base.crtc == &encoder->new_crtc->base)
10173 continue;
10174
10175 if (encoder->base.crtc) {
10176 tmp_crtc = encoder->base.crtc;
10177
10178 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10179 }
10180
10181 if (encoder->new_crtc)
10182 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10183 }
10184
7668851f 10185 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10186 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10187 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10188 continue;
7e7d76c3 10189
7668851f 10190 if (!intel_crtc->new_enabled)
e2e1ed41 10191 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10192 else
10193 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10194 }
10195
e2e1ed41
DV
10196
10197 /* set_mode is also used to update properties on life display pipes. */
10198 intel_crtc = to_intel_crtc(crtc);
7668851f 10199 if (intel_crtc->new_enabled)
e2e1ed41
DV
10200 *prepare_pipes |= 1 << intel_crtc->pipe;
10201
b6c5164d
DV
10202 /*
10203 * For simplicity do a full modeset on any pipe where the output routing
10204 * changed. We could be more clever, but that would require us to be
10205 * more careful with calling the relevant encoder->mode_set functions.
10206 */
e2e1ed41
DV
10207 if (*prepare_pipes)
10208 *modeset_pipes = *prepare_pipes;
10209
10210 /* ... and mask these out. */
10211 *modeset_pipes &= ~(*disable_pipes);
10212 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10213
10214 /*
10215 * HACK: We don't (yet) fully support global modesets. intel_set_config
10216 * obies this rule, but the modeset restore mode of
10217 * intel_modeset_setup_hw_state does not.
10218 */
10219 *modeset_pipes &= 1 << intel_crtc->pipe;
10220 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10221
10222 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10223 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10224}
79e53945 10225
ea9d758d 10226static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10227{
ea9d758d 10228 struct drm_encoder *encoder;
f6e5b160 10229 struct drm_device *dev = crtc->dev;
f6e5b160 10230
ea9d758d
DV
10231 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10232 if (encoder->crtc == crtc)
10233 return true;
10234
10235 return false;
10236}
10237
10238static void
10239intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10240{
10241 struct intel_encoder *intel_encoder;
10242 struct intel_crtc *intel_crtc;
10243 struct drm_connector *connector;
10244
10245 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10246 base.head) {
10247 if (!intel_encoder->base.crtc)
10248 continue;
10249
10250 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10251
10252 if (prepare_pipes & (1 << intel_crtc->pipe))
10253 intel_encoder->connectors_active = false;
10254 }
10255
10256 intel_modeset_commit_output_state(dev);
10257
7668851f 10258 /* Double check state. */
d3fcc808 10259 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10260 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10261 WARN_ON(intel_crtc->new_config &&
10262 intel_crtc->new_config != &intel_crtc->config);
10263 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10264 }
10265
10266 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10267 if (!connector->encoder || !connector->encoder->crtc)
10268 continue;
10269
10270 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10271
10272 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10273 struct drm_property *dpms_property =
10274 dev->mode_config.dpms_property;
10275
ea9d758d 10276 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10277 drm_object_property_set_value(&connector->base,
68d34720
DV
10278 dpms_property,
10279 DRM_MODE_DPMS_ON);
ea9d758d
DV
10280
10281 intel_encoder = to_intel_encoder(connector->encoder);
10282 intel_encoder->connectors_active = true;
10283 }
10284 }
10285
10286}
10287
3bd26263 10288static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10289{
3bd26263 10290 int diff;
f1f644dc
JB
10291
10292 if (clock1 == clock2)
10293 return true;
10294
10295 if (!clock1 || !clock2)
10296 return false;
10297
10298 diff = abs(clock1 - clock2);
10299
10300 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10301 return true;
10302
10303 return false;
10304}
10305
25c5b266
DV
10306#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10307 list_for_each_entry((intel_crtc), \
10308 &(dev)->mode_config.crtc_list, \
10309 base.head) \
0973f18f 10310 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10311
0e8ffe1b 10312static bool
2fa2fe9a
DV
10313intel_pipe_config_compare(struct drm_device *dev,
10314 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10315 struct intel_crtc_config *pipe_config)
10316{
66e985c0
DV
10317#define PIPE_CONF_CHECK_X(name) \
10318 if (current_config->name != pipe_config->name) { \
10319 DRM_ERROR("mismatch in " #name " " \
10320 "(expected 0x%08x, found 0x%08x)\n", \
10321 current_config->name, \
10322 pipe_config->name); \
10323 return false; \
10324 }
10325
08a24034
DV
10326#define PIPE_CONF_CHECK_I(name) \
10327 if (current_config->name != pipe_config->name) { \
10328 DRM_ERROR("mismatch in " #name " " \
10329 "(expected %i, found %i)\n", \
10330 current_config->name, \
10331 pipe_config->name); \
10332 return false; \
88adfff1
DV
10333 }
10334
1bd1bd80
DV
10335#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10336 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10337 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10338 "(expected %i, found %i)\n", \
10339 current_config->name & (mask), \
10340 pipe_config->name & (mask)); \
10341 return false; \
10342 }
10343
5e550656
VS
10344#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10345 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10346 DRM_ERROR("mismatch in " #name " " \
10347 "(expected %i, found %i)\n", \
10348 current_config->name, \
10349 pipe_config->name); \
10350 return false; \
10351 }
10352
bb760063
DV
10353#define PIPE_CONF_QUIRK(quirk) \
10354 ((current_config->quirks | pipe_config->quirks) & (quirk))
10355
eccb140b
DV
10356 PIPE_CONF_CHECK_I(cpu_transcoder);
10357
08a24034
DV
10358 PIPE_CONF_CHECK_I(has_pch_encoder);
10359 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10360 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10361 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10362 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10363 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10364 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10365
eb14cb74
VS
10366 PIPE_CONF_CHECK_I(has_dp_encoder);
10367 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10368 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10369 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10370 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10371 PIPE_CONF_CHECK_I(dp_m_n.tu);
10372
1bd1bd80
DV
10373 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10374 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10375 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10376 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10377 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10378 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10379
10380 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10381 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10382 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10383 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10384 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10385 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10386
c93f54cf 10387 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10388 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10389 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10390 IS_VALLEYVIEW(dev))
10391 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10392
9ed109a7
DV
10393 PIPE_CONF_CHECK_I(has_audio);
10394
1bd1bd80
DV
10395 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10396 DRM_MODE_FLAG_INTERLACE);
10397
bb760063
DV
10398 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10399 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10400 DRM_MODE_FLAG_PHSYNC);
10401 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10402 DRM_MODE_FLAG_NHSYNC);
10403 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10404 DRM_MODE_FLAG_PVSYNC);
10405 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10406 DRM_MODE_FLAG_NVSYNC);
10407 }
045ac3b5 10408
37327abd
VS
10409 PIPE_CONF_CHECK_I(pipe_src_w);
10410 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10411
9953599b
DV
10412 /*
10413 * FIXME: BIOS likes to set up a cloned config with lvds+external
10414 * screen. Since we don't yet re-compute the pipe config when moving
10415 * just the lvds port away to another pipe the sw tracking won't match.
10416 *
10417 * Proper atomic modesets with recomputed global state will fix this.
10418 * Until then just don't check gmch state for inherited modes.
10419 */
10420 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10421 PIPE_CONF_CHECK_I(gmch_pfit.control);
10422 /* pfit ratios are autocomputed by the hw on gen4+ */
10423 if (INTEL_INFO(dev)->gen < 4)
10424 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10425 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10426 }
10427
fd4daa9c
CW
10428 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10429 if (current_config->pch_pfit.enabled) {
10430 PIPE_CONF_CHECK_I(pch_pfit.pos);
10431 PIPE_CONF_CHECK_I(pch_pfit.size);
10432 }
2fa2fe9a 10433
e59150dc
JB
10434 /* BDW+ don't expose a synchronous way to read the state */
10435 if (IS_HASWELL(dev))
10436 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10437
282740f7
VS
10438 PIPE_CONF_CHECK_I(double_wide);
10439
26804afd
DV
10440 PIPE_CONF_CHECK_X(ddi_pll_sel);
10441
c0d43d62 10442 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10443 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10444 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10445 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10446 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10447
42571aef
VS
10448 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10449 PIPE_CONF_CHECK_I(pipe_bpp);
10450
a9a7e98a
JB
10451 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10452 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10453
66e985c0 10454#undef PIPE_CONF_CHECK_X
08a24034 10455#undef PIPE_CONF_CHECK_I
1bd1bd80 10456#undef PIPE_CONF_CHECK_FLAGS
5e550656 10457#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10458#undef PIPE_CONF_QUIRK
88adfff1 10459
0e8ffe1b
DV
10460 return true;
10461}
10462
91d1b4bd
DV
10463static void
10464check_connector_state(struct drm_device *dev)
8af6cf88 10465{
8af6cf88
DV
10466 struct intel_connector *connector;
10467
10468 list_for_each_entry(connector, &dev->mode_config.connector_list,
10469 base.head) {
10470 /* This also checks the encoder/connector hw state with the
10471 * ->get_hw_state callbacks. */
10472 intel_connector_check_state(connector);
10473
10474 WARN(&connector->new_encoder->base != connector->base.encoder,
10475 "connector's staged encoder doesn't match current encoder\n");
10476 }
91d1b4bd
DV
10477}
10478
10479static void
10480check_encoder_state(struct drm_device *dev)
10481{
10482 struct intel_encoder *encoder;
10483 struct intel_connector *connector;
8af6cf88
DV
10484
10485 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10486 base.head) {
10487 bool enabled = false;
10488 bool active = false;
10489 enum pipe pipe, tracked_pipe;
10490
10491 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10492 encoder->base.base.id,
8e329a03 10493 encoder->base.name);
8af6cf88
DV
10494
10495 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10496 "encoder's stage crtc doesn't match current crtc\n");
10497 WARN(encoder->connectors_active && !encoder->base.crtc,
10498 "encoder's active_connectors set, but no crtc\n");
10499
10500 list_for_each_entry(connector, &dev->mode_config.connector_list,
10501 base.head) {
10502 if (connector->base.encoder != &encoder->base)
10503 continue;
10504 enabled = true;
10505 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10506 active = true;
10507 }
10508 WARN(!!encoder->base.crtc != enabled,
10509 "encoder's enabled state mismatch "
10510 "(expected %i, found %i)\n",
10511 !!encoder->base.crtc, enabled);
10512 WARN(active && !encoder->base.crtc,
10513 "active encoder with no crtc\n");
10514
10515 WARN(encoder->connectors_active != active,
10516 "encoder's computed active state doesn't match tracked active state "
10517 "(expected %i, found %i)\n", active, encoder->connectors_active);
10518
10519 active = encoder->get_hw_state(encoder, &pipe);
10520 WARN(active != encoder->connectors_active,
10521 "encoder's hw state doesn't match sw tracking "
10522 "(expected %i, found %i)\n",
10523 encoder->connectors_active, active);
10524
10525 if (!encoder->base.crtc)
10526 continue;
10527
10528 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10529 WARN(active && pipe != tracked_pipe,
10530 "active encoder's pipe doesn't match"
10531 "(expected %i, found %i)\n",
10532 tracked_pipe, pipe);
10533
10534 }
91d1b4bd
DV
10535}
10536
10537static void
10538check_crtc_state(struct drm_device *dev)
10539{
fbee40df 10540 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10541 struct intel_crtc *crtc;
10542 struct intel_encoder *encoder;
10543 struct intel_crtc_config pipe_config;
8af6cf88 10544
d3fcc808 10545 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10546 bool enabled = false;
10547 bool active = false;
10548
045ac3b5
JB
10549 memset(&pipe_config, 0, sizeof(pipe_config));
10550
8af6cf88
DV
10551 DRM_DEBUG_KMS("[CRTC:%d]\n",
10552 crtc->base.base.id);
10553
10554 WARN(crtc->active && !crtc->base.enabled,
10555 "active crtc, but not enabled in sw tracking\n");
10556
10557 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10558 base.head) {
10559 if (encoder->base.crtc != &crtc->base)
10560 continue;
10561 enabled = true;
10562 if (encoder->connectors_active)
10563 active = true;
10564 }
6c49f241 10565
8af6cf88
DV
10566 WARN(active != crtc->active,
10567 "crtc's computed active state doesn't match tracked active state "
10568 "(expected %i, found %i)\n", active, crtc->active);
10569 WARN(enabled != crtc->base.enabled,
10570 "crtc's computed enabled state doesn't match tracked enabled state "
10571 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10572
0e8ffe1b
DV
10573 active = dev_priv->display.get_pipe_config(crtc,
10574 &pipe_config);
d62cf62a
DV
10575
10576 /* hw state is inconsistent with the pipe A quirk */
10577 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10578 active = crtc->active;
10579
6c49f241
DV
10580 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10581 base.head) {
3eaba51c 10582 enum pipe pipe;
6c49f241
DV
10583 if (encoder->base.crtc != &crtc->base)
10584 continue;
1d37b689 10585 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10586 encoder->get_config(encoder, &pipe_config);
10587 }
10588
0e8ffe1b
DV
10589 WARN(crtc->active != active,
10590 "crtc active state doesn't match with hw state "
10591 "(expected %i, found %i)\n", crtc->active, active);
10592
c0b03411
DV
10593 if (active &&
10594 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10595 WARN(1, "pipe state doesn't match!\n");
10596 intel_dump_pipe_config(crtc, &pipe_config,
10597 "[hw state]");
10598 intel_dump_pipe_config(crtc, &crtc->config,
10599 "[sw state]");
10600 }
8af6cf88
DV
10601 }
10602}
10603
91d1b4bd
DV
10604static void
10605check_shared_dpll_state(struct drm_device *dev)
10606{
fbee40df 10607 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10608 struct intel_crtc *crtc;
10609 struct intel_dpll_hw_state dpll_hw_state;
10610 int i;
5358901f
DV
10611
10612 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10613 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10614 int enabled_crtcs = 0, active_crtcs = 0;
10615 bool active;
10616
10617 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10618
10619 DRM_DEBUG_KMS("%s\n", pll->name);
10620
10621 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10622
10623 WARN(pll->active > pll->refcount,
10624 "more active pll users than references: %i vs %i\n",
10625 pll->active, pll->refcount);
10626 WARN(pll->active && !pll->on,
10627 "pll in active use but not on in sw tracking\n");
35c95375
DV
10628 WARN(pll->on && !pll->active,
10629 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10630 WARN(pll->on != active,
10631 "pll on state mismatch (expected %i, found %i)\n",
10632 pll->on, active);
10633
d3fcc808 10634 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10635 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10636 enabled_crtcs++;
10637 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10638 active_crtcs++;
10639 }
10640 WARN(pll->active != active_crtcs,
10641 "pll active crtcs mismatch (expected %i, found %i)\n",
10642 pll->active, active_crtcs);
10643 WARN(pll->refcount != enabled_crtcs,
10644 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10645 pll->refcount, enabled_crtcs);
66e985c0
DV
10646
10647 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10648 sizeof(dpll_hw_state)),
10649 "pll hw state mismatch\n");
5358901f 10650 }
8af6cf88
DV
10651}
10652
91d1b4bd
DV
10653void
10654intel_modeset_check_state(struct drm_device *dev)
10655{
10656 check_connector_state(dev);
10657 check_encoder_state(dev);
10658 check_crtc_state(dev);
10659 check_shared_dpll_state(dev);
10660}
10661
18442d08
VS
10662void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10663 int dotclock)
10664{
10665 /*
10666 * FDI already provided one idea for the dotclock.
10667 * Yell if the encoder disagrees.
10668 */
241bfc38 10669 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10670 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10671 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10672}
10673
80715b2f
VS
10674static void update_scanline_offset(struct intel_crtc *crtc)
10675{
10676 struct drm_device *dev = crtc->base.dev;
10677
10678 /*
10679 * The scanline counter increments at the leading edge of hsync.
10680 *
10681 * On most platforms it starts counting from vtotal-1 on the
10682 * first active line. That means the scanline counter value is
10683 * always one less than what we would expect. Ie. just after
10684 * start of vblank, which also occurs at start of hsync (on the
10685 * last active line), the scanline counter will read vblank_start-1.
10686 *
10687 * On gen2 the scanline counter starts counting from 1 instead
10688 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10689 * to keep the value positive), instead of adding one.
10690 *
10691 * On HSW+ the behaviour of the scanline counter depends on the output
10692 * type. For DP ports it behaves like most other platforms, but on HDMI
10693 * there's an extra 1 line difference. So we need to add two instead of
10694 * one to the value.
10695 */
10696 if (IS_GEN2(dev)) {
10697 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10698 int vtotal;
10699
10700 vtotal = mode->crtc_vtotal;
10701 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10702 vtotal /= 2;
10703
10704 crtc->scanline_offset = vtotal - 1;
10705 } else if (HAS_DDI(dev) &&
10706 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10707 crtc->scanline_offset = 2;
10708 } else
10709 crtc->scanline_offset = 1;
10710}
10711
f30da187
DV
10712static int __intel_set_mode(struct drm_crtc *crtc,
10713 struct drm_display_mode *mode,
10714 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10715{
10716 struct drm_device *dev = crtc->dev;
fbee40df 10717 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10718 struct drm_display_mode *saved_mode;
b8cecdf5 10719 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10720 struct intel_crtc *intel_crtc;
10721 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10722 int ret = 0;
a6778b3c 10723
4b4b9238 10724 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10725 if (!saved_mode)
10726 return -ENOMEM;
a6778b3c 10727
e2e1ed41 10728 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10729 &prepare_pipes, &disable_pipes);
10730
3ac18232 10731 *saved_mode = crtc->mode;
a6778b3c 10732
25c5b266
DV
10733 /* Hack: Because we don't (yet) support global modeset on multiple
10734 * crtcs, we don't keep track of the new mode for more than one crtc.
10735 * Hence simply check whether any bit is set in modeset_pipes in all the
10736 * pieces of code that are not yet converted to deal with mutliple crtcs
10737 * changing their mode at the same time. */
25c5b266 10738 if (modeset_pipes) {
4e53c2e0 10739 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10740 if (IS_ERR(pipe_config)) {
10741 ret = PTR_ERR(pipe_config);
10742 pipe_config = NULL;
10743
3ac18232 10744 goto out;
25c5b266 10745 }
c0b03411
DV
10746 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10747 "[modeset]");
50741abc 10748 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10749 }
a6778b3c 10750
30a970c6
JB
10751 /*
10752 * See if the config requires any additional preparation, e.g.
10753 * to adjust global state with pipes off. We need to do this
10754 * here so we can get the modeset_pipe updated config for the new
10755 * mode set on this crtc. For other crtcs we need to use the
10756 * adjusted_mode bits in the crtc directly.
10757 */
c164f833 10758 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10759 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10760
c164f833
VS
10761 /* may have added more to prepare_pipes than we should */
10762 prepare_pipes &= ~disable_pipes;
10763 }
10764
460da916
DV
10765 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10766 intel_crtc_disable(&intel_crtc->base);
10767
ea9d758d
DV
10768 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10769 if (intel_crtc->base.enabled)
10770 dev_priv->display.crtc_disable(&intel_crtc->base);
10771 }
a6778b3c 10772
6c4c86f5
DV
10773 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10774 * to set it here already despite that we pass it down the callchain.
f6e5b160 10775 */
b8cecdf5 10776 if (modeset_pipes) {
25c5b266 10777 crtc->mode = *mode;
b8cecdf5
DV
10778 /* mode_set/enable/disable functions rely on a correct pipe
10779 * config. */
10780 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10781 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10782
10783 /*
10784 * Calculate and store various constants which
10785 * are later needed by vblank and swap-completion
10786 * timestamping. They are derived from true hwmode.
10787 */
10788 drm_calc_timestamping_constants(crtc,
10789 &pipe_config->adjusted_mode);
b8cecdf5 10790 }
7758a113 10791
ea9d758d
DV
10792 /* Only after disabling all output pipelines that will be changed can we
10793 * update the the output configuration. */
10794 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10795
47fab737
DV
10796 if (dev_priv->display.modeset_global_resources)
10797 dev_priv->display.modeset_global_resources(dev);
10798
a6778b3c
DV
10799 /* Set up the DPLL and any encoders state that needs to adjust or depend
10800 * on the DPLL.
f6e5b160 10801 */
25c5b266 10802 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10803 struct drm_framebuffer *old_fb = crtc->primary->fb;
10804 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10805 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10806
10807 mutex_lock(&dev->struct_mutex);
10808 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10809 obj,
4c10794f
DV
10810 NULL);
10811 if (ret != 0) {
10812 DRM_ERROR("pin & fence failed\n");
10813 mutex_unlock(&dev->struct_mutex);
10814 goto done;
10815 }
2ff8fde1 10816 if (old_fb)
a071fa00 10817 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10818 i915_gem_track_fb(old_obj, obj,
10819 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10820 mutex_unlock(&dev->struct_mutex);
10821
10822 crtc->primary->fb = fb;
10823 crtc->x = x;
10824 crtc->y = y;
10825
4271b753
DV
10826 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10827 x, y, fb);
c0c36b94
CW
10828 if (ret)
10829 goto done;
a6778b3c
DV
10830 }
10831
10832 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10833 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10834 update_scanline_offset(intel_crtc);
10835
25c5b266 10836 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10837 }
a6778b3c 10838
a6778b3c
DV
10839 /* FIXME: add subpixel order */
10840done:
4b4b9238 10841 if (ret && crtc->enabled)
3ac18232 10842 crtc->mode = *saved_mode;
a6778b3c 10843
3ac18232 10844out:
b8cecdf5 10845 kfree(pipe_config);
3ac18232 10846 kfree(saved_mode);
a6778b3c 10847 return ret;
f6e5b160
CW
10848}
10849
e7457a9a
DL
10850static int intel_set_mode(struct drm_crtc *crtc,
10851 struct drm_display_mode *mode,
10852 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10853{
10854 int ret;
10855
10856 ret = __intel_set_mode(crtc, mode, x, y, fb);
10857
10858 if (ret == 0)
10859 intel_modeset_check_state(crtc->dev);
10860
10861 return ret;
10862}
10863
c0c36b94
CW
10864void intel_crtc_restore_mode(struct drm_crtc *crtc)
10865{
f4510a27 10866 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10867}
10868
25c5b266
DV
10869#undef for_each_intel_crtc_masked
10870
d9e55608
DV
10871static void intel_set_config_free(struct intel_set_config *config)
10872{
10873 if (!config)
10874 return;
10875
1aa4b628
DV
10876 kfree(config->save_connector_encoders);
10877 kfree(config->save_encoder_crtcs);
7668851f 10878 kfree(config->save_crtc_enabled);
d9e55608
DV
10879 kfree(config);
10880}
10881
85f9eb71
DV
10882static int intel_set_config_save_state(struct drm_device *dev,
10883 struct intel_set_config *config)
10884{
7668851f 10885 struct drm_crtc *crtc;
85f9eb71
DV
10886 struct drm_encoder *encoder;
10887 struct drm_connector *connector;
10888 int count;
10889
7668851f
VS
10890 config->save_crtc_enabled =
10891 kcalloc(dev->mode_config.num_crtc,
10892 sizeof(bool), GFP_KERNEL);
10893 if (!config->save_crtc_enabled)
10894 return -ENOMEM;
10895
1aa4b628
DV
10896 config->save_encoder_crtcs =
10897 kcalloc(dev->mode_config.num_encoder,
10898 sizeof(struct drm_crtc *), GFP_KERNEL);
10899 if (!config->save_encoder_crtcs)
85f9eb71
DV
10900 return -ENOMEM;
10901
1aa4b628
DV
10902 config->save_connector_encoders =
10903 kcalloc(dev->mode_config.num_connector,
10904 sizeof(struct drm_encoder *), GFP_KERNEL);
10905 if (!config->save_connector_encoders)
85f9eb71
DV
10906 return -ENOMEM;
10907
10908 /* Copy data. Note that driver private data is not affected.
10909 * Should anything bad happen only the expected state is
10910 * restored, not the drivers personal bookkeeping.
10911 */
7668851f 10912 count = 0;
70e1e0ec 10913 for_each_crtc(dev, crtc) {
7668851f
VS
10914 config->save_crtc_enabled[count++] = crtc->enabled;
10915 }
10916
85f9eb71
DV
10917 count = 0;
10918 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10919 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10920 }
10921
10922 count = 0;
10923 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10924 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10925 }
10926
10927 return 0;
10928}
10929
10930static void intel_set_config_restore_state(struct drm_device *dev,
10931 struct intel_set_config *config)
10932{
7668851f 10933 struct intel_crtc *crtc;
9a935856
DV
10934 struct intel_encoder *encoder;
10935 struct intel_connector *connector;
85f9eb71
DV
10936 int count;
10937
7668851f 10938 count = 0;
d3fcc808 10939 for_each_intel_crtc(dev, crtc) {
7668851f 10940 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10941
10942 if (crtc->new_enabled)
10943 crtc->new_config = &crtc->config;
10944 else
10945 crtc->new_config = NULL;
7668851f
VS
10946 }
10947
85f9eb71 10948 count = 0;
9a935856
DV
10949 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10950 encoder->new_crtc =
10951 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10952 }
10953
10954 count = 0;
9a935856
DV
10955 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10956 connector->new_encoder =
10957 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10958 }
10959}
10960
e3de42b6 10961static bool
2e57f47d 10962is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10963{
10964 int i;
10965
2e57f47d
CW
10966 if (set->num_connectors == 0)
10967 return false;
10968
10969 if (WARN_ON(set->connectors == NULL))
10970 return false;
10971
10972 for (i = 0; i < set->num_connectors; i++)
10973 if (set->connectors[i]->encoder &&
10974 set->connectors[i]->encoder->crtc == set->crtc &&
10975 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10976 return true;
10977
10978 return false;
10979}
10980
5e2b584e
DV
10981static void
10982intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10983 struct intel_set_config *config)
10984{
10985
10986 /* We should be able to check here if the fb has the same properties
10987 * and then just flip_or_move it */
2e57f47d
CW
10988 if (is_crtc_connector_off(set)) {
10989 config->mode_changed = true;
f4510a27 10990 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10991 /*
10992 * If we have no fb, we can only flip as long as the crtc is
10993 * active, otherwise we need a full mode set. The crtc may
10994 * be active if we've only disabled the primary plane, or
10995 * in fastboot situations.
10996 */
f4510a27 10997 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10998 struct intel_crtc *intel_crtc =
10999 to_intel_crtc(set->crtc);
11000
3b150f08 11001 if (intel_crtc->active) {
319d9827
JB
11002 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11003 config->fb_changed = true;
11004 } else {
11005 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11006 config->mode_changed = true;
11007 }
5e2b584e
DV
11008 } else if (set->fb == NULL) {
11009 config->mode_changed = true;
72f4901e 11010 } else if (set->fb->pixel_format !=
f4510a27 11011 set->crtc->primary->fb->pixel_format) {
5e2b584e 11012 config->mode_changed = true;
e3de42b6 11013 } else {
5e2b584e 11014 config->fb_changed = true;
e3de42b6 11015 }
5e2b584e
DV
11016 }
11017
835c5873 11018 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11019 config->fb_changed = true;
11020
11021 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11022 DRM_DEBUG_KMS("modes are different, full mode set\n");
11023 drm_mode_debug_printmodeline(&set->crtc->mode);
11024 drm_mode_debug_printmodeline(set->mode);
11025 config->mode_changed = true;
11026 }
a1d95703
CW
11027
11028 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11029 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11030}
11031
2e431051 11032static int
9a935856
DV
11033intel_modeset_stage_output_state(struct drm_device *dev,
11034 struct drm_mode_set *set,
11035 struct intel_set_config *config)
50f56119 11036{
9a935856
DV
11037 struct intel_connector *connector;
11038 struct intel_encoder *encoder;
7668851f 11039 struct intel_crtc *crtc;
f3f08572 11040 int ro;
50f56119 11041
9abdda74 11042 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11043 * of connectors. For paranoia, double-check this. */
11044 WARN_ON(!set->fb && (set->num_connectors != 0));
11045 WARN_ON(set->fb && (set->num_connectors == 0));
11046
9a935856
DV
11047 list_for_each_entry(connector, &dev->mode_config.connector_list,
11048 base.head) {
11049 /* Otherwise traverse passed in connector list and get encoders
11050 * for them. */
50f56119 11051 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11052 if (set->connectors[ro] == &connector->base) {
11053 connector->new_encoder = connector->encoder;
50f56119
DV
11054 break;
11055 }
11056 }
11057
9a935856
DV
11058 /* If we disable the crtc, disable all its connectors. Also, if
11059 * the connector is on the changing crtc but not on the new
11060 * connector list, disable it. */
11061 if ((!set->fb || ro == set->num_connectors) &&
11062 connector->base.encoder &&
11063 connector->base.encoder->crtc == set->crtc) {
11064 connector->new_encoder = NULL;
11065
11066 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11067 connector->base.base.id,
c23cc417 11068 connector->base.name);
9a935856
DV
11069 }
11070
11071
11072 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11073 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11074 config->mode_changed = true;
50f56119
DV
11075 }
11076 }
9a935856 11077 /* connector->new_encoder is now updated for all connectors. */
50f56119 11078
9a935856 11079 /* Update crtc of enabled connectors. */
9a935856
DV
11080 list_for_each_entry(connector, &dev->mode_config.connector_list,
11081 base.head) {
7668851f
VS
11082 struct drm_crtc *new_crtc;
11083
9a935856 11084 if (!connector->new_encoder)
50f56119
DV
11085 continue;
11086
9a935856 11087 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11088
11089 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11090 if (set->connectors[ro] == &connector->base)
50f56119
DV
11091 new_crtc = set->crtc;
11092 }
11093
11094 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11095 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11096 new_crtc)) {
5e2b584e 11097 return -EINVAL;
50f56119 11098 }
9a935856
DV
11099 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11100
11101 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11102 connector->base.base.id,
c23cc417 11103 connector->base.name,
9a935856
DV
11104 new_crtc->base.id);
11105 }
11106
11107 /* Check for any encoders that needs to be disabled. */
11108 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11109 base.head) {
5a65f358 11110 int num_connectors = 0;
9a935856
DV
11111 list_for_each_entry(connector,
11112 &dev->mode_config.connector_list,
11113 base.head) {
11114 if (connector->new_encoder == encoder) {
11115 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11116 num_connectors++;
9a935856
DV
11117 }
11118 }
5a65f358
PZ
11119
11120 if (num_connectors == 0)
11121 encoder->new_crtc = NULL;
11122 else if (num_connectors > 1)
11123 return -EINVAL;
11124
9a935856
DV
11125 /* Only now check for crtc changes so we don't miss encoders
11126 * that will be disabled. */
11127 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11128 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11129 config->mode_changed = true;
50f56119
DV
11130 }
11131 }
9a935856 11132 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11133
d3fcc808 11134 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11135 crtc->new_enabled = false;
11136
11137 list_for_each_entry(encoder,
11138 &dev->mode_config.encoder_list,
11139 base.head) {
11140 if (encoder->new_crtc == crtc) {
11141 crtc->new_enabled = true;
11142 break;
11143 }
11144 }
11145
11146 if (crtc->new_enabled != crtc->base.enabled) {
11147 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11148 crtc->new_enabled ? "en" : "dis");
11149 config->mode_changed = true;
11150 }
7bd0a8e7
VS
11151
11152 if (crtc->new_enabled)
11153 crtc->new_config = &crtc->config;
11154 else
11155 crtc->new_config = NULL;
7668851f
VS
11156 }
11157
2e431051
DV
11158 return 0;
11159}
11160
7d00a1f5
VS
11161static void disable_crtc_nofb(struct intel_crtc *crtc)
11162{
11163 struct drm_device *dev = crtc->base.dev;
11164 struct intel_encoder *encoder;
11165 struct intel_connector *connector;
11166
11167 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11168 pipe_name(crtc->pipe));
11169
11170 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11171 if (connector->new_encoder &&
11172 connector->new_encoder->new_crtc == crtc)
11173 connector->new_encoder = NULL;
11174 }
11175
11176 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11177 if (encoder->new_crtc == crtc)
11178 encoder->new_crtc = NULL;
11179 }
11180
11181 crtc->new_enabled = false;
7bd0a8e7 11182 crtc->new_config = NULL;
7d00a1f5
VS
11183}
11184
2e431051
DV
11185static int intel_crtc_set_config(struct drm_mode_set *set)
11186{
11187 struct drm_device *dev;
2e431051
DV
11188 struct drm_mode_set save_set;
11189 struct intel_set_config *config;
11190 int ret;
2e431051 11191
8d3e375e
DV
11192 BUG_ON(!set);
11193 BUG_ON(!set->crtc);
11194 BUG_ON(!set->crtc->helper_private);
2e431051 11195
7e53f3a4
DV
11196 /* Enforce sane interface api - has been abused by the fb helper. */
11197 BUG_ON(!set->mode && set->fb);
11198 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11199
2e431051
DV
11200 if (set->fb) {
11201 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11202 set->crtc->base.id, set->fb->base.id,
11203 (int)set->num_connectors, set->x, set->y);
11204 } else {
11205 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11206 }
11207
11208 dev = set->crtc->dev;
11209
11210 ret = -ENOMEM;
11211 config = kzalloc(sizeof(*config), GFP_KERNEL);
11212 if (!config)
11213 goto out_config;
11214
11215 ret = intel_set_config_save_state(dev, config);
11216 if (ret)
11217 goto out_config;
11218
11219 save_set.crtc = set->crtc;
11220 save_set.mode = &set->crtc->mode;
11221 save_set.x = set->crtc->x;
11222 save_set.y = set->crtc->y;
f4510a27 11223 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11224
11225 /* Compute whether we need a full modeset, only an fb base update or no
11226 * change at all. In the future we might also check whether only the
11227 * mode changed, e.g. for LVDS where we only change the panel fitter in
11228 * such cases. */
11229 intel_set_config_compute_mode_changes(set, config);
11230
9a935856 11231 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11232 if (ret)
11233 goto fail;
11234
5e2b584e 11235 if (config->mode_changed) {
c0c36b94
CW
11236 ret = intel_set_mode(set->crtc, set->mode,
11237 set->x, set->y, set->fb);
5e2b584e 11238 } else if (config->fb_changed) {
3b150f08
MR
11239 struct drm_i915_private *dev_priv = dev->dev_private;
11240 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11241
4878cae2
VS
11242 intel_crtc_wait_for_pending_flips(set->crtc);
11243
4f660f49 11244 ret = intel_pipe_set_base(set->crtc,
94352cf9 11245 set->x, set->y, set->fb);
3b150f08
MR
11246
11247 /*
11248 * We need to make sure the primary plane is re-enabled if it
11249 * has previously been turned off.
11250 */
11251 if (!intel_crtc->primary_enabled && ret == 0) {
11252 WARN_ON(!intel_crtc->active);
11253 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11254 intel_crtc->pipe);
11255 }
11256
7ca51a3a
JB
11257 /*
11258 * In the fastboot case this may be our only check of the
11259 * state after boot. It would be better to only do it on
11260 * the first update, but we don't have a nice way of doing that
11261 * (and really, set_config isn't used much for high freq page
11262 * flipping, so increasing its cost here shouldn't be a big
11263 * deal).
11264 */
d330a953 11265 if (i915.fastboot && ret == 0)
7ca51a3a 11266 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11267 }
11268
2d05eae1 11269 if (ret) {
bf67dfeb
DV
11270 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11271 set->crtc->base.id, ret);
50f56119 11272fail:
2d05eae1 11273 intel_set_config_restore_state(dev, config);
50f56119 11274
7d00a1f5
VS
11275 /*
11276 * HACK: if the pipe was on, but we didn't have a framebuffer,
11277 * force the pipe off to avoid oopsing in the modeset code
11278 * due to fb==NULL. This should only happen during boot since
11279 * we don't yet reconstruct the FB from the hardware state.
11280 */
11281 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11282 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11283
2d05eae1
CW
11284 /* Try to restore the config */
11285 if (config->mode_changed &&
11286 intel_set_mode(save_set.crtc, save_set.mode,
11287 save_set.x, save_set.y, save_set.fb))
11288 DRM_ERROR("failed to restore config after modeset failure\n");
11289 }
50f56119 11290
d9e55608
DV
11291out_config:
11292 intel_set_config_free(config);
50f56119
DV
11293 return ret;
11294}
f6e5b160
CW
11295
11296static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11297 .gamma_set = intel_crtc_gamma_set,
50f56119 11298 .set_config = intel_crtc_set_config,
f6e5b160
CW
11299 .destroy = intel_crtc_destroy,
11300 .page_flip = intel_crtc_page_flip,
11301};
11302
5358901f
DV
11303static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11304 struct intel_shared_dpll *pll,
11305 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11306{
5358901f 11307 uint32_t val;
ee7b9f93 11308
bd2bb1b9
PZ
11309 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11310 return false;
11311
5358901f 11312 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11313 hw_state->dpll = val;
11314 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11315 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11316
11317 return val & DPLL_VCO_ENABLE;
11318}
11319
15bdd4cf
DV
11320static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11321 struct intel_shared_dpll *pll)
11322{
11323 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11324 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11325}
11326
e7b903d2
DV
11327static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11328 struct intel_shared_dpll *pll)
11329{
e7b903d2 11330 /* PCH refclock must be enabled first */
89eff4be 11331 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11332
15bdd4cf
DV
11333 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11334
11335 /* Wait for the clocks to stabilize. */
11336 POSTING_READ(PCH_DPLL(pll->id));
11337 udelay(150);
11338
11339 /* The pixel multiplier can only be updated once the
11340 * DPLL is enabled and the clocks are stable.
11341 *
11342 * So write it again.
11343 */
11344 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11345 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11346 udelay(200);
11347}
11348
11349static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11350 struct intel_shared_dpll *pll)
11351{
11352 struct drm_device *dev = dev_priv->dev;
11353 struct intel_crtc *crtc;
e7b903d2
DV
11354
11355 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11356 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11357 if (intel_crtc_to_shared_dpll(crtc) == pll)
11358 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11359 }
11360
15bdd4cf
DV
11361 I915_WRITE(PCH_DPLL(pll->id), 0);
11362 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11363 udelay(200);
11364}
11365
46edb027
DV
11366static char *ibx_pch_dpll_names[] = {
11367 "PCH DPLL A",
11368 "PCH DPLL B",
11369};
11370
7c74ade1 11371static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11372{
e7b903d2 11373 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11374 int i;
11375
7c74ade1 11376 dev_priv->num_shared_dpll = 2;
ee7b9f93 11377
e72f9fbf 11378 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11379 dev_priv->shared_dplls[i].id = i;
11380 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11381 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11382 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11383 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11384 dev_priv->shared_dplls[i].get_hw_state =
11385 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11386 }
11387}
11388
7c74ade1
DV
11389static void intel_shared_dpll_init(struct drm_device *dev)
11390{
e7b903d2 11391 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11392
9cd86933
DV
11393 if (HAS_DDI(dev))
11394 intel_ddi_pll_init(dev);
11395 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11396 ibx_pch_dpll_init(dev);
11397 else
11398 dev_priv->num_shared_dpll = 0;
11399
11400 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11401}
11402
465c120c
MR
11403static int
11404intel_primary_plane_disable(struct drm_plane *plane)
11405{
11406 struct drm_device *dev = plane->dev;
11407 struct drm_i915_private *dev_priv = dev->dev_private;
11408 struct intel_plane *intel_plane = to_intel_plane(plane);
11409 struct intel_crtc *intel_crtc;
11410
11411 if (!plane->fb)
11412 return 0;
11413
11414 BUG_ON(!plane->crtc);
11415
11416 intel_crtc = to_intel_crtc(plane->crtc);
11417
11418 /*
11419 * Even though we checked plane->fb above, it's still possible that
11420 * the primary plane has been implicitly disabled because the crtc
11421 * coordinates given weren't visible, or because we detected
11422 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11423 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11424 * In either case, we need to unpin the FB and let the fb pointer get
11425 * updated, but otherwise we don't need to touch the hardware.
11426 */
11427 if (!intel_crtc->primary_enabled)
11428 goto disable_unpin;
11429
11430 intel_crtc_wait_for_pending_flips(plane->crtc);
11431 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11432 intel_plane->pipe);
465c120c 11433disable_unpin:
4c34574f 11434 mutex_lock(&dev->struct_mutex);
2ff8fde1 11435 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11436 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11437 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11438 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11439 plane->fb = NULL;
11440
11441 return 0;
11442}
11443
11444static int
11445intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11446 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11447 unsigned int crtc_w, unsigned int crtc_h,
11448 uint32_t src_x, uint32_t src_y,
11449 uint32_t src_w, uint32_t src_h)
11450{
11451 struct drm_device *dev = crtc->dev;
11452 struct drm_i915_private *dev_priv = dev->dev_private;
11453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11454 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11455 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11456 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11457 struct drm_rect dest = {
11458 /* integer pixels */
11459 .x1 = crtc_x,
11460 .y1 = crtc_y,
11461 .x2 = crtc_x + crtc_w,
11462 .y2 = crtc_y + crtc_h,
11463 };
11464 struct drm_rect src = {
11465 /* 16.16 fixed point */
11466 .x1 = src_x,
11467 .y1 = src_y,
11468 .x2 = src_x + src_w,
11469 .y2 = src_y + src_h,
11470 };
11471 const struct drm_rect clip = {
11472 /* integer pixels */
11473 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11474 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11475 };
11476 bool visible;
11477 int ret;
11478
11479 ret = drm_plane_helper_check_update(plane, crtc, fb,
11480 &src, &dest, &clip,
11481 DRM_PLANE_HELPER_NO_SCALING,
11482 DRM_PLANE_HELPER_NO_SCALING,
11483 false, true, &visible);
11484
11485 if (ret)
11486 return ret;
11487
11488 /*
11489 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11490 * updating the fb pointer, and returning without touching the
11491 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11492 * turn on the display with all planes setup as desired.
11493 */
11494 if (!crtc->enabled) {
4c34574f
MR
11495 mutex_lock(&dev->struct_mutex);
11496
465c120c
MR
11497 /*
11498 * If we already called setplane while the crtc was disabled,
11499 * we may have an fb pinned; unpin it.
11500 */
11501 if (plane->fb)
a071fa00
DV
11502 intel_unpin_fb_obj(old_obj);
11503
11504 i915_gem_track_fb(old_obj, obj,
11505 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11506
11507 /* Pin and return without programming hardware */
4c34574f
MR
11508 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11509 mutex_unlock(&dev->struct_mutex);
11510
11511 return ret;
465c120c
MR
11512 }
11513
11514 intel_crtc_wait_for_pending_flips(crtc);
11515
11516 /*
11517 * If clipping results in a non-visible primary plane, we'll disable
11518 * the primary plane. Note that this is a bit different than what
11519 * happens if userspace explicitly disables the plane by passing fb=0
11520 * because plane->fb still gets set and pinned.
11521 */
11522 if (!visible) {
4c34574f
MR
11523 mutex_lock(&dev->struct_mutex);
11524
465c120c
MR
11525 /*
11526 * Try to pin the new fb first so that we can bail out if we
11527 * fail.
11528 */
11529 if (plane->fb != fb) {
a071fa00 11530 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11531 if (ret) {
11532 mutex_unlock(&dev->struct_mutex);
465c120c 11533 return ret;
4c34574f 11534 }
465c120c
MR
11535 }
11536
a071fa00
DV
11537 i915_gem_track_fb(old_obj, obj,
11538 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11539
465c120c
MR
11540 if (intel_crtc->primary_enabled)
11541 intel_disable_primary_hw_plane(dev_priv,
11542 intel_plane->plane,
11543 intel_plane->pipe);
11544
11545
11546 if (plane->fb != fb)
11547 if (plane->fb)
a071fa00 11548 intel_unpin_fb_obj(old_obj);
465c120c 11549
4c34574f
MR
11550 mutex_unlock(&dev->struct_mutex);
11551
465c120c
MR
11552 return 0;
11553 }
11554
11555 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11556 if (ret)
11557 return ret;
11558
11559 if (!intel_crtc->primary_enabled)
11560 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11561 intel_crtc->pipe);
11562
11563 return 0;
11564}
11565
3d7d6510
MR
11566/* Common destruction function for both primary and cursor planes */
11567static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11568{
11569 struct intel_plane *intel_plane = to_intel_plane(plane);
11570 drm_plane_cleanup(plane);
11571 kfree(intel_plane);
11572}
11573
11574static const struct drm_plane_funcs intel_primary_plane_funcs = {
11575 .update_plane = intel_primary_plane_setplane,
11576 .disable_plane = intel_primary_plane_disable,
3d7d6510 11577 .destroy = intel_plane_destroy,
465c120c
MR
11578};
11579
11580static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11581 int pipe)
11582{
11583 struct intel_plane *primary;
11584 const uint32_t *intel_primary_formats;
11585 int num_formats;
11586
11587 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11588 if (primary == NULL)
11589 return NULL;
11590
11591 primary->can_scale = false;
11592 primary->max_downscale = 1;
11593 primary->pipe = pipe;
11594 primary->plane = pipe;
11595 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11596 primary->plane = !pipe;
11597
11598 if (INTEL_INFO(dev)->gen <= 3) {
11599 intel_primary_formats = intel_primary_formats_gen2;
11600 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11601 } else {
11602 intel_primary_formats = intel_primary_formats_gen4;
11603 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11604 }
11605
11606 drm_universal_plane_init(dev, &primary->base, 0,
11607 &intel_primary_plane_funcs,
11608 intel_primary_formats, num_formats,
11609 DRM_PLANE_TYPE_PRIMARY);
11610 return &primary->base;
11611}
11612
3d7d6510
MR
11613static int
11614intel_cursor_plane_disable(struct drm_plane *plane)
11615{
11616 if (!plane->fb)
11617 return 0;
11618
11619 BUG_ON(!plane->crtc);
11620
11621 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11622}
11623
11624static int
11625intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11626 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11627 unsigned int crtc_w, unsigned int crtc_h,
11628 uint32_t src_x, uint32_t src_y,
11629 uint32_t src_w, uint32_t src_h)
11630{
11631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11632 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11633 struct drm_i915_gem_object *obj = intel_fb->obj;
11634 struct drm_rect dest = {
11635 /* integer pixels */
11636 .x1 = crtc_x,
11637 .y1 = crtc_y,
11638 .x2 = crtc_x + crtc_w,
11639 .y2 = crtc_y + crtc_h,
11640 };
11641 struct drm_rect src = {
11642 /* 16.16 fixed point */
11643 .x1 = src_x,
11644 .y1 = src_y,
11645 .x2 = src_x + src_w,
11646 .y2 = src_y + src_h,
11647 };
11648 const struct drm_rect clip = {
11649 /* integer pixels */
11650 .x2 = intel_crtc->config.pipe_src_w,
11651 .y2 = intel_crtc->config.pipe_src_h,
11652 };
11653 bool visible;
11654 int ret;
11655
11656 ret = drm_plane_helper_check_update(plane, crtc, fb,
11657 &src, &dest, &clip,
11658 DRM_PLANE_HELPER_NO_SCALING,
11659 DRM_PLANE_HELPER_NO_SCALING,
11660 true, true, &visible);
11661 if (ret)
11662 return ret;
11663
11664 crtc->cursor_x = crtc_x;
11665 crtc->cursor_y = crtc_y;
11666 if (fb != crtc->cursor->fb) {
11667 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11668 } else {
11669 intel_crtc_update_cursor(crtc, visible);
11670 return 0;
11671 }
11672}
11673static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11674 .update_plane = intel_cursor_plane_update,
11675 .disable_plane = intel_cursor_plane_disable,
11676 .destroy = intel_plane_destroy,
11677};
11678
11679static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11680 int pipe)
11681{
11682 struct intel_plane *cursor;
11683
11684 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11685 if (cursor == NULL)
11686 return NULL;
11687
11688 cursor->can_scale = false;
11689 cursor->max_downscale = 1;
11690 cursor->pipe = pipe;
11691 cursor->plane = pipe;
11692
11693 drm_universal_plane_init(dev, &cursor->base, 0,
11694 &intel_cursor_plane_funcs,
11695 intel_cursor_formats,
11696 ARRAY_SIZE(intel_cursor_formats),
11697 DRM_PLANE_TYPE_CURSOR);
11698 return &cursor->base;
11699}
11700
b358d0a6 11701static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11702{
fbee40df 11703 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11704 struct intel_crtc *intel_crtc;
3d7d6510
MR
11705 struct drm_plane *primary = NULL;
11706 struct drm_plane *cursor = NULL;
465c120c 11707 int i, ret;
79e53945 11708
955382f3 11709 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11710 if (intel_crtc == NULL)
11711 return;
11712
465c120c 11713 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11714 if (!primary)
11715 goto fail;
11716
11717 cursor = intel_cursor_plane_create(dev, pipe);
11718 if (!cursor)
11719 goto fail;
11720
465c120c 11721 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11722 cursor, &intel_crtc_funcs);
11723 if (ret)
11724 goto fail;
79e53945
JB
11725
11726 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11727 for (i = 0; i < 256; i++) {
11728 intel_crtc->lut_r[i] = i;
11729 intel_crtc->lut_g[i] = i;
11730 intel_crtc->lut_b[i] = i;
11731 }
11732
1f1c2e24
VS
11733 /*
11734 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11735 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11736 */
80824003
JB
11737 intel_crtc->pipe = pipe;
11738 intel_crtc->plane = pipe;
3a77c4c4 11739 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11740 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11741 intel_crtc->plane = !pipe;
80824003
JB
11742 }
11743
4b0e333e
CW
11744 intel_crtc->cursor_base = ~0;
11745 intel_crtc->cursor_cntl = ~0;
11746
8d7849db
VS
11747 init_waitqueue_head(&intel_crtc->vbl_wait);
11748
22fd0fab
JB
11749 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11750 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11751 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11752 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11753
79e53945 11754 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11755
11756 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11757 return;
11758
11759fail:
11760 if (primary)
11761 drm_plane_cleanup(primary);
11762 if (cursor)
11763 drm_plane_cleanup(cursor);
11764 kfree(intel_crtc);
79e53945
JB
11765}
11766
752aa88a
JB
11767enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11768{
11769 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11770 struct drm_device *dev = connector->base.dev;
752aa88a 11771
51fd371b 11772 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11773
11774 if (!encoder)
11775 return INVALID_PIPE;
11776
11777 return to_intel_crtc(encoder->crtc)->pipe;
11778}
11779
08d7b3d1 11780int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11781 struct drm_file *file)
08d7b3d1 11782{
08d7b3d1 11783 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11784 struct drm_mode_object *drmmode_obj;
11785 struct intel_crtc *crtc;
08d7b3d1 11786
1cff8f6b
DV
11787 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11788 return -ENODEV;
08d7b3d1 11789
c05422d5
DV
11790 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11791 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11792
c05422d5 11793 if (!drmmode_obj) {
08d7b3d1 11794 DRM_ERROR("no such CRTC id\n");
3f2c2057 11795 return -ENOENT;
08d7b3d1
CW
11796 }
11797
c05422d5
DV
11798 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11799 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11800
c05422d5 11801 return 0;
08d7b3d1
CW
11802}
11803
66a9278e 11804static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11805{
66a9278e
DV
11806 struct drm_device *dev = encoder->base.dev;
11807 struct intel_encoder *source_encoder;
79e53945 11808 int index_mask = 0;
79e53945
JB
11809 int entry = 0;
11810
66a9278e
DV
11811 list_for_each_entry(source_encoder,
11812 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11813 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11814 index_mask |= (1 << entry);
11815
79e53945
JB
11816 entry++;
11817 }
4ef69c7a 11818
79e53945
JB
11819 return index_mask;
11820}
11821
4d302442
CW
11822static bool has_edp_a(struct drm_device *dev)
11823{
11824 struct drm_i915_private *dev_priv = dev->dev_private;
11825
11826 if (!IS_MOBILE(dev))
11827 return false;
11828
11829 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11830 return false;
11831
e3589908 11832 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11833 return false;
11834
11835 return true;
11836}
11837
ba0fbca4
DL
11838const char *intel_output_name(int output)
11839{
11840 static const char *names[] = {
11841 [INTEL_OUTPUT_UNUSED] = "Unused",
11842 [INTEL_OUTPUT_ANALOG] = "Analog",
11843 [INTEL_OUTPUT_DVO] = "DVO",
11844 [INTEL_OUTPUT_SDVO] = "SDVO",
11845 [INTEL_OUTPUT_LVDS] = "LVDS",
11846 [INTEL_OUTPUT_TVOUT] = "TV",
11847 [INTEL_OUTPUT_HDMI] = "HDMI",
11848 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11849 [INTEL_OUTPUT_EDP] = "eDP",
11850 [INTEL_OUTPUT_DSI] = "DSI",
11851 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11852 };
11853
11854 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11855 return "Invalid";
11856
11857 return names[output];
11858}
11859
84b4e042
JB
11860static bool intel_crt_present(struct drm_device *dev)
11861{
11862 struct drm_i915_private *dev_priv = dev->dev_private;
11863
11864 if (IS_ULT(dev))
11865 return false;
11866
11867 if (IS_CHERRYVIEW(dev))
11868 return false;
11869
11870 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11871 return false;
11872
11873 return true;
11874}
11875
79e53945
JB
11876static void intel_setup_outputs(struct drm_device *dev)
11877{
725e30ad 11878 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11879 struct intel_encoder *encoder;
cb0953d7 11880 bool dpd_is_edp = false;
79e53945 11881
c9093354 11882 intel_lvds_init(dev);
79e53945 11883
84b4e042 11884 if (intel_crt_present(dev))
79935fca 11885 intel_crt_init(dev);
cb0953d7 11886
affa9354 11887 if (HAS_DDI(dev)) {
0e72a5b5
ED
11888 int found;
11889
11890 /* Haswell uses DDI functions to detect digital outputs */
11891 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11892 /* DDI A only supports eDP */
11893 if (found)
11894 intel_ddi_init(dev, PORT_A);
11895
11896 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11897 * register */
11898 found = I915_READ(SFUSE_STRAP);
11899
11900 if (found & SFUSE_STRAP_DDIB_DETECTED)
11901 intel_ddi_init(dev, PORT_B);
11902 if (found & SFUSE_STRAP_DDIC_DETECTED)
11903 intel_ddi_init(dev, PORT_C);
11904 if (found & SFUSE_STRAP_DDID_DETECTED)
11905 intel_ddi_init(dev, PORT_D);
11906 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11907 int found;
5d8a7752 11908 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11909
11910 if (has_edp_a(dev))
11911 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11912
dc0fa718 11913 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11914 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11915 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11916 if (!found)
e2debe91 11917 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11918 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11919 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11920 }
11921
dc0fa718 11922 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11923 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11924
dc0fa718 11925 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11926 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11927
5eb08b69 11928 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11929 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11930
270b3042 11931 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11932 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11933 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11934 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11935 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11936 PORT_B);
11937 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11938 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11939 }
11940
6f6005a5
JB
11941 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11942 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11943 PORT_C);
11944 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11945 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11946 }
19c03924 11947
9418c1f1
VS
11948 if (IS_CHERRYVIEW(dev)) {
11949 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11950 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11951 PORT_D);
11952 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11953 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11954 }
11955 }
11956
3cfca973 11957 intel_dsi_init(dev);
103a196f 11958 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11959 bool found = false;
7d57382e 11960
e2debe91 11961 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11962 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11963 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11964 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11965 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11966 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11967 }
27185ae1 11968
e7281eab 11969 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11970 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11971 }
13520b05
KH
11972
11973 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11974
e2debe91 11975 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11976 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11977 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11978 }
27185ae1 11979
e2debe91 11980 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11981
b01f2c3a
JB
11982 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11983 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11984 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11985 }
e7281eab 11986 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11987 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11988 }
27185ae1 11989
b01f2c3a 11990 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11991 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11992 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11993 } else if (IS_GEN2(dev))
79e53945
JB
11994 intel_dvo_init(dev);
11995
103a196f 11996 if (SUPPORTS_TV(dev))
79e53945
JB
11997 intel_tv_init(dev);
11998
7c8f8a70
RV
11999 intel_edp_psr_init(dev);
12000
4ef69c7a
CW
12001 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12002 encoder->base.possible_crtcs = encoder->crtc_mask;
12003 encoder->base.possible_clones =
66a9278e 12004 intel_encoder_clones(encoder);
79e53945 12005 }
47356eb6 12006
dde86e2d 12007 intel_init_pch_refclk(dev);
270b3042
DV
12008
12009 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12010}
12011
12012static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12013{
60a5ca01 12014 struct drm_device *dev = fb->dev;
79e53945 12015 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12016
ef2d633e 12017 drm_framebuffer_cleanup(fb);
60a5ca01 12018 mutex_lock(&dev->struct_mutex);
ef2d633e 12019 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12020 drm_gem_object_unreference(&intel_fb->obj->base);
12021 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12022 kfree(intel_fb);
12023}
12024
12025static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12026 struct drm_file *file,
79e53945
JB
12027 unsigned int *handle)
12028{
12029 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12030 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12031
05394f39 12032 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12033}
12034
12035static const struct drm_framebuffer_funcs intel_fb_funcs = {
12036 .destroy = intel_user_framebuffer_destroy,
12037 .create_handle = intel_user_framebuffer_create_handle,
12038};
12039
b5ea642a
DV
12040static int intel_framebuffer_init(struct drm_device *dev,
12041 struct intel_framebuffer *intel_fb,
12042 struct drm_mode_fb_cmd2 *mode_cmd,
12043 struct drm_i915_gem_object *obj)
79e53945 12044{
a57ce0b2 12045 int aligned_height;
a35cdaa0 12046 int pitch_limit;
79e53945
JB
12047 int ret;
12048
dd4916c5
DV
12049 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12050
c16ed4be
CW
12051 if (obj->tiling_mode == I915_TILING_Y) {
12052 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12053 return -EINVAL;
c16ed4be 12054 }
57cd6508 12055
c16ed4be
CW
12056 if (mode_cmd->pitches[0] & 63) {
12057 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12058 mode_cmd->pitches[0]);
57cd6508 12059 return -EINVAL;
c16ed4be 12060 }
57cd6508 12061
a35cdaa0
CW
12062 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12063 pitch_limit = 32*1024;
12064 } else if (INTEL_INFO(dev)->gen >= 4) {
12065 if (obj->tiling_mode)
12066 pitch_limit = 16*1024;
12067 else
12068 pitch_limit = 32*1024;
12069 } else if (INTEL_INFO(dev)->gen >= 3) {
12070 if (obj->tiling_mode)
12071 pitch_limit = 8*1024;
12072 else
12073 pitch_limit = 16*1024;
12074 } else
12075 /* XXX DSPC is limited to 4k tiled */
12076 pitch_limit = 8*1024;
12077
12078 if (mode_cmd->pitches[0] > pitch_limit) {
12079 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12080 obj->tiling_mode ? "tiled" : "linear",
12081 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12082 return -EINVAL;
c16ed4be 12083 }
5d7bd705
VS
12084
12085 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12086 mode_cmd->pitches[0] != obj->stride) {
12087 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12088 mode_cmd->pitches[0], obj->stride);
5d7bd705 12089 return -EINVAL;
c16ed4be 12090 }
5d7bd705 12091
57779d06 12092 /* Reject formats not supported by any plane early. */
308e5bcb 12093 switch (mode_cmd->pixel_format) {
57779d06 12094 case DRM_FORMAT_C8:
04b3924d
VS
12095 case DRM_FORMAT_RGB565:
12096 case DRM_FORMAT_XRGB8888:
12097 case DRM_FORMAT_ARGB8888:
57779d06
VS
12098 break;
12099 case DRM_FORMAT_XRGB1555:
12100 case DRM_FORMAT_ARGB1555:
c16ed4be 12101 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12102 DRM_DEBUG("unsupported pixel format: %s\n",
12103 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12104 return -EINVAL;
c16ed4be 12105 }
57779d06
VS
12106 break;
12107 case DRM_FORMAT_XBGR8888:
12108 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12109 case DRM_FORMAT_XRGB2101010:
12110 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12111 case DRM_FORMAT_XBGR2101010:
12112 case DRM_FORMAT_ABGR2101010:
c16ed4be 12113 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12114 DRM_DEBUG("unsupported pixel format: %s\n",
12115 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12116 return -EINVAL;
c16ed4be 12117 }
b5626747 12118 break;
04b3924d
VS
12119 case DRM_FORMAT_YUYV:
12120 case DRM_FORMAT_UYVY:
12121 case DRM_FORMAT_YVYU:
12122 case DRM_FORMAT_VYUY:
c16ed4be 12123 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12124 DRM_DEBUG("unsupported pixel format: %s\n",
12125 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12126 return -EINVAL;
c16ed4be 12127 }
57cd6508
CW
12128 break;
12129 default:
4ee62c76
VS
12130 DRM_DEBUG("unsupported pixel format: %s\n",
12131 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12132 return -EINVAL;
12133 }
12134
90f9a336
VS
12135 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12136 if (mode_cmd->offsets[0] != 0)
12137 return -EINVAL;
12138
a57ce0b2
JB
12139 aligned_height = intel_align_height(dev, mode_cmd->height,
12140 obj->tiling_mode);
53155c0a
DV
12141 /* FIXME drm helper for size checks (especially planar formats)? */
12142 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12143 return -EINVAL;
12144
c7d73f6a
DV
12145 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12146 intel_fb->obj = obj;
80075d49 12147 intel_fb->obj->framebuffer_references++;
c7d73f6a 12148
79e53945
JB
12149 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12150 if (ret) {
12151 DRM_ERROR("framebuffer init failed %d\n", ret);
12152 return ret;
12153 }
12154
79e53945
JB
12155 return 0;
12156}
12157
79e53945
JB
12158static struct drm_framebuffer *
12159intel_user_framebuffer_create(struct drm_device *dev,
12160 struct drm_file *filp,
308e5bcb 12161 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12162{
05394f39 12163 struct drm_i915_gem_object *obj;
79e53945 12164
308e5bcb
JB
12165 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12166 mode_cmd->handles[0]));
c8725226 12167 if (&obj->base == NULL)
cce13ff7 12168 return ERR_PTR(-ENOENT);
79e53945 12169
d2dff872 12170 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12171}
12172
4520f53a 12173#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12174static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12175{
12176}
12177#endif
12178
79e53945 12179static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12180 .fb_create = intel_user_framebuffer_create,
0632fef6 12181 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12182};
12183
e70236a8
JB
12184/* Set up chip specific display functions */
12185static void intel_init_display(struct drm_device *dev)
12186{
12187 struct drm_i915_private *dev_priv = dev->dev_private;
12188
ee9300bb
DV
12189 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12190 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12191 else if (IS_CHERRYVIEW(dev))
12192 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12193 else if (IS_VALLEYVIEW(dev))
12194 dev_priv->display.find_dpll = vlv_find_best_dpll;
12195 else if (IS_PINEVIEW(dev))
12196 dev_priv->display.find_dpll = pnv_find_best_dpll;
12197 else
12198 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12199
affa9354 12200 if (HAS_DDI(dev)) {
0e8ffe1b 12201 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12202 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12203 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12204 dev_priv->display.crtc_enable = haswell_crtc_enable;
12205 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12206 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12207 dev_priv->display.update_primary_plane =
12208 ironlake_update_primary_plane;
09b4ddf9 12209 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12210 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12211 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12212 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12213 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12214 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12215 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12216 dev_priv->display.update_primary_plane =
12217 ironlake_update_primary_plane;
89b667f8
JB
12218 } else if (IS_VALLEYVIEW(dev)) {
12219 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12220 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12221 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12222 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12223 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12224 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12225 dev_priv->display.update_primary_plane =
12226 i9xx_update_primary_plane;
f564048e 12227 } else {
0e8ffe1b 12228 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12229 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12230 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12231 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12232 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12233 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12234 dev_priv->display.update_primary_plane =
12235 i9xx_update_primary_plane;
f564048e 12236 }
e70236a8 12237
e70236a8 12238 /* Returns the core display clock speed */
25eb05fc
JB
12239 if (IS_VALLEYVIEW(dev))
12240 dev_priv->display.get_display_clock_speed =
12241 valleyview_get_display_clock_speed;
12242 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12243 dev_priv->display.get_display_clock_speed =
12244 i945_get_display_clock_speed;
12245 else if (IS_I915G(dev))
12246 dev_priv->display.get_display_clock_speed =
12247 i915_get_display_clock_speed;
257a7ffc 12248 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12249 dev_priv->display.get_display_clock_speed =
12250 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12251 else if (IS_PINEVIEW(dev))
12252 dev_priv->display.get_display_clock_speed =
12253 pnv_get_display_clock_speed;
e70236a8
JB
12254 else if (IS_I915GM(dev))
12255 dev_priv->display.get_display_clock_speed =
12256 i915gm_get_display_clock_speed;
12257 else if (IS_I865G(dev))
12258 dev_priv->display.get_display_clock_speed =
12259 i865_get_display_clock_speed;
f0f8a9ce 12260 else if (IS_I85X(dev))
e70236a8
JB
12261 dev_priv->display.get_display_clock_speed =
12262 i855_get_display_clock_speed;
12263 else /* 852, 830 */
12264 dev_priv->display.get_display_clock_speed =
12265 i830_get_display_clock_speed;
12266
7f8a8569 12267 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12268 if (IS_GEN5(dev)) {
674cf967 12269 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12270 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12271 } else if (IS_GEN6(dev)) {
674cf967 12272 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12273 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12274 dev_priv->display.modeset_global_resources =
12275 snb_modeset_global_resources;
357555c0
JB
12276 } else if (IS_IVYBRIDGE(dev)) {
12277 /* FIXME: detect B0+ stepping and use auto training */
12278 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12279 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12280 dev_priv->display.modeset_global_resources =
12281 ivb_modeset_global_resources;
4e0bbc31 12282 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12283 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12284 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12285 dev_priv->display.modeset_global_resources =
12286 haswell_modeset_global_resources;
a0e63c22 12287 }
6067aaea 12288 } else if (IS_G4X(dev)) {
e0dac65e 12289 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12290 } else if (IS_VALLEYVIEW(dev)) {
12291 dev_priv->display.modeset_global_resources =
12292 valleyview_modeset_global_resources;
9ca2fe73 12293 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12294 }
8c9f3aaf
JB
12295
12296 /* Default just returns -ENODEV to indicate unsupported */
12297 dev_priv->display.queue_flip = intel_default_queue_flip;
12298
12299 switch (INTEL_INFO(dev)->gen) {
12300 case 2:
12301 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12302 break;
12303
12304 case 3:
12305 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12306 break;
12307
12308 case 4:
12309 case 5:
12310 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12311 break;
12312
12313 case 6:
12314 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12315 break;
7c9017e5 12316 case 7:
4e0bbc31 12317 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12318 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12319 break;
8c9f3aaf 12320 }
7bd688cd
JN
12321
12322 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12323}
12324
b690e96c
JB
12325/*
12326 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12327 * resume, or other times. This quirk makes sure that's the case for
12328 * affected systems.
12329 */
0206e353 12330static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12331{
12332 struct drm_i915_private *dev_priv = dev->dev_private;
12333
12334 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12335 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12336}
12337
435793df
KP
12338/*
12339 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12340 */
12341static void quirk_ssc_force_disable(struct drm_device *dev)
12342{
12343 struct drm_i915_private *dev_priv = dev->dev_private;
12344 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12345 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12346}
12347
4dca20ef 12348/*
5a15ab5b
CE
12349 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12350 * brightness value
4dca20ef
CE
12351 */
12352static void quirk_invert_brightness(struct drm_device *dev)
12353{
12354 struct drm_i915_private *dev_priv = dev->dev_private;
12355 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12356 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12357}
12358
b690e96c
JB
12359struct intel_quirk {
12360 int device;
12361 int subsystem_vendor;
12362 int subsystem_device;
12363 void (*hook)(struct drm_device *dev);
12364};
12365
5f85f176
EE
12366/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12367struct intel_dmi_quirk {
12368 void (*hook)(struct drm_device *dev);
12369 const struct dmi_system_id (*dmi_id_list)[];
12370};
12371
12372static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12373{
12374 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12375 return 1;
12376}
12377
12378static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12379 {
12380 .dmi_id_list = &(const struct dmi_system_id[]) {
12381 {
12382 .callback = intel_dmi_reverse_brightness,
12383 .ident = "NCR Corporation",
12384 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12385 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12386 },
12387 },
12388 { } /* terminating entry */
12389 },
12390 .hook = quirk_invert_brightness,
12391 },
12392};
12393
c43b5634 12394static struct intel_quirk intel_quirks[] = {
b690e96c 12395 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12396 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12397
b690e96c
JB
12398 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12399 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12400
b690e96c
JB
12401 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12402 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12403
435793df
KP
12404 /* Lenovo U160 cannot use SSC on LVDS */
12405 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12406
12407 /* Sony Vaio Y cannot use SSC on LVDS */
12408 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12409
be505f64
AH
12410 /* Acer Aspire 5734Z must invert backlight brightness */
12411 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12412
12413 /* Acer/eMachines G725 */
12414 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12415
12416 /* Acer/eMachines e725 */
12417 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12418
12419 /* Acer/Packard Bell NCL20 */
12420 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12421
12422 /* Acer Aspire 4736Z */
12423 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12424
12425 /* Acer Aspire 5336 */
12426 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12427};
12428
12429static void intel_init_quirks(struct drm_device *dev)
12430{
12431 struct pci_dev *d = dev->pdev;
12432 int i;
12433
12434 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12435 struct intel_quirk *q = &intel_quirks[i];
12436
12437 if (d->device == q->device &&
12438 (d->subsystem_vendor == q->subsystem_vendor ||
12439 q->subsystem_vendor == PCI_ANY_ID) &&
12440 (d->subsystem_device == q->subsystem_device ||
12441 q->subsystem_device == PCI_ANY_ID))
12442 q->hook(dev);
12443 }
5f85f176
EE
12444 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12445 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12446 intel_dmi_quirks[i].hook(dev);
12447 }
b690e96c
JB
12448}
12449
9cce37f4
JB
12450/* Disable the VGA plane that we never use */
12451static void i915_disable_vga(struct drm_device *dev)
12452{
12453 struct drm_i915_private *dev_priv = dev->dev_private;
12454 u8 sr1;
766aa1c4 12455 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12456
2b37c616 12457 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12458 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12459 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12460 sr1 = inb(VGA_SR_DATA);
12461 outb(sr1 | 1<<5, VGA_SR_DATA);
12462 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12463 udelay(300);
12464
12465 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12466 POSTING_READ(vga_reg);
12467}
12468
f817586c
DV
12469void intel_modeset_init_hw(struct drm_device *dev)
12470{
a8f78b58
ED
12471 intel_prepare_ddi(dev);
12472
f8bf63fd
VS
12473 if (IS_VALLEYVIEW(dev))
12474 vlv_update_cdclk(dev);
12475
f817586c
DV
12476 intel_init_clock_gating(dev);
12477
5382f5f3 12478 intel_reset_dpio(dev);
40e9cf64 12479
8090c6b9 12480 intel_enable_gt_powersave(dev);
f817586c
DV
12481}
12482
7d708ee4
ID
12483void intel_modeset_suspend_hw(struct drm_device *dev)
12484{
12485 intel_suspend_hw(dev);
12486}
12487
79e53945
JB
12488void intel_modeset_init(struct drm_device *dev)
12489{
652c393a 12490 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12491 int sprite, ret;
8cc87b75 12492 enum pipe pipe;
46f297fb 12493 struct intel_crtc *crtc;
79e53945
JB
12494
12495 drm_mode_config_init(dev);
12496
12497 dev->mode_config.min_width = 0;
12498 dev->mode_config.min_height = 0;
12499
019d96cb
DA
12500 dev->mode_config.preferred_depth = 24;
12501 dev->mode_config.prefer_shadow = 1;
12502
e6ecefaa 12503 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12504
b690e96c
JB
12505 intel_init_quirks(dev);
12506
1fa61106
ED
12507 intel_init_pm(dev);
12508
e3c74757
BW
12509 if (INTEL_INFO(dev)->num_pipes == 0)
12510 return;
12511
e70236a8
JB
12512 intel_init_display(dev);
12513
a6c45cf0
CW
12514 if (IS_GEN2(dev)) {
12515 dev->mode_config.max_width = 2048;
12516 dev->mode_config.max_height = 2048;
12517 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12518 dev->mode_config.max_width = 4096;
12519 dev->mode_config.max_height = 4096;
79e53945 12520 } else {
a6c45cf0
CW
12521 dev->mode_config.max_width = 8192;
12522 dev->mode_config.max_height = 8192;
79e53945 12523 }
068be561
DL
12524
12525 if (IS_GEN2(dev)) {
12526 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12527 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12528 } else {
12529 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12530 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12531 }
12532
5d4545ae 12533 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12534
28c97730 12535 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12536 INTEL_INFO(dev)->num_pipes,
12537 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12538
8cc87b75
DL
12539 for_each_pipe(pipe) {
12540 intel_crtc_init(dev, pipe);
1fe47785
DL
12541 for_each_sprite(pipe, sprite) {
12542 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12543 if (ret)
06da8da2 12544 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12545 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12546 }
79e53945
JB
12547 }
12548
f42bb70d 12549 intel_init_dpio(dev);
5382f5f3 12550 intel_reset_dpio(dev);
f42bb70d 12551
e72f9fbf 12552 intel_shared_dpll_init(dev);
ee7b9f93 12553
9cce37f4
JB
12554 /* Just disable it once at startup */
12555 i915_disable_vga(dev);
79e53945 12556 intel_setup_outputs(dev);
11be49eb
CW
12557
12558 /* Just in case the BIOS is doing something questionable. */
12559 intel_disable_fbc(dev);
fa9fa083 12560
6e9f798d 12561 drm_modeset_lock_all(dev);
fa9fa083 12562 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12563 drm_modeset_unlock_all(dev);
46f297fb 12564
d3fcc808 12565 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12566 if (!crtc->active)
12567 continue;
12568
46f297fb 12569 /*
46f297fb
JB
12570 * Note that reserving the BIOS fb up front prevents us
12571 * from stuffing other stolen allocations like the ring
12572 * on top. This prevents some ugliness at boot time, and
12573 * can even allow for smooth boot transitions if the BIOS
12574 * fb is large enough for the active pipe configuration.
12575 */
12576 if (dev_priv->display.get_plane_config) {
12577 dev_priv->display.get_plane_config(crtc,
12578 &crtc->plane_config);
12579 /*
12580 * If the fb is shared between multiple heads, we'll
12581 * just get the first one.
12582 */
484b41dd 12583 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12584 }
46f297fb 12585 }
2c7111db
CW
12586}
12587
7fad798e
DV
12588static void intel_enable_pipe_a(struct drm_device *dev)
12589{
12590 struct intel_connector *connector;
12591 struct drm_connector *crt = NULL;
12592 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12593 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12594
12595 /* We can't just switch on the pipe A, we need to set things up with a
12596 * proper mode and output configuration. As a gross hack, enable pipe A
12597 * by enabling the load detect pipe once. */
12598 list_for_each_entry(connector,
12599 &dev->mode_config.connector_list,
12600 base.head) {
12601 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12602 crt = &connector->base;
12603 break;
12604 }
12605 }
12606
12607 if (!crt)
12608 return;
12609
51fd371b
RC
12610 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12611 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12612
652c393a 12613
7fad798e
DV
12614}
12615
fa555837
DV
12616static bool
12617intel_check_plane_mapping(struct intel_crtc *crtc)
12618{
7eb552ae
BW
12619 struct drm_device *dev = crtc->base.dev;
12620 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12621 u32 reg, val;
12622
7eb552ae 12623 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12624 return true;
12625
12626 reg = DSPCNTR(!crtc->plane);
12627 val = I915_READ(reg);
12628
12629 if ((val & DISPLAY_PLANE_ENABLE) &&
12630 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12631 return false;
12632
12633 return true;
12634}
12635
24929352
DV
12636static void intel_sanitize_crtc(struct intel_crtc *crtc)
12637{
12638 struct drm_device *dev = crtc->base.dev;
12639 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12640 u32 reg;
24929352 12641
24929352 12642 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12643 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12644 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12645
d3eaf884
VS
12646 /* restore vblank interrupts to correct state */
12647 if (crtc->active)
12648 drm_vblank_on(dev, crtc->pipe);
12649 else
12650 drm_vblank_off(dev, crtc->pipe);
12651
24929352 12652 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12653 * disable the crtc (and hence change the state) if it is wrong. Note
12654 * that gen4+ has a fixed plane -> pipe mapping. */
12655 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12656 struct intel_connector *connector;
12657 bool plane;
12658
24929352
DV
12659 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12660 crtc->base.base.id);
12661
12662 /* Pipe has the wrong plane attached and the plane is active.
12663 * Temporarily change the plane mapping and disable everything
12664 * ... */
12665 plane = crtc->plane;
12666 crtc->plane = !plane;
12667 dev_priv->display.crtc_disable(&crtc->base);
12668 crtc->plane = plane;
12669
12670 /* ... and break all links. */
12671 list_for_each_entry(connector, &dev->mode_config.connector_list,
12672 base.head) {
12673 if (connector->encoder->base.crtc != &crtc->base)
12674 continue;
12675
7f1950fb
EE
12676 connector->base.dpms = DRM_MODE_DPMS_OFF;
12677 connector->base.encoder = NULL;
24929352 12678 }
7f1950fb
EE
12679 /* multiple connectors may have the same encoder:
12680 * handle them and break crtc link separately */
12681 list_for_each_entry(connector, &dev->mode_config.connector_list,
12682 base.head)
12683 if (connector->encoder->base.crtc == &crtc->base) {
12684 connector->encoder->base.crtc = NULL;
12685 connector->encoder->connectors_active = false;
12686 }
24929352
DV
12687
12688 WARN_ON(crtc->active);
12689 crtc->base.enabled = false;
12690 }
24929352 12691
7fad798e
DV
12692 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12693 crtc->pipe == PIPE_A && !crtc->active) {
12694 /* BIOS forgot to enable pipe A, this mostly happens after
12695 * resume. Force-enable the pipe to fix this, the update_dpms
12696 * call below we restore the pipe to the right state, but leave
12697 * the required bits on. */
12698 intel_enable_pipe_a(dev);
12699 }
12700
24929352
DV
12701 /* Adjust the state of the output pipe according to whether we
12702 * have active connectors/encoders. */
12703 intel_crtc_update_dpms(&crtc->base);
12704
12705 if (crtc->active != crtc->base.enabled) {
12706 struct intel_encoder *encoder;
12707
12708 /* This can happen either due to bugs in the get_hw_state
12709 * functions or because the pipe is force-enabled due to the
12710 * pipe A quirk. */
12711 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12712 crtc->base.base.id,
12713 crtc->base.enabled ? "enabled" : "disabled",
12714 crtc->active ? "enabled" : "disabled");
12715
12716 crtc->base.enabled = crtc->active;
12717
12718 /* Because we only establish the connector -> encoder ->
12719 * crtc links if something is active, this means the
12720 * crtc is now deactivated. Break the links. connector
12721 * -> encoder links are only establish when things are
12722 * actually up, hence no need to break them. */
12723 WARN_ON(crtc->active);
12724
12725 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12726 WARN_ON(encoder->connectors_active);
12727 encoder->base.crtc = NULL;
12728 }
12729 }
c5ab3bc0
DV
12730
12731 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12732 /*
12733 * We start out with underrun reporting disabled to avoid races.
12734 * For correct bookkeeping mark this on active crtcs.
12735 *
c5ab3bc0
DV
12736 * Also on gmch platforms we dont have any hardware bits to
12737 * disable the underrun reporting. Which means we need to start
12738 * out with underrun reporting disabled also on inactive pipes,
12739 * since otherwise we'll complain about the garbage we read when
12740 * e.g. coming up after runtime pm.
12741 *
4cc31489
DV
12742 * No protection against concurrent access is required - at
12743 * worst a fifo underrun happens which also sets this to false.
12744 */
12745 crtc->cpu_fifo_underrun_disabled = true;
12746 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12747
12748 update_scanline_offset(crtc);
4cc31489 12749 }
24929352
DV
12750}
12751
12752static void intel_sanitize_encoder(struct intel_encoder *encoder)
12753{
12754 struct intel_connector *connector;
12755 struct drm_device *dev = encoder->base.dev;
12756
12757 /* We need to check both for a crtc link (meaning that the
12758 * encoder is active and trying to read from a pipe) and the
12759 * pipe itself being active. */
12760 bool has_active_crtc = encoder->base.crtc &&
12761 to_intel_crtc(encoder->base.crtc)->active;
12762
12763 if (encoder->connectors_active && !has_active_crtc) {
12764 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12765 encoder->base.base.id,
8e329a03 12766 encoder->base.name);
24929352
DV
12767
12768 /* Connector is active, but has no active pipe. This is
12769 * fallout from our resume register restoring. Disable
12770 * the encoder manually again. */
12771 if (encoder->base.crtc) {
12772 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12773 encoder->base.base.id,
8e329a03 12774 encoder->base.name);
24929352
DV
12775 encoder->disable(encoder);
12776 }
7f1950fb
EE
12777 encoder->base.crtc = NULL;
12778 encoder->connectors_active = false;
24929352
DV
12779
12780 /* Inconsistent output/port/pipe state happens presumably due to
12781 * a bug in one of the get_hw_state functions. Or someplace else
12782 * in our code, like the register restore mess on resume. Clamp
12783 * things to off as a safer default. */
12784 list_for_each_entry(connector,
12785 &dev->mode_config.connector_list,
12786 base.head) {
12787 if (connector->encoder != encoder)
12788 continue;
7f1950fb
EE
12789 connector->base.dpms = DRM_MODE_DPMS_OFF;
12790 connector->base.encoder = NULL;
24929352
DV
12791 }
12792 }
12793 /* Enabled encoders without active connectors will be fixed in
12794 * the crtc fixup. */
12795}
12796
04098753 12797void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12798{
12799 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12800 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12801
04098753
ID
12802 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12803 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12804 i915_disable_vga(dev);
12805 }
12806}
12807
12808void i915_redisable_vga(struct drm_device *dev)
12809{
12810 struct drm_i915_private *dev_priv = dev->dev_private;
12811
8dc8a27c
PZ
12812 /* This function can be called both from intel_modeset_setup_hw_state or
12813 * at a very early point in our resume sequence, where the power well
12814 * structures are not yet restored. Since this function is at a very
12815 * paranoid "someone might have enabled VGA while we were not looking"
12816 * level, just check if the power well is enabled instead of trying to
12817 * follow the "don't touch the power well if we don't need it" policy
12818 * the rest of the driver uses. */
04098753 12819 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12820 return;
12821
04098753 12822 i915_redisable_vga_power_on(dev);
0fde901f
KM
12823}
12824
98ec7739
VS
12825static bool primary_get_hw_state(struct intel_crtc *crtc)
12826{
12827 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12828
12829 if (!crtc->active)
12830 return false;
12831
12832 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12833}
12834
30e984df 12835static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12836{
12837 struct drm_i915_private *dev_priv = dev->dev_private;
12838 enum pipe pipe;
24929352
DV
12839 struct intel_crtc *crtc;
12840 struct intel_encoder *encoder;
12841 struct intel_connector *connector;
5358901f 12842 int i;
24929352 12843
d3fcc808 12844 for_each_intel_crtc(dev, crtc) {
88adfff1 12845 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12846
9953599b
DV
12847 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12848
0e8ffe1b
DV
12849 crtc->active = dev_priv->display.get_pipe_config(crtc,
12850 &crtc->config);
24929352
DV
12851
12852 crtc->base.enabled = crtc->active;
98ec7739 12853 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12854
12855 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12856 crtc->base.base.id,
12857 crtc->active ? "enabled" : "disabled");
12858 }
12859
5358901f 12860 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12861 if (HAS_DDI(dev))
6441ab5f
PZ
12862 intel_ddi_setup_hw_pll_state(dev);
12863
5358901f
DV
12864 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12865 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12866
12867 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12868 pll->active = 0;
d3fcc808 12869 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12870 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12871 pll->active++;
12872 }
12873 pll->refcount = pll->active;
12874
35c95375
DV
12875 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12876 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12877
12878 if (pll->refcount)
12879 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12880 }
12881
24929352
DV
12882 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12883 base.head) {
12884 pipe = 0;
12885
12886 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12887 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12888 encoder->base.crtc = &crtc->base;
1d37b689 12889 encoder->get_config(encoder, &crtc->config);
24929352
DV
12890 } else {
12891 encoder->base.crtc = NULL;
12892 }
12893
12894 encoder->connectors_active = false;
6f2bcceb 12895 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12896 encoder->base.base.id,
8e329a03 12897 encoder->base.name,
24929352 12898 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12899 pipe_name(pipe));
24929352
DV
12900 }
12901
12902 list_for_each_entry(connector, &dev->mode_config.connector_list,
12903 base.head) {
12904 if (connector->get_hw_state(connector)) {
12905 connector->base.dpms = DRM_MODE_DPMS_ON;
12906 connector->encoder->connectors_active = true;
12907 connector->base.encoder = &connector->encoder->base;
12908 } else {
12909 connector->base.dpms = DRM_MODE_DPMS_OFF;
12910 connector->base.encoder = NULL;
12911 }
12912 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12913 connector->base.base.id,
c23cc417 12914 connector->base.name,
24929352
DV
12915 connector->base.encoder ? "enabled" : "disabled");
12916 }
30e984df
DV
12917}
12918
12919/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12920 * and i915 state tracking structures. */
12921void intel_modeset_setup_hw_state(struct drm_device *dev,
12922 bool force_restore)
12923{
12924 struct drm_i915_private *dev_priv = dev->dev_private;
12925 enum pipe pipe;
30e984df
DV
12926 struct intel_crtc *crtc;
12927 struct intel_encoder *encoder;
35c95375 12928 int i;
30e984df
DV
12929
12930 intel_modeset_readout_hw_state(dev);
24929352 12931
babea61d
JB
12932 /*
12933 * Now that we have the config, copy it to each CRTC struct
12934 * Note that this could go away if we move to using crtc_config
12935 * checking everywhere.
12936 */
d3fcc808 12937 for_each_intel_crtc(dev, crtc) {
d330a953 12938 if (crtc->active && i915.fastboot) {
f6a83288 12939 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12940 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12941 crtc->base.base.id);
12942 drm_mode_debug_printmodeline(&crtc->base.mode);
12943 }
12944 }
12945
24929352
DV
12946 /* HW state is read out, now we need to sanitize this mess. */
12947 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12948 base.head) {
12949 intel_sanitize_encoder(encoder);
12950 }
12951
12952 for_each_pipe(pipe) {
12953 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12954 intel_sanitize_crtc(crtc);
c0b03411 12955 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12956 }
9a935856 12957
35c95375
DV
12958 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12959 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12960
12961 if (!pll->on || pll->active)
12962 continue;
12963
12964 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12965
12966 pll->disable(dev_priv, pll);
12967 pll->on = false;
12968 }
12969
96f90c54 12970 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12971 ilk_wm_get_hw_state(dev);
12972
45e2b5f6 12973 if (force_restore) {
7d0bc1ea
VS
12974 i915_redisable_vga(dev);
12975
f30da187
DV
12976 /*
12977 * We need to use raw interfaces for restoring state to avoid
12978 * checking (bogus) intermediate states.
12979 */
45e2b5f6 12980 for_each_pipe(pipe) {
b5644d05
JB
12981 struct drm_crtc *crtc =
12982 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12983
12984 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12985 crtc->primary->fb);
45e2b5f6
DV
12986 }
12987 } else {
12988 intel_modeset_update_staged_output_state(dev);
12989 }
8af6cf88
DV
12990
12991 intel_modeset_check_state(dev);
2c7111db
CW
12992}
12993
12994void intel_modeset_gem_init(struct drm_device *dev)
12995{
484b41dd 12996 struct drm_crtc *c;
2ff8fde1 12997 struct drm_i915_gem_object *obj;
484b41dd 12998
ae48434c
ID
12999 mutex_lock(&dev->struct_mutex);
13000 intel_init_gt_powersave(dev);
13001 mutex_unlock(&dev->struct_mutex);
13002
1833b134 13003 intel_modeset_init_hw(dev);
02e792fb
DV
13004
13005 intel_setup_overlay(dev);
484b41dd
JB
13006
13007 /*
13008 * Make sure any fbs we allocated at startup are properly
13009 * pinned & fenced. When we do the allocation it's too early
13010 * for this.
13011 */
13012 mutex_lock(&dev->struct_mutex);
70e1e0ec 13013 for_each_crtc(dev, c) {
2ff8fde1
MR
13014 obj = intel_fb_obj(c->primary->fb);
13015 if (obj == NULL)
484b41dd
JB
13016 continue;
13017
2ff8fde1 13018 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13019 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13020 to_intel_crtc(c)->pipe);
66e514c1
DA
13021 drm_framebuffer_unreference(c->primary->fb);
13022 c->primary->fb = NULL;
484b41dd
JB
13023 }
13024 }
13025 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13026}
13027
4932e2c3
ID
13028void intel_connector_unregister(struct intel_connector *intel_connector)
13029{
13030 struct drm_connector *connector = &intel_connector->base;
13031
13032 intel_panel_destroy_backlight(connector);
13033 drm_sysfs_connector_remove(connector);
13034}
13035
79e53945
JB
13036void intel_modeset_cleanup(struct drm_device *dev)
13037{
652c393a 13038 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13039 struct drm_connector *connector;
652c393a 13040
fd0c0642
DV
13041 /*
13042 * Interrupts and polling as the first thing to avoid creating havoc.
13043 * Too much stuff here (turning of rps, connectors, ...) would
13044 * experience fancy races otherwise.
13045 */
13046 drm_irq_uninstall(dev);
13047 cancel_work_sync(&dev_priv->hotplug_work);
13048 /*
13049 * Due to the hpd irq storm handling the hotplug work can re-arm the
13050 * poll handlers. Hence disable polling after hpd handling is shut down.
13051 */
f87ea761 13052 drm_kms_helper_poll_fini(dev);
fd0c0642 13053
652c393a
JB
13054 mutex_lock(&dev->struct_mutex);
13055
723bfd70
JB
13056 intel_unregister_dsm_handler();
13057
973d04f9 13058 intel_disable_fbc(dev);
e70236a8 13059
8090c6b9 13060 intel_disable_gt_powersave(dev);
0cdab21f 13061
930ebb46
DV
13062 ironlake_teardown_rc6(dev);
13063
69341a5e
KH
13064 mutex_unlock(&dev->struct_mutex);
13065
1630fe75
CW
13066 /* flush any delayed tasks or pending work */
13067 flush_scheduled_work();
13068
db31af1d
JN
13069 /* destroy the backlight and sysfs files before encoders/connectors */
13070 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13071 struct intel_connector *intel_connector;
13072
13073 intel_connector = to_intel_connector(connector);
13074 intel_connector->unregister(intel_connector);
db31af1d 13075 }
d9255d57 13076
79e53945 13077 drm_mode_config_cleanup(dev);
4d7bb011
DV
13078
13079 intel_cleanup_overlay(dev);
ae48434c
ID
13080
13081 mutex_lock(&dev->struct_mutex);
13082 intel_cleanup_gt_powersave(dev);
13083 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13084}
13085
f1c79df3
ZW
13086/*
13087 * Return which encoder is currently attached for connector.
13088 */
df0e9248 13089struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13090{
df0e9248
CW
13091 return &intel_attached_encoder(connector)->base;
13092}
f1c79df3 13093
df0e9248
CW
13094void intel_connector_attach_encoder(struct intel_connector *connector,
13095 struct intel_encoder *encoder)
13096{
13097 connector->encoder = encoder;
13098 drm_mode_connector_attach_encoder(&connector->base,
13099 &encoder->base);
79e53945 13100}
28d52043
DA
13101
13102/*
13103 * set vga decode state - true == enable VGA decode
13104 */
13105int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13106{
13107 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13108 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13109 u16 gmch_ctrl;
13110
75fa041d
CW
13111 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13112 DRM_ERROR("failed to read control word\n");
13113 return -EIO;
13114 }
13115
c0cc8a55
CW
13116 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13117 return 0;
13118
28d52043
DA
13119 if (state)
13120 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13121 else
13122 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13123
13124 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13125 DRM_ERROR("failed to write control word\n");
13126 return -EIO;
13127 }
13128
28d52043
DA
13129 return 0;
13130}
c4a1d9e4 13131
c4a1d9e4 13132struct intel_display_error_state {
ff57f1b0
PZ
13133
13134 u32 power_well_driver;
13135
63b66e5b
CW
13136 int num_transcoders;
13137
c4a1d9e4
CW
13138 struct intel_cursor_error_state {
13139 u32 control;
13140 u32 position;
13141 u32 base;
13142 u32 size;
52331309 13143 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13144
13145 struct intel_pipe_error_state {
ddf9c536 13146 bool power_domain_on;
c4a1d9e4 13147 u32 source;
f301b1e1 13148 u32 stat;
52331309 13149 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13150
13151 struct intel_plane_error_state {
13152 u32 control;
13153 u32 stride;
13154 u32 size;
13155 u32 pos;
13156 u32 addr;
13157 u32 surface;
13158 u32 tile_offset;
52331309 13159 } plane[I915_MAX_PIPES];
63b66e5b
CW
13160
13161 struct intel_transcoder_error_state {
ddf9c536 13162 bool power_domain_on;
63b66e5b
CW
13163 enum transcoder cpu_transcoder;
13164
13165 u32 conf;
13166
13167 u32 htotal;
13168 u32 hblank;
13169 u32 hsync;
13170 u32 vtotal;
13171 u32 vblank;
13172 u32 vsync;
13173 } transcoder[4];
c4a1d9e4
CW
13174};
13175
13176struct intel_display_error_state *
13177intel_display_capture_error_state(struct drm_device *dev)
13178{
fbee40df 13179 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13180 struct intel_display_error_state *error;
63b66e5b
CW
13181 int transcoders[] = {
13182 TRANSCODER_A,
13183 TRANSCODER_B,
13184 TRANSCODER_C,
13185 TRANSCODER_EDP,
13186 };
c4a1d9e4
CW
13187 int i;
13188
63b66e5b
CW
13189 if (INTEL_INFO(dev)->num_pipes == 0)
13190 return NULL;
13191
9d1cb914 13192 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13193 if (error == NULL)
13194 return NULL;
13195
190be112 13196 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13197 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13198
52331309 13199 for_each_pipe(i) {
ddf9c536 13200 error->pipe[i].power_domain_on =
bfafe93a
ID
13201 intel_display_power_enabled_unlocked(dev_priv,
13202 POWER_DOMAIN_PIPE(i));
ddf9c536 13203 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13204 continue;
13205
5efb3e28
VS
13206 error->cursor[i].control = I915_READ(CURCNTR(i));
13207 error->cursor[i].position = I915_READ(CURPOS(i));
13208 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13209
13210 error->plane[i].control = I915_READ(DSPCNTR(i));
13211 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13212 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13213 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13214 error->plane[i].pos = I915_READ(DSPPOS(i));
13215 }
ca291363
PZ
13216 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13217 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13218 if (INTEL_INFO(dev)->gen >= 4) {
13219 error->plane[i].surface = I915_READ(DSPSURF(i));
13220 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13221 }
13222
c4a1d9e4 13223 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13224
13225 if (!HAS_PCH_SPLIT(dev))
13226 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13227 }
13228
13229 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13230 if (HAS_DDI(dev_priv->dev))
13231 error->num_transcoders++; /* Account for eDP. */
13232
13233 for (i = 0; i < error->num_transcoders; i++) {
13234 enum transcoder cpu_transcoder = transcoders[i];
13235
ddf9c536 13236 error->transcoder[i].power_domain_on =
bfafe93a 13237 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13238 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13239 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13240 continue;
13241
63b66e5b
CW
13242 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13243
13244 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13245 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13246 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13247 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13248 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13249 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13250 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13251 }
13252
13253 return error;
13254}
13255
edc3d884
MK
13256#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13257
c4a1d9e4 13258void
edc3d884 13259intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13260 struct drm_device *dev,
13261 struct intel_display_error_state *error)
13262{
13263 int i;
13264
63b66e5b
CW
13265 if (!error)
13266 return;
13267
edc3d884 13268 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13269 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13270 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13271 error->power_well_driver);
52331309 13272 for_each_pipe(i) {
edc3d884 13273 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13274 err_printf(m, " Power: %s\n",
13275 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13276 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13277 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13278
13279 err_printf(m, "Plane [%d]:\n", i);
13280 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13281 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13282 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13283 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13284 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13285 }
4b71a570 13286 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13287 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13288 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13289 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13290 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13291 }
13292
edc3d884
MK
13293 err_printf(m, "Cursor [%d]:\n", i);
13294 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13295 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13296 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13297 }
63b66e5b
CW
13298
13299 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13300 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13301 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13302 err_printf(m, " Power: %s\n",
13303 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13304 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13305 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13306 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13307 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13308 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13309 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13310 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13311 }
c4a1d9e4 13312}