]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Leave DPLL ref clocks on
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414{
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
1b894b59
CW
425static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
2c07245f 427{
b91ad0ec 428 struct drm_device *dev = crtc->dev;
2c07245f 429 const intel_limit_t *limit;
b91ad0ec
ZW
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 432 if (intel_is_dual_link_lvds(dev)) {
1b894b59 433 if (refclk == 100000)
b91ad0ec
ZW
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
1b894b59 438 if (refclk == 100000)
b91ad0ec
ZW
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
c6bb3538 443 } else
b91ad0ec 444 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
445
446 return limit;
447}
448
044c7c41
ML
449static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450{
451 struct drm_device *dev = crtc->dev;
044c7c41
ML
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 455 if (intel_is_dual_link_lvds(dev))
e4b36699 456 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 457 else
e4b36699 458 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 461 limit = &intel_limits_g4x_hdmi;
044c7c41 462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 463 limit = &intel_limits_g4x_sdvo;
044c7c41 464 } else /* The option is for other outputs */
e4b36699 465 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
466
467 return limit;
468}
469
1b894b59 470static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
471{
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
bad720ff 475 if (HAS_PCH_SPLIT(dev))
1b894b59 476 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 477 else if (IS_G4X(dev)) {
044c7c41 478 limit = intel_g4x_limit(crtc);
f2b115e6 479 } else if (IS_PINEVIEW(dev)) {
2177832f 480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 481 limit = &intel_limits_pineview_lvds;
2177832f 482 else
f2b115e6 483 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
a0c4da24 486 } else if (IS_VALLEYVIEW(dev)) {
dc730512 487 limit = &intel_limits_vlv;
a6c45cf0
CW
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 495 limit = &intel_limits_i8xx_lvds;
5d536e28 496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 497 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
498 else
499 limit = &intel_limits_i8xx_dac;
79e53945
JB
500 }
501 return limit;
502}
503
f2b115e6
AJ
504/* m1 is reserved as 0 in Pineview, n is a ring counter */
505static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 506{
2177832f
SL
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
fb03ac01
VS
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
513}
514
7429e9d4
DV
515static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516{
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518}
519
ac58c3f0 520static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 521{
7429e9d4 522 clock->m = i9xx_dpll_compute_m(clock);
79e53945 523 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
fb03ac01
VS
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
528}
529
ef9348c8
CML
530static void chv_clock(int refclk, intel_clock_t *clock)
531{
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539}
540
7c04d1d9 541#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
542/**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
1b894b59
CW
547static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
79e53945 550{
f01b7962
VS
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
79e53945 553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 554 INTELPllInvalid("p1 out of range\n");
79e53945 555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 556 INTELPllInvalid("m2 out of range\n");
79e53945 557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 558 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
79e53945 571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 572 INTELPllInvalid("vco out of range\n");
79e53945
JB
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 577 INTELPllInvalid("dot out of range\n");
79e53945
JB
578
579 return true;
580}
581
d4906093 582static bool
ee9300bb 583i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
79e53945
JB
586{
587 struct drm_device *dev = crtc->dev;
79e53945 588 intel_clock_t clock;
79e53945
JB
589 int err = target;
590
a210b028 591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 592 /*
a210b028
DV
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
79e53945 596 */
1974cad0 597 if (intel_is_dual_link_lvds(dev))
79e53945
JB
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
0206e353 608 memset(best_clock, 0, sizeof(*best_clock));
79e53945 609
42158660
ZY
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 614 if (clock.m2 >= clock.m1)
42158660
ZY
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
620 int this_err;
621
ac58c3f0
DV
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641}
642
643static bool
ee9300bb
DV
644pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
79e53945
JB
647{
648 struct drm_device *dev = crtc->dev;
79e53945 649 intel_clock_t clock;
79e53945
JB
650 int err = target;
651
a210b028 652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 653 /*
a210b028
DV
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
79e53945 657 */
1974cad0 658 if (intel_is_dual_link_lvds(dev))
79e53945
JB
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
0206e353 669 memset(best_clock, 0, sizeof(*best_clock));
79e53945 670
42158660
ZY
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
679 int this_err;
680
ac58c3f0 681 pineview_clock(refclk, &clock);
1b894b59
CW
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
79e53945 684 continue;
cec2f356
SP
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
79e53945
JB
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700}
701
d4906093 702static bool
ee9300bb
DV
703g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
d4906093
ML
706{
707 struct drm_device *dev = crtc->dev;
d4906093
ML
708 intel_clock_t clock;
709 int max_n;
710 bool found;
6ba770dc
AJ
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 716 if (intel_is_dual_link_lvds(dev))
d4906093
ML
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
f77f13e2 729 /* based on hardware requirement, prefer smaller n to precision */
d4906093 730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 731 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
ac58c3f0 740 i9xx_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
d4906093 743 continue;
1b894b59
CW
744
745 this_err = abs(clock.dot - target);
d4906093
ML
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
2c07245f
ZW
756 return found;
757}
758
a0c4da24 759static bool
ee9300bb
DV
760vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
a0c4da24 763{
f01b7962 764 struct drm_device *dev = crtc->dev;
6b4bf1c4 765 intel_clock_t clock;
69e4f900 766 unsigned int bestppm = 1000000;
27e639bf
VS
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 769 bool found = false;
a0c4da24 770
6b4bf1c4
VS
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
774
775 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 780 clock.p = clock.p1 * clock.p2;
a0c4da24 781 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
783 unsigned int ppm, diff;
784
6b4bf1c4
VS
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
43b0ac53 789
f01b7962
VS
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
43b0ac53
VS
792 continue;
793
6b4bf1c4
VS
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 798 bestppm = 0;
6b4bf1c4 799 *best_clock = clock;
49e497ef 800 found = true;
43b0ac53 801 }
6b4bf1c4 802
c686122c 803 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 804 bestppm = ppm;
6b4bf1c4 805 *best_clock = clock;
49e497ef 806 found = true;
a0c4da24
JB
807 }
808 }
809 }
810 }
811 }
a0c4da24 812
49e497ef 813 return found;
a0c4da24 814}
a4fc5ed6 815
ef9348c8
CML
816static bool
817chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866}
867
20ddf665
VS
868bool intel_crtc_active(struct drm_crtc *crtc)
869{
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
241bfc38 875 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
876 * as Haswell has gained clock readout/fastboot support.
877 *
66e514c1 878 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
879 * properly reconstruct framebuffers.
880 */
f4510a27 881 return intel_crtc->active && crtc->primary->fb &&
241bfc38 882 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
883}
884
a5c961d1
PZ
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
3b117c8f 891 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
892}
893
57e22f4a 894static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 902 WARN(1, "vblank wait timed out\n");
a928d536
PZ
903}
904
9d0498a2
JB
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 914{
9d0498a2 915 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 916 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 917
57e22f4a
VS
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
920 return;
921 }
922
300387c0
CW
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
9d0498a2 939 /* Wait for vblank interrupt bit to set */
481b6af3
CW
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
9d0498a2
JB
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
fbf49ea2
VS
946static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947{
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963}
964
ab7ad7f6
KP
965/*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
ab7ad7f6
KP
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
58e10eb9 980 *
9d0498a2 981 */
58e10eb9 982void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
983{
984 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
ab7ad7f6
KP
987
988 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 989 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
990
991 /* Wait for the Pipe State to go off */
58e10eb9
CW
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
284637d9 994 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 995 } else {
ab7ad7f6 996 /* Wait for the display line to settle */
fbf49ea2 997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 998 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 999 }
79e53945
JB
1000}
1001
b0ea7d37
DL
1002/*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011{
1012 u32 bit;
1013
c36346e3 1014 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1015 switch (port->port) {
c36346e3
DL
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
eba905b2 1029 switch (port->port) {
c36346e3
DL
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
b0ea7d37
DL
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045}
1046
b24e7179
JB
1047static const char *state_string(bool enabled)
1048{
1049 return enabled ? "on" : "off";
1050}
1051
1052/* Only for pre-ILK configs */
55607e8a
DV
1053void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
b24e7179
JB
1055{
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066}
b24e7179 1067
23538ef1
JN
1068/* XXX: the dsi pll is shared between MIPI DSI ports */
1069static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070{
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082}
1083#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
55607e8a 1086struct intel_shared_dpll *
e2b78267
DV
1087intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088{
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
a43f6e0f 1091 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1092 return NULL;
1093
a43f6e0f 1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1095}
1096
040484af 1097/* For ILK+ */
55607e8a
DV
1098void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
040484af 1101{
040484af 1102 bool cur_state;
5358901f 1103 struct intel_dpll_hw_state hw_state;
040484af 1104
92b27b08 1105 if (WARN (!pll,
46edb027 1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1107 return;
ee7b9f93 1108
5358901f 1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1110 WARN(cur_state != state,
5358901f
DV
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
040484af 1113}
040484af
JB
1114
1115static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117{
1118 int reg;
1119 u32 val;
1120 bool cur_state;
ad80a810
PZ
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
040484af 1123
affa9354
PZ
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
ad80a810 1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1127 val = I915_READ(reg);
ad80a810 1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
040484af
JB
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137}
1138#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143{
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
d63fa0dc
PZ
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154}
1155#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160{
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
3d13ef2e 1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1166 return;
1167
bf507ef7 1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1169 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1170 return;
1171
040484af
JB
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af
JB
1179{
1180 int reg;
1181 u32 val;
55607e8a 1182 bool cur_state;
040484af
JB
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
55607e8a
DV
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
040484af
JB
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
93ce0ba6
JN
1221static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223{
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
d9d82081 1227 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1229 else
5efb3e28 1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235}
1236#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
b840d907
JB
1239void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
b24e7179
JB
1241{
1242 int reg;
1243 u32 val;
63d7bbe9 1244 bool cur_state;
702e7a56
PZ
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
b24e7179 1247
8e636784
DV
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
da7e29bd 1252 if (!intel_display_power_enabled(dev_priv,
b97186f0 1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
63d7bbe9
JB
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1263 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1264}
1265
931872fc
CW
1266static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
b24e7179
JB
1268{
1269 int reg;
1270 u32 val;
931872fc 1271 bool cur_state;
b24e7179
JB
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
931872fc
CW
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1279}
1280
931872fc
CW
1281#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
b24e7179
JB
1284static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286{
653e1026 1287 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
653e1026
VS
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
83f26f16 1296 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
19ec1358 1299 return;
28c05794 1300 }
19ec1358 1301
b24e7179 1302 /* Need to check both planes against the pipe */
08e2a7de 1303 for_each_pipe(i) {
b24e7179
JB
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
b24e7179
JB
1311 }
1312}
1313
19332d7a
JB
1314static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316{
20674eef 1317 struct drm_device *dev = dev_priv->dev;
1fe47785 1318 int reg, sprite;
19332d7a
JB
1319 u32 val;
1320
20674eef 1321 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
20674eef 1324 val = I915_READ(reg);
83f26f16 1325 WARN(val & SP_ENABLE,
20674eef 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1327 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
19332d7a 1331 val = I915_READ(reg);
83f26f16 1332 WARN(val & SPRITE_ENABLE,
06da8da2 1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
19332d7a 1337 val = I915_READ(reg);
83f26f16 1338 WARN(val & DVS_ENABLE,
06da8da2 1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1340 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1341 }
1342}
1343
89eff4be 1344static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1345{
1346 u32 val;
1347 bool enabled;
1348
89eff4be 1349 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1350
92f2584a
JB
1351 val = I915_READ(PCH_DREF_CONTROL);
1352 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353 DREF_SUPERSPREAD_SOURCE_MASK));
1354 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355}
1356
ab9412ba
DV
1357static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358 enum pipe pipe)
92f2584a
JB
1359{
1360 int reg;
1361 u32 val;
1362 bool enabled;
1363
ab9412ba 1364 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1365 val = I915_READ(reg);
1366 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1367 WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
92f2584a
JB
1370}
1371
4e634389
KP
1372static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1374{
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv->dev)) {
1379 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382 return false;
44f37d1f
CML
1383 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385 return false;
f0575e92
KP
1386 } else {
1387 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388 return false;
1389 }
1390 return true;
1391}
1392
1519b995
KP
1393static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394 enum pipe pipe, u32 val)
1395{
dc0fa718 1396 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1397 return false;
1398
1399 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1401 return false;
44f37d1f
CML
1402 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404 return false;
1519b995 1405 } else {
dc0fa718 1406 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1407 return false;
1408 }
1409 return true;
1410}
1411
1412static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe, u32 val)
1414{
1415 if ((val & LVDS_PORT_EN) == 0)
1416 return false;
1417
1418 if (HAS_PCH_CPT(dev_priv->dev)) {
1419 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420 return false;
1421 } else {
1422 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423 return false;
1424 }
1425 return true;
1426}
1427
1428static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430{
1431 if ((val & ADPA_DAC_ENABLE) == 0)
1432 return false;
1433 if (HAS_PCH_CPT(dev_priv->dev)) {
1434 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435 return false;
1436 } else {
1437 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438 return false;
1439 }
1440 return true;
1441}
1442
291906f1 1443static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1444 enum pipe pipe, int reg, u32 port_sel)
291906f1 1445{
47a05eca 1446 u32 val = I915_READ(reg);
4e634389 1447 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1449 reg, pipe_name(pipe));
de9a35ab 1450
75c5da27
DV
1451 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
de9a35ab 1453 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1454}
1455
1456static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, int reg)
1458{
47a05eca 1459 u32 val = I915_READ(reg);
b70ad586 1460 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1462 reg, pipe_name(pipe));
de9a35ab 1463
dc0fa718 1464 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1465 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1466 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1467}
1468
1469static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471{
1472 int reg;
1473 u32 val;
291906f1 1474
f0575e92
KP
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1478
1479 reg = PCH_ADPA;
1480 val = I915_READ(reg);
b70ad586 1481 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1
JB
1484
1485 reg = PCH_LVDS;
1486 val = I915_READ(reg);
b70ad586 1487 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1488 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1489 pipe_name(pipe));
291906f1 1490
e2debe91
PZ
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1494}
1495
40e9cf64
JB
1496static void intel_init_dpio(struct drm_device *dev)
1497{
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500 if (!IS_VALLEYVIEW(dev))
1501 return;
1502
a09caddd
CML
1503 /*
1504 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505 * CHV x1 PHY (DP/HDMI D)
1506 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507 */
1508 if (IS_CHERRYVIEW(dev)) {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511 } else {
1512 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513 }
5382f5f3
JB
1514}
1515
426115cf 1516static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1517{
426115cf
DV
1518 struct drm_device *dev = crtc->base.dev;
1519 struct drm_i915_private *dev_priv = dev->dev_private;
1520 int reg = DPLL(crtc->pipe);
1521 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1522
426115cf 1523 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1524
1525 /* No really, not for ILK+ */
1526 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1527
1528 /* PLL is protected by panel, make sure we can write it */
1529 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1530 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1531
426115cf
DV
1532 I915_WRITE(reg, dpll);
1533 POSTING_READ(reg);
1534 udelay(150);
1535
1536 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1537 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1538
1539 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1540 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1541
1542 /* We do this three times for luck */
426115cf 1543 I915_WRITE(reg, dpll);
87442f73
DV
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
426115cf 1546 I915_WRITE(reg, dpll);
87442f73
DV
1547 POSTING_READ(reg);
1548 udelay(150); /* wait for warmup */
426115cf 1549 I915_WRITE(reg, dpll);
87442f73
DV
1550 POSTING_READ(reg);
1551 udelay(150); /* wait for warmup */
1552}
1553
9d556c99
CML
1554static void chv_enable_pll(struct intel_crtc *crtc)
1555{
1556 struct drm_device *dev = crtc->base.dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 int pipe = crtc->pipe;
1559 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1560 u32 tmp;
1561
1562 assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1565
1566 mutex_lock(&dev_priv->dpio_lock);
1567
1568 /* Enable back the 10bit clock to display controller */
1569 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1570 tmp |= DPIO_DCLKP_EN;
1571 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1572
1573 /*
1574 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1575 */
1576 udelay(1);
1577
1578 /* Enable PLL */
a11b0703 1579 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1580
1581 /* Check PLL is locked */
a11b0703 1582 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1583 DRM_ERROR("PLL %d failed to lock\n", pipe);
1584
a11b0703
VS
1585 /* not sure when this should be written */
1586 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1587 POSTING_READ(DPLL_MD(pipe));
1588
9d556c99
CML
1589 mutex_unlock(&dev_priv->dpio_lock);
1590}
1591
66e3d5c0 1592static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1593{
66e3d5c0
DV
1594 struct drm_device *dev = crtc->base.dev;
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 int reg = DPLL(crtc->pipe);
1597 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1598
66e3d5c0 1599 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1600
63d7bbe9 1601 /* No really, not for ILK+ */
3d13ef2e 1602 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1603
1604 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1605 if (IS_MOBILE(dev) && !IS_I830(dev))
1606 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1607
66e3d5c0
DV
1608 I915_WRITE(reg, dpll);
1609
1610 /* Wait for the clocks to stabilize. */
1611 POSTING_READ(reg);
1612 udelay(150);
1613
1614 if (INTEL_INFO(dev)->gen >= 4) {
1615 I915_WRITE(DPLL_MD(crtc->pipe),
1616 crtc->config.dpll_hw_state.dpll_md);
1617 } else {
1618 /* The pixel multiplier can only be updated once the
1619 * DPLL is enabled and the clocks are stable.
1620 *
1621 * So write it again.
1622 */
1623 I915_WRITE(reg, dpll);
1624 }
63d7bbe9
JB
1625
1626 /* We do this three times for luck */
66e3d5c0 1627 I915_WRITE(reg, dpll);
63d7bbe9
JB
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
66e3d5c0 1630 I915_WRITE(reg, dpll);
63d7bbe9
JB
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
66e3d5c0 1633 I915_WRITE(reg, dpll);
63d7bbe9
JB
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636}
1637
1638/**
50b44a44 1639 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1640 * @dev_priv: i915 private structure
1641 * @pipe: pipe PLL to disable
1642 *
1643 * Disable the PLL for @pipe, making sure the pipe is off first.
1644 *
1645 * Note! This is for pre-ILK only.
1646 */
50b44a44 1647static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1648{
63d7bbe9
JB
1649 /* Don't disable pipe A or pipe A PLLs if needed */
1650 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1651 return;
1652
1653 /* Make sure the pipe isn't still relying on us */
1654 assert_pipe_disabled(dev_priv, pipe);
1655
50b44a44
DV
1656 I915_WRITE(DPLL(pipe), 0);
1657 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1658}
1659
f6071166
JB
1660static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1661{
1662 u32 val = 0;
1663
1664 /* Make sure the pipe isn't still relying on us */
1665 assert_pipe_disabled(dev_priv, pipe);
1666
e5cbfbfb
ID
1667 /*
1668 * Leave integrated clock source and reference clock enabled for pipe B.
1669 * The latter is needed for VGA hotplug / manual detection.
1670 */
f6071166 1671 if (pipe == PIPE_B)
e5cbfbfb 1672 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1673 I915_WRITE(DPLL(pipe), val);
1674 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1675
1676}
1677
1678static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1679{
d752048d 1680 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1681 u32 val;
1682
a11b0703
VS
1683 /* Make sure the pipe isn't still relying on us */
1684 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1685
a11b0703 1686 /* Set PLL en = 0 */
d17ec4ce 1687 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1688 if (pipe != PIPE_A)
1689 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1690 I915_WRITE(DPLL(pipe), val);
1691 POSTING_READ(DPLL(pipe));
d752048d
VS
1692
1693 mutex_lock(&dev_priv->dpio_lock);
1694
1695 /* Disable 10bit clock to display controller */
1696 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1697 val &= ~DPIO_DCLKP_EN;
1698 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1699
61407f6d
VS
1700 /* disable left/right clock distribution */
1701 if (pipe != PIPE_B) {
1702 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1703 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1704 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1705 } else {
1706 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1707 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1708 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1709 }
1710
d752048d 1711 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1712}
1713
e4607fcf
CML
1714void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1715 struct intel_digital_port *dport)
89b667f8
JB
1716{
1717 u32 port_mask;
00fc31b7 1718 int dpll_reg;
89b667f8 1719
e4607fcf
CML
1720 switch (dport->port) {
1721 case PORT_B:
89b667f8 1722 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1723 dpll_reg = DPLL(0);
e4607fcf
CML
1724 break;
1725 case PORT_C:
89b667f8 1726 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1727 dpll_reg = DPLL(0);
1728 break;
1729 case PORT_D:
1730 port_mask = DPLL_PORTD_READY_MASK;
1731 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1732 break;
1733 default:
1734 BUG();
1735 }
89b667f8 1736
00fc31b7 1737 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1738 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1739 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1740}
1741
b14b1055
DV
1742static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1743{
1744 struct drm_device *dev = crtc->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1747
be19f0ff
CW
1748 if (WARN_ON(pll == NULL))
1749 return;
1750
b14b1055
DV
1751 WARN_ON(!pll->refcount);
1752 if (pll->active == 0) {
1753 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1754 WARN_ON(pll->on);
1755 assert_shared_dpll_disabled(dev_priv, pll);
1756
1757 pll->mode_set(dev_priv, pll);
1758 }
1759}
1760
92f2584a 1761/**
85b3894f 1762 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1763 * @dev_priv: i915 private structure
1764 * @pipe: pipe PLL to enable
1765 *
1766 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1767 * drives the transcoder clock.
1768 */
85b3894f 1769static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1770{
3d13ef2e
DL
1771 struct drm_device *dev = crtc->base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1773 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1774
87a875bb 1775 if (WARN_ON(pll == NULL))
48da64a8
CW
1776 return;
1777
1778 if (WARN_ON(pll->refcount == 0))
1779 return;
ee7b9f93 1780
74dd6928 1781 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1782 pll->name, pll->active, pll->on,
e2b78267 1783 crtc->base.base.id);
92f2584a 1784
cdbd2316
DV
1785 if (pll->active++) {
1786 WARN_ON(!pll->on);
e9d6944e 1787 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1788 return;
1789 }
f4a091c7 1790 WARN_ON(pll->on);
ee7b9f93 1791
bd2bb1b9
PZ
1792 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1793
46edb027 1794 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1795 pll->enable(dev_priv, pll);
ee7b9f93 1796 pll->on = true;
92f2584a
JB
1797}
1798
716c2e55 1799void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1800{
3d13ef2e
DL
1801 struct drm_device *dev = crtc->base.dev;
1802 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1803 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1804
92f2584a 1805 /* PCH only available on ILK+ */
3d13ef2e 1806 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1807 if (WARN_ON(pll == NULL))
ee7b9f93 1808 return;
92f2584a 1809
48da64a8
CW
1810 if (WARN_ON(pll->refcount == 0))
1811 return;
7a419866 1812
46edb027
DV
1813 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1814 pll->name, pll->active, pll->on,
e2b78267 1815 crtc->base.base.id);
7a419866 1816
48da64a8 1817 if (WARN_ON(pll->active == 0)) {
e9d6944e 1818 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1819 return;
1820 }
1821
e9d6944e 1822 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1823 WARN_ON(!pll->on);
cdbd2316 1824 if (--pll->active)
7a419866 1825 return;
ee7b9f93 1826
46edb027 1827 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1828 pll->disable(dev_priv, pll);
ee7b9f93 1829 pll->on = false;
bd2bb1b9
PZ
1830
1831 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1832}
1833
b8a4f404
PZ
1834static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1835 enum pipe pipe)
040484af 1836{
23670b32 1837 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1838 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1840 uint32_t reg, val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
3d13ef2e 1843 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
e72f9fbf 1846 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1847 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, pipe);
1851 assert_fdi_rx_enabled(dev_priv, pipe);
1852
23670b32
DV
1853 if (HAS_PCH_CPT(dev)) {
1854 /* Workaround: Set the timing override bit before enabling the
1855 * pch transcoder. */
1856 reg = TRANS_CHICKEN2(pipe);
1857 val = I915_READ(reg);
1858 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1859 I915_WRITE(reg, val);
59c859d6 1860 }
23670b32 1861
ab9412ba 1862 reg = PCH_TRANSCONF(pipe);
040484af 1863 val = I915_READ(reg);
5f7f726d 1864 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1865
1866 if (HAS_PCH_IBX(dev_priv->dev)) {
1867 /*
1868 * make the BPC in transcoder be consistent with
1869 * that in pipeconf reg.
1870 */
dfd07d72
DV
1871 val &= ~PIPECONF_BPC_MASK;
1872 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1873 }
5f7f726d
PZ
1874
1875 val &= ~TRANS_INTERLACE_MASK;
1876 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1877 if (HAS_PCH_IBX(dev_priv->dev) &&
1878 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1879 val |= TRANS_LEGACY_INTERLACED_ILK;
1880 else
1881 val |= TRANS_INTERLACED;
5f7f726d
PZ
1882 else
1883 val |= TRANS_PROGRESSIVE;
1884
040484af
JB
1885 I915_WRITE(reg, val | TRANS_ENABLE);
1886 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1887 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1888}
1889
8fb033d7 1890static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1891 enum transcoder cpu_transcoder)
040484af 1892{
8fb033d7 1893 u32 val, pipeconf_val;
8fb033d7
PZ
1894
1895 /* PCH only available on ILK+ */
3d13ef2e 1896 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1897
8fb033d7 1898 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1899 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1900 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1901
223a6fdf
PZ
1902 /* Workaround: set timing override bit. */
1903 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1904 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1905 I915_WRITE(_TRANSA_CHICKEN2, val);
1906
25f3ef11 1907 val = TRANS_ENABLE;
937bb610 1908 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1909
9a76b1c6
PZ
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1911 PIPECONF_INTERLACED_ILK)
a35f2679 1912 val |= TRANS_INTERLACED;
8fb033d7
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
ab9412ba
DV
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1918 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1919}
1920
b8a4f404
PZ
1921static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum pipe pipe)
040484af 1923{
23670b32
DV
1924 struct drm_device *dev = dev_priv->dev;
1925 uint32_t reg, val;
040484af
JB
1926
1927 /* FDI relies on the transcoder */
1928 assert_fdi_tx_disabled(dev_priv, pipe);
1929 assert_fdi_rx_disabled(dev_priv, pipe);
1930
291906f1
JB
1931 /* Ports must be off as well */
1932 assert_pch_ports_disabled(dev_priv, pipe);
1933
ab9412ba 1934 reg = PCH_TRANSCONF(pipe);
040484af
JB
1935 val = I915_READ(reg);
1936 val &= ~TRANS_ENABLE;
1937 I915_WRITE(reg, val);
1938 /* wait for PCH transcoder off, transcoder state */
1939 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1940 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1941
1942 if (!HAS_PCH_IBX(dev)) {
1943 /* Workaround: Clear the timing override chicken bit again. */
1944 reg = TRANS_CHICKEN2(pipe);
1945 val = I915_READ(reg);
1946 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947 I915_WRITE(reg, val);
1948 }
040484af
JB
1949}
1950
ab4d966c 1951static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1952{
8fb033d7
PZ
1953 u32 val;
1954
ab9412ba 1955 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1956 val &= ~TRANS_ENABLE;
ab9412ba 1957 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1958 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1959 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1960 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1961
1962 /* Workaround: clear timing override bit. */
1963 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1964 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1965 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1966}
1967
b24e7179 1968/**
309cfea8 1969 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1970 * @crtc: crtc responsible for the pipe
b24e7179 1971 *
0372264a 1972 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1973 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1974 */
e1fdc473 1975static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1976{
0372264a
PZ
1977 struct drm_device *dev = crtc->base.dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1980 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1981 pipe);
1a240d4d 1982 enum pipe pch_transcoder;
b24e7179
JB
1983 int reg;
1984 u32 val;
1985
58c6eaa2 1986 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1987 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1988 assert_sprites_disabled(dev_priv, pipe);
1989
681e5811 1990 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1991 pch_transcoder = TRANSCODER_A;
1992 else
1993 pch_transcoder = pipe;
1994
b24e7179
JB
1995 /*
1996 * A pipe without a PLL won't actually be able to drive bits from
1997 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1998 * need the check.
1999 */
2000 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2001 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2002 assert_dsi_pll_enabled(dev_priv);
2003 else
2004 assert_pll_enabled(dev_priv, pipe);
040484af 2005 else {
30421c4f 2006 if (crtc->config.has_pch_encoder) {
040484af 2007 /* if driving the PCH, we need FDI enabled */
cc391bbb 2008 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2009 assert_fdi_tx_pll_enabled(dev_priv,
2010 (enum pipe) cpu_transcoder);
040484af
JB
2011 }
2012 /* FIXME: assert CPU port conditions for SNB+ */
2013 }
b24e7179 2014
702e7a56 2015 reg = PIPECONF(cpu_transcoder);
b24e7179 2016 val = I915_READ(reg);
7ad25d48
PZ
2017 if (val & PIPECONF_ENABLE) {
2018 WARN_ON(!(pipe == PIPE_A &&
2019 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2020 return;
7ad25d48 2021 }
00d70b15
CW
2022
2023 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2024 POSTING_READ(reg);
b24e7179
JB
2025}
2026
2027/**
309cfea8 2028 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2029 * @dev_priv: i915 private structure
2030 * @pipe: pipe to disable
2031 *
2032 * Disable @pipe, making sure that various hardware specific requirements
2033 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2034 *
2035 * @pipe should be %PIPE_A or %PIPE_B.
2036 *
2037 * Will wait until the pipe has shut down before returning.
2038 */
2039static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2040 enum pipe pipe)
2041{
702e7a56
PZ
2042 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2043 pipe);
b24e7179
JB
2044 int reg;
2045 u32 val;
2046
2047 /*
2048 * Make sure planes won't keep trying to pump pixels to us,
2049 * or we might hang the display.
2050 */
2051 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2052 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2053 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2054
2055 /* Don't disable pipe A or pipe A PLLs if needed */
2056 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2057 return;
2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
00d70b15
CW
2061 if ((val & PIPECONF_ENABLE) == 0)
2062 return;
2063
2064 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2065 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2066}
2067
d74362c9
KP
2068/*
2069 * Plane regs are double buffered, going from enabled->disabled needs a
2070 * trigger in order to latch. The display address reg provides this.
2071 */
1dba99f4
VS
2072void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2073 enum plane plane)
d74362c9 2074{
3d13ef2e
DL
2075 struct drm_device *dev = dev_priv->dev;
2076 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2077
2078 I915_WRITE(reg, I915_READ(reg));
2079 POSTING_READ(reg);
d74362c9
KP
2080}
2081
b24e7179 2082/**
262ca2b0 2083 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2084 * @dev_priv: i915 private structure
2085 * @plane: plane to enable
2086 * @pipe: pipe being fed
2087 *
2088 * Enable @plane on @pipe, making sure that @pipe is running first.
2089 */
262ca2b0
MR
2090static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2091 enum plane plane, enum pipe pipe)
b24e7179 2092{
33c3b0d1 2093 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2094 struct intel_crtc *intel_crtc =
2095 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2096 int reg;
2097 u32 val;
2098
2099 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2100 assert_pipe_enabled(dev_priv, pipe);
2101
98ec7739
VS
2102 if (intel_crtc->primary_enabled)
2103 return;
0037f71c 2104
4c445e0e 2105 intel_crtc->primary_enabled = true;
939c2fe8 2106
b24e7179
JB
2107 reg = DSPCNTR(plane);
2108 val = I915_READ(reg);
10efa932 2109 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2110
2111 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2112 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2113
2114 /*
2115 * BDW signals flip done immediately if the plane
2116 * is disabled, even if the plane enable is already
2117 * armed to occur at the next vblank :(
2118 */
2119 if (IS_BROADWELL(dev))
2120 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2125 * @dev_priv: i915 private structure
2126 * @plane: plane to disable
2127 * @pipe: pipe consuming the data
2128 *
2129 * Disable @plane; should be an independent operation.
2130 */
262ca2b0
MR
2131static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2132 enum plane plane, enum pipe pipe)
b24e7179 2133{
939c2fe8
VS
2134 struct intel_crtc *intel_crtc =
2135 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2136 int reg;
2137 u32 val;
2138
98ec7739
VS
2139 if (!intel_crtc->primary_enabled)
2140 return;
0037f71c 2141
4c445e0e 2142 intel_crtc->primary_enabled = false;
939c2fe8 2143
b24e7179
JB
2144 reg = DSPCNTR(plane);
2145 val = I915_READ(reg);
10efa932 2146 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2147
2148 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2149 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2150}
2151
693db184
CW
2152static bool need_vtd_wa(struct drm_device *dev)
2153{
2154#ifdef CONFIG_INTEL_IOMMU
2155 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2156 return true;
2157#endif
2158 return false;
2159}
2160
a57ce0b2
JB
2161static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2162{
2163 int tile_height;
2164
2165 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2166 return ALIGN(height, tile_height);
2167}
2168
127bd2ac 2169int
48b956c5 2170intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2171 struct drm_i915_gem_object *obj,
a4872ba6 2172 struct intel_engine_cs *pipelined)
6b95a207 2173{
ce453d81 2174 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2175 u32 alignment;
2176 int ret;
2177
ebcdd39e
MR
2178 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2179
05394f39 2180 switch (obj->tiling_mode) {
6b95a207 2181 case I915_TILING_NONE:
534843da
CW
2182 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2183 alignment = 128 * 1024;
a6c45cf0 2184 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2185 alignment = 4 * 1024;
2186 else
2187 alignment = 64 * 1024;
6b95a207
KH
2188 break;
2189 case I915_TILING_X:
2190 /* pin() will align the object as required by fence */
2191 alignment = 0;
2192 break;
2193 case I915_TILING_Y:
80075d49 2194 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2195 return -EINVAL;
2196 default:
2197 BUG();
2198 }
2199
693db184
CW
2200 /* Note that the w/a also requires 64 PTE of padding following the
2201 * bo. We currently fill all unused PTE with the shadow page and so
2202 * we should always have valid PTE following the scanout preventing
2203 * the VT-d warning.
2204 */
2205 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2206 alignment = 256 * 1024;
2207
ce453d81 2208 dev_priv->mm.interruptible = false;
2da3b9b9 2209 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2210 if (ret)
ce453d81 2211 goto err_interruptible;
6b95a207
KH
2212
2213 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2214 * fence, whereas 965+ only requires a fence if using
2215 * framebuffer compression. For simplicity, we always install
2216 * a fence as the cost is not that onerous.
2217 */
06d98131 2218 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2219 if (ret)
2220 goto err_unpin;
1690e1eb 2221
9a5a53b3 2222 i915_gem_object_pin_fence(obj);
6b95a207 2223
ce453d81 2224 dev_priv->mm.interruptible = true;
6b95a207 2225 return 0;
48b956c5
CW
2226
2227err_unpin:
cc98b413 2228 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2229err_interruptible:
2230 dev_priv->mm.interruptible = true;
48b956c5 2231 return ret;
6b95a207
KH
2232}
2233
1690e1eb
CW
2234void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2235{
ebcdd39e
MR
2236 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2237
1690e1eb 2238 i915_gem_object_unpin_fence(obj);
cc98b413 2239 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2240}
2241
c2c75131
DV
2242/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2243 * is assumed to be a power-of-two. */
bc752862
CW
2244unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2245 unsigned int tiling_mode,
2246 unsigned int cpp,
2247 unsigned int pitch)
c2c75131 2248{
bc752862
CW
2249 if (tiling_mode != I915_TILING_NONE) {
2250 unsigned int tile_rows, tiles;
c2c75131 2251
bc752862
CW
2252 tile_rows = *y / 8;
2253 *y %= 8;
c2c75131 2254
bc752862
CW
2255 tiles = *x / (512/cpp);
2256 *x %= 512/cpp;
2257
2258 return tile_rows * pitch * 8 + tiles * 4096;
2259 } else {
2260 unsigned int offset;
2261
2262 offset = *y * pitch + *x * cpp;
2263 *y = 0;
2264 *x = (offset & 4095) / cpp;
2265 return offset & -4096;
2266 }
c2c75131
DV
2267}
2268
46f297fb
JB
2269int intel_format_to_fourcc(int format)
2270{
2271 switch (format) {
2272 case DISPPLANE_8BPP:
2273 return DRM_FORMAT_C8;
2274 case DISPPLANE_BGRX555:
2275 return DRM_FORMAT_XRGB1555;
2276 case DISPPLANE_BGRX565:
2277 return DRM_FORMAT_RGB565;
2278 default:
2279 case DISPPLANE_BGRX888:
2280 return DRM_FORMAT_XRGB8888;
2281 case DISPPLANE_RGBX888:
2282 return DRM_FORMAT_XBGR8888;
2283 case DISPPLANE_BGRX101010:
2284 return DRM_FORMAT_XRGB2101010;
2285 case DISPPLANE_RGBX101010:
2286 return DRM_FORMAT_XBGR2101010;
2287 }
2288}
2289
484b41dd 2290static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2291 struct intel_plane_config *plane_config)
2292{
2293 struct drm_device *dev = crtc->base.dev;
2294 struct drm_i915_gem_object *obj = NULL;
2295 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2296 u32 base = plane_config->base;
2297
ff2652ea
CW
2298 if (plane_config->size == 0)
2299 return false;
2300
46f297fb
JB
2301 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2302 plane_config->size);
2303 if (!obj)
484b41dd 2304 return false;
46f297fb
JB
2305
2306 if (plane_config->tiled) {
2307 obj->tiling_mode = I915_TILING_X;
66e514c1 2308 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2309 }
2310
66e514c1
DA
2311 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2312 mode_cmd.width = crtc->base.primary->fb->width;
2313 mode_cmd.height = crtc->base.primary->fb->height;
2314 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2315
2316 mutex_lock(&dev->struct_mutex);
2317
66e514c1 2318 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2319 &mode_cmd, obj)) {
46f297fb
JB
2320 DRM_DEBUG_KMS("intel fb init failed\n");
2321 goto out_unref_obj;
2322 }
2323
a071fa00 2324 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2325 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2326
2327 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2328 return true;
46f297fb
JB
2329
2330out_unref_obj:
2331 drm_gem_object_unreference(&obj->base);
2332 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2333 return false;
2334}
2335
2336static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2337 struct intel_plane_config *plane_config)
2338{
2339 struct drm_device *dev = intel_crtc->base.dev;
2340 struct drm_crtc *c;
2341 struct intel_crtc *i;
2ff8fde1 2342 struct drm_i915_gem_object *obj;
484b41dd 2343
66e514c1 2344 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2345 return;
2346
2347 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2348 return;
2349
66e514c1
DA
2350 kfree(intel_crtc->base.primary->fb);
2351 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2352
2353 /*
2354 * Failed to alloc the obj, check to see if we should share
2355 * an fb with another CRTC instead
2356 */
70e1e0ec 2357 for_each_crtc(dev, c) {
484b41dd
JB
2358 i = to_intel_crtc(c);
2359
2360 if (c == &intel_crtc->base)
2361 continue;
2362
2ff8fde1
MR
2363 if (!i->active)
2364 continue;
2365
2366 obj = intel_fb_obj(c->primary->fb);
2367 if (obj == NULL)
484b41dd
JB
2368 continue;
2369
2ff8fde1 2370 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2371 drm_framebuffer_reference(c->primary->fb);
2372 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2373 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2374 break;
2375 }
2376 }
46f297fb
JB
2377}
2378
29b9bde6
DV
2379static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2380 struct drm_framebuffer *fb,
2381 int x, int y)
81255565
JB
2382{
2383 struct drm_device *dev = crtc->dev;
2384 struct drm_i915_private *dev_priv = dev->dev_private;
2385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2386 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2387 int plane = intel_crtc->plane;
e506a0c6 2388 unsigned long linear_offset;
81255565 2389 u32 dspcntr;
5eddb70b 2390 u32 reg;
81255565 2391
5eddb70b
CW
2392 reg = DSPCNTR(plane);
2393 dspcntr = I915_READ(reg);
81255565
JB
2394 /* Mask out pixel format bits in case we change it */
2395 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2396 switch (fb->pixel_format) {
2397 case DRM_FORMAT_C8:
81255565
JB
2398 dspcntr |= DISPPLANE_8BPP;
2399 break;
57779d06
VS
2400 case DRM_FORMAT_XRGB1555:
2401 case DRM_FORMAT_ARGB1555:
2402 dspcntr |= DISPPLANE_BGRX555;
81255565 2403 break;
57779d06
VS
2404 case DRM_FORMAT_RGB565:
2405 dspcntr |= DISPPLANE_BGRX565;
2406 break;
2407 case DRM_FORMAT_XRGB8888:
2408 case DRM_FORMAT_ARGB8888:
2409 dspcntr |= DISPPLANE_BGRX888;
2410 break;
2411 case DRM_FORMAT_XBGR8888:
2412 case DRM_FORMAT_ABGR8888:
2413 dspcntr |= DISPPLANE_RGBX888;
2414 break;
2415 case DRM_FORMAT_XRGB2101010:
2416 case DRM_FORMAT_ARGB2101010:
2417 dspcntr |= DISPPLANE_BGRX101010;
2418 break;
2419 case DRM_FORMAT_XBGR2101010:
2420 case DRM_FORMAT_ABGR2101010:
2421 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2422 break;
2423 default:
baba133a 2424 BUG();
81255565 2425 }
57779d06 2426
a6c45cf0 2427 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2428 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2429 dspcntr |= DISPPLANE_TILED;
2430 else
2431 dspcntr &= ~DISPPLANE_TILED;
2432 }
2433
de1aa629
VS
2434 if (IS_G4X(dev))
2435 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2436
5eddb70b 2437 I915_WRITE(reg, dspcntr);
81255565 2438
e506a0c6 2439 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2440
c2c75131
DV
2441 if (INTEL_INFO(dev)->gen >= 4) {
2442 intel_crtc->dspaddr_offset =
bc752862
CW
2443 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2444 fb->bits_per_pixel / 8,
2445 fb->pitches[0]);
c2c75131
DV
2446 linear_offset -= intel_crtc->dspaddr_offset;
2447 } else {
e506a0c6 2448 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2449 }
e506a0c6 2450
f343c5f6
BW
2451 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2452 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2453 fb->pitches[0]);
01f2c773 2454 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2455 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2456 I915_WRITE(DSPSURF(plane),
2457 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2458 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2459 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2460 } else
f343c5f6 2461 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2462 POSTING_READ(reg);
17638cd6
JB
2463}
2464
29b9bde6
DV
2465static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2466 struct drm_framebuffer *fb,
2467 int x, int y)
17638cd6
JB
2468{
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2472 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2473 int plane = intel_crtc->plane;
e506a0c6 2474 unsigned long linear_offset;
17638cd6
JB
2475 u32 dspcntr;
2476 u32 reg;
2477
17638cd6
JB
2478 reg = DSPCNTR(plane);
2479 dspcntr = I915_READ(reg);
2480 /* Mask out pixel format bits in case we change it */
2481 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
17638cd6
JB
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
57779d06
VS
2486 case DRM_FORMAT_RGB565:
2487 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2488 break;
57779d06
VS
2489 case DRM_FORMAT_XRGB8888:
2490 case DRM_FORMAT_ARGB8888:
2491 dspcntr |= DISPPLANE_BGRX888;
2492 break;
2493 case DRM_FORMAT_XBGR8888:
2494 case DRM_FORMAT_ABGR8888:
2495 dspcntr |= DISPPLANE_RGBX888;
2496 break;
2497 case DRM_FORMAT_XRGB2101010:
2498 case DRM_FORMAT_ARGB2101010:
2499 dspcntr |= DISPPLANE_BGRX101010;
2500 break;
2501 case DRM_FORMAT_XBGR2101010:
2502 case DRM_FORMAT_ABGR2101010:
2503 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2504 break;
2505 default:
baba133a 2506 BUG();
17638cd6
JB
2507 }
2508
2509 if (obj->tiling_mode != I915_TILING_NONE)
2510 dspcntr |= DISPPLANE_TILED;
2511 else
2512 dspcntr &= ~DISPPLANE_TILED;
2513
b42c6009 2514 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2515 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2516 else
2517 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2518
2519 I915_WRITE(reg, dspcntr);
2520
e506a0c6 2521 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2522 intel_crtc->dspaddr_offset =
bc752862
CW
2523 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2524 fb->bits_per_pixel / 8,
2525 fb->pitches[0]);
c2c75131 2526 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2527
f343c5f6
BW
2528 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2529 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2530 fb->pitches[0]);
01f2c773 2531 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2532 I915_WRITE(DSPSURF(plane),
2533 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2535 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2536 } else {
2537 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2538 I915_WRITE(DSPLINOFF(plane), linear_offset);
2539 }
17638cd6 2540 POSTING_READ(reg);
17638cd6
JB
2541}
2542
2543/* Assume fb object is pinned & idle & fenced and just update base pointers */
2544static int
2545intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2546 int x, int y, enum mode_set_atomic state)
2547{
2548 struct drm_device *dev = crtc->dev;
2549 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2550
6b8e6ed0
CW
2551 if (dev_priv->display.disable_fbc)
2552 dev_priv->display.disable_fbc(dev);
cc36513c 2553 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2554
29b9bde6
DV
2555 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2556
2557 return 0;
81255565
JB
2558}
2559
96a02917
VS
2560void intel_display_handle_reset(struct drm_device *dev)
2561{
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct drm_crtc *crtc;
2564
2565 /*
2566 * Flips in the rings have been nuked by the reset,
2567 * so complete all pending flips so that user space
2568 * will get its events and not get stuck.
2569 *
2570 * Also update the base address of all primary
2571 * planes to the the last fb to make sure we're
2572 * showing the correct fb after a reset.
2573 *
2574 * Need to make two loops over the crtcs so that we
2575 * don't try to grab a crtc mutex before the
2576 * pending_flip_queue really got woken up.
2577 */
2578
70e1e0ec 2579 for_each_crtc(dev, crtc) {
96a02917
VS
2580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2581 enum plane plane = intel_crtc->plane;
2582
2583 intel_prepare_page_flip(dev, plane);
2584 intel_finish_page_flip_plane(dev, plane);
2585 }
2586
70e1e0ec 2587 for_each_crtc(dev, crtc) {
96a02917
VS
2588 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2589
51fd371b 2590 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2591 /*
2592 * FIXME: Once we have proper support for primary planes (and
2593 * disabling them without disabling the entire crtc) allow again
66e514c1 2594 * a NULL crtc->primary->fb.
947fdaad 2595 */
f4510a27 2596 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2597 dev_priv->display.update_primary_plane(crtc,
66e514c1 2598 crtc->primary->fb,
262ca2b0
MR
2599 crtc->x,
2600 crtc->y);
51fd371b 2601 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2602 }
2603}
2604
14667a4b
CW
2605static int
2606intel_finish_fb(struct drm_framebuffer *old_fb)
2607{
2ff8fde1 2608 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2609 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2610 bool was_interruptible = dev_priv->mm.interruptible;
2611 int ret;
2612
14667a4b
CW
2613 /* Big Hammer, we also need to ensure that any pending
2614 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2615 * current scanout is retired before unpinning the old
2616 * framebuffer.
2617 *
2618 * This should only fail upon a hung GPU, in which case we
2619 * can safely continue.
2620 */
2621 dev_priv->mm.interruptible = false;
2622 ret = i915_gem_object_finish_gpu(obj);
2623 dev_priv->mm.interruptible = was_interruptible;
2624
2625 return ret;
2626}
2627
7d5e3799
CW
2628static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2629{
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 unsigned long flags;
2634 bool pending;
2635
2636 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2637 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2638 return false;
2639
2640 spin_lock_irqsave(&dev->event_lock, flags);
2641 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2642 spin_unlock_irqrestore(&dev->event_lock, flags);
2643
2644 return pending;
2645}
2646
5c3b82e2 2647static int
3c4fdcfb 2648intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2649 struct drm_framebuffer *fb)
79e53945
JB
2650{
2651 struct drm_device *dev = crtc->dev;
6b8e6ed0 2652 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2654 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2655 struct drm_framebuffer *old_fb = crtc->primary->fb;
2656 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2657 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2658 int ret;
79e53945 2659
7d5e3799
CW
2660 if (intel_crtc_has_pending_flip(crtc)) {
2661 DRM_ERROR("pipe is still busy with an old pageflip\n");
2662 return -EBUSY;
2663 }
2664
79e53945 2665 /* no fb bound */
94352cf9 2666 if (!fb) {
a5071c2f 2667 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2668 return 0;
2669 }
2670
7eb552ae 2671 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2672 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2673 plane_name(intel_crtc->plane),
2674 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2675 return -EINVAL;
79e53945
JB
2676 }
2677
5c3b82e2 2678 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2679 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2680 if (ret == 0)
91565c85 2681 i915_gem_track_fb(old_obj, obj,
a071fa00 2682 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2683 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2684 if (ret != 0) {
a5071c2f 2685 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2686 return ret;
2687 }
79e53945 2688
bb2043de
DL
2689 /*
2690 * Update pipe size and adjust fitter if needed: the reason for this is
2691 * that in compute_mode_changes we check the native mode (not the pfit
2692 * mode) to see if we can flip rather than do a full mode set. In the
2693 * fastboot case, we'll flip, but if we don't update the pipesrc and
2694 * pfit state, we'll end up with a big fb scanned out into the wrong
2695 * sized surface.
2696 *
2697 * To fix this properly, we need to hoist the checks up into
2698 * compute_mode_changes (or above), check the actual pfit state and
2699 * whether the platform allows pfit disable with pipe active, and only
2700 * then update the pipesrc and pfit state, even on the flip path.
2701 */
d330a953 2702 if (i915.fastboot) {
d7bf63f2
DL
2703 const struct drm_display_mode *adjusted_mode =
2704 &intel_crtc->config.adjusted_mode;
2705
4d6a3e63 2706 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2707 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2708 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2709 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2710 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2711 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2712 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2713 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2714 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2715 }
0637d60d
JB
2716 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2717 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2718 }
2719
29b9bde6 2720 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2721
f99d7069
DV
2722 if (intel_crtc->active)
2723 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2724
f4510a27 2725 crtc->primary->fb = fb;
6c4c86f5
DV
2726 crtc->x = x;
2727 crtc->y = y;
94352cf9 2728
b7f1de28 2729 if (old_fb) {
d7697eea
DV
2730 if (intel_crtc->active && old_fb != fb)
2731 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2732 mutex_lock(&dev->struct_mutex);
2ff8fde1 2733 intel_unpin_fb_obj(old_obj);
8ac36ec1 2734 mutex_unlock(&dev->struct_mutex);
b7f1de28 2735 }
652c393a 2736
8ac36ec1 2737 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2738 intel_update_fbc(dev);
5c3b82e2 2739 mutex_unlock(&dev->struct_mutex);
79e53945 2740
5c3b82e2 2741 return 0;
79e53945
JB
2742}
2743
5e84e1a4
ZW
2744static void intel_fdi_normal_train(struct drm_crtc *crtc)
2745{
2746 struct drm_device *dev = crtc->dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2749 int pipe = intel_crtc->pipe;
2750 u32 reg, temp;
2751
2752 /* enable normal train */
2753 reg = FDI_TX_CTL(pipe);
2754 temp = I915_READ(reg);
61e499bf 2755 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2756 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2757 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2758 } else {
2759 temp &= ~FDI_LINK_TRAIN_NONE;
2760 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2761 }
5e84e1a4
ZW
2762 I915_WRITE(reg, temp);
2763
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 if (HAS_PCH_CPT(dev)) {
2767 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2768 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2769 } else {
2770 temp &= ~FDI_LINK_TRAIN_NONE;
2771 temp |= FDI_LINK_TRAIN_NONE;
2772 }
2773 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2774
2775 /* wait one idle pattern time */
2776 POSTING_READ(reg);
2777 udelay(1000);
357555c0
JB
2778
2779 /* IVB wants error correction enabled */
2780 if (IS_IVYBRIDGE(dev))
2781 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2782 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2783}
2784
1fbc0d78 2785static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2786{
1fbc0d78
DV
2787 return crtc->base.enabled && crtc->active &&
2788 crtc->config.has_pch_encoder;
1e833f40
DV
2789}
2790
01a415fd
DV
2791static void ivb_modeset_global_resources(struct drm_device *dev)
2792{
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 struct intel_crtc *pipe_B_crtc =
2795 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2796 struct intel_crtc *pipe_C_crtc =
2797 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2798 uint32_t temp;
2799
1e833f40
DV
2800 /*
2801 * When everything is off disable fdi C so that we could enable fdi B
2802 * with all lanes. Note that we don't care about enabled pipes without
2803 * an enabled pch encoder.
2804 */
2805 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2806 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2807 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2808 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2809
2810 temp = I915_READ(SOUTH_CHICKEN1);
2811 temp &= ~FDI_BC_BIFURCATION_SELECT;
2812 DRM_DEBUG_KMS("disabling fdi C rx\n");
2813 I915_WRITE(SOUTH_CHICKEN1, temp);
2814 }
2815}
2816
8db9d77b
ZW
2817/* The FDI link training functions for ILK/Ibexpeak. */
2818static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2819{
2820 struct drm_device *dev = crtc->dev;
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2823 int pipe = intel_crtc->pipe;
5eddb70b 2824 u32 reg, temp, tries;
8db9d77b 2825
1c8562f6 2826 /* FDI needs bits from pipe first */
0fc932b8 2827 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2828
e1a44743
AJ
2829 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2830 for train result */
5eddb70b
CW
2831 reg = FDI_RX_IMR(pipe);
2832 temp = I915_READ(reg);
e1a44743
AJ
2833 temp &= ~FDI_RX_SYMBOL_LOCK;
2834 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2835 I915_WRITE(reg, temp);
2836 I915_READ(reg);
e1a44743
AJ
2837 udelay(150);
2838
8db9d77b 2839 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2840 reg = FDI_TX_CTL(pipe);
2841 temp = I915_READ(reg);
627eb5a3
DV
2842 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2843 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2844 temp &= ~FDI_LINK_TRAIN_NONE;
2845 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2846 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2847
5eddb70b
CW
2848 reg = FDI_RX_CTL(pipe);
2849 temp = I915_READ(reg);
8db9d77b
ZW
2850 temp &= ~FDI_LINK_TRAIN_NONE;
2851 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2852 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2853
2854 POSTING_READ(reg);
8db9d77b
ZW
2855 udelay(150);
2856
5b2adf89 2857 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2858 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2859 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2860 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2861
5eddb70b 2862 reg = FDI_RX_IIR(pipe);
e1a44743 2863 for (tries = 0; tries < 5; tries++) {
5eddb70b 2864 temp = I915_READ(reg);
8db9d77b
ZW
2865 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2866
2867 if ((temp & FDI_RX_BIT_LOCK)) {
2868 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2869 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2870 break;
2871 }
8db9d77b 2872 }
e1a44743 2873 if (tries == 5)
5eddb70b 2874 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2875
2876 /* Train 2 */
5eddb70b
CW
2877 reg = FDI_TX_CTL(pipe);
2878 temp = I915_READ(reg);
8db9d77b
ZW
2879 temp &= ~FDI_LINK_TRAIN_NONE;
2880 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2881 I915_WRITE(reg, temp);
8db9d77b 2882
5eddb70b
CW
2883 reg = FDI_RX_CTL(pipe);
2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 temp &= ~FDI_LINK_TRAIN_NONE;
2886 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2887 I915_WRITE(reg, temp);
8db9d77b 2888
5eddb70b
CW
2889 POSTING_READ(reg);
2890 udelay(150);
8db9d77b 2891
5eddb70b 2892 reg = FDI_RX_IIR(pipe);
e1a44743 2893 for (tries = 0; tries < 5; tries++) {
5eddb70b 2894 temp = I915_READ(reg);
8db9d77b
ZW
2895 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2896
2897 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2898 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2899 DRM_DEBUG_KMS("FDI train 2 done.\n");
2900 break;
2901 }
8db9d77b 2902 }
e1a44743 2903 if (tries == 5)
5eddb70b 2904 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2905
2906 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2907
8db9d77b
ZW
2908}
2909
0206e353 2910static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2911 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2912 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2913 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2914 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2915};
2916
2917/* The FDI link training functions for SNB/Cougarpoint. */
2918static void gen6_fdi_link_train(struct drm_crtc *crtc)
2919{
2920 struct drm_device *dev = crtc->dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2923 int pipe = intel_crtc->pipe;
fa37d39e 2924 u32 reg, temp, i, retry;
8db9d77b 2925
e1a44743
AJ
2926 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2927 for train result */
5eddb70b
CW
2928 reg = FDI_RX_IMR(pipe);
2929 temp = I915_READ(reg);
e1a44743
AJ
2930 temp &= ~FDI_RX_SYMBOL_LOCK;
2931 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2932 I915_WRITE(reg, temp);
2933
2934 POSTING_READ(reg);
e1a44743
AJ
2935 udelay(150);
2936
8db9d77b 2937 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2938 reg = FDI_TX_CTL(pipe);
2939 temp = I915_READ(reg);
627eb5a3
DV
2940 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2941 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2942 temp &= ~FDI_LINK_TRAIN_NONE;
2943 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2945 /* SNB-B */
2946 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2947 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2948
d74cf324
DV
2949 I915_WRITE(FDI_RX_MISC(pipe),
2950 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2951
5eddb70b
CW
2952 reg = FDI_RX_CTL(pipe);
2953 temp = I915_READ(reg);
8db9d77b
ZW
2954 if (HAS_PCH_CPT(dev)) {
2955 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2956 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2957 } else {
2958 temp &= ~FDI_LINK_TRAIN_NONE;
2959 temp |= FDI_LINK_TRAIN_PATTERN_1;
2960 }
5eddb70b
CW
2961 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2962
2963 POSTING_READ(reg);
8db9d77b
ZW
2964 udelay(150);
2965
0206e353 2966 for (i = 0; i < 4; i++) {
5eddb70b
CW
2967 reg = FDI_TX_CTL(pipe);
2968 temp = I915_READ(reg);
8db9d77b
ZW
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2971 I915_WRITE(reg, temp);
2972
2973 POSTING_READ(reg);
8db9d77b
ZW
2974 udelay(500);
2975
fa37d39e
SP
2976 for (retry = 0; retry < 5; retry++) {
2977 reg = FDI_RX_IIR(pipe);
2978 temp = I915_READ(reg);
2979 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2980 if (temp & FDI_RX_BIT_LOCK) {
2981 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2982 DRM_DEBUG_KMS("FDI train 1 done.\n");
2983 break;
2984 }
2985 udelay(50);
8db9d77b 2986 }
fa37d39e
SP
2987 if (retry < 5)
2988 break;
8db9d77b
ZW
2989 }
2990 if (i == 4)
5eddb70b 2991 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2992
2993 /* Train 2 */
5eddb70b
CW
2994 reg = FDI_TX_CTL(pipe);
2995 temp = I915_READ(reg);
8db9d77b
ZW
2996 temp &= ~FDI_LINK_TRAIN_NONE;
2997 temp |= FDI_LINK_TRAIN_PATTERN_2;
2998 if (IS_GEN6(dev)) {
2999 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3000 /* SNB-B */
3001 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3002 }
5eddb70b 3003 I915_WRITE(reg, temp);
8db9d77b 3004
5eddb70b
CW
3005 reg = FDI_RX_CTL(pipe);
3006 temp = I915_READ(reg);
8db9d77b
ZW
3007 if (HAS_PCH_CPT(dev)) {
3008 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3009 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3010 } else {
3011 temp &= ~FDI_LINK_TRAIN_NONE;
3012 temp |= FDI_LINK_TRAIN_PATTERN_2;
3013 }
5eddb70b
CW
3014 I915_WRITE(reg, temp);
3015
3016 POSTING_READ(reg);
8db9d77b
ZW
3017 udelay(150);
3018
0206e353 3019 for (i = 0; i < 4; i++) {
5eddb70b
CW
3020 reg = FDI_TX_CTL(pipe);
3021 temp = I915_READ(reg);
8db9d77b
ZW
3022 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3023 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3024 I915_WRITE(reg, temp);
3025
3026 POSTING_READ(reg);
8db9d77b
ZW
3027 udelay(500);
3028
fa37d39e
SP
3029 for (retry = 0; retry < 5; retry++) {
3030 reg = FDI_RX_IIR(pipe);
3031 temp = I915_READ(reg);
3032 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3033 if (temp & FDI_RX_SYMBOL_LOCK) {
3034 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3035 DRM_DEBUG_KMS("FDI train 2 done.\n");
3036 break;
3037 }
3038 udelay(50);
8db9d77b 3039 }
fa37d39e
SP
3040 if (retry < 5)
3041 break;
8db9d77b
ZW
3042 }
3043 if (i == 4)
5eddb70b 3044 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3045
3046 DRM_DEBUG_KMS("FDI train done.\n");
3047}
3048
357555c0
JB
3049/* Manual link training for Ivy Bridge A0 parts */
3050static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3051{
3052 struct drm_device *dev = crtc->dev;
3053 struct drm_i915_private *dev_priv = dev->dev_private;
3054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3055 int pipe = intel_crtc->pipe;
139ccd3f 3056 u32 reg, temp, i, j;
357555c0
JB
3057
3058 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3059 for train result */
3060 reg = FDI_RX_IMR(pipe);
3061 temp = I915_READ(reg);
3062 temp &= ~FDI_RX_SYMBOL_LOCK;
3063 temp &= ~FDI_RX_BIT_LOCK;
3064 I915_WRITE(reg, temp);
3065
3066 POSTING_READ(reg);
3067 udelay(150);
3068
01a415fd
DV
3069 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3070 I915_READ(FDI_RX_IIR(pipe)));
3071
139ccd3f
JB
3072 /* Try each vswing and preemphasis setting twice before moving on */
3073 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3074 /* disable first in case we need to retry */
3075 reg = FDI_TX_CTL(pipe);
3076 temp = I915_READ(reg);
3077 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3078 temp &= ~FDI_TX_ENABLE;
3079 I915_WRITE(reg, temp);
357555c0 3080
139ccd3f
JB
3081 reg = FDI_RX_CTL(pipe);
3082 temp = I915_READ(reg);
3083 temp &= ~FDI_LINK_TRAIN_AUTO;
3084 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3085 temp &= ~FDI_RX_ENABLE;
3086 I915_WRITE(reg, temp);
357555c0 3087
139ccd3f 3088 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3089 reg = FDI_TX_CTL(pipe);
3090 temp = I915_READ(reg);
139ccd3f
JB
3091 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3092 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3093 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3094 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3095 temp |= snb_b_fdi_train_param[j/2];
3096 temp |= FDI_COMPOSITE_SYNC;
3097 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3098
139ccd3f
JB
3099 I915_WRITE(FDI_RX_MISC(pipe),
3100 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3101
139ccd3f 3102 reg = FDI_RX_CTL(pipe);
357555c0 3103 temp = I915_READ(reg);
139ccd3f
JB
3104 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3105 temp |= FDI_COMPOSITE_SYNC;
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3107
139ccd3f
JB
3108 POSTING_READ(reg);
3109 udelay(1); /* should be 0.5us */
357555c0 3110
139ccd3f
JB
3111 for (i = 0; i < 4; i++) {
3112 reg = FDI_RX_IIR(pipe);
3113 temp = I915_READ(reg);
3114 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3115
139ccd3f
JB
3116 if (temp & FDI_RX_BIT_LOCK ||
3117 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3118 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3119 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3120 i);
3121 break;
3122 }
3123 udelay(1); /* should be 0.5us */
3124 }
3125 if (i == 4) {
3126 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3127 continue;
3128 }
357555c0 3129
139ccd3f 3130 /* Train 2 */
357555c0
JB
3131 reg = FDI_TX_CTL(pipe);
3132 temp = I915_READ(reg);
139ccd3f
JB
3133 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3134 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3135 I915_WRITE(reg, temp);
3136
3137 reg = FDI_RX_CTL(pipe);
3138 temp = I915_READ(reg);
3139 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3140 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3141 I915_WRITE(reg, temp);
3142
3143 POSTING_READ(reg);
139ccd3f 3144 udelay(2); /* should be 1.5us */
357555c0 3145
139ccd3f
JB
3146 for (i = 0; i < 4; i++) {
3147 reg = FDI_RX_IIR(pipe);
3148 temp = I915_READ(reg);
3149 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3150
139ccd3f
JB
3151 if (temp & FDI_RX_SYMBOL_LOCK ||
3152 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3153 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3154 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3155 i);
3156 goto train_done;
3157 }
3158 udelay(2); /* should be 1.5us */
357555c0 3159 }
139ccd3f
JB
3160 if (i == 4)
3161 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3162 }
357555c0 3163
139ccd3f 3164train_done:
357555c0
JB
3165 DRM_DEBUG_KMS("FDI train done.\n");
3166}
3167
88cefb6c 3168static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3169{
88cefb6c 3170 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3171 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3172 int pipe = intel_crtc->pipe;
5eddb70b 3173 u32 reg, temp;
79e53945 3174
c64e311e 3175
c98e9dcf 3176 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3177 reg = FDI_RX_CTL(pipe);
3178 temp = I915_READ(reg);
627eb5a3
DV
3179 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3180 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3181 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3182 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3183
3184 POSTING_READ(reg);
c98e9dcf
JB
3185 udelay(200);
3186
3187 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3188 temp = I915_READ(reg);
3189 I915_WRITE(reg, temp | FDI_PCDCLK);
3190
3191 POSTING_READ(reg);
c98e9dcf
JB
3192 udelay(200);
3193
20749730
PZ
3194 /* Enable CPU FDI TX PLL, always on for Ironlake */
3195 reg = FDI_TX_CTL(pipe);
3196 temp = I915_READ(reg);
3197 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3198 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3199
20749730
PZ
3200 POSTING_READ(reg);
3201 udelay(100);
6be4a607 3202 }
0e23b99d
JB
3203}
3204
88cefb6c
DV
3205static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3206{
3207 struct drm_device *dev = intel_crtc->base.dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 int pipe = intel_crtc->pipe;
3210 u32 reg, temp;
3211
3212 /* Switch from PCDclk to Rawclk */
3213 reg = FDI_RX_CTL(pipe);
3214 temp = I915_READ(reg);
3215 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3216
3217 /* Disable CPU FDI TX PLL */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3221
3222 POSTING_READ(reg);
3223 udelay(100);
3224
3225 reg = FDI_RX_CTL(pipe);
3226 temp = I915_READ(reg);
3227 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3228
3229 /* Wait for the clocks to turn off. */
3230 POSTING_READ(reg);
3231 udelay(100);
3232}
3233
0fc932b8
JB
3234static void ironlake_fdi_disable(struct drm_crtc *crtc)
3235{
3236 struct drm_device *dev = crtc->dev;
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3239 int pipe = intel_crtc->pipe;
3240 u32 reg, temp;
3241
3242 /* disable CPU FDI tx and PCH FDI rx */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3246 POSTING_READ(reg);
3247
3248 reg = FDI_RX_CTL(pipe);
3249 temp = I915_READ(reg);
3250 temp &= ~(0x7 << 16);
dfd07d72 3251 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3252 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3253
3254 POSTING_READ(reg);
3255 udelay(100);
3256
3257 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3258 if (HAS_PCH_IBX(dev))
6f06ce18 3259 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3260
3261 /* still set train pattern 1 */
3262 reg = FDI_TX_CTL(pipe);
3263 temp = I915_READ(reg);
3264 temp &= ~FDI_LINK_TRAIN_NONE;
3265 temp |= FDI_LINK_TRAIN_PATTERN_1;
3266 I915_WRITE(reg, temp);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 if (HAS_PCH_CPT(dev)) {
3271 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3273 } else {
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_1;
3276 }
3277 /* BPC in FDI rx is consistent with that in PIPECONF */
3278 temp &= ~(0x07 << 16);
dfd07d72 3279 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3280 I915_WRITE(reg, temp);
3281
3282 POSTING_READ(reg);
3283 udelay(100);
3284}
3285
5dce5b93
CW
3286bool intel_has_pending_fb_unpin(struct drm_device *dev)
3287{
3288 struct intel_crtc *crtc;
3289
3290 /* Note that we don't need to be called with mode_config.lock here
3291 * as our list of CRTC objects is static for the lifetime of the
3292 * device and so cannot disappear as we iterate. Similarly, we can
3293 * happily treat the predicates as racy, atomic checks as userspace
3294 * cannot claim and pin a new fb without at least acquring the
3295 * struct_mutex and so serialising with us.
3296 */
d3fcc808 3297 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3298 if (atomic_read(&crtc->unpin_work_count) == 0)
3299 continue;
3300
3301 if (crtc->unpin_work)
3302 intel_wait_for_vblank(dev, crtc->pipe);
3303
3304 return true;
3305 }
3306
3307 return false;
3308}
3309
46a55d30 3310void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3311{
0f91128d 3312 struct drm_device *dev = crtc->dev;
5bb61643 3313 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3314
f4510a27 3315 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3316 return;
3317
2c10d571
DV
3318 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3319
eed6d67d
DV
3320 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3321 !intel_crtc_has_pending_flip(crtc),
3322 60*HZ) == 0);
5bb61643 3323
0f91128d 3324 mutex_lock(&dev->struct_mutex);
f4510a27 3325 intel_finish_fb(crtc->primary->fb);
0f91128d 3326 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3327}
3328
e615efe4
ED
3329/* Program iCLKIP clock to the desired frequency */
3330static void lpt_program_iclkip(struct drm_crtc *crtc)
3331{
3332 struct drm_device *dev = crtc->dev;
3333 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3334 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3335 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3336 u32 temp;
3337
09153000
DV
3338 mutex_lock(&dev_priv->dpio_lock);
3339
e615efe4
ED
3340 /* It is necessary to ungate the pixclk gate prior to programming
3341 * the divisors, and gate it back when it is done.
3342 */
3343 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3344
3345 /* Disable SSCCTL */
3346 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3347 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3348 SBI_SSCCTL_DISABLE,
3349 SBI_ICLK);
e615efe4
ED
3350
3351 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3352 if (clock == 20000) {
e615efe4
ED
3353 auxdiv = 1;
3354 divsel = 0x41;
3355 phaseinc = 0x20;
3356 } else {
3357 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3358 * but the adjusted_mode->crtc_clock in in KHz. To get the
3359 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3360 * convert the virtual clock precision to KHz here for higher
3361 * precision.
3362 */
3363 u32 iclk_virtual_root_freq = 172800 * 1000;
3364 u32 iclk_pi_range = 64;
3365 u32 desired_divisor, msb_divisor_value, pi_value;
3366
12d7ceed 3367 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3368 msb_divisor_value = desired_divisor / iclk_pi_range;
3369 pi_value = desired_divisor % iclk_pi_range;
3370
3371 auxdiv = 0;
3372 divsel = msb_divisor_value - 2;
3373 phaseinc = pi_value;
3374 }
3375
3376 /* This should not happen with any sane values */
3377 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3378 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3379 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3380 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3381
3382 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3383 clock,
e615efe4
ED
3384 auxdiv,
3385 divsel,
3386 phasedir,
3387 phaseinc);
3388
3389 /* Program SSCDIVINTPHASE6 */
988d6ee8 3390 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3391 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3392 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3393 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3394 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3395 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3396 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3397 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3398
3399 /* Program SSCAUXDIV */
988d6ee8 3400 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3401 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3402 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3403 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3404
3405 /* Enable modulator and associated divider */
988d6ee8 3406 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3407 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3408 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3409
3410 /* Wait for initialization time */
3411 udelay(24);
3412
3413 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3414
3415 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3416}
3417
275f01b2
DV
3418static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3419 enum pipe pch_transcoder)
3420{
3421 struct drm_device *dev = crtc->base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3424
3425 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3426 I915_READ(HTOTAL(cpu_transcoder)));
3427 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3428 I915_READ(HBLANK(cpu_transcoder)));
3429 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3430 I915_READ(HSYNC(cpu_transcoder)));
3431
3432 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3433 I915_READ(VTOTAL(cpu_transcoder)));
3434 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3435 I915_READ(VBLANK(cpu_transcoder)));
3436 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3437 I915_READ(VSYNC(cpu_transcoder)));
3438 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3439 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3440}
3441
1fbc0d78
DV
3442static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3443{
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 uint32_t temp;
3446
3447 temp = I915_READ(SOUTH_CHICKEN1);
3448 if (temp & FDI_BC_BIFURCATION_SELECT)
3449 return;
3450
3451 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3453
3454 temp |= FDI_BC_BIFURCATION_SELECT;
3455 DRM_DEBUG_KMS("enabling fdi C rx\n");
3456 I915_WRITE(SOUTH_CHICKEN1, temp);
3457 POSTING_READ(SOUTH_CHICKEN1);
3458}
3459
3460static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3461{
3462 struct drm_device *dev = intel_crtc->base.dev;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464
3465 switch (intel_crtc->pipe) {
3466 case PIPE_A:
3467 break;
3468 case PIPE_B:
3469 if (intel_crtc->config.fdi_lanes > 2)
3470 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3471 else
3472 cpt_enable_fdi_bc_bifurcation(dev);
3473
3474 break;
3475 case PIPE_C:
3476 cpt_enable_fdi_bc_bifurcation(dev);
3477
3478 break;
3479 default:
3480 BUG();
3481 }
3482}
3483
f67a559d
JB
3484/*
3485 * Enable PCH resources required for PCH ports:
3486 * - PCH PLLs
3487 * - FDI training & RX/TX
3488 * - update transcoder timings
3489 * - DP transcoding bits
3490 * - transcoder
3491 */
3492static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3493{
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
ee7b9f93 3498 u32 reg, temp;
2c07245f 3499
ab9412ba 3500 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3501
1fbc0d78
DV
3502 if (IS_IVYBRIDGE(dev))
3503 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3504
cd986abb
DV
3505 /* Write the TU size bits before fdi link training, so that error
3506 * detection works. */
3507 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3508 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3509
c98e9dcf 3510 /* For PCH output, training FDI link */
674cf967 3511 dev_priv->display.fdi_link_train(crtc);
2c07245f 3512
3ad8a208
DV
3513 /* We need to program the right clock selection before writing the pixel
3514 * mutliplier into the DPLL. */
303b81e0 3515 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3516 u32 sel;
4b645f14 3517
c98e9dcf 3518 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3519 temp |= TRANS_DPLL_ENABLE(pipe);
3520 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3521 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3522 temp |= sel;
3523 else
3524 temp &= ~sel;
c98e9dcf 3525 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3526 }
5eddb70b 3527
3ad8a208
DV
3528 /* XXX: pch pll's can be enabled any time before we enable the PCH
3529 * transcoder, and we actually should do this to not upset any PCH
3530 * transcoder that already use the clock when we share it.
3531 *
3532 * Note that enable_shared_dpll tries to do the right thing, but
3533 * get_shared_dpll unconditionally resets the pll - we need that to have
3534 * the right LVDS enable sequence. */
85b3894f 3535 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3536
d9b6cb56
JB
3537 /* set transcoder timing, panel must allow it */
3538 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3539 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3540
303b81e0 3541 intel_fdi_normal_train(crtc);
5e84e1a4 3542
c98e9dcf
JB
3543 /* For PCH DP, enable TRANS_DP_CTL */
3544 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3545 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3546 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3547 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3548 reg = TRANS_DP_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3551 TRANS_DP_SYNC_MASK |
3552 TRANS_DP_BPC_MASK);
5eddb70b
CW
3553 temp |= (TRANS_DP_OUTPUT_ENABLE |
3554 TRANS_DP_ENH_FRAMING);
9325c9f0 3555 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3556
3557 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3558 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3559 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3560 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3561
3562 switch (intel_trans_dp_port_sel(crtc)) {
3563 case PCH_DP_B:
5eddb70b 3564 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3565 break;
3566 case PCH_DP_C:
5eddb70b 3567 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3568 break;
3569 case PCH_DP_D:
5eddb70b 3570 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3571 break;
3572 default:
e95d41e1 3573 BUG();
32f9d658 3574 }
2c07245f 3575
5eddb70b 3576 I915_WRITE(reg, temp);
6be4a607 3577 }
b52eb4dc 3578
b8a4f404 3579 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3580}
3581
1507e5bd
PZ
3582static void lpt_pch_enable(struct drm_crtc *crtc)
3583{
3584 struct drm_device *dev = crtc->dev;
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3587 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3588
ab9412ba 3589 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3590
8c52b5e8 3591 lpt_program_iclkip(crtc);
1507e5bd 3592
0540e488 3593 /* Set transcoder timing. */
275f01b2 3594 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3595
937bb610 3596 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3597}
3598
716c2e55 3599void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3600{
e2b78267 3601 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3602
3603 if (pll == NULL)
3604 return;
3605
3606 if (pll->refcount == 0) {
46edb027 3607 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3608 return;
3609 }
3610
f4a091c7
DV
3611 if (--pll->refcount == 0) {
3612 WARN_ON(pll->on);
3613 WARN_ON(pll->active);
3614 }
3615
a43f6e0f 3616 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3617}
3618
716c2e55 3619struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267
DV
3621 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3622 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3623 enum intel_dpll_id i;
ee7b9f93 3624
ee7b9f93 3625 if (pll) {
46edb027
DV
3626 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3627 crtc->base.base.id, pll->name);
e2b78267 3628 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3629 }
3630
98b6bd99
DV
3631 if (HAS_PCH_IBX(dev_priv->dev)) {
3632 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3633 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3634 pll = &dev_priv->shared_dplls[i];
98b6bd99 3635
46edb027
DV
3636 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3637 crtc->base.base.id, pll->name);
98b6bd99 3638
f2a69f44
DV
3639 WARN_ON(pll->refcount);
3640
98b6bd99
DV
3641 goto found;
3642 }
3643
e72f9fbf
DV
3644 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3645 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3646
3647 /* Only want to check enabled timings first */
3648 if (pll->refcount == 0)
3649 continue;
3650
b89a1d39
DV
3651 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3652 sizeof(pll->hw_state)) == 0) {
46edb027 3653 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3654 crtc->base.base.id,
46edb027 3655 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3656
3657 goto found;
3658 }
3659 }
3660
3661 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3662 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3663 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3664 if (pll->refcount == 0) {
46edb027
DV
3665 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3666 crtc->base.base.id, pll->name);
ee7b9f93
JB
3667 goto found;
3668 }
3669 }
3670
3671 return NULL;
3672
3673found:
f2a69f44
DV
3674 if (pll->refcount == 0)
3675 pll->hw_state = crtc->config.dpll_hw_state;
3676
a43f6e0f 3677 crtc->config.shared_dpll = i;
46edb027
DV
3678 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3679 pipe_name(crtc->pipe));
ee7b9f93 3680
cdbd2316 3681 pll->refcount++;
e04c7350 3682
ee7b9f93
JB
3683 return pll;
3684}
3685
a1520318 3686static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3687{
3688 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3689 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3690 u32 temp;
3691
3692 temp = I915_READ(dslreg);
3693 udelay(500);
3694 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3695 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3696 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3697 }
3698}
3699
b074cec8
JB
3700static void ironlake_pfit_enable(struct intel_crtc *crtc)
3701{
3702 struct drm_device *dev = crtc->base.dev;
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 int pipe = crtc->pipe;
3705
fd4daa9c 3706 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3707 /* Force use of hard-coded filter coefficients
3708 * as some pre-programmed values are broken,
3709 * e.g. x201.
3710 */
3711 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3712 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3713 PF_PIPE_SEL_IVB(pipe));
3714 else
3715 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3716 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3717 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3718 }
3719}
3720
bb53d4ae
VS
3721static void intel_enable_planes(struct drm_crtc *crtc)
3722{
3723 struct drm_device *dev = crtc->dev;
3724 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3725 struct drm_plane *plane;
bb53d4ae
VS
3726 struct intel_plane *intel_plane;
3727
af2b653b
MR
3728 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3729 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3730 if (intel_plane->pipe == pipe)
3731 intel_plane_restore(&intel_plane->base);
af2b653b 3732 }
bb53d4ae
VS
3733}
3734
3735static void intel_disable_planes(struct drm_crtc *crtc)
3736{
3737 struct drm_device *dev = crtc->dev;
3738 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3739 struct drm_plane *plane;
bb53d4ae
VS
3740 struct intel_plane *intel_plane;
3741
af2b653b
MR
3742 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3743 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3744 if (intel_plane->pipe == pipe)
3745 intel_plane_disable(&intel_plane->base);
af2b653b 3746 }
bb53d4ae
VS
3747}
3748
20bc8673 3749void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3750{
cea165c3
VS
3751 struct drm_device *dev = crtc->base.dev;
3752 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3753
3754 if (!crtc->config.ips_enabled)
3755 return;
3756
cea165c3
VS
3757 /* We can only enable IPS after we enable a plane and wait for a vblank */
3758 intel_wait_for_vblank(dev, crtc->pipe);
3759
d77e4531 3760 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3761 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3762 mutex_lock(&dev_priv->rps.hw_lock);
3763 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3764 mutex_unlock(&dev_priv->rps.hw_lock);
3765 /* Quoting Art Runyan: "its not safe to expect any particular
3766 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3767 * mailbox." Moreover, the mailbox may return a bogus state,
3768 * so we need to just enable it and continue on.
2a114cc1
BW
3769 */
3770 } else {
3771 I915_WRITE(IPS_CTL, IPS_ENABLE);
3772 /* The bit only becomes 1 in the next vblank, so this wait here
3773 * is essentially intel_wait_for_vblank. If we don't have this
3774 * and don't wait for vblanks until the end of crtc_enable, then
3775 * the HW state readout code will complain that the expected
3776 * IPS_CTL value is not the one we read. */
3777 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3778 DRM_ERROR("Timed out waiting for IPS enable\n");
3779 }
d77e4531
PZ
3780}
3781
20bc8673 3782void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3783{
3784 struct drm_device *dev = crtc->base.dev;
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786
3787 if (!crtc->config.ips_enabled)
3788 return;
3789
3790 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3791 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3792 mutex_lock(&dev_priv->rps.hw_lock);
3793 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3794 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3795 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3796 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3797 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3798 } else {
2a114cc1 3799 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3800 POSTING_READ(IPS_CTL);
3801 }
d77e4531
PZ
3802
3803 /* We need to wait for a vblank before we can disable the plane. */
3804 intel_wait_for_vblank(dev, crtc->pipe);
3805}
3806
3807/** Loads the palette/gamma unit for the CRTC with the prepared values */
3808static void intel_crtc_load_lut(struct drm_crtc *crtc)
3809{
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 enum pipe pipe = intel_crtc->pipe;
3814 int palreg = PALETTE(pipe);
3815 int i;
3816 bool reenable_ips = false;
3817
3818 /* The clocks have to be on to load the palette. */
3819 if (!crtc->enabled || !intel_crtc->active)
3820 return;
3821
3822 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3823 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3824 assert_dsi_pll_enabled(dev_priv);
3825 else
3826 assert_pll_enabled(dev_priv, pipe);
3827 }
3828
3829 /* use legacy palette for Ironlake */
7a1db49a 3830 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3831 palreg = LGC_PALETTE(pipe);
3832
3833 /* Workaround : Do not read or write the pipe palette/gamma data while
3834 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3835 */
41e6fc4c 3836 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3837 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3838 GAMMA_MODE_MODE_SPLIT)) {
3839 hsw_disable_ips(intel_crtc);
3840 reenable_ips = true;
3841 }
3842
3843 for (i = 0; i < 256; i++) {
3844 I915_WRITE(palreg + 4 * i,
3845 (intel_crtc->lut_r[i] << 16) |
3846 (intel_crtc->lut_g[i] << 8) |
3847 intel_crtc->lut_b[i]);
3848 }
3849
3850 if (reenable_ips)
3851 hsw_enable_ips(intel_crtc);
3852}
3853
d3eedb1a
VS
3854static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3855{
3856 if (!enable && intel_crtc->overlay) {
3857 struct drm_device *dev = intel_crtc->base.dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859
3860 mutex_lock(&dev->struct_mutex);
3861 dev_priv->mm.interruptible = false;
3862 (void) intel_overlay_switch_off(intel_crtc->overlay);
3863 dev_priv->mm.interruptible = true;
3864 mutex_unlock(&dev->struct_mutex);
3865 }
3866
3867 /* Let userspace switch the overlay on again. In most cases userspace
3868 * has to recompute where to put it anyway.
3869 */
3870}
3871
d3eedb1a 3872static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3873{
3874 struct drm_device *dev = crtc->dev;
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3877 int pipe = intel_crtc->pipe;
3878 int plane = intel_crtc->plane;
3879
f98551ae
VS
3880 drm_vblank_on(dev, pipe);
3881
a5c4d7bc
VS
3882 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3883 intel_enable_planes(crtc);
3884 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3885 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3886
3887 hsw_enable_ips(intel_crtc);
3888
3889 mutex_lock(&dev->struct_mutex);
3890 intel_update_fbc(dev);
3891 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3892
3893 /*
3894 * FIXME: Once we grow proper nuclear flip support out of this we need
3895 * to compute the mask of flip planes precisely. For the time being
3896 * consider this a flip from a NULL plane.
3897 */
3898 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3899}
3900
d3eedb1a 3901static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3902{
3903 struct drm_device *dev = crtc->dev;
3904 struct drm_i915_private *dev_priv = dev->dev_private;
3905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3906 int pipe = intel_crtc->pipe;
3907 int plane = intel_crtc->plane;
3908
3909 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3910
3911 if (dev_priv->fbc.plane == plane)
3912 intel_disable_fbc(dev);
3913
3914 hsw_disable_ips(intel_crtc);
3915
d3eedb1a 3916 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3917 intel_crtc_update_cursor(crtc, false);
3918 intel_disable_planes(crtc);
3919 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3920
f99d7069
DV
3921 /*
3922 * FIXME: Once we grow proper nuclear flip support out of this we need
3923 * to compute the mask of flip planes precisely. For the time being
3924 * consider this a flip to a NULL plane.
3925 */
3926 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927
f98551ae 3928 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3929}
3930
f67a559d
JB
3931static void ironlake_crtc_enable(struct drm_crtc *crtc)
3932{
3933 struct drm_device *dev = crtc->dev;
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3936 struct intel_encoder *encoder;
f67a559d 3937 int pipe = intel_crtc->pipe;
29407aab 3938 enum plane plane = intel_crtc->plane;
f67a559d 3939
08a48469
DV
3940 WARN_ON(!crtc->enabled);
3941
f67a559d
JB
3942 if (intel_crtc->active)
3943 return;
3944
b14b1055
DV
3945 if (intel_crtc->config.has_pch_encoder)
3946 intel_prepare_shared_dpll(intel_crtc);
3947
29407aab
DV
3948 if (intel_crtc->config.has_dp_encoder)
3949 intel_dp_set_m_n(intel_crtc);
3950
3951 intel_set_pipe_timings(intel_crtc);
3952
3953 if (intel_crtc->config.has_pch_encoder) {
3954 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 3955 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
3956 }
3957
3958 ironlake_set_pipeconf(crtc);
3959
3960 /* Set up the display plane register */
3961 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3962 POSTING_READ(DSPCNTR(plane));
3963
3964 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3965 crtc->x, crtc->y);
3966
f67a559d 3967 intel_crtc->active = true;
8664281b
PZ
3968
3969 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3970 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3971
f6736a1a 3972 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3973 if (encoder->pre_enable)
3974 encoder->pre_enable(encoder);
f67a559d 3975
5bfe2ac0 3976 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3977 /* Note: FDI PLL enabling _must_ be done before we enable the
3978 * cpu pipes, hence this is separate from all the other fdi/pch
3979 * enabling. */
88cefb6c 3980 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3981 } else {
3982 assert_fdi_tx_disabled(dev_priv, pipe);
3983 assert_fdi_rx_disabled(dev_priv, pipe);
3984 }
f67a559d 3985
b074cec8 3986 ironlake_pfit_enable(intel_crtc);
f67a559d 3987
9c54c0dd
JB
3988 /*
3989 * On ILK+ LUT must be loaded before the pipe is running but with
3990 * clocks enabled
3991 */
3992 intel_crtc_load_lut(crtc);
3993
f37fcc2a 3994 intel_update_watermarks(crtc);
e1fdc473 3995 intel_enable_pipe(intel_crtc);
f67a559d 3996
5bfe2ac0 3997 if (intel_crtc->config.has_pch_encoder)
f67a559d 3998 ironlake_pch_enable(crtc);
c98e9dcf 3999
fa5c73b1
DV
4000 for_each_encoder_on_crtc(dev, crtc, encoder)
4001 encoder->enable(encoder);
61b77ddd
DV
4002
4003 if (HAS_PCH_CPT(dev))
a1520318 4004 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4005
d3eedb1a 4006 intel_crtc_enable_planes(crtc);
6be4a607
JB
4007}
4008
42db64ef
PZ
4009/* IPS only exists on ULT machines and is tied to pipe A. */
4010static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4011{
f5adf94e 4012 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4013}
4014
e4916946
PZ
4015/*
4016 * This implements the workaround described in the "notes" section of the mode
4017 * set sequence documentation. When going from no pipes or single pipe to
4018 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4019 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4020 */
4021static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4022{
4023 struct drm_device *dev = crtc->base.dev;
4024 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4025
4026 /* We want to get the other_active_crtc only if there's only 1 other
4027 * active crtc. */
d3fcc808 4028 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4029 if (!crtc_it->active || crtc_it == crtc)
4030 continue;
4031
4032 if (other_active_crtc)
4033 return;
4034
4035 other_active_crtc = crtc_it;
4036 }
4037 if (!other_active_crtc)
4038 return;
4039
4040 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4041 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4042}
4043
4f771f10
PZ
4044static void haswell_crtc_enable(struct drm_crtc *crtc)
4045{
4046 struct drm_device *dev = crtc->dev;
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4049 struct intel_encoder *encoder;
4050 int pipe = intel_crtc->pipe;
229fca97 4051 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4052
4053 WARN_ON(!crtc->enabled);
4054
4055 if (intel_crtc->active)
4056 return;
4057
df8ad70c
DV
4058 if (intel_crtc_to_shared_dpll(intel_crtc))
4059 intel_enable_shared_dpll(intel_crtc);
4060
229fca97
DV
4061 if (intel_crtc->config.has_dp_encoder)
4062 intel_dp_set_m_n(intel_crtc);
4063
4064 intel_set_pipe_timings(intel_crtc);
4065
4066 if (intel_crtc->config.has_pch_encoder) {
4067 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4068 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4069 }
4070
4071 haswell_set_pipeconf(crtc);
4072
4073 intel_set_pipe_csc(crtc);
4074
4075 /* Set up the display plane register */
4076 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4077 POSTING_READ(DSPCNTR(plane));
4078
4079 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4080 crtc->x, crtc->y);
4081
4f771f10 4082 intel_crtc->active = true;
8664281b
PZ
4083
4084 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4085 for_each_encoder_on_crtc(dev, crtc, encoder)
4086 if (encoder->pre_enable)
4087 encoder->pre_enable(encoder);
4088
4fe9467d
ID
4089 if (intel_crtc->config.has_pch_encoder) {
4090 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4091 dev_priv->display.fdi_link_train(crtc);
4092 }
4093
1f544388 4094 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4095
b074cec8 4096 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4097
4098 /*
4099 * On ILK+ LUT must be loaded before the pipe is running but with
4100 * clocks enabled
4101 */
4102 intel_crtc_load_lut(crtc);
4103
1f544388 4104 intel_ddi_set_pipe_settings(crtc);
8228c251 4105 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4106
f37fcc2a 4107 intel_update_watermarks(crtc);
e1fdc473 4108 intel_enable_pipe(intel_crtc);
42db64ef 4109
5bfe2ac0 4110 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4111 lpt_pch_enable(crtc);
4f771f10 4112
0e32b39c
DA
4113 if (intel_crtc->config.dp_encoder_is_mst)
4114 intel_ddi_set_vc_payload_alloc(crtc, true);
4115
8807e55b 4116 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4117 encoder->enable(encoder);
8807e55b
JN
4118 intel_opregion_notify_encoder(encoder, true);
4119 }
4f771f10 4120
e4916946
PZ
4121 /* If we change the relative order between pipe/planes enabling, we need
4122 * to change the workaround. */
4123 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4124 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4125}
4126
3f8dce3a
DV
4127static void ironlake_pfit_disable(struct intel_crtc *crtc)
4128{
4129 struct drm_device *dev = crtc->base.dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 int pipe = crtc->pipe;
4132
4133 /* To avoid upsetting the power well on haswell only disable the pfit if
4134 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4135 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4136 I915_WRITE(PF_CTL(pipe), 0);
4137 I915_WRITE(PF_WIN_POS(pipe), 0);
4138 I915_WRITE(PF_WIN_SZ(pipe), 0);
4139 }
4140}
4141
6be4a607
JB
4142static void ironlake_crtc_disable(struct drm_crtc *crtc)
4143{
4144 struct drm_device *dev = crtc->dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4147 struct intel_encoder *encoder;
6be4a607 4148 int pipe = intel_crtc->pipe;
5eddb70b 4149 u32 reg, temp;
b52eb4dc 4150
f7abfe8b
CW
4151 if (!intel_crtc->active)
4152 return;
4153
d3eedb1a 4154 intel_crtc_disable_planes(crtc);
a5c4d7bc 4155
ea9d758d
DV
4156 for_each_encoder_on_crtc(dev, crtc, encoder)
4157 encoder->disable(encoder);
4158
d925c59a
DV
4159 if (intel_crtc->config.has_pch_encoder)
4160 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4161
b24e7179 4162 intel_disable_pipe(dev_priv, pipe);
32f9d658 4163
0e32b39c
DA
4164 if (intel_crtc->config.dp_encoder_is_mst)
4165 intel_ddi_set_vc_payload_alloc(crtc, false);
4166
3f8dce3a 4167 ironlake_pfit_disable(intel_crtc);
2c07245f 4168
bf49ec8c
DV
4169 for_each_encoder_on_crtc(dev, crtc, encoder)
4170 if (encoder->post_disable)
4171 encoder->post_disable(encoder);
2c07245f 4172
d925c59a
DV
4173 if (intel_crtc->config.has_pch_encoder) {
4174 ironlake_fdi_disable(crtc);
913d8d11 4175
d925c59a
DV
4176 ironlake_disable_pch_transcoder(dev_priv, pipe);
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4178
d925c59a
DV
4179 if (HAS_PCH_CPT(dev)) {
4180 /* disable TRANS_DP_CTL */
4181 reg = TRANS_DP_CTL(pipe);
4182 temp = I915_READ(reg);
4183 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4184 TRANS_DP_PORT_SEL_MASK);
4185 temp |= TRANS_DP_PORT_SEL_NONE;
4186 I915_WRITE(reg, temp);
4187
4188 /* disable DPLL_SEL */
4189 temp = I915_READ(PCH_DPLL_SEL);
11887397 4190 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4191 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4192 }
e3421a18 4193
d925c59a 4194 /* disable PCH DPLL */
e72f9fbf 4195 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4196
d925c59a
DV
4197 ironlake_fdi_pll_disable(intel_crtc);
4198 }
6b383a7f 4199
f7abfe8b 4200 intel_crtc->active = false;
46ba614c 4201 intel_update_watermarks(crtc);
d1ebd816
BW
4202
4203 mutex_lock(&dev->struct_mutex);
6b383a7f 4204 intel_update_fbc(dev);
d1ebd816 4205 mutex_unlock(&dev->struct_mutex);
6be4a607 4206}
1b3c7a47 4207
4f771f10 4208static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4209{
4f771f10
PZ
4210 struct drm_device *dev = crtc->dev;
4211 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4213 struct intel_encoder *encoder;
4214 int pipe = intel_crtc->pipe;
3b117c8f 4215 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4216
4f771f10
PZ
4217 if (!intel_crtc->active)
4218 return;
4219
d3eedb1a 4220 intel_crtc_disable_planes(crtc);
dda9a66a 4221
8807e55b
JN
4222 for_each_encoder_on_crtc(dev, crtc, encoder) {
4223 intel_opregion_notify_encoder(encoder, false);
4f771f10 4224 encoder->disable(encoder);
8807e55b 4225 }
4f771f10 4226
8664281b
PZ
4227 if (intel_crtc->config.has_pch_encoder)
4228 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4229 intel_disable_pipe(dev_priv, pipe);
4230
ad80a810 4231 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4232
3f8dce3a 4233 ironlake_pfit_disable(intel_crtc);
4f771f10 4234
1f544388 4235 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4236
88adfff1 4237 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4238 lpt_disable_pch_transcoder(dev_priv);
8664281b 4239 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4240 intel_ddi_fdi_disable(crtc);
83616634 4241 }
4f771f10 4242
97b040aa
ID
4243 for_each_encoder_on_crtc(dev, crtc, encoder)
4244 if (encoder->post_disable)
4245 encoder->post_disable(encoder);
4246
4f771f10 4247 intel_crtc->active = false;
46ba614c 4248 intel_update_watermarks(crtc);
4f771f10
PZ
4249
4250 mutex_lock(&dev->struct_mutex);
4251 intel_update_fbc(dev);
4252 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4253
4254 if (intel_crtc_to_shared_dpll(intel_crtc))
4255 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4256}
4257
ee7b9f93
JB
4258static void ironlake_crtc_off(struct drm_crtc *crtc)
4259{
4260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4261 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4262}
4263
6441ab5f 4264
2dd24552
JB
4265static void i9xx_pfit_enable(struct intel_crtc *crtc)
4266{
4267 struct drm_device *dev = crtc->base.dev;
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 struct intel_crtc_config *pipe_config = &crtc->config;
4270
328d8e82 4271 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4272 return;
4273
2dd24552 4274 /*
c0b03411
DV
4275 * The panel fitter should only be adjusted whilst the pipe is disabled,
4276 * according to register description and PRM.
2dd24552 4277 */
c0b03411
DV
4278 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4279 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4280
b074cec8
JB
4281 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4282 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4283
4284 /* Border color in case we don't scale up to the full screen. Black by
4285 * default, change to something else for debugging. */
4286 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4287}
4288
d05410f9
DA
4289static enum intel_display_power_domain port_to_power_domain(enum port port)
4290{
4291 switch (port) {
4292 case PORT_A:
4293 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4294 case PORT_B:
4295 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4296 case PORT_C:
4297 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4298 case PORT_D:
4299 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4300 default:
4301 WARN_ON_ONCE(1);
4302 return POWER_DOMAIN_PORT_OTHER;
4303 }
4304}
4305
77d22dca
ID
4306#define for_each_power_domain(domain, mask) \
4307 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4308 if ((1 << (domain)) & (mask))
4309
319be8ae
ID
4310enum intel_display_power_domain
4311intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4312{
4313 struct drm_device *dev = intel_encoder->base.dev;
4314 struct intel_digital_port *intel_dig_port;
4315
4316 switch (intel_encoder->type) {
4317 case INTEL_OUTPUT_UNKNOWN:
4318 /* Only DDI platforms should ever use this output type */
4319 WARN_ON_ONCE(!HAS_DDI(dev));
4320 case INTEL_OUTPUT_DISPLAYPORT:
4321 case INTEL_OUTPUT_HDMI:
4322 case INTEL_OUTPUT_EDP:
4323 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4324 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4325 case INTEL_OUTPUT_DP_MST:
4326 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4327 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4328 case INTEL_OUTPUT_ANALOG:
4329 return POWER_DOMAIN_PORT_CRT;
4330 case INTEL_OUTPUT_DSI:
4331 return POWER_DOMAIN_PORT_DSI;
4332 default:
4333 return POWER_DOMAIN_PORT_OTHER;
4334 }
4335}
4336
4337static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4338{
319be8ae
ID
4339 struct drm_device *dev = crtc->dev;
4340 struct intel_encoder *intel_encoder;
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4342 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4343 unsigned long mask;
4344 enum transcoder transcoder;
4345
4346 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4347
4348 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4349 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4350 if (intel_crtc->config.pch_pfit.enabled ||
4351 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4352 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4353
319be8ae
ID
4354 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4355 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4356
77d22dca
ID
4357 return mask;
4358}
4359
4360void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4361 bool enable)
4362{
4363 if (dev_priv->power_domains.init_power_on == enable)
4364 return;
4365
4366 if (enable)
4367 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4368 else
4369 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4370
4371 dev_priv->power_domains.init_power_on = enable;
4372}
4373
4374static void modeset_update_crtc_power_domains(struct drm_device *dev)
4375{
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4378 struct intel_crtc *crtc;
4379
4380 /*
4381 * First get all needed power domains, then put all unneeded, to avoid
4382 * any unnecessary toggling of the power wells.
4383 */
d3fcc808 4384 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4385 enum intel_display_power_domain domain;
4386
4387 if (!crtc->base.enabled)
4388 continue;
4389
319be8ae 4390 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4391
4392 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4393 intel_display_power_get(dev_priv, domain);
4394 }
4395
d3fcc808 4396 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4397 enum intel_display_power_domain domain;
4398
4399 for_each_power_domain(domain, crtc->enabled_power_domains)
4400 intel_display_power_put(dev_priv, domain);
4401
4402 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4403 }
4404
4405 intel_display_set_init_power(dev_priv, false);
4406}
4407
dfcab17e 4408/* returns HPLL frequency in kHz */
f8bf63fd 4409static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4410{
586f49dc 4411 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4412
586f49dc
JB
4413 /* Obtain SKU information */
4414 mutex_lock(&dev_priv->dpio_lock);
4415 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4416 CCK_FUSE_HPLL_FREQ_MASK;
4417 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4418
dfcab17e 4419 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4420}
4421
f8bf63fd
VS
4422static void vlv_update_cdclk(struct drm_device *dev)
4423{
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425
4426 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4427 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4428 dev_priv->vlv_cdclk_freq);
4429
4430 /*
4431 * Program the gmbus_freq based on the cdclk frequency.
4432 * BSpec erroneously claims we should aim for 4MHz, but
4433 * in fact 1MHz is the correct frequency.
4434 */
4435 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4436}
4437
30a970c6
JB
4438/* Adjust CDclk dividers to allow high res or save power if possible */
4439static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4440{
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 u32 val, cmd;
4443
d197b7d3 4444 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4445
dfcab17e 4446 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4447 cmd = 2;
dfcab17e 4448 else if (cdclk == 266667)
30a970c6
JB
4449 cmd = 1;
4450 else
4451 cmd = 0;
4452
4453 mutex_lock(&dev_priv->rps.hw_lock);
4454 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4455 val &= ~DSPFREQGUAR_MASK;
4456 val |= (cmd << DSPFREQGUAR_SHIFT);
4457 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4458 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4459 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4460 50)) {
4461 DRM_ERROR("timed out waiting for CDclk change\n");
4462 }
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464
dfcab17e 4465 if (cdclk == 400000) {
30a970c6
JB
4466 u32 divider, vco;
4467
4468 vco = valleyview_get_vco(dev_priv);
dfcab17e 4469 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4470
4471 mutex_lock(&dev_priv->dpio_lock);
4472 /* adjust cdclk divider */
4473 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4474 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4475 val |= divider;
4476 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4477
4478 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4479 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4480 50))
4481 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4482 mutex_unlock(&dev_priv->dpio_lock);
4483 }
4484
4485 mutex_lock(&dev_priv->dpio_lock);
4486 /* adjust self-refresh exit latency value */
4487 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4488 val &= ~0x7f;
4489
4490 /*
4491 * For high bandwidth configs, we set a higher latency in the bunit
4492 * so that the core display fetch happens in time to avoid underruns.
4493 */
dfcab17e 4494 if (cdclk == 400000)
30a970c6
JB
4495 val |= 4500 / 250; /* 4.5 usec */
4496 else
4497 val |= 3000 / 250; /* 3.0 usec */
4498 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4499 mutex_unlock(&dev_priv->dpio_lock);
4500
f8bf63fd 4501 vlv_update_cdclk(dev);
30a970c6
JB
4502}
4503
383c5a6a
VS
4504static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4505{
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 u32 val, cmd;
4508
4509 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4510
4511 switch (cdclk) {
4512 case 400000:
4513 cmd = 3;
4514 break;
4515 case 333333:
4516 case 320000:
4517 cmd = 2;
4518 break;
4519 case 266667:
4520 cmd = 1;
4521 break;
4522 case 200000:
4523 cmd = 0;
4524 break;
4525 default:
4526 WARN_ON(1);
4527 return;
4528 }
4529
4530 mutex_lock(&dev_priv->rps.hw_lock);
4531 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4532 val &= ~DSPFREQGUAR_MASK_CHV;
4533 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4534 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4535 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4536 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4537 50)) {
4538 DRM_ERROR("timed out waiting for CDclk change\n");
4539 }
4540 mutex_unlock(&dev_priv->rps.hw_lock);
4541
4542 vlv_update_cdclk(dev);
4543}
4544
30a970c6
JB
4545static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4546 int max_pixclk)
4547{
29dc7ef3
VS
4548 int vco = valleyview_get_vco(dev_priv);
4549 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4550
d49a340d
VS
4551 /* FIXME: Punit isn't quite ready yet */
4552 if (IS_CHERRYVIEW(dev_priv->dev))
4553 return 400000;
4554
30a970c6
JB
4555 /*
4556 * Really only a few cases to deal with, as only 4 CDclks are supported:
4557 * 200MHz
4558 * 267MHz
29dc7ef3 4559 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4560 * 400MHz
4561 * So we check to see whether we're above 90% of the lower bin and
4562 * adjust if needed.
e37c67a1
VS
4563 *
4564 * We seem to get an unstable or solid color picture at 200MHz.
4565 * Not sure what's wrong. For now use 200MHz only when all pipes
4566 * are off.
30a970c6 4567 */
29dc7ef3 4568 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4569 return 400000;
4570 else if (max_pixclk > 266667*9/10)
29dc7ef3 4571 return freq_320;
e37c67a1 4572 else if (max_pixclk > 0)
dfcab17e 4573 return 266667;
e37c67a1
VS
4574 else
4575 return 200000;
30a970c6
JB
4576}
4577
2f2d7aa1
VS
4578/* compute the max pixel clock for new configuration */
4579static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4580{
4581 struct drm_device *dev = dev_priv->dev;
4582 struct intel_crtc *intel_crtc;
4583 int max_pixclk = 0;
4584
d3fcc808 4585 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4586 if (intel_crtc->new_enabled)
30a970c6 4587 max_pixclk = max(max_pixclk,
2f2d7aa1 4588 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4589 }
4590
4591 return max_pixclk;
4592}
4593
4594static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4595 unsigned *prepare_pipes)
30a970c6
JB
4596{
4597 struct drm_i915_private *dev_priv = dev->dev_private;
4598 struct intel_crtc *intel_crtc;
2f2d7aa1 4599 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4600
d60c4473
ID
4601 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4602 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4603 return;
4604
2f2d7aa1 4605 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4606 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4607 if (intel_crtc->base.enabled)
4608 *prepare_pipes |= (1 << intel_crtc->pipe);
4609}
4610
4611static void valleyview_modeset_global_resources(struct drm_device *dev)
4612{
4613 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4614 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4615 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4616
383c5a6a
VS
4617 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4618 if (IS_CHERRYVIEW(dev))
4619 cherryview_set_cdclk(dev, req_cdclk);
4620 else
4621 valleyview_set_cdclk(dev, req_cdclk);
4622 }
4623
77961eb9 4624 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4625}
4626
89b667f8
JB
4627static void valleyview_crtc_enable(struct drm_crtc *crtc)
4628{
4629 struct drm_device *dev = crtc->dev;
5b18e57c 4630 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4632 struct intel_encoder *encoder;
4633 int pipe = intel_crtc->pipe;
5b18e57c 4634 int plane = intel_crtc->plane;
23538ef1 4635 bool is_dsi;
5b18e57c 4636 u32 dspcntr;
89b667f8
JB
4637
4638 WARN_ON(!crtc->enabled);
4639
4640 if (intel_crtc->active)
4641 return;
4642
8525a235
SK
4643 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4644
4645 if (!is_dsi && !IS_CHERRYVIEW(dev))
4646 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4647
5b18e57c
DV
4648 /* Set up the display plane register */
4649 dspcntr = DISPPLANE_GAMMA_ENABLE;
4650
4651 if (intel_crtc->config.has_dp_encoder)
4652 intel_dp_set_m_n(intel_crtc);
4653
4654 intel_set_pipe_timings(intel_crtc);
4655
4656 /* pipesrc and dspsize control the size that is scaled from,
4657 * which should always be the user's requested size.
4658 */
4659 I915_WRITE(DSPSIZE(plane),
4660 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4661 (intel_crtc->config.pipe_src_w - 1));
4662 I915_WRITE(DSPPOS(plane), 0);
4663
4664 i9xx_set_pipeconf(intel_crtc);
4665
4666 I915_WRITE(DSPCNTR(plane), dspcntr);
4667 POSTING_READ(DSPCNTR(plane));
4668
4669 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4670 crtc->x, crtc->y);
4671
89b667f8 4672 intel_crtc->active = true;
89b667f8 4673
4a3436e8
VS
4674 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4675
89b667f8
JB
4676 for_each_encoder_on_crtc(dev, crtc, encoder)
4677 if (encoder->pre_pll_enable)
4678 encoder->pre_pll_enable(encoder);
4679
9d556c99
CML
4680 if (!is_dsi) {
4681 if (IS_CHERRYVIEW(dev))
4682 chv_enable_pll(intel_crtc);
4683 else
4684 vlv_enable_pll(intel_crtc);
4685 }
89b667f8
JB
4686
4687 for_each_encoder_on_crtc(dev, crtc, encoder)
4688 if (encoder->pre_enable)
4689 encoder->pre_enable(encoder);
4690
2dd24552
JB
4691 i9xx_pfit_enable(intel_crtc);
4692
63cbb074
VS
4693 intel_crtc_load_lut(crtc);
4694
f37fcc2a 4695 intel_update_watermarks(crtc);
e1fdc473 4696 intel_enable_pipe(intel_crtc);
be6a6f8e 4697
5004945f
JN
4698 for_each_encoder_on_crtc(dev, crtc, encoder)
4699 encoder->enable(encoder);
9ab0460b
VS
4700
4701 intel_crtc_enable_planes(crtc);
d40d9187 4702
56b80e1f
VS
4703 /* Underruns don't raise interrupts, so check manually. */
4704 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4705}
4706
f13c2ef3
DV
4707static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4708{
4709 struct drm_device *dev = crtc->base.dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4713 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4714}
4715
0b8765c6 4716static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4717{
4718 struct drm_device *dev = crtc->dev;
5b18e57c 4719 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4721 struct intel_encoder *encoder;
79e53945 4722 int pipe = intel_crtc->pipe;
5b18e57c
DV
4723 int plane = intel_crtc->plane;
4724 u32 dspcntr;
79e53945 4725
08a48469
DV
4726 WARN_ON(!crtc->enabled);
4727
f7abfe8b
CW
4728 if (intel_crtc->active)
4729 return;
4730
f13c2ef3
DV
4731 i9xx_set_pll_dividers(intel_crtc);
4732
5b18e57c
DV
4733 /* Set up the display plane register */
4734 dspcntr = DISPPLANE_GAMMA_ENABLE;
4735
4736 if (pipe == 0)
4737 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4738 else
4739 dspcntr |= DISPPLANE_SEL_PIPE_B;
4740
4741 if (intel_crtc->config.has_dp_encoder)
4742 intel_dp_set_m_n(intel_crtc);
4743
4744 intel_set_pipe_timings(intel_crtc);
4745
4746 /* pipesrc and dspsize control the size that is scaled from,
4747 * which should always be the user's requested size.
4748 */
4749 I915_WRITE(DSPSIZE(plane),
4750 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4751 (intel_crtc->config.pipe_src_w - 1));
4752 I915_WRITE(DSPPOS(plane), 0);
4753
4754 i9xx_set_pipeconf(intel_crtc);
4755
4756 I915_WRITE(DSPCNTR(plane), dspcntr);
4757 POSTING_READ(DSPCNTR(plane));
4758
4759 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4760 crtc->x, crtc->y);
4761
f7abfe8b 4762 intel_crtc->active = true;
6b383a7f 4763
4a3436e8
VS
4764 if (!IS_GEN2(dev))
4765 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4766
9d6d9f19
MK
4767 for_each_encoder_on_crtc(dev, crtc, encoder)
4768 if (encoder->pre_enable)
4769 encoder->pre_enable(encoder);
4770
f6736a1a
DV
4771 i9xx_enable_pll(intel_crtc);
4772
2dd24552
JB
4773 i9xx_pfit_enable(intel_crtc);
4774
63cbb074
VS
4775 intel_crtc_load_lut(crtc);
4776
f37fcc2a 4777 intel_update_watermarks(crtc);
e1fdc473 4778 intel_enable_pipe(intel_crtc);
be6a6f8e 4779
fa5c73b1
DV
4780 for_each_encoder_on_crtc(dev, crtc, encoder)
4781 encoder->enable(encoder);
9ab0460b
VS
4782
4783 intel_crtc_enable_planes(crtc);
d40d9187 4784
4a3436e8
VS
4785 /*
4786 * Gen2 reports pipe underruns whenever all planes are disabled.
4787 * So don't enable underrun reporting before at least some planes
4788 * are enabled.
4789 * FIXME: Need to fix the logic to work when we turn off all planes
4790 * but leave the pipe running.
4791 */
4792 if (IS_GEN2(dev))
4793 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4794
56b80e1f
VS
4795 /* Underruns don't raise interrupts, so check manually. */
4796 i9xx_check_fifo_underruns(dev);
0b8765c6 4797}
79e53945 4798
87476d63
DV
4799static void i9xx_pfit_disable(struct intel_crtc *crtc)
4800{
4801 struct drm_device *dev = crtc->base.dev;
4802 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4803
328d8e82
DV
4804 if (!crtc->config.gmch_pfit.control)
4805 return;
87476d63 4806
328d8e82 4807 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4808
328d8e82
DV
4809 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4810 I915_READ(PFIT_CONTROL));
4811 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4812}
4813
0b8765c6
JB
4814static void i9xx_crtc_disable(struct drm_crtc *crtc)
4815{
4816 struct drm_device *dev = crtc->dev;
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4819 struct intel_encoder *encoder;
0b8765c6 4820 int pipe = intel_crtc->pipe;
ef9c3aee 4821
f7abfe8b
CW
4822 if (!intel_crtc->active)
4823 return;
4824
4a3436e8
VS
4825 /*
4826 * Gen2 reports pipe underruns whenever all planes are disabled.
4827 * So diasble underrun reporting before all the planes get disabled.
4828 * FIXME: Need to fix the logic to work when we turn off all planes
4829 * but leave the pipe running.
4830 */
4831 if (IS_GEN2(dev))
4832 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4833
564ed191
ID
4834 /*
4835 * Vblank time updates from the shadow to live plane control register
4836 * are blocked if the memory self-refresh mode is active at that
4837 * moment. So to make sure the plane gets truly disabled, disable
4838 * first the self-refresh mode. The self-refresh enable bit in turn
4839 * will be checked/applied by the HW only at the next frame start
4840 * event which is after the vblank start event, so we need to have a
4841 * wait-for-vblank between disabling the plane and the pipe.
4842 */
4843 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4844 intel_crtc_disable_planes(crtc);
4845
ea9d758d
DV
4846 for_each_encoder_on_crtc(dev, crtc, encoder)
4847 encoder->disable(encoder);
4848
6304cd91
VS
4849 /*
4850 * On gen2 planes are double buffered but the pipe isn't, so we must
4851 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4852 * We also need to wait on all gmch platforms because of the
4853 * self-refresh mode constraint explained above.
6304cd91 4854 */
564ed191 4855 intel_wait_for_vblank(dev, pipe);
6304cd91 4856
b24e7179 4857 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4858
87476d63 4859 i9xx_pfit_disable(intel_crtc);
24a1f16d 4860
89b667f8
JB
4861 for_each_encoder_on_crtc(dev, crtc, encoder)
4862 if (encoder->post_disable)
4863 encoder->post_disable(encoder);
4864
076ed3b2
CML
4865 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4866 if (IS_CHERRYVIEW(dev))
4867 chv_disable_pll(dev_priv, pipe);
4868 else if (IS_VALLEYVIEW(dev))
4869 vlv_disable_pll(dev_priv, pipe);
4870 else
4871 i9xx_disable_pll(dev_priv, pipe);
4872 }
0b8765c6 4873
4a3436e8
VS
4874 if (!IS_GEN2(dev))
4875 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4876
f7abfe8b 4877 intel_crtc->active = false;
46ba614c 4878 intel_update_watermarks(crtc);
f37fcc2a 4879
efa9624e 4880 mutex_lock(&dev->struct_mutex);
6b383a7f 4881 intel_update_fbc(dev);
efa9624e 4882 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4883}
4884
ee7b9f93
JB
4885static void i9xx_crtc_off(struct drm_crtc *crtc)
4886{
4887}
4888
976f8a20
DV
4889static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4890 bool enabled)
2c07245f
ZW
4891{
4892 struct drm_device *dev = crtc->dev;
4893 struct drm_i915_master_private *master_priv;
4894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4895 int pipe = intel_crtc->pipe;
79e53945
JB
4896
4897 if (!dev->primary->master)
4898 return;
4899
4900 master_priv = dev->primary->master->driver_priv;
4901 if (!master_priv->sarea_priv)
4902 return;
4903
79e53945
JB
4904 switch (pipe) {
4905 case 0:
4906 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4907 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4908 break;
4909 case 1:
4910 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4911 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4912 break;
4913 default:
9db4a9c7 4914 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4915 break;
4916 }
79e53945
JB
4917}
4918
b04c5bd6
BF
4919/* Master function to enable/disable CRTC and corresponding power wells */
4920void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4921{
4922 struct drm_device *dev = crtc->dev;
4923 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4925 enum intel_display_power_domain domain;
4926 unsigned long domains;
976f8a20 4927
0e572fe7
DV
4928 if (enable) {
4929 if (!intel_crtc->active) {
e1e9fb84
DV
4930 domains = get_crtc_power_domains(crtc);
4931 for_each_power_domain(domain, domains)
4932 intel_display_power_get(dev_priv, domain);
4933 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4934
4935 dev_priv->display.crtc_enable(crtc);
4936 }
4937 } else {
4938 if (intel_crtc->active) {
4939 dev_priv->display.crtc_disable(crtc);
4940
e1e9fb84
DV
4941 domains = intel_crtc->enabled_power_domains;
4942 for_each_power_domain(domain, domains)
4943 intel_display_power_put(dev_priv, domain);
4944 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4945 }
4946 }
b04c5bd6
BF
4947}
4948
4949/**
4950 * Sets the power management mode of the pipe and plane.
4951 */
4952void intel_crtc_update_dpms(struct drm_crtc *crtc)
4953{
4954 struct drm_device *dev = crtc->dev;
4955 struct intel_encoder *intel_encoder;
4956 bool enable = false;
4957
4958 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4959 enable |= intel_encoder->connectors_active;
4960
4961 intel_crtc_control(crtc, enable);
976f8a20
DV
4962
4963 intel_crtc_update_sarea(crtc, enable);
4964}
4965
cdd59983
CW
4966static void intel_crtc_disable(struct drm_crtc *crtc)
4967{
cdd59983 4968 struct drm_device *dev = crtc->dev;
976f8a20 4969 struct drm_connector *connector;
ee7b9f93 4970 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4971 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4972 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4973
976f8a20
DV
4974 /* crtc should still be enabled when we disable it. */
4975 WARN_ON(!crtc->enabled);
4976
4977 dev_priv->display.crtc_disable(crtc);
4978 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4979 dev_priv->display.off(crtc);
4980
f4510a27 4981 if (crtc->primary->fb) {
cdd59983 4982 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4983 intel_unpin_fb_obj(old_obj);
4984 i915_gem_track_fb(old_obj, NULL,
4985 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4986 mutex_unlock(&dev->struct_mutex);
f4510a27 4987 crtc->primary->fb = NULL;
976f8a20
DV
4988 }
4989
4990 /* Update computed state. */
4991 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4992 if (!connector->encoder || !connector->encoder->crtc)
4993 continue;
4994
4995 if (connector->encoder->crtc != crtc)
4996 continue;
4997
4998 connector->dpms = DRM_MODE_DPMS_OFF;
4999 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5000 }
5001}
5002
ea5b213a 5003void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5004{
4ef69c7a 5005 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5006
ea5b213a
CW
5007 drm_encoder_cleanup(encoder);
5008 kfree(intel_encoder);
7e7d76c3
JB
5009}
5010
9237329d 5011/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5012 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5013 * state of the entire output pipe. */
9237329d 5014static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5015{
5ab432ef
DV
5016 if (mode == DRM_MODE_DPMS_ON) {
5017 encoder->connectors_active = true;
5018
b2cabb0e 5019 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5020 } else {
5021 encoder->connectors_active = false;
5022
b2cabb0e 5023 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5024 }
79e53945
JB
5025}
5026
0a91ca29
DV
5027/* Cross check the actual hw state with our own modeset state tracking (and it's
5028 * internal consistency). */
b980514c 5029static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5030{
0a91ca29
DV
5031 if (connector->get_hw_state(connector)) {
5032 struct intel_encoder *encoder = connector->encoder;
5033 struct drm_crtc *crtc;
5034 bool encoder_enabled;
5035 enum pipe pipe;
5036
5037 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5038 connector->base.base.id,
c23cc417 5039 connector->base.name);
0a91ca29 5040
0e32b39c
DA
5041 /* there is no real hw state for MST connectors */
5042 if (connector->mst_port)
5043 return;
5044
0a91ca29
DV
5045 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5046 "wrong connector dpms state\n");
5047 WARN(connector->base.encoder != &encoder->base,
5048 "active connector not linked to encoder\n");
0a91ca29 5049
36cd7444
DA
5050 if (encoder) {
5051 WARN(!encoder->connectors_active,
5052 "encoder->connectors_active not set\n");
5053
5054 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5055 WARN(!encoder_enabled, "encoder not enabled\n");
5056 if (WARN_ON(!encoder->base.crtc))
5057 return;
0a91ca29 5058
36cd7444 5059 crtc = encoder->base.crtc;
0a91ca29 5060
36cd7444
DA
5061 WARN(!crtc->enabled, "crtc not enabled\n");
5062 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5063 WARN(pipe != to_intel_crtc(crtc)->pipe,
5064 "encoder active on the wrong pipe\n");
5065 }
0a91ca29 5066 }
79e53945
JB
5067}
5068
5ab432ef
DV
5069/* Even simpler default implementation, if there's really no special case to
5070 * consider. */
5071void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5072{
5ab432ef
DV
5073 /* All the simple cases only support two dpms states. */
5074 if (mode != DRM_MODE_DPMS_ON)
5075 mode = DRM_MODE_DPMS_OFF;
d4270e57 5076
5ab432ef
DV
5077 if (mode == connector->dpms)
5078 return;
5079
5080 connector->dpms = mode;
5081
5082 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5083 if (connector->encoder)
5084 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5085
b980514c 5086 intel_modeset_check_state(connector->dev);
79e53945
JB
5087}
5088
f0947c37
DV
5089/* Simple connector->get_hw_state implementation for encoders that support only
5090 * one connector and no cloning and hence the encoder state determines the state
5091 * of the connector. */
5092bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5093{
24929352 5094 enum pipe pipe = 0;
f0947c37 5095 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5096
f0947c37 5097 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5098}
5099
1857e1da
DV
5100static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5101 struct intel_crtc_config *pipe_config)
5102{
5103 struct drm_i915_private *dev_priv = dev->dev_private;
5104 struct intel_crtc *pipe_B_crtc =
5105 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5106
5107 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5108 pipe_name(pipe), pipe_config->fdi_lanes);
5109 if (pipe_config->fdi_lanes > 4) {
5110 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5111 pipe_name(pipe), pipe_config->fdi_lanes);
5112 return false;
5113 }
5114
bafb6553 5115 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5116 if (pipe_config->fdi_lanes > 2) {
5117 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5118 pipe_config->fdi_lanes);
5119 return false;
5120 } else {
5121 return true;
5122 }
5123 }
5124
5125 if (INTEL_INFO(dev)->num_pipes == 2)
5126 return true;
5127
5128 /* Ivybridge 3 pipe is really complicated */
5129 switch (pipe) {
5130 case PIPE_A:
5131 return true;
5132 case PIPE_B:
5133 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5134 pipe_config->fdi_lanes > 2) {
5135 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5136 pipe_name(pipe), pipe_config->fdi_lanes);
5137 return false;
5138 }
5139 return true;
5140 case PIPE_C:
1e833f40 5141 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5142 pipe_B_crtc->config.fdi_lanes <= 2) {
5143 if (pipe_config->fdi_lanes > 2) {
5144 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5145 pipe_name(pipe), pipe_config->fdi_lanes);
5146 return false;
5147 }
5148 } else {
5149 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5150 return false;
5151 }
5152 return true;
5153 default:
5154 BUG();
5155 }
5156}
5157
e29c22c0
DV
5158#define RETRY 1
5159static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5160 struct intel_crtc_config *pipe_config)
877d48d5 5161{
1857e1da 5162 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5163 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5164 int lane, link_bw, fdi_dotclock;
e29c22c0 5165 bool setup_ok, needs_recompute = false;
877d48d5 5166
e29c22c0 5167retry:
877d48d5
DV
5168 /* FDI is a binary signal running at ~2.7GHz, encoding
5169 * each output octet as 10 bits. The actual frequency
5170 * is stored as a divider into a 100MHz clock, and the
5171 * mode pixel clock is stored in units of 1KHz.
5172 * Hence the bw of each lane in terms of the mode signal
5173 * is:
5174 */
5175 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5176
241bfc38 5177 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5178
2bd89a07 5179 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5180 pipe_config->pipe_bpp);
5181
5182 pipe_config->fdi_lanes = lane;
5183
2bd89a07 5184 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5185 link_bw, &pipe_config->fdi_m_n);
1857e1da 5186
e29c22c0
DV
5187 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5188 intel_crtc->pipe, pipe_config);
5189 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5190 pipe_config->pipe_bpp -= 2*3;
5191 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5192 pipe_config->pipe_bpp);
5193 needs_recompute = true;
5194 pipe_config->bw_constrained = true;
5195
5196 goto retry;
5197 }
5198
5199 if (needs_recompute)
5200 return RETRY;
5201
5202 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5203}
5204
42db64ef
PZ
5205static void hsw_compute_ips_config(struct intel_crtc *crtc,
5206 struct intel_crtc_config *pipe_config)
5207{
d330a953 5208 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5209 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5210 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5211}
5212
a43f6e0f 5213static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5214 struct intel_crtc_config *pipe_config)
79e53945 5215{
a43f6e0f 5216 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5217 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5218
ad3a4479 5219 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5220 if (INTEL_INFO(dev)->gen < 4) {
5221 struct drm_i915_private *dev_priv = dev->dev_private;
5222 int clock_limit =
5223 dev_priv->display.get_display_clock_speed(dev);
5224
5225 /*
5226 * Enable pixel doubling when the dot clock
5227 * is > 90% of the (display) core speed.
5228 *
b397c96b
VS
5229 * GDG double wide on either pipe,
5230 * otherwise pipe A only.
cf532bb2 5231 */
b397c96b 5232 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5233 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5234 clock_limit *= 2;
cf532bb2 5235 pipe_config->double_wide = true;
ad3a4479
VS
5236 }
5237
241bfc38 5238 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5239 return -EINVAL;
2c07245f 5240 }
89749350 5241
1d1d0e27
VS
5242 /*
5243 * Pipe horizontal size must be even in:
5244 * - DVO ganged mode
5245 * - LVDS dual channel mode
5246 * - Double wide pipe
5247 */
5248 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5249 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5250 pipe_config->pipe_src_w &= ~1;
5251
8693a824
DL
5252 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5253 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5254 */
5255 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5256 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5257 return -EINVAL;
44f46b42 5258
bd080ee5 5259 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5260 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5261 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5262 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5263 * for lvds. */
5264 pipe_config->pipe_bpp = 8*3;
5265 }
5266
f5adf94e 5267 if (HAS_IPS(dev))
a43f6e0f
DV
5268 hsw_compute_ips_config(crtc, pipe_config);
5269
12030431
DV
5270 /*
5271 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5272 * old clock survives for now.
5273 */
5274 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5275 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5276
877d48d5 5277 if (pipe_config->has_pch_encoder)
a43f6e0f 5278 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5279
e29c22c0 5280 return 0;
79e53945
JB
5281}
5282
25eb05fc
JB
5283static int valleyview_get_display_clock_speed(struct drm_device *dev)
5284{
d197b7d3
VS
5285 struct drm_i915_private *dev_priv = dev->dev_private;
5286 int vco = valleyview_get_vco(dev_priv);
5287 u32 val;
5288 int divider;
5289
d49a340d
VS
5290 /* FIXME: Punit isn't quite ready yet */
5291 if (IS_CHERRYVIEW(dev))
5292 return 400000;
5293
d197b7d3
VS
5294 mutex_lock(&dev_priv->dpio_lock);
5295 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5296 mutex_unlock(&dev_priv->dpio_lock);
5297
5298 divider = val & DISPLAY_FREQUENCY_VALUES;
5299
7d007f40
VS
5300 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5301 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5302 "cdclk change in progress\n");
5303
d197b7d3 5304 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5305}
5306
e70236a8
JB
5307static int i945_get_display_clock_speed(struct drm_device *dev)
5308{
5309 return 400000;
5310}
79e53945 5311
e70236a8 5312static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5313{
e70236a8
JB
5314 return 333000;
5315}
79e53945 5316
e70236a8
JB
5317static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5318{
5319 return 200000;
5320}
79e53945 5321
257a7ffc
DV
5322static int pnv_get_display_clock_speed(struct drm_device *dev)
5323{
5324 u16 gcfgc = 0;
5325
5326 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5327
5328 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5329 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5330 return 267000;
5331 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5332 return 333000;
5333 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5334 return 444000;
5335 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5336 return 200000;
5337 default:
5338 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5339 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5340 return 133000;
5341 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5342 return 167000;
5343 }
5344}
5345
e70236a8
JB
5346static int i915gm_get_display_clock_speed(struct drm_device *dev)
5347{
5348 u16 gcfgc = 0;
79e53945 5349
e70236a8
JB
5350 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5351
5352 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5353 return 133000;
5354 else {
5355 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5356 case GC_DISPLAY_CLOCK_333_MHZ:
5357 return 333000;
5358 default:
5359 case GC_DISPLAY_CLOCK_190_200_MHZ:
5360 return 190000;
79e53945 5361 }
e70236a8
JB
5362 }
5363}
5364
5365static int i865_get_display_clock_speed(struct drm_device *dev)
5366{
5367 return 266000;
5368}
5369
5370static int i855_get_display_clock_speed(struct drm_device *dev)
5371{
5372 u16 hpllcc = 0;
5373 /* Assume that the hardware is in the high speed state. This
5374 * should be the default.
5375 */
5376 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5377 case GC_CLOCK_133_200:
5378 case GC_CLOCK_100_200:
5379 return 200000;
5380 case GC_CLOCK_166_250:
5381 return 250000;
5382 case GC_CLOCK_100_133:
79e53945 5383 return 133000;
e70236a8 5384 }
79e53945 5385
e70236a8
JB
5386 /* Shouldn't happen */
5387 return 0;
5388}
79e53945 5389
e70236a8
JB
5390static int i830_get_display_clock_speed(struct drm_device *dev)
5391{
5392 return 133000;
79e53945
JB
5393}
5394
2c07245f 5395static void
a65851af 5396intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5397{
a65851af
VS
5398 while (*num > DATA_LINK_M_N_MASK ||
5399 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5400 *num >>= 1;
5401 *den >>= 1;
5402 }
5403}
5404
a65851af
VS
5405static void compute_m_n(unsigned int m, unsigned int n,
5406 uint32_t *ret_m, uint32_t *ret_n)
5407{
5408 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5409 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5410 intel_reduce_m_n_ratio(ret_m, ret_n);
5411}
5412
e69d0bc1
DV
5413void
5414intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5415 int pixel_clock, int link_clock,
5416 struct intel_link_m_n *m_n)
2c07245f 5417{
e69d0bc1 5418 m_n->tu = 64;
a65851af
VS
5419
5420 compute_m_n(bits_per_pixel * pixel_clock,
5421 link_clock * nlanes * 8,
5422 &m_n->gmch_m, &m_n->gmch_n);
5423
5424 compute_m_n(pixel_clock, link_clock,
5425 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5426}
5427
a7615030
CW
5428static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5429{
d330a953
JN
5430 if (i915.panel_use_ssc >= 0)
5431 return i915.panel_use_ssc != 0;
41aa3448 5432 return dev_priv->vbt.lvds_use_ssc
435793df 5433 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5434}
5435
c65d77d8
JB
5436static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5437{
5438 struct drm_device *dev = crtc->dev;
5439 struct drm_i915_private *dev_priv = dev->dev_private;
5440 int refclk;
5441
a0c4da24 5442 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5443 refclk = 100000;
a0c4da24 5444 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5445 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5446 refclk = dev_priv->vbt.lvds_ssc_freq;
5447 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5448 } else if (!IS_GEN2(dev)) {
5449 refclk = 96000;
5450 } else {
5451 refclk = 48000;
5452 }
5453
5454 return refclk;
5455}
5456
7429e9d4 5457static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5458{
7df00d7a 5459 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5460}
f47709a9 5461
7429e9d4
DV
5462static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5463{
5464 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5465}
5466
f47709a9 5467static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5468 intel_clock_t *reduced_clock)
5469{
f47709a9 5470 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5471 u32 fp, fp2 = 0;
5472
5473 if (IS_PINEVIEW(dev)) {
7429e9d4 5474 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5475 if (reduced_clock)
7429e9d4 5476 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5477 } else {
7429e9d4 5478 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5479 if (reduced_clock)
7429e9d4 5480 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5481 }
5482
8bcc2795 5483 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5484
f47709a9
DV
5485 crtc->lowfreq_avail = false;
5486 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5487 reduced_clock && i915.powersave) {
8bcc2795 5488 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5489 crtc->lowfreq_avail = true;
a7516a05 5490 } else {
8bcc2795 5491 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5492 }
5493}
5494
5e69f97f
CML
5495static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5496 pipe)
89b667f8
JB
5497{
5498 u32 reg_val;
5499
5500 /*
5501 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5502 * and set it to a reasonable value instead.
5503 */
ab3c759a 5504 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5505 reg_val &= 0xffffff00;
5506 reg_val |= 0x00000030;
ab3c759a 5507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5508
ab3c759a 5509 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5510 reg_val &= 0x8cffffff;
5511 reg_val = 0x8c000000;
ab3c759a 5512 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5513
ab3c759a 5514 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5515 reg_val &= 0xffffff00;
ab3c759a 5516 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5517
ab3c759a 5518 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5519 reg_val &= 0x00ffffff;
5520 reg_val |= 0xb0000000;
ab3c759a 5521 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5522}
5523
b551842d
DV
5524static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5525 struct intel_link_m_n *m_n)
5526{
5527 struct drm_device *dev = crtc->base.dev;
5528 struct drm_i915_private *dev_priv = dev->dev_private;
5529 int pipe = crtc->pipe;
5530
e3b95f1e
DV
5531 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5532 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5533 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5534 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5535}
5536
5537static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5538 struct intel_link_m_n *m_n,
5539 struct intel_link_m_n *m2_n2)
b551842d
DV
5540{
5541 struct drm_device *dev = crtc->base.dev;
5542 struct drm_i915_private *dev_priv = dev->dev_private;
5543 int pipe = crtc->pipe;
5544 enum transcoder transcoder = crtc->config.cpu_transcoder;
5545
5546 if (INTEL_INFO(dev)->gen >= 5) {
5547 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5548 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5549 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5550 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5551 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5552 * for gen < 8) and if DRRS is supported (to make sure the
5553 * registers are not unnecessarily accessed).
5554 */
5555 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5556 crtc->config.has_drrs) {
5557 I915_WRITE(PIPE_DATA_M2(transcoder),
5558 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5559 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5560 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5561 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5562 }
b551842d 5563 } else {
e3b95f1e
DV
5564 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5565 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5566 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5567 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5568 }
5569}
5570
f769cd24 5571void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5572{
5573 if (crtc->config.has_pch_encoder)
5574 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5575 else
f769cd24
VK
5576 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5577 &crtc->config.dp_m2_n2);
03afc4a2
DV
5578}
5579
f47709a9 5580static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5581{
5582 u32 dpll, dpll_md;
5583
5584 /*
5585 * Enable DPIO clock input. We should never disable the reference
5586 * clock for pipe B, since VGA hotplug / manual detection depends
5587 * on it.
5588 */
5589 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5590 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5591 /* We should never disable this, set it here for state tracking */
5592 if (crtc->pipe == PIPE_B)
5593 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5594 dpll |= DPLL_VCO_ENABLE;
5595 crtc->config.dpll_hw_state.dpll = dpll;
5596
5597 dpll_md = (crtc->config.pixel_multiplier - 1)
5598 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5599 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5600}
5601
5602static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5603{
f47709a9 5604 struct drm_device *dev = crtc->base.dev;
a0c4da24 5605 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5606 int pipe = crtc->pipe;
bdd4b6a6 5607 u32 mdiv;
a0c4da24 5608 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5609 u32 coreclk, reg_val;
a0c4da24 5610
09153000
DV
5611 mutex_lock(&dev_priv->dpio_lock);
5612
f47709a9
DV
5613 bestn = crtc->config.dpll.n;
5614 bestm1 = crtc->config.dpll.m1;
5615 bestm2 = crtc->config.dpll.m2;
5616 bestp1 = crtc->config.dpll.p1;
5617 bestp2 = crtc->config.dpll.p2;
a0c4da24 5618
89b667f8
JB
5619 /* See eDP HDMI DPIO driver vbios notes doc */
5620
5621 /* PLL B needs special handling */
bdd4b6a6 5622 if (pipe == PIPE_B)
5e69f97f 5623 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5624
5625 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5627
5628 /* Disable target IRef on PLL */
ab3c759a 5629 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5630 reg_val &= 0x00ffffff;
ab3c759a 5631 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5632
5633 /* Disable fast lock */
ab3c759a 5634 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5635
5636 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5637 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5638 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5639 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5640 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5641
5642 /*
5643 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5644 * but we don't support that).
5645 * Note: don't use the DAC post divider as it seems unstable.
5646 */
5647 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5649
a0c4da24 5650 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5651 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5652
89b667f8 5653 /* Set HBR and RBR LPF coefficients */
ff9a6750 5654 if (crtc->config.port_clock == 162000 ||
99750bd4 5655 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5656 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5657 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5658 0x009f0003);
89b667f8 5659 else
ab3c759a 5660 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5661 0x00d0000f);
5662
5663 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5664 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5665 /* Use SSC source */
bdd4b6a6 5666 if (pipe == PIPE_A)
ab3c759a 5667 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5668 0x0df40000);
5669 else
ab3c759a 5670 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5671 0x0df70000);
5672 } else { /* HDMI or VGA */
5673 /* Use bend source */
bdd4b6a6 5674 if (pipe == PIPE_A)
ab3c759a 5675 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5676 0x0df70000);
5677 else
ab3c759a 5678 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5679 0x0df40000);
5680 }
a0c4da24 5681
ab3c759a 5682 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5683 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5684 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5685 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5686 coreclk |= 0x01000000;
ab3c759a 5687 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5688
ab3c759a 5689 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5690 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5691}
5692
9d556c99
CML
5693static void chv_update_pll(struct intel_crtc *crtc)
5694{
5695 struct drm_device *dev = crtc->base.dev;
5696 struct drm_i915_private *dev_priv = dev->dev_private;
5697 int pipe = crtc->pipe;
5698 int dpll_reg = DPLL(crtc->pipe);
5699 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5700 u32 loopfilter, intcoeff;
9d556c99
CML
5701 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5702 int refclk;
5703
a11b0703
VS
5704 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5705 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5706 DPLL_VCO_ENABLE;
5707 if (pipe != PIPE_A)
5708 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5709
5710 crtc->config.dpll_hw_state.dpll_md =
5711 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5712
5713 bestn = crtc->config.dpll.n;
5714 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5715 bestm1 = crtc->config.dpll.m1;
5716 bestm2 = crtc->config.dpll.m2 >> 22;
5717 bestp1 = crtc->config.dpll.p1;
5718 bestp2 = crtc->config.dpll.p2;
5719
5720 /*
5721 * Enable Refclk and SSC
5722 */
a11b0703
VS
5723 I915_WRITE(dpll_reg,
5724 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5725
5726 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5727
9d556c99
CML
5728 /* p1 and p2 divider */
5729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5730 5 << DPIO_CHV_S1_DIV_SHIFT |
5731 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5732 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5733 1 << DPIO_CHV_K_DIV_SHIFT);
5734
5735 /* Feedback post-divider - m2 */
5736 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5737
5738 /* Feedback refclk divider - n and m1 */
5739 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5740 DPIO_CHV_M1_DIV_BY_2 |
5741 1 << DPIO_CHV_N_DIV_SHIFT);
5742
5743 /* M2 fraction division */
5744 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5745
5746 /* M2 fraction division enable */
5747 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5748 DPIO_CHV_FRAC_DIV_EN |
5749 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5750
5751 /* Loop filter */
5752 refclk = i9xx_get_refclk(&crtc->base, 0);
5753 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5754 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5755 if (refclk == 100000)
5756 intcoeff = 11;
5757 else if (refclk == 38400)
5758 intcoeff = 10;
5759 else
5760 intcoeff = 9;
5761 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5762 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5763
5764 /* AFC Recal */
5765 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5766 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5767 DPIO_AFC_RECAL);
5768
5769 mutex_unlock(&dev_priv->dpio_lock);
5770}
5771
f47709a9
DV
5772static void i9xx_update_pll(struct intel_crtc *crtc,
5773 intel_clock_t *reduced_clock,
eb1cbe48
DV
5774 int num_connectors)
5775{
f47709a9 5776 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5777 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5778 u32 dpll;
5779 bool is_sdvo;
f47709a9 5780 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5781
f47709a9 5782 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5783
f47709a9
DV
5784 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5785 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5786
5787 dpll = DPLL_VGA_MODE_DIS;
5788
f47709a9 5789 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5790 dpll |= DPLLB_MODE_LVDS;
5791 else
5792 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5793
ef1b460d 5794 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5795 dpll |= (crtc->config.pixel_multiplier - 1)
5796 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5797 }
198a037f
DV
5798
5799 if (is_sdvo)
4a33e48d 5800 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5801
f47709a9 5802 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5803 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5804
5805 /* compute bitmask from p1 value */
5806 if (IS_PINEVIEW(dev))
5807 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5808 else {
5809 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5810 if (IS_G4X(dev) && reduced_clock)
5811 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5812 }
5813 switch (clock->p2) {
5814 case 5:
5815 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5816 break;
5817 case 7:
5818 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5819 break;
5820 case 10:
5821 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5822 break;
5823 case 14:
5824 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5825 break;
5826 }
5827 if (INTEL_INFO(dev)->gen >= 4)
5828 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5829
09ede541 5830 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5831 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5832 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5833 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5834 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5835 else
5836 dpll |= PLL_REF_INPUT_DREFCLK;
5837
5838 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5839 crtc->config.dpll_hw_state.dpll = dpll;
5840
eb1cbe48 5841 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5842 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5843 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5844 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5845 }
5846}
5847
f47709a9 5848static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5849 intel_clock_t *reduced_clock,
eb1cbe48
DV
5850 int num_connectors)
5851{
f47709a9 5852 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5853 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5854 u32 dpll;
f47709a9 5855 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5856
f47709a9 5857 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5858
eb1cbe48
DV
5859 dpll = DPLL_VGA_MODE_DIS;
5860
f47709a9 5861 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5862 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5863 } else {
5864 if (clock->p1 == 2)
5865 dpll |= PLL_P1_DIVIDE_BY_TWO;
5866 else
5867 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5868 if (clock->p2 == 4)
5869 dpll |= PLL_P2_DIVIDE_BY_4;
5870 }
5871
4a33e48d
DV
5872 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5873 dpll |= DPLL_DVO_2X_MODE;
5874
f47709a9 5875 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5876 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5877 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5878 else
5879 dpll |= PLL_REF_INPUT_DREFCLK;
5880
5881 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5882 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5883}
5884
8a654f3b 5885static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5886{
5887 struct drm_device *dev = intel_crtc->base.dev;
5888 struct drm_i915_private *dev_priv = dev->dev_private;
5889 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5890 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5891 struct drm_display_mode *adjusted_mode =
5892 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5893 uint32_t crtc_vtotal, crtc_vblank_end;
5894 int vsyncshift = 0;
4d8a62ea
DV
5895
5896 /* We need to be careful not to changed the adjusted mode, for otherwise
5897 * the hw state checker will get angry at the mismatch. */
5898 crtc_vtotal = adjusted_mode->crtc_vtotal;
5899 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5900
609aeaca 5901 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5902 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5903 crtc_vtotal -= 1;
5904 crtc_vblank_end -= 1;
609aeaca
VS
5905
5906 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5907 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5908 else
5909 vsyncshift = adjusted_mode->crtc_hsync_start -
5910 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5911 if (vsyncshift < 0)
5912 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5913 }
5914
5915 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5916 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5917
fe2b8f9d 5918 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5919 (adjusted_mode->crtc_hdisplay - 1) |
5920 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5921 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5922 (adjusted_mode->crtc_hblank_start - 1) |
5923 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5924 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5925 (adjusted_mode->crtc_hsync_start - 1) |
5926 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5927
fe2b8f9d 5928 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5929 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5930 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5931 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5932 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5933 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5934 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5935 (adjusted_mode->crtc_vsync_start - 1) |
5936 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5937
b5e508d4
PZ
5938 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5939 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5940 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5941 * bits. */
5942 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5943 (pipe == PIPE_B || pipe == PIPE_C))
5944 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5945
b0e77b9c
PZ
5946 /* pipesrc controls the size that is scaled from, which should
5947 * always be the user's requested size.
5948 */
5949 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5950 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5951 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5952}
5953
1bd1bd80
DV
5954static void intel_get_pipe_timings(struct intel_crtc *crtc,
5955 struct intel_crtc_config *pipe_config)
5956{
5957 struct drm_device *dev = crtc->base.dev;
5958 struct drm_i915_private *dev_priv = dev->dev_private;
5959 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5960 uint32_t tmp;
5961
5962 tmp = I915_READ(HTOTAL(cpu_transcoder));
5963 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5964 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5965 tmp = I915_READ(HBLANK(cpu_transcoder));
5966 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5967 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5968 tmp = I915_READ(HSYNC(cpu_transcoder));
5969 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5970 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5971
5972 tmp = I915_READ(VTOTAL(cpu_transcoder));
5973 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5974 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5975 tmp = I915_READ(VBLANK(cpu_transcoder));
5976 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5977 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5978 tmp = I915_READ(VSYNC(cpu_transcoder));
5979 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5980 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5981
5982 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5983 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5984 pipe_config->adjusted_mode.crtc_vtotal += 1;
5985 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5986 }
5987
5988 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5989 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5990 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5991
5992 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5993 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5994}
5995
f6a83288
DV
5996void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5997 struct intel_crtc_config *pipe_config)
babea61d 5998{
f6a83288
DV
5999 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6000 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6001 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6002 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6003
f6a83288
DV
6004 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6005 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6006 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6007 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6008
f6a83288 6009 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6010
f6a83288
DV
6011 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6012 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6013}
6014
84b046f3
DV
6015static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6016{
6017 struct drm_device *dev = intel_crtc->base.dev;
6018 struct drm_i915_private *dev_priv = dev->dev_private;
6019 uint32_t pipeconf;
6020
9f11a9e4 6021 pipeconf = 0;
84b046f3 6022
67c72a12
DV
6023 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6024 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6025 pipeconf |= PIPECONF_ENABLE;
6026
cf532bb2
VS
6027 if (intel_crtc->config.double_wide)
6028 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6029
ff9ce46e
DV
6030 /* only g4x and later have fancy bpc/dither controls */
6031 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6032 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6033 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6034 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6035 PIPECONF_DITHER_TYPE_SP;
84b046f3 6036
ff9ce46e
DV
6037 switch (intel_crtc->config.pipe_bpp) {
6038 case 18:
6039 pipeconf |= PIPECONF_6BPC;
6040 break;
6041 case 24:
6042 pipeconf |= PIPECONF_8BPC;
6043 break;
6044 case 30:
6045 pipeconf |= PIPECONF_10BPC;
6046 break;
6047 default:
6048 /* Case prevented by intel_choose_pipe_bpp_dither. */
6049 BUG();
84b046f3
DV
6050 }
6051 }
6052
6053 if (HAS_PIPE_CXSR(dev)) {
6054 if (intel_crtc->lowfreq_avail) {
6055 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6056 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6057 } else {
6058 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6059 }
6060 }
6061
efc2cfff
VS
6062 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6063 if (INTEL_INFO(dev)->gen < 4 ||
6064 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6065 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6066 else
6067 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6068 } else
84b046f3
DV
6069 pipeconf |= PIPECONF_PROGRESSIVE;
6070
9f11a9e4
DV
6071 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6072 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6073
84b046f3
DV
6074 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6075 POSTING_READ(PIPECONF(intel_crtc->pipe));
6076}
6077
f564048e 6078static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6079 int x, int y,
94352cf9 6080 struct drm_framebuffer *fb)
79e53945
JB
6081{
6082 struct drm_device *dev = crtc->dev;
6083 struct drm_i915_private *dev_priv = dev->dev_private;
6084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6085 int refclk, num_connectors = 0;
652c393a 6086 intel_clock_t clock, reduced_clock;
a16af721 6087 bool ok, has_reduced_clock = false;
e9fd1c02 6088 bool is_lvds = false, is_dsi = false;
5eddb70b 6089 struct intel_encoder *encoder;
d4906093 6090 const intel_limit_t *limit;
79e53945 6091
6c2b7c12 6092 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6093 switch (encoder->type) {
79e53945
JB
6094 case INTEL_OUTPUT_LVDS:
6095 is_lvds = true;
6096 break;
e9fd1c02
JN
6097 case INTEL_OUTPUT_DSI:
6098 is_dsi = true;
6099 break;
79e53945 6100 }
43565a06 6101
c751ce4f 6102 num_connectors++;
79e53945
JB
6103 }
6104
f2335330 6105 if (is_dsi)
5b18e57c 6106 return 0;
f2335330
JN
6107
6108 if (!intel_crtc->config.clock_set) {
6109 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6110
e9fd1c02
JN
6111 /*
6112 * Returns a set of divisors for the desired target clock with
6113 * the given refclk, or FALSE. The returned values represent
6114 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6115 * 2) / p1 / p2.
6116 */
6117 limit = intel_limit(crtc, refclk);
6118 ok = dev_priv->display.find_dpll(limit, crtc,
6119 intel_crtc->config.port_clock,
6120 refclk, NULL, &clock);
f2335330 6121 if (!ok) {
e9fd1c02
JN
6122 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6123 return -EINVAL;
6124 }
79e53945 6125
f2335330
JN
6126 if (is_lvds && dev_priv->lvds_downclock_avail) {
6127 /*
6128 * Ensure we match the reduced clock's P to the target
6129 * clock. If the clocks don't match, we can't switch
6130 * the display clock by using the FP0/FP1. In such case
6131 * we will disable the LVDS downclock feature.
6132 */
6133 has_reduced_clock =
6134 dev_priv->display.find_dpll(limit, crtc,
6135 dev_priv->lvds_downclock,
6136 refclk, &clock,
6137 &reduced_clock);
6138 }
6139 /* Compat-code for transition, will disappear. */
f47709a9
DV
6140 intel_crtc->config.dpll.n = clock.n;
6141 intel_crtc->config.dpll.m1 = clock.m1;
6142 intel_crtc->config.dpll.m2 = clock.m2;
6143 intel_crtc->config.dpll.p1 = clock.p1;
6144 intel_crtc->config.dpll.p2 = clock.p2;
6145 }
7026d4ac 6146
e9fd1c02 6147 if (IS_GEN2(dev)) {
8a654f3b 6148 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6149 has_reduced_clock ? &reduced_clock : NULL,
6150 num_connectors);
9d556c99
CML
6151 } else if (IS_CHERRYVIEW(dev)) {
6152 chv_update_pll(intel_crtc);
e9fd1c02 6153 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6154 vlv_update_pll(intel_crtc);
e9fd1c02 6155 } else {
f47709a9 6156 i9xx_update_pll(intel_crtc,
eb1cbe48 6157 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6158 num_connectors);
e9fd1c02 6159 }
79e53945 6160
c8f7a0db 6161 return 0;
f564048e
EA
6162}
6163
2fa2fe9a
DV
6164static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6165 struct intel_crtc_config *pipe_config)
6166{
6167 struct drm_device *dev = crtc->base.dev;
6168 struct drm_i915_private *dev_priv = dev->dev_private;
6169 uint32_t tmp;
6170
dc9e7dec
VS
6171 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6172 return;
6173
2fa2fe9a 6174 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6175 if (!(tmp & PFIT_ENABLE))
6176 return;
2fa2fe9a 6177
06922821 6178 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6179 if (INTEL_INFO(dev)->gen < 4) {
6180 if (crtc->pipe != PIPE_B)
6181 return;
2fa2fe9a
DV
6182 } else {
6183 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6184 return;
6185 }
6186
06922821 6187 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6188 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6189 if (INTEL_INFO(dev)->gen < 5)
6190 pipe_config->gmch_pfit.lvds_border_bits =
6191 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6192}
6193
acbec814
JB
6194static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6195 struct intel_crtc_config *pipe_config)
6196{
6197 struct drm_device *dev = crtc->base.dev;
6198 struct drm_i915_private *dev_priv = dev->dev_private;
6199 int pipe = pipe_config->cpu_transcoder;
6200 intel_clock_t clock;
6201 u32 mdiv;
662c6ecb 6202 int refclk = 100000;
acbec814 6203
f573de5a
SK
6204 /* In case of MIPI DPLL will not even be used */
6205 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6206 return;
6207
acbec814 6208 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6209 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6210 mutex_unlock(&dev_priv->dpio_lock);
6211
6212 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6213 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6214 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6215 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6216 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6217
f646628b 6218 vlv_clock(refclk, &clock);
acbec814 6219
f646628b
VS
6220 /* clock.dot is the fast clock */
6221 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6222}
6223
1ad292b5
JB
6224static void i9xx_get_plane_config(struct intel_crtc *crtc,
6225 struct intel_plane_config *plane_config)
6226{
6227 struct drm_device *dev = crtc->base.dev;
6228 struct drm_i915_private *dev_priv = dev->dev_private;
6229 u32 val, base, offset;
6230 int pipe = crtc->pipe, plane = crtc->plane;
6231 int fourcc, pixel_format;
6232 int aligned_height;
6233
66e514c1
DA
6234 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6235 if (!crtc->base.primary->fb) {
1ad292b5
JB
6236 DRM_DEBUG_KMS("failed to alloc fb\n");
6237 return;
6238 }
6239
6240 val = I915_READ(DSPCNTR(plane));
6241
6242 if (INTEL_INFO(dev)->gen >= 4)
6243 if (val & DISPPLANE_TILED)
6244 plane_config->tiled = true;
6245
6246 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6247 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6248 crtc->base.primary->fb->pixel_format = fourcc;
6249 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6250 drm_format_plane_cpp(fourcc, 0) * 8;
6251
6252 if (INTEL_INFO(dev)->gen >= 4) {
6253 if (plane_config->tiled)
6254 offset = I915_READ(DSPTILEOFF(plane));
6255 else
6256 offset = I915_READ(DSPLINOFF(plane));
6257 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6258 } else {
6259 base = I915_READ(DSPADDR(plane));
6260 }
6261 plane_config->base = base;
6262
6263 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6264 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6265 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6266
6267 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6268 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6269
66e514c1 6270 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6271 plane_config->tiled);
6272
1267a26b
FF
6273 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6274 aligned_height);
1ad292b5
JB
6275
6276 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6277 pipe, plane, crtc->base.primary->fb->width,
6278 crtc->base.primary->fb->height,
6279 crtc->base.primary->fb->bits_per_pixel, base,
6280 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6281 plane_config->size);
6282
6283}
6284
70b23a98
VS
6285static void chv_crtc_clock_get(struct intel_crtc *crtc,
6286 struct intel_crtc_config *pipe_config)
6287{
6288 struct drm_device *dev = crtc->base.dev;
6289 struct drm_i915_private *dev_priv = dev->dev_private;
6290 int pipe = pipe_config->cpu_transcoder;
6291 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6292 intel_clock_t clock;
6293 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6294 int refclk = 100000;
6295
6296 mutex_lock(&dev_priv->dpio_lock);
6297 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6298 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6299 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6300 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6301 mutex_unlock(&dev_priv->dpio_lock);
6302
6303 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6304 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6305 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6306 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6307 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6308
6309 chv_clock(refclk, &clock);
6310
6311 /* clock.dot is the fast clock */
6312 pipe_config->port_clock = clock.dot / 5;
6313}
6314
0e8ffe1b
DV
6315static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6316 struct intel_crtc_config *pipe_config)
6317{
6318 struct drm_device *dev = crtc->base.dev;
6319 struct drm_i915_private *dev_priv = dev->dev_private;
6320 uint32_t tmp;
6321
b5482bd0
ID
6322 if (!intel_display_power_enabled(dev_priv,
6323 POWER_DOMAIN_PIPE(crtc->pipe)))
6324 return false;
6325
e143a21c 6326 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6327 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6328
0e8ffe1b
DV
6329 tmp = I915_READ(PIPECONF(crtc->pipe));
6330 if (!(tmp & PIPECONF_ENABLE))
6331 return false;
6332
42571aef
VS
6333 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6334 switch (tmp & PIPECONF_BPC_MASK) {
6335 case PIPECONF_6BPC:
6336 pipe_config->pipe_bpp = 18;
6337 break;
6338 case PIPECONF_8BPC:
6339 pipe_config->pipe_bpp = 24;
6340 break;
6341 case PIPECONF_10BPC:
6342 pipe_config->pipe_bpp = 30;
6343 break;
6344 default:
6345 break;
6346 }
6347 }
6348
b5a9fa09
DV
6349 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6350 pipe_config->limited_color_range = true;
6351
282740f7
VS
6352 if (INTEL_INFO(dev)->gen < 4)
6353 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6354
1bd1bd80
DV
6355 intel_get_pipe_timings(crtc, pipe_config);
6356
2fa2fe9a
DV
6357 i9xx_get_pfit_config(crtc, pipe_config);
6358
6c49f241
DV
6359 if (INTEL_INFO(dev)->gen >= 4) {
6360 tmp = I915_READ(DPLL_MD(crtc->pipe));
6361 pipe_config->pixel_multiplier =
6362 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6363 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6364 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6365 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6366 tmp = I915_READ(DPLL(crtc->pipe));
6367 pipe_config->pixel_multiplier =
6368 ((tmp & SDVO_MULTIPLIER_MASK)
6369 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6370 } else {
6371 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6372 * port and will be fixed up in the encoder->get_config
6373 * function. */
6374 pipe_config->pixel_multiplier = 1;
6375 }
8bcc2795
DV
6376 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6377 if (!IS_VALLEYVIEW(dev)) {
6378 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6379 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6380 } else {
6381 /* Mask out read-only status bits. */
6382 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6383 DPLL_PORTC_READY_MASK |
6384 DPLL_PORTB_READY_MASK);
8bcc2795 6385 }
6c49f241 6386
70b23a98
VS
6387 if (IS_CHERRYVIEW(dev))
6388 chv_crtc_clock_get(crtc, pipe_config);
6389 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6390 vlv_crtc_clock_get(crtc, pipe_config);
6391 else
6392 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6393
0e8ffe1b
DV
6394 return true;
6395}
6396
dde86e2d 6397static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6398{
6399 struct drm_i915_private *dev_priv = dev->dev_private;
6400 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6401 struct intel_encoder *encoder;
74cfd7ac 6402 u32 val, final;
13d83a67 6403 bool has_lvds = false;
199e5d79 6404 bool has_cpu_edp = false;
199e5d79 6405 bool has_panel = false;
99eb6a01
KP
6406 bool has_ck505 = false;
6407 bool can_ssc = false;
13d83a67
JB
6408
6409 /* We need to take the global config into account */
199e5d79
KP
6410 list_for_each_entry(encoder, &mode_config->encoder_list,
6411 base.head) {
6412 switch (encoder->type) {
6413 case INTEL_OUTPUT_LVDS:
6414 has_panel = true;
6415 has_lvds = true;
6416 break;
6417 case INTEL_OUTPUT_EDP:
6418 has_panel = true;
2de6905f 6419 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6420 has_cpu_edp = true;
6421 break;
13d83a67
JB
6422 }
6423 }
6424
99eb6a01 6425 if (HAS_PCH_IBX(dev)) {
41aa3448 6426 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6427 can_ssc = has_ck505;
6428 } else {
6429 has_ck505 = false;
6430 can_ssc = true;
6431 }
6432
2de6905f
ID
6433 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6434 has_panel, has_lvds, has_ck505);
13d83a67
JB
6435
6436 /* Ironlake: try to setup display ref clock before DPLL
6437 * enabling. This is only under driver's control after
6438 * PCH B stepping, previous chipset stepping should be
6439 * ignoring this setting.
6440 */
74cfd7ac
CW
6441 val = I915_READ(PCH_DREF_CONTROL);
6442
6443 /* As we must carefully and slowly disable/enable each source in turn,
6444 * compute the final state we want first and check if we need to
6445 * make any changes at all.
6446 */
6447 final = val;
6448 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6449 if (has_ck505)
6450 final |= DREF_NONSPREAD_CK505_ENABLE;
6451 else
6452 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6453
6454 final &= ~DREF_SSC_SOURCE_MASK;
6455 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6456 final &= ~DREF_SSC1_ENABLE;
6457
6458 if (has_panel) {
6459 final |= DREF_SSC_SOURCE_ENABLE;
6460
6461 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6462 final |= DREF_SSC1_ENABLE;
6463
6464 if (has_cpu_edp) {
6465 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6466 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6467 else
6468 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6469 } else
6470 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6471 } else {
6472 final |= DREF_SSC_SOURCE_DISABLE;
6473 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6474 }
6475
6476 if (final == val)
6477 return;
6478
13d83a67 6479 /* Always enable nonspread source */
74cfd7ac 6480 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6481
99eb6a01 6482 if (has_ck505)
74cfd7ac 6483 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6484 else
74cfd7ac 6485 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6486
199e5d79 6487 if (has_panel) {
74cfd7ac
CW
6488 val &= ~DREF_SSC_SOURCE_MASK;
6489 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6490
199e5d79 6491 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6492 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6493 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6494 val |= DREF_SSC1_ENABLE;
e77166b5 6495 } else
74cfd7ac 6496 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6497
6498 /* Get SSC going before enabling the outputs */
74cfd7ac 6499 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6500 POSTING_READ(PCH_DREF_CONTROL);
6501 udelay(200);
6502
74cfd7ac 6503 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6504
6505 /* Enable CPU source on CPU attached eDP */
199e5d79 6506 if (has_cpu_edp) {
99eb6a01 6507 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6508 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6509 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6510 } else
74cfd7ac 6511 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6512 } else
74cfd7ac 6513 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6514
74cfd7ac 6515 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6516 POSTING_READ(PCH_DREF_CONTROL);
6517 udelay(200);
6518 } else {
6519 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6520
74cfd7ac 6521 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6522
6523 /* Turn off CPU output */
74cfd7ac 6524 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6525
74cfd7ac 6526 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6527 POSTING_READ(PCH_DREF_CONTROL);
6528 udelay(200);
6529
6530 /* Turn off the SSC source */
74cfd7ac
CW
6531 val &= ~DREF_SSC_SOURCE_MASK;
6532 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6533
6534 /* Turn off SSC1 */
74cfd7ac 6535 val &= ~DREF_SSC1_ENABLE;
199e5d79 6536
74cfd7ac 6537 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6538 POSTING_READ(PCH_DREF_CONTROL);
6539 udelay(200);
6540 }
74cfd7ac
CW
6541
6542 BUG_ON(val != final);
13d83a67
JB
6543}
6544
f31f2d55 6545static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6546{
f31f2d55 6547 uint32_t tmp;
dde86e2d 6548
0ff066a9
PZ
6549 tmp = I915_READ(SOUTH_CHICKEN2);
6550 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6551 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6552
0ff066a9
PZ
6553 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6554 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6555 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6556
0ff066a9
PZ
6557 tmp = I915_READ(SOUTH_CHICKEN2);
6558 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6559 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6560
0ff066a9
PZ
6561 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6562 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6563 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6564}
6565
6566/* WaMPhyProgramming:hsw */
6567static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6568{
6569 uint32_t tmp;
dde86e2d
PZ
6570
6571 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6572 tmp &= ~(0xFF << 24);
6573 tmp |= (0x12 << 24);
6574 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6575
dde86e2d
PZ
6576 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6577 tmp |= (1 << 11);
6578 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6579
6580 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6581 tmp |= (1 << 11);
6582 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6583
dde86e2d
PZ
6584 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6585 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6586 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6587
6588 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6589 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6590 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6591
0ff066a9
PZ
6592 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6593 tmp &= ~(7 << 13);
6594 tmp |= (5 << 13);
6595 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6596
0ff066a9
PZ
6597 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6598 tmp &= ~(7 << 13);
6599 tmp |= (5 << 13);
6600 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6601
6602 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6603 tmp &= ~0xFF;
6604 tmp |= 0x1C;
6605 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6606
6607 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6608 tmp &= ~0xFF;
6609 tmp |= 0x1C;
6610 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6611
6612 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6613 tmp &= ~(0xFF << 16);
6614 tmp |= (0x1C << 16);
6615 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6616
6617 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6618 tmp &= ~(0xFF << 16);
6619 tmp |= (0x1C << 16);
6620 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6621
0ff066a9
PZ
6622 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6623 tmp |= (1 << 27);
6624 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6625
0ff066a9
PZ
6626 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6627 tmp |= (1 << 27);
6628 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6629
0ff066a9
PZ
6630 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6631 tmp &= ~(0xF << 28);
6632 tmp |= (4 << 28);
6633 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6634
0ff066a9
PZ
6635 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6636 tmp &= ~(0xF << 28);
6637 tmp |= (4 << 28);
6638 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6639}
6640
2fa86a1f
PZ
6641/* Implements 3 different sequences from BSpec chapter "Display iCLK
6642 * Programming" based on the parameters passed:
6643 * - Sequence to enable CLKOUT_DP
6644 * - Sequence to enable CLKOUT_DP without spread
6645 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6646 */
6647static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6648 bool with_fdi)
f31f2d55
PZ
6649{
6650 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6651 uint32_t reg, tmp;
6652
6653 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6654 with_spread = true;
6655 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6656 with_fdi, "LP PCH doesn't have FDI\n"))
6657 with_fdi = false;
f31f2d55
PZ
6658
6659 mutex_lock(&dev_priv->dpio_lock);
6660
6661 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6662 tmp &= ~SBI_SSCCTL_DISABLE;
6663 tmp |= SBI_SSCCTL_PATHALT;
6664 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6665
6666 udelay(24);
6667
2fa86a1f
PZ
6668 if (with_spread) {
6669 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6670 tmp &= ~SBI_SSCCTL_PATHALT;
6671 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6672
2fa86a1f
PZ
6673 if (with_fdi) {
6674 lpt_reset_fdi_mphy(dev_priv);
6675 lpt_program_fdi_mphy(dev_priv);
6676 }
6677 }
dde86e2d 6678
2fa86a1f
PZ
6679 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6680 SBI_GEN0 : SBI_DBUFF0;
6681 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6682 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6683 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6684
6685 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6686}
6687
47701c3b
PZ
6688/* Sequence to disable CLKOUT_DP */
6689static void lpt_disable_clkout_dp(struct drm_device *dev)
6690{
6691 struct drm_i915_private *dev_priv = dev->dev_private;
6692 uint32_t reg, tmp;
6693
6694 mutex_lock(&dev_priv->dpio_lock);
6695
6696 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6697 SBI_GEN0 : SBI_DBUFF0;
6698 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6699 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6700 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6701
6702 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6703 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6704 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6705 tmp |= SBI_SSCCTL_PATHALT;
6706 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6707 udelay(32);
6708 }
6709 tmp |= SBI_SSCCTL_DISABLE;
6710 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6711 }
6712
6713 mutex_unlock(&dev_priv->dpio_lock);
6714}
6715
bf8fa3d3
PZ
6716static void lpt_init_pch_refclk(struct drm_device *dev)
6717{
6718 struct drm_mode_config *mode_config = &dev->mode_config;
6719 struct intel_encoder *encoder;
6720 bool has_vga = false;
6721
6722 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6723 switch (encoder->type) {
6724 case INTEL_OUTPUT_ANALOG:
6725 has_vga = true;
6726 break;
6727 }
6728 }
6729
47701c3b
PZ
6730 if (has_vga)
6731 lpt_enable_clkout_dp(dev, true, true);
6732 else
6733 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6734}
6735
dde86e2d
PZ
6736/*
6737 * Initialize reference clocks when the driver loads
6738 */
6739void intel_init_pch_refclk(struct drm_device *dev)
6740{
6741 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6742 ironlake_init_pch_refclk(dev);
6743 else if (HAS_PCH_LPT(dev))
6744 lpt_init_pch_refclk(dev);
6745}
6746
d9d444cb
JB
6747static int ironlake_get_refclk(struct drm_crtc *crtc)
6748{
6749 struct drm_device *dev = crtc->dev;
6750 struct drm_i915_private *dev_priv = dev->dev_private;
6751 struct intel_encoder *encoder;
d9d444cb
JB
6752 int num_connectors = 0;
6753 bool is_lvds = false;
6754
6c2b7c12 6755 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6756 switch (encoder->type) {
6757 case INTEL_OUTPUT_LVDS:
6758 is_lvds = true;
6759 break;
d9d444cb
JB
6760 }
6761 num_connectors++;
6762 }
6763
6764 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6765 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6766 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6767 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6768 }
6769
6770 return 120000;
6771}
6772
6ff93609 6773static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6774{
c8203565 6775 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 int pipe = intel_crtc->pipe;
c8203565
PZ
6778 uint32_t val;
6779
78114071 6780 val = 0;
c8203565 6781
965e0c48 6782 switch (intel_crtc->config.pipe_bpp) {
c8203565 6783 case 18:
dfd07d72 6784 val |= PIPECONF_6BPC;
c8203565
PZ
6785 break;
6786 case 24:
dfd07d72 6787 val |= PIPECONF_8BPC;
c8203565
PZ
6788 break;
6789 case 30:
dfd07d72 6790 val |= PIPECONF_10BPC;
c8203565
PZ
6791 break;
6792 case 36:
dfd07d72 6793 val |= PIPECONF_12BPC;
c8203565
PZ
6794 break;
6795 default:
cc769b62
PZ
6796 /* Case prevented by intel_choose_pipe_bpp_dither. */
6797 BUG();
c8203565
PZ
6798 }
6799
d8b32247 6800 if (intel_crtc->config.dither)
c8203565
PZ
6801 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6802
6ff93609 6803 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6804 val |= PIPECONF_INTERLACED_ILK;
6805 else
6806 val |= PIPECONF_PROGRESSIVE;
6807
50f3b016 6808 if (intel_crtc->config.limited_color_range)
3685a8f3 6809 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6810
c8203565
PZ
6811 I915_WRITE(PIPECONF(pipe), val);
6812 POSTING_READ(PIPECONF(pipe));
6813}
6814
86d3efce
VS
6815/*
6816 * Set up the pipe CSC unit.
6817 *
6818 * Currently only full range RGB to limited range RGB conversion
6819 * is supported, but eventually this should handle various
6820 * RGB<->YCbCr scenarios as well.
6821 */
50f3b016 6822static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6823{
6824 struct drm_device *dev = crtc->dev;
6825 struct drm_i915_private *dev_priv = dev->dev_private;
6826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6827 int pipe = intel_crtc->pipe;
6828 uint16_t coeff = 0x7800; /* 1.0 */
6829
6830 /*
6831 * TODO: Check what kind of values actually come out of the pipe
6832 * with these coeff/postoff values and adjust to get the best
6833 * accuracy. Perhaps we even need to take the bpc value into
6834 * consideration.
6835 */
6836
50f3b016 6837 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6838 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6839
6840 /*
6841 * GY/GU and RY/RU should be the other way around according
6842 * to BSpec, but reality doesn't agree. Just set them up in
6843 * a way that results in the correct picture.
6844 */
6845 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6846 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6847
6848 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6849 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6850
6851 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6852 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6853
6854 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6855 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6856 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6857
6858 if (INTEL_INFO(dev)->gen > 6) {
6859 uint16_t postoff = 0;
6860
50f3b016 6861 if (intel_crtc->config.limited_color_range)
32cf0cb0 6862 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6863
6864 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6865 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6866 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6867
6868 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6869 } else {
6870 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6871
50f3b016 6872 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6873 mode |= CSC_BLACK_SCREEN_OFFSET;
6874
6875 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6876 }
6877}
6878
6ff93609 6879static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6880{
756f85cf
PZ
6881 struct drm_device *dev = crtc->dev;
6882 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6884 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6885 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6886 uint32_t val;
6887
3eff4faa 6888 val = 0;
ee2b0b38 6889
756f85cf 6890 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6891 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6892
6ff93609 6893 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6894 val |= PIPECONF_INTERLACED_ILK;
6895 else
6896 val |= PIPECONF_PROGRESSIVE;
6897
702e7a56
PZ
6898 I915_WRITE(PIPECONF(cpu_transcoder), val);
6899 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6900
6901 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6902 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6903
6904 if (IS_BROADWELL(dev)) {
6905 val = 0;
6906
6907 switch (intel_crtc->config.pipe_bpp) {
6908 case 18:
6909 val |= PIPEMISC_DITHER_6_BPC;
6910 break;
6911 case 24:
6912 val |= PIPEMISC_DITHER_8_BPC;
6913 break;
6914 case 30:
6915 val |= PIPEMISC_DITHER_10_BPC;
6916 break;
6917 case 36:
6918 val |= PIPEMISC_DITHER_12_BPC;
6919 break;
6920 default:
6921 /* Case prevented by pipe_config_set_bpp. */
6922 BUG();
6923 }
6924
6925 if (intel_crtc->config.dither)
6926 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6927
6928 I915_WRITE(PIPEMISC(pipe), val);
6929 }
ee2b0b38
PZ
6930}
6931
6591c6e4 6932static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6933 intel_clock_t *clock,
6934 bool *has_reduced_clock,
6935 intel_clock_t *reduced_clock)
6936{
6937 struct drm_device *dev = crtc->dev;
6938 struct drm_i915_private *dev_priv = dev->dev_private;
6939 struct intel_encoder *intel_encoder;
6940 int refclk;
d4906093 6941 const intel_limit_t *limit;
a16af721 6942 bool ret, is_lvds = false;
79e53945 6943
6591c6e4
PZ
6944 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6945 switch (intel_encoder->type) {
79e53945
JB
6946 case INTEL_OUTPUT_LVDS:
6947 is_lvds = true;
6948 break;
79e53945
JB
6949 }
6950 }
6951
d9d444cb 6952 refclk = ironlake_get_refclk(crtc);
79e53945 6953
d4906093
ML
6954 /*
6955 * Returns a set of divisors for the desired target clock with the given
6956 * refclk, or FALSE. The returned values represent the clock equation:
6957 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6958 */
1b894b59 6959 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6960 ret = dev_priv->display.find_dpll(limit, crtc,
6961 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6962 refclk, NULL, clock);
6591c6e4
PZ
6963 if (!ret)
6964 return false;
cda4b7d3 6965
ddc9003c 6966 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6967 /*
6968 * Ensure we match the reduced clock's P to the target clock.
6969 * If the clocks don't match, we can't switch the display clock
6970 * by using the FP0/FP1. In such case we will disable the LVDS
6971 * downclock feature.
6972 */
ee9300bb
DV
6973 *has_reduced_clock =
6974 dev_priv->display.find_dpll(limit, crtc,
6975 dev_priv->lvds_downclock,
6976 refclk, clock,
6977 reduced_clock);
652c393a 6978 }
61e9653f 6979
6591c6e4
PZ
6980 return true;
6981}
6982
d4b1931c
PZ
6983int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6984{
6985 /*
6986 * Account for spread spectrum to avoid
6987 * oversubscribing the link. Max center spread
6988 * is 2.5%; use 5% for safety's sake.
6989 */
6990 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6991 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6992}
6993
7429e9d4 6994static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6995{
7429e9d4 6996 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6997}
6998
de13a2e3 6999static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7000 u32 *fp,
9a7c7890 7001 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7002{
de13a2e3 7003 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7004 struct drm_device *dev = crtc->dev;
7005 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7006 struct intel_encoder *intel_encoder;
7007 uint32_t dpll;
6cc5f341 7008 int factor, num_connectors = 0;
09ede541 7009 bool is_lvds = false, is_sdvo = false;
79e53945 7010
de13a2e3
PZ
7011 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7012 switch (intel_encoder->type) {
79e53945
JB
7013 case INTEL_OUTPUT_LVDS:
7014 is_lvds = true;
7015 break;
7016 case INTEL_OUTPUT_SDVO:
7d57382e 7017 case INTEL_OUTPUT_HDMI:
79e53945 7018 is_sdvo = true;
79e53945 7019 break;
79e53945 7020 }
43565a06 7021
c751ce4f 7022 num_connectors++;
79e53945 7023 }
79e53945 7024
c1858123 7025 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7026 factor = 21;
7027 if (is_lvds) {
7028 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7029 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7030 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7031 factor = 25;
09ede541 7032 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7033 factor = 20;
c1858123 7034
7429e9d4 7035 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7036 *fp |= FP_CB_TUNE;
2c07245f 7037
9a7c7890
DV
7038 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7039 *fp2 |= FP_CB_TUNE;
7040
5eddb70b 7041 dpll = 0;
2c07245f 7042
a07d6787
EA
7043 if (is_lvds)
7044 dpll |= DPLLB_MODE_LVDS;
7045 else
7046 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7047
ef1b460d
DV
7048 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7049 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7050
7051 if (is_sdvo)
4a33e48d 7052 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7053 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7054 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7055
a07d6787 7056 /* compute bitmask from p1 value */
7429e9d4 7057 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7058 /* also FPA1 */
7429e9d4 7059 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7060
7429e9d4 7061 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7062 case 5:
7063 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7064 break;
7065 case 7:
7066 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7067 break;
7068 case 10:
7069 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7070 break;
7071 case 14:
7072 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7073 break;
79e53945
JB
7074 }
7075
b4c09f3b 7076 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7077 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7078 else
7079 dpll |= PLL_REF_INPUT_DREFCLK;
7080
959e16d6 7081 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7082}
7083
7084static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7085 int x, int y,
7086 struct drm_framebuffer *fb)
7087{
7088 struct drm_device *dev = crtc->dev;
de13a2e3 7089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7090 int num_connectors = 0;
7091 intel_clock_t clock, reduced_clock;
cbbab5bd 7092 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7093 bool ok, has_reduced_clock = false;
8b47047b 7094 bool is_lvds = false;
de13a2e3 7095 struct intel_encoder *encoder;
e2b78267 7096 struct intel_shared_dpll *pll;
de13a2e3
PZ
7097
7098 for_each_encoder_on_crtc(dev, crtc, encoder) {
7099 switch (encoder->type) {
7100 case INTEL_OUTPUT_LVDS:
7101 is_lvds = true;
7102 break;
de13a2e3
PZ
7103 }
7104
7105 num_connectors++;
a07d6787 7106 }
79e53945 7107
5dc5298b
PZ
7108 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7109 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7110
ff9a6750 7111 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7112 &has_reduced_clock, &reduced_clock);
ee9300bb 7113 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7114 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7115 return -EINVAL;
79e53945 7116 }
f47709a9
DV
7117 /* Compat-code for transition, will disappear. */
7118 if (!intel_crtc->config.clock_set) {
7119 intel_crtc->config.dpll.n = clock.n;
7120 intel_crtc->config.dpll.m1 = clock.m1;
7121 intel_crtc->config.dpll.m2 = clock.m2;
7122 intel_crtc->config.dpll.p1 = clock.p1;
7123 intel_crtc->config.dpll.p2 = clock.p2;
7124 }
79e53945 7125
5dc5298b 7126 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7127 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7128 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7129 if (has_reduced_clock)
7429e9d4 7130 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7131
7429e9d4 7132 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7133 &fp, &reduced_clock,
7134 has_reduced_clock ? &fp2 : NULL);
7135
959e16d6 7136 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7137 intel_crtc->config.dpll_hw_state.fp0 = fp;
7138 if (has_reduced_clock)
7139 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7140 else
7141 intel_crtc->config.dpll_hw_state.fp1 = fp;
7142
b89a1d39 7143 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7144 if (pll == NULL) {
84f44ce7 7145 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7146 pipe_name(intel_crtc->pipe));
4b645f14
JB
7147 return -EINVAL;
7148 }
ee7b9f93 7149 } else
e72f9fbf 7150 intel_put_shared_dpll(intel_crtc);
79e53945 7151
d330a953 7152 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7153 intel_crtc->lowfreq_avail = true;
7154 else
7155 intel_crtc->lowfreq_avail = false;
e2b78267 7156
c8f7a0db 7157 return 0;
79e53945
JB
7158}
7159
eb14cb74
VS
7160static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7161 struct intel_link_m_n *m_n)
7162{
7163 struct drm_device *dev = crtc->base.dev;
7164 struct drm_i915_private *dev_priv = dev->dev_private;
7165 enum pipe pipe = crtc->pipe;
7166
7167 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7168 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7169 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7170 & ~TU_SIZE_MASK;
7171 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7172 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7173 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7174}
7175
7176static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7177 enum transcoder transcoder,
b95af8be
VK
7178 struct intel_link_m_n *m_n,
7179 struct intel_link_m_n *m2_n2)
72419203
DV
7180{
7181 struct drm_device *dev = crtc->base.dev;
7182 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7183 enum pipe pipe = crtc->pipe;
72419203 7184
eb14cb74
VS
7185 if (INTEL_INFO(dev)->gen >= 5) {
7186 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7187 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7188 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7189 & ~TU_SIZE_MASK;
7190 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7191 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7192 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7193 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7194 * gen < 8) and if DRRS is supported (to make sure the
7195 * registers are not unnecessarily read).
7196 */
7197 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7198 crtc->config.has_drrs) {
7199 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7200 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7201 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7202 & ~TU_SIZE_MASK;
7203 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7204 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7205 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7206 }
eb14cb74
VS
7207 } else {
7208 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7209 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7210 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7211 & ~TU_SIZE_MASK;
7212 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7213 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7214 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7215 }
7216}
7217
7218void intel_dp_get_m_n(struct intel_crtc *crtc,
7219 struct intel_crtc_config *pipe_config)
7220{
7221 if (crtc->config.has_pch_encoder)
7222 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7223 else
7224 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7225 &pipe_config->dp_m_n,
7226 &pipe_config->dp_m2_n2);
eb14cb74 7227}
72419203 7228
eb14cb74
VS
7229static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7230 struct intel_crtc_config *pipe_config)
7231{
7232 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7233 &pipe_config->fdi_m_n, NULL);
72419203
DV
7234}
7235
2fa2fe9a
DV
7236static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7237 struct intel_crtc_config *pipe_config)
7238{
7239 struct drm_device *dev = crtc->base.dev;
7240 struct drm_i915_private *dev_priv = dev->dev_private;
7241 uint32_t tmp;
7242
7243 tmp = I915_READ(PF_CTL(crtc->pipe));
7244
7245 if (tmp & PF_ENABLE) {
fd4daa9c 7246 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7247 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7248 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7249
7250 /* We currently do not free assignements of panel fitters on
7251 * ivb/hsw (since we don't use the higher upscaling modes which
7252 * differentiates them) so just WARN about this case for now. */
7253 if (IS_GEN7(dev)) {
7254 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7255 PF_PIPE_SEL_IVB(crtc->pipe));
7256 }
2fa2fe9a 7257 }
79e53945
JB
7258}
7259
4c6baa59
JB
7260static void ironlake_get_plane_config(struct intel_crtc *crtc,
7261 struct intel_plane_config *plane_config)
7262{
7263 struct drm_device *dev = crtc->base.dev;
7264 struct drm_i915_private *dev_priv = dev->dev_private;
7265 u32 val, base, offset;
7266 int pipe = crtc->pipe, plane = crtc->plane;
7267 int fourcc, pixel_format;
7268 int aligned_height;
7269
66e514c1
DA
7270 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7271 if (!crtc->base.primary->fb) {
4c6baa59
JB
7272 DRM_DEBUG_KMS("failed to alloc fb\n");
7273 return;
7274 }
7275
7276 val = I915_READ(DSPCNTR(plane));
7277
7278 if (INTEL_INFO(dev)->gen >= 4)
7279 if (val & DISPPLANE_TILED)
7280 plane_config->tiled = true;
7281
7282 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7283 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7284 crtc->base.primary->fb->pixel_format = fourcc;
7285 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7286 drm_format_plane_cpp(fourcc, 0) * 8;
7287
7288 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7289 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7290 offset = I915_READ(DSPOFFSET(plane));
7291 } else {
7292 if (plane_config->tiled)
7293 offset = I915_READ(DSPTILEOFF(plane));
7294 else
7295 offset = I915_READ(DSPLINOFF(plane));
7296 }
7297 plane_config->base = base;
7298
7299 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7300 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7301 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7302
7303 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7304 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7305
66e514c1 7306 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7307 plane_config->tiled);
7308
1267a26b
FF
7309 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7310 aligned_height);
4c6baa59
JB
7311
7312 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7313 pipe, plane, crtc->base.primary->fb->width,
7314 crtc->base.primary->fb->height,
7315 crtc->base.primary->fb->bits_per_pixel, base,
7316 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7317 plane_config->size);
7318}
7319
0e8ffe1b
DV
7320static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7321 struct intel_crtc_config *pipe_config)
7322{
7323 struct drm_device *dev = crtc->base.dev;
7324 struct drm_i915_private *dev_priv = dev->dev_private;
7325 uint32_t tmp;
7326
930e8c9e
PZ
7327 if (!intel_display_power_enabled(dev_priv,
7328 POWER_DOMAIN_PIPE(crtc->pipe)))
7329 return false;
7330
e143a21c 7331 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7332 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7333
0e8ffe1b
DV
7334 tmp = I915_READ(PIPECONF(crtc->pipe));
7335 if (!(tmp & PIPECONF_ENABLE))
7336 return false;
7337
42571aef
VS
7338 switch (tmp & PIPECONF_BPC_MASK) {
7339 case PIPECONF_6BPC:
7340 pipe_config->pipe_bpp = 18;
7341 break;
7342 case PIPECONF_8BPC:
7343 pipe_config->pipe_bpp = 24;
7344 break;
7345 case PIPECONF_10BPC:
7346 pipe_config->pipe_bpp = 30;
7347 break;
7348 case PIPECONF_12BPC:
7349 pipe_config->pipe_bpp = 36;
7350 break;
7351 default:
7352 break;
7353 }
7354
b5a9fa09
DV
7355 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7356 pipe_config->limited_color_range = true;
7357
ab9412ba 7358 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7359 struct intel_shared_dpll *pll;
7360
88adfff1
DV
7361 pipe_config->has_pch_encoder = true;
7362
627eb5a3
DV
7363 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7364 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7365 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7366
7367 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7368
c0d43d62 7369 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7370 pipe_config->shared_dpll =
7371 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7372 } else {
7373 tmp = I915_READ(PCH_DPLL_SEL);
7374 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7375 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7376 else
7377 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7378 }
66e985c0
DV
7379
7380 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7381
7382 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7383 &pipe_config->dpll_hw_state));
c93f54cf
DV
7384
7385 tmp = pipe_config->dpll_hw_state.dpll;
7386 pipe_config->pixel_multiplier =
7387 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7388 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7389
7390 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7391 } else {
7392 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7393 }
7394
1bd1bd80
DV
7395 intel_get_pipe_timings(crtc, pipe_config);
7396
2fa2fe9a
DV
7397 ironlake_get_pfit_config(crtc, pipe_config);
7398
0e8ffe1b
DV
7399 return true;
7400}
7401
be256dc7
PZ
7402static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7403{
7404 struct drm_device *dev = dev_priv->dev;
be256dc7 7405 struct intel_crtc *crtc;
be256dc7 7406
d3fcc808 7407 for_each_intel_crtc(dev, crtc)
798183c5 7408 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7409 pipe_name(crtc->pipe));
7410
7411 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7412 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7413 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7414 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7415 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7416 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7417 "CPU PWM1 enabled\n");
c5107b87
PZ
7418 if (IS_HASWELL(dev))
7419 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7420 "CPU PWM2 enabled\n");
be256dc7
PZ
7421 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7422 "PCH PWM1 enabled\n");
7423 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7424 "Utility pin enabled\n");
7425 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7426
9926ada1
PZ
7427 /*
7428 * In theory we can still leave IRQs enabled, as long as only the HPD
7429 * interrupts remain enabled. We used to check for that, but since it's
7430 * gen-specific and since we only disable LCPLL after we fully disable
7431 * the interrupts, the check below should be enough.
7432 */
9df7575f 7433 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7434}
7435
9ccd5aeb
PZ
7436static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7437{
7438 struct drm_device *dev = dev_priv->dev;
7439
7440 if (IS_HASWELL(dev))
7441 return I915_READ(D_COMP_HSW);
7442 else
7443 return I915_READ(D_COMP_BDW);
7444}
7445
3c4c9b81
PZ
7446static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7447{
7448 struct drm_device *dev = dev_priv->dev;
7449
7450 if (IS_HASWELL(dev)) {
7451 mutex_lock(&dev_priv->rps.hw_lock);
7452 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7453 val))
f475dadf 7454 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7455 mutex_unlock(&dev_priv->rps.hw_lock);
7456 } else {
9ccd5aeb
PZ
7457 I915_WRITE(D_COMP_BDW, val);
7458 POSTING_READ(D_COMP_BDW);
3c4c9b81 7459 }
be256dc7
PZ
7460}
7461
7462/*
7463 * This function implements pieces of two sequences from BSpec:
7464 * - Sequence for display software to disable LCPLL
7465 * - Sequence for display software to allow package C8+
7466 * The steps implemented here are just the steps that actually touch the LCPLL
7467 * register. Callers should take care of disabling all the display engine
7468 * functions, doing the mode unset, fixing interrupts, etc.
7469 */
6ff58d53
PZ
7470static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7471 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7472{
7473 uint32_t val;
7474
7475 assert_can_disable_lcpll(dev_priv);
7476
7477 val = I915_READ(LCPLL_CTL);
7478
7479 if (switch_to_fclk) {
7480 val |= LCPLL_CD_SOURCE_FCLK;
7481 I915_WRITE(LCPLL_CTL, val);
7482
7483 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7484 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7485 DRM_ERROR("Switching to FCLK failed\n");
7486
7487 val = I915_READ(LCPLL_CTL);
7488 }
7489
7490 val |= LCPLL_PLL_DISABLE;
7491 I915_WRITE(LCPLL_CTL, val);
7492 POSTING_READ(LCPLL_CTL);
7493
7494 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7495 DRM_ERROR("LCPLL still locked\n");
7496
9ccd5aeb 7497 val = hsw_read_dcomp(dev_priv);
be256dc7 7498 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7499 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7500 ndelay(100);
7501
9ccd5aeb
PZ
7502 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7503 1))
be256dc7
PZ
7504 DRM_ERROR("D_COMP RCOMP still in progress\n");
7505
7506 if (allow_power_down) {
7507 val = I915_READ(LCPLL_CTL);
7508 val |= LCPLL_POWER_DOWN_ALLOW;
7509 I915_WRITE(LCPLL_CTL, val);
7510 POSTING_READ(LCPLL_CTL);
7511 }
7512}
7513
7514/*
7515 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7516 * source.
7517 */
6ff58d53 7518static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7519{
7520 uint32_t val;
a8a8bd54 7521 unsigned long irqflags;
be256dc7
PZ
7522
7523 val = I915_READ(LCPLL_CTL);
7524
7525 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7526 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7527 return;
7528
a8a8bd54
PZ
7529 /*
7530 * Make sure we're not on PC8 state before disabling PC8, otherwise
7531 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7532 *
7533 * The other problem is that hsw_restore_lcpll() is called as part of
7534 * the runtime PM resume sequence, so we can't just call
7535 * gen6_gt_force_wake_get() because that function calls
7536 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7537 * while we are on the resume sequence. So to solve this problem we have
7538 * to call special forcewake code that doesn't touch runtime PM and
7539 * doesn't enable the forcewake delayed work.
7540 */
7541 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7542 if (dev_priv->uncore.forcewake_count++ == 0)
7543 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7544 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7545
be256dc7
PZ
7546 if (val & LCPLL_POWER_DOWN_ALLOW) {
7547 val &= ~LCPLL_POWER_DOWN_ALLOW;
7548 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7549 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7550 }
7551
9ccd5aeb 7552 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7553 val |= D_COMP_COMP_FORCE;
7554 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7555 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7556
7557 val = I915_READ(LCPLL_CTL);
7558 val &= ~LCPLL_PLL_DISABLE;
7559 I915_WRITE(LCPLL_CTL, val);
7560
7561 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7562 DRM_ERROR("LCPLL not locked yet\n");
7563
7564 if (val & LCPLL_CD_SOURCE_FCLK) {
7565 val = I915_READ(LCPLL_CTL);
7566 val &= ~LCPLL_CD_SOURCE_FCLK;
7567 I915_WRITE(LCPLL_CTL, val);
7568
7569 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7570 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7571 DRM_ERROR("Switching back to LCPLL failed\n");
7572 }
215733fa 7573
a8a8bd54
PZ
7574 /* See the big comment above. */
7575 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7576 if (--dev_priv->uncore.forcewake_count == 0)
7577 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7578 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7579}
7580
765dab67
PZ
7581/*
7582 * Package states C8 and deeper are really deep PC states that can only be
7583 * reached when all the devices on the system allow it, so even if the graphics
7584 * device allows PC8+, it doesn't mean the system will actually get to these
7585 * states. Our driver only allows PC8+ when going into runtime PM.
7586 *
7587 * The requirements for PC8+ are that all the outputs are disabled, the power
7588 * well is disabled and most interrupts are disabled, and these are also
7589 * requirements for runtime PM. When these conditions are met, we manually do
7590 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7591 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7592 * hang the machine.
7593 *
7594 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7595 * the state of some registers, so when we come back from PC8+ we need to
7596 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7597 * need to take care of the registers kept by RC6. Notice that this happens even
7598 * if we don't put the device in PCI D3 state (which is what currently happens
7599 * because of the runtime PM support).
7600 *
7601 * For more, read "Display Sequences for Package C8" on the hardware
7602 * documentation.
7603 */
a14cb6fc 7604void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7605{
c67a470b
PZ
7606 struct drm_device *dev = dev_priv->dev;
7607 uint32_t val;
7608
c67a470b
PZ
7609 DRM_DEBUG_KMS("Enabling package C8+\n");
7610
c67a470b
PZ
7611 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7612 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7613 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7614 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7615 }
7616
7617 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7618 hsw_disable_lcpll(dev_priv, true, true);
7619}
7620
a14cb6fc 7621void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7622{
7623 struct drm_device *dev = dev_priv->dev;
7624 uint32_t val;
7625
c67a470b
PZ
7626 DRM_DEBUG_KMS("Disabling package C8+\n");
7627
7628 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7629 lpt_init_pch_refclk(dev);
7630
7631 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7632 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7633 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7634 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7635 }
7636
7637 intel_prepare_ddi(dev);
c67a470b
PZ
7638}
7639
9a952a0d
PZ
7640static void snb_modeset_global_resources(struct drm_device *dev)
7641{
7642 modeset_update_crtc_power_domains(dev);
7643}
7644
4f074129
ID
7645static void haswell_modeset_global_resources(struct drm_device *dev)
7646{
da723569 7647 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7648}
7649
09b4ddf9 7650static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7651 int x, int y,
7652 struct drm_framebuffer *fb)
7653{
09b4ddf9 7654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7655
566b734a 7656 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7657 return -EINVAL;
716c2e55 7658
644cef34
DV
7659 intel_crtc->lowfreq_avail = false;
7660
c8f7a0db 7661 return 0;
79e53945
JB
7662}
7663
7d2c8175
DL
7664static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7665 enum port port,
7666 struct intel_crtc_config *pipe_config)
7667{
7668 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7669
7670 switch (pipe_config->ddi_pll_sel) {
7671 case PORT_CLK_SEL_WRPLL1:
7672 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7673 break;
7674 case PORT_CLK_SEL_WRPLL2:
7675 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7676 break;
7677 }
7678}
7679
26804afd
DV
7680static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7681 struct intel_crtc_config *pipe_config)
7682{
7683 struct drm_device *dev = crtc->base.dev;
7684 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7685 struct intel_shared_dpll *pll;
26804afd
DV
7686 enum port port;
7687 uint32_t tmp;
7688
7689 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7690
7691 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7692
7d2c8175 7693 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7694
d452c5b6
DV
7695 if (pipe_config->shared_dpll >= 0) {
7696 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7697
7698 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7699 &pipe_config->dpll_hw_state));
7700 }
7701
26804afd
DV
7702 /*
7703 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7704 * DDI E. So just check whether this pipe is wired to DDI E and whether
7705 * the PCH transcoder is on.
7706 */
7707 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7708 pipe_config->has_pch_encoder = true;
7709
7710 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7711 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7712 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7713
7714 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7715 }
7716}
7717
0e8ffe1b
DV
7718static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7719 struct intel_crtc_config *pipe_config)
7720{
7721 struct drm_device *dev = crtc->base.dev;
7722 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7723 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7724 uint32_t tmp;
7725
b5482bd0
ID
7726 if (!intel_display_power_enabled(dev_priv,
7727 POWER_DOMAIN_PIPE(crtc->pipe)))
7728 return false;
7729
e143a21c 7730 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7731 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7732
eccb140b
DV
7733 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7734 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7735 enum pipe trans_edp_pipe;
7736 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7737 default:
7738 WARN(1, "unknown pipe linked to edp transcoder\n");
7739 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7740 case TRANS_DDI_EDP_INPUT_A_ON:
7741 trans_edp_pipe = PIPE_A;
7742 break;
7743 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7744 trans_edp_pipe = PIPE_B;
7745 break;
7746 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7747 trans_edp_pipe = PIPE_C;
7748 break;
7749 }
7750
7751 if (trans_edp_pipe == crtc->pipe)
7752 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7753 }
7754
da7e29bd 7755 if (!intel_display_power_enabled(dev_priv,
eccb140b 7756 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7757 return false;
7758
eccb140b 7759 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7760 if (!(tmp & PIPECONF_ENABLE))
7761 return false;
7762
26804afd 7763 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7764
1bd1bd80
DV
7765 intel_get_pipe_timings(crtc, pipe_config);
7766
2fa2fe9a 7767 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7768 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7769 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7770
e59150dc
JB
7771 if (IS_HASWELL(dev))
7772 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7773 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7774
6c49f241
DV
7775 pipe_config->pixel_multiplier = 1;
7776
0e8ffe1b
DV
7777 return true;
7778}
7779
1a91510d
JN
7780static struct {
7781 int clock;
7782 u32 config;
7783} hdmi_audio_clock[] = {
7784 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7785 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7786 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7787 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7788 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7789 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7790 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7791 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7792 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7793 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7794};
7795
7796/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7797static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7798{
7799 int i;
7800
7801 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7802 if (mode->clock == hdmi_audio_clock[i].clock)
7803 break;
7804 }
7805
7806 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7807 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7808 i = 1;
7809 }
7810
7811 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7812 hdmi_audio_clock[i].clock,
7813 hdmi_audio_clock[i].config);
7814
7815 return hdmi_audio_clock[i].config;
7816}
7817
3a9627f4
WF
7818static bool intel_eld_uptodate(struct drm_connector *connector,
7819 int reg_eldv, uint32_t bits_eldv,
7820 int reg_elda, uint32_t bits_elda,
7821 int reg_edid)
7822{
7823 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7824 uint8_t *eld = connector->eld;
7825 uint32_t i;
7826
7827 i = I915_READ(reg_eldv);
7828 i &= bits_eldv;
7829
7830 if (!eld[0])
7831 return !i;
7832
7833 if (!i)
7834 return false;
7835
7836 i = I915_READ(reg_elda);
7837 i &= ~bits_elda;
7838 I915_WRITE(reg_elda, i);
7839
7840 for (i = 0; i < eld[2]; i++)
7841 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7842 return false;
7843
7844 return true;
7845}
7846
e0dac65e 7847static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7848 struct drm_crtc *crtc,
7849 struct drm_display_mode *mode)
e0dac65e
WF
7850{
7851 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7852 uint8_t *eld = connector->eld;
7853 uint32_t eldv;
7854 uint32_t len;
7855 uint32_t i;
7856
7857 i = I915_READ(G4X_AUD_VID_DID);
7858
7859 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7860 eldv = G4X_ELDV_DEVCL_DEVBLC;
7861 else
7862 eldv = G4X_ELDV_DEVCTG;
7863
3a9627f4
WF
7864 if (intel_eld_uptodate(connector,
7865 G4X_AUD_CNTL_ST, eldv,
7866 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7867 G4X_HDMIW_HDMIEDID))
7868 return;
7869
e0dac65e
WF
7870 i = I915_READ(G4X_AUD_CNTL_ST);
7871 i &= ~(eldv | G4X_ELD_ADDR);
7872 len = (i >> 9) & 0x1f; /* ELD buffer size */
7873 I915_WRITE(G4X_AUD_CNTL_ST, i);
7874
7875 if (!eld[0])
7876 return;
7877
7878 len = min_t(uint8_t, eld[2], len);
7879 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7880 for (i = 0; i < len; i++)
7881 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7882
7883 i = I915_READ(G4X_AUD_CNTL_ST);
7884 i |= eldv;
7885 I915_WRITE(G4X_AUD_CNTL_ST, i);
7886}
7887
83358c85 7888static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7889 struct drm_crtc *crtc,
7890 struct drm_display_mode *mode)
83358c85
WX
7891{
7892 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7893 uint8_t *eld = connector->eld;
83358c85
WX
7894 uint32_t eldv;
7895 uint32_t i;
7896 int len;
7897 int pipe = to_intel_crtc(crtc)->pipe;
7898 int tmp;
7899
7900 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7901 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7902 int aud_config = HSW_AUD_CFG(pipe);
7903 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7904
83358c85
WX
7905 /* Audio output enable */
7906 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7907 tmp = I915_READ(aud_cntrl_st2);
7908 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7909 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7910 POSTING_READ(aud_cntrl_st2);
83358c85 7911
c7905792 7912 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7913
7914 /* Set ELD valid state */
7915 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7916 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7917 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7918 I915_WRITE(aud_cntrl_st2, tmp);
7919 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7920 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7921
7922 /* Enable HDMI mode */
7923 tmp = I915_READ(aud_config);
7e7cb34f 7924 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7925 /* clear N_programing_enable and N_value_index */
7926 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7927 I915_WRITE(aud_config, tmp);
7928
7929 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7930
7931 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7932
7933 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7934 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7935 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7936 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7937 } else {
7938 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7939 }
83358c85
WX
7940
7941 if (intel_eld_uptodate(connector,
7942 aud_cntrl_st2, eldv,
7943 aud_cntl_st, IBX_ELD_ADDRESS,
7944 hdmiw_hdmiedid))
7945 return;
7946
7947 i = I915_READ(aud_cntrl_st2);
7948 i &= ~eldv;
7949 I915_WRITE(aud_cntrl_st2, i);
7950
7951 if (!eld[0])
7952 return;
7953
7954 i = I915_READ(aud_cntl_st);
7955 i &= ~IBX_ELD_ADDRESS;
7956 I915_WRITE(aud_cntl_st, i);
7957 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7958 DRM_DEBUG_DRIVER("port num:%d\n", i);
7959
7960 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7961 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7962 for (i = 0; i < len; i++)
7963 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7964
7965 i = I915_READ(aud_cntrl_st2);
7966 i |= eldv;
7967 I915_WRITE(aud_cntrl_st2, i);
7968
7969}
7970
e0dac65e 7971static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7972 struct drm_crtc *crtc,
7973 struct drm_display_mode *mode)
e0dac65e
WF
7974{
7975 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7976 uint8_t *eld = connector->eld;
7977 uint32_t eldv;
7978 uint32_t i;
7979 int len;
7980 int hdmiw_hdmiedid;
b6daa025 7981 int aud_config;
e0dac65e
WF
7982 int aud_cntl_st;
7983 int aud_cntrl_st2;
9b138a83 7984 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7985
b3f33cbf 7986 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7987 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7988 aud_config = IBX_AUD_CFG(pipe);
7989 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7990 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7991 } else if (IS_VALLEYVIEW(connector->dev)) {
7992 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7993 aud_config = VLV_AUD_CFG(pipe);
7994 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7995 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7996 } else {
9b138a83
WX
7997 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7998 aud_config = CPT_AUD_CFG(pipe);
7999 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8000 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8001 }
8002
9b138a83 8003 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8004
9ca2fe73
ML
8005 if (IS_VALLEYVIEW(connector->dev)) {
8006 struct intel_encoder *intel_encoder;
8007 struct intel_digital_port *intel_dig_port;
8008
8009 intel_encoder = intel_attached_encoder(connector);
8010 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8011 i = intel_dig_port->port;
8012 } else {
8013 i = I915_READ(aud_cntl_st);
8014 i = (i >> 29) & DIP_PORT_SEL_MASK;
8015 /* DIP_Port_Select, 0x1 = PortB */
8016 }
8017
e0dac65e
WF
8018 if (!i) {
8019 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8020 /* operate blindly on all ports */
1202b4c6
WF
8021 eldv = IBX_ELD_VALIDB;
8022 eldv |= IBX_ELD_VALIDB << 4;
8023 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8024 } else {
2582a850 8025 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8026 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8027 }
8028
3a9627f4
WF
8029 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8030 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8031 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8032 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8033 } else {
8034 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8035 }
e0dac65e 8036
3a9627f4
WF
8037 if (intel_eld_uptodate(connector,
8038 aud_cntrl_st2, eldv,
8039 aud_cntl_st, IBX_ELD_ADDRESS,
8040 hdmiw_hdmiedid))
8041 return;
8042
e0dac65e
WF
8043 i = I915_READ(aud_cntrl_st2);
8044 i &= ~eldv;
8045 I915_WRITE(aud_cntrl_st2, i);
8046
8047 if (!eld[0])
8048 return;
8049
e0dac65e 8050 i = I915_READ(aud_cntl_st);
1202b4c6 8051 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8052 I915_WRITE(aud_cntl_st, i);
8053
8054 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8055 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8056 for (i = 0; i < len; i++)
8057 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8058
8059 i = I915_READ(aud_cntrl_st2);
8060 i |= eldv;
8061 I915_WRITE(aud_cntrl_st2, i);
8062}
8063
8064void intel_write_eld(struct drm_encoder *encoder,
8065 struct drm_display_mode *mode)
8066{
8067 struct drm_crtc *crtc = encoder->crtc;
8068 struct drm_connector *connector;
8069 struct drm_device *dev = encoder->dev;
8070 struct drm_i915_private *dev_priv = dev->dev_private;
8071
8072 connector = drm_select_eld(encoder, mode);
8073 if (!connector)
8074 return;
8075
8076 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8077 connector->base.id,
c23cc417 8078 connector->name,
e0dac65e 8079 connector->encoder->base.id,
8e329a03 8080 connector->encoder->name);
e0dac65e
WF
8081
8082 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8083
8084 if (dev_priv->display.write_eld)
34427052 8085 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8086}
8087
560b85bb
CW
8088static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8089{
8090 struct drm_device *dev = crtc->dev;
8091 struct drm_i915_private *dev_priv = dev->dev_private;
8092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8093 uint32_t cntl;
560b85bb 8094
4b0e333e 8095 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8096 /* On these chipsets we can only modify the base whilst
8097 * the cursor is disabled.
8098 */
4b0e333e
CW
8099 if (intel_crtc->cursor_cntl) {
8100 I915_WRITE(_CURACNTR, 0);
8101 POSTING_READ(_CURACNTR);
8102 intel_crtc->cursor_cntl = 0;
8103 }
8104
9db4a9c7 8105 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8106 POSTING_READ(_CURABASE);
8107 }
560b85bb 8108
4b0e333e
CW
8109 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8110 cntl = 0;
8111 if (base)
8112 cntl = (CURSOR_ENABLE |
560b85bb 8113 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8114 CURSOR_FORMAT_ARGB);
8115 if (intel_crtc->cursor_cntl != cntl) {
8116 I915_WRITE(_CURACNTR, cntl);
8117 POSTING_READ(_CURACNTR);
8118 intel_crtc->cursor_cntl = cntl;
8119 }
560b85bb
CW
8120}
8121
8122static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8123{
8124 struct drm_device *dev = crtc->dev;
8125 struct drm_i915_private *dev_priv = dev->dev_private;
8126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8127 int pipe = intel_crtc->pipe;
4b0e333e 8128 uint32_t cntl;
4726e0b0 8129
4b0e333e
CW
8130 cntl = 0;
8131 if (base) {
8132 cntl = MCURSOR_GAMMA_ENABLE;
8133 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8134 case 64:
8135 cntl |= CURSOR_MODE_64_ARGB_AX;
8136 break;
8137 case 128:
8138 cntl |= CURSOR_MODE_128_ARGB_AX;
8139 break;
8140 case 256:
8141 cntl |= CURSOR_MODE_256_ARGB_AX;
8142 break;
8143 default:
8144 WARN_ON(1);
8145 return;
560b85bb 8146 }
4b0e333e
CW
8147 cntl |= pipe << 28; /* Connect to correct pipe */
8148 }
8149 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8150 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8151 POSTING_READ(CURCNTR(pipe));
8152 intel_crtc->cursor_cntl = cntl;
560b85bb 8153 }
4b0e333e 8154
560b85bb 8155 /* and commit changes on next vblank */
9db4a9c7 8156 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8157 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8158}
8159
65a21cd6
JB
8160static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8161{
8162 struct drm_device *dev = crtc->dev;
8163 struct drm_i915_private *dev_priv = dev->dev_private;
8164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8165 int pipe = intel_crtc->pipe;
4b0e333e
CW
8166 uint32_t cntl;
8167
8168 cntl = 0;
8169 if (base) {
8170 cntl = MCURSOR_GAMMA_ENABLE;
8171 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8172 case 64:
8173 cntl |= CURSOR_MODE_64_ARGB_AX;
8174 break;
8175 case 128:
8176 cntl |= CURSOR_MODE_128_ARGB_AX;
8177 break;
8178 case 256:
8179 cntl |= CURSOR_MODE_256_ARGB_AX;
8180 break;
8181 default:
8182 WARN_ON(1);
8183 return;
65a21cd6 8184 }
4b0e333e
CW
8185 }
8186 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8187 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8188
4b0e333e
CW
8189 if (intel_crtc->cursor_cntl != cntl) {
8190 I915_WRITE(CURCNTR(pipe), cntl);
8191 POSTING_READ(CURCNTR(pipe));
8192 intel_crtc->cursor_cntl = cntl;
65a21cd6 8193 }
4b0e333e 8194
65a21cd6 8195 /* and commit changes on next vblank */
5efb3e28
VS
8196 I915_WRITE(CURBASE(pipe), base);
8197 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8198}
8199
cda4b7d3 8200/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8201static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8202 bool on)
cda4b7d3
CW
8203{
8204 struct drm_device *dev = crtc->dev;
8205 struct drm_i915_private *dev_priv = dev->dev_private;
8206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8207 int pipe = intel_crtc->pipe;
3d7d6510
MR
8208 int x = crtc->cursor_x;
8209 int y = crtc->cursor_y;
d6e4db15 8210 u32 base = 0, pos = 0;
cda4b7d3 8211
d6e4db15 8212 if (on)
cda4b7d3 8213 base = intel_crtc->cursor_addr;
cda4b7d3 8214
d6e4db15
VS
8215 if (x >= intel_crtc->config.pipe_src_w)
8216 base = 0;
8217
8218 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8219 base = 0;
8220
8221 if (x < 0) {
efc9064e 8222 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8223 base = 0;
8224
8225 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8226 x = -x;
8227 }
8228 pos |= x << CURSOR_X_SHIFT;
8229
8230 if (y < 0) {
efc9064e 8231 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8232 base = 0;
8233
8234 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8235 y = -y;
8236 }
8237 pos |= y << CURSOR_Y_SHIFT;
8238
4b0e333e 8239 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8240 return;
8241
5efb3e28
VS
8242 I915_WRITE(CURPOS(pipe), pos);
8243
8244 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8245 ivb_update_cursor(crtc, base);
5efb3e28
VS
8246 else if (IS_845G(dev) || IS_I865G(dev))
8247 i845_update_cursor(crtc, base);
8248 else
8249 i9xx_update_cursor(crtc, base);
4b0e333e 8250 intel_crtc->cursor_base = base;
cda4b7d3
CW
8251}
8252
e3287951
MR
8253/*
8254 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8255 *
8256 * Note that the object's reference will be consumed if the update fails. If
8257 * the update succeeds, the reference of the old object (if any) will be
8258 * consumed.
8259 */
8260static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8261 struct drm_i915_gem_object *obj,
8262 uint32_t width, uint32_t height)
79e53945
JB
8263{
8264 struct drm_device *dev = crtc->dev;
8265 struct drm_i915_private *dev_priv = dev->dev_private;
8266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8267 enum pipe pipe = intel_crtc->pipe;
64f962e3 8268 unsigned old_width;
cda4b7d3 8269 uint32_t addr;
3f8bc370 8270 int ret;
79e53945 8271
79e53945 8272 /* if we want to turn off the cursor ignore width and height */
e3287951 8273 if (!obj) {
28c97730 8274 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8275 addr = 0;
05394f39 8276 obj = NULL;
5004417d 8277 mutex_lock(&dev->struct_mutex);
3f8bc370 8278 goto finish;
79e53945
JB
8279 }
8280
4726e0b0
SK
8281 /* Check for which cursor types we support */
8282 if (!((width == 64 && height == 64) ||
8283 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8284 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8285 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8286 return -EINVAL;
8287 }
8288
05394f39 8289 if (obj->base.size < width * height * 4) {
e3287951 8290 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8291 ret = -ENOMEM;
8292 goto fail;
79e53945
JB
8293 }
8294
71acb5eb 8295 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8296 mutex_lock(&dev->struct_mutex);
3d13ef2e 8297 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8298 unsigned alignment;
8299
d9e86c0e 8300 if (obj->tiling_mode) {
3b25b31f 8301 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8302 ret = -EINVAL;
8303 goto fail_locked;
8304 }
8305
693db184
CW
8306 /* Note that the w/a also requires 2 PTE of padding following
8307 * the bo. We currently fill all unused PTE with the shadow
8308 * page and so we should always have valid PTE following the
8309 * cursor preventing the VT-d warning.
8310 */
8311 alignment = 0;
8312 if (need_vtd_wa(dev))
8313 alignment = 64*1024;
8314
8315 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8316 if (ret) {
3b25b31f 8317 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8318 goto fail_locked;
e7b526bb
CW
8319 }
8320
d9e86c0e
CW
8321 ret = i915_gem_object_put_fence(obj);
8322 if (ret) {
3b25b31f 8323 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8324 goto fail_unpin;
8325 }
8326
f343c5f6 8327 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8328 } else {
6eeefaf3 8329 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8330 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8331 if (ret) {
3b25b31f 8332 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8333 goto fail_locked;
71acb5eb 8334 }
00731155 8335 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8336 }
8337
a6c45cf0 8338 if (IS_GEN2(dev))
14b60391
JB
8339 I915_WRITE(CURSIZE, (height << 12) | width);
8340
3f8bc370 8341 finish:
3f8bc370 8342 if (intel_crtc->cursor_bo) {
00731155 8343 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8344 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8345 }
80824003 8346
a071fa00
DV
8347 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8348 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8349 mutex_unlock(&dev->struct_mutex);
3f8bc370 8350
64f962e3
CW
8351 old_width = intel_crtc->cursor_width;
8352
3f8bc370 8353 intel_crtc->cursor_addr = addr;
05394f39 8354 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8355 intel_crtc->cursor_width = width;
8356 intel_crtc->cursor_height = height;
8357
64f962e3
CW
8358 if (intel_crtc->active) {
8359 if (old_width != width)
8360 intel_update_watermarks(crtc);
f2f5f771 8361 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8362 }
3f8bc370 8363
f99d7069
DV
8364 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8365
79e53945 8366 return 0;
e7b526bb 8367fail_unpin:
cc98b413 8368 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8369fail_locked:
34b8686e 8370 mutex_unlock(&dev->struct_mutex);
bc9025bd 8371fail:
05394f39 8372 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8373 return ret;
79e53945
JB
8374}
8375
79e53945 8376static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8377 u16 *blue, uint32_t start, uint32_t size)
79e53945 8378{
7203425a 8379 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8381
7203425a 8382 for (i = start; i < end; i++) {
79e53945
JB
8383 intel_crtc->lut_r[i] = red[i] >> 8;
8384 intel_crtc->lut_g[i] = green[i] >> 8;
8385 intel_crtc->lut_b[i] = blue[i] >> 8;
8386 }
8387
8388 intel_crtc_load_lut(crtc);
8389}
8390
79e53945
JB
8391/* VESA 640x480x72Hz mode to set on the pipe */
8392static struct drm_display_mode load_detect_mode = {
8393 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8394 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8395};
8396
a8bb6818
DV
8397struct drm_framebuffer *
8398__intel_framebuffer_create(struct drm_device *dev,
8399 struct drm_mode_fb_cmd2 *mode_cmd,
8400 struct drm_i915_gem_object *obj)
d2dff872
CW
8401{
8402 struct intel_framebuffer *intel_fb;
8403 int ret;
8404
8405 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8406 if (!intel_fb) {
8407 drm_gem_object_unreference_unlocked(&obj->base);
8408 return ERR_PTR(-ENOMEM);
8409 }
8410
8411 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8412 if (ret)
8413 goto err;
d2dff872
CW
8414
8415 return &intel_fb->base;
dd4916c5
DV
8416err:
8417 drm_gem_object_unreference_unlocked(&obj->base);
8418 kfree(intel_fb);
8419
8420 return ERR_PTR(ret);
d2dff872
CW
8421}
8422
b5ea642a 8423static struct drm_framebuffer *
a8bb6818
DV
8424intel_framebuffer_create(struct drm_device *dev,
8425 struct drm_mode_fb_cmd2 *mode_cmd,
8426 struct drm_i915_gem_object *obj)
8427{
8428 struct drm_framebuffer *fb;
8429 int ret;
8430
8431 ret = i915_mutex_lock_interruptible(dev);
8432 if (ret)
8433 return ERR_PTR(ret);
8434 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8435 mutex_unlock(&dev->struct_mutex);
8436
8437 return fb;
8438}
8439
d2dff872
CW
8440static u32
8441intel_framebuffer_pitch_for_width(int width, int bpp)
8442{
8443 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8444 return ALIGN(pitch, 64);
8445}
8446
8447static u32
8448intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8449{
8450 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8451 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8452}
8453
8454static struct drm_framebuffer *
8455intel_framebuffer_create_for_mode(struct drm_device *dev,
8456 struct drm_display_mode *mode,
8457 int depth, int bpp)
8458{
8459 struct drm_i915_gem_object *obj;
0fed39bd 8460 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8461
8462 obj = i915_gem_alloc_object(dev,
8463 intel_framebuffer_size_for_mode(mode, bpp));
8464 if (obj == NULL)
8465 return ERR_PTR(-ENOMEM);
8466
8467 mode_cmd.width = mode->hdisplay;
8468 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8469 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8470 bpp);
5ca0c34a 8471 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8472
8473 return intel_framebuffer_create(dev, &mode_cmd, obj);
8474}
8475
8476static struct drm_framebuffer *
8477mode_fits_in_fbdev(struct drm_device *dev,
8478 struct drm_display_mode *mode)
8479{
4520f53a 8480#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8481 struct drm_i915_private *dev_priv = dev->dev_private;
8482 struct drm_i915_gem_object *obj;
8483 struct drm_framebuffer *fb;
8484
4c0e5528 8485 if (!dev_priv->fbdev)
d2dff872
CW
8486 return NULL;
8487
4c0e5528 8488 if (!dev_priv->fbdev->fb)
d2dff872
CW
8489 return NULL;
8490
4c0e5528
DV
8491 obj = dev_priv->fbdev->fb->obj;
8492 BUG_ON(!obj);
8493
8bcd4553 8494 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8495 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8496 fb->bits_per_pixel))
d2dff872
CW
8497 return NULL;
8498
01f2c773 8499 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8500 return NULL;
8501
8502 return fb;
4520f53a
DV
8503#else
8504 return NULL;
8505#endif
d2dff872
CW
8506}
8507
d2434ab7 8508bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8509 struct drm_display_mode *mode,
51fd371b
RC
8510 struct intel_load_detect_pipe *old,
8511 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8512{
8513 struct intel_crtc *intel_crtc;
d2434ab7
DV
8514 struct intel_encoder *intel_encoder =
8515 intel_attached_encoder(connector);
79e53945 8516 struct drm_crtc *possible_crtc;
4ef69c7a 8517 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8518 struct drm_crtc *crtc = NULL;
8519 struct drm_device *dev = encoder->dev;
94352cf9 8520 struct drm_framebuffer *fb;
51fd371b
RC
8521 struct drm_mode_config *config = &dev->mode_config;
8522 int ret, i = -1;
79e53945 8523
d2dff872 8524 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8525 connector->base.id, connector->name,
8e329a03 8526 encoder->base.id, encoder->name);
d2dff872 8527
51fd371b
RC
8528 drm_modeset_acquire_init(ctx, 0);
8529
8530retry:
8531 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8532 if (ret)
8533 goto fail_unlock;
6e9f798d 8534
79e53945
JB
8535 /*
8536 * Algorithm gets a little messy:
7a5e4805 8537 *
79e53945
JB
8538 * - if the connector already has an assigned crtc, use it (but make
8539 * sure it's on first)
7a5e4805 8540 *
79e53945
JB
8541 * - try to find the first unused crtc that can drive this connector,
8542 * and use that if we find one
79e53945
JB
8543 */
8544
8545 /* See if we already have a CRTC for this connector */
8546 if (encoder->crtc) {
8547 crtc = encoder->crtc;
8261b191 8548
51fd371b
RC
8549 ret = drm_modeset_lock(&crtc->mutex, ctx);
8550 if (ret)
8551 goto fail_unlock;
7b24056b 8552
24218aac 8553 old->dpms_mode = connector->dpms;
8261b191
CW
8554 old->load_detect_temp = false;
8555
8556 /* Make sure the crtc and connector are running */
24218aac
DV
8557 if (connector->dpms != DRM_MODE_DPMS_ON)
8558 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8559
7173188d 8560 return true;
79e53945
JB
8561 }
8562
8563 /* Find an unused one (if possible) */
70e1e0ec 8564 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8565 i++;
8566 if (!(encoder->possible_crtcs & (1 << i)))
8567 continue;
8568 if (!possible_crtc->enabled) {
8569 crtc = possible_crtc;
8570 break;
8571 }
79e53945
JB
8572 }
8573
8574 /*
8575 * If we didn't find an unused CRTC, don't use any.
8576 */
8577 if (!crtc) {
7173188d 8578 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8579 goto fail_unlock;
79e53945
JB
8580 }
8581
51fd371b
RC
8582 ret = drm_modeset_lock(&crtc->mutex, ctx);
8583 if (ret)
8584 goto fail_unlock;
fc303101
DV
8585 intel_encoder->new_crtc = to_intel_crtc(crtc);
8586 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8587
8588 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8589 intel_crtc->new_enabled = true;
8590 intel_crtc->new_config = &intel_crtc->config;
24218aac 8591 old->dpms_mode = connector->dpms;
8261b191 8592 old->load_detect_temp = true;
d2dff872 8593 old->release_fb = NULL;
79e53945 8594
6492711d
CW
8595 if (!mode)
8596 mode = &load_detect_mode;
79e53945 8597
d2dff872
CW
8598 /* We need a framebuffer large enough to accommodate all accesses
8599 * that the plane may generate whilst we perform load detection.
8600 * We can not rely on the fbcon either being present (we get called
8601 * during its initialisation to detect all boot displays, or it may
8602 * not even exist) or that it is large enough to satisfy the
8603 * requested mode.
8604 */
94352cf9
DV
8605 fb = mode_fits_in_fbdev(dev, mode);
8606 if (fb == NULL) {
d2dff872 8607 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8608 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8609 old->release_fb = fb;
d2dff872
CW
8610 } else
8611 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8612 if (IS_ERR(fb)) {
d2dff872 8613 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8614 goto fail;
79e53945 8615 }
79e53945 8616
c0c36b94 8617 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8618 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8619 if (old->release_fb)
8620 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8621 goto fail;
79e53945 8622 }
7173188d 8623
79e53945 8624 /* let the connector get through one full cycle before testing */
9d0498a2 8625 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8626 return true;
412b61d8
VS
8627
8628 fail:
8629 intel_crtc->new_enabled = crtc->enabled;
8630 if (intel_crtc->new_enabled)
8631 intel_crtc->new_config = &intel_crtc->config;
8632 else
8633 intel_crtc->new_config = NULL;
51fd371b
RC
8634fail_unlock:
8635 if (ret == -EDEADLK) {
8636 drm_modeset_backoff(ctx);
8637 goto retry;
8638 }
8639
8640 drm_modeset_drop_locks(ctx);
8641 drm_modeset_acquire_fini(ctx);
6e9f798d 8642
412b61d8 8643 return false;
79e53945
JB
8644}
8645
d2434ab7 8646void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8647 struct intel_load_detect_pipe *old,
8648 struct drm_modeset_acquire_ctx *ctx)
79e53945 8649{
d2434ab7
DV
8650 struct intel_encoder *intel_encoder =
8651 intel_attached_encoder(connector);
4ef69c7a 8652 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8653 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8655
d2dff872 8656 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8657 connector->base.id, connector->name,
8e329a03 8658 encoder->base.id, encoder->name);
d2dff872 8659
8261b191 8660 if (old->load_detect_temp) {
fc303101
DV
8661 to_intel_connector(connector)->new_encoder = NULL;
8662 intel_encoder->new_crtc = NULL;
412b61d8
VS
8663 intel_crtc->new_enabled = false;
8664 intel_crtc->new_config = NULL;
fc303101 8665 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8666
36206361
DV
8667 if (old->release_fb) {
8668 drm_framebuffer_unregister_private(old->release_fb);
8669 drm_framebuffer_unreference(old->release_fb);
8670 }
d2dff872 8671
51fd371b 8672 goto unlock;
0622a53c 8673 return;
79e53945
JB
8674 }
8675
c751ce4f 8676 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8677 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8678 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8679
51fd371b
RC
8680unlock:
8681 drm_modeset_drop_locks(ctx);
8682 drm_modeset_acquire_fini(ctx);
79e53945
JB
8683}
8684
da4a1efa
VS
8685static int i9xx_pll_refclk(struct drm_device *dev,
8686 const struct intel_crtc_config *pipe_config)
8687{
8688 struct drm_i915_private *dev_priv = dev->dev_private;
8689 u32 dpll = pipe_config->dpll_hw_state.dpll;
8690
8691 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8692 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8693 else if (HAS_PCH_SPLIT(dev))
8694 return 120000;
8695 else if (!IS_GEN2(dev))
8696 return 96000;
8697 else
8698 return 48000;
8699}
8700
79e53945 8701/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8702static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8703 struct intel_crtc_config *pipe_config)
79e53945 8704{
f1f644dc 8705 struct drm_device *dev = crtc->base.dev;
79e53945 8706 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8707 int pipe = pipe_config->cpu_transcoder;
293623f7 8708 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8709 u32 fp;
8710 intel_clock_t clock;
da4a1efa 8711 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8712
8713 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8714 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8715 else
293623f7 8716 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8717
8718 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8719 if (IS_PINEVIEW(dev)) {
8720 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8721 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8722 } else {
8723 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8724 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8725 }
8726
a6c45cf0 8727 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8728 if (IS_PINEVIEW(dev))
8729 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8730 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8731 else
8732 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8733 DPLL_FPA01_P1_POST_DIV_SHIFT);
8734
8735 switch (dpll & DPLL_MODE_MASK) {
8736 case DPLLB_MODE_DAC_SERIAL:
8737 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8738 5 : 10;
8739 break;
8740 case DPLLB_MODE_LVDS:
8741 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8742 7 : 14;
8743 break;
8744 default:
28c97730 8745 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8746 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8747 return;
79e53945
JB
8748 }
8749
ac58c3f0 8750 if (IS_PINEVIEW(dev))
da4a1efa 8751 pineview_clock(refclk, &clock);
ac58c3f0 8752 else
da4a1efa 8753 i9xx_clock(refclk, &clock);
79e53945 8754 } else {
0fb58223 8755 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8756 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8757
8758 if (is_lvds) {
8759 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8760 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8761
8762 if (lvds & LVDS_CLKB_POWER_UP)
8763 clock.p2 = 7;
8764 else
8765 clock.p2 = 14;
79e53945
JB
8766 } else {
8767 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8768 clock.p1 = 2;
8769 else {
8770 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8771 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8772 }
8773 if (dpll & PLL_P2_DIVIDE_BY_4)
8774 clock.p2 = 4;
8775 else
8776 clock.p2 = 2;
79e53945 8777 }
da4a1efa
VS
8778
8779 i9xx_clock(refclk, &clock);
79e53945
JB
8780 }
8781
18442d08
VS
8782 /*
8783 * This value includes pixel_multiplier. We will use
241bfc38 8784 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8785 * encoder's get_config() function.
8786 */
8787 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8788}
8789
6878da05
VS
8790int intel_dotclock_calculate(int link_freq,
8791 const struct intel_link_m_n *m_n)
f1f644dc 8792{
f1f644dc
JB
8793 /*
8794 * The calculation for the data clock is:
1041a02f 8795 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8796 * But we want to avoid losing precison if possible, so:
1041a02f 8797 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8798 *
8799 * and the link clock is simpler:
1041a02f 8800 * link_clock = (m * link_clock) / n
f1f644dc
JB
8801 */
8802
6878da05
VS
8803 if (!m_n->link_n)
8804 return 0;
f1f644dc 8805
6878da05
VS
8806 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8807}
f1f644dc 8808
18442d08
VS
8809static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8810 struct intel_crtc_config *pipe_config)
6878da05
VS
8811{
8812 struct drm_device *dev = crtc->base.dev;
79e53945 8813
18442d08
VS
8814 /* read out port_clock from the DPLL */
8815 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8816
f1f644dc 8817 /*
18442d08 8818 * This value does not include pixel_multiplier.
241bfc38 8819 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8820 * agree once we know their relationship in the encoder's
8821 * get_config() function.
79e53945 8822 */
241bfc38 8823 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8824 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8825 &pipe_config->fdi_m_n);
79e53945
JB
8826}
8827
8828/** Returns the currently programmed mode of the given pipe. */
8829struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8830 struct drm_crtc *crtc)
8831{
548f245b 8832 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8834 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8835 struct drm_display_mode *mode;
f1f644dc 8836 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8837 int htot = I915_READ(HTOTAL(cpu_transcoder));
8838 int hsync = I915_READ(HSYNC(cpu_transcoder));
8839 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8840 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8841 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8842
8843 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8844 if (!mode)
8845 return NULL;
8846
f1f644dc
JB
8847 /*
8848 * Construct a pipe_config sufficient for getting the clock info
8849 * back out of crtc_clock_get.
8850 *
8851 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8852 * to use a real value here instead.
8853 */
293623f7 8854 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8855 pipe_config.pixel_multiplier = 1;
293623f7
VS
8856 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8857 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8858 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8859 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8860
773ae034 8861 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8862 mode->hdisplay = (htot & 0xffff) + 1;
8863 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8864 mode->hsync_start = (hsync & 0xffff) + 1;
8865 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8866 mode->vdisplay = (vtot & 0xffff) + 1;
8867 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8868 mode->vsync_start = (vsync & 0xffff) + 1;
8869 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8870
8871 drm_mode_set_name(mode);
79e53945
JB
8872
8873 return mode;
8874}
8875
cc36513c
DV
8876static void intel_increase_pllclock(struct drm_device *dev,
8877 enum pipe pipe)
652c393a 8878{
fbee40df 8879 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8880 int dpll_reg = DPLL(pipe);
8881 int dpll;
652c393a 8882
baff296c 8883 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8884 return;
8885
8886 if (!dev_priv->lvds_downclock_avail)
8887 return;
8888
dbdc6479 8889 dpll = I915_READ(dpll_reg);
652c393a 8890 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8891 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8892
8ac5a6d5 8893 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8894
8895 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8896 I915_WRITE(dpll_reg, dpll);
9d0498a2 8897 intel_wait_for_vblank(dev, pipe);
dbdc6479 8898
652c393a
JB
8899 dpll = I915_READ(dpll_reg);
8900 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8901 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8902 }
652c393a
JB
8903}
8904
8905static void intel_decrease_pllclock(struct drm_crtc *crtc)
8906{
8907 struct drm_device *dev = crtc->dev;
fbee40df 8908 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8910
baff296c 8911 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8912 return;
8913
8914 if (!dev_priv->lvds_downclock_avail)
8915 return;
8916
8917 /*
8918 * Since this is called by a timer, we should never get here in
8919 * the manual case.
8920 */
8921 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8922 int pipe = intel_crtc->pipe;
8923 int dpll_reg = DPLL(pipe);
8924 int dpll;
f6e5b160 8925
44d98a61 8926 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8927
8ac5a6d5 8928 assert_panel_unlocked(dev_priv, pipe);
652c393a 8929
dc257cf1 8930 dpll = I915_READ(dpll_reg);
652c393a
JB
8931 dpll |= DISPLAY_RATE_SELECT_FPA1;
8932 I915_WRITE(dpll_reg, dpll);
9d0498a2 8933 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8934 dpll = I915_READ(dpll_reg);
8935 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8936 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8937 }
8938
8939}
8940
f047e395
CW
8941void intel_mark_busy(struct drm_device *dev)
8942{
c67a470b
PZ
8943 struct drm_i915_private *dev_priv = dev->dev_private;
8944
f62a0076
CW
8945 if (dev_priv->mm.busy)
8946 return;
8947
43694d69 8948 intel_runtime_pm_get(dev_priv);
c67a470b 8949 i915_update_gfx_val(dev_priv);
f62a0076 8950 dev_priv->mm.busy = true;
f047e395
CW
8951}
8952
8953void intel_mark_idle(struct drm_device *dev)
652c393a 8954{
c67a470b 8955 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8956 struct drm_crtc *crtc;
652c393a 8957
f62a0076
CW
8958 if (!dev_priv->mm.busy)
8959 return;
8960
8961 dev_priv->mm.busy = false;
8962
d330a953 8963 if (!i915.powersave)
bb4cdd53 8964 goto out;
652c393a 8965
70e1e0ec 8966 for_each_crtc(dev, crtc) {
f4510a27 8967 if (!crtc->primary->fb)
652c393a
JB
8968 continue;
8969
725a5b54 8970 intel_decrease_pllclock(crtc);
652c393a 8971 }
b29c19b6 8972
3d13ef2e 8973 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8974 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8975
8976out:
43694d69 8977 intel_runtime_pm_put(dev_priv);
652c393a
JB
8978}
8979
7c8f8a70 8980
f99d7069
DV
8981/**
8982 * intel_mark_fb_busy - mark given planes as busy
8983 * @dev: DRM device
8984 * @frontbuffer_bits: bits for the affected planes
8985 * @ring: optional ring for asynchronous commands
8986 *
8987 * This function gets called every time the screen contents change. It can be
8988 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8989 */
8990static void intel_mark_fb_busy(struct drm_device *dev,
8991 unsigned frontbuffer_bits,
8992 struct intel_engine_cs *ring)
652c393a 8993{
cc36513c 8994 enum pipe pipe;
652c393a 8995
d330a953 8996 if (!i915.powersave)
acb87dfb
CW
8997 return;
8998
cc36513c 8999 for_each_pipe(pipe) {
f99d7069 9000 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9001 continue;
9002
cc36513c 9003 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9004 if (ring && intel_fbc_enabled(dev))
9005 ring->fbc_dirty = true;
652c393a
JB
9006 }
9007}
9008
f99d7069
DV
9009/**
9010 * intel_fb_obj_invalidate - invalidate frontbuffer object
9011 * @obj: GEM object to invalidate
9012 * @ring: set for asynchronous rendering
9013 *
9014 * This function gets called every time rendering on the given object starts and
9015 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9016 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9017 * until the rendering completes or a flip on this frontbuffer plane is
9018 * scheduled.
9019 */
9020void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9021 struct intel_engine_cs *ring)
9022{
9023 struct drm_device *dev = obj->base.dev;
9024 struct drm_i915_private *dev_priv = dev->dev_private;
9025
9026 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9027
9028 if (!obj->frontbuffer_bits)
9029 return;
9030
9031 if (ring) {
9032 mutex_lock(&dev_priv->fb_tracking.lock);
9033 dev_priv->fb_tracking.busy_bits
9034 |= obj->frontbuffer_bits;
9035 dev_priv->fb_tracking.flip_bits
9036 &= ~obj->frontbuffer_bits;
9037 mutex_unlock(&dev_priv->fb_tracking.lock);
9038 }
9039
9040 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9041
9ca15301 9042 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9043}
9044
9045/**
9046 * intel_frontbuffer_flush - flush frontbuffer
9047 * @dev: DRM device
9048 * @frontbuffer_bits: frontbuffer plane tracking bits
9049 *
9050 * This function gets called every time rendering on the given planes has
9051 * completed and frontbuffer caching can be started again. Flushes will get
9052 * delayed if they're blocked by some oustanding asynchronous rendering.
9053 *
9054 * Can be called without any locks held.
9055 */
9056void intel_frontbuffer_flush(struct drm_device *dev,
9057 unsigned frontbuffer_bits)
9058{
9059 struct drm_i915_private *dev_priv = dev->dev_private;
9060
9061 /* Delay flushing when rings are still busy.*/
9062 mutex_lock(&dev_priv->fb_tracking.lock);
9063 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9064 mutex_unlock(&dev_priv->fb_tracking.lock);
9065
9066 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9067
9ca15301 9068 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9069}
9070
9071/**
9072 * intel_fb_obj_flush - flush frontbuffer object
9073 * @obj: GEM object to flush
9074 * @retire: set when retiring asynchronous rendering
9075 *
9076 * This function gets called every time rendering on the given object has
9077 * completed and frontbuffer caching can be started again. If @retire is true
9078 * then any delayed flushes will be unblocked.
9079 */
9080void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9081 bool retire)
9082{
9083 struct drm_device *dev = obj->base.dev;
9084 struct drm_i915_private *dev_priv = dev->dev_private;
9085 unsigned frontbuffer_bits;
9086
9087 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9088
9089 if (!obj->frontbuffer_bits)
9090 return;
9091
9092 frontbuffer_bits = obj->frontbuffer_bits;
9093
9094 if (retire) {
9095 mutex_lock(&dev_priv->fb_tracking.lock);
9096 /* Filter out new bits since rendering started. */
9097 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9098
9099 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9100 mutex_unlock(&dev_priv->fb_tracking.lock);
9101 }
9102
9103 intel_frontbuffer_flush(dev, frontbuffer_bits);
9104}
9105
9106/**
9107 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9108 * @dev: DRM device
9109 * @frontbuffer_bits: frontbuffer plane tracking bits
9110 *
9111 * This function gets called after scheduling a flip on @obj. The actual
9112 * frontbuffer flushing will be delayed until completion is signalled with
9113 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9114 * flush will be cancelled.
9115 *
9116 * Can be called without any locks held.
9117 */
9118void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9119 unsigned frontbuffer_bits)
9120{
9121 struct drm_i915_private *dev_priv = dev->dev_private;
9122
9123 mutex_lock(&dev_priv->fb_tracking.lock);
9124 dev_priv->fb_tracking.flip_bits
9125 |= frontbuffer_bits;
9126 mutex_unlock(&dev_priv->fb_tracking.lock);
9127}
9128
9129/**
9130 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9131 * @dev: DRM device
9132 * @frontbuffer_bits: frontbuffer plane tracking bits
9133 *
9134 * This function gets called after the flip has been latched and will complete
9135 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9136 *
9137 * Can be called without any locks held.
9138 */
9139void intel_frontbuffer_flip_complete(struct drm_device *dev,
9140 unsigned frontbuffer_bits)
9141{
9142 struct drm_i915_private *dev_priv = dev->dev_private;
9143
9144 mutex_lock(&dev_priv->fb_tracking.lock);
9145 /* Mask any cancelled flips. */
9146 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9147 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9148 mutex_unlock(&dev_priv->fb_tracking.lock);
9149
9150 intel_frontbuffer_flush(dev, frontbuffer_bits);
9151}
9152
79e53945
JB
9153static void intel_crtc_destroy(struct drm_crtc *crtc)
9154{
9155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9156 struct drm_device *dev = crtc->dev;
9157 struct intel_unpin_work *work;
9158 unsigned long flags;
9159
9160 spin_lock_irqsave(&dev->event_lock, flags);
9161 work = intel_crtc->unpin_work;
9162 intel_crtc->unpin_work = NULL;
9163 spin_unlock_irqrestore(&dev->event_lock, flags);
9164
9165 if (work) {
9166 cancel_work_sync(&work->work);
9167 kfree(work);
9168 }
79e53945
JB
9169
9170 drm_crtc_cleanup(crtc);
67e77c5a 9171
79e53945
JB
9172 kfree(intel_crtc);
9173}
9174
6b95a207
KH
9175static void intel_unpin_work_fn(struct work_struct *__work)
9176{
9177 struct intel_unpin_work *work =
9178 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9179 struct drm_device *dev = work->crtc->dev;
f99d7069 9180 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9181
b4a98e57 9182 mutex_lock(&dev->struct_mutex);
1690e1eb 9183 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9184 drm_gem_object_unreference(&work->pending_flip_obj->base);
9185 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9186
b4a98e57
CW
9187 intel_update_fbc(dev);
9188 mutex_unlock(&dev->struct_mutex);
9189
f99d7069
DV
9190 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9191
b4a98e57
CW
9192 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9193 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9194
6b95a207
KH
9195 kfree(work);
9196}
9197
1afe3e9d 9198static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9199 struct drm_crtc *crtc)
6b95a207 9200{
fbee40df 9201 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9203 struct intel_unpin_work *work;
6b95a207
KH
9204 unsigned long flags;
9205
9206 /* Ignore early vblank irqs */
9207 if (intel_crtc == NULL)
9208 return;
9209
9210 spin_lock_irqsave(&dev->event_lock, flags);
9211 work = intel_crtc->unpin_work;
e7d841ca
CW
9212
9213 /* Ensure we don't miss a work->pending update ... */
9214 smp_rmb();
9215
9216 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9217 spin_unlock_irqrestore(&dev->event_lock, flags);
9218 return;
9219 }
9220
e7d841ca
CW
9221 /* and that the unpin work is consistent wrt ->pending. */
9222 smp_rmb();
9223
6b95a207 9224 intel_crtc->unpin_work = NULL;
6b95a207 9225
45a066eb
RC
9226 if (work->event)
9227 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9228
87b6b101 9229 drm_crtc_vblank_put(crtc);
0af7e4df 9230
6b95a207
KH
9231 spin_unlock_irqrestore(&dev->event_lock, flags);
9232
2c10d571 9233 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9234
9235 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9236
9237 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9238}
9239
1afe3e9d
JB
9240void intel_finish_page_flip(struct drm_device *dev, int pipe)
9241{
fbee40df 9242 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9243 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9244
49b14a5c 9245 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9246}
9247
9248void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9249{
fbee40df 9250 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9251 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9252
49b14a5c 9253 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9254}
9255
75f7f3ec
VS
9256/* Is 'a' after or equal to 'b'? */
9257static bool g4x_flip_count_after_eq(u32 a, u32 b)
9258{
9259 return !((a - b) & 0x80000000);
9260}
9261
9262static bool page_flip_finished(struct intel_crtc *crtc)
9263{
9264 struct drm_device *dev = crtc->base.dev;
9265 struct drm_i915_private *dev_priv = dev->dev_private;
9266
9267 /*
9268 * The relevant registers doen't exist on pre-ctg.
9269 * As the flip done interrupt doesn't trigger for mmio
9270 * flips on gmch platforms, a flip count check isn't
9271 * really needed there. But since ctg has the registers,
9272 * include it in the check anyway.
9273 */
9274 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9275 return true;
9276
9277 /*
9278 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9279 * used the same base address. In that case the mmio flip might
9280 * have completed, but the CS hasn't even executed the flip yet.
9281 *
9282 * A flip count check isn't enough as the CS might have updated
9283 * the base address just after start of vblank, but before we
9284 * managed to process the interrupt. This means we'd complete the
9285 * CS flip too soon.
9286 *
9287 * Combining both checks should get us a good enough result. It may
9288 * still happen that the CS flip has been executed, but has not
9289 * yet actually completed. But in case the base address is the same
9290 * anyway, we don't really care.
9291 */
9292 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9293 crtc->unpin_work->gtt_offset &&
9294 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9295 crtc->unpin_work->flip_count);
9296}
9297
6b95a207
KH
9298void intel_prepare_page_flip(struct drm_device *dev, int plane)
9299{
fbee40df 9300 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9301 struct intel_crtc *intel_crtc =
9302 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9303 unsigned long flags;
9304
e7d841ca
CW
9305 /* NB: An MMIO update of the plane base pointer will also
9306 * generate a page-flip completion irq, i.e. every modeset
9307 * is also accompanied by a spurious intel_prepare_page_flip().
9308 */
6b95a207 9309 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9310 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9311 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9312 spin_unlock_irqrestore(&dev->event_lock, flags);
9313}
9314
eba905b2 9315static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9316{
9317 /* Ensure that the work item is consistent when activating it ... */
9318 smp_wmb();
9319 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9320 /* and that it is marked active as soon as the irq could fire. */
9321 smp_wmb();
9322}
9323
8c9f3aaf
JB
9324static int intel_gen2_queue_flip(struct drm_device *dev,
9325 struct drm_crtc *crtc,
9326 struct drm_framebuffer *fb,
ed8d1975 9327 struct drm_i915_gem_object *obj,
a4872ba6 9328 struct intel_engine_cs *ring,
ed8d1975 9329 uint32_t flags)
8c9f3aaf 9330{
8c9f3aaf 9331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9332 u32 flip_mask;
9333 int ret;
9334
6d90c952 9335 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9336 if (ret)
4fa62c89 9337 return ret;
8c9f3aaf
JB
9338
9339 /* Can't queue multiple flips, so wait for the previous
9340 * one to finish before executing the next.
9341 */
9342 if (intel_crtc->plane)
9343 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9344 else
9345 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9346 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9347 intel_ring_emit(ring, MI_NOOP);
9348 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9349 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9350 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9351 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9352 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9353
9354 intel_mark_page_flip_active(intel_crtc);
09246732 9355 __intel_ring_advance(ring);
83d4092b 9356 return 0;
8c9f3aaf
JB
9357}
9358
9359static int intel_gen3_queue_flip(struct drm_device *dev,
9360 struct drm_crtc *crtc,
9361 struct drm_framebuffer *fb,
ed8d1975 9362 struct drm_i915_gem_object *obj,
a4872ba6 9363 struct intel_engine_cs *ring,
ed8d1975 9364 uint32_t flags)
8c9f3aaf 9365{
8c9f3aaf 9366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9367 u32 flip_mask;
9368 int ret;
9369
6d90c952 9370 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9371 if (ret)
4fa62c89 9372 return ret;
8c9f3aaf
JB
9373
9374 if (intel_crtc->plane)
9375 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9376 else
9377 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9378 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9379 intel_ring_emit(ring, MI_NOOP);
9380 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9381 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9382 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9383 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9384 intel_ring_emit(ring, MI_NOOP);
9385
e7d841ca 9386 intel_mark_page_flip_active(intel_crtc);
09246732 9387 __intel_ring_advance(ring);
83d4092b 9388 return 0;
8c9f3aaf
JB
9389}
9390
9391static int intel_gen4_queue_flip(struct drm_device *dev,
9392 struct drm_crtc *crtc,
9393 struct drm_framebuffer *fb,
ed8d1975 9394 struct drm_i915_gem_object *obj,
a4872ba6 9395 struct intel_engine_cs *ring,
ed8d1975 9396 uint32_t flags)
8c9f3aaf
JB
9397{
9398 struct drm_i915_private *dev_priv = dev->dev_private;
9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400 uint32_t pf, pipesrc;
9401 int ret;
9402
6d90c952 9403 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9404 if (ret)
4fa62c89 9405 return ret;
8c9f3aaf
JB
9406
9407 /* i965+ uses the linear or tiled offsets from the
9408 * Display Registers (which do not change across a page-flip)
9409 * so we need only reprogram the base address.
9410 */
6d90c952
DV
9411 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9412 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9413 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9414 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9415 obj->tiling_mode);
8c9f3aaf
JB
9416
9417 /* XXX Enabling the panel-fitter across page-flip is so far
9418 * untested on non-native modes, so ignore it for now.
9419 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9420 */
9421 pf = 0;
9422 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9423 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9424
9425 intel_mark_page_flip_active(intel_crtc);
09246732 9426 __intel_ring_advance(ring);
83d4092b 9427 return 0;
8c9f3aaf
JB
9428}
9429
9430static int intel_gen6_queue_flip(struct drm_device *dev,
9431 struct drm_crtc *crtc,
9432 struct drm_framebuffer *fb,
ed8d1975 9433 struct drm_i915_gem_object *obj,
a4872ba6 9434 struct intel_engine_cs *ring,
ed8d1975 9435 uint32_t flags)
8c9f3aaf
JB
9436{
9437 struct drm_i915_private *dev_priv = dev->dev_private;
9438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9439 uint32_t pf, pipesrc;
9440 int ret;
9441
6d90c952 9442 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9443 if (ret)
4fa62c89 9444 return ret;
8c9f3aaf 9445
6d90c952
DV
9446 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9447 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9448 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9449 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9450
dc257cf1
DV
9451 /* Contrary to the suggestions in the documentation,
9452 * "Enable Panel Fitter" does not seem to be required when page
9453 * flipping with a non-native mode, and worse causes a normal
9454 * modeset to fail.
9455 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9456 */
9457 pf = 0;
8c9f3aaf 9458 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9459 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9460
9461 intel_mark_page_flip_active(intel_crtc);
09246732 9462 __intel_ring_advance(ring);
83d4092b 9463 return 0;
8c9f3aaf
JB
9464}
9465
7c9017e5
JB
9466static int intel_gen7_queue_flip(struct drm_device *dev,
9467 struct drm_crtc *crtc,
9468 struct drm_framebuffer *fb,
ed8d1975 9469 struct drm_i915_gem_object *obj,
a4872ba6 9470 struct intel_engine_cs *ring,
ed8d1975 9471 uint32_t flags)
7c9017e5 9472{
7c9017e5 9473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9474 uint32_t plane_bit = 0;
ffe74d75
CW
9475 int len, ret;
9476
eba905b2 9477 switch (intel_crtc->plane) {
cb05d8de
DV
9478 case PLANE_A:
9479 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9480 break;
9481 case PLANE_B:
9482 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9483 break;
9484 case PLANE_C:
9485 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9486 break;
9487 default:
9488 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9489 return -ENODEV;
cb05d8de
DV
9490 }
9491
ffe74d75 9492 len = 4;
f476828a 9493 if (ring->id == RCS) {
ffe74d75 9494 len += 6;
f476828a
DL
9495 /*
9496 * On Gen 8, SRM is now taking an extra dword to accommodate
9497 * 48bits addresses, and we need a NOOP for the batch size to
9498 * stay even.
9499 */
9500 if (IS_GEN8(dev))
9501 len += 2;
9502 }
ffe74d75 9503
f66fab8e
VS
9504 /*
9505 * BSpec MI_DISPLAY_FLIP for IVB:
9506 * "The full packet must be contained within the same cache line."
9507 *
9508 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9509 * cacheline, if we ever start emitting more commands before
9510 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9511 * then do the cacheline alignment, and finally emit the
9512 * MI_DISPLAY_FLIP.
9513 */
9514 ret = intel_ring_cacheline_align(ring);
9515 if (ret)
4fa62c89 9516 return ret;
f66fab8e 9517
ffe74d75 9518 ret = intel_ring_begin(ring, len);
7c9017e5 9519 if (ret)
4fa62c89 9520 return ret;
7c9017e5 9521
ffe74d75
CW
9522 /* Unmask the flip-done completion message. Note that the bspec says that
9523 * we should do this for both the BCS and RCS, and that we must not unmask
9524 * more than one flip event at any time (or ensure that one flip message
9525 * can be sent by waiting for flip-done prior to queueing new flips).
9526 * Experimentation says that BCS works despite DERRMR masking all
9527 * flip-done completion events and that unmasking all planes at once
9528 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9529 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9530 */
9531 if (ring->id == RCS) {
9532 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9533 intel_ring_emit(ring, DERRMR);
9534 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9535 DERRMR_PIPEB_PRI_FLIP_DONE |
9536 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9537 if (IS_GEN8(dev))
9538 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9539 MI_SRM_LRM_GLOBAL_GTT);
9540 else
9541 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9542 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9543 intel_ring_emit(ring, DERRMR);
9544 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9545 if (IS_GEN8(dev)) {
9546 intel_ring_emit(ring, 0);
9547 intel_ring_emit(ring, MI_NOOP);
9548 }
ffe74d75
CW
9549 }
9550
cb05d8de 9551 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9552 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9553 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9554 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9555
9556 intel_mark_page_flip_active(intel_crtc);
09246732 9557 __intel_ring_advance(ring);
83d4092b 9558 return 0;
7c9017e5
JB
9559}
9560
84c33a64
SG
9561static bool use_mmio_flip(struct intel_engine_cs *ring,
9562 struct drm_i915_gem_object *obj)
9563{
9564 /*
9565 * This is not being used for older platforms, because
9566 * non-availability of flip done interrupt forces us to use
9567 * CS flips. Older platforms derive flip done using some clever
9568 * tricks involving the flip_pending status bits and vblank irqs.
9569 * So using MMIO flips there would disrupt this mechanism.
9570 */
9571
8e09bf83
CW
9572 if (ring == NULL)
9573 return true;
9574
84c33a64
SG
9575 if (INTEL_INFO(ring->dev)->gen < 5)
9576 return false;
9577
9578 if (i915.use_mmio_flip < 0)
9579 return false;
9580 else if (i915.use_mmio_flip > 0)
9581 return true;
9582 else
9583 return ring != obj->ring;
9584}
9585
9586static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9587{
9588 struct drm_device *dev = intel_crtc->base.dev;
9589 struct drm_i915_private *dev_priv = dev->dev_private;
9590 struct intel_framebuffer *intel_fb =
9591 to_intel_framebuffer(intel_crtc->base.primary->fb);
9592 struct drm_i915_gem_object *obj = intel_fb->obj;
9593 u32 dspcntr;
9594 u32 reg;
9595
9596 intel_mark_page_flip_active(intel_crtc);
9597
9598 reg = DSPCNTR(intel_crtc->plane);
9599 dspcntr = I915_READ(reg);
9600
9601 if (INTEL_INFO(dev)->gen >= 4) {
9602 if (obj->tiling_mode != I915_TILING_NONE)
9603 dspcntr |= DISPPLANE_TILED;
9604 else
9605 dspcntr &= ~DISPPLANE_TILED;
9606 }
9607 I915_WRITE(reg, dspcntr);
9608
9609 I915_WRITE(DSPSURF(intel_crtc->plane),
9610 intel_crtc->unpin_work->gtt_offset);
9611 POSTING_READ(DSPSURF(intel_crtc->plane));
9612}
9613
9614static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9615{
9616 struct intel_engine_cs *ring;
9617 int ret;
9618
9619 lockdep_assert_held(&obj->base.dev->struct_mutex);
9620
9621 if (!obj->last_write_seqno)
9622 return 0;
9623
9624 ring = obj->ring;
9625
9626 if (i915_seqno_passed(ring->get_seqno(ring, true),
9627 obj->last_write_seqno))
9628 return 0;
9629
9630 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9631 if (ret)
9632 return ret;
9633
9634 if (WARN_ON(!ring->irq_get(ring)))
9635 return 0;
9636
9637 return 1;
9638}
9639
9640void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9641{
9642 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9643 struct intel_crtc *intel_crtc;
9644 unsigned long irq_flags;
9645 u32 seqno;
9646
9647 seqno = ring->get_seqno(ring, false);
9648
9649 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9650 for_each_intel_crtc(ring->dev, intel_crtc) {
9651 struct intel_mmio_flip *mmio_flip;
9652
9653 mmio_flip = &intel_crtc->mmio_flip;
9654 if (mmio_flip->seqno == 0)
9655 continue;
9656
9657 if (ring->id != mmio_flip->ring_id)
9658 continue;
9659
9660 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9661 intel_do_mmio_flip(intel_crtc);
9662 mmio_flip->seqno = 0;
9663 ring->irq_put(ring);
9664 }
9665 }
9666 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9667}
9668
9669static int intel_queue_mmio_flip(struct drm_device *dev,
9670 struct drm_crtc *crtc,
9671 struct drm_framebuffer *fb,
9672 struct drm_i915_gem_object *obj,
9673 struct intel_engine_cs *ring,
9674 uint32_t flags)
9675{
9676 struct drm_i915_private *dev_priv = dev->dev_private;
9677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9678 unsigned long irq_flags;
9679 int ret;
9680
9681 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9682 return -EBUSY;
9683
9684 ret = intel_postpone_flip(obj);
9685 if (ret < 0)
9686 return ret;
9687 if (ret == 0) {
9688 intel_do_mmio_flip(intel_crtc);
9689 return 0;
9690 }
9691
9692 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9693 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9694 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9695 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9696
9697 /*
9698 * Double check to catch cases where irq fired before
9699 * mmio flip data was ready
9700 */
9701 intel_notify_mmio_flip(obj->ring);
9702 return 0;
9703}
9704
8c9f3aaf
JB
9705static int intel_default_queue_flip(struct drm_device *dev,
9706 struct drm_crtc *crtc,
9707 struct drm_framebuffer *fb,
ed8d1975 9708 struct drm_i915_gem_object *obj,
a4872ba6 9709 struct intel_engine_cs *ring,
ed8d1975 9710 uint32_t flags)
8c9f3aaf
JB
9711{
9712 return -ENODEV;
9713}
9714
6b95a207
KH
9715static int intel_crtc_page_flip(struct drm_crtc *crtc,
9716 struct drm_framebuffer *fb,
ed8d1975
KP
9717 struct drm_pending_vblank_event *event,
9718 uint32_t page_flip_flags)
6b95a207
KH
9719{
9720 struct drm_device *dev = crtc->dev;
9721 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9722 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9723 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9725 enum pipe pipe = intel_crtc->pipe;
6b95a207 9726 struct intel_unpin_work *work;
a4872ba6 9727 struct intel_engine_cs *ring;
8c9f3aaf 9728 unsigned long flags;
52e68630 9729 int ret;
6b95a207 9730
2ff8fde1
MR
9731 /*
9732 * drm_mode_page_flip_ioctl() should already catch this, but double
9733 * check to be safe. In the future we may enable pageflipping from
9734 * a disabled primary plane.
9735 */
9736 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9737 return -EBUSY;
9738
e6a595d2 9739 /* Can't change pixel format via MI display flips. */
f4510a27 9740 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9741 return -EINVAL;
9742
9743 /*
9744 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9745 * Note that pitch changes could also affect these register.
9746 */
9747 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9748 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9749 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9750 return -EINVAL;
9751
f900db47
CW
9752 if (i915_terminally_wedged(&dev_priv->gpu_error))
9753 goto out_hang;
9754
b14c5679 9755 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9756 if (work == NULL)
9757 return -ENOMEM;
9758
6b95a207 9759 work->event = event;
b4a98e57 9760 work->crtc = crtc;
2ff8fde1 9761 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9762 INIT_WORK(&work->work, intel_unpin_work_fn);
9763
87b6b101 9764 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9765 if (ret)
9766 goto free_work;
9767
6b95a207
KH
9768 /* We borrow the event spin lock for protecting unpin_work */
9769 spin_lock_irqsave(&dev->event_lock, flags);
9770 if (intel_crtc->unpin_work) {
9771 spin_unlock_irqrestore(&dev->event_lock, flags);
9772 kfree(work);
87b6b101 9773 drm_crtc_vblank_put(crtc);
468f0b44
CW
9774
9775 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9776 return -EBUSY;
9777 }
9778 intel_crtc->unpin_work = work;
9779 spin_unlock_irqrestore(&dev->event_lock, flags);
9780
b4a98e57
CW
9781 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9782 flush_workqueue(dev_priv->wq);
9783
79158103
CW
9784 ret = i915_mutex_lock_interruptible(dev);
9785 if (ret)
9786 goto cleanup;
6b95a207 9787
75dfca80 9788 /* Reference the objects for the scheduled work. */
05394f39
CW
9789 drm_gem_object_reference(&work->old_fb_obj->base);
9790 drm_gem_object_reference(&obj->base);
6b95a207 9791
f4510a27 9792 crtc->primary->fb = fb;
96b099fd 9793
e1f99ce6 9794 work->pending_flip_obj = obj;
e1f99ce6 9795
4e5359cd
SF
9796 work->enable_stall_check = true;
9797
b4a98e57 9798 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9799 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9800
75f7f3ec 9801 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9802 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9803
4fa62c89
VS
9804 if (IS_VALLEYVIEW(dev)) {
9805 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9806 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9807 /* vlv: DISPLAY_FLIP fails to change tiling */
9808 ring = NULL;
2a92d5bc
CW
9809 } else if (IS_IVYBRIDGE(dev)) {
9810 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9811 } else if (INTEL_INFO(dev)->gen >= 7) {
9812 ring = obj->ring;
9813 if (ring == NULL || ring->id != RCS)
9814 ring = &dev_priv->ring[BCS];
9815 } else {
9816 ring = &dev_priv->ring[RCS];
9817 }
9818
9819 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9820 if (ret)
9821 goto cleanup_pending;
6b95a207 9822
4fa62c89
VS
9823 work->gtt_offset =
9824 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9825
84c33a64
SG
9826 if (use_mmio_flip(ring, obj))
9827 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9828 page_flip_flags);
9829 else
9830 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9831 page_flip_flags);
4fa62c89
VS
9832 if (ret)
9833 goto cleanup_unpin;
9834
a071fa00
DV
9835 i915_gem_track_fb(work->old_fb_obj, obj,
9836 INTEL_FRONTBUFFER_PRIMARY(pipe));
9837
7782de3b 9838 intel_disable_fbc(dev);
f99d7069 9839 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9840 mutex_unlock(&dev->struct_mutex);
9841
e5510fac
JB
9842 trace_i915_flip_request(intel_crtc->plane, obj);
9843
6b95a207 9844 return 0;
96b099fd 9845
4fa62c89
VS
9846cleanup_unpin:
9847 intel_unpin_fb_obj(obj);
8c9f3aaf 9848cleanup_pending:
b4a98e57 9849 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9850 crtc->primary->fb = old_fb;
05394f39
CW
9851 drm_gem_object_unreference(&work->old_fb_obj->base);
9852 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9853 mutex_unlock(&dev->struct_mutex);
9854
79158103 9855cleanup:
96b099fd
CW
9856 spin_lock_irqsave(&dev->event_lock, flags);
9857 intel_crtc->unpin_work = NULL;
9858 spin_unlock_irqrestore(&dev->event_lock, flags);
9859
87b6b101 9860 drm_crtc_vblank_put(crtc);
7317c75e 9861free_work:
96b099fd
CW
9862 kfree(work);
9863
f900db47
CW
9864 if (ret == -EIO) {
9865out_hang:
9866 intel_crtc_wait_for_pending_flips(crtc);
9867 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9868 if (ret == 0 && event)
a071fa00 9869 drm_send_vblank_event(dev, pipe, event);
f900db47 9870 }
96b099fd 9871 return ret;
6b95a207
KH
9872}
9873
f6e5b160 9874static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9875 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9876 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9877};
9878
9a935856
DV
9879/**
9880 * intel_modeset_update_staged_output_state
9881 *
9882 * Updates the staged output configuration state, e.g. after we've read out the
9883 * current hw state.
9884 */
9885static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9886{
7668851f 9887 struct intel_crtc *crtc;
9a935856
DV
9888 struct intel_encoder *encoder;
9889 struct intel_connector *connector;
f6e5b160 9890
9a935856
DV
9891 list_for_each_entry(connector, &dev->mode_config.connector_list,
9892 base.head) {
9893 connector->new_encoder =
9894 to_intel_encoder(connector->base.encoder);
9895 }
f6e5b160 9896
9a935856
DV
9897 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9898 base.head) {
9899 encoder->new_crtc =
9900 to_intel_crtc(encoder->base.crtc);
9901 }
7668851f 9902
d3fcc808 9903 for_each_intel_crtc(dev, crtc) {
7668851f 9904 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9905
9906 if (crtc->new_enabled)
9907 crtc->new_config = &crtc->config;
9908 else
9909 crtc->new_config = NULL;
7668851f 9910 }
f6e5b160
CW
9911}
9912
9a935856
DV
9913/**
9914 * intel_modeset_commit_output_state
9915 *
9916 * This function copies the stage display pipe configuration to the real one.
9917 */
9918static void intel_modeset_commit_output_state(struct drm_device *dev)
9919{
7668851f 9920 struct intel_crtc *crtc;
9a935856
DV
9921 struct intel_encoder *encoder;
9922 struct intel_connector *connector;
f6e5b160 9923
9a935856
DV
9924 list_for_each_entry(connector, &dev->mode_config.connector_list,
9925 base.head) {
9926 connector->base.encoder = &connector->new_encoder->base;
9927 }
f6e5b160 9928
9a935856
DV
9929 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9930 base.head) {
9931 encoder->base.crtc = &encoder->new_crtc->base;
9932 }
7668851f 9933
d3fcc808 9934 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9935 crtc->base.enabled = crtc->new_enabled;
9936 }
9a935856
DV
9937}
9938
050f7aeb 9939static void
eba905b2 9940connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9941 struct intel_crtc_config *pipe_config)
9942{
9943 int bpp = pipe_config->pipe_bpp;
9944
9945 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9946 connector->base.base.id,
c23cc417 9947 connector->base.name);
050f7aeb
DV
9948
9949 /* Don't use an invalid EDID bpc value */
9950 if (connector->base.display_info.bpc &&
9951 connector->base.display_info.bpc * 3 < bpp) {
9952 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9953 bpp, connector->base.display_info.bpc*3);
9954 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9955 }
9956
9957 /* Clamp bpp to 8 on screens without EDID 1.4 */
9958 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9959 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9960 bpp);
9961 pipe_config->pipe_bpp = 24;
9962 }
9963}
9964
4e53c2e0 9965static int
050f7aeb
DV
9966compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9967 struct drm_framebuffer *fb,
9968 struct intel_crtc_config *pipe_config)
4e53c2e0 9969{
050f7aeb
DV
9970 struct drm_device *dev = crtc->base.dev;
9971 struct intel_connector *connector;
4e53c2e0
DV
9972 int bpp;
9973
d42264b1
DV
9974 switch (fb->pixel_format) {
9975 case DRM_FORMAT_C8:
4e53c2e0
DV
9976 bpp = 8*3; /* since we go through a colormap */
9977 break;
d42264b1
DV
9978 case DRM_FORMAT_XRGB1555:
9979 case DRM_FORMAT_ARGB1555:
9980 /* checked in intel_framebuffer_init already */
9981 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9982 return -EINVAL;
9983 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9984 bpp = 6*3; /* min is 18bpp */
9985 break;
d42264b1
DV
9986 case DRM_FORMAT_XBGR8888:
9987 case DRM_FORMAT_ABGR8888:
9988 /* checked in intel_framebuffer_init already */
9989 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9990 return -EINVAL;
9991 case DRM_FORMAT_XRGB8888:
9992 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9993 bpp = 8*3;
9994 break;
d42264b1
DV
9995 case DRM_FORMAT_XRGB2101010:
9996 case DRM_FORMAT_ARGB2101010:
9997 case DRM_FORMAT_XBGR2101010:
9998 case DRM_FORMAT_ABGR2101010:
9999 /* checked in intel_framebuffer_init already */
10000 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10001 return -EINVAL;
4e53c2e0
DV
10002 bpp = 10*3;
10003 break;
baba133a 10004 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10005 default:
10006 DRM_DEBUG_KMS("unsupported depth\n");
10007 return -EINVAL;
10008 }
10009
4e53c2e0
DV
10010 pipe_config->pipe_bpp = bpp;
10011
10012 /* Clamp display bpp to EDID value */
10013 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10014 base.head) {
1b829e05
DV
10015 if (!connector->new_encoder ||
10016 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10017 continue;
10018
050f7aeb 10019 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10020 }
10021
10022 return bpp;
10023}
10024
644db711
DV
10025static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10026{
10027 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10028 "type: 0x%x flags: 0x%x\n",
1342830c 10029 mode->crtc_clock,
644db711
DV
10030 mode->crtc_hdisplay, mode->crtc_hsync_start,
10031 mode->crtc_hsync_end, mode->crtc_htotal,
10032 mode->crtc_vdisplay, mode->crtc_vsync_start,
10033 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10034}
10035
c0b03411
DV
10036static void intel_dump_pipe_config(struct intel_crtc *crtc,
10037 struct intel_crtc_config *pipe_config,
10038 const char *context)
10039{
10040 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10041 context, pipe_name(crtc->pipe));
10042
10043 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10044 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10045 pipe_config->pipe_bpp, pipe_config->dither);
10046 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10047 pipe_config->has_pch_encoder,
10048 pipe_config->fdi_lanes,
10049 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10050 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10051 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10052 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10053 pipe_config->has_dp_encoder,
10054 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10055 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10056 pipe_config->dp_m_n.tu);
b95af8be
VK
10057
10058 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10059 pipe_config->has_dp_encoder,
10060 pipe_config->dp_m2_n2.gmch_m,
10061 pipe_config->dp_m2_n2.gmch_n,
10062 pipe_config->dp_m2_n2.link_m,
10063 pipe_config->dp_m2_n2.link_n,
10064 pipe_config->dp_m2_n2.tu);
10065
c0b03411
DV
10066 DRM_DEBUG_KMS("requested mode:\n");
10067 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10068 DRM_DEBUG_KMS("adjusted mode:\n");
10069 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10070 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10071 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10072 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10073 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10074 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10075 pipe_config->gmch_pfit.control,
10076 pipe_config->gmch_pfit.pgm_ratios,
10077 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10078 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10079 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10080 pipe_config->pch_pfit.size,
10081 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10082 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10083 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10084}
10085
bc079e8b
VS
10086static bool encoders_cloneable(const struct intel_encoder *a,
10087 const struct intel_encoder *b)
accfc0c5 10088{
bc079e8b
VS
10089 /* masks could be asymmetric, so check both ways */
10090 return a == b || (a->cloneable & (1 << b->type) &&
10091 b->cloneable & (1 << a->type));
10092}
10093
10094static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10095 struct intel_encoder *encoder)
10096{
10097 struct drm_device *dev = crtc->base.dev;
10098 struct intel_encoder *source_encoder;
10099
10100 list_for_each_entry(source_encoder,
10101 &dev->mode_config.encoder_list, base.head) {
10102 if (source_encoder->new_crtc != crtc)
10103 continue;
10104
10105 if (!encoders_cloneable(encoder, source_encoder))
10106 return false;
10107 }
10108
10109 return true;
10110}
10111
10112static bool check_encoder_cloning(struct intel_crtc *crtc)
10113{
10114 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10115 struct intel_encoder *encoder;
10116
bc079e8b
VS
10117 list_for_each_entry(encoder,
10118 &dev->mode_config.encoder_list, base.head) {
10119 if (encoder->new_crtc != crtc)
accfc0c5
DV
10120 continue;
10121
bc079e8b
VS
10122 if (!check_single_encoder_cloning(crtc, encoder))
10123 return false;
accfc0c5
DV
10124 }
10125
bc079e8b 10126 return true;
accfc0c5
DV
10127}
10128
b8cecdf5
DV
10129static struct intel_crtc_config *
10130intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10131 struct drm_framebuffer *fb,
b8cecdf5 10132 struct drm_display_mode *mode)
ee7b9f93 10133{
7758a113 10134 struct drm_device *dev = crtc->dev;
7758a113 10135 struct intel_encoder *encoder;
b8cecdf5 10136 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10137 int plane_bpp, ret = -EINVAL;
10138 bool retry = true;
ee7b9f93 10139
bc079e8b 10140 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10141 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10142 return ERR_PTR(-EINVAL);
10143 }
10144
b8cecdf5
DV
10145 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10146 if (!pipe_config)
7758a113
DV
10147 return ERR_PTR(-ENOMEM);
10148
b8cecdf5
DV
10149 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10150 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10151
e143a21c
DV
10152 pipe_config->cpu_transcoder =
10153 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10154 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10155
2960bc9c
ID
10156 /*
10157 * Sanitize sync polarity flags based on requested ones. If neither
10158 * positive or negative polarity is requested, treat this as meaning
10159 * negative polarity.
10160 */
10161 if (!(pipe_config->adjusted_mode.flags &
10162 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10163 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10164
10165 if (!(pipe_config->adjusted_mode.flags &
10166 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10167 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10168
050f7aeb
DV
10169 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10170 * plane pixel format and any sink constraints into account. Returns the
10171 * source plane bpp so that dithering can be selected on mismatches
10172 * after encoders and crtc also have had their say. */
10173 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10174 fb, pipe_config);
4e53c2e0
DV
10175 if (plane_bpp < 0)
10176 goto fail;
10177
e41a56be
VS
10178 /*
10179 * Determine the real pipe dimensions. Note that stereo modes can
10180 * increase the actual pipe size due to the frame doubling and
10181 * insertion of additional space for blanks between the frame. This
10182 * is stored in the crtc timings. We use the requested mode to do this
10183 * computation to clearly distinguish it from the adjusted mode, which
10184 * can be changed by the connectors in the below retry loop.
10185 */
10186 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10187 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10188 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10189
e29c22c0 10190encoder_retry:
ef1b460d 10191 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10192 pipe_config->port_clock = 0;
ef1b460d 10193 pipe_config->pixel_multiplier = 1;
ff9a6750 10194
135c81b8 10195 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10196 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10197
7758a113
DV
10198 /* Pass our mode to the connectors and the CRTC to give them a chance to
10199 * adjust it according to limitations or connector properties, and also
10200 * a chance to reject the mode entirely.
47f1c6c9 10201 */
7758a113
DV
10202 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10203 base.head) {
47f1c6c9 10204
7758a113
DV
10205 if (&encoder->new_crtc->base != crtc)
10206 continue;
7ae89233 10207
efea6e8e
DV
10208 if (!(encoder->compute_config(encoder, pipe_config))) {
10209 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10210 goto fail;
10211 }
ee7b9f93 10212 }
47f1c6c9 10213
ff9a6750
DV
10214 /* Set default port clock if not overwritten by the encoder. Needs to be
10215 * done afterwards in case the encoder adjusts the mode. */
10216 if (!pipe_config->port_clock)
241bfc38
DL
10217 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10218 * pipe_config->pixel_multiplier;
ff9a6750 10219
a43f6e0f 10220 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10221 if (ret < 0) {
7758a113
DV
10222 DRM_DEBUG_KMS("CRTC fixup failed\n");
10223 goto fail;
ee7b9f93 10224 }
e29c22c0
DV
10225
10226 if (ret == RETRY) {
10227 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10228 ret = -EINVAL;
10229 goto fail;
10230 }
10231
10232 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10233 retry = false;
10234 goto encoder_retry;
10235 }
10236
4e53c2e0
DV
10237 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10238 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10239 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10240
b8cecdf5 10241 return pipe_config;
7758a113 10242fail:
b8cecdf5 10243 kfree(pipe_config);
e29c22c0 10244 return ERR_PTR(ret);
ee7b9f93 10245}
47f1c6c9 10246
e2e1ed41
DV
10247/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10248 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10249static void
10250intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10251 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10252{
10253 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10254 struct drm_device *dev = crtc->dev;
10255 struct intel_encoder *encoder;
10256 struct intel_connector *connector;
10257 struct drm_crtc *tmp_crtc;
79e53945 10258
e2e1ed41 10259 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10260
e2e1ed41
DV
10261 /* Check which crtcs have changed outputs connected to them, these need
10262 * to be part of the prepare_pipes mask. We don't (yet) support global
10263 * modeset across multiple crtcs, so modeset_pipes will only have one
10264 * bit set at most. */
10265 list_for_each_entry(connector, &dev->mode_config.connector_list,
10266 base.head) {
10267 if (connector->base.encoder == &connector->new_encoder->base)
10268 continue;
79e53945 10269
e2e1ed41
DV
10270 if (connector->base.encoder) {
10271 tmp_crtc = connector->base.encoder->crtc;
10272
10273 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10274 }
10275
10276 if (connector->new_encoder)
10277 *prepare_pipes |=
10278 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10279 }
10280
e2e1ed41
DV
10281 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10282 base.head) {
10283 if (encoder->base.crtc == &encoder->new_crtc->base)
10284 continue;
10285
10286 if (encoder->base.crtc) {
10287 tmp_crtc = encoder->base.crtc;
10288
10289 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10290 }
10291
10292 if (encoder->new_crtc)
10293 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10294 }
10295
7668851f 10296 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10297 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10298 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10299 continue;
7e7d76c3 10300
7668851f 10301 if (!intel_crtc->new_enabled)
e2e1ed41 10302 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10303 else
10304 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10305 }
10306
e2e1ed41
DV
10307
10308 /* set_mode is also used to update properties on life display pipes. */
10309 intel_crtc = to_intel_crtc(crtc);
7668851f 10310 if (intel_crtc->new_enabled)
e2e1ed41
DV
10311 *prepare_pipes |= 1 << intel_crtc->pipe;
10312
b6c5164d
DV
10313 /*
10314 * For simplicity do a full modeset on any pipe where the output routing
10315 * changed. We could be more clever, but that would require us to be
10316 * more careful with calling the relevant encoder->mode_set functions.
10317 */
e2e1ed41
DV
10318 if (*prepare_pipes)
10319 *modeset_pipes = *prepare_pipes;
10320
10321 /* ... and mask these out. */
10322 *modeset_pipes &= ~(*disable_pipes);
10323 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10324
10325 /*
10326 * HACK: We don't (yet) fully support global modesets. intel_set_config
10327 * obies this rule, but the modeset restore mode of
10328 * intel_modeset_setup_hw_state does not.
10329 */
10330 *modeset_pipes &= 1 << intel_crtc->pipe;
10331 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10332
10333 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10334 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10335}
79e53945 10336
ea9d758d 10337static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10338{
ea9d758d 10339 struct drm_encoder *encoder;
f6e5b160 10340 struct drm_device *dev = crtc->dev;
f6e5b160 10341
ea9d758d
DV
10342 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10343 if (encoder->crtc == crtc)
10344 return true;
10345
10346 return false;
10347}
10348
10349static void
10350intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10351{
10352 struct intel_encoder *intel_encoder;
10353 struct intel_crtc *intel_crtc;
10354 struct drm_connector *connector;
10355
10356 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10357 base.head) {
10358 if (!intel_encoder->base.crtc)
10359 continue;
10360
10361 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10362
10363 if (prepare_pipes & (1 << intel_crtc->pipe))
10364 intel_encoder->connectors_active = false;
10365 }
10366
10367 intel_modeset_commit_output_state(dev);
10368
7668851f 10369 /* Double check state. */
d3fcc808 10370 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10371 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10372 WARN_ON(intel_crtc->new_config &&
10373 intel_crtc->new_config != &intel_crtc->config);
10374 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10375 }
10376
10377 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10378 if (!connector->encoder || !connector->encoder->crtc)
10379 continue;
10380
10381 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10382
10383 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10384 struct drm_property *dpms_property =
10385 dev->mode_config.dpms_property;
10386
ea9d758d 10387 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10388 drm_object_property_set_value(&connector->base,
68d34720
DV
10389 dpms_property,
10390 DRM_MODE_DPMS_ON);
ea9d758d
DV
10391
10392 intel_encoder = to_intel_encoder(connector->encoder);
10393 intel_encoder->connectors_active = true;
10394 }
10395 }
10396
10397}
10398
3bd26263 10399static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10400{
3bd26263 10401 int diff;
f1f644dc
JB
10402
10403 if (clock1 == clock2)
10404 return true;
10405
10406 if (!clock1 || !clock2)
10407 return false;
10408
10409 diff = abs(clock1 - clock2);
10410
10411 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10412 return true;
10413
10414 return false;
10415}
10416
25c5b266
DV
10417#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10418 list_for_each_entry((intel_crtc), \
10419 &(dev)->mode_config.crtc_list, \
10420 base.head) \
0973f18f 10421 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10422
0e8ffe1b 10423static bool
2fa2fe9a
DV
10424intel_pipe_config_compare(struct drm_device *dev,
10425 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10426 struct intel_crtc_config *pipe_config)
10427{
66e985c0
DV
10428#define PIPE_CONF_CHECK_X(name) \
10429 if (current_config->name != pipe_config->name) { \
10430 DRM_ERROR("mismatch in " #name " " \
10431 "(expected 0x%08x, found 0x%08x)\n", \
10432 current_config->name, \
10433 pipe_config->name); \
10434 return false; \
10435 }
10436
08a24034
DV
10437#define PIPE_CONF_CHECK_I(name) \
10438 if (current_config->name != pipe_config->name) { \
10439 DRM_ERROR("mismatch in " #name " " \
10440 "(expected %i, found %i)\n", \
10441 current_config->name, \
10442 pipe_config->name); \
10443 return false; \
88adfff1
DV
10444 }
10445
b95af8be
VK
10446/* This is required for BDW+ where there is only one set of registers for
10447 * switching between high and low RR.
10448 * This macro can be used whenever a comparison has to be made between one
10449 * hw state and multiple sw state variables.
10450 */
10451#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10452 if ((current_config->name != pipe_config->name) && \
10453 (current_config->alt_name != pipe_config->name)) { \
10454 DRM_ERROR("mismatch in " #name " " \
10455 "(expected %i or %i, found %i)\n", \
10456 current_config->name, \
10457 current_config->alt_name, \
10458 pipe_config->name); \
10459 return false; \
10460 }
10461
1bd1bd80
DV
10462#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10463 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10464 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10465 "(expected %i, found %i)\n", \
10466 current_config->name & (mask), \
10467 pipe_config->name & (mask)); \
10468 return false; \
10469 }
10470
5e550656
VS
10471#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10472 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10473 DRM_ERROR("mismatch in " #name " " \
10474 "(expected %i, found %i)\n", \
10475 current_config->name, \
10476 pipe_config->name); \
10477 return false; \
10478 }
10479
bb760063
DV
10480#define PIPE_CONF_QUIRK(quirk) \
10481 ((current_config->quirks | pipe_config->quirks) & (quirk))
10482
eccb140b
DV
10483 PIPE_CONF_CHECK_I(cpu_transcoder);
10484
08a24034
DV
10485 PIPE_CONF_CHECK_I(has_pch_encoder);
10486 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10487 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10488 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10489 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10490 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10491 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10492
eb14cb74 10493 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10494
10495 if (INTEL_INFO(dev)->gen < 8) {
10496 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10497 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10498 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10499 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10500 PIPE_CONF_CHECK_I(dp_m_n.tu);
10501
10502 if (current_config->has_drrs) {
10503 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10504 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10505 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10506 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10507 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10508 }
10509 } else {
10510 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10511 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10512 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10513 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10514 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10515 }
eb14cb74 10516
1bd1bd80
DV
10517 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10518 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10519 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10520 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10521 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10522 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10523
10524 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10525 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10526 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10527 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10528 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10529 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10530
c93f54cf 10531 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10532 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10533 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10534 IS_VALLEYVIEW(dev))
10535 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10536
9ed109a7
DV
10537 PIPE_CONF_CHECK_I(has_audio);
10538
1bd1bd80
DV
10539 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10540 DRM_MODE_FLAG_INTERLACE);
10541
bb760063
DV
10542 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10543 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10544 DRM_MODE_FLAG_PHSYNC);
10545 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10546 DRM_MODE_FLAG_NHSYNC);
10547 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10548 DRM_MODE_FLAG_PVSYNC);
10549 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10550 DRM_MODE_FLAG_NVSYNC);
10551 }
045ac3b5 10552
37327abd
VS
10553 PIPE_CONF_CHECK_I(pipe_src_w);
10554 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10555
9953599b
DV
10556 /*
10557 * FIXME: BIOS likes to set up a cloned config with lvds+external
10558 * screen. Since we don't yet re-compute the pipe config when moving
10559 * just the lvds port away to another pipe the sw tracking won't match.
10560 *
10561 * Proper atomic modesets with recomputed global state will fix this.
10562 * Until then just don't check gmch state for inherited modes.
10563 */
10564 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10565 PIPE_CONF_CHECK_I(gmch_pfit.control);
10566 /* pfit ratios are autocomputed by the hw on gen4+ */
10567 if (INTEL_INFO(dev)->gen < 4)
10568 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10569 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10570 }
10571
fd4daa9c
CW
10572 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10573 if (current_config->pch_pfit.enabled) {
10574 PIPE_CONF_CHECK_I(pch_pfit.pos);
10575 PIPE_CONF_CHECK_I(pch_pfit.size);
10576 }
2fa2fe9a 10577
e59150dc
JB
10578 /* BDW+ don't expose a synchronous way to read the state */
10579 if (IS_HASWELL(dev))
10580 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10581
282740f7
VS
10582 PIPE_CONF_CHECK_I(double_wide);
10583
26804afd
DV
10584 PIPE_CONF_CHECK_X(ddi_pll_sel);
10585
c0d43d62 10586 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10587 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10588 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10589 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10590 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10591 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10592
42571aef
VS
10593 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10594 PIPE_CONF_CHECK_I(pipe_bpp);
10595
a9a7e98a
JB
10596 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10597 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10598
66e985c0 10599#undef PIPE_CONF_CHECK_X
08a24034 10600#undef PIPE_CONF_CHECK_I
b95af8be 10601#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10602#undef PIPE_CONF_CHECK_FLAGS
5e550656 10603#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10604#undef PIPE_CONF_QUIRK
88adfff1 10605
0e8ffe1b
DV
10606 return true;
10607}
10608
91d1b4bd
DV
10609static void
10610check_connector_state(struct drm_device *dev)
8af6cf88 10611{
8af6cf88
DV
10612 struct intel_connector *connector;
10613
10614 list_for_each_entry(connector, &dev->mode_config.connector_list,
10615 base.head) {
10616 /* This also checks the encoder/connector hw state with the
10617 * ->get_hw_state callbacks. */
10618 intel_connector_check_state(connector);
10619
10620 WARN(&connector->new_encoder->base != connector->base.encoder,
10621 "connector's staged encoder doesn't match current encoder\n");
10622 }
91d1b4bd
DV
10623}
10624
10625static void
10626check_encoder_state(struct drm_device *dev)
10627{
10628 struct intel_encoder *encoder;
10629 struct intel_connector *connector;
8af6cf88
DV
10630
10631 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10632 base.head) {
10633 bool enabled = false;
10634 bool active = false;
10635 enum pipe pipe, tracked_pipe;
10636
10637 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10638 encoder->base.base.id,
8e329a03 10639 encoder->base.name);
8af6cf88
DV
10640
10641 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10642 "encoder's stage crtc doesn't match current crtc\n");
10643 WARN(encoder->connectors_active && !encoder->base.crtc,
10644 "encoder's active_connectors set, but no crtc\n");
10645
10646 list_for_each_entry(connector, &dev->mode_config.connector_list,
10647 base.head) {
10648 if (connector->base.encoder != &encoder->base)
10649 continue;
10650 enabled = true;
10651 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10652 active = true;
10653 }
0e32b39c
DA
10654 /*
10655 * for MST connectors if we unplug the connector is gone
10656 * away but the encoder is still connected to a crtc
10657 * until a modeset happens in response to the hotplug.
10658 */
10659 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10660 continue;
10661
8af6cf88
DV
10662 WARN(!!encoder->base.crtc != enabled,
10663 "encoder's enabled state mismatch "
10664 "(expected %i, found %i)\n",
10665 !!encoder->base.crtc, enabled);
10666 WARN(active && !encoder->base.crtc,
10667 "active encoder with no crtc\n");
10668
10669 WARN(encoder->connectors_active != active,
10670 "encoder's computed active state doesn't match tracked active state "
10671 "(expected %i, found %i)\n", active, encoder->connectors_active);
10672
10673 active = encoder->get_hw_state(encoder, &pipe);
10674 WARN(active != encoder->connectors_active,
10675 "encoder's hw state doesn't match sw tracking "
10676 "(expected %i, found %i)\n",
10677 encoder->connectors_active, active);
10678
10679 if (!encoder->base.crtc)
10680 continue;
10681
10682 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10683 WARN(active && pipe != tracked_pipe,
10684 "active encoder's pipe doesn't match"
10685 "(expected %i, found %i)\n",
10686 tracked_pipe, pipe);
10687
10688 }
91d1b4bd
DV
10689}
10690
10691static void
10692check_crtc_state(struct drm_device *dev)
10693{
fbee40df 10694 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10695 struct intel_crtc *crtc;
10696 struct intel_encoder *encoder;
10697 struct intel_crtc_config pipe_config;
8af6cf88 10698
d3fcc808 10699 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10700 bool enabled = false;
10701 bool active = false;
10702
045ac3b5
JB
10703 memset(&pipe_config, 0, sizeof(pipe_config));
10704
8af6cf88
DV
10705 DRM_DEBUG_KMS("[CRTC:%d]\n",
10706 crtc->base.base.id);
10707
10708 WARN(crtc->active && !crtc->base.enabled,
10709 "active crtc, but not enabled in sw tracking\n");
10710
10711 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10712 base.head) {
10713 if (encoder->base.crtc != &crtc->base)
10714 continue;
10715 enabled = true;
10716 if (encoder->connectors_active)
10717 active = true;
10718 }
6c49f241 10719
8af6cf88
DV
10720 WARN(active != crtc->active,
10721 "crtc's computed active state doesn't match tracked active state "
10722 "(expected %i, found %i)\n", active, crtc->active);
10723 WARN(enabled != crtc->base.enabled,
10724 "crtc's computed enabled state doesn't match tracked enabled state "
10725 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10726
0e8ffe1b
DV
10727 active = dev_priv->display.get_pipe_config(crtc,
10728 &pipe_config);
d62cf62a
DV
10729
10730 /* hw state is inconsistent with the pipe A quirk */
10731 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10732 active = crtc->active;
10733
6c49f241
DV
10734 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10735 base.head) {
3eaba51c 10736 enum pipe pipe;
6c49f241
DV
10737 if (encoder->base.crtc != &crtc->base)
10738 continue;
1d37b689 10739 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10740 encoder->get_config(encoder, &pipe_config);
10741 }
10742
0e8ffe1b
DV
10743 WARN(crtc->active != active,
10744 "crtc active state doesn't match with hw state "
10745 "(expected %i, found %i)\n", crtc->active, active);
10746
c0b03411
DV
10747 if (active &&
10748 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10749 WARN(1, "pipe state doesn't match!\n");
10750 intel_dump_pipe_config(crtc, &pipe_config,
10751 "[hw state]");
10752 intel_dump_pipe_config(crtc, &crtc->config,
10753 "[sw state]");
10754 }
8af6cf88
DV
10755 }
10756}
10757
91d1b4bd
DV
10758static void
10759check_shared_dpll_state(struct drm_device *dev)
10760{
fbee40df 10761 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10762 struct intel_crtc *crtc;
10763 struct intel_dpll_hw_state dpll_hw_state;
10764 int i;
5358901f
DV
10765
10766 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10767 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10768 int enabled_crtcs = 0, active_crtcs = 0;
10769 bool active;
10770
10771 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10772
10773 DRM_DEBUG_KMS("%s\n", pll->name);
10774
10775 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10776
10777 WARN(pll->active > pll->refcount,
10778 "more active pll users than references: %i vs %i\n",
10779 pll->active, pll->refcount);
10780 WARN(pll->active && !pll->on,
10781 "pll in active use but not on in sw tracking\n");
35c95375
DV
10782 WARN(pll->on && !pll->active,
10783 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10784 WARN(pll->on != active,
10785 "pll on state mismatch (expected %i, found %i)\n",
10786 pll->on, active);
10787
d3fcc808 10788 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10789 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10790 enabled_crtcs++;
10791 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10792 active_crtcs++;
10793 }
10794 WARN(pll->active != active_crtcs,
10795 "pll active crtcs mismatch (expected %i, found %i)\n",
10796 pll->active, active_crtcs);
10797 WARN(pll->refcount != enabled_crtcs,
10798 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10799 pll->refcount, enabled_crtcs);
66e985c0
DV
10800
10801 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10802 sizeof(dpll_hw_state)),
10803 "pll hw state mismatch\n");
5358901f 10804 }
8af6cf88
DV
10805}
10806
91d1b4bd
DV
10807void
10808intel_modeset_check_state(struct drm_device *dev)
10809{
10810 check_connector_state(dev);
10811 check_encoder_state(dev);
10812 check_crtc_state(dev);
10813 check_shared_dpll_state(dev);
10814}
10815
18442d08
VS
10816void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10817 int dotclock)
10818{
10819 /*
10820 * FDI already provided one idea for the dotclock.
10821 * Yell if the encoder disagrees.
10822 */
241bfc38 10823 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10824 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10825 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10826}
10827
80715b2f
VS
10828static void update_scanline_offset(struct intel_crtc *crtc)
10829{
10830 struct drm_device *dev = crtc->base.dev;
10831
10832 /*
10833 * The scanline counter increments at the leading edge of hsync.
10834 *
10835 * On most platforms it starts counting from vtotal-1 on the
10836 * first active line. That means the scanline counter value is
10837 * always one less than what we would expect. Ie. just after
10838 * start of vblank, which also occurs at start of hsync (on the
10839 * last active line), the scanline counter will read vblank_start-1.
10840 *
10841 * On gen2 the scanline counter starts counting from 1 instead
10842 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10843 * to keep the value positive), instead of adding one.
10844 *
10845 * On HSW+ the behaviour of the scanline counter depends on the output
10846 * type. For DP ports it behaves like most other platforms, but on HDMI
10847 * there's an extra 1 line difference. So we need to add two instead of
10848 * one to the value.
10849 */
10850 if (IS_GEN2(dev)) {
10851 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10852 int vtotal;
10853
10854 vtotal = mode->crtc_vtotal;
10855 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10856 vtotal /= 2;
10857
10858 crtc->scanline_offset = vtotal - 1;
10859 } else if (HAS_DDI(dev) &&
10860 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10861 crtc->scanline_offset = 2;
10862 } else
10863 crtc->scanline_offset = 1;
10864}
10865
f30da187
DV
10866static int __intel_set_mode(struct drm_crtc *crtc,
10867 struct drm_display_mode *mode,
10868 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10869{
10870 struct drm_device *dev = crtc->dev;
fbee40df 10871 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10872 struct drm_display_mode *saved_mode;
b8cecdf5 10873 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10874 struct intel_crtc *intel_crtc;
10875 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10876 int ret = 0;
a6778b3c 10877
4b4b9238 10878 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10879 if (!saved_mode)
10880 return -ENOMEM;
a6778b3c 10881
e2e1ed41 10882 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10883 &prepare_pipes, &disable_pipes);
10884
3ac18232 10885 *saved_mode = crtc->mode;
a6778b3c 10886
25c5b266
DV
10887 /* Hack: Because we don't (yet) support global modeset on multiple
10888 * crtcs, we don't keep track of the new mode for more than one crtc.
10889 * Hence simply check whether any bit is set in modeset_pipes in all the
10890 * pieces of code that are not yet converted to deal with mutliple crtcs
10891 * changing their mode at the same time. */
25c5b266 10892 if (modeset_pipes) {
4e53c2e0 10893 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10894 if (IS_ERR(pipe_config)) {
10895 ret = PTR_ERR(pipe_config);
10896 pipe_config = NULL;
10897
3ac18232 10898 goto out;
25c5b266 10899 }
c0b03411
DV
10900 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10901 "[modeset]");
50741abc 10902 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10903 }
a6778b3c 10904
30a970c6
JB
10905 /*
10906 * See if the config requires any additional preparation, e.g.
10907 * to adjust global state with pipes off. We need to do this
10908 * here so we can get the modeset_pipe updated config for the new
10909 * mode set on this crtc. For other crtcs we need to use the
10910 * adjusted_mode bits in the crtc directly.
10911 */
c164f833 10912 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10913 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10914
c164f833
VS
10915 /* may have added more to prepare_pipes than we should */
10916 prepare_pipes &= ~disable_pipes;
10917 }
10918
460da916
DV
10919 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10920 intel_crtc_disable(&intel_crtc->base);
10921
ea9d758d
DV
10922 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10923 if (intel_crtc->base.enabled)
10924 dev_priv->display.crtc_disable(&intel_crtc->base);
10925 }
a6778b3c 10926
6c4c86f5
DV
10927 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10928 * to set it here already despite that we pass it down the callchain.
f6e5b160 10929 */
b8cecdf5 10930 if (modeset_pipes) {
25c5b266 10931 crtc->mode = *mode;
b8cecdf5
DV
10932 /* mode_set/enable/disable functions rely on a correct pipe
10933 * config. */
10934 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10935 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10936
10937 /*
10938 * Calculate and store various constants which
10939 * are later needed by vblank and swap-completion
10940 * timestamping. They are derived from true hwmode.
10941 */
10942 drm_calc_timestamping_constants(crtc,
10943 &pipe_config->adjusted_mode);
b8cecdf5 10944 }
7758a113 10945
ea9d758d
DV
10946 /* Only after disabling all output pipelines that will be changed can we
10947 * update the the output configuration. */
10948 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10949
47fab737
DV
10950 if (dev_priv->display.modeset_global_resources)
10951 dev_priv->display.modeset_global_resources(dev);
10952
a6778b3c
DV
10953 /* Set up the DPLL and any encoders state that needs to adjust or depend
10954 * on the DPLL.
f6e5b160 10955 */
25c5b266 10956 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10957 struct drm_framebuffer *old_fb = crtc->primary->fb;
10958 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10959 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10960
10961 mutex_lock(&dev->struct_mutex);
10962 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10963 obj,
4c10794f
DV
10964 NULL);
10965 if (ret != 0) {
10966 DRM_ERROR("pin & fence failed\n");
10967 mutex_unlock(&dev->struct_mutex);
10968 goto done;
10969 }
2ff8fde1 10970 if (old_fb)
a071fa00 10971 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10972 i915_gem_track_fb(old_obj, obj,
10973 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10974 mutex_unlock(&dev->struct_mutex);
10975
10976 crtc->primary->fb = fb;
10977 crtc->x = x;
10978 crtc->y = y;
10979
4271b753
DV
10980 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10981 x, y, fb);
c0c36b94
CW
10982 if (ret)
10983 goto done;
a6778b3c
DV
10984 }
10985
10986 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10987 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10988 update_scanline_offset(intel_crtc);
10989
25c5b266 10990 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10991 }
a6778b3c 10992
a6778b3c
DV
10993 /* FIXME: add subpixel order */
10994done:
4b4b9238 10995 if (ret && crtc->enabled)
3ac18232 10996 crtc->mode = *saved_mode;
a6778b3c 10997
3ac18232 10998out:
b8cecdf5 10999 kfree(pipe_config);
3ac18232 11000 kfree(saved_mode);
a6778b3c 11001 return ret;
f6e5b160
CW
11002}
11003
e7457a9a
DL
11004static int intel_set_mode(struct drm_crtc *crtc,
11005 struct drm_display_mode *mode,
11006 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11007{
11008 int ret;
11009
11010 ret = __intel_set_mode(crtc, mode, x, y, fb);
11011
11012 if (ret == 0)
11013 intel_modeset_check_state(crtc->dev);
11014
11015 return ret;
11016}
11017
c0c36b94
CW
11018void intel_crtc_restore_mode(struct drm_crtc *crtc)
11019{
f4510a27 11020 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11021}
11022
25c5b266
DV
11023#undef for_each_intel_crtc_masked
11024
d9e55608
DV
11025static void intel_set_config_free(struct intel_set_config *config)
11026{
11027 if (!config)
11028 return;
11029
1aa4b628
DV
11030 kfree(config->save_connector_encoders);
11031 kfree(config->save_encoder_crtcs);
7668851f 11032 kfree(config->save_crtc_enabled);
d9e55608
DV
11033 kfree(config);
11034}
11035
85f9eb71
DV
11036static int intel_set_config_save_state(struct drm_device *dev,
11037 struct intel_set_config *config)
11038{
7668851f 11039 struct drm_crtc *crtc;
85f9eb71
DV
11040 struct drm_encoder *encoder;
11041 struct drm_connector *connector;
11042 int count;
11043
7668851f
VS
11044 config->save_crtc_enabled =
11045 kcalloc(dev->mode_config.num_crtc,
11046 sizeof(bool), GFP_KERNEL);
11047 if (!config->save_crtc_enabled)
11048 return -ENOMEM;
11049
1aa4b628
DV
11050 config->save_encoder_crtcs =
11051 kcalloc(dev->mode_config.num_encoder,
11052 sizeof(struct drm_crtc *), GFP_KERNEL);
11053 if (!config->save_encoder_crtcs)
85f9eb71
DV
11054 return -ENOMEM;
11055
1aa4b628
DV
11056 config->save_connector_encoders =
11057 kcalloc(dev->mode_config.num_connector,
11058 sizeof(struct drm_encoder *), GFP_KERNEL);
11059 if (!config->save_connector_encoders)
85f9eb71
DV
11060 return -ENOMEM;
11061
11062 /* Copy data. Note that driver private data is not affected.
11063 * Should anything bad happen only the expected state is
11064 * restored, not the drivers personal bookkeeping.
11065 */
7668851f 11066 count = 0;
70e1e0ec 11067 for_each_crtc(dev, crtc) {
7668851f
VS
11068 config->save_crtc_enabled[count++] = crtc->enabled;
11069 }
11070
85f9eb71
DV
11071 count = 0;
11072 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11073 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11074 }
11075
11076 count = 0;
11077 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11078 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11079 }
11080
11081 return 0;
11082}
11083
11084static void intel_set_config_restore_state(struct drm_device *dev,
11085 struct intel_set_config *config)
11086{
7668851f 11087 struct intel_crtc *crtc;
9a935856
DV
11088 struct intel_encoder *encoder;
11089 struct intel_connector *connector;
85f9eb71
DV
11090 int count;
11091
7668851f 11092 count = 0;
d3fcc808 11093 for_each_intel_crtc(dev, crtc) {
7668851f 11094 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11095
11096 if (crtc->new_enabled)
11097 crtc->new_config = &crtc->config;
11098 else
11099 crtc->new_config = NULL;
7668851f
VS
11100 }
11101
85f9eb71 11102 count = 0;
9a935856
DV
11103 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11104 encoder->new_crtc =
11105 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11106 }
11107
11108 count = 0;
9a935856
DV
11109 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11110 connector->new_encoder =
11111 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11112 }
11113}
11114
e3de42b6 11115static bool
2e57f47d 11116is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11117{
11118 int i;
11119
2e57f47d
CW
11120 if (set->num_connectors == 0)
11121 return false;
11122
11123 if (WARN_ON(set->connectors == NULL))
11124 return false;
11125
11126 for (i = 0; i < set->num_connectors; i++)
11127 if (set->connectors[i]->encoder &&
11128 set->connectors[i]->encoder->crtc == set->crtc &&
11129 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11130 return true;
11131
11132 return false;
11133}
11134
5e2b584e
DV
11135static void
11136intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11137 struct intel_set_config *config)
11138{
11139
11140 /* We should be able to check here if the fb has the same properties
11141 * and then just flip_or_move it */
2e57f47d
CW
11142 if (is_crtc_connector_off(set)) {
11143 config->mode_changed = true;
f4510a27 11144 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11145 /*
11146 * If we have no fb, we can only flip as long as the crtc is
11147 * active, otherwise we need a full mode set. The crtc may
11148 * be active if we've only disabled the primary plane, or
11149 * in fastboot situations.
11150 */
f4510a27 11151 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11152 struct intel_crtc *intel_crtc =
11153 to_intel_crtc(set->crtc);
11154
3b150f08 11155 if (intel_crtc->active) {
319d9827
JB
11156 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11157 config->fb_changed = true;
11158 } else {
11159 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11160 config->mode_changed = true;
11161 }
5e2b584e
DV
11162 } else if (set->fb == NULL) {
11163 config->mode_changed = true;
72f4901e 11164 } else if (set->fb->pixel_format !=
f4510a27 11165 set->crtc->primary->fb->pixel_format) {
5e2b584e 11166 config->mode_changed = true;
e3de42b6 11167 } else {
5e2b584e 11168 config->fb_changed = true;
e3de42b6 11169 }
5e2b584e
DV
11170 }
11171
835c5873 11172 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11173 config->fb_changed = true;
11174
11175 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11176 DRM_DEBUG_KMS("modes are different, full mode set\n");
11177 drm_mode_debug_printmodeline(&set->crtc->mode);
11178 drm_mode_debug_printmodeline(set->mode);
11179 config->mode_changed = true;
11180 }
a1d95703
CW
11181
11182 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11183 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11184}
11185
2e431051 11186static int
9a935856
DV
11187intel_modeset_stage_output_state(struct drm_device *dev,
11188 struct drm_mode_set *set,
11189 struct intel_set_config *config)
50f56119 11190{
9a935856
DV
11191 struct intel_connector *connector;
11192 struct intel_encoder *encoder;
7668851f 11193 struct intel_crtc *crtc;
f3f08572 11194 int ro;
50f56119 11195
9abdda74 11196 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11197 * of connectors. For paranoia, double-check this. */
11198 WARN_ON(!set->fb && (set->num_connectors != 0));
11199 WARN_ON(set->fb && (set->num_connectors == 0));
11200
9a935856
DV
11201 list_for_each_entry(connector, &dev->mode_config.connector_list,
11202 base.head) {
11203 /* Otherwise traverse passed in connector list and get encoders
11204 * for them. */
50f56119 11205 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11206 if (set->connectors[ro] == &connector->base) {
0e32b39c 11207 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11208 break;
11209 }
11210 }
11211
9a935856
DV
11212 /* If we disable the crtc, disable all its connectors. Also, if
11213 * the connector is on the changing crtc but not on the new
11214 * connector list, disable it. */
11215 if ((!set->fb || ro == set->num_connectors) &&
11216 connector->base.encoder &&
11217 connector->base.encoder->crtc == set->crtc) {
11218 connector->new_encoder = NULL;
11219
11220 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11221 connector->base.base.id,
c23cc417 11222 connector->base.name);
9a935856
DV
11223 }
11224
11225
11226 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11227 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11228 config->mode_changed = true;
50f56119
DV
11229 }
11230 }
9a935856 11231 /* connector->new_encoder is now updated for all connectors. */
50f56119 11232
9a935856 11233 /* Update crtc of enabled connectors. */
9a935856
DV
11234 list_for_each_entry(connector, &dev->mode_config.connector_list,
11235 base.head) {
7668851f
VS
11236 struct drm_crtc *new_crtc;
11237
9a935856 11238 if (!connector->new_encoder)
50f56119
DV
11239 continue;
11240
9a935856 11241 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11242
11243 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11244 if (set->connectors[ro] == &connector->base)
50f56119
DV
11245 new_crtc = set->crtc;
11246 }
11247
11248 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11249 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11250 new_crtc)) {
5e2b584e 11251 return -EINVAL;
50f56119 11252 }
0e32b39c 11253 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11254
11255 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11256 connector->base.base.id,
c23cc417 11257 connector->base.name,
9a935856
DV
11258 new_crtc->base.id);
11259 }
11260
11261 /* Check for any encoders that needs to be disabled. */
11262 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11263 base.head) {
5a65f358 11264 int num_connectors = 0;
9a935856
DV
11265 list_for_each_entry(connector,
11266 &dev->mode_config.connector_list,
11267 base.head) {
11268 if (connector->new_encoder == encoder) {
11269 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11270 num_connectors++;
9a935856
DV
11271 }
11272 }
5a65f358
PZ
11273
11274 if (num_connectors == 0)
11275 encoder->new_crtc = NULL;
11276 else if (num_connectors > 1)
11277 return -EINVAL;
11278
9a935856
DV
11279 /* Only now check for crtc changes so we don't miss encoders
11280 * that will be disabled. */
11281 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11282 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11283 config->mode_changed = true;
50f56119
DV
11284 }
11285 }
9a935856 11286 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11287 list_for_each_entry(connector, &dev->mode_config.connector_list,
11288 base.head) {
11289 if (connector->new_encoder)
11290 if (connector->new_encoder != connector->encoder)
11291 connector->encoder = connector->new_encoder;
11292 }
d3fcc808 11293 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11294 crtc->new_enabled = false;
11295
11296 list_for_each_entry(encoder,
11297 &dev->mode_config.encoder_list,
11298 base.head) {
11299 if (encoder->new_crtc == crtc) {
11300 crtc->new_enabled = true;
11301 break;
11302 }
11303 }
11304
11305 if (crtc->new_enabled != crtc->base.enabled) {
11306 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11307 crtc->new_enabled ? "en" : "dis");
11308 config->mode_changed = true;
11309 }
7bd0a8e7
VS
11310
11311 if (crtc->new_enabled)
11312 crtc->new_config = &crtc->config;
11313 else
11314 crtc->new_config = NULL;
7668851f
VS
11315 }
11316
2e431051
DV
11317 return 0;
11318}
11319
7d00a1f5
VS
11320static void disable_crtc_nofb(struct intel_crtc *crtc)
11321{
11322 struct drm_device *dev = crtc->base.dev;
11323 struct intel_encoder *encoder;
11324 struct intel_connector *connector;
11325
11326 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11327 pipe_name(crtc->pipe));
11328
11329 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11330 if (connector->new_encoder &&
11331 connector->new_encoder->new_crtc == crtc)
11332 connector->new_encoder = NULL;
11333 }
11334
11335 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11336 if (encoder->new_crtc == crtc)
11337 encoder->new_crtc = NULL;
11338 }
11339
11340 crtc->new_enabled = false;
7bd0a8e7 11341 crtc->new_config = NULL;
7d00a1f5
VS
11342}
11343
2e431051
DV
11344static int intel_crtc_set_config(struct drm_mode_set *set)
11345{
11346 struct drm_device *dev;
2e431051
DV
11347 struct drm_mode_set save_set;
11348 struct intel_set_config *config;
11349 int ret;
2e431051 11350
8d3e375e
DV
11351 BUG_ON(!set);
11352 BUG_ON(!set->crtc);
11353 BUG_ON(!set->crtc->helper_private);
2e431051 11354
7e53f3a4
DV
11355 /* Enforce sane interface api - has been abused by the fb helper. */
11356 BUG_ON(!set->mode && set->fb);
11357 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11358
2e431051
DV
11359 if (set->fb) {
11360 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11361 set->crtc->base.id, set->fb->base.id,
11362 (int)set->num_connectors, set->x, set->y);
11363 } else {
11364 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11365 }
11366
11367 dev = set->crtc->dev;
11368
11369 ret = -ENOMEM;
11370 config = kzalloc(sizeof(*config), GFP_KERNEL);
11371 if (!config)
11372 goto out_config;
11373
11374 ret = intel_set_config_save_state(dev, config);
11375 if (ret)
11376 goto out_config;
11377
11378 save_set.crtc = set->crtc;
11379 save_set.mode = &set->crtc->mode;
11380 save_set.x = set->crtc->x;
11381 save_set.y = set->crtc->y;
f4510a27 11382 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11383
11384 /* Compute whether we need a full modeset, only an fb base update or no
11385 * change at all. In the future we might also check whether only the
11386 * mode changed, e.g. for LVDS where we only change the panel fitter in
11387 * such cases. */
11388 intel_set_config_compute_mode_changes(set, config);
11389
9a935856 11390 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11391 if (ret)
11392 goto fail;
11393
5e2b584e 11394 if (config->mode_changed) {
c0c36b94
CW
11395 ret = intel_set_mode(set->crtc, set->mode,
11396 set->x, set->y, set->fb);
5e2b584e 11397 } else if (config->fb_changed) {
3b150f08
MR
11398 struct drm_i915_private *dev_priv = dev->dev_private;
11399 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11400
4878cae2
VS
11401 intel_crtc_wait_for_pending_flips(set->crtc);
11402
4f660f49 11403 ret = intel_pipe_set_base(set->crtc,
94352cf9 11404 set->x, set->y, set->fb);
3b150f08
MR
11405
11406 /*
11407 * We need to make sure the primary plane is re-enabled if it
11408 * has previously been turned off.
11409 */
11410 if (!intel_crtc->primary_enabled && ret == 0) {
11411 WARN_ON(!intel_crtc->active);
11412 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11413 intel_crtc->pipe);
11414 }
11415
7ca51a3a
JB
11416 /*
11417 * In the fastboot case this may be our only check of the
11418 * state after boot. It would be better to only do it on
11419 * the first update, but we don't have a nice way of doing that
11420 * (and really, set_config isn't used much for high freq page
11421 * flipping, so increasing its cost here shouldn't be a big
11422 * deal).
11423 */
d330a953 11424 if (i915.fastboot && ret == 0)
7ca51a3a 11425 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11426 }
11427
2d05eae1 11428 if (ret) {
bf67dfeb
DV
11429 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11430 set->crtc->base.id, ret);
50f56119 11431fail:
2d05eae1 11432 intel_set_config_restore_state(dev, config);
50f56119 11433
7d00a1f5
VS
11434 /*
11435 * HACK: if the pipe was on, but we didn't have a framebuffer,
11436 * force the pipe off to avoid oopsing in the modeset code
11437 * due to fb==NULL. This should only happen during boot since
11438 * we don't yet reconstruct the FB from the hardware state.
11439 */
11440 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11441 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11442
2d05eae1
CW
11443 /* Try to restore the config */
11444 if (config->mode_changed &&
11445 intel_set_mode(save_set.crtc, save_set.mode,
11446 save_set.x, save_set.y, save_set.fb))
11447 DRM_ERROR("failed to restore config after modeset failure\n");
11448 }
50f56119 11449
d9e55608
DV
11450out_config:
11451 intel_set_config_free(config);
50f56119
DV
11452 return ret;
11453}
f6e5b160
CW
11454
11455static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11456 .gamma_set = intel_crtc_gamma_set,
50f56119 11457 .set_config = intel_crtc_set_config,
f6e5b160
CW
11458 .destroy = intel_crtc_destroy,
11459 .page_flip = intel_crtc_page_flip,
11460};
11461
5358901f
DV
11462static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11463 struct intel_shared_dpll *pll,
11464 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11465{
5358901f 11466 uint32_t val;
ee7b9f93 11467
bd2bb1b9
PZ
11468 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11469 return false;
11470
5358901f 11471 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11472 hw_state->dpll = val;
11473 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11474 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11475
11476 return val & DPLL_VCO_ENABLE;
11477}
11478
15bdd4cf
DV
11479static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11480 struct intel_shared_dpll *pll)
11481{
11482 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11483 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11484}
11485
e7b903d2
DV
11486static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11487 struct intel_shared_dpll *pll)
11488{
e7b903d2 11489 /* PCH refclock must be enabled first */
89eff4be 11490 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11491
15bdd4cf
DV
11492 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11493
11494 /* Wait for the clocks to stabilize. */
11495 POSTING_READ(PCH_DPLL(pll->id));
11496 udelay(150);
11497
11498 /* The pixel multiplier can only be updated once the
11499 * DPLL is enabled and the clocks are stable.
11500 *
11501 * So write it again.
11502 */
11503 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11504 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11505 udelay(200);
11506}
11507
11508static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11509 struct intel_shared_dpll *pll)
11510{
11511 struct drm_device *dev = dev_priv->dev;
11512 struct intel_crtc *crtc;
e7b903d2
DV
11513
11514 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11515 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11516 if (intel_crtc_to_shared_dpll(crtc) == pll)
11517 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11518 }
11519
15bdd4cf
DV
11520 I915_WRITE(PCH_DPLL(pll->id), 0);
11521 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11522 udelay(200);
11523}
11524
46edb027
DV
11525static char *ibx_pch_dpll_names[] = {
11526 "PCH DPLL A",
11527 "PCH DPLL B",
11528};
11529
7c74ade1 11530static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11531{
e7b903d2 11532 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11533 int i;
11534
7c74ade1 11535 dev_priv->num_shared_dpll = 2;
ee7b9f93 11536
e72f9fbf 11537 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11538 dev_priv->shared_dplls[i].id = i;
11539 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11540 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11541 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11542 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11543 dev_priv->shared_dplls[i].get_hw_state =
11544 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11545 }
11546}
11547
7c74ade1
DV
11548static void intel_shared_dpll_init(struct drm_device *dev)
11549{
e7b903d2 11550 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11551
9cd86933
DV
11552 if (HAS_DDI(dev))
11553 intel_ddi_pll_init(dev);
11554 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11555 ibx_pch_dpll_init(dev);
11556 else
11557 dev_priv->num_shared_dpll = 0;
11558
11559 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11560}
11561
465c120c
MR
11562static int
11563intel_primary_plane_disable(struct drm_plane *plane)
11564{
11565 struct drm_device *dev = plane->dev;
11566 struct drm_i915_private *dev_priv = dev->dev_private;
11567 struct intel_plane *intel_plane = to_intel_plane(plane);
11568 struct intel_crtc *intel_crtc;
11569
11570 if (!plane->fb)
11571 return 0;
11572
11573 BUG_ON(!plane->crtc);
11574
11575 intel_crtc = to_intel_crtc(plane->crtc);
11576
11577 /*
11578 * Even though we checked plane->fb above, it's still possible that
11579 * the primary plane has been implicitly disabled because the crtc
11580 * coordinates given weren't visible, or because we detected
11581 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11582 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11583 * In either case, we need to unpin the FB and let the fb pointer get
11584 * updated, but otherwise we don't need to touch the hardware.
11585 */
11586 if (!intel_crtc->primary_enabled)
11587 goto disable_unpin;
11588
11589 intel_crtc_wait_for_pending_flips(plane->crtc);
11590 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11591 intel_plane->pipe);
465c120c 11592disable_unpin:
4c34574f 11593 mutex_lock(&dev->struct_mutex);
2ff8fde1 11594 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11595 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11596 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11597 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11598 plane->fb = NULL;
11599
11600 return 0;
11601}
11602
11603static int
11604intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11605 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11606 unsigned int crtc_w, unsigned int crtc_h,
11607 uint32_t src_x, uint32_t src_y,
11608 uint32_t src_w, uint32_t src_h)
11609{
11610 struct drm_device *dev = crtc->dev;
11611 struct drm_i915_private *dev_priv = dev->dev_private;
11612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11613 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11615 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11616 struct drm_rect dest = {
11617 /* integer pixels */
11618 .x1 = crtc_x,
11619 .y1 = crtc_y,
11620 .x2 = crtc_x + crtc_w,
11621 .y2 = crtc_y + crtc_h,
11622 };
11623 struct drm_rect src = {
11624 /* 16.16 fixed point */
11625 .x1 = src_x,
11626 .y1 = src_y,
11627 .x2 = src_x + src_w,
11628 .y2 = src_y + src_h,
11629 };
11630 const struct drm_rect clip = {
11631 /* integer pixels */
11632 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11633 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11634 };
11635 bool visible;
11636 int ret;
11637
11638 ret = drm_plane_helper_check_update(plane, crtc, fb,
11639 &src, &dest, &clip,
11640 DRM_PLANE_HELPER_NO_SCALING,
11641 DRM_PLANE_HELPER_NO_SCALING,
11642 false, true, &visible);
11643
11644 if (ret)
11645 return ret;
11646
11647 /*
11648 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11649 * updating the fb pointer, and returning without touching the
11650 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11651 * turn on the display with all planes setup as desired.
11652 */
11653 if (!crtc->enabled) {
4c34574f
MR
11654 mutex_lock(&dev->struct_mutex);
11655
465c120c
MR
11656 /*
11657 * If we already called setplane while the crtc was disabled,
11658 * we may have an fb pinned; unpin it.
11659 */
11660 if (plane->fb)
a071fa00
DV
11661 intel_unpin_fb_obj(old_obj);
11662
11663 i915_gem_track_fb(old_obj, obj,
11664 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11665
11666 /* Pin and return without programming hardware */
4c34574f
MR
11667 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11668 mutex_unlock(&dev->struct_mutex);
11669
11670 return ret;
465c120c
MR
11671 }
11672
11673 intel_crtc_wait_for_pending_flips(crtc);
11674
11675 /*
11676 * If clipping results in a non-visible primary plane, we'll disable
11677 * the primary plane. Note that this is a bit different than what
11678 * happens if userspace explicitly disables the plane by passing fb=0
11679 * because plane->fb still gets set and pinned.
11680 */
11681 if (!visible) {
4c34574f
MR
11682 mutex_lock(&dev->struct_mutex);
11683
465c120c
MR
11684 /*
11685 * Try to pin the new fb first so that we can bail out if we
11686 * fail.
11687 */
11688 if (plane->fb != fb) {
a071fa00 11689 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11690 if (ret) {
11691 mutex_unlock(&dev->struct_mutex);
465c120c 11692 return ret;
4c34574f 11693 }
465c120c
MR
11694 }
11695
a071fa00
DV
11696 i915_gem_track_fb(old_obj, obj,
11697 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11698
465c120c
MR
11699 if (intel_crtc->primary_enabled)
11700 intel_disable_primary_hw_plane(dev_priv,
11701 intel_plane->plane,
11702 intel_plane->pipe);
11703
11704
11705 if (plane->fb != fb)
11706 if (plane->fb)
a071fa00 11707 intel_unpin_fb_obj(old_obj);
465c120c 11708
4c34574f
MR
11709 mutex_unlock(&dev->struct_mutex);
11710
465c120c
MR
11711 return 0;
11712 }
11713
11714 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11715 if (ret)
11716 return ret;
11717
11718 if (!intel_crtc->primary_enabled)
11719 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11720 intel_crtc->pipe);
11721
11722 return 0;
11723}
11724
3d7d6510
MR
11725/* Common destruction function for both primary and cursor planes */
11726static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11727{
11728 struct intel_plane *intel_plane = to_intel_plane(plane);
11729 drm_plane_cleanup(plane);
11730 kfree(intel_plane);
11731}
11732
11733static const struct drm_plane_funcs intel_primary_plane_funcs = {
11734 .update_plane = intel_primary_plane_setplane,
11735 .disable_plane = intel_primary_plane_disable,
3d7d6510 11736 .destroy = intel_plane_destroy,
465c120c
MR
11737};
11738
11739static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11740 int pipe)
11741{
11742 struct intel_plane *primary;
11743 const uint32_t *intel_primary_formats;
11744 int num_formats;
11745
11746 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11747 if (primary == NULL)
11748 return NULL;
11749
11750 primary->can_scale = false;
11751 primary->max_downscale = 1;
11752 primary->pipe = pipe;
11753 primary->plane = pipe;
11754 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11755 primary->plane = !pipe;
11756
11757 if (INTEL_INFO(dev)->gen <= 3) {
11758 intel_primary_formats = intel_primary_formats_gen2;
11759 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11760 } else {
11761 intel_primary_formats = intel_primary_formats_gen4;
11762 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11763 }
11764
11765 drm_universal_plane_init(dev, &primary->base, 0,
11766 &intel_primary_plane_funcs,
11767 intel_primary_formats, num_formats,
11768 DRM_PLANE_TYPE_PRIMARY);
11769 return &primary->base;
11770}
11771
3d7d6510
MR
11772static int
11773intel_cursor_plane_disable(struct drm_plane *plane)
11774{
11775 if (!plane->fb)
11776 return 0;
11777
11778 BUG_ON(!plane->crtc);
11779
11780 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11781}
11782
11783static int
11784intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11785 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11786 unsigned int crtc_w, unsigned int crtc_h,
11787 uint32_t src_x, uint32_t src_y,
11788 uint32_t src_w, uint32_t src_h)
11789{
11790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11791 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11792 struct drm_i915_gem_object *obj = intel_fb->obj;
11793 struct drm_rect dest = {
11794 /* integer pixels */
11795 .x1 = crtc_x,
11796 .y1 = crtc_y,
11797 .x2 = crtc_x + crtc_w,
11798 .y2 = crtc_y + crtc_h,
11799 };
11800 struct drm_rect src = {
11801 /* 16.16 fixed point */
11802 .x1 = src_x,
11803 .y1 = src_y,
11804 .x2 = src_x + src_w,
11805 .y2 = src_y + src_h,
11806 };
11807 const struct drm_rect clip = {
11808 /* integer pixels */
11809 .x2 = intel_crtc->config.pipe_src_w,
11810 .y2 = intel_crtc->config.pipe_src_h,
11811 };
11812 bool visible;
11813 int ret;
11814
11815 ret = drm_plane_helper_check_update(plane, crtc, fb,
11816 &src, &dest, &clip,
11817 DRM_PLANE_HELPER_NO_SCALING,
11818 DRM_PLANE_HELPER_NO_SCALING,
11819 true, true, &visible);
11820 if (ret)
11821 return ret;
11822
11823 crtc->cursor_x = crtc_x;
11824 crtc->cursor_y = crtc_y;
11825 if (fb != crtc->cursor->fb) {
11826 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11827 } else {
11828 intel_crtc_update_cursor(crtc, visible);
11829 return 0;
11830 }
11831}
11832static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11833 .update_plane = intel_cursor_plane_update,
11834 .disable_plane = intel_cursor_plane_disable,
11835 .destroy = intel_plane_destroy,
11836};
11837
11838static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11839 int pipe)
11840{
11841 struct intel_plane *cursor;
11842
11843 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11844 if (cursor == NULL)
11845 return NULL;
11846
11847 cursor->can_scale = false;
11848 cursor->max_downscale = 1;
11849 cursor->pipe = pipe;
11850 cursor->plane = pipe;
11851
11852 drm_universal_plane_init(dev, &cursor->base, 0,
11853 &intel_cursor_plane_funcs,
11854 intel_cursor_formats,
11855 ARRAY_SIZE(intel_cursor_formats),
11856 DRM_PLANE_TYPE_CURSOR);
11857 return &cursor->base;
11858}
11859
b358d0a6 11860static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11861{
fbee40df 11862 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11863 struct intel_crtc *intel_crtc;
3d7d6510
MR
11864 struct drm_plane *primary = NULL;
11865 struct drm_plane *cursor = NULL;
465c120c 11866 int i, ret;
79e53945 11867
955382f3 11868 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11869 if (intel_crtc == NULL)
11870 return;
11871
465c120c 11872 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11873 if (!primary)
11874 goto fail;
11875
11876 cursor = intel_cursor_plane_create(dev, pipe);
11877 if (!cursor)
11878 goto fail;
11879
465c120c 11880 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11881 cursor, &intel_crtc_funcs);
11882 if (ret)
11883 goto fail;
79e53945
JB
11884
11885 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11886 for (i = 0; i < 256; i++) {
11887 intel_crtc->lut_r[i] = i;
11888 intel_crtc->lut_g[i] = i;
11889 intel_crtc->lut_b[i] = i;
11890 }
11891
1f1c2e24
VS
11892 /*
11893 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11894 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11895 */
80824003
JB
11896 intel_crtc->pipe = pipe;
11897 intel_crtc->plane = pipe;
3a77c4c4 11898 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11899 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11900 intel_crtc->plane = !pipe;
80824003
JB
11901 }
11902
4b0e333e
CW
11903 intel_crtc->cursor_base = ~0;
11904 intel_crtc->cursor_cntl = ~0;
11905
22fd0fab
JB
11906 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11907 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11908 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11909 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11910
79e53945 11911 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11912
11913 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11914 return;
11915
11916fail:
11917 if (primary)
11918 drm_plane_cleanup(primary);
11919 if (cursor)
11920 drm_plane_cleanup(cursor);
11921 kfree(intel_crtc);
79e53945
JB
11922}
11923
752aa88a
JB
11924enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11925{
11926 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11927 struct drm_device *dev = connector->base.dev;
752aa88a 11928
51fd371b 11929 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11930
11931 if (!encoder)
11932 return INVALID_PIPE;
11933
11934 return to_intel_crtc(encoder->crtc)->pipe;
11935}
11936
08d7b3d1 11937int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11938 struct drm_file *file)
08d7b3d1 11939{
08d7b3d1 11940 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11941 struct drm_crtc *drmmode_crtc;
c05422d5 11942 struct intel_crtc *crtc;
08d7b3d1 11943
1cff8f6b
DV
11944 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11945 return -ENODEV;
08d7b3d1 11946
7707e653 11947 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11948
7707e653 11949 if (!drmmode_crtc) {
08d7b3d1 11950 DRM_ERROR("no such CRTC id\n");
3f2c2057 11951 return -ENOENT;
08d7b3d1
CW
11952 }
11953
7707e653 11954 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11955 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11956
c05422d5 11957 return 0;
08d7b3d1
CW
11958}
11959
66a9278e 11960static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11961{
66a9278e
DV
11962 struct drm_device *dev = encoder->base.dev;
11963 struct intel_encoder *source_encoder;
79e53945 11964 int index_mask = 0;
79e53945
JB
11965 int entry = 0;
11966
66a9278e
DV
11967 list_for_each_entry(source_encoder,
11968 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11969 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11970 index_mask |= (1 << entry);
11971
79e53945
JB
11972 entry++;
11973 }
4ef69c7a 11974
79e53945
JB
11975 return index_mask;
11976}
11977
4d302442
CW
11978static bool has_edp_a(struct drm_device *dev)
11979{
11980 struct drm_i915_private *dev_priv = dev->dev_private;
11981
11982 if (!IS_MOBILE(dev))
11983 return false;
11984
11985 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11986 return false;
11987
e3589908 11988 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11989 return false;
11990
11991 return true;
11992}
11993
ba0fbca4
DL
11994const char *intel_output_name(int output)
11995{
11996 static const char *names[] = {
11997 [INTEL_OUTPUT_UNUSED] = "Unused",
11998 [INTEL_OUTPUT_ANALOG] = "Analog",
11999 [INTEL_OUTPUT_DVO] = "DVO",
12000 [INTEL_OUTPUT_SDVO] = "SDVO",
12001 [INTEL_OUTPUT_LVDS] = "LVDS",
12002 [INTEL_OUTPUT_TVOUT] = "TV",
12003 [INTEL_OUTPUT_HDMI] = "HDMI",
12004 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12005 [INTEL_OUTPUT_EDP] = "eDP",
12006 [INTEL_OUTPUT_DSI] = "DSI",
12007 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12008 };
12009
12010 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12011 return "Invalid";
12012
12013 return names[output];
12014}
12015
84b4e042
JB
12016static bool intel_crt_present(struct drm_device *dev)
12017{
12018 struct drm_i915_private *dev_priv = dev->dev_private;
12019
12020 if (IS_ULT(dev))
12021 return false;
12022
12023 if (IS_CHERRYVIEW(dev))
12024 return false;
12025
12026 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12027 return false;
12028
12029 return true;
12030}
12031
79e53945
JB
12032static void intel_setup_outputs(struct drm_device *dev)
12033{
725e30ad 12034 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12035 struct intel_encoder *encoder;
cb0953d7 12036 bool dpd_is_edp = false;
79e53945 12037
c9093354 12038 intel_lvds_init(dev);
79e53945 12039
84b4e042 12040 if (intel_crt_present(dev))
79935fca 12041 intel_crt_init(dev);
cb0953d7 12042
affa9354 12043 if (HAS_DDI(dev)) {
0e72a5b5
ED
12044 int found;
12045
12046 /* Haswell uses DDI functions to detect digital outputs */
12047 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12048 /* DDI A only supports eDP */
12049 if (found)
12050 intel_ddi_init(dev, PORT_A);
12051
12052 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12053 * register */
12054 found = I915_READ(SFUSE_STRAP);
12055
12056 if (found & SFUSE_STRAP_DDIB_DETECTED)
12057 intel_ddi_init(dev, PORT_B);
12058 if (found & SFUSE_STRAP_DDIC_DETECTED)
12059 intel_ddi_init(dev, PORT_C);
12060 if (found & SFUSE_STRAP_DDID_DETECTED)
12061 intel_ddi_init(dev, PORT_D);
12062 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12063 int found;
5d8a7752 12064 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12065
12066 if (has_edp_a(dev))
12067 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12068
dc0fa718 12069 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12070 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12071 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12072 if (!found)
e2debe91 12073 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12074 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12075 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12076 }
12077
dc0fa718 12078 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12079 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12080
dc0fa718 12081 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12082 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12083
5eb08b69 12084 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12085 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12086
270b3042 12087 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12088 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12089 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12090 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12091 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12092 PORT_B);
12093 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12094 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12095 }
12096
6f6005a5
JB
12097 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12098 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12099 PORT_C);
12100 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12101 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12102 }
19c03924 12103
9418c1f1
VS
12104 if (IS_CHERRYVIEW(dev)) {
12105 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12106 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12107 PORT_D);
12108 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12109 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12110 }
12111 }
12112
3cfca973 12113 intel_dsi_init(dev);
103a196f 12114 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12115 bool found = false;
7d57382e 12116
e2debe91 12117 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12118 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12119 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12120 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12121 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12122 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12123 }
27185ae1 12124
e7281eab 12125 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12126 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12127 }
13520b05
KH
12128
12129 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12130
e2debe91 12131 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12132 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12133 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12134 }
27185ae1 12135
e2debe91 12136 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12137
b01f2c3a
JB
12138 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12139 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12140 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12141 }
e7281eab 12142 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12143 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12144 }
27185ae1 12145
b01f2c3a 12146 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12147 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12148 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12149 } else if (IS_GEN2(dev))
79e53945
JB
12150 intel_dvo_init(dev);
12151
103a196f 12152 if (SUPPORTS_TV(dev))
79e53945
JB
12153 intel_tv_init(dev);
12154
7c8f8a70
RV
12155 intel_edp_psr_init(dev);
12156
4ef69c7a
CW
12157 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12158 encoder->base.possible_crtcs = encoder->crtc_mask;
12159 encoder->base.possible_clones =
66a9278e 12160 intel_encoder_clones(encoder);
79e53945 12161 }
47356eb6 12162
dde86e2d 12163 intel_init_pch_refclk(dev);
270b3042
DV
12164
12165 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12166}
12167
12168static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12169{
60a5ca01 12170 struct drm_device *dev = fb->dev;
79e53945 12171 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12172
ef2d633e 12173 drm_framebuffer_cleanup(fb);
60a5ca01 12174 mutex_lock(&dev->struct_mutex);
ef2d633e 12175 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12176 drm_gem_object_unreference(&intel_fb->obj->base);
12177 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12178 kfree(intel_fb);
12179}
12180
12181static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12182 struct drm_file *file,
79e53945
JB
12183 unsigned int *handle)
12184{
12185 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12186 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12187
05394f39 12188 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12189}
12190
12191static const struct drm_framebuffer_funcs intel_fb_funcs = {
12192 .destroy = intel_user_framebuffer_destroy,
12193 .create_handle = intel_user_framebuffer_create_handle,
12194};
12195
b5ea642a
DV
12196static int intel_framebuffer_init(struct drm_device *dev,
12197 struct intel_framebuffer *intel_fb,
12198 struct drm_mode_fb_cmd2 *mode_cmd,
12199 struct drm_i915_gem_object *obj)
79e53945 12200{
a57ce0b2 12201 int aligned_height;
a35cdaa0 12202 int pitch_limit;
79e53945
JB
12203 int ret;
12204
dd4916c5
DV
12205 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12206
c16ed4be
CW
12207 if (obj->tiling_mode == I915_TILING_Y) {
12208 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12209 return -EINVAL;
c16ed4be 12210 }
57cd6508 12211
c16ed4be
CW
12212 if (mode_cmd->pitches[0] & 63) {
12213 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12214 mode_cmd->pitches[0]);
57cd6508 12215 return -EINVAL;
c16ed4be 12216 }
57cd6508 12217
a35cdaa0
CW
12218 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12219 pitch_limit = 32*1024;
12220 } else if (INTEL_INFO(dev)->gen >= 4) {
12221 if (obj->tiling_mode)
12222 pitch_limit = 16*1024;
12223 else
12224 pitch_limit = 32*1024;
12225 } else if (INTEL_INFO(dev)->gen >= 3) {
12226 if (obj->tiling_mode)
12227 pitch_limit = 8*1024;
12228 else
12229 pitch_limit = 16*1024;
12230 } else
12231 /* XXX DSPC is limited to 4k tiled */
12232 pitch_limit = 8*1024;
12233
12234 if (mode_cmd->pitches[0] > pitch_limit) {
12235 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12236 obj->tiling_mode ? "tiled" : "linear",
12237 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12238 return -EINVAL;
c16ed4be 12239 }
5d7bd705
VS
12240
12241 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12242 mode_cmd->pitches[0] != obj->stride) {
12243 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12244 mode_cmd->pitches[0], obj->stride);
5d7bd705 12245 return -EINVAL;
c16ed4be 12246 }
5d7bd705 12247
57779d06 12248 /* Reject formats not supported by any plane early. */
308e5bcb 12249 switch (mode_cmd->pixel_format) {
57779d06 12250 case DRM_FORMAT_C8:
04b3924d
VS
12251 case DRM_FORMAT_RGB565:
12252 case DRM_FORMAT_XRGB8888:
12253 case DRM_FORMAT_ARGB8888:
57779d06
VS
12254 break;
12255 case DRM_FORMAT_XRGB1555:
12256 case DRM_FORMAT_ARGB1555:
c16ed4be 12257 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12258 DRM_DEBUG("unsupported pixel format: %s\n",
12259 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12260 return -EINVAL;
c16ed4be 12261 }
57779d06
VS
12262 break;
12263 case DRM_FORMAT_XBGR8888:
12264 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12265 case DRM_FORMAT_XRGB2101010:
12266 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12267 case DRM_FORMAT_XBGR2101010:
12268 case DRM_FORMAT_ABGR2101010:
c16ed4be 12269 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12270 DRM_DEBUG("unsupported pixel format: %s\n",
12271 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12272 return -EINVAL;
c16ed4be 12273 }
b5626747 12274 break;
04b3924d
VS
12275 case DRM_FORMAT_YUYV:
12276 case DRM_FORMAT_UYVY:
12277 case DRM_FORMAT_YVYU:
12278 case DRM_FORMAT_VYUY:
c16ed4be 12279 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12280 DRM_DEBUG("unsupported pixel format: %s\n",
12281 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12282 return -EINVAL;
c16ed4be 12283 }
57cd6508
CW
12284 break;
12285 default:
4ee62c76
VS
12286 DRM_DEBUG("unsupported pixel format: %s\n",
12287 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12288 return -EINVAL;
12289 }
12290
90f9a336
VS
12291 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12292 if (mode_cmd->offsets[0] != 0)
12293 return -EINVAL;
12294
a57ce0b2
JB
12295 aligned_height = intel_align_height(dev, mode_cmd->height,
12296 obj->tiling_mode);
53155c0a
DV
12297 /* FIXME drm helper for size checks (especially planar formats)? */
12298 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12299 return -EINVAL;
12300
c7d73f6a
DV
12301 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12302 intel_fb->obj = obj;
80075d49 12303 intel_fb->obj->framebuffer_references++;
c7d73f6a 12304
79e53945
JB
12305 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12306 if (ret) {
12307 DRM_ERROR("framebuffer init failed %d\n", ret);
12308 return ret;
12309 }
12310
79e53945
JB
12311 return 0;
12312}
12313
79e53945
JB
12314static struct drm_framebuffer *
12315intel_user_framebuffer_create(struct drm_device *dev,
12316 struct drm_file *filp,
308e5bcb 12317 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12318{
05394f39 12319 struct drm_i915_gem_object *obj;
79e53945 12320
308e5bcb
JB
12321 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12322 mode_cmd->handles[0]));
c8725226 12323 if (&obj->base == NULL)
cce13ff7 12324 return ERR_PTR(-ENOENT);
79e53945 12325
d2dff872 12326 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12327}
12328
4520f53a 12329#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12330static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12331{
12332}
12333#endif
12334
79e53945 12335static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12336 .fb_create = intel_user_framebuffer_create,
0632fef6 12337 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12338};
12339
e70236a8
JB
12340/* Set up chip specific display functions */
12341static void intel_init_display(struct drm_device *dev)
12342{
12343 struct drm_i915_private *dev_priv = dev->dev_private;
12344
ee9300bb
DV
12345 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12346 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12347 else if (IS_CHERRYVIEW(dev))
12348 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12349 else if (IS_VALLEYVIEW(dev))
12350 dev_priv->display.find_dpll = vlv_find_best_dpll;
12351 else if (IS_PINEVIEW(dev))
12352 dev_priv->display.find_dpll = pnv_find_best_dpll;
12353 else
12354 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12355
affa9354 12356 if (HAS_DDI(dev)) {
0e8ffe1b 12357 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12358 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12359 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12360 dev_priv->display.crtc_enable = haswell_crtc_enable;
12361 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12362 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12363 dev_priv->display.update_primary_plane =
12364 ironlake_update_primary_plane;
09b4ddf9 12365 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12366 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12367 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12368 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12369 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12370 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12371 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12372 dev_priv->display.update_primary_plane =
12373 ironlake_update_primary_plane;
89b667f8
JB
12374 } else if (IS_VALLEYVIEW(dev)) {
12375 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12376 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12377 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12378 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12379 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12380 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12381 dev_priv->display.update_primary_plane =
12382 i9xx_update_primary_plane;
f564048e 12383 } else {
0e8ffe1b 12384 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12385 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12386 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12387 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12388 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12389 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12390 dev_priv->display.update_primary_plane =
12391 i9xx_update_primary_plane;
f564048e 12392 }
e70236a8 12393
e70236a8 12394 /* Returns the core display clock speed */
25eb05fc
JB
12395 if (IS_VALLEYVIEW(dev))
12396 dev_priv->display.get_display_clock_speed =
12397 valleyview_get_display_clock_speed;
12398 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12399 dev_priv->display.get_display_clock_speed =
12400 i945_get_display_clock_speed;
12401 else if (IS_I915G(dev))
12402 dev_priv->display.get_display_clock_speed =
12403 i915_get_display_clock_speed;
257a7ffc 12404 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12405 dev_priv->display.get_display_clock_speed =
12406 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12407 else if (IS_PINEVIEW(dev))
12408 dev_priv->display.get_display_clock_speed =
12409 pnv_get_display_clock_speed;
e70236a8
JB
12410 else if (IS_I915GM(dev))
12411 dev_priv->display.get_display_clock_speed =
12412 i915gm_get_display_clock_speed;
12413 else if (IS_I865G(dev))
12414 dev_priv->display.get_display_clock_speed =
12415 i865_get_display_clock_speed;
f0f8a9ce 12416 else if (IS_I85X(dev))
e70236a8
JB
12417 dev_priv->display.get_display_clock_speed =
12418 i855_get_display_clock_speed;
12419 else /* 852, 830 */
12420 dev_priv->display.get_display_clock_speed =
12421 i830_get_display_clock_speed;
12422
7f8a8569 12423 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12424 if (IS_GEN5(dev)) {
674cf967 12425 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12426 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12427 } else if (IS_GEN6(dev)) {
674cf967 12428 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12429 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12430 dev_priv->display.modeset_global_resources =
12431 snb_modeset_global_resources;
357555c0
JB
12432 } else if (IS_IVYBRIDGE(dev)) {
12433 /* FIXME: detect B0+ stepping and use auto training */
12434 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12435 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12436 dev_priv->display.modeset_global_resources =
12437 ivb_modeset_global_resources;
4e0bbc31 12438 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12439 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12440 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12441 dev_priv->display.modeset_global_resources =
12442 haswell_modeset_global_resources;
a0e63c22 12443 }
6067aaea 12444 } else if (IS_G4X(dev)) {
e0dac65e 12445 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12446 } else if (IS_VALLEYVIEW(dev)) {
12447 dev_priv->display.modeset_global_resources =
12448 valleyview_modeset_global_resources;
9ca2fe73 12449 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12450 }
8c9f3aaf
JB
12451
12452 /* Default just returns -ENODEV to indicate unsupported */
12453 dev_priv->display.queue_flip = intel_default_queue_flip;
12454
12455 switch (INTEL_INFO(dev)->gen) {
12456 case 2:
12457 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12458 break;
12459
12460 case 3:
12461 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12462 break;
12463
12464 case 4:
12465 case 5:
12466 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12467 break;
12468
12469 case 6:
12470 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12471 break;
7c9017e5 12472 case 7:
4e0bbc31 12473 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12474 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12475 break;
8c9f3aaf 12476 }
7bd688cd
JN
12477
12478 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12479}
12480
b690e96c
JB
12481/*
12482 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12483 * resume, or other times. This quirk makes sure that's the case for
12484 * affected systems.
12485 */
0206e353 12486static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12487{
12488 struct drm_i915_private *dev_priv = dev->dev_private;
12489
12490 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12491 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12492}
12493
435793df
KP
12494/*
12495 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12496 */
12497static void quirk_ssc_force_disable(struct drm_device *dev)
12498{
12499 struct drm_i915_private *dev_priv = dev->dev_private;
12500 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12501 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12502}
12503
4dca20ef 12504/*
5a15ab5b
CE
12505 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12506 * brightness value
4dca20ef
CE
12507 */
12508static void quirk_invert_brightness(struct drm_device *dev)
12509{
12510 struct drm_i915_private *dev_priv = dev->dev_private;
12511 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12512 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12513}
12514
9c72cc6f
SD
12515/* Some VBT's incorrectly indicate no backlight is present */
12516static void quirk_backlight_present(struct drm_device *dev)
12517{
12518 struct drm_i915_private *dev_priv = dev->dev_private;
12519 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12520 DRM_INFO("applying backlight present quirk\n");
12521}
12522
b690e96c
JB
12523struct intel_quirk {
12524 int device;
12525 int subsystem_vendor;
12526 int subsystem_device;
12527 void (*hook)(struct drm_device *dev);
12528};
12529
5f85f176
EE
12530/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12531struct intel_dmi_quirk {
12532 void (*hook)(struct drm_device *dev);
12533 const struct dmi_system_id (*dmi_id_list)[];
12534};
12535
12536static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12537{
12538 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12539 return 1;
12540}
12541
12542static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12543 {
12544 .dmi_id_list = &(const struct dmi_system_id[]) {
12545 {
12546 .callback = intel_dmi_reverse_brightness,
12547 .ident = "NCR Corporation",
12548 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12549 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12550 },
12551 },
12552 { } /* terminating entry */
12553 },
12554 .hook = quirk_invert_brightness,
12555 },
12556};
12557
c43b5634 12558static struct intel_quirk intel_quirks[] = {
b690e96c 12559 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12560 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12561
b690e96c
JB
12562 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12563 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12564
b690e96c
JB
12565 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12566 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12567
435793df
KP
12568 /* Lenovo U160 cannot use SSC on LVDS */
12569 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12570
12571 /* Sony Vaio Y cannot use SSC on LVDS */
12572 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12573
be505f64
AH
12574 /* Acer Aspire 5734Z must invert backlight brightness */
12575 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12576
12577 /* Acer/eMachines G725 */
12578 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12579
12580 /* Acer/eMachines e725 */
12581 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12582
12583 /* Acer/Packard Bell NCL20 */
12584 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12585
12586 /* Acer Aspire 4736Z */
12587 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12588
12589 /* Acer Aspire 5336 */
12590 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12591
12592 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12593 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12594
12595 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12596 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12597
12598 /* HP Chromebook 14 (Celeron 2955U) */
12599 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12600};
12601
12602static void intel_init_quirks(struct drm_device *dev)
12603{
12604 struct pci_dev *d = dev->pdev;
12605 int i;
12606
12607 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12608 struct intel_quirk *q = &intel_quirks[i];
12609
12610 if (d->device == q->device &&
12611 (d->subsystem_vendor == q->subsystem_vendor ||
12612 q->subsystem_vendor == PCI_ANY_ID) &&
12613 (d->subsystem_device == q->subsystem_device ||
12614 q->subsystem_device == PCI_ANY_ID))
12615 q->hook(dev);
12616 }
5f85f176
EE
12617 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12618 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12619 intel_dmi_quirks[i].hook(dev);
12620 }
b690e96c
JB
12621}
12622
9cce37f4
JB
12623/* Disable the VGA plane that we never use */
12624static void i915_disable_vga(struct drm_device *dev)
12625{
12626 struct drm_i915_private *dev_priv = dev->dev_private;
12627 u8 sr1;
766aa1c4 12628 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12629
2b37c616 12630 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12631 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12632 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12633 sr1 = inb(VGA_SR_DATA);
12634 outb(sr1 | 1<<5, VGA_SR_DATA);
12635 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12636 udelay(300);
12637
12638 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12639 POSTING_READ(vga_reg);
12640}
12641
f817586c
DV
12642void intel_modeset_init_hw(struct drm_device *dev)
12643{
a8f78b58
ED
12644 intel_prepare_ddi(dev);
12645
f8bf63fd
VS
12646 if (IS_VALLEYVIEW(dev))
12647 vlv_update_cdclk(dev);
12648
f817586c
DV
12649 intel_init_clock_gating(dev);
12650
8090c6b9 12651 intel_enable_gt_powersave(dev);
f817586c
DV
12652}
12653
7d708ee4
ID
12654void intel_modeset_suspend_hw(struct drm_device *dev)
12655{
12656 intel_suspend_hw(dev);
12657}
12658
79e53945
JB
12659void intel_modeset_init(struct drm_device *dev)
12660{
652c393a 12661 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12662 int sprite, ret;
8cc87b75 12663 enum pipe pipe;
46f297fb 12664 struct intel_crtc *crtc;
79e53945
JB
12665
12666 drm_mode_config_init(dev);
12667
12668 dev->mode_config.min_width = 0;
12669 dev->mode_config.min_height = 0;
12670
019d96cb
DA
12671 dev->mode_config.preferred_depth = 24;
12672 dev->mode_config.prefer_shadow = 1;
12673
e6ecefaa 12674 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12675
b690e96c
JB
12676 intel_init_quirks(dev);
12677
1fa61106
ED
12678 intel_init_pm(dev);
12679
e3c74757
BW
12680 if (INTEL_INFO(dev)->num_pipes == 0)
12681 return;
12682
e70236a8
JB
12683 intel_init_display(dev);
12684
a6c45cf0
CW
12685 if (IS_GEN2(dev)) {
12686 dev->mode_config.max_width = 2048;
12687 dev->mode_config.max_height = 2048;
12688 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12689 dev->mode_config.max_width = 4096;
12690 dev->mode_config.max_height = 4096;
79e53945 12691 } else {
a6c45cf0
CW
12692 dev->mode_config.max_width = 8192;
12693 dev->mode_config.max_height = 8192;
79e53945 12694 }
068be561
DL
12695
12696 if (IS_GEN2(dev)) {
12697 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12698 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12699 } else {
12700 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12701 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12702 }
12703
5d4545ae 12704 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12705
28c97730 12706 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12707 INTEL_INFO(dev)->num_pipes,
12708 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12709
8cc87b75
DL
12710 for_each_pipe(pipe) {
12711 intel_crtc_init(dev, pipe);
1fe47785
DL
12712 for_each_sprite(pipe, sprite) {
12713 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12714 if (ret)
06da8da2 12715 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12716 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12717 }
79e53945
JB
12718 }
12719
f42bb70d
JB
12720 intel_init_dpio(dev);
12721
e72f9fbf 12722 intel_shared_dpll_init(dev);
ee7b9f93 12723
9cce37f4
JB
12724 /* Just disable it once at startup */
12725 i915_disable_vga(dev);
79e53945 12726 intel_setup_outputs(dev);
11be49eb
CW
12727
12728 /* Just in case the BIOS is doing something questionable. */
12729 intel_disable_fbc(dev);
fa9fa083 12730
6e9f798d 12731 drm_modeset_lock_all(dev);
fa9fa083 12732 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12733 drm_modeset_unlock_all(dev);
46f297fb 12734
d3fcc808 12735 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12736 if (!crtc->active)
12737 continue;
12738
46f297fb 12739 /*
46f297fb
JB
12740 * Note that reserving the BIOS fb up front prevents us
12741 * from stuffing other stolen allocations like the ring
12742 * on top. This prevents some ugliness at boot time, and
12743 * can even allow for smooth boot transitions if the BIOS
12744 * fb is large enough for the active pipe configuration.
12745 */
12746 if (dev_priv->display.get_plane_config) {
12747 dev_priv->display.get_plane_config(crtc,
12748 &crtc->plane_config);
12749 /*
12750 * If the fb is shared between multiple heads, we'll
12751 * just get the first one.
12752 */
484b41dd 12753 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12754 }
46f297fb 12755 }
2c7111db
CW
12756}
12757
7fad798e
DV
12758static void intel_enable_pipe_a(struct drm_device *dev)
12759{
12760 struct intel_connector *connector;
12761 struct drm_connector *crt = NULL;
12762 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12763 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12764
12765 /* We can't just switch on the pipe A, we need to set things up with a
12766 * proper mode and output configuration. As a gross hack, enable pipe A
12767 * by enabling the load detect pipe once. */
12768 list_for_each_entry(connector,
12769 &dev->mode_config.connector_list,
12770 base.head) {
12771 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12772 crt = &connector->base;
12773 break;
12774 }
12775 }
12776
12777 if (!crt)
12778 return;
12779
51fd371b
RC
12780 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12781 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12782
652c393a 12783
7fad798e
DV
12784}
12785
fa555837
DV
12786static bool
12787intel_check_plane_mapping(struct intel_crtc *crtc)
12788{
7eb552ae
BW
12789 struct drm_device *dev = crtc->base.dev;
12790 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12791 u32 reg, val;
12792
7eb552ae 12793 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12794 return true;
12795
12796 reg = DSPCNTR(!crtc->plane);
12797 val = I915_READ(reg);
12798
12799 if ((val & DISPLAY_PLANE_ENABLE) &&
12800 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12801 return false;
12802
12803 return true;
12804}
12805
24929352
DV
12806static void intel_sanitize_crtc(struct intel_crtc *crtc)
12807{
12808 struct drm_device *dev = crtc->base.dev;
12809 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12810 u32 reg;
24929352 12811
24929352 12812 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12813 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12814 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12815
d3eaf884
VS
12816 /* restore vblank interrupts to correct state */
12817 if (crtc->active)
12818 drm_vblank_on(dev, crtc->pipe);
12819 else
12820 drm_vblank_off(dev, crtc->pipe);
12821
24929352 12822 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12823 * disable the crtc (and hence change the state) if it is wrong. Note
12824 * that gen4+ has a fixed plane -> pipe mapping. */
12825 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12826 struct intel_connector *connector;
12827 bool plane;
12828
24929352
DV
12829 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12830 crtc->base.base.id);
12831
12832 /* Pipe has the wrong plane attached and the plane is active.
12833 * Temporarily change the plane mapping and disable everything
12834 * ... */
12835 plane = crtc->plane;
12836 crtc->plane = !plane;
9c8958bc 12837 crtc->primary_enabled = true;
24929352
DV
12838 dev_priv->display.crtc_disable(&crtc->base);
12839 crtc->plane = plane;
12840
12841 /* ... and break all links. */
12842 list_for_each_entry(connector, &dev->mode_config.connector_list,
12843 base.head) {
12844 if (connector->encoder->base.crtc != &crtc->base)
12845 continue;
12846
7f1950fb
EE
12847 connector->base.dpms = DRM_MODE_DPMS_OFF;
12848 connector->base.encoder = NULL;
24929352 12849 }
7f1950fb
EE
12850 /* multiple connectors may have the same encoder:
12851 * handle them and break crtc link separately */
12852 list_for_each_entry(connector, &dev->mode_config.connector_list,
12853 base.head)
12854 if (connector->encoder->base.crtc == &crtc->base) {
12855 connector->encoder->base.crtc = NULL;
12856 connector->encoder->connectors_active = false;
12857 }
24929352
DV
12858
12859 WARN_ON(crtc->active);
12860 crtc->base.enabled = false;
12861 }
24929352 12862
7fad798e
DV
12863 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12864 crtc->pipe == PIPE_A && !crtc->active) {
12865 /* BIOS forgot to enable pipe A, this mostly happens after
12866 * resume. Force-enable the pipe to fix this, the update_dpms
12867 * call below we restore the pipe to the right state, but leave
12868 * the required bits on. */
12869 intel_enable_pipe_a(dev);
12870 }
12871
24929352
DV
12872 /* Adjust the state of the output pipe according to whether we
12873 * have active connectors/encoders. */
12874 intel_crtc_update_dpms(&crtc->base);
12875
12876 if (crtc->active != crtc->base.enabled) {
12877 struct intel_encoder *encoder;
12878
12879 /* This can happen either due to bugs in the get_hw_state
12880 * functions or because the pipe is force-enabled due to the
12881 * pipe A quirk. */
12882 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12883 crtc->base.base.id,
12884 crtc->base.enabled ? "enabled" : "disabled",
12885 crtc->active ? "enabled" : "disabled");
12886
12887 crtc->base.enabled = crtc->active;
12888
12889 /* Because we only establish the connector -> encoder ->
12890 * crtc links if something is active, this means the
12891 * crtc is now deactivated. Break the links. connector
12892 * -> encoder links are only establish when things are
12893 * actually up, hence no need to break them. */
12894 WARN_ON(crtc->active);
12895
12896 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12897 WARN_ON(encoder->connectors_active);
12898 encoder->base.crtc = NULL;
12899 }
12900 }
c5ab3bc0
DV
12901
12902 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12903 /*
12904 * We start out with underrun reporting disabled to avoid races.
12905 * For correct bookkeeping mark this on active crtcs.
12906 *
c5ab3bc0
DV
12907 * Also on gmch platforms we dont have any hardware bits to
12908 * disable the underrun reporting. Which means we need to start
12909 * out with underrun reporting disabled also on inactive pipes,
12910 * since otherwise we'll complain about the garbage we read when
12911 * e.g. coming up after runtime pm.
12912 *
4cc31489
DV
12913 * No protection against concurrent access is required - at
12914 * worst a fifo underrun happens which also sets this to false.
12915 */
12916 crtc->cpu_fifo_underrun_disabled = true;
12917 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12918
12919 update_scanline_offset(crtc);
4cc31489 12920 }
24929352
DV
12921}
12922
12923static void intel_sanitize_encoder(struct intel_encoder *encoder)
12924{
12925 struct intel_connector *connector;
12926 struct drm_device *dev = encoder->base.dev;
12927
12928 /* We need to check both for a crtc link (meaning that the
12929 * encoder is active and trying to read from a pipe) and the
12930 * pipe itself being active. */
12931 bool has_active_crtc = encoder->base.crtc &&
12932 to_intel_crtc(encoder->base.crtc)->active;
12933
12934 if (encoder->connectors_active && !has_active_crtc) {
12935 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12936 encoder->base.base.id,
8e329a03 12937 encoder->base.name);
24929352
DV
12938
12939 /* Connector is active, but has no active pipe. This is
12940 * fallout from our resume register restoring. Disable
12941 * the encoder manually again. */
12942 if (encoder->base.crtc) {
12943 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12944 encoder->base.base.id,
8e329a03 12945 encoder->base.name);
24929352 12946 encoder->disable(encoder);
a62d1497
VS
12947 if (encoder->post_disable)
12948 encoder->post_disable(encoder);
24929352 12949 }
7f1950fb
EE
12950 encoder->base.crtc = NULL;
12951 encoder->connectors_active = false;
24929352
DV
12952
12953 /* Inconsistent output/port/pipe state happens presumably due to
12954 * a bug in one of the get_hw_state functions. Or someplace else
12955 * in our code, like the register restore mess on resume. Clamp
12956 * things to off as a safer default. */
12957 list_for_each_entry(connector,
12958 &dev->mode_config.connector_list,
12959 base.head) {
12960 if (connector->encoder != encoder)
12961 continue;
7f1950fb
EE
12962 connector->base.dpms = DRM_MODE_DPMS_OFF;
12963 connector->base.encoder = NULL;
24929352
DV
12964 }
12965 }
12966 /* Enabled encoders without active connectors will be fixed in
12967 * the crtc fixup. */
12968}
12969
04098753 12970void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12971{
12972 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12973 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12974
04098753
ID
12975 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12976 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12977 i915_disable_vga(dev);
12978 }
12979}
12980
12981void i915_redisable_vga(struct drm_device *dev)
12982{
12983 struct drm_i915_private *dev_priv = dev->dev_private;
12984
8dc8a27c
PZ
12985 /* This function can be called both from intel_modeset_setup_hw_state or
12986 * at a very early point in our resume sequence, where the power well
12987 * structures are not yet restored. Since this function is at a very
12988 * paranoid "someone might have enabled VGA while we were not looking"
12989 * level, just check if the power well is enabled instead of trying to
12990 * follow the "don't touch the power well if we don't need it" policy
12991 * the rest of the driver uses. */
04098753 12992 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12993 return;
12994
04098753 12995 i915_redisable_vga_power_on(dev);
0fde901f
KM
12996}
12997
98ec7739
VS
12998static bool primary_get_hw_state(struct intel_crtc *crtc)
12999{
13000 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13001
13002 if (!crtc->active)
13003 return false;
13004
13005 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13006}
13007
30e984df 13008static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13009{
13010 struct drm_i915_private *dev_priv = dev->dev_private;
13011 enum pipe pipe;
24929352
DV
13012 struct intel_crtc *crtc;
13013 struct intel_encoder *encoder;
13014 struct intel_connector *connector;
5358901f 13015 int i;
24929352 13016
d3fcc808 13017 for_each_intel_crtc(dev, crtc) {
88adfff1 13018 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13019
9953599b
DV
13020 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13021
0e8ffe1b
DV
13022 crtc->active = dev_priv->display.get_pipe_config(crtc,
13023 &crtc->config);
24929352
DV
13024
13025 crtc->base.enabled = crtc->active;
98ec7739 13026 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13027
13028 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13029 crtc->base.base.id,
13030 crtc->active ? "enabled" : "disabled");
13031 }
13032
5358901f
DV
13033 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13034 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13035
13036 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13037 pll->active = 0;
d3fcc808 13038 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13039 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13040 pll->active++;
13041 }
13042 pll->refcount = pll->active;
13043
35c95375
DV
13044 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13045 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13046
13047 if (pll->refcount)
13048 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13049 }
13050
24929352
DV
13051 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13052 base.head) {
13053 pipe = 0;
13054
13055 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13056 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13057 encoder->base.crtc = &crtc->base;
1d37b689 13058 encoder->get_config(encoder, &crtc->config);
24929352
DV
13059 } else {
13060 encoder->base.crtc = NULL;
13061 }
13062
13063 encoder->connectors_active = false;
6f2bcceb 13064 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13065 encoder->base.base.id,
8e329a03 13066 encoder->base.name,
24929352 13067 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13068 pipe_name(pipe));
24929352
DV
13069 }
13070
13071 list_for_each_entry(connector, &dev->mode_config.connector_list,
13072 base.head) {
13073 if (connector->get_hw_state(connector)) {
13074 connector->base.dpms = DRM_MODE_DPMS_ON;
13075 connector->encoder->connectors_active = true;
13076 connector->base.encoder = &connector->encoder->base;
13077 } else {
13078 connector->base.dpms = DRM_MODE_DPMS_OFF;
13079 connector->base.encoder = NULL;
13080 }
13081 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13082 connector->base.base.id,
c23cc417 13083 connector->base.name,
24929352
DV
13084 connector->base.encoder ? "enabled" : "disabled");
13085 }
30e984df
DV
13086}
13087
13088/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13089 * and i915 state tracking structures. */
13090void intel_modeset_setup_hw_state(struct drm_device *dev,
13091 bool force_restore)
13092{
13093 struct drm_i915_private *dev_priv = dev->dev_private;
13094 enum pipe pipe;
30e984df
DV
13095 struct intel_crtc *crtc;
13096 struct intel_encoder *encoder;
35c95375 13097 int i;
30e984df
DV
13098
13099 intel_modeset_readout_hw_state(dev);
24929352 13100
babea61d
JB
13101 /*
13102 * Now that we have the config, copy it to each CRTC struct
13103 * Note that this could go away if we move to using crtc_config
13104 * checking everywhere.
13105 */
d3fcc808 13106 for_each_intel_crtc(dev, crtc) {
d330a953 13107 if (crtc->active && i915.fastboot) {
f6a83288 13108 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13109 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13110 crtc->base.base.id);
13111 drm_mode_debug_printmodeline(&crtc->base.mode);
13112 }
13113 }
13114
24929352
DV
13115 /* HW state is read out, now we need to sanitize this mess. */
13116 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13117 base.head) {
13118 intel_sanitize_encoder(encoder);
13119 }
13120
13121 for_each_pipe(pipe) {
13122 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13123 intel_sanitize_crtc(crtc);
c0b03411 13124 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13125 }
9a935856 13126
35c95375
DV
13127 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13128 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13129
13130 if (!pll->on || pll->active)
13131 continue;
13132
13133 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13134
13135 pll->disable(dev_priv, pll);
13136 pll->on = false;
13137 }
13138
96f90c54 13139 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13140 ilk_wm_get_hw_state(dev);
13141
45e2b5f6 13142 if (force_restore) {
7d0bc1ea
VS
13143 i915_redisable_vga(dev);
13144
f30da187
DV
13145 /*
13146 * We need to use raw interfaces for restoring state to avoid
13147 * checking (bogus) intermediate states.
13148 */
45e2b5f6 13149 for_each_pipe(pipe) {
b5644d05
JB
13150 struct drm_crtc *crtc =
13151 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13152
13153 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13154 crtc->primary->fb);
45e2b5f6
DV
13155 }
13156 } else {
13157 intel_modeset_update_staged_output_state(dev);
13158 }
8af6cf88
DV
13159
13160 intel_modeset_check_state(dev);
2c7111db
CW
13161}
13162
13163void intel_modeset_gem_init(struct drm_device *dev)
13164{
484b41dd 13165 struct drm_crtc *c;
2ff8fde1 13166 struct drm_i915_gem_object *obj;
484b41dd 13167
ae48434c
ID
13168 mutex_lock(&dev->struct_mutex);
13169 intel_init_gt_powersave(dev);
13170 mutex_unlock(&dev->struct_mutex);
13171
1833b134 13172 intel_modeset_init_hw(dev);
02e792fb
DV
13173
13174 intel_setup_overlay(dev);
484b41dd
JB
13175
13176 /*
13177 * Make sure any fbs we allocated at startup are properly
13178 * pinned & fenced. When we do the allocation it's too early
13179 * for this.
13180 */
13181 mutex_lock(&dev->struct_mutex);
70e1e0ec 13182 for_each_crtc(dev, c) {
2ff8fde1
MR
13183 obj = intel_fb_obj(c->primary->fb);
13184 if (obj == NULL)
484b41dd
JB
13185 continue;
13186
2ff8fde1 13187 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13188 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13189 to_intel_crtc(c)->pipe);
66e514c1
DA
13190 drm_framebuffer_unreference(c->primary->fb);
13191 c->primary->fb = NULL;
484b41dd
JB
13192 }
13193 }
13194 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13195}
13196
4932e2c3
ID
13197void intel_connector_unregister(struct intel_connector *intel_connector)
13198{
13199 struct drm_connector *connector = &intel_connector->base;
13200
13201 intel_panel_destroy_backlight(connector);
34ea3d38 13202 drm_connector_unregister(connector);
4932e2c3
ID
13203}
13204
79e53945
JB
13205void intel_modeset_cleanup(struct drm_device *dev)
13206{
652c393a 13207 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13208 struct drm_connector *connector;
652c393a 13209
fd0c0642
DV
13210 /*
13211 * Interrupts and polling as the first thing to avoid creating havoc.
13212 * Too much stuff here (turning of rps, connectors, ...) would
13213 * experience fancy races otherwise.
13214 */
13215 drm_irq_uninstall(dev);
13216 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13217 dev_priv->pm._irqs_disabled = true;
13218
fd0c0642
DV
13219 /*
13220 * Due to the hpd irq storm handling the hotplug work can re-arm the
13221 * poll handlers. Hence disable polling after hpd handling is shut down.
13222 */
f87ea761 13223 drm_kms_helper_poll_fini(dev);
fd0c0642 13224
652c393a
JB
13225 mutex_lock(&dev->struct_mutex);
13226
723bfd70
JB
13227 intel_unregister_dsm_handler();
13228
973d04f9 13229 intel_disable_fbc(dev);
e70236a8 13230
8090c6b9 13231 intel_disable_gt_powersave(dev);
0cdab21f 13232
930ebb46
DV
13233 ironlake_teardown_rc6(dev);
13234
69341a5e
KH
13235 mutex_unlock(&dev->struct_mutex);
13236
1630fe75
CW
13237 /* flush any delayed tasks or pending work */
13238 flush_scheduled_work();
13239
db31af1d
JN
13240 /* destroy the backlight and sysfs files before encoders/connectors */
13241 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13242 struct intel_connector *intel_connector;
13243
13244 intel_connector = to_intel_connector(connector);
13245 intel_connector->unregister(intel_connector);
db31af1d 13246 }
d9255d57 13247
79e53945 13248 drm_mode_config_cleanup(dev);
4d7bb011
DV
13249
13250 intel_cleanup_overlay(dev);
ae48434c
ID
13251
13252 mutex_lock(&dev->struct_mutex);
13253 intel_cleanup_gt_powersave(dev);
13254 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13255}
13256
f1c79df3
ZW
13257/*
13258 * Return which encoder is currently attached for connector.
13259 */
df0e9248 13260struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13261{
df0e9248
CW
13262 return &intel_attached_encoder(connector)->base;
13263}
f1c79df3 13264
df0e9248
CW
13265void intel_connector_attach_encoder(struct intel_connector *connector,
13266 struct intel_encoder *encoder)
13267{
13268 connector->encoder = encoder;
13269 drm_mode_connector_attach_encoder(&connector->base,
13270 &encoder->base);
79e53945 13271}
28d52043
DA
13272
13273/*
13274 * set vga decode state - true == enable VGA decode
13275 */
13276int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13277{
13278 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13279 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13280 u16 gmch_ctrl;
13281
75fa041d
CW
13282 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13283 DRM_ERROR("failed to read control word\n");
13284 return -EIO;
13285 }
13286
c0cc8a55
CW
13287 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13288 return 0;
13289
28d52043
DA
13290 if (state)
13291 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13292 else
13293 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13294
13295 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13296 DRM_ERROR("failed to write control word\n");
13297 return -EIO;
13298 }
13299
28d52043
DA
13300 return 0;
13301}
c4a1d9e4 13302
c4a1d9e4 13303struct intel_display_error_state {
ff57f1b0
PZ
13304
13305 u32 power_well_driver;
13306
63b66e5b
CW
13307 int num_transcoders;
13308
c4a1d9e4
CW
13309 struct intel_cursor_error_state {
13310 u32 control;
13311 u32 position;
13312 u32 base;
13313 u32 size;
52331309 13314 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13315
13316 struct intel_pipe_error_state {
ddf9c536 13317 bool power_domain_on;
c4a1d9e4 13318 u32 source;
f301b1e1 13319 u32 stat;
52331309 13320 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13321
13322 struct intel_plane_error_state {
13323 u32 control;
13324 u32 stride;
13325 u32 size;
13326 u32 pos;
13327 u32 addr;
13328 u32 surface;
13329 u32 tile_offset;
52331309 13330 } plane[I915_MAX_PIPES];
63b66e5b
CW
13331
13332 struct intel_transcoder_error_state {
ddf9c536 13333 bool power_domain_on;
63b66e5b
CW
13334 enum transcoder cpu_transcoder;
13335
13336 u32 conf;
13337
13338 u32 htotal;
13339 u32 hblank;
13340 u32 hsync;
13341 u32 vtotal;
13342 u32 vblank;
13343 u32 vsync;
13344 } transcoder[4];
c4a1d9e4
CW
13345};
13346
13347struct intel_display_error_state *
13348intel_display_capture_error_state(struct drm_device *dev)
13349{
fbee40df 13350 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13351 struct intel_display_error_state *error;
63b66e5b
CW
13352 int transcoders[] = {
13353 TRANSCODER_A,
13354 TRANSCODER_B,
13355 TRANSCODER_C,
13356 TRANSCODER_EDP,
13357 };
c4a1d9e4
CW
13358 int i;
13359
63b66e5b
CW
13360 if (INTEL_INFO(dev)->num_pipes == 0)
13361 return NULL;
13362
9d1cb914 13363 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13364 if (error == NULL)
13365 return NULL;
13366
190be112 13367 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13368 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13369
52331309 13370 for_each_pipe(i) {
ddf9c536 13371 error->pipe[i].power_domain_on =
bfafe93a
ID
13372 intel_display_power_enabled_unlocked(dev_priv,
13373 POWER_DOMAIN_PIPE(i));
ddf9c536 13374 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13375 continue;
13376
5efb3e28
VS
13377 error->cursor[i].control = I915_READ(CURCNTR(i));
13378 error->cursor[i].position = I915_READ(CURPOS(i));
13379 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13380
13381 error->plane[i].control = I915_READ(DSPCNTR(i));
13382 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13383 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13384 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13385 error->plane[i].pos = I915_READ(DSPPOS(i));
13386 }
ca291363
PZ
13387 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13388 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13389 if (INTEL_INFO(dev)->gen >= 4) {
13390 error->plane[i].surface = I915_READ(DSPSURF(i));
13391 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13392 }
13393
c4a1d9e4 13394 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13395
3abfce77 13396 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13397 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13398 }
13399
13400 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13401 if (HAS_DDI(dev_priv->dev))
13402 error->num_transcoders++; /* Account for eDP. */
13403
13404 for (i = 0; i < error->num_transcoders; i++) {
13405 enum transcoder cpu_transcoder = transcoders[i];
13406
ddf9c536 13407 error->transcoder[i].power_domain_on =
bfafe93a 13408 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13409 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13410 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13411 continue;
13412
63b66e5b
CW
13413 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13414
13415 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13416 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13417 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13418 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13419 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13420 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13421 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13422 }
13423
13424 return error;
13425}
13426
edc3d884
MK
13427#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13428
c4a1d9e4 13429void
edc3d884 13430intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13431 struct drm_device *dev,
13432 struct intel_display_error_state *error)
13433{
13434 int i;
13435
63b66e5b
CW
13436 if (!error)
13437 return;
13438
edc3d884 13439 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13440 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13441 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13442 error->power_well_driver);
52331309 13443 for_each_pipe(i) {
edc3d884 13444 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13445 err_printf(m, " Power: %s\n",
13446 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13447 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13448 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13449
13450 err_printf(m, "Plane [%d]:\n", i);
13451 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13452 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13453 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13454 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13455 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13456 }
4b71a570 13457 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13458 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13459 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13460 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13461 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13462 }
13463
edc3d884
MK
13464 err_printf(m, "Cursor [%d]:\n", i);
13465 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13466 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13467 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13468 }
63b66e5b
CW
13469
13470 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13471 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13472 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13473 err_printf(m, " Power: %s\n",
13474 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13475 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13476 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13477 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13478 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13479 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13480 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13481 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13482 }
c4a1d9e4 13483}