]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Select starting pipe bpp irrespective or the primary plane
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
56static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
63static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
e7457a9a 85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
83a57153
ACO
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
eb1bfe80
JB
88static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
5b18e57c
DV
92static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 94static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
29407aab 97static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
98static void haswell_set_pipeconf(struct drm_crtc *crtc);
99static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 100static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
d288f65f 102static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 103 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
104static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105static void intel_finish_crtc_commit(struct drm_crtc *crtc);
549e2bfb
CK
106static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
107 struct intel_crtc_state *crtc_state);
e7457a9a 108
0e32b39c
DA
109static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
110{
111 if (!connector->mst_port)
112 return connector->encoder;
113 else
114 return &connector->mst_port->mst_encoders[pipe]->base;
115}
116
79e53945 117typedef struct {
0206e353 118 int min, max;
79e53945
JB
119} intel_range_t;
120
121typedef struct {
0206e353
AJ
122 int dot_limit;
123 int p2_slow, p2_fast;
79e53945
JB
124} intel_p2_t;
125
d4906093
ML
126typedef struct intel_limit intel_limit_t;
127struct intel_limit {
0206e353
AJ
128 intel_range_t dot, vco, n, m, m1, m2, p, p1;
129 intel_p2_t p2;
d4906093 130};
79e53945 131
d2acd215
DV
132int
133intel_pch_rawclk(struct drm_device *dev)
134{
135 struct drm_i915_private *dev_priv = dev->dev_private;
136
137 WARN_ON(!HAS_PCH_SPLIT(dev));
138
139 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
140}
141
021357ac
CW
142static inline u32 /* units of 100MHz */
143intel_fdi_link_freq(struct drm_device *dev)
144{
8b99e68c
CW
145 if (IS_GEN5(dev)) {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
148 } else
149 return 27;
021357ac
CW
150}
151
5d536e28 152static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
0206e353
AJ
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
163};
164
5d536e28
DV
165static const intel_limit_t intel_limits_i8xx_dvo = {
166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
5d536e28
DV
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 2, .max = 33 },
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 4, .p2_fast = 4 },
176};
177
e4b36699 178static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 179 .dot = { .min = 25000, .max = 350000 },
9c333719 180 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 181 .n = { .min = 2, .max = 16 },
0206e353
AJ
182 .m = { .min = 96, .max = 140 },
183 .m1 = { .min = 18, .max = 26 },
184 .m2 = { .min = 6, .max = 16 },
185 .p = { .min = 4, .max = 128 },
186 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
187 .p2 = { .dot_limit = 165000,
188 .p2_slow = 14, .p2_fast = 7 },
e4b36699 189};
273e27ca 190
e4b36699 191static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 5, .max = 80 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 200000,
201 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
202};
203
204static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
205 .dot = { .min = 20000, .max = 400000 },
206 .vco = { .min = 1400000, .max = 2800000 },
207 .n = { .min = 1, .max = 6 },
208 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
209 .m1 = { .min = 8, .max = 18 },
210 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
211 .p = { .min = 7, .max = 98 },
212 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
213 .p2 = { .dot_limit = 112000,
214 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
215};
216
273e27ca 217
e4b36699 218static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
219 .dot = { .min = 25000, .max = 270000 },
220 .vco = { .min = 1750000, .max = 3500000},
221 .n = { .min = 1, .max = 4 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 10, .max = 30 },
226 .p1 = { .min = 1, .max = 3},
227 .p2 = { .dot_limit = 270000,
228 .p2_slow = 10,
229 .p2_fast = 10
044c7c41 230 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
234 .dot = { .min = 22000, .max = 400000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 4 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 16, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 5, .max = 80 },
241 .p1 = { .min = 1, .max = 8},
242 .p2 = { .dot_limit = 165000,
243 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
244};
245
246static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
247 .dot = { .min = 20000, .max = 115000 },
248 .vco = { .min = 1750000, .max = 3500000 },
249 .n = { .min = 1, .max = 3 },
250 .m = { .min = 104, .max = 138 },
251 .m1 = { .min = 17, .max = 23 },
252 .m2 = { .min = 5, .max = 11 },
253 .p = { .min = 28, .max = 112 },
254 .p1 = { .min = 2, .max = 8 },
255 .p2 = { .dot_limit = 0,
256 .p2_slow = 14, .p2_fast = 14
044c7c41 257 },
e4b36699
KP
258};
259
260static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
261 .dot = { .min = 80000, .max = 224000 },
262 .vco = { .min = 1750000, .max = 3500000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 104, .max = 138 },
265 .m1 = { .min = 17, .max = 23 },
266 .m2 = { .min = 5, .max = 11 },
267 .p = { .min = 14, .max = 42 },
268 .p1 = { .min = 2, .max = 6 },
269 .p2 = { .dot_limit = 0,
270 .p2_slow = 7, .p2_fast = 7
044c7c41 271 },
e4b36699
KP
272};
273
f2b115e6 274static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
275 .dot = { .min = 20000, .max = 400000},
276 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 277 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
278 .n = { .min = 3, .max = 6 },
279 .m = { .min = 2, .max = 256 },
273e27ca 280 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 5, .max = 80 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 200000,
286 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
287};
288
f2b115e6 289static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
290 .dot = { .min = 20000, .max = 400000 },
291 .vco = { .min = 1700000, .max = 3500000 },
292 .n = { .min = 3, .max = 6 },
293 .m = { .min = 2, .max = 256 },
294 .m1 = { .min = 0, .max = 0 },
295 .m2 = { .min = 0, .max = 254 },
296 .p = { .min = 7, .max = 112 },
297 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
298 .p2 = { .dot_limit = 112000,
299 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
300};
301
273e27ca
EA
302/* Ironlake / Sandybridge
303 *
304 * We calculate clock using (register_value + 2) for N/M1/M2, so here
305 * the range value for them is (actual_value - 2).
306 */
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 5 },
311 .m = { .min = 79, .max = 127 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 5, .max = 80 },
315 .p1 = { .min = 1, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
318};
319
b91ad0ec 320static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 118 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
331};
332
333static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 3 },
337 .m = { .min = 79, .max = 127 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 14, .max = 56 },
341 .p1 = { .min = 2, .max = 8 },
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
344};
345
273e27ca 346/* LVDS 100mhz refclk limits. */
b91ad0ec 347static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 2 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 28, .max = 112 },
0206e353 355 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
358};
359
360static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
361 .dot = { .min = 25000, .max = 350000 },
362 .vco = { .min = 1760000, .max = 3510000 },
363 .n = { .min = 1, .max = 3 },
364 .m = { .min = 79, .max = 126 },
365 .m1 = { .min = 12, .max = 22 },
366 .m2 = { .min = 5, .max = 9 },
367 .p = { .min = 14, .max = 42 },
0206e353 368 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
369 .p2 = { .dot_limit = 225000,
370 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
371};
372
dc730512 373static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
374 /*
375 * These are the data rate limits (measured in fast clocks)
376 * since those are the strictest limits we have. The fast
377 * clock and actual rate limits are more relaxed, so checking
378 * them would make no difference.
379 */
380 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 381 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 382 .n = { .min = 1, .max = 7 },
a0c4da24
JB
383 .m1 = { .min = 2, .max = 3 },
384 .m2 = { .min = 11, .max = 156 },
b99ab663 385 .p1 = { .min = 2, .max = 3 },
5fdc9c49 386 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
387};
388
ef9348c8
CML
389static const intel_limit_t intel_limits_chv = {
390 /*
391 * These are the data rate limits (measured in fast clocks)
392 * since those are the strictest limits we have. The fast
393 * clock and actual rate limits are more relaxed, so checking
394 * them would make no difference.
395 */
396 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 397 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
398 .n = { .min = 1, .max = 1 },
399 .m1 = { .min = 2, .max = 2 },
400 .m2 = { .min = 24 << 22, .max = 175 << 22 },
401 .p1 = { .min = 2, .max = 4 },
402 .p2 = { .p2_slow = 1, .p2_fast = 14 },
403};
404
6b4bf1c4
VS
405static void vlv_clock(int refclk, intel_clock_t *clock)
406{
407 clock->m = clock->m1 * clock->m2;
408 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
409 if (WARN_ON(clock->n == 0 || clock->p == 0))
410 return;
fb03ac01
VS
411 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
412 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
413}
414
e0638cdf
PZ
415/**
416 * Returns whether any output on the specified pipe is of the specified type
417 */
4093561b 418bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 419{
409ee761 420 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
421 struct intel_encoder *encoder;
422
409ee761 423 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
424 if (encoder->type == type)
425 return true;
426
427 return false;
428}
429
d0737e1d
ACO
430/**
431 * Returns whether any output on the specified pipe will have the specified
432 * type after a staged modeset is complete, i.e., the same as
433 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
434 * encoder->crtc.
435 */
a93e255f
ACO
436static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
437 int type)
d0737e1d 438{
a93e255f
ACO
439 struct drm_atomic_state *state = crtc_state->base.state;
440 struct drm_connector_state *connector_state;
d0737e1d 441 struct intel_encoder *encoder;
a93e255f
ACO
442 int i, num_connectors = 0;
443
444 for (i = 0; i < state->num_connector; i++) {
445 if (!state->connectors[i])
446 continue;
447
448 connector_state = state->connector_states[i];
449 if (connector_state->crtc != crtc_state->base.crtc)
450 continue;
451
452 num_connectors++;
d0737e1d 453
a93e255f
ACO
454 encoder = to_intel_encoder(connector_state->best_encoder);
455 if (encoder->type == type)
d0737e1d 456 return true;
a93e255f
ACO
457 }
458
459 WARN_ON(num_connectors == 0);
d0737e1d
ACO
460
461 return false;
462}
463
a93e255f
ACO
464static const intel_limit_t *
465intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 466{
a93e255f 467 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 468 const intel_limit_t *limit;
b91ad0ec 469
a93e255f 470 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 471 if (intel_is_dual_link_lvds(dev)) {
1b894b59 472 if (refclk == 100000)
b91ad0ec
ZW
473 limit = &intel_limits_ironlake_dual_lvds_100m;
474 else
475 limit = &intel_limits_ironlake_dual_lvds;
476 } else {
1b894b59 477 if (refclk == 100000)
b91ad0ec
ZW
478 limit = &intel_limits_ironlake_single_lvds_100m;
479 else
480 limit = &intel_limits_ironlake_single_lvds;
481 }
c6bb3538 482 } else
b91ad0ec 483 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
484
485 return limit;
486}
487
a93e255f
ACO
488static const intel_limit_t *
489intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 490{
a93e255f 491 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
492 const intel_limit_t *limit;
493
a93e255f 494 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 495 if (intel_is_dual_link_lvds(dev))
e4b36699 496 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 497 else
e4b36699 498 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
499 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
500 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 501 limit = &intel_limits_g4x_hdmi;
a93e255f 502 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 503 limit = &intel_limits_g4x_sdvo;
044c7c41 504 } else /* The option is for other outputs */
e4b36699 505 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
506
507 return limit;
508}
509
a93e255f
ACO
510static const intel_limit_t *
511intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 512{
a93e255f 513 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
514 const intel_limit_t *limit;
515
bad720ff 516 if (HAS_PCH_SPLIT(dev))
a93e255f 517 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 518 else if (IS_G4X(dev)) {
a93e255f 519 limit = intel_g4x_limit(crtc_state);
f2b115e6 520 } else if (IS_PINEVIEW(dev)) {
a93e255f 521 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 522 limit = &intel_limits_pineview_lvds;
2177832f 523 else
f2b115e6 524 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
525 } else if (IS_CHERRYVIEW(dev)) {
526 limit = &intel_limits_chv;
a0c4da24 527 } else if (IS_VALLEYVIEW(dev)) {
dc730512 528 limit = &intel_limits_vlv;
a6c45cf0 529 } else if (!IS_GEN2(dev)) {
a93e255f 530 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
531 limit = &intel_limits_i9xx_lvds;
532 else
533 limit = &intel_limits_i9xx_sdvo;
79e53945 534 } else {
a93e255f 535 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 536 limit = &intel_limits_i8xx_lvds;
a93e255f 537 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 538 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
539 else
540 limit = &intel_limits_i8xx_dac;
79e53945
JB
541 }
542 return limit;
543}
544
f2b115e6
AJ
545/* m1 is reserved as 0 in Pineview, n is a ring counter */
546static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 547{
2177832f
SL
548 clock->m = clock->m2 + 2;
549 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
fb03ac01
VS
552 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
553 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
554}
555
7429e9d4
DV
556static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
557{
558 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
559}
560
ac58c3f0 561static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 562{
7429e9d4 563 clock->m = i9xx_dpll_compute_m(clock);
79e53945 564 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
565 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
566 return;
fb03ac01
VS
567 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
568 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
569}
570
ef9348c8
CML
571static void chv_clock(int refclk, intel_clock_t *clock)
572{
573 clock->m = clock->m1 * clock->m2;
574 clock->p = clock->p1 * clock->p2;
575 if (WARN_ON(clock->n == 0 || clock->p == 0))
576 return;
577 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
578 clock->n << 22);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580}
581
7c04d1d9 582#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
583/**
584 * Returns whether the given set of divisors are valid for a given refclk with
585 * the given connectors.
586 */
587
1b894b59
CW
588static bool intel_PLL_is_valid(struct drm_device *dev,
589 const intel_limit_t *limit,
590 const intel_clock_t *clock)
79e53945 591{
f01b7962
VS
592 if (clock->n < limit->n.min || limit->n.max < clock->n)
593 INTELPllInvalid("n out of range\n");
79e53945 594 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 595 INTELPllInvalid("p1 out of range\n");
79e53945 596 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 597 INTELPllInvalid("m2 out of range\n");
79e53945 598 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 599 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
600
601 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
602 if (clock->m1 <= clock->m2)
603 INTELPllInvalid("m1 <= m2\n");
604
605 if (!IS_VALLEYVIEW(dev)) {
606 if (clock->p < limit->p.min || limit->p.max < clock->p)
607 INTELPllInvalid("p out of range\n");
608 if (clock->m < limit->m.min || limit->m.max < clock->m)
609 INTELPllInvalid("m out of range\n");
610 }
611
79e53945 612 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 613 INTELPllInvalid("vco out of range\n");
79e53945
JB
614 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
615 * connector, etc., rather than just a single range.
616 */
617 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 618 INTELPllInvalid("dot out of range\n");
79e53945
JB
619
620 return true;
621}
622
d4906093 623static bool
a93e255f
ACO
624i9xx_find_best_dpll(const intel_limit_t *limit,
625 struct intel_crtc_state *crtc_state,
cec2f356
SP
626 int target, int refclk, intel_clock_t *match_clock,
627 intel_clock_t *best_clock)
79e53945 628{
a93e255f 629 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 630 struct drm_device *dev = crtc->base.dev;
79e53945 631 intel_clock_t clock;
79e53945
JB
632 int err = target;
633
a93e255f 634 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 635 /*
a210b028
DV
636 * For LVDS just rely on its current settings for dual-channel.
637 * We haven't figured out how to reliably set up different
638 * single/dual channel state, if we even can.
79e53945 639 */
1974cad0 640 if (intel_is_dual_link_lvds(dev))
79e53945
JB
641 clock.p2 = limit->p2.p2_fast;
642 else
643 clock.p2 = limit->p2.p2_slow;
644 } else {
645 if (target < limit->p2.dot_limit)
646 clock.p2 = limit->p2.p2_slow;
647 else
648 clock.p2 = limit->p2.p2_fast;
649 }
650
0206e353 651 memset(best_clock, 0, sizeof(*best_clock));
79e53945 652
42158660
ZY
653 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
654 clock.m1++) {
655 for (clock.m2 = limit->m2.min;
656 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 657 if (clock.m2 >= clock.m1)
42158660
ZY
658 break;
659 for (clock.n = limit->n.min;
660 clock.n <= limit->n.max; clock.n++) {
661 for (clock.p1 = limit->p1.min;
662 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
663 int this_err;
664
ac58c3f0
DV
665 i9xx_clock(refclk, &clock);
666 if (!intel_PLL_is_valid(dev, limit,
667 &clock))
668 continue;
669 if (match_clock &&
670 clock.p != match_clock->p)
671 continue;
672
673 this_err = abs(clock.dot - target);
674 if (this_err < err) {
675 *best_clock = clock;
676 err = this_err;
677 }
678 }
679 }
680 }
681 }
682
683 return (err != target);
684}
685
686static bool
a93e255f
ACO
687pnv_find_best_dpll(const intel_limit_t *limit,
688 struct intel_crtc_state *crtc_state,
ee9300bb
DV
689 int target, int refclk, intel_clock_t *match_clock,
690 intel_clock_t *best_clock)
79e53945 691{
a93e255f 692 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 693 struct drm_device *dev = crtc->base.dev;
79e53945 694 intel_clock_t clock;
79e53945
JB
695 int err = target;
696
a93e255f 697 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 698 /*
a210b028
DV
699 * For LVDS just rely on its current settings for dual-channel.
700 * We haven't figured out how to reliably set up different
701 * single/dual channel state, if we even can.
79e53945 702 */
1974cad0 703 if (intel_is_dual_link_lvds(dev))
79e53945
JB
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
0206e353 714 memset(best_clock, 0, sizeof(*best_clock));
79e53945 715
42158660
ZY
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
720 for (clock.n = limit->n.min;
721 clock.n <= limit->n.max; clock.n++) {
722 for (clock.p1 = limit->p1.min;
723 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
724 int this_err;
725
ac58c3f0 726 pineview_clock(refclk, &clock);
1b894b59
CW
727 if (!intel_PLL_is_valid(dev, limit,
728 &clock))
79e53945 729 continue;
cec2f356
SP
730 if (match_clock &&
731 clock.p != match_clock->p)
732 continue;
79e53945
JB
733
734 this_err = abs(clock.dot - target);
735 if (this_err < err) {
736 *best_clock = clock;
737 err = this_err;
738 }
739 }
740 }
741 }
742 }
743
744 return (err != target);
745}
746
d4906093 747static bool
a93e255f
ACO
748g4x_find_best_dpll(const intel_limit_t *limit,
749 struct intel_crtc_state *crtc_state,
ee9300bb
DV
750 int target, int refclk, intel_clock_t *match_clock,
751 intel_clock_t *best_clock)
d4906093 752{
a93e255f 753 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 754 struct drm_device *dev = crtc->base.dev;
d4906093
ML
755 intel_clock_t clock;
756 int max_n;
757 bool found;
6ba770dc
AJ
758 /* approximately equals target * 0.00585 */
759 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
760 found = false;
761
a93e255f 762 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 763 if (intel_is_dual_link_lvds(dev))
d4906093
ML
764 clock.p2 = limit->p2.p2_fast;
765 else
766 clock.p2 = limit->p2.p2_slow;
767 } else {
768 if (target < limit->p2.dot_limit)
769 clock.p2 = limit->p2.p2_slow;
770 else
771 clock.p2 = limit->p2.p2_fast;
772 }
773
774 memset(best_clock, 0, sizeof(*best_clock));
775 max_n = limit->n.max;
f77f13e2 776 /* based on hardware requirement, prefer smaller n to precision */
d4906093 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 778 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
779 for (clock.m1 = limit->m1.max;
780 clock.m1 >= limit->m1.min; clock.m1--) {
781 for (clock.m2 = limit->m2.max;
782 clock.m2 >= limit->m2.min; clock.m2--) {
783 for (clock.p1 = limit->p1.max;
784 clock.p1 >= limit->p1.min; clock.p1--) {
785 int this_err;
786
ac58c3f0 787 i9xx_clock(refclk, &clock);
1b894b59
CW
788 if (!intel_PLL_is_valid(dev, limit,
789 &clock))
d4906093 790 continue;
1b894b59
CW
791
792 this_err = abs(clock.dot - target);
d4906093
ML
793 if (this_err < err_most) {
794 *best_clock = clock;
795 err_most = this_err;
796 max_n = clock.n;
797 found = true;
798 }
799 }
800 }
801 }
802 }
2c07245f
ZW
803 return found;
804}
805
d5dd62bd
ID
806/*
807 * Check if the calculated PLL configuration is more optimal compared to the
808 * best configuration and error found so far. Return the calculated error.
809 */
810static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
811 const intel_clock_t *calculated_clock,
812 const intel_clock_t *best_clock,
813 unsigned int best_error_ppm,
814 unsigned int *error_ppm)
815{
9ca3ba01
ID
816 /*
817 * For CHV ignore the error and consider only the P value.
818 * Prefer a bigger P value based on HW requirements.
819 */
820 if (IS_CHERRYVIEW(dev)) {
821 *error_ppm = 0;
822
823 return calculated_clock->p > best_clock->p;
824 }
825
24be4e46
ID
826 if (WARN_ON_ONCE(!target_freq))
827 return false;
828
d5dd62bd
ID
829 *error_ppm = div_u64(1000000ULL *
830 abs(target_freq - calculated_clock->dot),
831 target_freq);
832 /*
833 * Prefer a better P value over a better (smaller) error if the error
834 * is small. Ensure this preference for future configurations too by
835 * setting the error to 0.
836 */
837 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
838 *error_ppm = 0;
839
840 return true;
841 }
842
843 return *error_ppm + 10 < best_error_ppm;
844}
845
a0c4da24 846static bool
a93e255f
ACO
847vlv_find_best_dpll(const intel_limit_t *limit,
848 struct intel_crtc_state *crtc_state,
ee9300bb
DV
849 int target, int refclk, intel_clock_t *match_clock,
850 intel_clock_t *best_clock)
a0c4da24 851{
a93e255f 852 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 853 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 854 intel_clock_t clock;
69e4f900 855 unsigned int bestppm = 1000000;
27e639bf
VS
856 /* min update 19.2 MHz */
857 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 858 bool found = false;
a0c4da24 859
6b4bf1c4
VS
860 target *= 5; /* fast clock */
861
862 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
863
864 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 865 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 866 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 867 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 868 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 869 clock.p = clock.p1 * clock.p2;
a0c4da24 870 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 871 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 872 unsigned int ppm;
69e4f900 873
6b4bf1c4
VS
874 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
875 refclk * clock.m1);
876
877 vlv_clock(refclk, &clock);
43b0ac53 878
f01b7962
VS
879 if (!intel_PLL_is_valid(dev, limit,
880 &clock))
43b0ac53
VS
881 continue;
882
d5dd62bd
ID
883 if (!vlv_PLL_is_optimal(dev, target,
884 &clock,
885 best_clock,
886 bestppm, &ppm))
887 continue;
6b4bf1c4 888
d5dd62bd
ID
889 *best_clock = clock;
890 bestppm = ppm;
891 found = true;
a0c4da24
JB
892 }
893 }
894 }
895 }
a0c4da24 896
49e497ef 897 return found;
a0c4da24 898}
a4fc5ed6 899
ef9348c8 900static bool
a93e255f
ACO
901chv_find_best_dpll(const intel_limit_t *limit,
902 struct intel_crtc_state *crtc_state,
ef9348c8
CML
903 int target, int refclk, intel_clock_t *match_clock,
904 intel_clock_t *best_clock)
905{
a93e255f 906 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 907 struct drm_device *dev = crtc->base.dev;
9ca3ba01 908 unsigned int best_error_ppm;
ef9348c8
CML
909 intel_clock_t clock;
910 uint64_t m2;
911 int found = false;
912
913 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 914 best_error_ppm = 1000000;
ef9348c8
CML
915
916 /*
917 * Based on hardware doc, the n always set to 1, and m1 always
918 * set to 2. If requires to support 200Mhz refclk, we need to
919 * revisit this because n may not 1 anymore.
920 */
921 clock.n = 1, clock.m1 = 2;
922 target *= 5; /* fast clock */
923
924 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
925 for (clock.p2 = limit->p2.p2_fast;
926 clock.p2 >= limit->p2.p2_slow;
927 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 928 unsigned int error_ppm;
ef9348c8
CML
929
930 clock.p = clock.p1 * clock.p2;
931
932 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
933 clock.n) << 22, refclk * clock.m1);
934
935 if (m2 > INT_MAX/clock.m1)
936 continue;
937
938 clock.m2 = m2;
939
940 chv_clock(refclk, &clock);
941
942 if (!intel_PLL_is_valid(dev, limit, &clock))
943 continue;
944
9ca3ba01
ID
945 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
946 best_error_ppm, &error_ppm))
947 continue;
948
949 *best_clock = clock;
950 best_error_ppm = error_ppm;
951 found = true;
ef9348c8
CML
952 }
953 }
954
955 return found;
956}
957
20ddf665
VS
958bool intel_crtc_active(struct drm_crtc *crtc)
959{
960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
961
962 /* Be paranoid as we can arrive here with only partial
963 * state retrieved from the hardware during setup.
964 *
241bfc38 965 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
966 * as Haswell has gained clock readout/fastboot support.
967 *
66e514c1 968 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 969 * properly reconstruct framebuffers.
c3d1f436
MR
970 *
971 * FIXME: The intel_crtc->active here should be switched to
972 * crtc->state->active once we have proper CRTC states wired up
973 * for atomic.
20ddf665 974 */
c3d1f436 975 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 976 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
977}
978
a5c961d1
PZ
979enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
980 enum pipe pipe)
981{
982 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
984
6e3c9717 985 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
986}
987
fbf49ea2
VS
988static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
989{
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 u32 reg = PIPEDSL(pipe);
992 u32 line1, line2;
993 u32 line_mask;
994
995 if (IS_GEN2(dev))
996 line_mask = DSL_LINEMASK_GEN2;
997 else
998 line_mask = DSL_LINEMASK_GEN3;
999
1000 line1 = I915_READ(reg) & line_mask;
1001 mdelay(5);
1002 line2 = I915_READ(reg) & line_mask;
1003
1004 return line1 == line2;
1005}
1006
ab7ad7f6
KP
1007/*
1008 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1009 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1010 *
1011 * After disabling a pipe, we can't wait for vblank in the usual way,
1012 * spinning on the vblank interrupt status bit, since we won't actually
1013 * see an interrupt when the pipe is disabled.
1014 *
ab7ad7f6
KP
1015 * On Gen4 and above:
1016 * wait for the pipe register state bit to turn off
1017 *
1018 * Otherwise:
1019 * wait for the display line value to settle (it usually
1020 * ends up stopping at the start of the next frame).
58e10eb9 1021 *
9d0498a2 1022 */
575f7ab7 1023static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1024{
575f7ab7 1025 struct drm_device *dev = crtc->base.dev;
9d0498a2 1026 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1028 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1029
1030 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1031 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1032
1033 /* Wait for the Pipe State to go off */
58e10eb9
CW
1034 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1035 100))
284637d9 1036 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1037 } else {
ab7ad7f6 1038 /* Wait for the display line to settle */
fbf49ea2 1039 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1040 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1041 }
79e53945
JB
1042}
1043
b0ea7d37
DL
1044/*
1045 * ibx_digital_port_connected - is the specified port connected?
1046 * @dev_priv: i915 private structure
1047 * @port: the port to test
1048 *
1049 * Returns true if @port is connected, false otherwise.
1050 */
1051bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1052 struct intel_digital_port *port)
1053{
1054 u32 bit;
1055
c36346e3 1056 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1057 switch (port->port) {
c36346e3
DL
1058 case PORT_B:
1059 bit = SDE_PORTB_HOTPLUG;
1060 break;
1061 case PORT_C:
1062 bit = SDE_PORTC_HOTPLUG;
1063 break;
1064 case PORT_D:
1065 bit = SDE_PORTD_HOTPLUG;
1066 break;
1067 default:
1068 return true;
1069 }
1070 } else {
eba905b2 1071 switch (port->port) {
c36346e3
DL
1072 case PORT_B:
1073 bit = SDE_PORTB_HOTPLUG_CPT;
1074 break;
1075 case PORT_C:
1076 bit = SDE_PORTC_HOTPLUG_CPT;
1077 break;
1078 case PORT_D:
1079 bit = SDE_PORTD_HOTPLUG_CPT;
1080 break;
1081 default:
1082 return true;
1083 }
b0ea7d37
DL
1084 }
1085
1086 return I915_READ(SDEISR) & bit;
1087}
1088
b24e7179
JB
1089static const char *state_string(bool enabled)
1090{
1091 return enabled ? "on" : "off";
1092}
1093
1094/* Only for pre-ILK configs */
55607e8a
DV
1095void assert_pll(struct drm_i915_private *dev_priv,
1096 enum pipe pipe, bool state)
b24e7179
JB
1097{
1098 int reg;
1099 u32 val;
1100 bool cur_state;
1101
1102 reg = DPLL(pipe);
1103 val = I915_READ(reg);
1104 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1105 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1106 "PLL state assertion failure (expected %s, current %s)\n",
1107 state_string(state), state_string(cur_state));
1108}
b24e7179 1109
23538ef1
JN
1110/* XXX: the dsi pll is shared between MIPI DSI ports */
1111static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1112{
1113 u32 val;
1114 bool cur_state;
1115
1116 mutex_lock(&dev_priv->dpio_lock);
1117 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1118 mutex_unlock(&dev_priv->dpio_lock);
1119
1120 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1121 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1122 "DSI PLL state assertion failure (expected %s, current %s)\n",
1123 state_string(state), state_string(cur_state));
1124}
1125#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1126#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1127
55607e8a 1128struct intel_shared_dpll *
e2b78267
DV
1129intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1130{
1131 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1132
6e3c9717 1133 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1134 return NULL;
1135
6e3c9717 1136 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1137}
1138
040484af 1139/* For ILK+ */
55607e8a
DV
1140void assert_shared_dpll(struct drm_i915_private *dev_priv,
1141 struct intel_shared_dpll *pll,
1142 bool state)
040484af 1143{
040484af 1144 bool cur_state;
5358901f 1145 struct intel_dpll_hw_state hw_state;
040484af 1146
92b27b08 1147 if (WARN (!pll,
46edb027 1148 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1149 return;
ee7b9f93 1150
5358901f 1151 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1152 I915_STATE_WARN(cur_state != state,
5358901f
DV
1153 "%s assertion failure (expected %s, current %s)\n",
1154 pll->name, state_string(state), state_string(cur_state));
040484af 1155}
040484af
JB
1156
1157static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1158 enum pipe pipe, bool state)
1159{
1160 int reg;
1161 u32 val;
1162 bool cur_state;
ad80a810
PZ
1163 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1164 pipe);
040484af 1165
affa9354
PZ
1166 if (HAS_DDI(dev_priv->dev)) {
1167 /* DDI does not have a specific FDI_TX register */
ad80a810 1168 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1169 val = I915_READ(reg);
ad80a810 1170 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1171 } else {
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 cur_state = !!(val & FDI_TX_ENABLE);
1175 }
e2c719b7 1176 I915_STATE_WARN(cur_state != state,
040484af
JB
1177 "FDI TX state assertion failure (expected %s, current %s)\n",
1178 state_string(state), state_string(cur_state));
1179}
1180#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1181#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1182
1183static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1184 enum pipe pipe, bool state)
1185{
1186 int reg;
1187 u32 val;
1188 bool cur_state;
1189
d63fa0dc
PZ
1190 reg = FDI_RX_CTL(pipe);
1191 val = I915_READ(reg);
1192 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1193 I915_STATE_WARN(cur_state != state,
040484af
JB
1194 "FDI RX state assertion failure (expected %s, current %s)\n",
1195 state_string(state), state_string(cur_state));
1196}
1197#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1198#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1199
1200static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1201 enum pipe pipe)
1202{
1203 int reg;
1204 u32 val;
1205
1206 /* ILK FDI PLL is always enabled */
3d13ef2e 1207 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1208 return;
1209
bf507ef7 1210 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1211 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1212 return;
1213
040484af
JB
1214 reg = FDI_TX_CTL(pipe);
1215 val = I915_READ(reg);
e2c719b7 1216 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1217}
1218
55607e8a
DV
1219void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
040484af
JB
1221{
1222 int reg;
1223 u32 val;
55607e8a 1224 bool cur_state;
040484af
JB
1225
1226 reg = FDI_RX_CTL(pipe);
1227 val = I915_READ(reg);
55607e8a 1228 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1229 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1230 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1231 state_string(state), state_string(cur_state));
040484af
JB
1232}
1233
b680c37a
DV
1234void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1235 enum pipe pipe)
ea0760cf 1236{
bedd4dba
JN
1237 struct drm_device *dev = dev_priv->dev;
1238 int pp_reg;
ea0760cf
JB
1239 u32 val;
1240 enum pipe panel_pipe = PIPE_A;
0de3b485 1241 bool locked = true;
ea0760cf 1242
bedd4dba
JN
1243 if (WARN_ON(HAS_DDI(dev)))
1244 return;
1245
1246 if (HAS_PCH_SPLIT(dev)) {
1247 u32 port_sel;
1248
ea0760cf 1249 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1250 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1251
1252 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1253 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1254 panel_pipe = PIPE_B;
1255 /* XXX: else fix for eDP */
1256 } else if (IS_VALLEYVIEW(dev)) {
1257 /* presumably write lock depends on pipe, not port select */
1258 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1259 panel_pipe = pipe;
ea0760cf
JB
1260 } else {
1261 pp_reg = PP_CONTROL;
bedd4dba
JN
1262 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1263 panel_pipe = PIPE_B;
ea0760cf
JB
1264 }
1265
1266 val = I915_READ(pp_reg);
1267 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1268 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1269 locked = false;
1270
e2c719b7 1271 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1272 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1273 pipe_name(pipe));
ea0760cf
JB
1274}
1275
93ce0ba6
JN
1276static void assert_cursor(struct drm_i915_private *dev_priv,
1277 enum pipe pipe, bool state)
1278{
1279 struct drm_device *dev = dev_priv->dev;
1280 bool cur_state;
1281
d9d82081 1282 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1283 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1284 else
5efb3e28 1285 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1286
e2c719b7 1287 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1288 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1289 pipe_name(pipe), state_string(state), state_string(cur_state));
1290}
1291#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1292#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1293
b840d907
JB
1294void assert_pipe(struct drm_i915_private *dev_priv,
1295 enum pipe pipe, bool state)
b24e7179
JB
1296{
1297 int reg;
1298 u32 val;
63d7bbe9 1299 bool cur_state;
702e7a56
PZ
1300 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1301 pipe);
b24e7179 1302
b6b5d049
VS
1303 /* if we need the pipe quirk it must be always on */
1304 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1305 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1306 state = true;
1307
f458ebbc 1308 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1309 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1310 cur_state = false;
1311 } else {
1312 reg = PIPECONF(cpu_transcoder);
1313 val = I915_READ(reg);
1314 cur_state = !!(val & PIPECONF_ENABLE);
1315 }
1316
e2c719b7 1317 I915_STATE_WARN(cur_state != state,
63d7bbe9 1318 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1319 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1320}
1321
931872fc
CW
1322static void assert_plane(struct drm_i915_private *dev_priv,
1323 enum plane plane, bool state)
b24e7179
JB
1324{
1325 int reg;
1326 u32 val;
931872fc 1327 bool cur_state;
b24e7179
JB
1328
1329 reg = DSPCNTR(plane);
1330 val = I915_READ(reg);
931872fc 1331 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1332 I915_STATE_WARN(cur_state != state,
931872fc
CW
1333 "plane %c assertion failure (expected %s, current %s)\n",
1334 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1335}
1336
931872fc
CW
1337#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1338#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1339
b24e7179
JB
1340static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe)
1342{
653e1026 1343 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1344 int reg, i;
1345 u32 val;
1346 int cur_pipe;
1347
653e1026
VS
1348 /* Primary planes are fixed to pipes on gen4+ */
1349 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1350 reg = DSPCNTR(pipe);
1351 val = I915_READ(reg);
e2c719b7 1352 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1353 "plane %c assertion failure, should be disabled but not\n",
1354 plane_name(pipe));
19ec1358 1355 return;
28c05794 1356 }
19ec1358 1357
b24e7179 1358 /* Need to check both planes against the pipe */
055e393f 1359 for_each_pipe(dev_priv, i) {
b24e7179
JB
1360 reg = DSPCNTR(i);
1361 val = I915_READ(reg);
1362 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1363 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1364 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1365 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1366 plane_name(i), pipe_name(pipe));
b24e7179
JB
1367 }
1368}
1369
19332d7a
JB
1370static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe)
1372{
20674eef 1373 struct drm_device *dev = dev_priv->dev;
1fe47785 1374 int reg, sprite;
19332d7a
JB
1375 u32 val;
1376
7feb8b88 1377 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1378 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1379 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1380 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1381 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1382 sprite, pipe_name(pipe));
1383 }
1384 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1385 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1386 reg = SPCNTR(pipe, sprite);
20674eef 1387 val = I915_READ(reg);
e2c719b7 1388 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1389 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1390 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1391 }
1392 } else if (INTEL_INFO(dev)->gen >= 7) {
1393 reg = SPRCTL(pipe);
19332d7a 1394 val = I915_READ(reg);
e2c719b7 1395 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1396 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1397 plane_name(pipe), pipe_name(pipe));
1398 } else if (INTEL_INFO(dev)->gen >= 5) {
1399 reg = DVSCNTR(pipe);
19332d7a 1400 val = I915_READ(reg);
e2c719b7 1401 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1402 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1403 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1404 }
1405}
1406
08c71e5e
VS
1407static void assert_vblank_disabled(struct drm_crtc *crtc)
1408{
e2c719b7 1409 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1410 drm_crtc_vblank_put(crtc);
1411}
1412
89eff4be 1413static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1414{
1415 u32 val;
1416 bool enabled;
1417
e2c719b7 1418 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1419
92f2584a
JB
1420 val = I915_READ(PCH_DREF_CONTROL);
1421 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1422 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1423 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1424}
1425
ab9412ba
DV
1426static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1427 enum pipe pipe)
92f2584a
JB
1428{
1429 int reg;
1430 u32 val;
1431 bool enabled;
1432
ab9412ba 1433 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1434 val = I915_READ(reg);
1435 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1436 I915_STATE_WARN(enabled,
9db4a9c7
JB
1437 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1438 pipe_name(pipe));
92f2584a
JB
1439}
1440
4e634389
KP
1441static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1443{
1444 if ((val & DP_PORT_EN) == 0)
1445 return false;
1446
1447 if (HAS_PCH_CPT(dev_priv->dev)) {
1448 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1449 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1450 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1451 return false;
44f37d1f
CML
1452 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1453 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1454 return false;
f0575e92
KP
1455 } else {
1456 if ((val & DP_PIPE_MASK) != (pipe << 30))
1457 return false;
1458 }
1459 return true;
1460}
1461
1519b995
KP
1462static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe, u32 val)
1464{
dc0fa718 1465 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1466 return false;
1467
1468 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1469 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1470 return false;
44f37d1f
CML
1471 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1472 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1473 return false;
1519b995 1474 } else {
dc0fa718 1475 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1476 return false;
1477 }
1478 return true;
1479}
1480
1481static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1482 enum pipe pipe, u32 val)
1483{
1484 if ((val & LVDS_PORT_EN) == 0)
1485 return false;
1486
1487 if (HAS_PCH_CPT(dev_priv->dev)) {
1488 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1489 return false;
1490 } else {
1491 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1492 return false;
1493 }
1494 return true;
1495}
1496
1497static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1498 enum pipe pipe, u32 val)
1499{
1500 if ((val & ADPA_DAC_ENABLE) == 0)
1501 return false;
1502 if (HAS_PCH_CPT(dev_priv->dev)) {
1503 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1504 return false;
1505 } else {
1506 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1507 return false;
1508 }
1509 return true;
1510}
1511
291906f1 1512static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1513 enum pipe pipe, int reg, u32 port_sel)
291906f1 1514{
47a05eca 1515 u32 val = I915_READ(reg);
e2c719b7 1516 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1517 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1518 reg, pipe_name(pipe));
de9a35ab 1519
e2c719b7 1520 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1521 && (val & DP_PIPEB_SELECT),
de9a35ab 1522 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1523}
1524
1525static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1526 enum pipe pipe, int reg)
1527{
47a05eca 1528 u32 val = I915_READ(reg);
e2c719b7 1529 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1530 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1531 reg, pipe_name(pipe));
de9a35ab 1532
e2c719b7 1533 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1534 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1535 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1536}
1537
1538static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1539 enum pipe pipe)
1540{
1541 int reg;
1542 u32 val;
291906f1 1543
f0575e92
KP
1544 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1545 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1546 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1547
1548 reg = PCH_ADPA;
1549 val = I915_READ(reg);
e2c719b7 1550 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1551 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1552 pipe_name(pipe));
291906f1
JB
1553
1554 reg = PCH_LVDS;
1555 val = I915_READ(reg);
e2c719b7 1556 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1557 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1558 pipe_name(pipe));
291906f1 1559
e2debe91
PZ
1560 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1561 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1562 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1563}
1564
40e9cf64
JB
1565static void intel_init_dpio(struct drm_device *dev)
1566{
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568
1569 if (!IS_VALLEYVIEW(dev))
1570 return;
1571
a09caddd
CML
1572 /*
1573 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1574 * CHV x1 PHY (DP/HDMI D)
1575 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1576 */
1577 if (IS_CHERRYVIEW(dev)) {
1578 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1579 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1580 } else {
1581 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1582 }
5382f5f3
JB
1583}
1584
d288f65f 1585static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1586 const struct intel_crtc_state *pipe_config)
87442f73 1587{
426115cf
DV
1588 struct drm_device *dev = crtc->base.dev;
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 int reg = DPLL(crtc->pipe);
d288f65f 1591 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1592
426115cf 1593 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1594
1595 /* No really, not for ILK+ */
1596 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1597
1598 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1599 if (IS_MOBILE(dev_priv->dev))
426115cf 1600 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1601
426115cf
DV
1602 I915_WRITE(reg, dpll);
1603 POSTING_READ(reg);
1604 udelay(150);
1605
1606 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1607 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1608
d288f65f 1609 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1610 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1611
1612 /* We do this three times for luck */
426115cf 1613 I915_WRITE(reg, dpll);
87442f73
DV
1614 POSTING_READ(reg);
1615 udelay(150); /* wait for warmup */
426115cf 1616 I915_WRITE(reg, dpll);
87442f73
DV
1617 POSTING_READ(reg);
1618 udelay(150); /* wait for warmup */
426115cf 1619 I915_WRITE(reg, dpll);
87442f73
DV
1620 POSTING_READ(reg);
1621 udelay(150); /* wait for warmup */
1622}
1623
d288f65f 1624static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1625 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1626{
1627 struct drm_device *dev = crtc->base.dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629 int pipe = crtc->pipe;
1630 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1631 u32 tmp;
1632
1633 assert_pipe_disabled(dev_priv, crtc->pipe);
1634
1635 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1636
1637 mutex_lock(&dev_priv->dpio_lock);
1638
1639 /* Enable back the 10bit clock to display controller */
1640 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1641 tmp |= DPIO_DCLKP_EN;
1642 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1643
1644 /*
1645 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1646 */
1647 udelay(1);
1648
1649 /* Enable PLL */
d288f65f 1650 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1651
1652 /* Check PLL is locked */
a11b0703 1653 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1654 DRM_ERROR("PLL %d failed to lock\n", pipe);
1655
a11b0703 1656 /* not sure when this should be written */
d288f65f 1657 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1658 POSTING_READ(DPLL_MD(pipe));
1659
9d556c99
CML
1660 mutex_unlock(&dev_priv->dpio_lock);
1661}
1662
1c4e0274
VS
1663static int intel_num_dvo_pipes(struct drm_device *dev)
1664{
1665 struct intel_crtc *crtc;
1666 int count = 0;
1667
1668 for_each_intel_crtc(dev, crtc)
1669 count += crtc->active &&
409ee761 1670 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1671
1672 return count;
1673}
1674
66e3d5c0 1675static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1676{
66e3d5c0
DV
1677 struct drm_device *dev = crtc->base.dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 int reg = DPLL(crtc->pipe);
6e3c9717 1680 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1681
66e3d5c0 1682 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1683
63d7bbe9 1684 /* No really, not for ILK+ */
3d13ef2e 1685 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1686
1687 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1688 if (IS_MOBILE(dev) && !IS_I830(dev))
1689 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1690
1c4e0274
VS
1691 /* Enable DVO 2x clock on both PLLs if necessary */
1692 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1693 /*
1694 * It appears to be important that we don't enable this
1695 * for the current pipe before otherwise configuring the
1696 * PLL. No idea how this should be handled if multiple
1697 * DVO outputs are enabled simultaneosly.
1698 */
1699 dpll |= DPLL_DVO_2X_MODE;
1700 I915_WRITE(DPLL(!crtc->pipe),
1701 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1702 }
66e3d5c0
DV
1703
1704 /* Wait for the clocks to stabilize. */
1705 POSTING_READ(reg);
1706 udelay(150);
1707
1708 if (INTEL_INFO(dev)->gen >= 4) {
1709 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1710 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1711 } else {
1712 /* The pixel multiplier can only be updated once the
1713 * DPLL is enabled and the clocks are stable.
1714 *
1715 * So write it again.
1716 */
1717 I915_WRITE(reg, dpll);
1718 }
63d7bbe9
JB
1719
1720 /* We do this three times for luck */
66e3d5c0 1721 I915_WRITE(reg, dpll);
63d7bbe9
JB
1722 POSTING_READ(reg);
1723 udelay(150); /* wait for warmup */
66e3d5c0 1724 I915_WRITE(reg, dpll);
63d7bbe9
JB
1725 POSTING_READ(reg);
1726 udelay(150); /* wait for warmup */
66e3d5c0 1727 I915_WRITE(reg, dpll);
63d7bbe9
JB
1728 POSTING_READ(reg);
1729 udelay(150); /* wait for warmup */
1730}
1731
1732/**
50b44a44 1733 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1734 * @dev_priv: i915 private structure
1735 * @pipe: pipe PLL to disable
1736 *
1737 * Disable the PLL for @pipe, making sure the pipe is off first.
1738 *
1739 * Note! This is for pre-ILK only.
1740 */
1c4e0274 1741static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1742{
1c4e0274
VS
1743 struct drm_device *dev = crtc->base.dev;
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 enum pipe pipe = crtc->pipe;
1746
1747 /* Disable DVO 2x clock on both PLLs if necessary */
1748 if (IS_I830(dev) &&
409ee761 1749 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1750 intel_num_dvo_pipes(dev) == 1) {
1751 I915_WRITE(DPLL(PIPE_B),
1752 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1753 I915_WRITE(DPLL(PIPE_A),
1754 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1755 }
1756
b6b5d049
VS
1757 /* Don't disable pipe or pipe PLLs if needed */
1758 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1759 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1760 return;
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
50b44a44
DV
1765 I915_WRITE(DPLL(pipe), 0);
1766 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1767}
1768
f6071166
JB
1769static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1770{
1771 u32 val = 0;
1772
1773 /* Make sure the pipe isn't still relying on us */
1774 assert_pipe_disabled(dev_priv, pipe);
1775
e5cbfbfb
ID
1776 /*
1777 * Leave integrated clock source and reference clock enabled for pipe B.
1778 * The latter is needed for VGA hotplug / manual detection.
1779 */
f6071166 1780 if (pipe == PIPE_B)
e5cbfbfb 1781 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1782 I915_WRITE(DPLL(pipe), val);
1783 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1784
1785}
1786
1787static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1788{
d752048d 1789 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1790 u32 val;
1791
a11b0703
VS
1792 /* Make sure the pipe isn't still relying on us */
1793 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1794
a11b0703 1795 /* Set PLL en = 0 */
d17ec4ce 1796 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1797 if (pipe != PIPE_A)
1798 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1799 I915_WRITE(DPLL(pipe), val);
1800 POSTING_READ(DPLL(pipe));
d752048d
VS
1801
1802 mutex_lock(&dev_priv->dpio_lock);
1803
1804 /* Disable 10bit clock to display controller */
1805 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1806 val &= ~DPIO_DCLKP_EN;
1807 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1808
61407f6d
VS
1809 /* disable left/right clock distribution */
1810 if (pipe != PIPE_B) {
1811 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1812 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1813 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1814 } else {
1815 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1816 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1817 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1818 }
1819
d752048d 1820 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1821}
1822
e4607fcf
CML
1823void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1824 struct intel_digital_port *dport)
89b667f8
JB
1825{
1826 u32 port_mask;
00fc31b7 1827 int dpll_reg;
89b667f8 1828
e4607fcf
CML
1829 switch (dport->port) {
1830 case PORT_B:
89b667f8 1831 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1832 dpll_reg = DPLL(0);
e4607fcf
CML
1833 break;
1834 case PORT_C:
89b667f8 1835 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1836 dpll_reg = DPLL(0);
1837 break;
1838 case PORT_D:
1839 port_mask = DPLL_PORTD_READY_MASK;
1840 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1841 break;
1842 default:
1843 BUG();
1844 }
89b667f8 1845
00fc31b7 1846 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1847 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1848 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1849}
1850
b14b1055
DV
1851static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1852{
1853 struct drm_device *dev = crtc->base.dev;
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1856
be19f0ff
CW
1857 if (WARN_ON(pll == NULL))
1858 return;
1859
3e369b76 1860 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1861 if (pll->active == 0) {
1862 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1863 WARN_ON(pll->on);
1864 assert_shared_dpll_disabled(dev_priv, pll);
1865
1866 pll->mode_set(dev_priv, pll);
1867 }
1868}
1869
92f2584a 1870/**
85b3894f 1871 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1872 * @dev_priv: i915 private structure
1873 * @pipe: pipe PLL to enable
1874 *
1875 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1876 * drives the transcoder clock.
1877 */
85b3894f 1878static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1879{
3d13ef2e
DL
1880 struct drm_device *dev = crtc->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1882 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1883
87a875bb 1884 if (WARN_ON(pll == NULL))
48da64a8
CW
1885 return;
1886
3e369b76 1887 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1888 return;
ee7b9f93 1889
74dd6928 1890 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1891 pll->name, pll->active, pll->on,
e2b78267 1892 crtc->base.base.id);
92f2584a 1893
cdbd2316
DV
1894 if (pll->active++) {
1895 WARN_ON(!pll->on);
e9d6944e 1896 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1897 return;
1898 }
f4a091c7 1899 WARN_ON(pll->on);
ee7b9f93 1900
bd2bb1b9
PZ
1901 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1902
46edb027 1903 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1904 pll->enable(dev_priv, pll);
ee7b9f93 1905 pll->on = true;
92f2584a
JB
1906}
1907
f6daaec2 1908static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1909{
3d13ef2e
DL
1910 struct drm_device *dev = crtc->base.dev;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1912 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1913
92f2584a 1914 /* PCH only available on ILK+ */
3d13ef2e 1915 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1916 if (WARN_ON(pll == NULL))
ee7b9f93 1917 return;
92f2584a 1918
3e369b76 1919 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1920 return;
7a419866 1921
46edb027
DV
1922 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1923 pll->name, pll->active, pll->on,
e2b78267 1924 crtc->base.base.id);
7a419866 1925
48da64a8 1926 if (WARN_ON(pll->active == 0)) {
e9d6944e 1927 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1928 return;
1929 }
1930
e9d6944e 1931 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1932 WARN_ON(!pll->on);
cdbd2316 1933 if (--pll->active)
7a419866 1934 return;
ee7b9f93 1935
46edb027 1936 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1937 pll->disable(dev_priv, pll);
ee7b9f93 1938 pll->on = false;
bd2bb1b9
PZ
1939
1940 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1941}
1942
b8a4f404
PZ
1943static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1944 enum pipe pipe)
040484af 1945{
23670b32 1946 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1947 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1949 uint32_t reg, val, pipeconf_val;
040484af
JB
1950
1951 /* PCH only available on ILK+ */
55522f37 1952 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1953
1954 /* Make sure PCH DPLL is enabled */
e72f9fbf 1955 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1956 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1957
1958 /* FDI must be feeding us bits for PCH ports */
1959 assert_fdi_tx_enabled(dev_priv, pipe);
1960 assert_fdi_rx_enabled(dev_priv, pipe);
1961
23670b32
DV
1962 if (HAS_PCH_CPT(dev)) {
1963 /* Workaround: Set the timing override bit before enabling the
1964 * pch transcoder. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
59c859d6 1969 }
23670b32 1970
ab9412ba 1971 reg = PCH_TRANSCONF(pipe);
040484af 1972 val = I915_READ(reg);
5f7f726d 1973 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1974
1975 if (HAS_PCH_IBX(dev_priv->dev)) {
1976 /*
1977 * make the BPC in transcoder be consistent with
1978 * that in pipeconf reg.
1979 */
dfd07d72
DV
1980 val &= ~PIPECONF_BPC_MASK;
1981 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1982 }
5f7f726d
PZ
1983
1984 val &= ~TRANS_INTERLACE_MASK;
1985 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1986 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1987 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1988 val |= TRANS_LEGACY_INTERLACED_ILK;
1989 else
1990 val |= TRANS_INTERLACED;
5f7f726d
PZ
1991 else
1992 val |= TRANS_PROGRESSIVE;
1993
040484af
JB
1994 I915_WRITE(reg, val | TRANS_ENABLE);
1995 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1996 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1997}
1998
8fb033d7 1999static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2000 enum transcoder cpu_transcoder)
040484af 2001{
8fb033d7 2002 u32 val, pipeconf_val;
8fb033d7
PZ
2003
2004 /* PCH only available on ILK+ */
55522f37 2005 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2006
8fb033d7 2007 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2008 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2009 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2010
223a6fdf
PZ
2011 /* Workaround: set timing override bit. */
2012 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2013 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2014 I915_WRITE(_TRANSA_CHICKEN2, val);
2015
25f3ef11 2016 val = TRANS_ENABLE;
937bb610 2017 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2018
9a76b1c6
PZ
2019 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2020 PIPECONF_INTERLACED_ILK)
a35f2679 2021 val |= TRANS_INTERLACED;
8fb033d7
PZ
2022 else
2023 val |= TRANS_PROGRESSIVE;
2024
ab9412ba
DV
2025 I915_WRITE(LPT_TRANSCONF, val);
2026 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2027 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2028}
2029
b8a4f404
PZ
2030static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2031 enum pipe pipe)
040484af 2032{
23670b32
DV
2033 struct drm_device *dev = dev_priv->dev;
2034 uint32_t reg, val;
040484af
JB
2035
2036 /* FDI relies on the transcoder */
2037 assert_fdi_tx_disabled(dev_priv, pipe);
2038 assert_fdi_rx_disabled(dev_priv, pipe);
2039
291906f1
JB
2040 /* Ports must be off as well */
2041 assert_pch_ports_disabled(dev_priv, pipe);
2042
ab9412ba 2043 reg = PCH_TRANSCONF(pipe);
040484af
JB
2044 val = I915_READ(reg);
2045 val &= ~TRANS_ENABLE;
2046 I915_WRITE(reg, val);
2047 /* wait for PCH transcoder off, transcoder state */
2048 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2049 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2050
2051 if (!HAS_PCH_IBX(dev)) {
2052 /* Workaround: Clear the timing override chicken bit again. */
2053 reg = TRANS_CHICKEN2(pipe);
2054 val = I915_READ(reg);
2055 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2056 I915_WRITE(reg, val);
2057 }
040484af
JB
2058}
2059
ab4d966c 2060static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2061{
8fb033d7
PZ
2062 u32 val;
2063
ab9412ba 2064 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2065 val &= ~TRANS_ENABLE;
ab9412ba 2066 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2067 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2068 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2069 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2070
2071 /* Workaround: clear timing override bit. */
2072 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2073 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2074 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2075}
2076
b24e7179 2077/**
309cfea8 2078 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2079 * @crtc: crtc responsible for the pipe
b24e7179 2080 *
0372264a 2081 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2082 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2083 */
e1fdc473 2084static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2085{
0372264a
PZ
2086 struct drm_device *dev = crtc->base.dev;
2087 struct drm_i915_private *dev_priv = dev->dev_private;
2088 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2089 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2090 pipe);
1a240d4d 2091 enum pipe pch_transcoder;
b24e7179
JB
2092 int reg;
2093 u32 val;
2094
58c6eaa2 2095 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2096 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2097 assert_sprites_disabled(dev_priv, pipe);
2098
681e5811 2099 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2100 pch_transcoder = TRANSCODER_A;
2101 else
2102 pch_transcoder = pipe;
2103
b24e7179
JB
2104 /*
2105 * A pipe without a PLL won't actually be able to drive bits from
2106 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2107 * need the check.
2108 */
2109 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2110 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2111 assert_dsi_pll_enabled(dev_priv);
2112 else
2113 assert_pll_enabled(dev_priv, pipe);
040484af 2114 else {
6e3c9717 2115 if (crtc->config->has_pch_encoder) {
040484af 2116 /* if driving the PCH, we need FDI enabled */
cc391bbb 2117 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2118 assert_fdi_tx_pll_enabled(dev_priv,
2119 (enum pipe) cpu_transcoder);
040484af
JB
2120 }
2121 /* FIXME: assert CPU port conditions for SNB+ */
2122 }
b24e7179 2123
702e7a56 2124 reg = PIPECONF(cpu_transcoder);
b24e7179 2125 val = I915_READ(reg);
7ad25d48 2126 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2127 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2128 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2129 return;
7ad25d48 2130 }
00d70b15
CW
2131
2132 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2133 POSTING_READ(reg);
b24e7179
JB
2134}
2135
2136/**
309cfea8 2137 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2138 * @crtc: crtc whose pipes is to be disabled
b24e7179 2139 *
575f7ab7
VS
2140 * Disable the pipe of @crtc, making sure that various hardware
2141 * specific requirements are met, if applicable, e.g. plane
2142 * disabled, panel fitter off, etc.
b24e7179
JB
2143 *
2144 * Will wait until the pipe has shut down before returning.
2145 */
575f7ab7 2146static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2147{
575f7ab7 2148 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2149 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2150 enum pipe pipe = crtc->pipe;
b24e7179
JB
2151 int reg;
2152 u32 val;
2153
2154 /*
2155 * Make sure planes won't keep trying to pump pixels to us,
2156 * or we might hang the display.
2157 */
2158 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2159 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2160 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2161
702e7a56 2162 reg = PIPECONF(cpu_transcoder);
b24e7179 2163 val = I915_READ(reg);
00d70b15
CW
2164 if ((val & PIPECONF_ENABLE) == 0)
2165 return;
2166
67adc644
VS
2167 /*
2168 * Double wide has implications for planes
2169 * so best keep it disabled when not needed.
2170 */
6e3c9717 2171 if (crtc->config->double_wide)
67adc644
VS
2172 val &= ~PIPECONF_DOUBLE_WIDE;
2173
2174 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2175 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2176 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2177 val &= ~PIPECONF_ENABLE;
2178
2179 I915_WRITE(reg, val);
2180 if ((val & PIPECONF_ENABLE) == 0)
2181 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2182}
2183
d74362c9
KP
2184/*
2185 * Plane regs are double buffered, going from enabled->disabled needs a
2186 * trigger in order to latch. The display address reg provides this.
2187 */
1dba99f4
VS
2188void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2189 enum plane plane)
d74362c9 2190{
3d13ef2e
DL
2191 struct drm_device *dev = dev_priv->dev;
2192 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2193
2194 I915_WRITE(reg, I915_READ(reg));
2195 POSTING_READ(reg);
d74362c9
KP
2196}
2197
b24e7179 2198/**
262ca2b0 2199 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2200 * @plane: plane to be enabled
2201 * @crtc: crtc for the plane
b24e7179 2202 *
fdd508a6 2203 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2204 */
fdd508a6
VS
2205static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2206 struct drm_crtc *crtc)
b24e7179 2207{
fdd508a6
VS
2208 struct drm_device *dev = plane->dev;
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2211
2212 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2213 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2214
98ec7739
VS
2215 if (intel_crtc->primary_enabled)
2216 return;
0037f71c 2217
4c445e0e 2218 intel_crtc->primary_enabled = true;
939c2fe8 2219
fdd508a6
VS
2220 dev_priv->display.update_primary_plane(crtc, plane->fb,
2221 crtc->x, crtc->y);
33c3b0d1
VS
2222
2223 /*
2224 * BDW signals flip done immediately if the plane
2225 * is disabled, even if the plane enable is already
2226 * armed to occur at the next vblank :(
2227 */
2228 if (IS_BROADWELL(dev))
2229 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2230}
2231
b24e7179 2232/**
262ca2b0 2233 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2234 * @plane: plane to be disabled
2235 * @crtc: crtc for the plane
b24e7179 2236 *
fdd508a6 2237 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2238 */
fdd508a6
VS
2239static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2240 struct drm_crtc *crtc)
b24e7179 2241{
fdd508a6
VS
2242 struct drm_device *dev = plane->dev;
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2245
32b7eeec
MR
2246 if (WARN_ON(!intel_crtc->active))
2247 return;
b24e7179 2248
98ec7739
VS
2249 if (!intel_crtc->primary_enabled)
2250 return;
0037f71c 2251
4c445e0e 2252 intel_crtc->primary_enabled = false;
939c2fe8 2253
fdd508a6
VS
2254 dev_priv->display.update_primary_plane(crtc, plane->fb,
2255 crtc->x, crtc->y);
b24e7179
JB
2256}
2257
693db184
CW
2258static bool need_vtd_wa(struct drm_device *dev)
2259{
2260#ifdef CONFIG_INTEL_IOMMU
2261 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2262 return true;
2263#endif
2264 return false;
2265}
2266
50470bb0 2267unsigned int
6761dd31
TU
2268intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2269 uint64_t fb_format_modifier)
a57ce0b2 2270{
6761dd31
TU
2271 unsigned int tile_height;
2272 uint32_t pixel_bytes;
a57ce0b2 2273
b5d0e9bf
DL
2274 switch (fb_format_modifier) {
2275 case DRM_FORMAT_MOD_NONE:
2276 tile_height = 1;
2277 break;
2278 case I915_FORMAT_MOD_X_TILED:
2279 tile_height = IS_GEN2(dev) ? 16 : 8;
2280 break;
2281 case I915_FORMAT_MOD_Y_TILED:
2282 tile_height = 32;
2283 break;
2284 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2285 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2286 switch (pixel_bytes) {
b5d0e9bf 2287 default:
6761dd31 2288 case 1:
b5d0e9bf
DL
2289 tile_height = 64;
2290 break;
6761dd31
TU
2291 case 2:
2292 case 4:
b5d0e9bf
DL
2293 tile_height = 32;
2294 break;
6761dd31 2295 case 8:
b5d0e9bf
DL
2296 tile_height = 16;
2297 break;
6761dd31 2298 case 16:
b5d0e9bf
DL
2299 WARN_ONCE(1,
2300 "128-bit pixels are not supported for display!");
2301 tile_height = 16;
2302 break;
2303 }
2304 break;
2305 default:
2306 MISSING_CASE(fb_format_modifier);
2307 tile_height = 1;
2308 break;
2309 }
091df6cb 2310
6761dd31
TU
2311 return tile_height;
2312}
2313
2314unsigned int
2315intel_fb_align_height(struct drm_device *dev, unsigned int height,
2316 uint32_t pixel_format, uint64_t fb_format_modifier)
2317{
2318 return ALIGN(height, intel_tile_height(dev, pixel_format,
2319 fb_format_modifier));
a57ce0b2
JB
2320}
2321
f64b98cd
TU
2322static int
2323intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2324 const struct drm_plane_state *plane_state)
2325{
50470bb0 2326 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2327
f64b98cd
TU
2328 *view = i915_ggtt_view_normal;
2329
50470bb0
TU
2330 if (!plane_state)
2331 return 0;
2332
121920fa 2333 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2334 return 0;
2335
9abc4648 2336 *view = i915_ggtt_view_rotated;
50470bb0
TU
2337
2338 info->height = fb->height;
2339 info->pixel_format = fb->pixel_format;
2340 info->pitch = fb->pitches[0];
2341 info->fb_modifier = fb->modifier[0];
2342
f64b98cd
TU
2343 return 0;
2344}
2345
127bd2ac 2346int
850c4cdc
TU
2347intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2348 struct drm_framebuffer *fb,
82bc3b2d 2349 const struct drm_plane_state *plane_state,
a4872ba6 2350 struct intel_engine_cs *pipelined)
6b95a207 2351{
850c4cdc 2352 struct drm_device *dev = fb->dev;
ce453d81 2353 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2354 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2355 struct i915_ggtt_view view;
6b95a207
KH
2356 u32 alignment;
2357 int ret;
2358
ebcdd39e
MR
2359 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2360
7b911adc
TU
2361 switch (fb->modifier[0]) {
2362 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2363 if (INTEL_INFO(dev)->gen >= 9)
2364 alignment = 256 * 1024;
2365 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2366 alignment = 128 * 1024;
a6c45cf0 2367 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2368 alignment = 4 * 1024;
2369 else
2370 alignment = 64 * 1024;
6b95a207 2371 break;
7b911adc 2372 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2373 if (INTEL_INFO(dev)->gen >= 9)
2374 alignment = 256 * 1024;
2375 else {
2376 /* pin() will align the object as required by fence */
2377 alignment = 0;
2378 }
6b95a207 2379 break;
7b911adc 2380 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2381 case I915_FORMAT_MOD_Yf_TILED:
2382 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2383 "Y tiling bo slipped through, driver bug!\n"))
2384 return -EINVAL;
2385 alignment = 1 * 1024 * 1024;
2386 break;
6b95a207 2387 default:
7b911adc
TU
2388 MISSING_CASE(fb->modifier[0]);
2389 return -EINVAL;
6b95a207
KH
2390 }
2391
f64b98cd
TU
2392 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2393 if (ret)
2394 return ret;
2395
693db184
CW
2396 /* Note that the w/a also requires 64 PTE of padding following the
2397 * bo. We currently fill all unused PTE with the shadow page and so
2398 * we should always have valid PTE following the scanout preventing
2399 * the VT-d warning.
2400 */
2401 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2402 alignment = 256 * 1024;
2403
d6dd6843
PZ
2404 /*
2405 * Global gtt pte registers are special registers which actually forward
2406 * writes to a chunk of system memory. Which means that there is no risk
2407 * that the register values disappear as soon as we call
2408 * intel_runtime_pm_put(), so it is correct to wrap only the
2409 * pin/unpin/fence and not more.
2410 */
2411 intel_runtime_pm_get(dev_priv);
2412
ce453d81 2413 dev_priv->mm.interruptible = false;
e6617330 2414 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2415 &view);
48b956c5 2416 if (ret)
ce453d81 2417 goto err_interruptible;
6b95a207
KH
2418
2419 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2420 * fence, whereas 965+ only requires a fence if using
2421 * framebuffer compression. For simplicity, we always install
2422 * a fence as the cost is not that onerous.
2423 */
06d98131 2424 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2425 if (ret)
2426 goto err_unpin;
1690e1eb 2427
9a5a53b3 2428 i915_gem_object_pin_fence(obj);
6b95a207 2429
ce453d81 2430 dev_priv->mm.interruptible = true;
d6dd6843 2431 intel_runtime_pm_put(dev_priv);
6b95a207 2432 return 0;
48b956c5
CW
2433
2434err_unpin:
f64b98cd 2435 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2436err_interruptible:
2437 dev_priv->mm.interruptible = true;
d6dd6843 2438 intel_runtime_pm_put(dev_priv);
48b956c5 2439 return ret;
6b95a207
KH
2440}
2441
82bc3b2d
TU
2442static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2443 const struct drm_plane_state *plane_state)
1690e1eb 2444{
82bc3b2d 2445 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2446 struct i915_ggtt_view view;
2447 int ret;
82bc3b2d 2448
ebcdd39e
MR
2449 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2450
f64b98cd
TU
2451 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2452 WARN_ONCE(ret, "Couldn't get view from plane state!");
2453
1690e1eb 2454 i915_gem_object_unpin_fence(obj);
f64b98cd 2455 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2456}
2457
c2c75131
DV
2458/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2459 * is assumed to be a power-of-two. */
bc752862
CW
2460unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2461 unsigned int tiling_mode,
2462 unsigned int cpp,
2463 unsigned int pitch)
c2c75131 2464{
bc752862
CW
2465 if (tiling_mode != I915_TILING_NONE) {
2466 unsigned int tile_rows, tiles;
c2c75131 2467
bc752862
CW
2468 tile_rows = *y / 8;
2469 *y %= 8;
c2c75131 2470
bc752862
CW
2471 tiles = *x / (512/cpp);
2472 *x %= 512/cpp;
2473
2474 return tile_rows * pitch * 8 + tiles * 4096;
2475 } else {
2476 unsigned int offset;
2477
2478 offset = *y * pitch + *x * cpp;
2479 *y = 0;
2480 *x = (offset & 4095) / cpp;
2481 return offset & -4096;
2482 }
c2c75131
DV
2483}
2484
b35d63fa 2485static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2486{
2487 switch (format) {
2488 case DISPPLANE_8BPP:
2489 return DRM_FORMAT_C8;
2490 case DISPPLANE_BGRX555:
2491 return DRM_FORMAT_XRGB1555;
2492 case DISPPLANE_BGRX565:
2493 return DRM_FORMAT_RGB565;
2494 default:
2495 case DISPPLANE_BGRX888:
2496 return DRM_FORMAT_XRGB8888;
2497 case DISPPLANE_RGBX888:
2498 return DRM_FORMAT_XBGR8888;
2499 case DISPPLANE_BGRX101010:
2500 return DRM_FORMAT_XRGB2101010;
2501 case DISPPLANE_RGBX101010:
2502 return DRM_FORMAT_XBGR2101010;
2503 }
2504}
2505
bc8d7dff
DL
2506static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2507{
2508 switch (format) {
2509 case PLANE_CTL_FORMAT_RGB_565:
2510 return DRM_FORMAT_RGB565;
2511 default:
2512 case PLANE_CTL_FORMAT_XRGB_8888:
2513 if (rgb_order) {
2514 if (alpha)
2515 return DRM_FORMAT_ABGR8888;
2516 else
2517 return DRM_FORMAT_XBGR8888;
2518 } else {
2519 if (alpha)
2520 return DRM_FORMAT_ARGB8888;
2521 else
2522 return DRM_FORMAT_XRGB8888;
2523 }
2524 case PLANE_CTL_FORMAT_XRGB_2101010:
2525 if (rgb_order)
2526 return DRM_FORMAT_XBGR2101010;
2527 else
2528 return DRM_FORMAT_XRGB2101010;
2529 }
2530}
2531
5724dbd1 2532static bool
f6936e29
DV
2533intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2534 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2535{
2536 struct drm_device *dev = crtc->base.dev;
2537 struct drm_i915_gem_object *obj = NULL;
2538 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2539 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2540 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2541 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2542 PAGE_SIZE);
2543
2544 size_aligned -= base_aligned;
46f297fb 2545
ff2652ea
CW
2546 if (plane_config->size == 0)
2547 return false;
2548
f37b5c2b
DV
2549 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2550 base_aligned,
2551 base_aligned,
2552 size_aligned);
46f297fb 2553 if (!obj)
484b41dd 2554 return false;
46f297fb 2555
49af449b
DL
2556 obj->tiling_mode = plane_config->tiling;
2557 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2558 obj->stride = fb->pitches[0];
46f297fb 2559
6bf129df
DL
2560 mode_cmd.pixel_format = fb->pixel_format;
2561 mode_cmd.width = fb->width;
2562 mode_cmd.height = fb->height;
2563 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2564 mode_cmd.modifier[0] = fb->modifier[0];
2565 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2566
2567 mutex_lock(&dev->struct_mutex);
6bf129df 2568 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2569 &mode_cmd, obj)) {
46f297fb
JB
2570 DRM_DEBUG_KMS("intel fb init failed\n");
2571 goto out_unref_obj;
2572 }
46f297fb 2573 mutex_unlock(&dev->struct_mutex);
484b41dd 2574
f6936e29 2575 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2576 return true;
46f297fb
JB
2577
2578out_unref_obj:
2579 drm_gem_object_unreference(&obj->base);
2580 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2581 return false;
2582}
2583
afd65eb4
MR
2584/* Update plane->state->fb to match plane->fb after driver-internal updates */
2585static void
2586update_state_fb(struct drm_plane *plane)
2587{
2588 if (plane->fb == plane->state->fb)
2589 return;
2590
2591 if (plane->state->fb)
2592 drm_framebuffer_unreference(plane->state->fb);
2593 plane->state->fb = plane->fb;
2594 if (plane->state->fb)
2595 drm_framebuffer_reference(plane->state->fb);
2596}
2597
5724dbd1 2598static void
f6936e29
DV
2599intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2600 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2601{
2602 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2603 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2604 struct drm_crtc *c;
2605 struct intel_crtc *i;
2ff8fde1 2606 struct drm_i915_gem_object *obj;
88595ac9
DV
2607 struct drm_plane *primary = intel_crtc->base.primary;
2608 struct drm_framebuffer *fb;
484b41dd 2609
2d14030b 2610 if (!plane_config->fb)
484b41dd
JB
2611 return;
2612
f6936e29 2613 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2614 fb = &plane_config->fb->base;
2615 goto valid_fb;
f55548b5 2616 }
484b41dd 2617
2d14030b 2618 kfree(plane_config->fb);
484b41dd
JB
2619
2620 /*
2621 * Failed to alloc the obj, check to see if we should share
2622 * an fb with another CRTC instead
2623 */
70e1e0ec 2624 for_each_crtc(dev, c) {
484b41dd
JB
2625 i = to_intel_crtc(c);
2626
2627 if (c == &intel_crtc->base)
2628 continue;
2629
2ff8fde1
MR
2630 if (!i->active)
2631 continue;
2632
88595ac9
DV
2633 fb = c->primary->fb;
2634 if (!fb)
484b41dd
JB
2635 continue;
2636
88595ac9 2637 obj = intel_fb_obj(fb);
2ff8fde1 2638 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2639 drm_framebuffer_reference(fb);
2640 goto valid_fb;
484b41dd
JB
2641 }
2642 }
88595ac9
DV
2643
2644 return;
2645
2646valid_fb:
2647 obj = intel_fb_obj(fb);
2648 if (obj->tiling_mode != I915_TILING_NONE)
2649 dev_priv->preserve_bios_swizzle = true;
2650
2651 primary->fb = fb;
2652 primary->state->crtc = &intel_crtc->base;
2653 primary->crtc = &intel_crtc->base;
2654 update_state_fb(primary);
2655 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2656}
2657
29b9bde6
DV
2658static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2659 struct drm_framebuffer *fb,
2660 int x, int y)
81255565
JB
2661{
2662 struct drm_device *dev = crtc->dev;
2663 struct drm_i915_private *dev_priv = dev->dev_private;
2664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2665 struct drm_i915_gem_object *obj;
81255565 2666 int plane = intel_crtc->plane;
e506a0c6 2667 unsigned long linear_offset;
81255565 2668 u32 dspcntr;
f45651ba 2669 u32 reg = DSPCNTR(plane);
48404c1e 2670 int pixel_size;
f45651ba 2671
fdd508a6
VS
2672 if (!intel_crtc->primary_enabled) {
2673 I915_WRITE(reg, 0);
2674 if (INTEL_INFO(dev)->gen >= 4)
2675 I915_WRITE(DSPSURF(plane), 0);
2676 else
2677 I915_WRITE(DSPADDR(plane), 0);
2678 POSTING_READ(reg);
2679 return;
2680 }
2681
c9ba6fad
VS
2682 obj = intel_fb_obj(fb);
2683 if (WARN_ON(obj == NULL))
2684 return;
2685
2686 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2687
f45651ba
VS
2688 dspcntr = DISPPLANE_GAMMA_ENABLE;
2689
fdd508a6 2690 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2691
2692 if (INTEL_INFO(dev)->gen < 4) {
2693 if (intel_crtc->pipe == PIPE_B)
2694 dspcntr |= DISPPLANE_SEL_PIPE_B;
2695
2696 /* pipesrc and dspsize control the size that is scaled from,
2697 * which should always be the user's requested size.
2698 */
2699 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2700 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2701 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2702 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2703 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2704 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2705 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2706 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2707 I915_WRITE(PRIMPOS(plane), 0);
2708 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2709 }
81255565 2710
57779d06
VS
2711 switch (fb->pixel_format) {
2712 case DRM_FORMAT_C8:
81255565
JB
2713 dspcntr |= DISPPLANE_8BPP;
2714 break;
57779d06
VS
2715 case DRM_FORMAT_XRGB1555:
2716 case DRM_FORMAT_ARGB1555:
2717 dspcntr |= DISPPLANE_BGRX555;
81255565 2718 break;
57779d06
VS
2719 case DRM_FORMAT_RGB565:
2720 dspcntr |= DISPPLANE_BGRX565;
2721 break;
2722 case DRM_FORMAT_XRGB8888:
2723 case DRM_FORMAT_ARGB8888:
2724 dspcntr |= DISPPLANE_BGRX888;
2725 break;
2726 case DRM_FORMAT_XBGR8888:
2727 case DRM_FORMAT_ABGR8888:
2728 dspcntr |= DISPPLANE_RGBX888;
2729 break;
2730 case DRM_FORMAT_XRGB2101010:
2731 case DRM_FORMAT_ARGB2101010:
2732 dspcntr |= DISPPLANE_BGRX101010;
2733 break;
2734 case DRM_FORMAT_XBGR2101010:
2735 case DRM_FORMAT_ABGR2101010:
2736 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2737 break;
2738 default:
baba133a 2739 BUG();
81255565 2740 }
57779d06 2741
f45651ba
VS
2742 if (INTEL_INFO(dev)->gen >= 4 &&
2743 obj->tiling_mode != I915_TILING_NONE)
2744 dspcntr |= DISPPLANE_TILED;
81255565 2745
de1aa629
VS
2746 if (IS_G4X(dev))
2747 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2748
b9897127 2749 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2750
c2c75131
DV
2751 if (INTEL_INFO(dev)->gen >= 4) {
2752 intel_crtc->dspaddr_offset =
bc752862 2753 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2754 pixel_size,
bc752862 2755 fb->pitches[0]);
c2c75131
DV
2756 linear_offset -= intel_crtc->dspaddr_offset;
2757 } else {
e506a0c6 2758 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2759 }
e506a0c6 2760
8e7d688b 2761 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2762 dspcntr |= DISPPLANE_ROTATE_180;
2763
6e3c9717
ACO
2764 x += (intel_crtc->config->pipe_src_w - 1);
2765 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2766
2767 /* Finding the last pixel of the last line of the display
2768 data and adding to linear_offset*/
2769 linear_offset +=
6e3c9717
ACO
2770 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2771 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2772 }
2773
2774 I915_WRITE(reg, dspcntr);
2775
01f2c773 2776 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2777 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2778 I915_WRITE(DSPSURF(plane),
2779 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2780 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2781 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2782 } else
f343c5f6 2783 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2784 POSTING_READ(reg);
17638cd6
JB
2785}
2786
29b9bde6
DV
2787static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2788 struct drm_framebuffer *fb,
2789 int x, int y)
17638cd6
JB
2790{
2791 struct drm_device *dev = crtc->dev;
2792 struct drm_i915_private *dev_priv = dev->dev_private;
2793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2794 struct drm_i915_gem_object *obj;
17638cd6 2795 int plane = intel_crtc->plane;
e506a0c6 2796 unsigned long linear_offset;
17638cd6 2797 u32 dspcntr;
f45651ba 2798 u32 reg = DSPCNTR(plane);
48404c1e 2799 int pixel_size;
f45651ba 2800
fdd508a6
VS
2801 if (!intel_crtc->primary_enabled) {
2802 I915_WRITE(reg, 0);
2803 I915_WRITE(DSPSURF(plane), 0);
2804 POSTING_READ(reg);
2805 return;
2806 }
2807
c9ba6fad
VS
2808 obj = intel_fb_obj(fb);
2809 if (WARN_ON(obj == NULL))
2810 return;
2811
2812 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2813
f45651ba
VS
2814 dspcntr = DISPPLANE_GAMMA_ENABLE;
2815
fdd508a6 2816 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2817
2818 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2819 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2820
57779d06
VS
2821 switch (fb->pixel_format) {
2822 case DRM_FORMAT_C8:
17638cd6
JB
2823 dspcntr |= DISPPLANE_8BPP;
2824 break;
57779d06
VS
2825 case DRM_FORMAT_RGB565:
2826 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2827 break;
57779d06
VS
2828 case DRM_FORMAT_XRGB8888:
2829 case DRM_FORMAT_ARGB8888:
2830 dspcntr |= DISPPLANE_BGRX888;
2831 break;
2832 case DRM_FORMAT_XBGR8888:
2833 case DRM_FORMAT_ABGR8888:
2834 dspcntr |= DISPPLANE_RGBX888;
2835 break;
2836 case DRM_FORMAT_XRGB2101010:
2837 case DRM_FORMAT_ARGB2101010:
2838 dspcntr |= DISPPLANE_BGRX101010;
2839 break;
2840 case DRM_FORMAT_XBGR2101010:
2841 case DRM_FORMAT_ABGR2101010:
2842 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2843 break;
2844 default:
baba133a 2845 BUG();
17638cd6
JB
2846 }
2847
2848 if (obj->tiling_mode != I915_TILING_NONE)
2849 dspcntr |= DISPPLANE_TILED;
17638cd6 2850
f45651ba 2851 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2852 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2853
b9897127 2854 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2855 intel_crtc->dspaddr_offset =
bc752862 2856 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2857 pixel_size,
bc752862 2858 fb->pitches[0]);
c2c75131 2859 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2860 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2861 dspcntr |= DISPPLANE_ROTATE_180;
2862
2863 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2864 x += (intel_crtc->config->pipe_src_w - 1);
2865 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2866
2867 /* Finding the last pixel of the last line of the display
2868 data and adding to linear_offset*/
2869 linear_offset +=
6e3c9717
ACO
2870 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2871 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2872 }
2873 }
2874
2875 I915_WRITE(reg, dspcntr);
17638cd6 2876
01f2c773 2877 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2878 I915_WRITE(DSPSURF(plane),
2879 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2880 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2881 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2882 } else {
2883 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2884 I915_WRITE(DSPLINOFF(plane), linear_offset);
2885 }
17638cd6 2886 POSTING_READ(reg);
17638cd6
JB
2887}
2888
b321803d
DL
2889u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2890 uint32_t pixel_format)
2891{
2892 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2893
2894 /*
2895 * The stride is either expressed as a multiple of 64 bytes
2896 * chunks for linear buffers or in number of tiles for tiled
2897 * buffers.
2898 */
2899 switch (fb_modifier) {
2900 case DRM_FORMAT_MOD_NONE:
2901 return 64;
2902 case I915_FORMAT_MOD_X_TILED:
2903 if (INTEL_INFO(dev)->gen == 2)
2904 return 128;
2905 return 512;
2906 case I915_FORMAT_MOD_Y_TILED:
2907 /* No need to check for old gens and Y tiling since this is
2908 * about the display engine and those will be blocked before
2909 * we get here.
2910 */
2911 return 128;
2912 case I915_FORMAT_MOD_Yf_TILED:
2913 if (bits_per_pixel == 8)
2914 return 64;
2915 else
2916 return 128;
2917 default:
2918 MISSING_CASE(fb_modifier);
2919 return 64;
2920 }
2921}
2922
121920fa
TU
2923unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2924 struct drm_i915_gem_object *obj)
2925{
9abc4648 2926 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2927
2928 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2929 view = &i915_ggtt_view_rotated;
121920fa
TU
2930
2931 return i915_gem_obj_ggtt_offset_view(obj, view);
2932}
2933
a1b2278e
CK
2934/*
2935 * This function detaches (aka. unbinds) unused scalers in hardware
2936 */
2937void skl_detach_scalers(struct intel_crtc *intel_crtc)
2938{
2939 struct drm_device *dev;
2940 struct drm_i915_private *dev_priv;
2941 struct intel_crtc_scaler_state *scaler_state;
2942 int i;
2943
2944 if (!intel_crtc || !intel_crtc->config)
2945 return;
2946
2947 dev = intel_crtc->base.dev;
2948 dev_priv = dev->dev_private;
2949 scaler_state = &intel_crtc->config->scaler_state;
2950
2951 /* loop through and disable scalers that aren't in use */
2952 for (i = 0; i < intel_crtc->num_scalers; i++) {
2953 if (!scaler_state->scalers[i].in_use) {
2954 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2955 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2956 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2957 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2958 intel_crtc->base.base.id, intel_crtc->pipe, i);
2959 }
2960 }
2961}
2962
70d21f0e
DL
2963static void skylake_update_primary_plane(struct drm_crtc *crtc,
2964 struct drm_framebuffer *fb,
2965 int x, int y)
2966{
2967 struct drm_device *dev = crtc->dev;
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
70d21f0e
DL
2970 struct drm_i915_gem_object *obj;
2971 int pipe = intel_crtc->pipe;
3b7a5119
SJ
2972 u32 plane_ctl, stride_div, stride;
2973 u32 tile_height, plane_offset, plane_size;
2974 unsigned int rotation;
2975 int x_offset, y_offset;
121920fa 2976 unsigned long surf_addr;
3b7a5119 2977 struct drm_plane *plane;
70d21f0e
DL
2978
2979 if (!intel_crtc->primary_enabled) {
2980 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2981 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2982 POSTING_READ(PLANE_CTL(pipe, 0));
2983 return;
2984 }
2985
2986 plane_ctl = PLANE_CTL_ENABLE |
2987 PLANE_CTL_PIPE_GAMMA_ENABLE |
2988 PLANE_CTL_PIPE_CSC_ENABLE;
2989
2990 switch (fb->pixel_format) {
2991 case DRM_FORMAT_RGB565:
2992 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2993 break;
2994 case DRM_FORMAT_XRGB8888:
2995 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2996 break;
f75fb42a
JN
2997 case DRM_FORMAT_ARGB8888:
2998 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2999 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3000 break;
70d21f0e
DL
3001 case DRM_FORMAT_XBGR8888:
3002 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3003 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3004 break;
f75fb42a
JN
3005 case DRM_FORMAT_ABGR8888:
3006 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3007 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3008 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3009 break;
70d21f0e
DL
3010 case DRM_FORMAT_XRGB2101010:
3011 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
3012 break;
3013 case DRM_FORMAT_XBGR2101010:
3014 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3015 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
3016 break;
3017 default:
3018 BUG();
3019 }
3020
30af77c4
DV
3021 switch (fb->modifier[0]) {
3022 case DRM_FORMAT_MOD_NONE:
70d21f0e 3023 break;
30af77c4 3024 case I915_FORMAT_MOD_X_TILED:
70d21f0e 3025 plane_ctl |= PLANE_CTL_TILED_X;
b321803d
DL
3026 break;
3027 case I915_FORMAT_MOD_Y_TILED:
3028 plane_ctl |= PLANE_CTL_TILED_Y;
3029 break;
3030 case I915_FORMAT_MOD_Yf_TILED:
3031 plane_ctl |= PLANE_CTL_TILED_YF;
70d21f0e
DL
3032 break;
3033 default:
b321803d 3034 MISSING_CASE(fb->modifier[0]);
70d21f0e
DL
3035 }
3036
3037 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3b7a5119
SJ
3038
3039 plane = crtc->primary;
3040 rotation = plane->state->rotation;
3041 switch (rotation) {
3042 case BIT(DRM_ROTATE_90):
3043 plane_ctl |= PLANE_CTL_ROTATE_90;
3044 break;
3045
3046 case BIT(DRM_ROTATE_180):
1447dde0 3047 plane_ctl |= PLANE_CTL_ROTATE_180;
3b7a5119
SJ
3048 break;
3049
3050 case BIT(DRM_ROTATE_270):
3051 plane_ctl |= PLANE_CTL_ROTATE_270;
3052 break;
3053 }
70d21f0e 3054
b321803d
DL
3055 obj = intel_fb_obj(fb);
3056 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3057 fb->pixel_format);
3b7a5119
SJ
3058 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3059
3060 if (intel_rotation_90_or_270(rotation)) {
3061 /* stride = Surface height in tiles */
3062 tile_height = intel_tile_height(dev, fb->bits_per_pixel,
3063 fb->modifier[0]);
3064 stride = DIV_ROUND_UP(fb->height, tile_height);
3065 x_offset = stride * tile_height - y - (plane->state->src_h >> 16);
3066 y_offset = x;
3067 plane_size = ((plane->state->src_w >> 16) - 1) << 16 |
3068 ((plane->state->src_h >> 16) - 1);
3069 } else {
3070 stride = fb->pitches[0] / stride_div;
3071 x_offset = x;
3072 y_offset = y;
3073 plane_size = ((plane->state->src_h >> 16) - 1) << 16 |
3074 ((plane->state->src_w >> 16) - 1);
3075 }
3076 plane_offset = y_offset << 16 | x_offset;
b321803d 3077
70d21f0e 3078 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
70d21f0e 3079 I915_WRITE(PLANE_POS(pipe, 0), 0);
3b7a5119
SJ
3080 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3081 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3082 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
121920fa 3083 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3084
3085 POSTING_READ(PLANE_SURF(pipe, 0));
3086}
3087
17638cd6
JB
3088/* Assume fb object is pinned & idle & fenced and just update base pointers */
3089static int
3090intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3091 int x, int y, enum mode_set_atomic state)
3092{
3093 struct drm_device *dev = crtc->dev;
3094 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3095
6b8e6ed0
CW
3096 if (dev_priv->display.disable_fbc)
3097 dev_priv->display.disable_fbc(dev);
81255565 3098
29b9bde6
DV
3099 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3100
3101 return 0;
81255565
JB
3102}
3103
7514747d 3104static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3105{
96a02917
VS
3106 struct drm_crtc *crtc;
3107
70e1e0ec 3108 for_each_crtc(dev, crtc) {
96a02917
VS
3109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3110 enum plane plane = intel_crtc->plane;
3111
3112 intel_prepare_page_flip(dev, plane);
3113 intel_finish_page_flip_plane(dev, plane);
3114 }
7514747d
VS
3115}
3116
3117static void intel_update_primary_planes(struct drm_device *dev)
3118{
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120 struct drm_crtc *crtc;
96a02917 3121
70e1e0ec 3122 for_each_crtc(dev, crtc) {
96a02917
VS
3123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3124
51fd371b 3125 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3126 /*
3127 * FIXME: Once we have proper support for primary planes (and
3128 * disabling them without disabling the entire crtc) allow again
66e514c1 3129 * a NULL crtc->primary->fb.
947fdaad 3130 */
f4510a27 3131 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3132 dev_priv->display.update_primary_plane(crtc,
66e514c1 3133 crtc->primary->fb,
262ca2b0
MR
3134 crtc->x,
3135 crtc->y);
51fd371b 3136 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3137 }
3138}
3139
7514747d
VS
3140void intel_prepare_reset(struct drm_device *dev)
3141{
f98ce92f
VS
3142 struct drm_i915_private *dev_priv = to_i915(dev);
3143 struct intel_crtc *crtc;
3144
7514747d
VS
3145 /* no reset support for gen2 */
3146 if (IS_GEN2(dev))
3147 return;
3148
3149 /* reset doesn't touch the display */
3150 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3151 return;
3152
3153 drm_modeset_lock_all(dev);
f98ce92f
VS
3154
3155 /*
3156 * Disabling the crtcs gracefully seems nicer. Also the
3157 * g33 docs say we should at least disable all the planes.
3158 */
3159 for_each_intel_crtc(dev, crtc) {
3160 if (crtc->active)
3161 dev_priv->display.crtc_disable(&crtc->base);
3162 }
7514747d
VS
3163}
3164
3165void intel_finish_reset(struct drm_device *dev)
3166{
3167 struct drm_i915_private *dev_priv = to_i915(dev);
3168
3169 /*
3170 * Flips in the rings will be nuked by the reset,
3171 * so complete all pending flips so that user space
3172 * will get its events and not get stuck.
3173 */
3174 intel_complete_page_flips(dev);
3175
3176 /* no reset support for gen2 */
3177 if (IS_GEN2(dev))
3178 return;
3179
3180 /* reset doesn't touch the display */
3181 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3182 /*
3183 * Flips in the rings have been nuked by the reset,
3184 * so update the base address of all primary
3185 * planes to the the last fb to make sure we're
3186 * showing the correct fb after a reset.
3187 */
3188 intel_update_primary_planes(dev);
3189 return;
3190 }
3191
3192 /*
3193 * The display has been reset as well,
3194 * so need a full re-initialization.
3195 */
3196 intel_runtime_pm_disable_interrupts(dev_priv);
3197 intel_runtime_pm_enable_interrupts(dev_priv);
3198
3199 intel_modeset_init_hw(dev);
3200
3201 spin_lock_irq(&dev_priv->irq_lock);
3202 if (dev_priv->display.hpd_irq_setup)
3203 dev_priv->display.hpd_irq_setup(dev);
3204 spin_unlock_irq(&dev_priv->irq_lock);
3205
3206 intel_modeset_setup_hw_state(dev, true);
3207
3208 intel_hpd_init(dev_priv);
3209
3210 drm_modeset_unlock_all(dev);
3211}
3212
14667a4b
CW
3213static int
3214intel_finish_fb(struct drm_framebuffer *old_fb)
3215{
2ff8fde1 3216 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
3217 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3218 bool was_interruptible = dev_priv->mm.interruptible;
3219 int ret;
3220
14667a4b
CW
3221 /* Big Hammer, we also need to ensure that any pending
3222 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3223 * current scanout is retired before unpinning the old
3224 * framebuffer.
3225 *
3226 * This should only fail upon a hung GPU, in which case we
3227 * can safely continue.
3228 */
3229 dev_priv->mm.interruptible = false;
3230 ret = i915_gem_object_finish_gpu(obj);
3231 dev_priv->mm.interruptible = was_interruptible;
3232
3233 return ret;
3234}
3235
7d5e3799
CW
3236static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3237{
3238 struct drm_device *dev = crtc->dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3241 bool pending;
3242
3243 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3244 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3245 return false;
3246
5e2d7afc 3247 spin_lock_irq(&dev->event_lock);
7d5e3799 3248 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3249 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3250
3251 return pending;
3252}
3253
e30e8f75
GP
3254static void intel_update_pipe_size(struct intel_crtc *crtc)
3255{
3256 struct drm_device *dev = crtc->base.dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 const struct drm_display_mode *adjusted_mode;
3259
3260 if (!i915.fastboot)
3261 return;
3262
3263 /*
3264 * Update pipe size and adjust fitter if needed: the reason for this is
3265 * that in compute_mode_changes we check the native mode (not the pfit
3266 * mode) to see if we can flip rather than do a full mode set. In the
3267 * fastboot case, we'll flip, but if we don't update the pipesrc and
3268 * pfit state, we'll end up with a big fb scanned out into the wrong
3269 * sized surface.
3270 *
3271 * To fix this properly, we need to hoist the checks up into
3272 * compute_mode_changes (or above), check the actual pfit state and
3273 * whether the platform allows pfit disable with pipe active, and only
3274 * then update the pipesrc and pfit state, even on the flip path.
3275 */
3276
6e3c9717 3277 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3278
3279 I915_WRITE(PIPESRC(crtc->pipe),
3280 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3281 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3282 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3283 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3284 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3285 I915_WRITE(PF_CTL(crtc->pipe), 0);
3286 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3287 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3288 }
6e3c9717
ACO
3289 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3290 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3291}
3292
5e84e1a4
ZW
3293static void intel_fdi_normal_train(struct drm_crtc *crtc)
3294{
3295 struct drm_device *dev = crtc->dev;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3298 int pipe = intel_crtc->pipe;
3299 u32 reg, temp;
3300
3301 /* enable normal train */
3302 reg = FDI_TX_CTL(pipe);
3303 temp = I915_READ(reg);
61e499bf 3304 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3305 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3306 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3307 } else {
3308 temp &= ~FDI_LINK_TRAIN_NONE;
3309 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3310 }
5e84e1a4
ZW
3311 I915_WRITE(reg, temp);
3312
3313 reg = FDI_RX_CTL(pipe);
3314 temp = I915_READ(reg);
3315 if (HAS_PCH_CPT(dev)) {
3316 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3317 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3318 } else {
3319 temp &= ~FDI_LINK_TRAIN_NONE;
3320 temp |= FDI_LINK_TRAIN_NONE;
3321 }
3322 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3323
3324 /* wait one idle pattern time */
3325 POSTING_READ(reg);
3326 udelay(1000);
357555c0
JB
3327
3328 /* IVB wants error correction enabled */
3329 if (IS_IVYBRIDGE(dev))
3330 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3331 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3332}
3333
8db9d77b
ZW
3334/* The FDI link training functions for ILK/Ibexpeak. */
3335static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3336{
3337 struct drm_device *dev = crtc->dev;
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3340 int pipe = intel_crtc->pipe;
5eddb70b 3341 u32 reg, temp, tries;
8db9d77b 3342
1c8562f6 3343 /* FDI needs bits from pipe first */
0fc932b8 3344 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3345
e1a44743
AJ
3346 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3347 for train result */
5eddb70b
CW
3348 reg = FDI_RX_IMR(pipe);
3349 temp = I915_READ(reg);
e1a44743
AJ
3350 temp &= ~FDI_RX_SYMBOL_LOCK;
3351 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3352 I915_WRITE(reg, temp);
3353 I915_READ(reg);
e1a44743
AJ
3354 udelay(150);
3355
8db9d77b 3356 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3357 reg = FDI_TX_CTL(pipe);
3358 temp = I915_READ(reg);
627eb5a3 3359 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3360 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3361 temp &= ~FDI_LINK_TRAIN_NONE;
3362 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3363 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3364
5eddb70b
CW
3365 reg = FDI_RX_CTL(pipe);
3366 temp = I915_READ(reg);
8db9d77b
ZW
3367 temp &= ~FDI_LINK_TRAIN_NONE;
3368 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3369 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3370
3371 POSTING_READ(reg);
8db9d77b
ZW
3372 udelay(150);
3373
5b2adf89 3374 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3375 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3376 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3377 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3378
5eddb70b 3379 reg = FDI_RX_IIR(pipe);
e1a44743 3380 for (tries = 0; tries < 5; tries++) {
5eddb70b 3381 temp = I915_READ(reg);
8db9d77b
ZW
3382 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3383
3384 if ((temp & FDI_RX_BIT_LOCK)) {
3385 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3386 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3387 break;
3388 }
8db9d77b 3389 }
e1a44743 3390 if (tries == 5)
5eddb70b 3391 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3392
3393 /* Train 2 */
5eddb70b
CW
3394 reg = FDI_TX_CTL(pipe);
3395 temp = I915_READ(reg);
8db9d77b
ZW
3396 temp &= ~FDI_LINK_TRAIN_NONE;
3397 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3398 I915_WRITE(reg, temp);
8db9d77b 3399
5eddb70b
CW
3400 reg = FDI_RX_CTL(pipe);
3401 temp = I915_READ(reg);
8db9d77b
ZW
3402 temp &= ~FDI_LINK_TRAIN_NONE;
3403 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3404 I915_WRITE(reg, temp);
8db9d77b 3405
5eddb70b
CW
3406 POSTING_READ(reg);
3407 udelay(150);
8db9d77b 3408
5eddb70b 3409 reg = FDI_RX_IIR(pipe);
e1a44743 3410 for (tries = 0; tries < 5; tries++) {
5eddb70b 3411 temp = I915_READ(reg);
8db9d77b
ZW
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413
3414 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3415 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3416 DRM_DEBUG_KMS("FDI train 2 done.\n");
3417 break;
3418 }
8db9d77b 3419 }
e1a44743 3420 if (tries == 5)
5eddb70b 3421 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3422
3423 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3424
8db9d77b
ZW
3425}
3426
0206e353 3427static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3428 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3429 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3430 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3431 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3432};
3433
3434/* The FDI link training functions for SNB/Cougarpoint. */
3435static void gen6_fdi_link_train(struct drm_crtc *crtc)
3436{
3437 struct drm_device *dev = crtc->dev;
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3440 int pipe = intel_crtc->pipe;
fa37d39e 3441 u32 reg, temp, i, retry;
8db9d77b 3442
e1a44743
AJ
3443 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3444 for train result */
5eddb70b
CW
3445 reg = FDI_RX_IMR(pipe);
3446 temp = I915_READ(reg);
e1a44743
AJ
3447 temp &= ~FDI_RX_SYMBOL_LOCK;
3448 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3449 I915_WRITE(reg, temp);
3450
3451 POSTING_READ(reg);
e1a44743
AJ
3452 udelay(150);
3453
8db9d77b 3454 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3455 reg = FDI_TX_CTL(pipe);
3456 temp = I915_READ(reg);
627eb5a3 3457 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3458 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_1;
3461 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3462 /* SNB-B */
3463 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3464 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3465
d74cf324
DV
3466 I915_WRITE(FDI_RX_MISC(pipe),
3467 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3468
5eddb70b
CW
3469 reg = FDI_RX_CTL(pipe);
3470 temp = I915_READ(reg);
8db9d77b
ZW
3471 if (HAS_PCH_CPT(dev)) {
3472 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3473 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3474 } else {
3475 temp &= ~FDI_LINK_TRAIN_NONE;
3476 temp |= FDI_LINK_TRAIN_PATTERN_1;
3477 }
5eddb70b
CW
3478 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3479
3480 POSTING_READ(reg);
8db9d77b
ZW
3481 udelay(150);
3482
0206e353 3483 for (i = 0; i < 4; i++) {
5eddb70b
CW
3484 reg = FDI_TX_CTL(pipe);
3485 temp = I915_READ(reg);
8db9d77b
ZW
3486 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3488 I915_WRITE(reg, temp);
3489
3490 POSTING_READ(reg);
8db9d77b
ZW
3491 udelay(500);
3492
fa37d39e
SP
3493 for (retry = 0; retry < 5; retry++) {
3494 reg = FDI_RX_IIR(pipe);
3495 temp = I915_READ(reg);
3496 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3497 if (temp & FDI_RX_BIT_LOCK) {
3498 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3499 DRM_DEBUG_KMS("FDI train 1 done.\n");
3500 break;
3501 }
3502 udelay(50);
8db9d77b 3503 }
fa37d39e
SP
3504 if (retry < 5)
3505 break;
8db9d77b
ZW
3506 }
3507 if (i == 4)
5eddb70b 3508 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3509
3510 /* Train 2 */
5eddb70b
CW
3511 reg = FDI_TX_CTL(pipe);
3512 temp = I915_READ(reg);
8db9d77b
ZW
3513 temp &= ~FDI_LINK_TRAIN_NONE;
3514 temp |= FDI_LINK_TRAIN_PATTERN_2;
3515 if (IS_GEN6(dev)) {
3516 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3517 /* SNB-B */
3518 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3519 }
5eddb70b 3520 I915_WRITE(reg, temp);
8db9d77b 3521
5eddb70b
CW
3522 reg = FDI_RX_CTL(pipe);
3523 temp = I915_READ(reg);
8db9d77b
ZW
3524 if (HAS_PCH_CPT(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3526 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3527 } else {
3528 temp &= ~FDI_LINK_TRAIN_NONE;
3529 temp |= FDI_LINK_TRAIN_PATTERN_2;
3530 }
5eddb70b
CW
3531 I915_WRITE(reg, temp);
3532
3533 POSTING_READ(reg);
8db9d77b
ZW
3534 udelay(150);
3535
0206e353 3536 for (i = 0; i < 4; i++) {
5eddb70b
CW
3537 reg = FDI_TX_CTL(pipe);
3538 temp = I915_READ(reg);
8db9d77b
ZW
3539 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3540 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3541 I915_WRITE(reg, temp);
3542
3543 POSTING_READ(reg);
8db9d77b
ZW
3544 udelay(500);
3545
fa37d39e
SP
3546 for (retry = 0; retry < 5; retry++) {
3547 reg = FDI_RX_IIR(pipe);
3548 temp = I915_READ(reg);
3549 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3550 if (temp & FDI_RX_SYMBOL_LOCK) {
3551 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3552 DRM_DEBUG_KMS("FDI train 2 done.\n");
3553 break;
3554 }
3555 udelay(50);
8db9d77b 3556 }
fa37d39e
SP
3557 if (retry < 5)
3558 break;
8db9d77b
ZW
3559 }
3560 if (i == 4)
5eddb70b 3561 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3562
3563 DRM_DEBUG_KMS("FDI train done.\n");
3564}
3565
357555c0
JB
3566/* Manual link training for Ivy Bridge A0 parts */
3567static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3568{
3569 struct drm_device *dev = crtc->dev;
3570 struct drm_i915_private *dev_priv = dev->dev_private;
3571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572 int pipe = intel_crtc->pipe;
139ccd3f 3573 u32 reg, temp, i, j;
357555c0
JB
3574
3575 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3576 for train result */
3577 reg = FDI_RX_IMR(pipe);
3578 temp = I915_READ(reg);
3579 temp &= ~FDI_RX_SYMBOL_LOCK;
3580 temp &= ~FDI_RX_BIT_LOCK;
3581 I915_WRITE(reg, temp);
3582
3583 POSTING_READ(reg);
3584 udelay(150);
3585
01a415fd
DV
3586 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3587 I915_READ(FDI_RX_IIR(pipe)));
3588
139ccd3f
JB
3589 /* Try each vswing and preemphasis setting twice before moving on */
3590 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3591 /* disable first in case we need to retry */
3592 reg = FDI_TX_CTL(pipe);
3593 temp = I915_READ(reg);
3594 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3595 temp &= ~FDI_TX_ENABLE;
3596 I915_WRITE(reg, temp);
357555c0 3597
139ccd3f
JB
3598 reg = FDI_RX_CTL(pipe);
3599 temp = I915_READ(reg);
3600 temp &= ~FDI_LINK_TRAIN_AUTO;
3601 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3602 temp &= ~FDI_RX_ENABLE;
3603 I915_WRITE(reg, temp);
357555c0 3604
139ccd3f 3605 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3606 reg = FDI_TX_CTL(pipe);
3607 temp = I915_READ(reg);
139ccd3f 3608 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3609 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3610 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3611 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3612 temp |= snb_b_fdi_train_param[j/2];
3613 temp |= FDI_COMPOSITE_SYNC;
3614 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3615
139ccd3f
JB
3616 I915_WRITE(FDI_RX_MISC(pipe),
3617 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3618
139ccd3f 3619 reg = FDI_RX_CTL(pipe);
357555c0 3620 temp = I915_READ(reg);
139ccd3f
JB
3621 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3622 temp |= FDI_COMPOSITE_SYNC;
3623 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3624
139ccd3f
JB
3625 POSTING_READ(reg);
3626 udelay(1); /* should be 0.5us */
357555c0 3627
139ccd3f
JB
3628 for (i = 0; i < 4; i++) {
3629 reg = FDI_RX_IIR(pipe);
3630 temp = I915_READ(reg);
3631 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3632
139ccd3f
JB
3633 if (temp & FDI_RX_BIT_LOCK ||
3634 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3635 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3636 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3637 i);
3638 break;
3639 }
3640 udelay(1); /* should be 0.5us */
3641 }
3642 if (i == 4) {
3643 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3644 continue;
3645 }
357555c0 3646
139ccd3f 3647 /* Train 2 */
357555c0
JB
3648 reg = FDI_TX_CTL(pipe);
3649 temp = I915_READ(reg);
139ccd3f
JB
3650 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3651 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3652 I915_WRITE(reg, temp);
3653
3654 reg = FDI_RX_CTL(pipe);
3655 temp = I915_READ(reg);
3656 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3657 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3658 I915_WRITE(reg, temp);
3659
3660 POSTING_READ(reg);
139ccd3f 3661 udelay(2); /* should be 1.5us */
357555c0 3662
139ccd3f
JB
3663 for (i = 0; i < 4; i++) {
3664 reg = FDI_RX_IIR(pipe);
3665 temp = I915_READ(reg);
3666 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3667
139ccd3f
JB
3668 if (temp & FDI_RX_SYMBOL_LOCK ||
3669 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3670 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3671 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3672 i);
3673 goto train_done;
3674 }
3675 udelay(2); /* should be 1.5us */
357555c0 3676 }
139ccd3f
JB
3677 if (i == 4)
3678 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3679 }
357555c0 3680
139ccd3f 3681train_done:
357555c0
JB
3682 DRM_DEBUG_KMS("FDI train done.\n");
3683}
3684
88cefb6c 3685static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3686{
88cefb6c 3687 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3688 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3689 int pipe = intel_crtc->pipe;
5eddb70b 3690 u32 reg, temp;
79e53945 3691
c64e311e 3692
c98e9dcf 3693 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3694 reg = FDI_RX_CTL(pipe);
3695 temp = I915_READ(reg);
627eb5a3 3696 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3697 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3698 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3699 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3700
3701 POSTING_READ(reg);
c98e9dcf
JB
3702 udelay(200);
3703
3704 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3705 temp = I915_READ(reg);
3706 I915_WRITE(reg, temp | FDI_PCDCLK);
3707
3708 POSTING_READ(reg);
c98e9dcf
JB
3709 udelay(200);
3710
20749730
PZ
3711 /* Enable CPU FDI TX PLL, always on for Ironlake */
3712 reg = FDI_TX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3715 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3716
20749730
PZ
3717 POSTING_READ(reg);
3718 udelay(100);
6be4a607 3719 }
0e23b99d
JB
3720}
3721
88cefb6c
DV
3722static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3723{
3724 struct drm_device *dev = intel_crtc->base.dev;
3725 struct drm_i915_private *dev_priv = dev->dev_private;
3726 int pipe = intel_crtc->pipe;
3727 u32 reg, temp;
3728
3729 /* Switch from PCDclk to Rawclk */
3730 reg = FDI_RX_CTL(pipe);
3731 temp = I915_READ(reg);
3732 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3733
3734 /* Disable CPU FDI TX PLL */
3735 reg = FDI_TX_CTL(pipe);
3736 temp = I915_READ(reg);
3737 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3738
3739 POSTING_READ(reg);
3740 udelay(100);
3741
3742 reg = FDI_RX_CTL(pipe);
3743 temp = I915_READ(reg);
3744 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3745
3746 /* Wait for the clocks to turn off. */
3747 POSTING_READ(reg);
3748 udelay(100);
3749}
3750
0fc932b8
JB
3751static void ironlake_fdi_disable(struct drm_crtc *crtc)
3752{
3753 struct drm_device *dev = crtc->dev;
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3756 int pipe = intel_crtc->pipe;
3757 u32 reg, temp;
3758
3759 /* disable CPU FDI tx and PCH FDI rx */
3760 reg = FDI_TX_CTL(pipe);
3761 temp = I915_READ(reg);
3762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3763 POSTING_READ(reg);
3764
3765 reg = FDI_RX_CTL(pipe);
3766 temp = I915_READ(reg);
3767 temp &= ~(0x7 << 16);
dfd07d72 3768 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3770
3771 POSTING_READ(reg);
3772 udelay(100);
3773
3774 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3775 if (HAS_PCH_IBX(dev))
6f06ce18 3776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3777
3778 /* still set train pattern 1 */
3779 reg = FDI_TX_CTL(pipe);
3780 temp = I915_READ(reg);
3781 temp &= ~FDI_LINK_TRAIN_NONE;
3782 temp |= FDI_LINK_TRAIN_PATTERN_1;
3783 I915_WRITE(reg, temp);
3784
3785 reg = FDI_RX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 if (HAS_PCH_CPT(dev)) {
3788 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3789 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3790 } else {
3791 temp &= ~FDI_LINK_TRAIN_NONE;
3792 temp |= FDI_LINK_TRAIN_PATTERN_1;
3793 }
3794 /* BPC in FDI rx is consistent with that in PIPECONF */
3795 temp &= ~(0x07 << 16);
dfd07d72 3796 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3797 I915_WRITE(reg, temp);
3798
3799 POSTING_READ(reg);
3800 udelay(100);
3801}
3802
5dce5b93
CW
3803bool intel_has_pending_fb_unpin(struct drm_device *dev)
3804{
3805 struct intel_crtc *crtc;
3806
3807 /* Note that we don't need to be called with mode_config.lock here
3808 * as our list of CRTC objects is static for the lifetime of the
3809 * device and so cannot disappear as we iterate. Similarly, we can
3810 * happily treat the predicates as racy, atomic checks as userspace
3811 * cannot claim and pin a new fb without at least acquring the
3812 * struct_mutex and so serialising with us.
3813 */
d3fcc808 3814 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3815 if (atomic_read(&crtc->unpin_work_count) == 0)
3816 continue;
3817
3818 if (crtc->unpin_work)
3819 intel_wait_for_vblank(dev, crtc->pipe);
3820
3821 return true;
3822 }
3823
3824 return false;
3825}
3826
d6bbafa1
CW
3827static void page_flip_completed(struct intel_crtc *intel_crtc)
3828{
3829 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3830 struct intel_unpin_work *work = intel_crtc->unpin_work;
3831
3832 /* ensure that the unpin work is consistent wrt ->pending. */
3833 smp_rmb();
3834 intel_crtc->unpin_work = NULL;
3835
3836 if (work->event)
3837 drm_send_vblank_event(intel_crtc->base.dev,
3838 intel_crtc->pipe,
3839 work->event);
3840
3841 drm_crtc_vblank_put(&intel_crtc->base);
3842
3843 wake_up_all(&dev_priv->pending_flip_queue);
3844 queue_work(dev_priv->wq, &work->work);
3845
3846 trace_i915_flip_complete(intel_crtc->plane,
3847 work->pending_flip_obj);
3848}
3849
46a55d30 3850void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3851{
0f91128d 3852 struct drm_device *dev = crtc->dev;
5bb61643 3853 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3854
2c10d571 3855 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3856 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3857 !intel_crtc_has_pending_flip(crtc),
3858 60*HZ) == 0)) {
3859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3860
5e2d7afc 3861 spin_lock_irq(&dev->event_lock);
9c787942
CW
3862 if (intel_crtc->unpin_work) {
3863 WARN_ONCE(1, "Removing stuck page flip\n");
3864 page_flip_completed(intel_crtc);
3865 }
5e2d7afc 3866 spin_unlock_irq(&dev->event_lock);
9c787942 3867 }
5bb61643 3868
975d568a
CW
3869 if (crtc->primary->fb) {
3870 mutex_lock(&dev->struct_mutex);
3871 intel_finish_fb(crtc->primary->fb);
3872 mutex_unlock(&dev->struct_mutex);
3873 }
e6c3a2a6
CW
3874}
3875
e615efe4
ED
3876/* Program iCLKIP clock to the desired frequency */
3877static void lpt_program_iclkip(struct drm_crtc *crtc)
3878{
3879 struct drm_device *dev = crtc->dev;
3880 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3881 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3882 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3883 u32 temp;
3884
09153000
DV
3885 mutex_lock(&dev_priv->dpio_lock);
3886
e615efe4
ED
3887 /* It is necessary to ungate the pixclk gate prior to programming
3888 * the divisors, and gate it back when it is done.
3889 */
3890 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3891
3892 /* Disable SSCCTL */
3893 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3894 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3895 SBI_SSCCTL_DISABLE,
3896 SBI_ICLK);
e615efe4
ED
3897
3898 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3899 if (clock == 20000) {
e615efe4
ED
3900 auxdiv = 1;
3901 divsel = 0x41;
3902 phaseinc = 0x20;
3903 } else {
3904 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3905 * but the adjusted_mode->crtc_clock in in KHz. To get the
3906 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3907 * convert the virtual clock precision to KHz here for higher
3908 * precision.
3909 */
3910 u32 iclk_virtual_root_freq = 172800 * 1000;
3911 u32 iclk_pi_range = 64;
3912 u32 desired_divisor, msb_divisor_value, pi_value;
3913
12d7ceed 3914 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3915 msb_divisor_value = desired_divisor / iclk_pi_range;
3916 pi_value = desired_divisor % iclk_pi_range;
3917
3918 auxdiv = 0;
3919 divsel = msb_divisor_value - 2;
3920 phaseinc = pi_value;
3921 }
3922
3923 /* This should not happen with any sane values */
3924 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3925 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3926 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3927 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3928
3929 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3930 clock,
e615efe4
ED
3931 auxdiv,
3932 divsel,
3933 phasedir,
3934 phaseinc);
3935
3936 /* Program SSCDIVINTPHASE6 */
988d6ee8 3937 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3938 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3939 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3940 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3941 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3942 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3943 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3944 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3945
3946 /* Program SSCAUXDIV */
988d6ee8 3947 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3948 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3949 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3950 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3951
3952 /* Enable modulator and associated divider */
988d6ee8 3953 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3954 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3955 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3956
3957 /* Wait for initialization time */
3958 udelay(24);
3959
3960 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3961
3962 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3963}
3964
275f01b2
DV
3965static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3966 enum pipe pch_transcoder)
3967{
3968 struct drm_device *dev = crtc->base.dev;
3969 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3970 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3971
3972 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3973 I915_READ(HTOTAL(cpu_transcoder)));
3974 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3975 I915_READ(HBLANK(cpu_transcoder)));
3976 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3977 I915_READ(HSYNC(cpu_transcoder)));
3978
3979 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3980 I915_READ(VTOTAL(cpu_transcoder)));
3981 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3982 I915_READ(VBLANK(cpu_transcoder)));
3983 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3984 I915_READ(VSYNC(cpu_transcoder)));
3985 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3986 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3987}
3988
003632d9 3989static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3990{
3991 struct drm_i915_private *dev_priv = dev->dev_private;
3992 uint32_t temp;
3993
3994 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 3995 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
3996 return;
3997
3998 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3999 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4000
003632d9
ACO
4001 temp &= ~FDI_BC_BIFURCATION_SELECT;
4002 if (enable)
4003 temp |= FDI_BC_BIFURCATION_SELECT;
4004
4005 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4006 I915_WRITE(SOUTH_CHICKEN1, temp);
4007 POSTING_READ(SOUTH_CHICKEN1);
4008}
4009
4010static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4011{
4012 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4013
4014 switch (intel_crtc->pipe) {
4015 case PIPE_A:
4016 break;
4017 case PIPE_B:
6e3c9717 4018 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4019 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4020 else
003632d9 4021 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4022
4023 break;
4024 case PIPE_C:
003632d9 4025 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4026
4027 break;
4028 default:
4029 BUG();
4030 }
4031}
4032
f67a559d
JB
4033/*
4034 * Enable PCH resources required for PCH ports:
4035 * - PCH PLLs
4036 * - FDI training & RX/TX
4037 * - update transcoder timings
4038 * - DP transcoding bits
4039 * - transcoder
4040 */
4041static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4042{
4043 struct drm_device *dev = crtc->dev;
4044 struct drm_i915_private *dev_priv = dev->dev_private;
4045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4046 int pipe = intel_crtc->pipe;
ee7b9f93 4047 u32 reg, temp;
2c07245f 4048
ab9412ba 4049 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4050
1fbc0d78
DV
4051 if (IS_IVYBRIDGE(dev))
4052 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4053
cd986abb
DV
4054 /* Write the TU size bits before fdi link training, so that error
4055 * detection works. */
4056 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4057 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4058
c98e9dcf 4059 /* For PCH output, training FDI link */
674cf967 4060 dev_priv->display.fdi_link_train(crtc);
2c07245f 4061
3ad8a208
DV
4062 /* We need to program the right clock selection before writing the pixel
4063 * mutliplier into the DPLL. */
303b81e0 4064 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4065 u32 sel;
4b645f14 4066
c98e9dcf 4067 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4068 temp |= TRANS_DPLL_ENABLE(pipe);
4069 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4070 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4071 temp |= sel;
4072 else
4073 temp &= ~sel;
c98e9dcf 4074 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4075 }
5eddb70b 4076
3ad8a208
DV
4077 /* XXX: pch pll's can be enabled any time before we enable the PCH
4078 * transcoder, and we actually should do this to not upset any PCH
4079 * transcoder that already use the clock when we share it.
4080 *
4081 * Note that enable_shared_dpll tries to do the right thing, but
4082 * get_shared_dpll unconditionally resets the pll - we need that to have
4083 * the right LVDS enable sequence. */
85b3894f 4084 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4085
d9b6cb56
JB
4086 /* set transcoder timing, panel must allow it */
4087 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4088 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4089
303b81e0 4090 intel_fdi_normal_train(crtc);
5e84e1a4 4091
c98e9dcf 4092 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4093 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4094 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4095 reg = TRANS_DP_CTL(pipe);
4096 temp = I915_READ(reg);
4097 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4098 TRANS_DP_SYNC_MASK |
4099 TRANS_DP_BPC_MASK);
5eddb70b
CW
4100 temp |= (TRANS_DP_OUTPUT_ENABLE |
4101 TRANS_DP_ENH_FRAMING);
9325c9f0 4102 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4103
4104 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4105 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4106 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4107 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4108
4109 switch (intel_trans_dp_port_sel(crtc)) {
4110 case PCH_DP_B:
5eddb70b 4111 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4112 break;
4113 case PCH_DP_C:
5eddb70b 4114 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4115 break;
4116 case PCH_DP_D:
5eddb70b 4117 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4118 break;
4119 default:
e95d41e1 4120 BUG();
32f9d658 4121 }
2c07245f 4122
5eddb70b 4123 I915_WRITE(reg, temp);
6be4a607 4124 }
b52eb4dc 4125
b8a4f404 4126 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4127}
4128
1507e5bd
PZ
4129static void lpt_pch_enable(struct drm_crtc *crtc)
4130{
4131 struct drm_device *dev = crtc->dev;
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4134 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4135
ab9412ba 4136 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4137
8c52b5e8 4138 lpt_program_iclkip(crtc);
1507e5bd 4139
0540e488 4140 /* Set transcoder timing. */
275f01b2 4141 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4142
937bb610 4143 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4144}
4145
716c2e55 4146void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4147{
e2b78267 4148 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4149
4150 if (pll == NULL)
4151 return;
4152
3e369b76 4153 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4154 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4155 return;
4156 }
4157
3e369b76
ACO
4158 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4159 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4160 WARN_ON(pll->on);
4161 WARN_ON(pll->active);
4162 }
4163
6e3c9717 4164 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4165}
4166
190f68c5
ACO
4167struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4168 struct intel_crtc_state *crtc_state)
ee7b9f93 4169{
e2b78267 4170 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4171 struct intel_shared_dpll *pll;
e2b78267 4172 enum intel_dpll_id i;
ee7b9f93 4173
98b6bd99
DV
4174 if (HAS_PCH_IBX(dev_priv->dev)) {
4175 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4176 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4177 pll = &dev_priv->shared_dplls[i];
98b6bd99 4178
46edb027
DV
4179 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4180 crtc->base.base.id, pll->name);
98b6bd99 4181
8bd31e67 4182 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4183
98b6bd99
DV
4184 goto found;
4185 }
4186
e72f9fbf
DV
4187 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4188 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4189
4190 /* Only want to check enabled timings first */
8bd31e67 4191 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4192 continue;
4193
190f68c5 4194 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4195 &pll->new_config->hw_state,
4196 sizeof(pll->new_config->hw_state)) == 0) {
4197 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4198 crtc->base.base.id, pll->name,
8bd31e67
ACO
4199 pll->new_config->crtc_mask,
4200 pll->active);
ee7b9f93
JB
4201 goto found;
4202 }
4203 }
4204
4205 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4206 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4207 pll = &dev_priv->shared_dplls[i];
8bd31e67 4208 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4209 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4210 crtc->base.base.id, pll->name);
ee7b9f93
JB
4211 goto found;
4212 }
4213 }
4214
4215 return NULL;
4216
4217found:
8bd31e67 4218 if (pll->new_config->crtc_mask == 0)
190f68c5 4219 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4220
190f68c5 4221 crtc_state->shared_dpll = i;
46edb027
DV
4222 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4223 pipe_name(crtc->pipe));
ee7b9f93 4224
8bd31e67 4225 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4226
ee7b9f93
JB
4227 return pll;
4228}
4229
8bd31e67
ACO
4230/**
4231 * intel_shared_dpll_start_config - start a new PLL staged config
4232 * @dev_priv: DRM device
4233 * @clear_pipes: mask of pipes that will have their PLLs freed
4234 *
4235 * Starts a new PLL staged config, copying the current config but
4236 * releasing the references of pipes specified in clear_pipes.
4237 */
4238static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4239 unsigned clear_pipes)
4240{
4241 struct intel_shared_dpll *pll;
4242 enum intel_dpll_id i;
4243
4244 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4245 pll = &dev_priv->shared_dplls[i];
4246
4247 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4248 GFP_KERNEL);
4249 if (!pll->new_config)
4250 goto cleanup;
4251
4252 pll->new_config->crtc_mask &= ~clear_pipes;
4253 }
4254
4255 return 0;
4256
4257cleanup:
4258 while (--i >= 0) {
4259 pll = &dev_priv->shared_dplls[i];
f354d733 4260 kfree(pll->new_config);
8bd31e67
ACO
4261 pll->new_config = NULL;
4262 }
4263
4264 return -ENOMEM;
4265}
4266
4267static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4268{
4269 struct intel_shared_dpll *pll;
4270 enum intel_dpll_id i;
4271
4272 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4273 pll = &dev_priv->shared_dplls[i];
4274
4275 WARN_ON(pll->new_config == &pll->config);
4276
4277 pll->config = *pll->new_config;
4278 kfree(pll->new_config);
4279 pll->new_config = NULL;
4280 }
4281}
4282
4283static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4284{
4285 struct intel_shared_dpll *pll;
4286 enum intel_dpll_id i;
4287
4288 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4289 pll = &dev_priv->shared_dplls[i];
4290
4291 WARN_ON(pll->new_config == &pll->config);
4292
4293 kfree(pll->new_config);
4294 pll->new_config = NULL;
4295 }
4296}
4297
a1520318 4298static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4299{
4300 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4301 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4302 u32 temp;
4303
4304 temp = I915_READ(dslreg);
4305 udelay(500);
4306 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4307 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4308 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4309 }
4310}
4311
a1b2278e
CK
4312/**
4313 * skl_update_scaler_users - Stages update to crtc's scaler state
4314 * @intel_crtc: crtc
4315 * @crtc_state: crtc_state
4316 * @plane: plane (NULL indicates crtc is requesting update)
4317 * @plane_state: plane's state
4318 * @force_detach: request unconditional detachment of scaler
4319 *
4320 * This function updates scaler state for requested plane or crtc.
4321 * To request scaler usage update for a plane, caller shall pass plane pointer.
4322 * To request scaler usage update for crtc, caller shall pass plane pointer
4323 * as NULL.
4324 *
4325 * Return
4326 * 0 - scaler_usage updated successfully
4327 * error - requested scaling cannot be supported or other error condition
4328 */
4329int
4330skl_update_scaler_users(
4331 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4332 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4333 int force_detach)
4334{
4335 int need_scaling;
4336 int idx;
4337 int src_w, src_h, dst_w, dst_h;
4338 int *scaler_id;
4339 struct drm_framebuffer *fb;
4340 struct intel_crtc_scaler_state *scaler_state;
4341
4342 if (!intel_crtc || !crtc_state)
4343 return 0;
4344
4345 scaler_state = &crtc_state->scaler_state;
4346
4347 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4348 fb = intel_plane ? plane_state->base.fb : NULL;
4349
4350 if (intel_plane) {
4351 src_w = drm_rect_width(&plane_state->src) >> 16;
4352 src_h = drm_rect_height(&plane_state->src) >> 16;
4353 dst_w = drm_rect_width(&plane_state->dst);
4354 dst_h = drm_rect_height(&plane_state->dst);
4355 scaler_id = &plane_state->scaler_id;
4356 } else {
4357 struct drm_display_mode *adjusted_mode =
4358 &crtc_state->base.adjusted_mode;
4359 src_w = crtc_state->pipe_src_w;
4360 src_h = crtc_state->pipe_src_h;
4361 dst_w = adjusted_mode->hdisplay;
4362 dst_h = adjusted_mode->vdisplay;
4363 scaler_id = &scaler_state->scaler_id;
4364 }
4365 need_scaling = (src_w != dst_w || src_h != dst_h);
4366
4367 /*
4368 * if plane is being disabled or scaler is no more required or force detach
4369 * - free scaler binded to this plane/crtc
4370 * - in order to do this, update crtc->scaler_usage
4371 *
4372 * Here scaler state in crtc_state is set free so that
4373 * scaler can be assigned to other user. Actual register
4374 * update to free the scaler is done in plane/panel-fit programming.
4375 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4376 */
4377 if (force_detach || !need_scaling || (intel_plane &&
4378 (!fb || !plane_state->visible))) {
4379 if (*scaler_id >= 0) {
4380 scaler_state->scaler_users &= ~(1 << idx);
4381 scaler_state->scalers[*scaler_id].in_use = 0;
4382
4383 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4384 "crtc_state = %p scaler_users = 0x%x\n",
4385 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4386 intel_plane ? intel_plane->base.base.id :
4387 intel_crtc->base.base.id, crtc_state,
4388 scaler_state->scaler_users);
4389 *scaler_id = -1;
4390 }
4391 return 0;
4392 }
4393
4394 /* range checks */
4395 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4396 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4397
4398 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4399 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4400 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4401 "size is out of scaler range\n",
4402 intel_plane ? "PLANE" : "CRTC",
4403 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4404 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4405 return -EINVAL;
4406 }
4407
4408 /* check colorkey */
4409 if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4410 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4411 intel_plane->base.base.id);
4412 return -EINVAL;
4413 }
4414
4415 /* Check src format */
4416 if (intel_plane) {
4417 switch (fb->pixel_format) {
4418 case DRM_FORMAT_RGB565:
4419 case DRM_FORMAT_XBGR8888:
4420 case DRM_FORMAT_XRGB8888:
4421 case DRM_FORMAT_ABGR8888:
4422 case DRM_FORMAT_ARGB8888:
4423 case DRM_FORMAT_XRGB2101010:
4424 case DRM_FORMAT_ARGB2101010:
4425 case DRM_FORMAT_XBGR2101010:
4426 case DRM_FORMAT_ABGR2101010:
4427 case DRM_FORMAT_YUYV:
4428 case DRM_FORMAT_YVYU:
4429 case DRM_FORMAT_UYVY:
4430 case DRM_FORMAT_VYUY:
4431 break;
4432 default:
4433 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4434 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4435 return -EINVAL;
4436 }
4437 }
4438
4439 /* mark this plane as a scaler user in crtc_state */
4440 scaler_state->scaler_users |= (1 << idx);
4441 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4442 "crtc_state = %p scaler_users = 0x%x\n",
4443 intel_plane ? "PLANE" : "CRTC",
4444 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4445 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4446 return 0;
4447}
4448
4449static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
bd2e244f
JB
4450{
4451 struct drm_device *dev = crtc->base.dev;
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 int pipe = crtc->pipe;
a1b2278e
CK
4454 struct intel_crtc_scaler_state *scaler_state =
4455 &crtc->config->scaler_state;
4456
4457 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4458
4459 /* To update pfit, first update scaler state */
4460 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4461 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4462 skl_detach_scalers(crtc);
4463 if (!enable)
4464 return;
bd2e244f 4465
6e3c9717 4466 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4467 int id;
4468
4469 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4470 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4471 return;
4472 }
4473
4474 id = scaler_state->scaler_id;
4475 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4476 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4477 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4478 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4479
4480 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4481 }
4482}
4483
b074cec8
JB
4484static void ironlake_pfit_enable(struct intel_crtc *crtc)
4485{
4486 struct drm_device *dev = crtc->base.dev;
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 int pipe = crtc->pipe;
4489
6e3c9717 4490 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4491 /* Force use of hard-coded filter coefficients
4492 * as some pre-programmed values are broken,
4493 * e.g. x201.
4494 */
4495 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4496 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4497 PF_PIPE_SEL_IVB(pipe));
4498 else
4499 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4500 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4501 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4502 }
4503}
4504
4a3b8769 4505static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4506{
4507 struct drm_device *dev = crtc->dev;
4508 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4509 struct drm_plane *plane;
bb53d4ae
VS
4510 struct intel_plane *intel_plane;
4511
af2b653b
MR
4512 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4513 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4514 if (intel_plane->pipe == pipe)
4515 intel_plane_restore(&intel_plane->base);
af2b653b 4516 }
bb53d4ae
VS
4517}
4518
0d703d4e
MR
4519/*
4520 * Disable a plane internally without actually modifying the plane's state.
4521 * This will allow us to easily restore the plane later by just reprogramming
4522 * its state.
4523 */
4524static void disable_plane_internal(struct drm_plane *plane)
4525{
4526 struct intel_plane *intel_plane = to_intel_plane(plane);
4527 struct drm_plane_state *state =
4528 plane->funcs->atomic_duplicate_state(plane);
4529 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4530
4531 intel_state->visible = false;
4532 intel_plane->commit_plane(plane, intel_state);
4533
4534 intel_plane_destroy_state(plane, state);
4535}
4536
4a3b8769 4537static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4538{
4539 struct drm_device *dev = crtc->dev;
4540 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4541 struct drm_plane *plane;
bb53d4ae
VS
4542 struct intel_plane *intel_plane;
4543
af2b653b
MR
4544 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4545 intel_plane = to_intel_plane(plane);
0d703d4e
MR
4546 if (plane->fb && intel_plane->pipe == pipe)
4547 disable_plane_internal(plane);
af2b653b 4548 }
bb53d4ae
VS
4549}
4550
20bc8673 4551void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4552{
cea165c3
VS
4553 struct drm_device *dev = crtc->base.dev;
4554 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4555
6e3c9717 4556 if (!crtc->config->ips_enabled)
d77e4531
PZ
4557 return;
4558
cea165c3
VS
4559 /* We can only enable IPS after we enable a plane and wait for a vblank */
4560 intel_wait_for_vblank(dev, crtc->pipe);
4561
d77e4531 4562 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4563 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4564 mutex_lock(&dev_priv->rps.hw_lock);
4565 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4566 mutex_unlock(&dev_priv->rps.hw_lock);
4567 /* Quoting Art Runyan: "its not safe to expect any particular
4568 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4569 * mailbox." Moreover, the mailbox may return a bogus state,
4570 * so we need to just enable it and continue on.
2a114cc1
BW
4571 */
4572 } else {
4573 I915_WRITE(IPS_CTL, IPS_ENABLE);
4574 /* The bit only becomes 1 in the next vblank, so this wait here
4575 * is essentially intel_wait_for_vblank. If we don't have this
4576 * and don't wait for vblanks until the end of crtc_enable, then
4577 * the HW state readout code will complain that the expected
4578 * IPS_CTL value is not the one we read. */
4579 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4580 DRM_ERROR("Timed out waiting for IPS enable\n");
4581 }
d77e4531
PZ
4582}
4583
20bc8673 4584void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4585{
4586 struct drm_device *dev = crtc->base.dev;
4587 struct drm_i915_private *dev_priv = dev->dev_private;
4588
6e3c9717 4589 if (!crtc->config->ips_enabled)
d77e4531
PZ
4590 return;
4591
4592 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4593 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4594 mutex_lock(&dev_priv->rps.hw_lock);
4595 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4596 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4597 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4598 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4599 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4600 } else {
2a114cc1 4601 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4602 POSTING_READ(IPS_CTL);
4603 }
d77e4531
PZ
4604
4605 /* We need to wait for a vblank before we can disable the plane. */
4606 intel_wait_for_vblank(dev, crtc->pipe);
4607}
4608
4609/** Loads the palette/gamma unit for the CRTC with the prepared values */
4610static void intel_crtc_load_lut(struct drm_crtc *crtc)
4611{
4612 struct drm_device *dev = crtc->dev;
4613 struct drm_i915_private *dev_priv = dev->dev_private;
4614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4615 enum pipe pipe = intel_crtc->pipe;
4616 int palreg = PALETTE(pipe);
4617 int i;
4618 bool reenable_ips = false;
4619
4620 /* The clocks have to be on to load the palette. */
83d65738 4621 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4622 return;
4623
4624 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4625 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4626 assert_dsi_pll_enabled(dev_priv);
4627 else
4628 assert_pll_enabled(dev_priv, pipe);
4629 }
4630
4631 /* use legacy palette for Ironlake */
7a1db49a 4632 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4633 palreg = LGC_PALETTE(pipe);
4634
4635 /* Workaround : Do not read or write the pipe palette/gamma data while
4636 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4637 */
6e3c9717 4638 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4639 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4640 GAMMA_MODE_MODE_SPLIT)) {
4641 hsw_disable_ips(intel_crtc);
4642 reenable_ips = true;
4643 }
4644
4645 for (i = 0; i < 256; i++) {
4646 I915_WRITE(palreg + 4 * i,
4647 (intel_crtc->lut_r[i] << 16) |
4648 (intel_crtc->lut_g[i] << 8) |
4649 intel_crtc->lut_b[i]);
4650 }
4651
4652 if (reenable_ips)
4653 hsw_enable_ips(intel_crtc);
4654}
4655
d3eedb1a
VS
4656static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4657{
4658 if (!enable && intel_crtc->overlay) {
4659 struct drm_device *dev = intel_crtc->base.dev;
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 mutex_lock(&dev->struct_mutex);
4663 dev_priv->mm.interruptible = false;
4664 (void) intel_overlay_switch_off(intel_crtc->overlay);
4665 dev_priv->mm.interruptible = true;
4666 mutex_unlock(&dev->struct_mutex);
4667 }
4668
4669 /* Let userspace switch the overlay on again. In most cases userspace
4670 * has to recompute where to put it anyway.
4671 */
4672}
4673
d3eedb1a 4674static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4675{
4676 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4678 int pipe = intel_crtc->pipe;
a5c4d7bc 4679
fdd508a6 4680 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4681 intel_enable_sprite_planes(crtc);
a5c4d7bc 4682 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4683 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4684
4685 hsw_enable_ips(intel_crtc);
4686
4687 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4688 intel_fbc_update(dev);
a5c4d7bc 4689 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4690
4691 /*
4692 * FIXME: Once we grow proper nuclear flip support out of this we need
4693 * to compute the mask of flip planes precisely. For the time being
4694 * consider this a flip from a NULL plane.
4695 */
4696 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4697}
4698
d3eedb1a 4699static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4700{
4701 struct drm_device *dev = crtc->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4705
4706 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4707
e35fef21 4708 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4709 intel_fbc_disable(dev);
a5c4d7bc
VS
4710
4711 hsw_disable_ips(intel_crtc);
4712
d3eedb1a 4713 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4714 intel_crtc_update_cursor(crtc, false);
4a3b8769 4715 intel_disable_sprite_planes(crtc);
fdd508a6 4716 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4717
f99d7069
DV
4718 /*
4719 * FIXME: Once we grow proper nuclear flip support out of this we need
4720 * to compute the mask of flip planes precisely. For the time being
4721 * consider this a flip to a NULL plane.
4722 */
4723 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4724}
4725
f67a559d
JB
4726static void ironlake_crtc_enable(struct drm_crtc *crtc)
4727{
4728 struct drm_device *dev = crtc->dev;
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4731 struct intel_encoder *encoder;
f67a559d 4732 int pipe = intel_crtc->pipe;
f67a559d 4733
83d65738 4734 WARN_ON(!crtc->state->enable);
08a48469 4735
f67a559d
JB
4736 if (intel_crtc->active)
4737 return;
4738
6e3c9717 4739 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4740 intel_prepare_shared_dpll(intel_crtc);
4741
6e3c9717 4742 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4743 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4744
4745 intel_set_pipe_timings(intel_crtc);
4746
6e3c9717 4747 if (intel_crtc->config->has_pch_encoder) {
29407aab 4748 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4749 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4750 }
4751
4752 ironlake_set_pipeconf(crtc);
4753
f67a559d 4754 intel_crtc->active = true;
8664281b 4755
a72e4c9f
DV
4756 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4757 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4758
f6736a1a 4759 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4760 if (encoder->pre_enable)
4761 encoder->pre_enable(encoder);
f67a559d 4762
6e3c9717 4763 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4764 /* Note: FDI PLL enabling _must_ be done before we enable the
4765 * cpu pipes, hence this is separate from all the other fdi/pch
4766 * enabling. */
88cefb6c 4767 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4768 } else {
4769 assert_fdi_tx_disabled(dev_priv, pipe);
4770 assert_fdi_rx_disabled(dev_priv, pipe);
4771 }
f67a559d 4772
b074cec8 4773 ironlake_pfit_enable(intel_crtc);
f67a559d 4774
9c54c0dd
JB
4775 /*
4776 * On ILK+ LUT must be loaded before the pipe is running but with
4777 * clocks enabled
4778 */
4779 intel_crtc_load_lut(crtc);
4780
f37fcc2a 4781 intel_update_watermarks(crtc);
e1fdc473 4782 intel_enable_pipe(intel_crtc);
f67a559d 4783
6e3c9717 4784 if (intel_crtc->config->has_pch_encoder)
f67a559d 4785 ironlake_pch_enable(crtc);
c98e9dcf 4786
f9b61ff6
DV
4787 assert_vblank_disabled(crtc);
4788 drm_crtc_vblank_on(crtc);
4789
fa5c73b1
DV
4790 for_each_encoder_on_crtc(dev, crtc, encoder)
4791 encoder->enable(encoder);
61b77ddd
DV
4792
4793 if (HAS_PCH_CPT(dev))
a1520318 4794 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4795
d3eedb1a 4796 intel_crtc_enable_planes(crtc);
6be4a607
JB
4797}
4798
42db64ef
PZ
4799/* IPS only exists on ULT machines and is tied to pipe A. */
4800static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4801{
f5adf94e 4802 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4803}
4804
e4916946
PZ
4805/*
4806 * This implements the workaround described in the "notes" section of the mode
4807 * set sequence documentation. When going from no pipes or single pipe to
4808 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4809 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4810 */
4811static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4812{
4813 struct drm_device *dev = crtc->base.dev;
4814 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4815
4816 /* We want to get the other_active_crtc only if there's only 1 other
4817 * active crtc. */
d3fcc808 4818 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4819 if (!crtc_it->active || crtc_it == crtc)
4820 continue;
4821
4822 if (other_active_crtc)
4823 return;
4824
4825 other_active_crtc = crtc_it;
4826 }
4827 if (!other_active_crtc)
4828 return;
4829
4830 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4831 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4832}
4833
4f771f10
PZ
4834static void haswell_crtc_enable(struct drm_crtc *crtc)
4835{
4836 struct drm_device *dev = crtc->dev;
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4839 struct intel_encoder *encoder;
4840 int pipe = intel_crtc->pipe;
4f771f10 4841
83d65738 4842 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4843
4844 if (intel_crtc->active)
4845 return;
4846
df8ad70c
DV
4847 if (intel_crtc_to_shared_dpll(intel_crtc))
4848 intel_enable_shared_dpll(intel_crtc);
4849
6e3c9717 4850 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4851 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4852
4853 intel_set_pipe_timings(intel_crtc);
4854
6e3c9717
ACO
4855 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4856 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4857 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4858 }
4859
6e3c9717 4860 if (intel_crtc->config->has_pch_encoder) {
229fca97 4861 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4862 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4863 }
4864
4865 haswell_set_pipeconf(crtc);
4866
4867 intel_set_pipe_csc(crtc);
4868
4f771f10 4869 intel_crtc->active = true;
8664281b 4870
a72e4c9f 4871 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4872 for_each_encoder_on_crtc(dev, crtc, encoder)
4873 if (encoder->pre_enable)
4874 encoder->pre_enable(encoder);
4875
6e3c9717 4876 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4877 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4878 true);
4fe9467d
ID
4879 dev_priv->display.fdi_link_train(crtc);
4880 }
4881
1f544388 4882 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4883
bd2e244f 4884 if (IS_SKYLAKE(dev))
a1b2278e 4885 skylake_pfit_update(intel_crtc, 1);
bd2e244f
JB
4886 else
4887 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4888
4889 /*
4890 * On ILK+ LUT must be loaded before the pipe is running but with
4891 * clocks enabled
4892 */
4893 intel_crtc_load_lut(crtc);
4894
1f544388 4895 intel_ddi_set_pipe_settings(crtc);
8228c251 4896 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4897
f37fcc2a 4898 intel_update_watermarks(crtc);
e1fdc473 4899 intel_enable_pipe(intel_crtc);
42db64ef 4900
6e3c9717 4901 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4902 lpt_pch_enable(crtc);
4f771f10 4903
6e3c9717 4904 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4905 intel_ddi_set_vc_payload_alloc(crtc, true);
4906
f9b61ff6
DV
4907 assert_vblank_disabled(crtc);
4908 drm_crtc_vblank_on(crtc);
4909
8807e55b 4910 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4911 encoder->enable(encoder);
8807e55b
JN
4912 intel_opregion_notify_encoder(encoder, true);
4913 }
4f771f10 4914
e4916946
PZ
4915 /* If we change the relative order between pipe/planes enabling, we need
4916 * to change the workaround. */
4917 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4918 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4919}
4920
3f8dce3a
DV
4921static void ironlake_pfit_disable(struct intel_crtc *crtc)
4922{
4923 struct drm_device *dev = crtc->base.dev;
4924 struct drm_i915_private *dev_priv = dev->dev_private;
4925 int pipe = crtc->pipe;
4926
4927 /* To avoid upsetting the power well on haswell only disable the pfit if
4928 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4929 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4930 I915_WRITE(PF_CTL(pipe), 0);
4931 I915_WRITE(PF_WIN_POS(pipe), 0);
4932 I915_WRITE(PF_WIN_SZ(pipe), 0);
4933 }
4934}
4935
6be4a607
JB
4936static void ironlake_crtc_disable(struct drm_crtc *crtc)
4937{
4938 struct drm_device *dev = crtc->dev;
4939 struct drm_i915_private *dev_priv = dev->dev_private;
4940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4941 struct intel_encoder *encoder;
6be4a607 4942 int pipe = intel_crtc->pipe;
5eddb70b 4943 u32 reg, temp;
b52eb4dc 4944
f7abfe8b
CW
4945 if (!intel_crtc->active)
4946 return;
4947
d3eedb1a 4948 intel_crtc_disable_planes(crtc);
a5c4d7bc 4949
ea9d758d
DV
4950 for_each_encoder_on_crtc(dev, crtc, encoder)
4951 encoder->disable(encoder);
4952
f9b61ff6
DV
4953 drm_crtc_vblank_off(crtc);
4954 assert_vblank_disabled(crtc);
4955
6e3c9717 4956 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4957 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4958
575f7ab7 4959 intel_disable_pipe(intel_crtc);
32f9d658 4960
3f8dce3a 4961 ironlake_pfit_disable(intel_crtc);
2c07245f 4962
bf49ec8c
DV
4963 for_each_encoder_on_crtc(dev, crtc, encoder)
4964 if (encoder->post_disable)
4965 encoder->post_disable(encoder);
2c07245f 4966
6e3c9717 4967 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4968 ironlake_fdi_disable(crtc);
913d8d11 4969
d925c59a 4970 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4971
d925c59a
DV
4972 if (HAS_PCH_CPT(dev)) {
4973 /* disable TRANS_DP_CTL */
4974 reg = TRANS_DP_CTL(pipe);
4975 temp = I915_READ(reg);
4976 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4977 TRANS_DP_PORT_SEL_MASK);
4978 temp |= TRANS_DP_PORT_SEL_NONE;
4979 I915_WRITE(reg, temp);
4980
4981 /* disable DPLL_SEL */
4982 temp = I915_READ(PCH_DPLL_SEL);
11887397 4983 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4984 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4985 }
e3421a18 4986
d925c59a 4987 /* disable PCH DPLL */
e72f9fbf 4988 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4989
d925c59a
DV
4990 ironlake_fdi_pll_disable(intel_crtc);
4991 }
6b383a7f 4992
f7abfe8b 4993 intel_crtc->active = false;
46ba614c 4994 intel_update_watermarks(crtc);
d1ebd816
BW
4995
4996 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4997 intel_fbc_update(dev);
d1ebd816 4998 mutex_unlock(&dev->struct_mutex);
6be4a607 4999}
1b3c7a47 5000
4f771f10 5001static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5002{
4f771f10
PZ
5003 struct drm_device *dev = crtc->dev;
5004 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5006 struct intel_encoder *encoder;
6e3c9717 5007 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5008
4f771f10
PZ
5009 if (!intel_crtc->active)
5010 return;
5011
d3eedb1a 5012 intel_crtc_disable_planes(crtc);
dda9a66a 5013
8807e55b
JN
5014 for_each_encoder_on_crtc(dev, crtc, encoder) {
5015 intel_opregion_notify_encoder(encoder, false);
4f771f10 5016 encoder->disable(encoder);
8807e55b 5017 }
4f771f10 5018
f9b61ff6
DV
5019 drm_crtc_vblank_off(crtc);
5020 assert_vblank_disabled(crtc);
5021
6e3c9717 5022 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5023 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5024 false);
575f7ab7 5025 intel_disable_pipe(intel_crtc);
4f771f10 5026
6e3c9717 5027 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5028 intel_ddi_set_vc_payload_alloc(crtc, false);
5029
ad80a810 5030 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5031
bd2e244f 5032 if (IS_SKYLAKE(dev))
a1b2278e 5033 skylake_pfit_update(intel_crtc, 0);
bd2e244f
JB
5034 else
5035 ironlake_pfit_disable(intel_crtc);
4f771f10 5036
1f544388 5037 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5038
6e3c9717 5039 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5040 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5041 intel_ddi_fdi_disable(crtc);
83616634 5042 }
4f771f10 5043
97b040aa
ID
5044 for_each_encoder_on_crtc(dev, crtc, encoder)
5045 if (encoder->post_disable)
5046 encoder->post_disable(encoder);
5047
4f771f10 5048 intel_crtc->active = false;
46ba614c 5049 intel_update_watermarks(crtc);
4f771f10
PZ
5050
5051 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5052 intel_fbc_update(dev);
4f771f10 5053 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
5054
5055 if (intel_crtc_to_shared_dpll(intel_crtc))
5056 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
5057}
5058
ee7b9f93
JB
5059static void ironlake_crtc_off(struct drm_crtc *crtc)
5060{
5061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 5062 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
5063}
5064
6441ab5f 5065
2dd24552
JB
5066static void i9xx_pfit_enable(struct intel_crtc *crtc)
5067{
5068 struct drm_device *dev = crtc->base.dev;
5069 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5070 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5071
681a8504 5072 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5073 return;
5074
2dd24552 5075 /*
c0b03411
DV
5076 * The panel fitter should only be adjusted whilst the pipe is disabled,
5077 * according to register description and PRM.
2dd24552 5078 */
c0b03411
DV
5079 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5080 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5081
b074cec8
JB
5082 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5083 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5084
5085 /* Border color in case we don't scale up to the full screen. Black by
5086 * default, change to something else for debugging. */
5087 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5088}
5089
d05410f9
DA
5090static enum intel_display_power_domain port_to_power_domain(enum port port)
5091{
5092 switch (port) {
5093 case PORT_A:
5094 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5095 case PORT_B:
5096 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5097 case PORT_C:
5098 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5099 case PORT_D:
5100 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5101 default:
5102 WARN_ON_ONCE(1);
5103 return POWER_DOMAIN_PORT_OTHER;
5104 }
5105}
5106
77d22dca
ID
5107#define for_each_power_domain(domain, mask) \
5108 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5109 if ((1 << (domain)) & (mask))
5110
319be8ae
ID
5111enum intel_display_power_domain
5112intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5113{
5114 struct drm_device *dev = intel_encoder->base.dev;
5115 struct intel_digital_port *intel_dig_port;
5116
5117 switch (intel_encoder->type) {
5118 case INTEL_OUTPUT_UNKNOWN:
5119 /* Only DDI platforms should ever use this output type */
5120 WARN_ON_ONCE(!HAS_DDI(dev));
5121 case INTEL_OUTPUT_DISPLAYPORT:
5122 case INTEL_OUTPUT_HDMI:
5123 case INTEL_OUTPUT_EDP:
5124 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5125 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5126 case INTEL_OUTPUT_DP_MST:
5127 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5128 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5129 case INTEL_OUTPUT_ANALOG:
5130 return POWER_DOMAIN_PORT_CRT;
5131 case INTEL_OUTPUT_DSI:
5132 return POWER_DOMAIN_PORT_DSI;
5133 default:
5134 return POWER_DOMAIN_PORT_OTHER;
5135 }
5136}
5137
5138static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5139{
319be8ae
ID
5140 struct drm_device *dev = crtc->dev;
5141 struct intel_encoder *intel_encoder;
5142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5144 unsigned long mask;
5145 enum transcoder transcoder;
5146
5147 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5148
5149 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5150 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5151 if (intel_crtc->config->pch_pfit.enabled ||
5152 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5153 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5154
319be8ae
ID
5155 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5156 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5157
77d22dca
ID
5158 return mask;
5159}
5160
679dacd4 5161static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 5162{
679dacd4 5163 struct drm_device *dev = state->dev;
77d22dca
ID
5164 struct drm_i915_private *dev_priv = dev->dev_private;
5165 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5166 struct intel_crtc *crtc;
5167
5168 /*
5169 * First get all needed power domains, then put all unneeded, to avoid
5170 * any unnecessary toggling of the power wells.
5171 */
d3fcc808 5172 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5173 enum intel_display_power_domain domain;
5174
83d65738 5175 if (!crtc->base.state->enable)
77d22dca
ID
5176 continue;
5177
319be8ae 5178 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
5179
5180 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5181 intel_display_power_get(dev_priv, domain);
5182 }
5183
50f6e502 5184 if (dev_priv->display.modeset_global_resources)
679dacd4 5185 dev_priv->display.modeset_global_resources(state);
50f6e502 5186
d3fcc808 5187 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5188 enum intel_display_power_domain domain;
5189
5190 for_each_power_domain(domain, crtc->enabled_power_domains)
5191 intel_display_power_put(dev_priv, domain);
5192
5193 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5194 }
5195
5196 intel_display_set_init_power(dev_priv, false);
5197}
5198
f8437dd1
VK
5199void broxton_set_cdclk(struct drm_device *dev, int frequency)
5200{
5201 struct drm_i915_private *dev_priv = dev->dev_private;
5202 uint32_t divider;
5203 uint32_t ratio;
5204 uint32_t current_freq;
5205 int ret;
5206
5207 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5208 switch (frequency) {
5209 case 144000:
5210 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5211 ratio = BXT_DE_PLL_RATIO(60);
5212 break;
5213 case 288000:
5214 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5215 ratio = BXT_DE_PLL_RATIO(60);
5216 break;
5217 case 384000:
5218 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5219 ratio = BXT_DE_PLL_RATIO(60);
5220 break;
5221 case 576000:
5222 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5223 ratio = BXT_DE_PLL_RATIO(60);
5224 break;
5225 case 624000:
5226 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5227 ratio = BXT_DE_PLL_RATIO(65);
5228 break;
5229 case 19200:
5230 /*
5231 * Bypass frequency with DE PLL disabled. Init ratio, divider
5232 * to suppress GCC warning.
5233 */
5234 ratio = 0;
5235 divider = 0;
5236 break;
5237 default:
5238 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5239
5240 return;
5241 }
5242
5243 mutex_lock(&dev_priv->rps.hw_lock);
5244 /* Inform power controller of upcoming frequency change */
5245 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5246 0x80000000);
5247 mutex_unlock(&dev_priv->rps.hw_lock);
5248
5249 if (ret) {
5250 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5251 ret, frequency);
5252 return;
5253 }
5254
5255 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5256 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5257 current_freq = current_freq * 500 + 1000;
5258
5259 /*
5260 * DE PLL has to be disabled when
5261 * - setting to 19.2MHz (bypass, PLL isn't used)
5262 * - before setting to 624MHz (PLL needs toggling)
5263 * - before setting to any frequency from 624MHz (PLL needs toggling)
5264 */
5265 if (frequency == 19200 || frequency == 624000 ||
5266 current_freq == 624000) {
5267 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5268 /* Timeout 200us */
5269 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5270 1))
5271 DRM_ERROR("timout waiting for DE PLL unlock\n");
5272 }
5273
5274 if (frequency != 19200) {
5275 uint32_t val;
5276
5277 val = I915_READ(BXT_DE_PLL_CTL);
5278 val &= ~BXT_DE_PLL_RATIO_MASK;
5279 val |= ratio;
5280 I915_WRITE(BXT_DE_PLL_CTL, val);
5281
5282 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5283 /* Timeout 200us */
5284 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5285 DRM_ERROR("timeout waiting for DE PLL lock\n");
5286
5287 val = I915_READ(CDCLK_CTL);
5288 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5289 val |= divider;
5290 /*
5291 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5292 * enable otherwise.
5293 */
5294 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5295 if (frequency >= 500000)
5296 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5297
5298 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5299 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5300 val |= (frequency - 1000) / 500;
5301 I915_WRITE(CDCLK_CTL, val);
5302 }
5303
5304 mutex_lock(&dev_priv->rps.hw_lock);
5305 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5306 DIV_ROUND_UP(frequency, 25000));
5307 mutex_unlock(&dev_priv->rps.hw_lock);
5308
5309 if (ret) {
5310 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5311 ret, frequency);
5312 return;
5313 }
5314
5315 dev_priv->cdclk_freq = frequency;
5316}
5317
5318void broxton_init_cdclk(struct drm_device *dev)
5319{
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 uint32_t val;
5322
5323 /*
5324 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5325 * or else the reset will hang because there is no PCH to respond.
5326 * Move the handshake programming to initialization sequence.
5327 * Previously was left up to BIOS.
5328 */
5329 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5330 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5331 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5332
5333 /* Enable PG1 for cdclk */
5334 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5335
5336 /* check if cd clock is enabled */
5337 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5338 DRM_DEBUG_KMS("Display already initialized\n");
5339 return;
5340 }
5341
5342 /*
5343 * FIXME:
5344 * - The initial CDCLK needs to be read from VBT.
5345 * Need to make this change after VBT has changes for BXT.
5346 * - check if setting the max (or any) cdclk freq is really necessary
5347 * here, it belongs to modeset time
5348 */
5349 broxton_set_cdclk(dev, 624000);
5350
5351 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5352 udelay(10);
5353
5354 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5355 DRM_ERROR("DBuf power enable timeout!\n");
5356}
5357
5358void broxton_uninit_cdclk(struct drm_device *dev)
5359{
5360 struct drm_i915_private *dev_priv = dev->dev_private;
5361
5362 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5363 udelay(10);
5364
5365 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5366 DRM_ERROR("DBuf power disable timeout!\n");
5367
5368 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5369 broxton_set_cdclk(dev, 19200);
5370
5371 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5372}
5373
dfcab17e 5374/* returns HPLL frequency in kHz */
f8bf63fd 5375static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5376{
586f49dc 5377 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5378
586f49dc
JB
5379 /* Obtain SKU information */
5380 mutex_lock(&dev_priv->dpio_lock);
5381 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5382 CCK_FUSE_HPLL_FREQ_MASK;
5383 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 5384
dfcab17e 5385 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5386}
5387
f8bf63fd
VS
5388static void vlv_update_cdclk(struct drm_device *dev)
5389{
5390 struct drm_i915_private *dev_priv = dev->dev_private;
5391
164dfd28 5392 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 5393 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
164dfd28 5394 dev_priv->cdclk_freq);
f8bf63fd
VS
5395
5396 /*
5397 * Program the gmbus_freq based on the cdclk frequency.
5398 * BSpec erroneously claims we should aim for 4MHz, but
5399 * in fact 1MHz is the correct frequency.
5400 */
164dfd28 5401 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
f8bf63fd
VS
5402}
5403
30a970c6
JB
5404/* Adjust CDclk dividers to allow high res or save power if possible */
5405static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5406{
5407 struct drm_i915_private *dev_priv = dev->dev_private;
5408 u32 val, cmd;
5409
164dfd28
VK
5410 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5411 != dev_priv->cdclk_freq);
d60c4473 5412
dfcab17e 5413 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5414 cmd = 2;
dfcab17e 5415 else if (cdclk == 266667)
30a970c6
JB
5416 cmd = 1;
5417 else
5418 cmd = 0;
5419
5420 mutex_lock(&dev_priv->rps.hw_lock);
5421 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5422 val &= ~DSPFREQGUAR_MASK;
5423 val |= (cmd << DSPFREQGUAR_SHIFT);
5424 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5425 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5426 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5427 50)) {
5428 DRM_ERROR("timed out waiting for CDclk change\n");
5429 }
5430 mutex_unlock(&dev_priv->rps.hw_lock);
5431
dfcab17e 5432 if (cdclk == 400000) {
6bcda4f0 5433 u32 divider;
30a970c6 5434
6bcda4f0 5435 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5436
5437 mutex_lock(&dev_priv->dpio_lock);
5438 /* adjust cdclk divider */
5439 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5440 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5441 val |= divider;
5442 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5443
5444 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5445 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5446 50))
5447 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5448 mutex_unlock(&dev_priv->dpio_lock);
5449 }
5450
5451 mutex_lock(&dev_priv->dpio_lock);
5452 /* adjust self-refresh exit latency value */
5453 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5454 val &= ~0x7f;
5455
5456 /*
5457 * For high bandwidth configs, we set a higher latency in the bunit
5458 * so that the core display fetch happens in time to avoid underruns.
5459 */
dfcab17e 5460 if (cdclk == 400000)
30a970c6
JB
5461 val |= 4500 / 250; /* 4.5 usec */
5462 else
5463 val |= 3000 / 250; /* 3.0 usec */
5464 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5465 mutex_unlock(&dev_priv->dpio_lock);
5466
f8bf63fd 5467 vlv_update_cdclk(dev);
30a970c6
JB
5468}
5469
383c5a6a
VS
5470static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5471{
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 u32 val, cmd;
5474
164dfd28
VK
5475 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5476 != dev_priv->cdclk_freq);
383c5a6a
VS
5477
5478 switch (cdclk) {
383c5a6a
VS
5479 case 333333:
5480 case 320000:
383c5a6a 5481 case 266667:
383c5a6a 5482 case 200000:
383c5a6a
VS
5483 break;
5484 default:
5f77eeb0 5485 MISSING_CASE(cdclk);
383c5a6a
VS
5486 return;
5487 }
5488
9d0d3fda
VS
5489 /*
5490 * Specs are full of misinformation, but testing on actual
5491 * hardware has shown that we just need to write the desired
5492 * CCK divider into the Punit register.
5493 */
5494 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5495
383c5a6a
VS
5496 mutex_lock(&dev_priv->rps.hw_lock);
5497 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5498 val &= ~DSPFREQGUAR_MASK_CHV;
5499 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5500 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5501 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5502 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5503 50)) {
5504 DRM_ERROR("timed out waiting for CDclk change\n");
5505 }
5506 mutex_unlock(&dev_priv->rps.hw_lock);
5507
5508 vlv_update_cdclk(dev);
5509}
5510
30a970c6
JB
5511static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5512 int max_pixclk)
5513{
6bcda4f0 5514 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5515 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5516
30a970c6
JB
5517 /*
5518 * Really only a few cases to deal with, as only 4 CDclks are supported:
5519 * 200MHz
5520 * 267MHz
29dc7ef3 5521 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5522 * 400MHz (VLV only)
5523 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5524 * of the lower bin and adjust if needed.
e37c67a1
VS
5525 *
5526 * We seem to get an unstable or solid color picture at 200MHz.
5527 * Not sure what's wrong. For now use 200MHz only when all pipes
5528 * are off.
30a970c6 5529 */
6cca3195
VS
5530 if (!IS_CHERRYVIEW(dev_priv) &&
5531 max_pixclk > freq_320*limit/100)
dfcab17e 5532 return 400000;
6cca3195 5533 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5534 return freq_320;
e37c67a1 5535 else if (max_pixclk > 0)
dfcab17e 5536 return 266667;
e37c67a1
VS
5537 else
5538 return 200000;
30a970c6
JB
5539}
5540
f8437dd1
VK
5541static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5542 int max_pixclk)
5543{
5544 /*
5545 * FIXME:
5546 * - remove the guardband, it's not needed on BXT
5547 * - set 19.2MHz bypass frequency if there are no active pipes
5548 */
5549 if (max_pixclk > 576000*9/10)
5550 return 624000;
5551 else if (max_pixclk > 384000*9/10)
5552 return 576000;
5553 else if (max_pixclk > 288000*9/10)
5554 return 384000;
5555 else if (max_pixclk > 144000*9/10)
5556 return 288000;
5557 else
5558 return 144000;
5559}
5560
2f2d7aa1 5561/* compute the max pixel clock for new configuration */
304603f4 5562static int intel_mode_max_pixclk(struct drm_atomic_state *state)
30a970c6 5563{
304603f4 5564 struct drm_device *dev = state->dev;
30a970c6 5565 struct intel_crtc *intel_crtc;
304603f4 5566 struct intel_crtc_state *crtc_state;
30a970c6
JB
5567 int max_pixclk = 0;
5568
d3fcc808 5569 for_each_intel_crtc(dev, intel_crtc) {
304603f4
ACO
5570 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5571 if (IS_ERR(crtc_state))
5572 return PTR_ERR(crtc_state);
5573
5574 if (!crtc_state->base.enable)
5575 continue;
5576
5577 max_pixclk = max(max_pixclk,
5578 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5579 }
5580
5581 return max_pixclk;
5582}
5583
304603f4 5584static int valleyview_modeset_global_pipes(struct drm_atomic_state *state,
2f2d7aa1 5585 unsigned *prepare_pipes)
30a970c6 5586{
304603f4 5587 struct drm_i915_private *dev_priv = to_i915(state->dev);
30a970c6 5588 struct intel_crtc *intel_crtc;
304603f4 5589 int max_pixclk = intel_mode_max_pixclk(state);
f8437dd1 5590 int cdclk;
304603f4
ACO
5591
5592 if (max_pixclk < 0)
5593 return max_pixclk;
30a970c6 5594
f8437dd1
VK
5595 if (IS_VALLEYVIEW(dev_priv))
5596 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5597 else
5598 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5599
5600 if (cdclk == dev_priv->cdclk_freq)
304603f4 5601 return 0;
30a970c6 5602
2f2d7aa1 5603 /* disable/enable all currently active pipes while we change cdclk */
304603f4 5604 for_each_intel_crtc(state->dev, intel_crtc)
83d65738 5605 if (intel_crtc->base.state->enable)
30a970c6 5606 *prepare_pipes |= (1 << intel_crtc->pipe);
304603f4
ACO
5607
5608 return 0;
30a970c6
JB
5609}
5610
1e69cd74
VS
5611static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5612{
5613 unsigned int credits, default_credits;
5614
5615 if (IS_CHERRYVIEW(dev_priv))
5616 default_credits = PFI_CREDIT(12);
5617 else
5618 default_credits = PFI_CREDIT(8);
5619
164dfd28 5620 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
5621 /* CHV suggested value is 31 or 63 */
5622 if (IS_CHERRYVIEW(dev_priv))
5623 credits = PFI_CREDIT_31;
5624 else
5625 credits = PFI_CREDIT(15);
5626 } else {
5627 credits = default_credits;
5628 }
5629
5630 /*
5631 * WA - write default credits before re-programming
5632 * FIXME: should we also set the resend bit here?
5633 */
5634 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5635 default_credits);
5636
5637 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5638 credits | PFI_CREDIT_RESEND);
5639
5640 /*
5641 * FIXME is this guaranteed to clear
5642 * immediately or should we poll for it?
5643 */
5644 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5645}
5646
679dacd4 5647static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
30a970c6 5648{
679dacd4 5649 struct drm_device *dev = state->dev;
30a970c6 5650 struct drm_i915_private *dev_priv = dev->dev_private;
304603f4
ACO
5651 int max_pixclk = intel_mode_max_pixclk(state);
5652 int req_cdclk;
5653
5654 /* The only reason this can fail is if we fail to add the crtc_state
5655 * to the atomic state. But that can't happen since the call to
5656 * intel_mode_max_pixclk() in valleyview_modeset_global_pipes() (which
5657 * can't have failed otherwise the mode set would be aborted) added all
5658 * the states already. */
5659 if (WARN_ON(max_pixclk < 0))
5660 return;
5661
5662 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
30a970c6 5663
164dfd28 5664 if (req_cdclk != dev_priv->cdclk_freq) {
738c05c0
ID
5665 /*
5666 * FIXME: We can end up here with all power domains off, yet
5667 * with a CDCLK frequency other than the minimum. To account
5668 * for this take the PIPE-A power domain, which covers the HW
5669 * blocks needed for the following programming. This can be
5670 * removed once it's guaranteed that we get here either with
5671 * the minimum CDCLK set, or the required power domains
5672 * enabled.
5673 */
5674 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5675
383c5a6a
VS
5676 if (IS_CHERRYVIEW(dev))
5677 cherryview_set_cdclk(dev, req_cdclk);
5678 else
5679 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5680
1e69cd74
VS
5681 vlv_program_pfi_credits(dev_priv);
5682
738c05c0 5683 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5684 }
30a970c6
JB
5685}
5686
89b667f8
JB
5687static void valleyview_crtc_enable(struct drm_crtc *crtc)
5688{
5689 struct drm_device *dev = crtc->dev;
a72e4c9f 5690 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5692 struct intel_encoder *encoder;
5693 int pipe = intel_crtc->pipe;
23538ef1 5694 bool is_dsi;
89b667f8 5695
83d65738 5696 WARN_ON(!crtc->state->enable);
89b667f8
JB
5697
5698 if (intel_crtc->active)
5699 return;
5700
409ee761 5701 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5702
1ae0d137
VS
5703 if (!is_dsi) {
5704 if (IS_CHERRYVIEW(dev))
6e3c9717 5705 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5706 else
6e3c9717 5707 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5708 }
5b18e57c 5709
6e3c9717 5710 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5711 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5712
5713 intel_set_pipe_timings(intel_crtc);
5714
c14b0485
VS
5715 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5716 struct drm_i915_private *dev_priv = dev->dev_private;
5717
5718 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5719 I915_WRITE(CHV_CANVAS(pipe), 0);
5720 }
5721
5b18e57c
DV
5722 i9xx_set_pipeconf(intel_crtc);
5723
89b667f8 5724 intel_crtc->active = true;
89b667f8 5725
a72e4c9f 5726 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5727
89b667f8
JB
5728 for_each_encoder_on_crtc(dev, crtc, encoder)
5729 if (encoder->pre_pll_enable)
5730 encoder->pre_pll_enable(encoder);
5731
9d556c99
CML
5732 if (!is_dsi) {
5733 if (IS_CHERRYVIEW(dev))
6e3c9717 5734 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5735 else
6e3c9717 5736 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5737 }
89b667f8
JB
5738
5739 for_each_encoder_on_crtc(dev, crtc, encoder)
5740 if (encoder->pre_enable)
5741 encoder->pre_enable(encoder);
5742
2dd24552
JB
5743 i9xx_pfit_enable(intel_crtc);
5744
63cbb074
VS
5745 intel_crtc_load_lut(crtc);
5746
f37fcc2a 5747 intel_update_watermarks(crtc);
e1fdc473 5748 intel_enable_pipe(intel_crtc);
be6a6f8e 5749
4b3a9526
VS
5750 assert_vblank_disabled(crtc);
5751 drm_crtc_vblank_on(crtc);
5752
f9b61ff6
DV
5753 for_each_encoder_on_crtc(dev, crtc, encoder)
5754 encoder->enable(encoder);
5755
9ab0460b 5756 intel_crtc_enable_planes(crtc);
d40d9187 5757
56b80e1f 5758 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5759 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5760}
5761
f13c2ef3
DV
5762static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5763{
5764 struct drm_device *dev = crtc->base.dev;
5765 struct drm_i915_private *dev_priv = dev->dev_private;
5766
6e3c9717
ACO
5767 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5768 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5769}
5770
0b8765c6 5771static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5772{
5773 struct drm_device *dev = crtc->dev;
a72e4c9f 5774 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5776 struct intel_encoder *encoder;
79e53945 5777 int pipe = intel_crtc->pipe;
79e53945 5778
83d65738 5779 WARN_ON(!crtc->state->enable);
08a48469 5780
f7abfe8b
CW
5781 if (intel_crtc->active)
5782 return;
5783
f13c2ef3
DV
5784 i9xx_set_pll_dividers(intel_crtc);
5785
6e3c9717 5786 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5787 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5788
5789 intel_set_pipe_timings(intel_crtc);
5790
5b18e57c
DV
5791 i9xx_set_pipeconf(intel_crtc);
5792
f7abfe8b 5793 intel_crtc->active = true;
6b383a7f 5794
4a3436e8 5795 if (!IS_GEN2(dev))
a72e4c9f 5796 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5797
9d6d9f19
MK
5798 for_each_encoder_on_crtc(dev, crtc, encoder)
5799 if (encoder->pre_enable)
5800 encoder->pre_enable(encoder);
5801
f6736a1a
DV
5802 i9xx_enable_pll(intel_crtc);
5803
2dd24552
JB
5804 i9xx_pfit_enable(intel_crtc);
5805
63cbb074
VS
5806 intel_crtc_load_lut(crtc);
5807
f37fcc2a 5808 intel_update_watermarks(crtc);
e1fdc473 5809 intel_enable_pipe(intel_crtc);
be6a6f8e 5810
4b3a9526
VS
5811 assert_vblank_disabled(crtc);
5812 drm_crtc_vblank_on(crtc);
5813
f9b61ff6
DV
5814 for_each_encoder_on_crtc(dev, crtc, encoder)
5815 encoder->enable(encoder);
5816
9ab0460b 5817 intel_crtc_enable_planes(crtc);
d40d9187 5818
4a3436e8
VS
5819 /*
5820 * Gen2 reports pipe underruns whenever all planes are disabled.
5821 * So don't enable underrun reporting before at least some planes
5822 * are enabled.
5823 * FIXME: Need to fix the logic to work when we turn off all planes
5824 * but leave the pipe running.
5825 */
5826 if (IS_GEN2(dev))
a72e4c9f 5827 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5828
56b80e1f 5829 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5830 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5831}
79e53945 5832
87476d63
DV
5833static void i9xx_pfit_disable(struct intel_crtc *crtc)
5834{
5835 struct drm_device *dev = crtc->base.dev;
5836 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5837
6e3c9717 5838 if (!crtc->config->gmch_pfit.control)
328d8e82 5839 return;
87476d63 5840
328d8e82 5841 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5842
328d8e82
DV
5843 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5844 I915_READ(PFIT_CONTROL));
5845 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5846}
5847
0b8765c6
JB
5848static void i9xx_crtc_disable(struct drm_crtc *crtc)
5849{
5850 struct drm_device *dev = crtc->dev;
5851 struct drm_i915_private *dev_priv = dev->dev_private;
5852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5853 struct intel_encoder *encoder;
0b8765c6 5854 int pipe = intel_crtc->pipe;
ef9c3aee 5855
f7abfe8b
CW
5856 if (!intel_crtc->active)
5857 return;
5858
4a3436e8
VS
5859 /*
5860 * Gen2 reports pipe underruns whenever all planes are disabled.
5861 * So diasble underrun reporting before all the planes get disabled.
5862 * FIXME: Need to fix the logic to work when we turn off all planes
5863 * but leave the pipe running.
5864 */
5865 if (IS_GEN2(dev))
a72e4c9f 5866 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5867
564ed191
ID
5868 /*
5869 * Vblank time updates from the shadow to live plane control register
5870 * are blocked if the memory self-refresh mode is active at that
5871 * moment. So to make sure the plane gets truly disabled, disable
5872 * first the self-refresh mode. The self-refresh enable bit in turn
5873 * will be checked/applied by the HW only at the next frame start
5874 * event which is after the vblank start event, so we need to have a
5875 * wait-for-vblank between disabling the plane and the pipe.
5876 */
5877 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5878 intel_crtc_disable_planes(crtc);
5879
6304cd91
VS
5880 /*
5881 * On gen2 planes are double buffered but the pipe isn't, so we must
5882 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5883 * We also need to wait on all gmch platforms because of the
5884 * self-refresh mode constraint explained above.
6304cd91 5885 */
564ed191 5886 intel_wait_for_vblank(dev, pipe);
6304cd91 5887
4b3a9526
VS
5888 for_each_encoder_on_crtc(dev, crtc, encoder)
5889 encoder->disable(encoder);
5890
f9b61ff6
DV
5891 drm_crtc_vblank_off(crtc);
5892 assert_vblank_disabled(crtc);
5893
575f7ab7 5894 intel_disable_pipe(intel_crtc);
24a1f16d 5895
87476d63 5896 i9xx_pfit_disable(intel_crtc);
24a1f16d 5897
89b667f8
JB
5898 for_each_encoder_on_crtc(dev, crtc, encoder)
5899 if (encoder->post_disable)
5900 encoder->post_disable(encoder);
5901
409ee761 5902 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5903 if (IS_CHERRYVIEW(dev))
5904 chv_disable_pll(dev_priv, pipe);
5905 else if (IS_VALLEYVIEW(dev))
5906 vlv_disable_pll(dev_priv, pipe);
5907 else
1c4e0274 5908 i9xx_disable_pll(intel_crtc);
076ed3b2 5909 }
0b8765c6 5910
4a3436e8 5911 if (!IS_GEN2(dev))
a72e4c9f 5912 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5913
f7abfe8b 5914 intel_crtc->active = false;
46ba614c 5915 intel_update_watermarks(crtc);
f37fcc2a 5916
efa9624e 5917 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5918 intel_fbc_update(dev);
efa9624e 5919 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5920}
5921
ee7b9f93
JB
5922static void i9xx_crtc_off(struct drm_crtc *crtc)
5923{
5924}
5925
b04c5bd6
BF
5926/* Master function to enable/disable CRTC and corresponding power wells */
5927void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5928{
5929 struct drm_device *dev = crtc->dev;
5930 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5932 enum intel_display_power_domain domain;
5933 unsigned long domains;
976f8a20 5934
0e572fe7
DV
5935 if (enable) {
5936 if (!intel_crtc->active) {
e1e9fb84
DV
5937 domains = get_crtc_power_domains(crtc);
5938 for_each_power_domain(domain, domains)
5939 intel_display_power_get(dev_priv, domain);
5940 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5941
5942 dev_priv->display.crtc_enable(crtc);
5943 }
5944 } else {
5945 if (intel_crtc->active) {
5946 dev_priv->display.crtc_disable(crtc);
5947
e1e9fb84
DV
5948 domains = intel_crtc->enabled_power_domains;
5949 for_each_power_domain(domain, domains)
5950 intel_display_power_put(dev_priv, domain);
5951 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5952 }
5953 }
b04c5bd6
BF
5954}
5955
5956/**
5957 * Sets the power management mode of the pipe and plane.
5958 */
5959void intel_crtc_update_dpms(struct drm_crtc *crtc)
5960{
5961 struct drm_device *dev = crtc->dev;
5962 struct intel_encoder *intel_encoder;
5963 bool enable = false;
5964
5965 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5966 enable |= intel_encoder->connectors_active;
5967
5968 intel_crtc_control(crtc, enable);
976f8a20
DV
5969}
5970
cdd59983
CW
5971static void intel_crtc_disable(struct drm_crtc *crtc)
5972{
cdd59983 5973 struct drm_device *dev = crtc->dev;
976f8a20 5974 struct drm_connector *connector;
ee7b9f93 5975 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5976
976f8a20 5977 /* crtc should still be enabled when we disable it. */
83d65738 5978 WARN_ON(!crtc->state->enable);
976f8a20
DV
5979
5980 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5981 dev_priv->display.off(crtc);
5982
70a101f8 5983 drm_plane_helper_disable(crtc->primary);
976f8a20
DV
5984
5985 /* Update computed state. */
5986 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5987 if (!connector->encoder || !connector->encoder->crtc)
5988 continue;
5989
5990 if (connector->encoder->crtc != crtc)
5991 continue;
5992
5993 connector->dpms = DRM_MODE_DPMS_OFF;
5994 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5995 }
5996}
5997
ea5b213a 5998void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5999{
4ef69c7a 6000 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6001
ea5b213a
CW
6002 drm_encoder_cleanup(encoder);
6003 kfree(intel_encoder);
7e7d76c3
JB
6004}
6005
9237329d 6006/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6007 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6008 * state of the entire output pipe. */
9237329d 6009static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6010{
5ab432ef
DV
6011 if (mode == DRM_MODE_DPMS_ON) {
6012 encoder->connectors_active = true;
6013
b2cabb0e 6014 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6015 } else {
6016 encoder->connectors_active = false;
6017
b2cabb0e 6018 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6019 }
79e53945
JB
6020}
6021
0a91ca29
DV
6022/* Cross check the actual hw state with our own modeset state tracking (and it's
6023 * internal consistency). */
b980514c 6024static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6025{
0a91ca29
DV
6026 if (connector->get_hw_state(connector)) {
6027 struct intel_encoder *encoder = connector->encoder;
6028 struct drm_crtc *crtc;
6029 bool encoder_enabled;
6030 enum pipe pipe;
6031
6032 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6033 connector->base.base.id,
c23cc417 6034 connector->base.name);
0a91ca29 6035
0e32b39c
DA
6036 /* there is no real hw state for MST connectors */
6037 if (connector->mst_port)
6038 return;
6039
e2c719b7 6040 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 6041 "wrong connector dpms state\n");
e2c719b7 6042 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 6043 "active connector not linked to encoder\n");
0a91ca29 6044
36cd7444 6045 if (encoder) {
e2c719b7 6046 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
6047 "encoder->connectors_active not set\n");
6048
6049 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
6050 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6051 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 6052 return;
0a91ca29 6053
36cd7444 6054 crtc = encoder->base.crtc;
0a91ca29 6055
83d65738
MR
6056 I915_STATE_WARN(!crtc->state->enable,
6057 "crtc not enabled\n");
e2c719b7
RC
6058 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6059 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
6060 "encoder active on the wrong pipe\n");
6061 }
0a91ca29 6062 }
79e53945
JB
6063}
6064
9bdbd0b9
ACO
6065int intel_connector_init(struct intel_connector *connector)
6066{
6067 struct drm_connector_state *connector_state;
6068
6069 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6070 if (!connector_state)
6071 return -ENOMEM;
6072
6073 connector->base.state = connector_state;
6074 return 0;
6075}
6076
6077struct intel_connector *intel_connector_alloc(void)
6078{
6079 struct intel_connector *connector;
6080
6081 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6082 if (!connector)
6083 return NULL;
6084
6085 if (intel_connector_init(connector) < 0) {
6086 kfree(connector);
6087 return NULL;
6088 }
6089
6090 return connector;
6091}
6092
5ab432ef
DV
6093/* Even simpler default implementation, if there's really no special case to
6094 * consider. */
6095void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6096{
5ab432ef
DV
6097 /* All the simple cases only support two dpms states. */
6098 if (mode != DRM_MODE_DPMS_ON)
6099 mode = DRM_MODE_DPMS_OFF;
d4270e57 6100
5ab432ef
DV
6101 if (mode == connector->dpms)
6102 return;
6103
6104 connector->dpms = mode;
6105
6106 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6107 if (connector->encoder)
6108 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6109
b980514c 6110 intel_modeset_check_state(connector->dev);
79e53945
JB
6111}
6112
f0947c37
DV
6113/* Simple connector->get_hw_state implementation for encoders that support only
6114 * one connector and no cloning and hence the encoder state determines the state
6115 * of the connector. */
6116bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6117{
24929352 6118 enum pipe pipe = 0;
f0947c37 6119 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6120
f0947c37 6121 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6122}
6123
6d293983 6124static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6125{
6d293983
ACO
6126 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6127 return crtc_state->fdi_lanes;
d272ddfa
VS
6128
6129 return 0;
6130}
6131
6d293983 6132static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6133 struct intel_crtc_state *pipe_config)
1857e1da 6134{
6d293983
ACO
6135 struct drm_atomic_state *state = pipe_config->base.state;
6136 struct intel_crtc *other_crtc;
6137 struct intel_crtc_state *other_crtc_state;
6138
1857e1da
DV
6139 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6140 pipe_name(pipe), pipe_config->fdi_lanes);
6141 if (pipe_config->fdi_lanes > 4) {
6142 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6143 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6144 return -EINVAL;
1857e1da
DV
6145 }
6146
bafb6553 6147 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6148 if (pipe_config->fdi_lanes > 2) {
6149 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6150 pipe_config->fdi_lanes);
6d293983 6151 return -EINVAL;
1857e1da 6152 } else {
6d293983 6153 return 0;
1857e1da
DV
6154 }
6155 }
6156
6157 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6158 return 0;
1857e1da
DV
6159
6160 /* Ivybridge 3 pipe is really complicated */
6161 switch (pipe) {
6162 case PIPE_A:
6d293983 6163 return 0;
1857e1da 6164 case PIPE_B:
6d293983
ACO
6165 if (pipe_config->fdi_lanes <= 2)
6166 return 0;
6167
6168 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6169 other_crtc_state =
6170 intel_atomic_get_crtc_state(state, other_crtc);
6171 if (IS_ERR(other_crtc_state))
6172 return PTR_ERR(other_crtc_state);
6173
6174 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6175 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6176 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6177 return -EINVAL;
1857e1da 6178 }
6d293983 6179 return 0;
1857e1da 6180 case PIPE_C:
251cc67c
VS
6181 if (pipe_config->fdi_lanes > 2) {
6182 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6183 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6184 return -EINVAL;
251cc67c 6185 }
6d293983
ACO
6186
6187 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6188 other_crtc_state =
6189 intel_atomic_get_crtc_state(state, other_crtc);
6190 if (IS_ERR(other_crtc_state))
6191 return PTR_ERR(other_crtc_state);
6192
6193 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6194 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6195 return -EINVAL;
1857e1da 6196 }
6d293983 6197 return 0;
1857e1da
DV
6198 default:
6199 BUG();
6200 }
6201}
6202
e29c22c0
DV
6203#define RETRY 1
6204static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6205 struct intel_crtc_state *pipe_config)
877d48d5 6206{
1857e1da 6207 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6208 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6209 int lane, link_bw, fdi_dotclock, ret;
6210 bool needs_recompute = false;
877d48d5 6211
e29c22c0 6212retry:
877d48d5
DV
6213 /* FDI is a binary signal running at ~2.7GHz, encoding
6214 * each output octet as 10 bits. The actual frequency
6215 * is stored as a divider into a 100MHz clock, and the
6216 * mode pixel clock is stored in units of 1KHz.
6217 * Hence the bw of each lane in terms of the mode signal
6218 * is:
6219 */
6220 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6221
241bfc38 6222 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6223
2bd89a07 6224 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6225 pipe_config->pipe_bpp);
6226
6227 pipe_config->fdi_lanes = lane;
6228
2bd89a07 6229 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6230 link_bw, &pipe_config->fdi_m_n);
1857e1da 6231
6d293983
ACO
6232 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6233 intel_crtc->pipe, pipe_config);
6234 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6235 pipe_config->pipe_bpp -= 2*3;
6236 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6237 pipe_config->pipe_bpp);
6238 needs_recompute = true;
6239 pipe_config->bw_constrained = true;
6240
6241 goto retry;
6242 }
6243
6244 if (needs_recompute)
6245 return RETRY;
6246
6d293983 6247 return ret;
877d48d5
DV
6248}
6249
42db64ef 6250static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6251 struct intel_crtc_state *pipe_config)
42db64ef 6252{
d330a953 6253 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 6254 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 6255 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
6256}
6257
a43f6e0f 6258static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6259 struct intel_crtc_state *pipe_config)
79e53945 6260{
a43f6e0f 6261 struct drm_device *dev = crtc->base.dev;
8bd31e67 6262 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6263 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
d03c93d4 6264 int ret;
89749350 6265
ad3a4479 6266 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6267 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
6268 int clock_limit =
6269 dev_priv->display.get_display_clock_speed(dev);
6270
6271 /*
6272 * Enable pixel doubling when the dot clock
6273 * is > 90% of the (display) core speed.
6274 *
b397c96b
VS
6275 * GDG double wide on either pipe,
6276 * otherwise pipe A only.
cf532bb2 6277 */
b397c96b 6278 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6279 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6280 clock_limit *= 2;
cf532bb2 6281 pipe_config->double_wide = true;
ad3a4479
VS
6282 }
6283
241bfc38 6284 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6285 return -EINVAL;
2c07245f 6286 }
89749350 6287
1d1d0e27
VS
6288 /*
6289 * Pipe horizontal size must be even in:
6290 * - DVO ganged mode
6291 * - LVDS dual channel mode
6292 * - Double wide pipe
6293 */
a93e255f 6294 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6295 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6296 pipe_config->pipe_src_w &= ~1;
6297
8693a824
DL
6298 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6299 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6300 */
6301 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6302 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6303 return -EINVAL;
44f46b42 6304
f5adf94e 6305 if (HAS_IPS(dev))
a43f6e0f
DV
6306 hsw_compute_ips_config(crtc, pipe_config);
6307
877d48d5 6308 if (pipe_config->has_pch_encoder)
a43f6e0f 6309 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6310
d03c93d4
CK
6311 /* FIXME: remove below call once atomic mode set is place and all crtc
6312 * related checks called from atomic_crtc_check function */
6313 ret = 0;
6314 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6315 crtc, pipe_config->base.state);
6316 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6317
6318 return ret;
79e53945
JB
6319}
6320
1652d19e
VS
6321static int skylake_get_display_clock_speed(struct drm_device *dev)
6322{
6323 struct drm_i915_private *dev_priv = to_i915(dev);
6324 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6325 uint32_t cdctl = I915_READ(CDCLK_CTL);
6326 uint32_t linkrate;
6327
6328 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6329 WARN(1, "LCPLL1 not enabled\n");
6330 return 24000; /* 24MHz is the cd freq with NSSC ref */
6331 }
6332
6333 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6334 return 540000;
6335
6336 linkrate = (I915_READ(DPLL_CTRL1) &
6337 DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6338
6339 if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
6340 linkrate == DPLL_CRTL1_LINK_RATE_1080) {
6341 /* vco 8640 */
6342 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6343 case CDCLK_FREQ_450_432:
6344 return 432000;
6345 case CDCLK_FREQ_337_308:
6346 return 308570;
6347 case CDCLK_FREQ_675_617:
6348 return 617140;
6349 default:
6350 WARN(1, "Unknown cd freq selection\n");
6351 }
6352 } else {
6353 /* vco 8100 */
6354 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6355 case CDCLK_FREQ_450_432:
6356 return 450000;
6357 case CDCLK_FREQ_337_308:
6358 return 337500;
6359 case CDCLK_FREQ_675_617:
6360 return 675000;
6361 default:
6362 WARN(1, "Unknown cd freq selection\n");
6363 }
6364 }
6365
6366 /* error case, do as if DPLL0 isn't enabled */
6367 return 24000;
6368}
6369
6370static int broadwell_get_display_clock_speed(struct drm_device *dev)
6371{
6372 struct drm_i915_private *dev_priv = dev->dev_private;
6373 uint32_t lcpll = I915_READ(LCPLL_CTL);
6374 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6375
6376 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6377 return 800000;
6378 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6379 return 450000;
6380 else if (freq == LCPLL_CLK_FREQ_450)
6381 return 450000;
6382 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6383 return 540000;
6384 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6385 return 337500;
6386 else
6387 return 675000;
6388}
6389
6390static int haswell_get_display_clock_speed(struct drm_device *dev)
6391{
6392 struct drm_i915_private *dev_priv = dev->dev_private;
6393 uint32_t lcpll = I915_READ(LCPLL_CTL);
6394 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6395
6396 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6397 return 800000;
6398 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6399 return 450000;
6400 else if (freq == LCPLL_CLK_FREQ_450)
6401 return 450000;
6402 else if (IS_HSW_ULT(dev))
6403 return 337500;
6404 else
6405 return 540000;
6406}
6407
25eb05fc
JB
6408static int valleyview_get_display_clock_speed(struct drm_device *dev)
6409{
d197b7d3 6410 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6411 u32 val;
6412 int divider;
6413
6bcda4f0
VS
6414 if (dev_priv->hpll_freq == 0)
6415 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6416
d197b7d3
VS
6417 mutex_lock(&dev_priv->dpio_lock);
6418 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6419 mutex_unlock(&dev_priv->dpio_lock);
6420
6421 divider = val & DISPLAY_FREQUENCY_VALUES;
6422
7d007f40
VS
6423 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6424 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6425 "cdclk change in progress\n");
6426
6bcda4f0 6427 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6428}
6429
b37a6434
VS
6430static int ilk_get_display_clock_speed(struct drm_device *dev)
6431{
6432 return 450000;
6433}
6434
e70236a8
JB
6435static int i945_get_display_clock_speed(struct drm_device *dev)
6436{
6437 return 400000;
6438}
79e53945 6439
e70236a8 6440static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6441{
e907f170 6442 return 333333;
e70236a8 6443}
79e53945 6444
e70236a8
JB
6445static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6446{
6447 return 200000;
6448}
79e53945 6449
257a7ffc
DV
6450static int pnv_get_display_clock_speed(struct drm_device *dev)
6451{
6452 u16 gcfgc = 0;
6453
6454 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6455
6456 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6457 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6458 return 266667;
257a7ffc 6459 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6460 return 333333;
257a7ffc 6461 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6462 return 444444;
257a7ffc
DV
6463 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6464 return 200000;
6465 default:
6466 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6467 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6468 return 133333;
257a7ffc 6469 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6470 return 166667;
257a7ffc
DV
6471 }
6472}
6473
e70236a8
JB
6474static int i915gm_get_display_clock_speed(struct drm_device *dev)
6475{
6476 u16 gcfgc = 0;
79e53945 6477
e70236a8
JB
6478 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6479
6480 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6481 return 133333;
e70236a8
JB
6482 else {
6483 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6484 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6485 return 333333;
e70236a8
JB
6486 default:
6487 case GC_DISPLAY_CLOCK_190_200_MHZ:
6488 return 190000;
79e53945 6489 }
e70236a8
JB
6490 }
6491}
6492
6493static int i865_get_display_clock_speed(struct drm_device *dev)
6494{
e907f170 6495 return 266667;
e70236a8
JB
6496}
6497
6498static int i855_get_display_clock_speed(struct drm_device *dev)
6499{
6500 u16 hpllcc = 0;
6501 /* Assume that the hardware is in the high speed state. This
6502 * should be the default.
6503 */
6504 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6505 case GC_CLOCK_133_200:
6506 case GC_CLOCK_100_200:
6507 return 200000;
6508 case GC_CLOCK_166_250:
6509 return 250000;
6510 case GC_CLOCK_100_133:
e907f170 6511 return 133333;
e70236a8 6512 }
79e53945 6513
e70236a8
JB
6514 /* Shouldn't happen */
6515 return 0;
6516}
79e53945 6517
e70236a8
JB
6518static int i830_get_display_clock_speed(struct drm_device *dev)
6519{
e907f170 6520 return 133333;
79e53945
JB
6521}
6522
2c07245f 6523static void
a65851af 6524intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 6525{
a65851af
VS
6526 while (*num > DATA_LINK_M_N_MASK ||
6527 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
6528 *num >>= 1;
6529 *den >>= 1;
6530 }
6531}
6532
a65851af
VS
6533static void compute_m_n(unsigned int m, unsigned int n,
6534 uint32_t *ret_m, uint32_t *ret_n)
6535{
6536 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6537 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6538 intel_reduce_m_n_ratio(ret_m, ret_n);
6539}
6540
e69d0bc1
DV
6541void
6542intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6543 int pixel_clock, int link_clock,
6544 struct intel_link_m_n *m_n)
2c07245f 6545{
e69d0bc1 6546 m_n->tu = 64;
a65851af
VS
6547
6548 compute_m_n(bits_per_pixel * pixel_clock,
6549 link_clock * nlanes * 8,
6550 &m_n->gmch_m, &m_n->gmch_n);
6551
6552 compute_m_n(pixel_clock, link_clock,
6553 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
6554}
6555
a7615030
CW
6556static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6557{
d330a953
JN
6558 if (i915.panel_use_ssc >= 0)
6559 return i915.panel_use_ssc != 0;
41aa3448 6560 return dev_priv->vbt.lvds_use_ssc
435793df 6561 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
6562}
6563
a93e255f
ACO
6564static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6565 int num_connectors)
c65d77d8 6566{
a93e255f 6567 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
6568 struct drm_i915_private *dev_priv = dev->dev_private;
6569 int refclk;
6570
a93e255f
ACO
6571 WARN_ON(!crtc_state->base.state);
6572
a0c4da24 6573 if (IS_VALLEYVIEW(dev)) {
9a0ea498 6574 refclk = 100000;
a93e255f 6575 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 6576 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
6577 refclk = dev_priv->vbt.lvds_ssc_freq;
6578 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
6579 } else if (!IS_GEN2(dev)) {
6580 refclk = 96000;
6581 } else {
6582 refclk = 48000;
6583 }
6584
6585 return refclk;
6586}
6587
7429e9d4 6588static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 6589{
7df00d7a 6590 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6591}
f47709a9 6592
7429e9d4
DV
6593static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6594{
6595 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6596}
6597
f47709a9 6598static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6599 struct intel_crtc_state *crtc_state,
a7516a05
JB
6600 intel_clock_t *reduced_clock)
6601{
f47709a9 6602 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6603 u32 fp, fp2 = 0;
6604
6605 if (IS_PINEVIEW(dev)) {
190f68c5 6606 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6607 if (reduced_clock)
7429e9d4 6608 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6609 } else {
190f68c5 6610 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6611 if (reduced_clock)
7429e9d4 6612 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6613 }
6614
190f68c5 6615 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6616
f47709a9 6617 crtc->lowfreq_avail = false;
a93e255f 6618 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 6619 reduced_clock) {
190f68c5 6620 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6621 crtc->lowfreq_avail = true;
a7516a05 6622 } else {
190f68c5 6623 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6624 }
6625}
6626
5e69f97f
CML
6627static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6628 pipe)
89b667f8
JB
6629{
6630 u32 reg_val;
6631
6632 /*
6633 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6634 * and set it to a reasonable value instead.
6635 */
ab3c759a 6636 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6637 reg_val &= 0xffffff00;
6638 reg_val |= 0x00000030;
ab3c759a 6639 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6640
ab3c759a 6641 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6642 reg_val &= 0x8cffffff;
6643 reg_val = 0x8c000000;
ab3c759a 6644 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6645
ab3c759a 6646 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6647 reg_val &= 0xffffff00;
ab3c759a 6648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6649
ab3c759a 6650 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6651 reg_val &= 0x00ffffff;
6652 reg_val |= 0xb0000000;
ab3c759a 6653 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6654}
6655
b551842d
DV
6656static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6657 struct intel_link_m_n *m_n)
6658{
6659 struct drm_device *dev = crtc->base.dev;
6660 struct drm_i915_private *dev_priv = dev->dev_private;
6661 int pipe = crtc->pipe;
6662
e3b95f1e
DV
6663 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6664 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6665 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6666 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6667}
6668
6669static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6670 struct intel_link_m_n *m_n,
6671 struct intel_link_m_n *m2_n2)
b551842d
DV
6672{
6673 struct drm_device *dev = crtc->base.dev;
6674 struct drm_i915_private *dev_priv = dev->dev_private;
6675 int pipe = crtc->pipe;
6e3c9717 6676 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6677
6678 if (INTEL_INFO(dev)->gen >= 5) {
6679 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6680 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6681 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6682 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6683 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6684 * for gen < 8) and if DRRS is supported (to make sure the
6685 * registers are not unnecessarily accessed).
6686 */
44395bfe 6687 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6688 crtc->config->has_drrs) {
f769cd24
VK
6689 I915_WRITE(PIPE_DATA_M2(transcoder),
6690 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6691 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6692 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6693 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6694 }
b551842d 6695 } else {
e3b95f1e
DV
6696 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6697 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6698 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6699 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6700 }
6701}
6702
fe3cd48d 6703void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6704{
fe3cd48d
R
6705 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6706
6707 if (m_n == M1_N1) {
6708 dp_m_n = &crtc->config->dp_m_n;
6709 dp_m2_n2 = &crtc->config->dp_m2_n2;
6710 } else if (m_n == M2_N2) {
6711
6712 /*
6713 * M2_N2 registers are not supported. Hence m2_n2 divider value
6714 * needs to be programmed into M1_N1.
6715 */
6716 dp_m_n = &crtc->config->dp_m2_n2;
6717 } else {
6718 DRM_ERROR("Unsupported divider value\n");
6719 return;
6720 }
6721
6e3c9717
ACO
6722 if (crtc->config->has_pch_encoder)
6723 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6724 else
fe3cd48d 6725 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6726}
6727
d288f65f 6728static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6729 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6730{
6731 u32 dpll, dpll_md;
6732
6733 /*
6734 * Enable DPIO clock input. We should never disable the reference
6735 * clock for pipe B, since VGA hotplug / manual detection depends
6736 * on it.
6737 */
6738 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6739 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6740 /* We should never disable this, set it here for state tracking */
6741 if (crtc->pipe == PIPE_B)
6742 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6743 dpll |= DPLL_VCO_ENABLE;
d288f65f 6744 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6745
d288f65f 6746 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6747 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6748 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6749}
6750
d288f65f 6751static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6752 const struct intel_crtc_state *pipe_config)
a0c4da24 6753{
f47709a9 6754 struct drm_device *dev = crtc->base.dev;
a0c4da24 6755 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6756 int pipe = crtc->pipe;
bdd4b6a6 6757 u32 mdiv;
a0c4da24 6758 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6759 u32 coreclk, reg_val;
a0c4da24 6760
09153000
DV
6761 mutex_lock(&dev_priv->dpio_lock);
6762
d288f65f
VS
6763 bestn = pipe_config->dpll.n;
6764 bestm1 = pipe_config->dpll.m1;
6765 bestm2 = pipe_config->dpll.m2;
6766 bestp1 = pipe_config->dpll.p1;
6767 bestp2 = pipe_config->dpll.p2;
a0c4da24 6768
89b667f8
JB
6769 /* See eDP HDMI DPIO driver vbios notes doc */
6770
6771 /* PLL B needs special handling */
bdd4b6a6 6772 if (pipe == PIPE_B)
5e69f97f 6773 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6774
6775 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6776 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6777
6778 /* Disable target IRef on PLL */
ab3c759a 6779 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6780 reg_val &= 0x00ffffff;
ab3c759a 6781 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6782
6783 /* Disable fast lock */
ab3c759a 6784 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6785
6786 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6787 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6788 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6789 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6790 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6791
6792 /*
6793 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6794 * but we don't support that).
6795 * Note: don't use the DAC post divider as it seems unstable.
6796 */
6797 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6798 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6799
a0c4da24 6800 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6801 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6802
89b667f8 6803 /* Set HBR and RBR LPF coefficients */
d288f65f 6804 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6805 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6806 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6807 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6808 0x009f0003);
89b667f8 6809 else
ab3c759a 6810 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6811 0x00d0000f);
6812
681a8504 6813 if (pipe_config->has_dp_encoder) {
89b667f8 6814 /* Use SSC source */
bdd4b6a6 6815 if (pipe == PIPE_A)
ab3c759a 6816 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6817 0x0df40000);
6818 else
ab3c759a 6819 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6820 0x0df70000);
6821 } else { /* HDMI or VGA */
6822 /* Use bend source */
bdd4b6a6 6823 if (pipe == PIPE_A)
ab3c759a 6824 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6825 0x0df70000);
6826 else
ab3c759a 6827 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6828 0x0df40000);
6829 }
a0c4da24 6830
ab3c759a 6831 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6832 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6833 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6834 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6835 coreclk |= 0x01000000;
ab3c759a 6836 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6837
ab3c759a 6838 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6839 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6840}
6841
d288f65f 6842static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6843 struct intel_crtc_state *pipe_config)
1ae0d137 6844{
d288f65f 6845 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6846 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6847 DPLL_VCO_ENABLE;
6848 if (crtc->pipe != PIPE_A)
d288f65f 6849 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6850
d288f65f
VS
6851 pipe_config->dpll_hw_state.dpll_md =
6852 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6853}
6854
d288f65f 6855static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6856 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6857{
6858 struct drm_device *dev = crtc->base.dev;
6859 struct drm_i915_private *dev_priv = dev->dev_private;
6860 int pipe = crtc->pipe;
6861 int dpll_reg = DPLL(crtc->pipe);
6862 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 6863 u32 loopfilter, tribuf_calcntr;
9d556c99 6864 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 6865 u32 dpio_val;
9cbe40c1 6866 int vco;
9d556c99 6867
d288f65f
VS
6868 bestn = pipe_config->dpll.n;
6869 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6870 bestm1 = pipe_config->dpll.m1;
6871 bestm2 = pipe_config->dpll.m2 >> 22;
6872 bestp1 = pipe_config->dpll.p1;
6873 bestp2 = pipe_config->dpll.p2;
9cbe40c1 6874 vco = pipe_config->dpll.vco;
a945ce7e 6875 dpio_val = 0;
9cbe40c1 6876 loopfilter = 0;
9d556c99
CML
6877
6878 /*
6879 * Enable Refclk and SSC
6880 */
a11b0703 6881 I915_WRITE(dpll_reg,
d288f65f 6882 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6883
6884 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6885
9d556c99
CML
6886 /* p1 and p2 divider */
6887 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6888 5 << DPIO_CHV_S1_DIV_SHIFT |
6889 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6890 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6891 1 << DPIO_CHV_K_DIV_SHIFT);
6892
6893 /* Feedback post-divider - m2 */
6894 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6895
6896 /* Feedback refclk divider - n and m1 */
6897 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6898 DPIO_CHV_M1_DIV_BY_2 |
6899 1 << DPIO_CHV_N_DIV_SHIFT);
6900
6901 /* M2 fraction division */
a945ce7e
VP
6902 if (bestm2_frac)
6903 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
6904
6905 /* M2 fraction division enable */
a945ce7e
VP
6906 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6907 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6908 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6909 if (bestm2_frac)
6910 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6911 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 6912
de3a0fde
VP
6913 /* Program digital lock detect threshold */
6914 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6915 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6916 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6917 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6918 if (!bestm2_frac)
6919 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6920 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6921
9d556c99 6922 /* Loop filter */
9cbe40c1
VP
6923 if (vco == 5400000) {
6924 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6925 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6926 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6927 tribuf_calcntr = 0x9;
6928 } else if (vco <= 6200000) {
6929 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6930 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6931 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6932 tribuf_calcntr = 0x9;
6933 } else if (vco <= 6480000) {
6934 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6935 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6936 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6937 tribuf_calcntr = 0x8;
6938 } else {
6939 /* Not supported. Apply the same limits as in the max case */
6940 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6941 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6942 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6943 tribuf_calcntr = 0;
6944 }
9d556c99
CML
6945 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6946
968040b2 6947 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
6948 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6949 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6950 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6951
9d556c99
CML
6952 /* AFC Recal */
6953 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6954 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6955 DPIO_AFC_RECAL);
6956
6957 mutex_unlock(&dev_priv->dpio_lock);
6958}
6959
d288f65f
VS
6960/**
6961 * vlv_force_pll_on - forcibly enable just the PLL
6962 * @dev_priv: i915 private structure
6963 * @pipe: pipe PLL to enable
6964 * @dpll: PLL configuration
6965 *
6966 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6967 * in cases where we need the PLL enabled even when @pipe is not going to
6968 * be enabled.
6969 */
6970void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6971 const struct dpll *dpll)
6972{
6973 struct intel_crtc *crtc =
6974 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6975 struct intel_crtc_state pipe_config = {
a93e255f 6976 .base.crtc = &crtc->base,
d288f65f
VS
6977 .pixel_multiplier = 1,
6978 .dpll = *dpll,
6979 };
6980
6981 if (IS_CHERRYVIEW(dev)) {
6982 chv_update_pll(crtc, &pipe_config);
6983 chv_prepare_pll(crtc, &pipe_config);
6984 chv_enable_pll(crtc, &pipe_config);
6985 } else {
6986 vlv_update_pll(crtc, &pipe_config);
6987 vlv_prepare_pll(crtc, &pipe_config);
6988 vlv_enable_pll(crtc, &pipe_config);
6989 }
6990}
6991
6992/**
6993 * vlv_force_pll_off - forcibly disable just the PLL
6994 * @dev_priv: i915 private structure
6995 * @pipe: pipe PLL to disable
6996 *
6997 * Disable the PLL for @pipe. To be used in cases where we need
6998 * the PLL enabled even when @pipe is not going to be enabled.
6999 */
7000void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7001{
7002 if (IS_CHERRYVIEW(dev))
7003 chv_disable_pll(to_i915(dev), pipe);
7004 else
7005 vlv_disable_pll(to_i915(dev), pipe);
7006}
7007
f47709a9 7008static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 7009 struct intel_crtc_state *crtc_state,
f47709a9 7010 intel_clock_t *reduced_clock,
eb1cbe48
DV
7011 int num_connectors)
7012{
f47709a9 7013 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7014 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7015 u32 dpll;
7016 bool is_sdvo;
190f68c5 7017 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7018
190f68c5 7019 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7020
a93e255f
ACO
7021 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7022 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7023
7024 dpll = DPLL_VGA_MODE_DIS;
7025
a93e255f 7026 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7027 dpll |= DPLLB_MODE_LVDS;
7028 else
7029 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7030
ef1b460d 7031 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7032 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7033 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7034 }
198a037f
DV
7035
7036 if (is_sdvo)
4a33e48d 7037 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7038
190f68c5 7039 if (crtc_state->has_dp_encoder)
4a33e48d 7040 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7041
7042 /* compute bitmask from p1 value */
7043 if (IS_PINEVIEW(dev))
7044 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7045 else {
7046 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7047 if (IS_G4X(dev) && reduced_clock)
7048 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7049 }
7050 switch (clock->p2) {
7051 case 5:
7052 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7053 break;
7054 case 7:
7055 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7056 break;
7057 case 10:
7058 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7059 break;
7060 case 14:
7061 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7062 break;
7063 }
7064 if (INTEL_INFO(dev)->gen >= 4)
7065 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7066
190f68c5 7067 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7068 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7069 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7070 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7071 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7072 else
7073 dpll |= PLL_REF_INPUT_DREFCLK;
7074
7075 dpll |= DPLL_VCO_ENABLE;
190f68c5 7076 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7077
eb1cbe48 7078 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7079 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7080 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7081 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7082 }
7083}
7084
f47709a9 7085static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 7086 struct intel_crtc_state *crtc_state,
f47709a9 7087 intel_clock_t *reduced_clock,
eb1cbe48
DV
7088 int num_connectors)
7089{
f47709a9 7090 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7091 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7092 u32 dpll;
190f68c5 7093 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7094
190f68c5 7095 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7096
eb1cbe48
DV
7097 dpll = DPLL_VGA_MODE_DIS;
7098
a93e255f 7099 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7100 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7101 } else {
7102 if (clock->p1 == 2)
7103 dpll |= PLL_P1_DIVIDE_BY_TWO;
7104 else
7105 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7106 if (clock->p2 == 4)
7107 dpll |= PLL_P2_DIVIDE_BY_4;
7108 }
7109
a93e255f 7110 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7111 dpll |= DPLL_DVO_2X_MODE;
7112
a93e255f 7113 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7114 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7115 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7116 else
7117 dpll |= PLL_REF_INPUT_DREFCLK;
7118
7119 dpll |= DPLL_VCO_ENABLE;
190f68c5 7120 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7121}
7122
8a654f3b 7123static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7124{
7125 struct drm_device *dev = intel_crtc->base.dev;
7126 struct drm_i915_private *dev_priv = dev->dev_private;
7127 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7128 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7129 struct drm_display_mode *adjusted_mode =
6e3c9717 7130 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7131 uint32_t crtc_vtotal, crtc_vblank_end;
7132 int vsyncshift = 0;
4d8a62ea
DV
7133
7134 /* We need to be careful not to changed the adjusted mode, for otherwise
7135 * the hw state checker will get angry at the mismatch. */
7136 crtc_vtotal = adjusted_mode->crtc_vtotal;
7137 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7138
609aeaca 7139 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7140 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7141 crtc_vtotal -= 1;
7142 crtc_vblank_end -= 1;
609aeaca 7143
409ee761 7144 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7145 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7146 else
7147 vsyncshift = adjusted_mode->crtc_hsync_start -
7148 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7149 if (vsyncshift < 0)
7150 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7151 }
7152
7153 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7154 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7155
fe2b8f9d 7156 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7157 (adjusted_mode->crtc_hdisplay - 1) |
7158 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7159 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7160 (adjusted_mode->crtc_hblank_start - 1) |
7161 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7162 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7163 (adjusted_mode->crtc_hsync_start - 1) |
7164 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7165
fe2b8f9d 7166 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7167 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7168 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7169 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7170 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7171 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7172 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7173 (adjusted_mode->crtc_vsync_start - 1) |
7174 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7175
b5e508d4
PZ
7176 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7177 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7178 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7179 * bits. */
7180 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7181 (pipe == PIPE_B || pipe == PIPE_C))
7182 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7183
b0e77b9c
PZ
7184 /* pipesrc controls the size that is scaled from, which should
7185 * always be the user's requested size.
7186 */
7187 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7188 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7189 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7190}
7191
1bd1bd80 7192static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7193 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7194{
7195 struct drm_device *dev = crtc->base.dev;
7196 struct drm_i915_private *dev_priv = dev->dev_private;
7197 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7198 uint32_t tmp;
7199
7200 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7201 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7202 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7203 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7204 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7205 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7206 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7207 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7208 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7209
7210 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7211 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7212 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7213 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7214 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7215 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7216 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7217 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7218 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7219
7220 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7221 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7222 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7223 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7224 }
7225
7226 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7227 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7228 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7229
2d112de7
ACO
7230 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7231 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7232}
7233
f6a83288 7234void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7235 struct intel_crtc_state *pipe_config)
babea61d 7236{
2d112de7
ACO
7237 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7238 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7239 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7240 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7241
2d112de7
ACO
7242 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7243 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7244 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7245 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7246
2d112de7 7247 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 7248
2d112de7
ACO
7249 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7250 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
7251}
7252
84b046f3
DV
7253static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7254{
7255 struct drm_device *dev = intel_crtc->base.dev;
7256 struct drm_i915_private *dev_priv = dev->dev_private;
7257 uint32_t pipeconf;
7258
9f11a9e4 7259 pipeconf = 0;
84b046f3 7260
b6b5d049
VS
7261 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7262 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7263 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7264
6e3c9717 7265 if (intel_crtc->config->double_wide)
cf532bb2 7266 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7267
ff9ce46e
DV
7268 /* only g4x and later have fancy bpc/dither controls */
7269 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7270 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7271 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7272 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7273 PIPECONF_DITHER_TYPE_SP;
84b046f3 7274
6e3c9717 7275 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7276 case 18:
7277 pipeconf |= PIPECONF_6BPC;
7278 break;
7279 case 24:
7280 pipeconf |= PIPECONF_8BPC;
7281 break;
7282 case 30:
7283 pipeconf |= PIPECONF_10BPC;
7284 break;
7285 default:
7286 /* Case prevented by intel_choose_pipe_bpp_dither. */
7287 BUG();
84b046f3
DV
7288 }
7289 }
7290
7291 if (HAS_PIPE_CXSR(dev)) {
7292 if (intel_crtc->lowfreq_avail) {
7293 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7294 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7295 } else {
7296 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7297 }
7298 }
7299
6e3c9717 7300 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7301 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7302 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7303 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7304 else
7305 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7306 } else
84b046f3
DV
7307 pipeconf |= PIPECONF_PROGRESSIVE;
7308
6e3c9717 7309 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7310 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7311
84b046f3
DV
7312 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7313 POSTING_READ(PIPECONF(intel_crtc->pipe));
7314}
7315
190f68c5
ACO
7316static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7317 struct intel_crtc_state *crtc_state)
79e53945 7318{
c7653199 7319 struct drm_device *dev = crtc->base.dev;
79e53945 7320 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7321 int refclk, num_connectors = 0;
652c393a 7322 intel_clock_t clock, reduced_clock;
a16af721 7323 bool ok, has_reduced_clock = false;
e9fd1c02 7324 bool is_lvds = false, is_dsi = false;
5eddb70b 7325 struct intel_encoder *encoder;
d4906093 7326 const intel_limit_t *limit;
55bb9992
ACO
7327 struct drm_atomic_state *state = crtc_state->base.state;
7328 struct drm_connector_state *connector_state;
7329 int i;
79e53945 7330
55bb9992
ACO
7331 for (i = 0; i < state->num_connector; i++) {
7332 if (!state->connectors[i])
d0737e1d
ACO
7333 continue;
7334
55bb9992
ACO
7335 connector_state = state->connector_states[i];
7336 if (connector_state->crtc != &crtc->base)
7337 continue;
7338
7339 encoder = to_intel_encoder(connector_state->best_encoder);
7340
5eddb70b 7341 switch (encoder->type) {
79e53945
JB
7342 case INTEL_OUTPUT_LVDS:
7343 is_lvds = true;
7344 break;
e9fd1c02
JN
7345 case INTEL_OUTPUT_DSI:
7346 is_dsi = true;
7347 break;
6847d71b
PZ
7348 default:
7349 break;
79e53945 7350 }
43565a06 7351
c751ce4f 7352 num_connectors++;
79e53945
JB
7353 }
7354
f2335330 7355 if (is_dsi)
5b18e57c 7356 return 0;
f2335330 7357
190f68c5 7358 if (!crtc_state->clock_set) {
a93e255f 7359 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7360
e9fd1c02
JN
7361 /*
7362 * Returns a set of divisors for the desired target clock with
7363 * the given refclk, or FALSE. The returned values represent
7364 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7365 * 2) / p1 / p2.
7366 */
a93e255f
ACO
7367 limit = intel_limit(crtc_state, refclk);
7368 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7369 crtc_state->port_clock,
e9fd1c02 7370 refclk, NULL, &clock);
f2335330 7371 if (!ok) {
e9fd1c02
JN
7372 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7373 return -EINVAL;
7374 }
79e53945 7375
f2335330
JN
7376 if (is_lvds && dev_priv->lvds_downclock_avail) {
7377 /*
7378 * Ensure we match the reduced clock's P to the target
7379 * clock. If the clocks don't match, we can't switch
7380 * the display clock by using the FP0/FP1. In such case
7381 * we will disable the LVDS downclock feature.
7382 */
7383 has_reduced_clock =
a93e255f 7384 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
7385 dev_priv->lvds_downclock,
7386 refclk, &clock,
7387 &reduced_clock);
7388 }
7389 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7390 crtc_state->dpll.n = clock.n;
7391 crtc_state->dpll.m1 = clock.m1;
7392 crtc_state->dpll.m2 = clock.m2;
7393 crtc_state->dpll.p1 = clock.p1;
7394 crtc_state->dpll.p2 = clock.p2;
f47709a9 7395 }
7026d4ac 7396
e9fd1c02 7397 if (IS_GEN2(dev)) {
190f68c5 7398 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
7399 has_reduced_clock ? &reduced_clock : NULL,
7400 num_connectors);
9d556c99 7401 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 7402 chv_update_pll(crtc, crtc_state);
e9fd1c02 7403 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 7404 vlv_update_pll(crtc, crtc_state);
e9fd1c02 7405 } else {
190f68c5 7406 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 7407 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 7408 num_connectors);
e9fd1c02 7409 }
79e53945 7410
c8f7a0db 7411 return 0;
f564048e
EA
7412}
7413
2fa2fe9a 7414static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7415 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7416{
7417 struct drm_device *dev = crtc->base.dev;
7418 struct drm_i915_private *dev_priv = dev->dev_private;
7419 uint32_t tmp;
7420
dc9e7dec
VS
7421 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7422 return;
7423
2fa2fe9a 7424 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7425 if (!(tmp & PFIT_ENABLE))
7426 return;
2fa2fe9a 7427
06922821 7428 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7429 if (INTEL_INFO(dev)->gen < 4) {
7430 if (crtc->pipe != PIPE_B)
7431 return;
2fa2fe9a
DV
7432 } else {
7433 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7434 return;
7435 }
7436
06922821 7437 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7438 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7439 if (INTEL_INFO(dev)->gen < 5)
7440 pipe_config->gmch_pfit.lvds_border_bits =
7441 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7442}
7443
acbec814 7444static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7445 struct intel_crtc_state *pipe_config)
acbec814
JB
7446{
7447 struct drm_device *dev = crtc->base.dev;
7448 struct drm_i915_private *dev_priv = dev->dev_private;
7449 int pipe = pipe_config->cpu_transcoder;
7450 intel_clock_t clock;
7451 u32 mdiv;
662c6ecb 7452 int refclk = 100000;
acbec814 7453
f573de5a
SK
7454 /* In case of MIPI DPLL will not even be used */
7455 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7456 return;
7457
acbec814 7458 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 7459 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
7460 mutex_unlock(&dev_priv->dpio_lock);
7461
7462 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7463 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7464 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7465 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7466 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7467
f646628b 7468 vlv_clock(refclk, &clock);
acbec814 7469
f646628b
VS
7470 /* clock.dot is the fast clock */
7471 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
7472}
7473
5724dbd1
DL
7474static void
7475i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7476 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7477{
7478 struct drm_device *dev = crtc->base.dev;
7479 struct drm_i915_private *dev_priv = dev->dev_private;
7480 u32 val, base, offset;
7481 int pipe = crtc->pipe, plane = crtc->plane;
7482 int fourcc, pixel_format;
6761dd31 7483 unsigned int aligned_height;
b113d5ee 7484 struct drm_framebuffer *fb;
1b842c89 7485 struct intel_framebuffer *intel_fb;
1ad292b5 7486
42a7b088
DL
7487 val = I915_READ(DSPCNTR(plane));
7488 if (!(val & DISPLAY_PLANE_ENABLE))
7489 return;
7490
d9806c9f 7491 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7492 if (!intel_fb) {
1ad292b5
JB
7493 DRM_DEBUG_KMS("failed to alloc fb\n");
7494 return;
7495 }
7496
1b842c89
DL
7497 fb = &intel_fb->base;
7498
18c5247e
DV
7499 if (INTEL_INFO(dev)->gen >= 4) {
7500 if (val & DISPPLANE_TILED) {
49af449b 7501 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7502 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7503 }
7504 }
1ad292b5
JB
7505
7506 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7507 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7508 fb->pixel_format = fourcc;
7509 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7510
7511 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7512 if (plane_config->tiling)
1ad292b5
JB
7513 offset = I915_READ(DSPTILEOFF(plane));
7514 else
7515 offset = I915_READ(DSPLINOFF(plane));
7516 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7517 } else {
7518 base = I915_READ(DSPADDR(plane));
7519 }
7520 plane_config->base = base;
7521
7522 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7523 fb->width = ((val >> 16) & 0xfff) + 1;
7524 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
7525
7526 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7527 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 7528
b113d5ee 7529 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7530 fb->pixel_format,
7531 fb->modifier[0]);
1ad292b5 7532
f37b5c2b 7533 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 7534
2844a921
DL
7535 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7536 pipe_name(pipe), plane, fb->width, fb->height,
7537 fb->bits_per_pixel, base, fb->pitches[0],
7538 plane_config->size);
1ad292b5 7539
2d14030b 7540 plane_config->fb = intel_fb;
1ad292b5
JB
7541}
7542
70b23a98 7543static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7544 struct intel_crtc_state *pipe_config)
70b23a98
VS
7545{
7546 struct drm_device *dev = crtc->base.dev;
7547 struct drm_i915_private *dev_priv = dev->dev_private;
7548 int pipe = pipe_config->cpu_transcoder;
7549 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7550 intel_clock_t clock;
7551 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7552 int refclk = 100000;
7553
7554 mutex_lock(&dev_priv->dpio_lock);
7555 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7556 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7557 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7558 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7559 mutex_unlock(&dev_priv->dpio_lock);
7560
7561 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7562 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7563 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7564 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7565 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7566
7567 chv_clock(refclk, &clock);
7568
7569 /* clock.dot is the fast clock */
7570 pipe_config->port_clock = clock.dot / 5;
7571}
7572
0e8ffe1b 7573static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7574 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7575{
7576 struct drm_device *dev = crtc->base.dev;
7577 struct drm_i915_private *dev_priv = dev->dev_private;
7578 uint32_t tmp;
7579
f458ebbc
DV
7580 if (!intel_display_power_is_enabled(dev_priv,
7581 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
7582 return false;
7583
e143a21c 7584 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7585 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7586
0e8ffe1b
DV
7587 tmp = I915_READ(PIPECONF(crtc->pipe));
7588 if (!(tmp & PIPECONF_ENABLE))
7589 return false;
7590
42571aef
VS
7591 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7592 switch (tmp & PIPECONF_BPC_MASK) {
7593 case PIPECONF_6BPC:
7594 pipe_config->pipe_bpp = 18;
7595 break;
7596 case PIPECONF_8BPC:
7597 pipe_config->pipe_bpp = 24;
7598 break;
7599 case PIPECONF_10BPC:
7600 pipe_config->pipe_bpp = 30;
7601 break;
7602 default:
7603 break;
7604 }
7605 }
7606
b5a9fa09
DV
7607 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7608 pipe_config->limited_color_range = true;
7609
282740f7
VS
7610 if (INTEL_INFO(dev)->gen < 4)
7611 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7612
1bd1bd80
DV
7613 intel_get_pipe_timings(crtc, pipe_config);
7614
2fa2fe9a
DV
7615 i9xx_get_pfit_config(crtc, pipe_config);
7616
6c49f241
DV
7617 if (INTEL_INFO(dev)->gen >= 4) {
7618 tmp = I915_READ(DPLL_MD(crtc->pipe));
7619 pipe_config->pixel_multiplier =
7620 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7621 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7622 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7623 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7624 tmp = I915_READ(DPLL(crtc->pipe));
7625 pipe_config->pixel_multiplier =
7626 ((tmp & SDVO_MULTIPLIER_MASK)
7627 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7628 } else {
7629 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7630 * port and will be fixed up in the encoder->get_config
7631 * function. */
7632 pipe_config->pixel_multiplier = 1;
7633 }
8bcc2795
DV
7634 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7635 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7636 /*
7637 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7638 * on 830. Filter it out here so that we don't
7639 * report errors due to that.
7640 */
7641 if (IS_I830(dev))
7642 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7643
8bcc2795
DV
7644 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7645 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7646 } else {
7647 /* Mask out read-only status bits. */
7648 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7649 DPLL_PORTC_READY_MASK |
7650 DPLL_PORTB_READY_MASK);
8bcc2795 7651 }
6c49f241 7652
70b23a98
VS
7653 if (IS_CHERRYVIEW(dev))
7654 chv_crtc_clock_get(crtc, pipe_config);
7655 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7656 vlv_crtc_clock_get(crtc, pipe_config);
7657 else
7658 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7659
0e8ffe1b
DV
7660 return true;
7661}
7662
dde86e2d 7663static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7664{
7665 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7666 struct intel_encoder *encoder;
74cfd7ac 7667 u32 val, final;
13d83a67 7668 bool has_lvds = false;
199e5d79 7669 bool has_cpu_edp = false;
199e5d79 7670 bool has_panel = false;
99eb6a01
KP
7671 bool has_ck505 = false;
7672 bool can_ssc = false;
13d83a67
JB
7673
7674 /* We need to take the global config into account */
b2784e15 7675 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7676 switch (encoder->type) {
7677 case INTEL_OUTPUT_LVDS:
7678 has_panel = true;
7679 has_lvds = true;
7680 break;
7681 case INTEL_OUTPUT_EDP:
7682 has_panel = true;
2de6905f 7683 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7684 has_cpu_edp = true;
7685 break;
6847d71b
PZ
7686 default:
7687 break;
13d83a67
JB
7688 }
7689 }
7690
99eb6a01 7691 if (HAS_PCH_IBX(dev)) {
41aa3448 7692 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7693 can_ssc = has_ck505;
7694 } else {
7695 has_ck505 = false;
7696 can_ssc = true;
7697 }
7698
2de6905f
ID
7699 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7700 has_panel, has_lvds, has_ck505);
13d83a67
JB
7701
7702 /* Ironlake: try to setup display ref clock before DPLL
7703 * enabling. This is only under driver's control after
7704 * PCH B stepping, previous chipset stepping should be
7705 * ignoring this setting.
7706 */
74cfd7ac
CW
7707 val = I915_READ(PCH_DREF_CONTROL);
7708
7709 /* As we must carefully and slowly disable/enable each source in turn,
7710 * compute the final state we want first and check if we need to
7711 * make any changes at all.
7712 */
7713 final = val;
7714 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7715 if (has_ck505)
7716 final |= DREF_NONSPREAD_CK505_ENABLE;
7717 else
7718 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7719
7720 final &= ~DREF_SSC_SOURCE_MASK;
7721 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7722 final &= ~DREF_SSC1_ENABLE;
7723
7724 if (has_panel) {
7725 final |= DREF_SSC_SOURCE_ENABLE;
7726
7727 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7728 final |= DREF_SSC1_ENABLE;
7729
7730 if (has_cpu_edp) {
7731 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7732 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7733 else
7734 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7735 } else
7736 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7737 } else {
7738 final |= DREF_SSC_SOURCE_DISABLE;
7739 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7740 }
7741
7742 if (final == val)
7743 return;
7744
13d83a67 7745 /* Always enable nonspread source */
74cfd7ac 7746 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7747
99eb6a01 7748 if (has_ck505)
74cfd7ac 7749 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7750 else
74cfd7ac 7751 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7752
199e5d79 7753 if (has_panel) {
74cfd7ac
CW
7754 val &= ~DREF_SSC_SOURCE_MASK;
7755 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7756
199e5d79 7757 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7758 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7759 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7760 val |= DREF_SSC1_ENABLE;
e77166b5 7761 } else
74cfd7ac 7762 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7763
7764 /* Get SSC going before enabling the outputs */
74cfd7ac 7765 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7766 POSTING_READ(PCH_DREF_CONTROL);
7767 udelay(200);
7768
74cfd7ac 7769 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7770
7771 /* Enable CPU source on CPU attached eDP */
199e5d79 7772 if (has_cpu_edp) {
99eb6a01 7773 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7774 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7775 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7776 } else
74cfd7ac 7777 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7778 } else
74cfd7ac 7779 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7780
74cfd7ac 7781 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7782 POSTING_READ(PCH_DREF_CONTROL);
7783 udelay(200);
7784 } else {
7785 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7786
74cfd7ac 7787 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7788
7789 /* Turn off CPU output */
74cfd7ac 7790 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7791
74cfd7ac 7792 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7793 POSTING_READ(PCH_DREF_CONTROL);
7794 udelay(200);
7795
7796 /* Turn off the SSC source */
74cfd7ac
CW
7797 val &= ~DREF_SSC_SOURCE_MASK;
7798 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7799
7800 /* Turn off SSC1 */
74cfd7ac 7801 val &= ~DREF_SSC1_ENABLE;
199e5d79 7802
74cfd7ac 7803 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7804 POSTING_READ(PCH_DREF_CONTROL);
7805 udelay(200);
7806 }
74cfd7ac
CW
7807
7808 BUG_ON(val != final);
13d83a67
JB
7809}
7810
f31f2d55 7811static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7812{
f31f2d55 7813 uint32_t tmp;
dde86e2d 7814
0ff066a9
PZ
7815 tmp = I915_READ(SOUTH_CHICKEN2);
7816 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7817 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7818
0ff066a9
PZ
7819 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7820 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7821 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7822
0ff066a9
PZ
7823 tmp = I915_READ(SOUTH_CHICKEN2);
7824 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7825 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7826
0ff066a9
PZ
7827 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7828 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7829 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7830}
7831
7832/* WaMPhyProgramming:hsw */
7833static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7834{
7835 uint32_t tmp;
dde86e2d
PZ
7836
7837 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7838 tmp &= ~(0xFF << 24);
7839 tmp |= (0x12 << 24);
7840 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7841
dde86e2d
PZ
7842 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7843 tmp |= (1 << 11);
7844 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7845
7846 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7847 tmp |= (1 << 11);
7848 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7849
dde86e2d
PZ
7850 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7851 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7852 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7853
7854 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7855 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7856 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7857
0ff066a9
PZ
7858 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7859 tmp &= ~(7 << 13);
7860 tmp |= (5 << 13);
7861 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 7862
0ff066a9
PZ
7863 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7864 tmp &= ~(7 << 13);
7865 tmp |= (5 << 13);
7866 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7867
7868 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7869 tmp &= ~0xFF;
7870 tmp |= 0x1C;
7871 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7872
7873 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7874 tmp &= ~0xFF;
7875 tmp |= 0x1C;
7876 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7877
7878 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7879 tmp &= ~(0xFF << 16);
7880 tmp |= (0x1C << 16);
7881 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7882
7883 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7884 tmp &= ~(0xFF << 16);
7885 tmp |= (0x1C << 16);
7886 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7887
0ff066a9
PZ
7888 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7889 tmp |= (1 << 27);
7890 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7891
0ff066a9
PZ
7892 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7893 tmp |= (1 << 27);
7894 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7895
0ff066a9
PZ
7896 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7897 tmp &= ~(0xF << 28);
7898 tmp |= (4 << 28);
7899 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7900
0ff066a9
PZ
7901 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7902 tmp &= ~(0xF << 28);
7903 tmp |= (4 << 28);
7904 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7905}
7906
2fa86a1f
PZ
7907/* Implements 3 different sequences from BSpec chapter "Display iCLK
7908 * Programming" based on the parameters passed:
7909 * - Sequence to enable CLKOUT_DP
7910 * - Sequence to enable CLKOUT_DP without spread
7911 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7912 */
7913static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7914 bool with_fdi)
f31f2d55
PZ
7915{
7916 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7917 uint32_t reg, tmp;
7918
7919 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7920 with_spread = true;
7921 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7922 with_fdi, "LP PCH doesn't have FDI\n"))
7923 with_fdi = false;
f31f2d55
PZ
7924
7925 mutex_lock(&dev_priv->dpio_lock);
7926
7927 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7928 tmp &= ~SBI_SSCCTL_DISABLE;
7929 tmp |= SBI_SSCCTL_PATHALT;
7930 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7931
7932 udelay(24);
7933
2fa86a1f
PZ
7934 if (with_spread) {
7935 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7936 tmp &= ~SBI_SSCCTL_PATHALT;
7937 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7938
2fa86a1f
PZ
7939 if (with_fdi) {
7940 lpt_reset_fdi_mphy(dev_priv);
7941 lpt_program_fdi_mphy(dev_priv);
7942 }
7943 }
dde86e2d 7944
2fa86a1f
PZ
7945 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7946 SBI_GEN0 : SBI_DBUFF0;
7947 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7948 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7949 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7950
7951 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7952}
7953
47701c3b
PZ
7954/* Sequence to disable CLKOUT_DP */
7955static void lpt_disable_clkout_dp(struct drm_device *dev)
7956{
7957 struct drm_i915_private *dev_priv = dev->dev_private;
7958 uint32_t reg, tmp;
7959
7960 mutex_lock(&dev_priv->dpio_lock);
7961
7962 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7963 SBI_GEN0 : SBI_DBUFF0;
7964 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7965 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7966 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7967
7968 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7969 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7970 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7971 tmp |= SBI_SSCCTL_PATHALT;
7972 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7973 udelay(32);
7974 }
7975 tmp |= SBI_SSCCTL_DISABLE;
7976 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7977 }
7978
7979 mutex_unlock(&dev_priv->dpio_lock);
7980}
7981
bf8fa3d3
PZ
7982static void lpt_init_pch_refclk(struct drm_device *dev)
7983{
bf8fa3d3
PZ
7984 struct intel_encoder *encoder;
7985 bool has_vga = false;
7986
b2784e15 7987 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7988 switch (encoder->type) {
7989 case INTEL_OUTPUT_ANALOG:
7990 has_vga = true;
7991 break;
6847d71b
PZ
7992 default:
7993 break;
bf8fa3d3
PZ
7994 }
7995 }
7996
47701c3b
PZ
7997 if (has_vga)
7998 lpt_enable_clkout_dp(dev, true, true);
7999 else
8000 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8001}
8002
dde86e2d
PZ
8003/*
8004 * Initialize reference clocks when the driver loads
8005 */
8006void intel_init_pch_refclk(struct drm_device *dev)
8007{
8008 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8009 ironlake_init_pch_refclk(dev);
8010 else if (HAS_PCH_LPT(dev))
8011 lpt_init_pch_refclk(dev);
8012}
8013
55bb9992 8014static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8015{
55bb9992 8016 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8017 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992
ACO
8018 struct drm_atomic_state *state = crtc_state->base.state;
8019 struct drm_connector_state *connector_state;
d9d444cb 8020 struct intel_encoder *encoder;
55bb9992 8021 int num_connectors = 0, i;
d9d444cb
JB
8022 bool is_lvds = false;
8023
55bb9992
ACO
8024 for (i = 0; i < state->num_connector; i++) {
8025 if (!state->connectors[i])
d0737e1d
ACO
8026 continue;
8027
55bb9992
ACO
8028 connector_state = state->connector_states[i];
8029 if (connector_state->crtc != crtc_state->base.crtc)
8030 continue;
8031
8032 encoder = to_intel_encoder(connector_state->best_encoder);
8033
d9d444cb
JB
8034 switch (encoder->type) {
8035 case INTEL_OUTPUT_LVDS:
8036 is_lvds = true;
8037 break;
6847d71b
PZ
8038 default:
8039 break;
d9d444cb
JB
8040 }
8041 num_connectors++;
8042 }
8043
8044 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8045 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8046 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8047 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8048 }
8049
8050 return 120000;
8051}
8052
6ff93609 8053static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8054{
c8203565 8055 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8057 int pipe = intel_crtc->pipe;
c8203565
PZ
8058 uint32_t val;
8059
78114071 8060 val = 0;
c8203565 8061
6e3c9717 8062 switch (intel_crtc->config->pipe_bpp) {
c8203565 8063 case 18:
dfd07d72 8064 val |= PIPECONF_6BPC;
c8203565
PZ
8065 break;
8066 case 24:
dfd07d72 8067 val |= PIPECONF_8BPC;
c8203565
PZ
8068 break;
8069 case 30:
dfd07d72 8070 val |= PIPECONF_10BPC;
c8203565
PZ
8071 break;
8072 case 36:
dfd07d72 8073 val |= PIPECONF_12BPC;
c8203565
PZ
8074 break;
8075 default:
cc769b62
PZ
8076 /* Case prevented by intel_choose_pipe_bpp_dither. */
8077 BUG();
c8203565
PZ
8078 }
8079
6e3c9717 8080 if (intel_crtc->config->dither)
c8203565
PZ
8081 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8082
6e3c9717 8083 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8084 val |= PIPECONF_INTERLACED_ILK;
8085 else
8086 val |= PIPECONF_PROGRESSIVE;
8087
6e3c9717 8088 if (intel_crtc->config->limited_color_range)
3685a8f3 8089 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8090
c8203565
PZ
8091 I915_WRITE(PIPECONF(pipe), val);
8092 POSTING_READ(PIPECONF(pipe));
8093}
8094
86d3efce
VS
8095/*
8096 * Set up the pipe CSC unit.
8097 *
8098 * Currently only full range RGB to limited range RGB conversion
8099 * is supported, but eventually this should handle various
8100 * RGB<->YCbCr scenarios as well.
8101 */
50f3b016 8102static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8103{
8104 struct drm_device *dev = crtc->dev;
8105 struct drm_i915_private *dev_priv = dev->dev_private;
8106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8107 int pipe = intel_crtc->pipe;
8108 uint16_t coeff = 0x7800; /* 1.0 */
8109
8110 /*
8111 * TODO: Check what kind of values actually come out of the pipe
8112 * with these coeff/postoff values and adjust to get the best
8113 * accuracy. Perhaps we even need to take the bpc value into
8114 * consideration.
8115 */
8116
6e3c9717 8117 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8118 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8119
8120 /*
8121 * GY/GU and RY/RU should be the other way around according
8122 * to BSpec, but reality doesn't agree. Just set them up in
8123 * a way that results in the correct picture.
8124 */
8125 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8126 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8127
8128 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8129 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8130
8131 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8132 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8133
8134 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8135 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8136 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8137
8138 if (INTEL_INFO(dev)->gen > 6) {
8139 uint16_t postoff = 0;
8140
6e3c9717 8141 if (intel_crtc->config->limited_color_range)
32cf0cb0 8142 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8143
8144 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8145 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8146 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8147
8148 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8149 } else {
8150 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8151
6e3c9717 8152 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8153 mode |= CSC_BLACK_SCREEN_OFFSET;
8154
8155 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8156 }
8157}
8158
6ff93609 8159static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8160{
756f85cf
PZ
8161 struct drm_device *dev = crtc->dev;
8162 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8164 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8165 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8166 uint32_t val;
8167
3eff4faa 8168 val = 0;
ee2b0b38 8169
6e3c9717 8170 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8171 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8172
6e3c9717 8173 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8174 val |= PIPECONF_INTERLACED_ILK;
8175 else
8176 val |= PIPECONF_PROGRESSIVE;
8177
702e7a56
PZ
8178 I915_WRITE(PIPECONF(cpu_transcoder), val);
8179 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8180
8181 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8182 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8183
3cdf122c 8184 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8185 val = 0;
8186
6e3c9717 8187 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8188 case 18:
8189 val |= PIPEMISC_DITHER_6_BPC;
8190 break;
8191 case 24:
8192 val |= PIPEMISC_DITHER_8_BPC;
8193 break;
8194 case 30:
8195 val |= PIPEMISC_DITHER_10_BPC;
8196 break;
8197 case 36:
8198 val |= PIPEMISC_DITHER_12_BPC;
8199 break;
8200 default:
8201 /* Case prevented by pipe_config_set_bpp. */
8202 BUG();
8203 }
8204
6e3c9717 8205 if (intel_crtc->config->dither)
756f85cf
PZ
8206 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8207
8208 I915_WRITE(PIPEMISC(pipe), val);
8209 }
ee2b0b38
PZ
8210}
8211
6591c6e4 8212static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8213 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8214 intel_clock_t *clock,
8215 bool *has_reduced_clock,
8216 intel_clock_t *reduced_clock)
8217{
8218 struct drm_device *dev = crtc->dev;
8219 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8220 int refclk;
d4906093 8221 const intel_limit_t *limit;
a16af721 8222 bool ret, is_lvds = false;
79e53945 8223
a93e255f 8224 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8225
55bb9992 8226 refclk = ironlake_get_refclk(crtc_state);
79e53945 8227
d4906093
ML
8228 /*
8229 * Returns a set of divisors for the desired target clock with the given
8230 * refclk, or FALSE. The returned values represent the clock equation:
8231 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8232 */
a93e255f
ACO
8233 limit = intel_limit(crtc_state, refclk);
8234 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8235 crtc_state->port_clock,
ee9300bb 8236 refclk, NULL, clock);
6591c6e4
PZ
8237 if (!ret)
8238 return false;
cda4b7d3 8239
ddc9003c 8240 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
8241 /*
8242 * Ensure we match the reduced clock's P to the target clock.
8243 * If the clocks don't match, we can't switch the display clock
8244 * by using the FP0/FP1. In such case we will disable the LVDS
8245 * downclock feature.
8246 */
ee9300bb 8247 *has_reduced_clock =
a93e255f 8248 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
8249 dev_priv->lvds_downclock,
8250 refclk, clock,
8251 reduced_clock);
652c393a 8252 }
61e9653f 8253
6591c6e4
PZ
8254 return true;
8255}
8256
d4b1931c
PZ
8257int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8258{
8259 /*
8260 * Account for spread spectrum to avoid
8261 * oversubscribing the link. Max center spread
8262 * is 2.5%; use 5% for safety's sake.
8263 */
8264 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8265 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8266}
8267
7429e9d4 8268static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8269{
7429e9d4 8270 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8271}
8272
de13a2e3 8273static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8274 struct intel_crtc_state *crtc_state,
7429e9d4 8275 u32 *fp,
9a7c7890 8276 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8277{
de13a2e3 8278 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8279 struct drm_device *dev = crtc->dev;
8280 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992
ACO
8281 struct drm_atomic_state *state = crtc_state->base.state;
8282 struct drm_connector_state *connector_state;
8283 struct intel_encoder *encoder;
de13a2e3 8284 uint32_t dpll;
55bb9992 8285 int factor, num_connectors = 0, i;
09ede541 8286 bool is_lvds = false, is_sdvo = false;
79e53945 8287
55bb9992
ACO
8288 for (i = 0; i < state->num_connector; i++) {
8289 if (!state->connectors[i])
d0737e1d
ACO
8290 continue;
8291
55bb9992
ACO
8292 connector_state = state->connector_states[i];
8293 if (connector_state->crtc != crtc_state->base.crtc)
8294 continue;
8295
8296 encoder = to_intel_encoder(connector_state->best_encoder);
8297
8298 switch (encoder->type) {
79e53945
JB
8299 case INTEL_OUTPUT_LVDS:
8300 is_lvds = true;
8301 break;
8302 case INTEL_OUTPUT_SDVO:
7d57382e 8303 case INTEL_OUTPUT_HDMI:
79e53945 8304 is_sdvo = true;
79e53945 8305 break;
6847d71b
PZ
8306 default:
8307 break;
79e53945 8308 }
43565a06 8309
c751ce4f 8310 num_connectors++;
79e53945 8311 }
79e53945 8312
c1858123 8313 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8314 factor = 21;
8315 if (is_lvds) {
8316 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8317 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8318 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8319 factor = 25;
190f68c5 8320 } else if (crtc_state->sdvo_tv_clock)
8febb297 8321 factor = 20;
c1858123 8322
190f68c5 8323 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8324 *fp |= FP_CB_TUNE;
2c07245f 8325
9a7c7890
DV
8326 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8327 *fp2 |= FP_CB_TUNE;
8328
5eddb70b 8329 dpll = 0;
2c07245f 8330
a07d6787
EA
8331 if (is_lvds)
8332 dpll |= DPLLB_MODE_LVDS;
8333 else
8334 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8335
190f68c5 8336 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8337 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8338
8339 if (is_sdvo)
4a33e48d 8340 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8341 if (crtc_state->has_dp_encoder)
4a33e48d 8342 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8343
a07d6787 8344 /* compute bitmask from p1 value */
190f68c5 8345 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8346 /* also FPA1 */
190f68c5 8347 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8348
190f68c5 8349 switch (crtc_state->dpll.p2) {
a07d6787
EA
8350 case 5:
8351 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8352 break;
8353 case 7:
8354 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8355 break;
8356 case 10:
8357 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8358 break;
8359 case 14:
8360 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8361 break;
79e53945
JB
8362 }
8363
b4c09f3b 8364 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8365 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8366 else
8367 dpll |= PLL_REF_INPUT_DREFCLK;
8368
959e16d6 8369 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8370}
8371
190f68c5
ACO
8372static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8373 struct intel_crtc_state *crtc_state)
de13a2e3 8374{
c7653199 8375 struct drm_device *dev = crtc->base.dev;
de13a2e3 8376 intel_clock_t clock, reduced_clock;
cbbab5bd 8377 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8378 bool ok, has_reduced_clock = false;
8b47047b 8379 bool is_lvds = false;
e2b78267 8380 struct intel_shared_dpll *pll;
de13a2e3 8381
409ee761 8382 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8383
5dc5298b
PZ
8384 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8385 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8386
190f68c5 8387 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8388 &has_reduced_clock, &reduced_clock);
190f68c5 8389 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8390 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8391 return -EINVAL;
79e53945 8392 }
f47709a9 8393 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8394 if (!crtc_state->clock_set) {
8395 crtc_state->dpll.n = clock.n;
8396 crtc_state->dpll.m1 = clock.m1;
8397 crtc_state->dpll.m2 = clock.m2;
8398 crtc_state->dpll.p1 = clock.p1;
8399 crtc_state->dpll.p2 = clock.p2;
f47709a9 8400 }
79e53945 8401
5dc5298b 8402 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8403 if (crtc_state->has_pch_encoder) {
8404 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8405 if (has_reduced_clock)
7429e9d4 8406 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8407
190f68c5 8408 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8409 &fp, &reduced_clock,
8410 has_reduced_clock ? &fp2 : NULL);
8411
190f68c5
ACO
8412 crtc_state->dpll_hw_state.dpll = dpll;
8413 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8414 if (has_reduced_clock)
190f68c5 8415 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8416 else
190f68c5 8417 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8418
190f68c5 8419 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8420 if (pll == NULL) {
84f44ce7 8421 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8422 pipe_name(crtc->pipe));
4b645f14
JB
8423 return -EINVAL;
8424 }
3fb37703 8425 }
79e53945 8426
ab585dea 8427 if (is_lvds && has_reduced_clock)
c7653199 8428 crtc->lowfreq_avail = true;
bcd644e0 8429 else
c7653199 8430 crtc->lowfreq_avail = false;
e2b78267 8431
c8f7a0db 8432 return 0;
79e53945
JB
8433}
8434
eb14cb74
VS
8435static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8436 struct intel_link_m_n *m_n)
8437{
8438 struct drm_device *dev = crtc->base.dev;
8439 struct drm_i915_private *dev_priv = dev->dev_private;
8440 enum pipe pipe = crtc->pipe;
8441
8442 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8443 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8444 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8445 & ~TU_SIZE_MASK;
8446 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8447 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8449}
8450
8451static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8452 enum transcoder transcoder,
b95af8be
VK
8453 struct intel_link_m_n *m_n,
8454 struct intel_link_m_n *m2_n2)
72419203
DV
8455{
8456 struct drm_device *dev = crtc->base.dev;
8457 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8458 enum pipe pipe = crtc->pipe;
72419203 8459
eb14cb74
VS
8460 if (INTEL_INFO(dev)->gen >= 5) {
8461 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8462 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8463 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8464 & ~TU_SIZE_MASK;
8465 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8466 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8467 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8468 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8469 * gen < 8) and if DRRS is supported (to make sure the
8470 * registers are not unnecessarily read).
8471 */
8472 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8473 crtc->config->has_drrs) {
b95af8be
VK
8474 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8475 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8476 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8477 & ~TU_SIZE_MASK;
8478 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8479 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8480 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8481 }
eb14cb74
VS
8482 } else {
8483 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8484 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8485 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8486 & ~TU_SIZE_MASK;
8487 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8488 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8489 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8490 }
8491}
8492
8493void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 8494 struct intel_crtc_state *pipe_config)
eb14cb74 8495{
681a8504 8496 if (pipe_config->has_pch_encoder)
eb14cb74
VS
8497 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8498 else
8499 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
8500 &pipe_config->dp_m_n,
8501 &pipe_config->dp_m2_n2);
eb14cb74 8502}
72419203 8503
eb14cb74 8504static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 8505 struct intel_crtc_state *pipe_config)
eb14cb74
VS
8506{
8507 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 8508 &pipe_config->fdi_m_n, NULL);
72419203
DV
8509}
8510
bd2e244f 8511static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8512 struct intel_crtc_state *pipe_config)
bd2e244f
JB
8513{
8514 struct drm_device *dev = crtc->base.dev;
8515 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
8516 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8517 uint32_t ps_ctrl = 0;
8518 int id = -1;
8519 int i;
bd2e244f 8520
a1b2278e
CK
8521 /* find scaler attached to this pipe */
8522 for (i = 0; i < crtc->num_scalers; i++) {
8523 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8524 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8525 id = i;
8526 pipe_config->pch_pfit.enabled = true;
8527 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8528 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8529 break;
8530 }
8531 }
bd2e244f 8532
a1b2278e
CK
8533 scaler_state->scaler_id = id;
8534 if (id >= 0) {
8535 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8536 } else {
8537 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
8538 }
8539}
8540
5724dbd1
DL
8541static void
8542skylake_get_initial_plane_config(struct intel_crtc *crtc,
8543 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
8544{
8545 struct drm_device *dev = crtc->base.dev;
8546 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 8547 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
8548 int pipe = crtc->pipe;
8549 int fourcc, pixel_format;
6761dd31 8550 unsigned int aligned_height;
bc8d7dff 8551 struct drm_framebuffer *fb;
1b842c89 8552 struct intel_framebuffer *intel_fb;
bc8d7dff 8553
d9806c9f 8554 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8555 if (!intel_fb) {
bc8d7dff
DL
8556 DRM_DEBUG_KMS("failed to alloc fb\n");
8557 return;
8558 }
8559
1b842c89
DL
8560 fb = &intel_fb->base;
8561
bc8d7dff 8562 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
8563 if (!(val & PLANE_CTL_ENABLE))
8564 goto error;
8565
bc8d7dff
DL
8566 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8567 fourcc = skl_format_to_fourcc(pixel_format,
8568 val & PLANE_CTL_ORDER_RGBX,
8569 val & PLANE_CTL_ALPHA_MASK);
8570 fb->pixel_format = fourcc;
8571 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8572
40f46283
DL
8573 tiling = val & PLANE_CTL_TILED_MASK;
8574 switch (tiling) {
8575 case PLANE_CTL_TILED_LINEAR:
8576 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8577 break;
8578 case PLANE_CTL_TILED_X:
8579 plane_config->tiling = I915_TILING_X;
8580 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8581 break;
8582 case PLANE_CTL_TILED_Y:
8583 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8584 break;
8585 case PLANE_CTL_TILED_YF:
8586 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8587 break;
8588 default:
8589 MISSING_CASE(tiling);
8590 goto error;
8591 }
8592
bc8d7dff
DL
8593 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8594 plane_config->base = base;
8595
8596 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8597
8598 val = I915_READ(PLANE_SIZE(pipe, 0));
8599 fb->height = ((val >> 16) & 0xfff) + 1;
8600 fb->width = ((val >> 0) & 0x1fff) + 1;
8601
8602 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
8603 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8604 fb->pixel_format);
bc8d7dff
DL
8605 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8606
8607 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8608 fb->pixel_format,
8609 fb->modifier[0]);
bc8d7dff 8610
f37b5c2b 8611 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
8612
8613 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8614 pipe_name(pipe), fb->width, fb->height,
8615 fb->bits_per_pixel, base, fb->pitches[0],
8616 plane_config->size);
8617
2d14030b 8618 plane_config->fb = intel_fb;
bc8d7dff
DL
8619 return;
8620
8621error:
8622 kfree(fb);
8623}
8624
2fa2fe9a 8625static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8626 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8627{
8628 struct drm_device *dev = crtc->base.dev;
8629 struct drm_i915_private *dev_priv = dev->dev_private;
8630 uint32_t tmp;
8631
8632 tmp = I915_READ(PF_CTL(crtc->pipe));
8633
8634 if (tmp & PF_ENABLE) {
fd4daa9c 8635 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8636 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8637 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8638
8639 /* We currently do not free assignements of panel fitters on
8640 * ivb/hsw (since we don't use the higher upscaling modes which
8641 * differentiates them) so just WARN about this case for now. */
8642 if (IS_GEN7(dev)) {
8643 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8644 PF_PIPE_SEL_IVB(crtc->pipe));
8645 }
2fa2fe9a 8646 }
79e53945
JB
8647}
8648
5724dbd1
DL
8649static void
8650ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8651 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8652{
8653 struct drm_device *dev = crtc->base.dev;
8654 struct drm_i915_private *dev_priv = dev->dev_private;
8655 u32 val, base, offset;
aeee5a49 8656 int pipe = crtc->pipe;
4c6baa59 8657 int fourcc, pixel_format;
6761dd31 8658 unsigned int aligned_height;
b113d5ee 8659 struct drm_framebuffer *fb;
1b842c89 8660 struct intel_framebuffer *intel_fb;
4c6baa59 8661
42a7b088
DL
8662 val = I915_READ(DSPCNTR(pipe));
8663 if (!(val & DISPLAY_PLANE_ENABLE))
8664 return;
8665
d9806c9f 8666 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8667 if (!intel_fb) {
4c6baa59
JB
8668 DRM_DEBUG_KMS("failed to alloc fb\n");
8669 return;
8670 }
8671
1b842c89
DL
8672 fb = &intel_fb->base;
8673
18c5247e
DV
8674 if (INTEL_INFO(dev)->gen >= 4) {
8675 if (val & DISPPLANE_TILED) {
49af449b 8676 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8677 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8678 }
8679 }
4c6baa59
JB
8680
8681 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8682 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8683 fb->pixel_format = fourcc;
8684 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8685
aeee5a49 8686 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8687 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8688 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8689 } else {
49af449b 8690 if (plane_config->tiling)
aeee5a49 8691 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8692 else
aeee5a49 8693 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8694 }
8695 plane_config->base = base;
8696
8697 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8698 fb->width = ((val >> 16) & 0xfff) + 1;
8699 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8700
8701 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8702 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8703
b113d5ee 8704 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8705 fb->pixel_format,
8706 fb->modifier[0]);
4c6baa59 8707
f37b5c2b 8708 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8709
2844a921
DL
8710 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8711 pipe_name(pipe), fb->width, fb->height,
8712 fb->bits_per_pixel, base, fb->pitches[0],
8713 plane_config->size);
b113d5ee 8714
2d14030b 8715 plane_config->fb = intel_fb;
4c6baa59
JB
8716}
8717
0e8ffe1b 8718static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8719 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8720{
8721 struct drm_device *dev = crtc->base.dev;
8722 struct drm_i915_private *dev_priv = dev->dev_private;
8723 uint32_t tmp;
8724
f458ebbc
DV
8725 if (!intel_display_power_is_enabled(dev_priv,
8726 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8727 return false;
8728
e143a21c 8729 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8730 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8731
0e8ffe1b
DV
8732 tmp = I915_READ(PIPECONF(crtc->pipe));
8733 if (!(tmp & PIPECONF_ENABLE))
8734 return false;
8735
42571aef
VS
8736 switch (tmp & PIPECONF_BPC_MASK) {
8737 case PIPECONF_6BPC:
8738 pipe_config->pipe_bpp = 18;
8739 break;
8740 case PIPECONF_8BPC:
8741 pipe_config->pipe_bpp = 24;
8742 break;
8743 case PIPECONF_10BPC:
8744 pipe_config->pipe_bpp = 30;
8745 break;
8746 case PIPECONF_12BPC:
8747 pipe_config->pipe_bpp = 36;
8748 break;
8749 default:
8750 break;
8751 }
8752
b5a9fa09
DV
8753 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8754 pipe_config->limited_color_range = true;
8755
ab9412ba 8756 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8757 struct intel_shared_dpll *pll;
8758
88adfff1
DV
8759 pipe_config->has_pch_encoder = true;
8760
627eb5a3
DV
8761 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8762 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8763 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8764
8765 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8766
c0d43d62 8767 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8768 pipe_config->shared_dpll =
8769 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8770 } else {
8771 tmp = I915_READ(PCH_DPLL_SEL);
8772 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8773 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8774 else
8775 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8776 }
66e985c0
DV
8777
8778 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8779
8780 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8781 &pipe_config->dpll_hw_state));
c93f54cf
DV
8782
8783 tmp = pipe_config->dpll_hw_state.dpll;
8784 pipe_config->pixel_multiplier =
8785 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8786 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8787
8788 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8789 } else {
8790 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8791 }
8792
1bd1bd80
DV
8793 intel_get_pipe_timings(crtc, pipe_config);
8794
2fa2fe9a
DV
8795 ironlake_get_pfit_config(crtc, pipe_config);
8796
0e8ffe1b
DV
8797 return true;
8798}
8799
be256dc7
PZ
8800static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8801{
8802 struct drm_device *dev = dev_priv->dev;
be256dc7 8803 struct intel_crtc *crtc;
be256dc7 8804
d3fcc808 8805 for_each_intel_crtc(dev, crtc)
e2c719b7 8806 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8807 pipe_name(crtc->pipe));
8808
e2c719b7
RC
8809 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8810 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8811 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8812 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8813 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8814 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8815 "CPU PWM1 enabled\n");
c5107b87 8816 if (IS_HASWELL(dev))
e2c719b7 8817 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8818 "CPU PWM2 enabled\n");
e2c719b7 8819 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8820 "PCH PWM1 enabled\n");
e2c719b7 8821 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8822 "Utility pin enabled\n");
e2c719b7 8823 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8824
9926ada1
PZ
8825 /*
8826 * In theory we can still leave IRQs enabled, as long as only the HPD
8827 * interrupts remain enabled. We used to check for that, but since it's
8828 * gen-specific and since we only disable LCPLL after we fully disable
8829 * the interrupts, the check below should be enough.
8830 */
e2c719b7 8831 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8832}
8833
9ccd5aeb
PZ
8834static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8835{
8836 struct drm_device *dev = dev_priv->dev;
8837
8838 if (IS_HASWELL(dev))
8839 return I915_READ(D_COMP_HSW);
8840 else
8841 return I915_READ(D_COMP_BDW);
8842}
8843
3c4c9b81
PZ
8844static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8845{
8846 struct drm_device *dev = dev_priv->dev;
8847
8848 if (IS_HASWELL(dev)) {
8849 mutex_lock(&dev_priv->rps.hw_lock);
8850 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8851 val))
f475dadf 8852 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
8853 mutex_unlock(&dev_priv->rps.hw_lock);
8854 } else {
9ccd5aeb
PZ
8855 I915_WRITE(D_COMP_BDW, val);
8856 POSTING_READ(D_COMP_BDW);
3c4c9b81 8857 }
be256dc7
PZ
8858}
8859
8860/*
8861 * This function implements pieces of two sequences from BSpec:
8862 * - Sequence for display software to disable LCPLL
8863 * - Sequence for display software to allow package C8+
8864 * The steps implemented here are just the steps that actually touch the LCPLL
8865 * register. Callers should take care of disabling all the display engine
8866 * functions, doing the mode unset, fixing interrupts, etc.
8867 */
6ff58d53
PZ
8868static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8869 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
8870{
8871 uint32_t val;
8872
8873 assert_can_disable_lcpll(dev_priv);
8874
8875 val = I915_READ(LCPLL_CTL);
8876
8877 if (switch_to_fclk) {
8878 val |= LCPLL_CD_SOURCE_FCLK;
8879 I915_WRITE(LCPLL_CTL, val);
8880
8881 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8882 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8883 DRM_ERROR("Switching to FCLK failed\n");
8884
8885 val = I915_READ(LCPLL_CTL);
8886 }
8887
8888 val |= LCPLL_PLL_DISABLE;
8889 I915_WRITE(LCPLL_CTL, val);
8890 POSTING_READ(LCPLL_CTL);
8891
8892 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8893 DRM_ERROR("LCPLL still locked\n");
8894
9ccd5aeb 8895 val = hsw_read_dcomp(dev_priv);
be256dc7 8896 val |= D_COMP_COMP_DISABLE;
3c4c9b81 8897 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8898 ndelay(100);
8899
9ccd5aeb
PZ
8900 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8901 1))
be256dc7
PZ
8902 DRM_ERROR("D_COMP RCOMP still in progress\n");
8903
8904 if (allow_power_down) {
8905 val = I915_READ(LCPLL_CTL);
8906 val |= LCPLL_POWER_DOWN_ALLOW;
8907 I915_WRITE(LCPLL_CTL, val);
8908 POSTING_READ(LCPLL_CTL);
8909 }
8910}
8911
8912/*
8913 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8914 * source.
8915 */
6ff58d53 8916static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8917{
8918 uint32_t val;
8919
8920 val = I915_READ(LCPLL_CTL);
8921
8922 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8923 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8924 return;
8925
a8a8bd54
PZ
8926 /*
8927 * Make sure we're not on PC8 state before disabling PC8, otherwise
8928 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8929 */
59bad947 8930 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8931
be256dc7
PZ
8932 if (val & LCPLL_POWER_DOWN_ALLOW) {
8933 val &= ~LCPLL_POWER_DOWN_ALLOW;
8934 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8935 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8936 }
8937
9ccd5aeb 8938 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8939 val |= D_COMP_COMP_FORCE;
8940 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8941 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8942
8943 val = I915_READ(LCPLL_CTL);
8944 val &= ~LCPLL_PLL_DISABLE;
8945 I915_WRITE(LCPLL_CTL, val);
8946
8947 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8948 DRM_ERROR("LCPLL not locked yet\n");
8949
8950 if (val & LCPLL_CD_SOURCE_FCLK) {
8951 val = I915_READ(LCPLL_CTL);
8952 val &= ~LCPLL_CD_SOURCE_FCLK;
8953 I915_WRITE(LCPLL_CTL, val);
8954
8955 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8956 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8957 DRM_ERROR("Switching back to LCPLL failed\n");
8958 }
215733fa 8959
59bad947 8960 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8961}
8962
765dab67
PZ
8963/*
8964 * Package states C8 and deeper are really deep PC states that can only be
8965 * reached when all the devices on the system allow it, so even if the graphics
8966 * device allows PC8+, it doesn't mean the system will actually get to these
8967 * states. Our driver only allows PC8+ when going into runtime PM.
8968 *
8969 * The requirements for PC8+ are that all the outputs are disabled, the power
8970 * well is disabled and most interrupts are disabled, and these are also
8971 * requirements for runtime PM. When these conditions are met, we manually do
8972 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8973 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8974 * hang the machine.
8975 *
8976 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8977 * the state of some registers, so when we come back from PC8+ we need to
8978 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8979 * need to take care of the registers kept by RC6. Notice that this happens even
8980 * if we don't put the device in PCI D3 state (which is what currently happens
8981 * because of the runtime PM support).
8982 *
8983 * For more, read "Display Sequences for Package C8" on the hardware
8984 * documentation.
8985 */
a14cb6fc 8986void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8987{
c67a470b
PZ
8988 struct drm_device *dev = dev_priv->dev;
8989 uint32_t val;
8990
c67a470b
PZ
8991 DRM_DEBUG_KMS("Enabling package C8+\n");
8992
c67a470b
PZ
8993 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8994 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8995 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8996 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8997 }
8998
8999 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9000 hsw_disable_lcpll(dev_priv, true, true);
9001}
9002
a14cb6fc 9003void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9004{
9005 struct drm_device *dev = dev_priv->dev;
9006 uint32_t val;
9007
c67a470b
PZ
9008 DRM_DEBUG_KMS("Disabling package C8+\n");
9009
9010 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9011 lpt_init_pch_refclk(dev);
9012
9013 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9014 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9015 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9016 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9017 }
9018
9019 intel_prepare_ddi(dev);
c67a470b
PZ
9020}
9021
f8437dd1
VK
9022static void broxton_modeset_global_resources(struct drm_atomic_state *state)
9023{
9024 struct drm_device *dev = state->dev;
9025 struct drm_i915_private *dev_priv = dev->dev_private;
9026 int max_pixclk = intel_mode_max_pixclk(state);
9027 int req_cdclk;
9028
9029 /* see the comment in valleyview_modeset_global_resources */
9030 if (WARN_ON(max_pixclk < 0))
9031 return;
9032
9033 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9034
9035 if (req_cdclk != dev_priv->cdclk_freq)
9036 broxton_set_cdclk(dev, req_cdclk);
9037}
9038
190f68c5
ACO
9039static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9040 struct intel_crtc_state *crtc_state)
09b4ddf9 9041{
190f68c5 9042 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9043 return -EINVAL;
716c2e55 9044
c7653199 9045 crtc->lowfreq_avail = false;
644cef34 9046
c8f7a0db 9047 return 0;
79e53945
JB
9048}
9049
96b7dfb7
S
9050static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9051 enum port port,
5cec258b 9052 struct intel_crtc_state *pipe_config)
96b7dfb7 9053{
3148ade7 9054 u32 temp, dpll_ctl1;
96b7dfb7
S
9055
9056 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9057 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9058
9059 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9060 case SKL_DPLL0:
9061 /*
9062 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9063 * of the shared DPLL framework and thus needs to be read out
9064 * separately
9065 */
9066 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9067 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9068 break;
96b7dfb7
S
9069 case SKL_DPLL1:
9070 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9071 break;
9072 case SKL_DPLL2:
9073 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9074 break;
9075 case SKL_DPLL3:
9076 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9077 break;
96b7dfb7
S
9078 }
9079}
9080
7d2c8175
DL
9081static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9082 enum port port,
5cec258b 9083 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9084{
9085 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9086
9087 switch (pipe_config->ddi_pll_sel) {
9088 case PORT_CLK_SEL_WRPLL1:
9089 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9090 break;
9091 case PORT_CLK_SEL_WRPLL2:
9092 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9093 break;
9094 }
9095}
9096
26804afd 9097static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9098 struct intel_crtc_state *pipe_config)
26804afd
DV
9099{
9100 struct drm_device *dev = crtc->base.dev;
9101 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9102 struct intel_shared_dpll *pll;
26804afd
DV
9103 enum port port;
9104 uint32_t tmp;
9105
9106 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9107
9108 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9109
96b7dfb7
S
9110 if (IS_SKYLAKE(dev))
9111 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9112 else
9113 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9114
d452c5b6
DV
9115 if (pipe_config->shared_dpll >= 0) {
9116 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9117
9118 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9119 &pipe_config->dpll_hw_state));
9120 }
9121
26804afd
DV
9122 /*
9123 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9124 * DDI E. So just check whether this pipe is wired to DDI E and whether
9125 * the PCH transcoder is on.
9126 */
ca370455
DL
9127 if (INTEL_INFO(dev)->gen < 9 &&
9128 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9129 pipe_config->has_pch_encoder = true;
9130
9131 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9132 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9133 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9134
9135 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9136 }
9137}
9138
0e8ffe1b 9139static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9140 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9141{
9142 struct drm_device *dev = crtc->base.dev;
9143 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9144 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9145 uint32_t tmp;
9146
f458ebbc 9147 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9148 POWER_DOMAIN_PIPE(crtc->pipe)))
9149 return false;
9150
e143a21c 9151 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9152 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9153
eccb140b
DV
9154 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9155 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9156 enum pipe trans_edp_pipe;
9157 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9158 default:
9159 WARN(1, "unknown pipe linked to edp transcoder\n");
9160 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9161 case TRANS_DDI_EDP_INPUT_A_ON:
9162 trans_edp_pipe = PIPE_A;
9163 break;
9164 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9165 trans_edp_pipe = PIPE_B;
9166 break;
9167 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9168 trans_edp_pipe = PIPE_C;
9169 break;
9170 }
9171
9172 if (trans_edp_pipe == crtc->pipe)
9173 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9174 }
9175
f458ebbc 9176 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9177 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9178 return false;
9179
eccb140b 9180 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9181 if (!(tmp & PIPECONF_ENABLE))
9182 return false;
9183
26804afd 9184 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9185
1bd1bd80
DV
9186 intel_get_pipe_timings(crtc, pipe_config);
9187
a1b2278e
CK
9188 if (INTEL_INFO(dev)->gen >= 9) {
9189 skl_init_scalers(dev, crtc, pipe_config);
9190 }
9191
2fa2fe9a 9192 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
9193 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9194 if (IS_SKYLAKE(dev))
9195 skylake_get_pfit_config(crtc, pipe_config);
9196 else
9197 ironlake_get_pfit_config(crtc, pipe_config);
a1b2278e
CK
9198 } else {
9199 pipe_config->scaler_state.scaler_id = -1;
9200 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f 9201 }
88adfff1 9202
e59150dc
JB
9203 if (IS_HASWELL(dev))
9204 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9205 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9206
ebb69c95
CT
9207 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9208 pipe_config->pixel_multiplier =
9209 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9210 } else {
9211 pipe_config->pixel_multiplier = 1;
9212 }
6c49f241 9213
0e8ffe1b
DV
9214 return true;
9215}
9216
560b85bb
CW
9217static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9218{
9219 struct drm_device *dev = crtc->dev;
9220 struct drm_i915_private *dev_priv = dev->dev_private;
9221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9222 uint32_t cntl = 0, size = 0;
560b85bb 9223
dc41c154 9224 if (base) {
3dd512fb
MR
9225 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9226 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9227 unsigned int stride = roundup_pow_of_two(width) * 4;
9228
9229 switch (stride) {
9230 default:
9231 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9232 width, stride);
9233 stride = 256;
9234 /* fallthrough */
9235 case 256:
9236 case 512:
9237 case 1024:
9238 case 2048:
9239 break;
4b0e333e
CW
9240 }
9241
dc41c154
VS
9242 cntl |= CURSOR_ENABLE |
9243 CURSOR_GAMMA_ENABLE |
9244 CURSOR_FORMAT_ARGB |
9245 CURSOR_STRIDE(stride);
9246
9247 size = (height << 12) | width;
4b0e333e 9248 }
560b85bb 9249
dc41c154
VS
9250 if (intel_crtc->cursor_cntl != 0 &&
9251 (intel_crtc->cursor_base != base ||
9252 intel_crtc->cursor_size != size ||
9253 intel_crtc->cursor_cntl != cntl)) {
9254 /* On these chipsets we can only modify the base/size/stride
9255 * whilst the cursor is disabled.
9256 */
9257 I915_WRITE(_CURACNTR, 0);
4b0e333e 9258 POSTING_READ(_CURACNTR);
dc41c154 9259 intel_crtc->cursor_cntl = 0;
4b0e333e 9260 }
560b85bb 9261
99d1f387 9262 if (intel_crtc->cursor_base != base) {
9db4a9c7 9263 I915_WRITE(_CURABASE, base);
99d1f387
VS
9264 intel_crtc->cursor_base = base;
9265 }
4726e0b0 9266
dc41c154
VS
9267 if (intel_crtc->cursor_size != size) {
9268 I915_WRITE(CURSIZE, size);
9269 intel_crtc->cursor_size = size;
4b0e333e 9270 }
560b85bb 9271
4b0e333e 9272 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
9273 I915_WRITE(_CURACNTR, cntl);
9274 POSTING_READ(_CURACNTR);
4b0e333e 9275 intel_crtc->cursor_cntl = cntl;
560b85bb 9276 }
560b85bb
CW
9277}
9278
560b85bb 9279static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9280{
9281 struct drm_device *dev = crtc->dev;
9282 struct drm_i915_private *dev_priv = dev->dev_private;
9283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9284 int pipe = intel_crtc->pipe;
4b0e333e
CW
9285 uint32_t cntl;
9286
9287 cntl = 0;
9288 if (base) {
9289 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9290 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9291 case 64:
9292 cntl |= CURSOR_MODE_64_ARGB_AX;
9293 break;
9294 case 128:
9295 cntl |= CURSOR_MODE_128_ARGB_AX;
9296 break;
9297 case 256:
9298 cntl |= CURSOR_MODE_256_ARGB_AX;
9299 break;
9300 default:
3dd512fb 9301 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9302 return;
65a21cd6 9303 }
4b0e333e 9304 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
9305
9306 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9307 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 9308 }
65a21cd6 9309
8e7d688b 9310 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
9311 cntl |= CURSOR_ROTATE_180;
9312
4b0e333e
CW
9313 if (intel_crtc->cursor_cntl != cntl) {
9314 I915_WRITE(CURCNTR(pipe), cntl);
9315 POSTING_READ(CURCNTR(pipe));
9316 intel_crtc->cursor_cntl = cntl;
65a21cd6 9317 }
4b0e333e 9318
65a21cd6 9319 /* and commit changes on next vblank */
5efb3e28
VS
9320 I915_WRITE(CURBASE(pipe), base);
9321 POSTING_READ(CURBASE(pipe));
99d1f387
VS
9322
9323 intel_crtc->cursor_base = base;
65a21cd6
JB
9324}
9325
cda4b7d3 9326/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
9327static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9328 bool on)
cda4b7d3
CW
9329{
9330 struct drm_device *dev = crtc->dev;
9331 struct drm_i915_private *dev_priv = dev->dev_private;
9332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9333 int pipe = intel_crtc->pipe;
3d7d6510
MR
9334 int x = crtc->cursor_x;
9335 int y = crtc->cursor_y;
d6e4db15 9336 u32 base = 0, pos = 0;
cda4b7d3 9337
d6e4db15 9338 if (on)
cda4b7d3 9339 base = intel_crtc->cursor_addr;
cda4b7d3 9340
6e3c9717 9341 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
9342 base = 0;
9343
6e3c9717 9344 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
9345 base = 0;
9346
9347 if (x < 0) {
3dd512fb 9348 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
9349 base = 0;
9350
9351 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9352 x = -x;
9353 }
9354 pos |= x << CURSOR_X_SHIFT;
9355
9356 if (y < 0) {
3dd512fb 9357 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
9358 base = 0;
9359
9360 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9361 y = -y;
9362 }
9363 pos |= y << CURSOR_Y_SHIFT;
9364
4b0e333e 9365 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
9366 return;
9367
5efb3e28
VS
9368 I915_WRITE(CURPOS(pipe), pos);
9369
4398ad45
VS
9370 /* ILK+ do this automagically */
9371 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 9372 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
9373 base += (intel_crtc->base.cursor->state->crtc_h *
9374 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
9375 }
9376
8ac54669 9377 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
9378 i845_update_cursor(crtc, base);
9379 else
9380 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
9381}
9382
dc41c154
VS
9383static bool cursor_size_ok(struct drm_device *dev,
9384 uint32_t width, uint32_t height)
9385{
9386 if (width == 0 || height == 0)
9387 return false;
9388
9389 /*
9390 * 845g/865g are special in that they are only limited by
9391 * the width of their cursors, the height is arbitrary up to
9392 * the precision of the register. Everything else requires
9393 * square cursors, limited to a few power-of-two sizes.
9394 */
9395 if (IS_845G(dev) || IS_I865G(dev)) {
9396 if ((width & 63) != 0)
9397 return false;
9398
9399 if (width > (IS_845G(dev) ? 64 : 512))
9400 return false;
9401
9402 if (height > 1023)
9403 return false;
9404 } else {
9405 switch (width | height) {
9406 case 256:
9407 case 128:
9408 if (IS_GEN2(dev))
9409 return false;
9410 case 64:
9411 break;
9412 default:
9413 return false;
9414 }
9415 }
9416
9417 return true;
9418}
9419
79e53945 9420static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 9421 u16 *blue, uint32_t start, uint32_t size)
79e53945 9422{
7203425a 9423 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 9424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 9425
7203425a 9426 for (i = start; i < end; i++) {
79e53945
JB
9427 intel_crtc->lut_r[i] = red[i] >> 8;
9428 intel_crtc->lut_g[i] = green[i] >> 8;
9429 intel_crtc->lut_b[i] = blue[i] >> 8;
9430 }
9431
9432 intel_crtc_load_lut(crtc);
9433}
9434
79e53945
JB
9435/* VESA 640x480x72Hz mode to set on the pipe */
9436static struct drm_display_mode load_detect_mode = {
9437 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9438 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9439};
9440
a8bb6818
DV
9441struct drm_framebuffer *
9442__intel_framebuffer_create(struct drm_device *dev,
9443 struct drm_mode_fb_cmd2 *mode_cmd,
9444 struct drm_i915_gem_object *obj)
d2dff872
CW
9445{
9446 struct intel_framebuffer *intel_fb;
9447 int ret;
9448
9449 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9450 if (!intel_fb) {
6ccb81f2 9451 drm_gem_object_unreference(&obj->base);
d2dff872
CW
9452 return ERR_PTR(-ENOMEM);
9453 }
9454
9455 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
9456 if (ret)
9457 goto err;
d2dff872
CW
9458
9459 return &intel_fb->base;
dd4916c5 9460err:
6ccb81f2 9461 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
9462 kfree(intel_fb);
9463
9464 return ERR_PTR(ret);
d2dff872
CW
9465}
9466
b5ea642a 9467static struct drm_framebuffer *
a8bb6818
DV
9468intel_framebuffer_create(struct drm_device *dev,
9469 struct drm_mode_fb_cmd2 *mode_cmd,
9470 struct drm_i915_gem_object *obj)
9471{
9472 struct drm_framebuffer *fb;
9473 int ret;
9474
9475 ret = i915_mutex_lock_interruptible(dev);
9476 if (ret)
9477 return ERR_PTR(ret);
9478 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9479 mutex_unlock(&dev->struct_mutex);
9480
9481 return fb;
9482}
9483
d2dff872
CW
9484static u32
9485intel_framebuffer_pitch_for_width(int width, int bpp)
9486{
9487 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9488 return ALIGN(pitch, 64);
9489}
9490
9491static u32
9492intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9493{
9494 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 9495 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
9496}
9497
9498static struct drm_framebuffer *
9499intel_framebuffer_create_for_mode(struct drm_device *dev,
9500 struct drm_display_mode *mode,
9501 int depth, int bpp)
9502{
9503 struct drm_i915_gem_object *obj;
0fed39bd 9504 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
9505
9506 obj = i915_gem_alloc_object(dev,
9507 intel_framebuffer_size_for_mode(mode, bpp));
9508 if (obj == NULL)
9509 return ERR_PTR(-ENOMEM);
9510
9511 mode_cmd.width = mode->hdisplay;
9512 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
9513 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9514 bpp);
5ca0c34a 9515 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
9516
9517 return intel_framebuffer_create(dev, &mode_cmd, obj);
9518}
9519
9520static struct drm_framebuffer *
9521mode_fits_in_fbdev(struct drm_device *dev,
9522 struct drm_display_mode *mode)
9523{
4520f53a 9524#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
9525 struct drm_i915_private *dev_priv = dev->dev_private;
9526 struct drm_i915_gem_object *obj;
9527 struct drm_framebuffer *fb;
9528
4c0e5528 9529 if (!dev_priv->fbdev)
d2dff872
CW
9530 return NULL;
9531
4c0e5528 9532 if (!dev_priv->fbdev->fb)
d2dff872
CW
9533 return NULL;
9534
4c0e5528
DV
9535 obj = dev_priv->fbdev->fb->obj;
9536 BUG_ON(!obj);
9537
8bcd4553 9538 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
9539 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9540 fb->bits_per_pixel))
d2dff872
CW
9541 return NULL;
9542
01f2c773 9543 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
9544 return NULL;
9545
9546 return fb;
4520f53a
DV
9547#else
9548 return NULL;
9549#endif
d2dff872
CW
9550}
9551
d2434ab7 9552bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 9553 struct drm_display_mode *mode,
51fd371b
RC
9554 struct intel_load_detect_pipe *old,
9555 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
9556{
9557 struct intel_crtc *intel_crtc;
d2434ab7
DV
9558 struct intel_encoder *intel_encoder =
9559 intel_attached_encoder(connector);
79e53945 9560 struct drm_crtc *possible_crtc;
4ef69c7a 9561 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
9562 struct drm_crtc *crtc = NULL;
9563 struct drm_device *dev = encoder->dev;
94352cf9 9564 struct drm_framebuffer *fb;
51fd371b 9565 struct drm_mode_config *config = &dev->mode_config;
83a57153 9566 struct drm_atomic_state *state = NULL;
944b0c76 9567 struct drm_connector_state *connector_state;
51fd371b 9568 int ret, i = -1;
79e53945 9569
d2dff872 9570 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9571 connector->base.id, connector->name,
8e329a03 9572 encoder->base.id, encoder->name);
d2dff872 9573
51fd371b
RC
9574retry:
9575 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9576 if (ret)
9577 goto fail_unlock;
6e9f798d 9578
79e53945
JB
9579 /*
9580 * Algorithm gets a little messy:
7a5e4805 9581 *
79e53945
JB
9582 * - if the connector already has an assigned crtc, use it (but make
9583 * sure it's on first)
7a5e4805 9584 *
79e53945
JB
9585 * - try to find the first unused crtc that can drive this connector,
9586 * and use that if we find one
79e53945
JB
9587 */
9588
9589 /* See if we already have a CRTC for this connector */
9590 if (encoder->crtc) {
9591 crtc = encoder->crtc;
8261b191 9592
51fd371b 9593 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
9594 if (ret)
9595 goto fail_unlock;
9596 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
9597 if (ret)
9598 goto fail_unlock;
7b24056b 9599
24218aac 9600 old->dpms_mode = connector->dpms;
8261b191
CW
9601 old->load_detect_temp = false;
9602
9603 /* Make sure the crtc and connector are running */
24218aac
DV
9604 if (connector->dpms != DRM_MODE_DPMS_ON)
9605 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 9606
7173188d 9607 return true;
79e53945
JB
9608 }
9609
9610 /* Find an unused one (if possible) */
70e1e0ec 9611 for_each_crtc(dev, possible_crtc) {
79e53945
JB
9612 i++;
9613 if (!(encoder->possible_crtcs & (1 << i)))
9614 continue;
83d65738 9615 if (possible_crtc->state->enable)
a459249c
VS
9616 continue;
9617 /* This can occur when applying the pipe A quirk on resume. */
9618 if (to_intel_crtc(possible_crtc)->new_enabled)
9619 continue;
9620
9621 crtc = possible_crtc;
9622 break;
79e53945
JB
9623 }
9624
9625 /*
9626 * If we didn't find an unused CRTC, don't use any.
9627 */
9628 if (!crtc) {
7173188d 9629 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 9630 goto fail_unlock;
79e53945
JB
9631 }
9632
51fd371b
RC
9633 ret = drm_modeset_lock(&crtc->mutex, ctx);
9634 if (ret)
4d02e2de
DV
9635 goto fail_unlock;
9636 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9637 if (ret)
51fd371b 9638 goto fail_unlock;
fc303101
DV
9639 intel_encoder->new_crtc = to_intel_crtc(crtc);
9640 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
9641
9642 intel_crtc = to_intel_crtc(crtc);
412b61d8 9643 intel_crtc->new_enabled = true;
24218aac 9644 old->dpms_mode = connector->dpms;
8261b191 9645 old->load_detect_temp = true;
d2dff872 9646 old->release_fb = NULL;
79e53945 9647
83a57153
ACO
9648 state = drm_atomic_state_alloc(dev);
9649 if (!state)
9650 return false;
9651
9652 state->acquire_ctx = ctx;
9653
944b0c76
ACO
9654 connector_state = drm_atomic_get_connector_state(state, connector);
9655 if (IS_ERR(connector_state)) {
9656 ret = PTR_ERR(connector_state);
9657 goto fail;
9658 }
9659
9660 connector_state->crtc = crtc;
9661 connector_state->best_encoder = &intel_encoder->base;
9662
6492711d
CW
9663 if (!mode)
9664 mode = &load_detect_mode;
79e53945 9665
d2dff872
CW
9666 /* We need a framebuffer large enough to accommodate all accesses
9667 * that the plane may generate whilst we perform load detection.
9668 * We can not rely on the fbcon either being present (we get called
9669 * during its initialisation to detect all boot displays, or it may
9670 * not even exist) or that it is large enough to satisfy the
9671 * requested mode.
9672 */
94352cf9
DV
9673 fb = mode_fits_in_fbdev(dev, mode);
9674 if (fb == NULL) {
d2dff872 9675 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9676 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9677 old->release_fb = fb;
d2dff872
CW
9678 } else
9679 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9680 if (IS_ERR(fb)) {
d2dff872 9681 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9682 goto fail;
79e53945 9683 }
79e53945 9684
83a57153 9685 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
6492711d 9686 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9687 if (old->release_fb)
9688 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9689 goto fail;
79e53945 9690 }
9128b040 9691 crtc->primary->crtc = crtc;
7173188d 9692
79e53945 9693 /* let the connector get through one full cycle before testing */
9d0498a2 9694 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9695 return true;
412b61d8
VS
9696
9697 fail:
83d65738 9698 intel_crtc->new_enabled = crtc->state->enable;
51fd371b 9699fail_unlock:
83a57153
ACO
9700 if (state) {
9701 drm_atomic_state_free(state);
9702 state = NULL;
9703 }
9704
51fd371b
RC
9705 if (ret == -EDEADLK) {
9706 drm_modeset_backoff(ctx);
9707 goto retry;
9708 }
9709
412b61d8 9710 return false;
79e53945
JB
9711}
9712
d2434ab7 9713void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
9714 struct intel_load_detect_pipe *old,
9715 struct drm_modeset_acquire_ctx *ctx)
79e53945 9716{
83a57153 9717 struct drm_device *dev = connector->dev;
d2434ab7
DV
9718 struct intel_encoder *intel_encoder =
9719 intel_attached_encoder(connector);
4ef69c7a 9720 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9721 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 9723 struct drm_atomic_state *state;
944b0c76 9724 struct drm_connector_state *connector_state;
79e53945 9725
d2dff872 9726 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9727 connector->base.id, connector->name,
8e329a03 9728 encoder->base.id, encoder->name);
d2dff872 9729
8261b191 9730 if (old->load_detect_temp) {
83a57153 9731 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
9732 if (!state)
9733 goto fail;
83a57153
ACO
9734
9735 state->acquire_ctx = ctx;
9736
944b0c76
ACO
9737 connector_state = drm_atomic_get_connector_state(state, connector);
9738 if (IS_ERR(connector_state))
9739 goto fail;
9740
fc303101
DV
9741 to_intel_connector(connector)->new_encoder = NULL;
9742 intel_encoder->new_crtc = NULL;
412b61d8 9743 intel_crtc->new_enabled = false;
944b0c76
ACO
9744
9745 connector_state->best_encoder = NULL;
9746 connector_state->crtc = NULL;
9747
83a57153
ACO
9748 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9749
9750 drm_atomic_state_free(state);
d2dff872 9751
36206361
DV
9752 if (old->release_fb) {
9753 drm_framebuffer_unregister_private(old->release_fb);
9754 drm_framebuffer_unreference(old->release_fb);
9755 }
d2dff872 9756
0622a53c 9757 return;
79e53945
JB
9758 }
9759
c751ce4f 9760 /* Switch crtc and encoder back off if necessary */
24218aac
DV
9761 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9762 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
9763
9764 return;
9765fail:
9766 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9767 drm_atomic_state_free(state);
79e53945
JB
9768}
9769
da4a1efa 9770static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 9771 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
9772{
9773 struct drm_i915_private *dev_priv = dev->dev_private;
9774 u32 dpll = pipe_config->dpll_hw_state.dpll;
9775
9776 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 9777 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
9778 else if (HAS_PCH_SPLIT(dev))
9779 return 120000;
9780 else if (!IS_GEN2(dev))
9781 return 96000;
9782 else
9783 return 48000;
9784}
9785
79e53945 9786/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 9787static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 9788 struct intel_crtc_state *pipe_config)
79e53945 9789{
f1f644dc 9790 struct drm_device *dev = crtc->base.dev;
79e53945 9791 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 9792 int pipe = pipe_config->cpu_transcoder;
293623f7 9793 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
9794 u32 fp;
9795 intel_clock_t clock;
da4a1efa 9796 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
9797
9798 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 9799 fp = pipe_config->dpll_hw_state.fp0;
79e53945 9800 else
293623f7 9801 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
9802
9803 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
9804 if (IS_PINEVIEW(dev)) {
9805 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9806 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
9807 } else {
9808 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9809 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9810 }
9811
a6c45cf0 9812 if (!IS_GEN2(dev)) {
f2b115e6
AJ
9813 if (IS_PINEVIEW(dev))
9814 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9815 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
9816 else
9817 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
9818 DPLL_FPA01_P1_POST_DIV_SHIFT);
9819
9820 switch (dpll & DPLL_MODE_MASK) {
9821 case DPLLB_MODE_DAC_SERIAL:
9822 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9823 5 : 10;
9824 break;
9825 case DPLLB_MODE_LVDS:
9826 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9827 7 : 14;
9828 break;
9829 default:
28c97730 9830 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 9831 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 9832 return;
79e53945
JB
9833 }
9834
ac58c3f0 9835 if (IS_PINEVIEW(dev))
da4a1efa 9836 pineview_clock(refclk, &clock);
ac58c3f0 9837 else
da4a1efa 9838 i9xx_clock(refclk, &clock);
79e53945 9839 } else {
0fb58223 9840 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 9841 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
9842
9843 if (is_lvds) {
9844 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9845 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
9846
9847 if (lvds & LVDS_CLKB_POWER_UP)
9848 clock.p2 = 7;
9849 else
9850 clock.p2 = 14;
79e53945
JB
9851 } else {
9852 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9853 clock.p1 = 2;
9854 else {
9855 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9856 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9857 }
9858 if (dpll & PLL_P2_DIVIDE_BY_4)
9859 clock.p2 = 4;
9860 else
9861 clock.p2 = 2;
79e53945 9862 }
da4a1efa
VS
9863
9864 i9xx_clock(refclk, &clock);
79e53945
JB
9865 }
9866
18442d08
VS
9867 /*
9868 * This value includes pixel_multiplier. We will use
241bfc38 9869 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
9870 * encoder's get_config() function.
9871 */
9872 pipe_config->port_clock = clock.dot;
f1f644dc
JB
9873}
9874
6878da05
VS
9875int intel_dotclock_calculate(int link_freq,
9876 const struct intel_link_m_n *m_n)
f1f644dc 9877{
f1f644dc
JB
9878 /*
9879 * The calculation for the data clock is:
1041a02f 9880 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 9881 * But we want to avoid losing precison if possible, so:
1041a02f 9882 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
9883 *
9884 * and the link clock is simpler:
1041a02f 9885 * link_clock = (m * link_clock) / n
f1f644dc
JB
9886 */
9887
6878da05
VS
9888 if (!m_n->link_n)
9889 return 0;
f1f644dc 9890
6878da05
VS
9891 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9892}
f1f644dc 9893
18442d08 9894static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 9895 struct intel_crtc_state *pipe_config)
6878da05
VS
9896{
9897 struct drm_device *dev = crtc->base.dev;
79e53945 9898
18442d08
VS
9899 /* read out port_clock from the DPLL */
9900 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9901
f1f644dc 9902 /*
18442d08 9903 * This value does not include pixel_multiplier.
241bfc38 9904 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9905 * agree once we know their relationship in the encoder's
9906 * get_config() function.
79e53945 9907 */
2d112de7 9908 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
9909 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9910 &pipe_config->fdi_m_n);
79e53945
JB
9911}
9912
9913/** Returns the currently programmed mode of the given pipe. */
9914struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9915 struct drm_crtc *crtc)
9916{
548f245b 9917 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9919 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 9920 struct drm_display_mode *mode;
5cec258b 9921 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
9922 int htot = I915_READ(HTOTAL(cpu_transcoder));
9923 int hsync = I915_READ(HSYNC(cpu_transcoder));
9924 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9925 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9926 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9927
9928 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9929 if (!mode)
9930 return NULL;
9931
f1f644dc
JB
9932 /*
9933 * Construct a pipe_config sufficient for getting the clock info
9934 * back out of crtc_clock_get.
9935 *
9936 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9937 * to use a real value here instead.
9938 */
293623f7 9939 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9940 pipe_config.pixel_multiplier = 1;
293623f7
VS
9941 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9942 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9943 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9944 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9945
773ae034 9946 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9947 mode->hdisplay = (htot & 0xffff) + 1;
9948 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9949 mode->hsync_start = (hsync & 0xffff) + 1;
9950 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9951 mode->vdisplay = (vtot & 0xffff) + 1;
9952 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9953 mode->vsync_start = (vsync & 0xffff) + 1;
9954 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9955
9956 drm_mode_set_name(mode);
79e53945
JB
9957
9958 return mode;
9959}
9960
652c393a
JB
9961static void intel_decrease_pllclock(struct drm_crtc *crtc)
9962{
9963 struct drm_device *dev = crtc->dev;
fbee40df 9964 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9966
baff296c 9967 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9968 return;
9969
9970 if (!dev_priv->lvds_downclock_avail)
9971 return;
9972
9973 /*
9974 * Since this is called by a timer, we should never get here in
9975 * the manual case.
9976 */
9977 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9978 int pipe = intel_crtc->pipe;
9979 int dpll_reg = DPLL(pipe);
9980 int dpll;
f6e5b160 9981
44d98a61 9982 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9983
8ac5a6d5 9984 assert_panel_unlocked(dev_priv, pipe);
652c393a 9985
dc257cf1 9986 dpll = I915_READ(dpll_reg);
652c393a
JB
9987 dpll |= DISPLAY_RATE_SELECT_FPA1;
9988 I915_WRITE(dpll_reg, dpll);
9d0498a2 9989 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9990 dpll = I915_READ(dpll_reg);
9991 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9992 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9993 }
9994
9995}
9996
f047e395
CW
9997void intel_mark_busy(struct drm_device *dev)
9998{
c67a470b
PZ
9999 struct drm_i915_private *dev_priv = dev->dev_private;
10000
f62a0076
CW
10001 if (dev_priv->mm.busy)
10002 return;
10003
43694d69 10004 intel_runtime_pm_get(dev_priv);
c67a470b 10005 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10006 if (INTEL_INFO(dev)->gen >= 6)
10007 gen6_rps_busy(dev_priv);
f62a0076 10008 dev_priv->mm.busy = true;
f047e395
CW
10009}
10010
10011void intel_mark_idle(struct drm_device *dev)
652c393a 10012{
c67a470b 10013 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10014 struct drm_crtc *crtc;
652c393a 10015
f62a0076
CW
10016 if (!dev_priv->mm.busy)
10017 return;
10018
10019 dev_priv->mm.busy = false;
10020
70e1e0ec 10021 for_each_crtc(dev, crtc) {
f4510a27 10022 if (!crtc->primary->fb)
652c393a
JB
10023 continue;
10024
725a5b54 10025 intel_decrease_pllclock(crtc);
652c393a 10026 }
b29c19b6 10027
3d13ef2e 10028 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10029 gen6_rps_idle(dev->dev_private);
bb4cdd53 10030
43694d69 10031 intel_runtime_pm_put(dev_priv);
652c393a
JB
10032}
10033
f5de6e07
ACO
10034static void intel_crtc_set_state(struct intel_crtc *crtc,
10035 struct intel_crtc_state *crtc_state)
10036{
10037 kfree(crtc->config);
10038 crtc->config = crtc_state;
16f3f658 10039 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
10040}
10041
79e53945
JB
10042static void intel_crtc_destroy(struct drm_crtc *crtc)
10043{
10044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10045 struct drm_device *dev = crtc->dev;
10046 struct intel_unpin_work *work;
67e77c5a 10047
5e2d7afc 10048 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10049 work = intel_crtc->unpin_work;
10050 intel_crtc->unpin_work = NULL;
5e2d7afc 10051 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10052
10053 if (work) {
10054 cancel_work_sync(&work->work);
10055 kfree(work);
10056 }
79e53945 10057
f5de6e07 10058 intel_crtc_set_state(intel_crtc, NULL);
79e53945 10059 drm_crtc_cleanup(crtc);
67e77c5a 10060
79e53945
JB
10061 kfree(intel_crtc);
10062}
10063
6b95a207
KH
10064static void intel_unpin_work_fn(struct work_struct *__work)
10065{
10066 struct intel_unpin_work *work =
10067 container_of(__work, struct intel_unpin_work, work);
b4a98e57 10068 struct drm_device *dev = work->crtc->dev;
f99d7069 10069 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 10070
b4a98e57 10071 mutex_lock(&dev->struct_mutex);
82bc3b2d 10072 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 10073 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10074
7ff0ebcc 10075 intel_fbc_update(dev);
f06cc1b9
JH
10076
10077 if (work->flip_queued_req)
146d84f0 10078 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10079 mutex_unlock(&dev->struct_mutex);
10080
f99d7069 10081 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 10082 drm_framebuffer_unreference(work->old_fb);
f99d7069 10083
b4a98e57
CW
10084 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10085 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10086
6b95a207
KH
10087 kfree(work);
10088}
10089
1afe3e9d 10090static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10091 struct drm_crtc *crtc)
6b95a207 10092{
6b95a207
KH
10093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10094 struct intel_unpin_work *work;
6b95a207
KH
10095 unsigned long flags;
10096
10097 /* Ignore early vblank irqs */
10098 if (intel_crtc == NULL)
10099 return;
10100
f326038a
DV
10101 /*
10102 * This is called both by irq handlers and the reset code (to complete
10103 * lost pageflips) so needs the full irqsave spinlocks.
10104 */
6b95a207
KH
10105 spin_lock_irqsave(&dev->event_lock, flags);
10106 work = intel_crtc->unpin_work;
e7d841ca
CW
10107
10108 /* Ensure we don't miss a work->pending update ... */
10109 smp_rmb();
10110
10111 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10112 spin_unlock_irqrestore(&dev->event_lock, flags);
10113 return;
10114 }
10115
d6bbafa1 10116 page_flip_completed(intel_crtc);
0af7e4df 10117
6b95a207 10118 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10119}
10120
1afe3e9d
JB
10121void intel_finish_page_flip(struct drm_device *dev, int pipe)
10122{
fbee40df 10123 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10124 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10125
49b14a5c 10126 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10127}
10128
10129void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10130{
fbee40df 10131 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10132 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10133
49b14a5c 10134 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10135}
10136
75f7f3ec
VS
10137/* Is 'a' after or equal to 'b'? */
10138static bool g4x_flip_count_after_eq(u32 a, u32 b)
10139{
10140 return !((a - b) & 0x80000000);
10141}
10142
10143static bool page_flip_finished(struct intel_crtc *crtc)
10144{
10145 struct drm_device *dev = crtc->base.dev;
10146 struct drm_i915_private *dev_priv = dev->dev_private;
10147
bdfa7542
VS
10148 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10149 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10150 return true;
10151
75f7f3ec
VS
10152 /*
10153 * The relevant registers doen't exist on pre-ctg.
10154 * As the flip done interrupt doesn't trigger for mmio
10155 * flips on gmch platforms, a flip count check isn't
10156 * really needed there. But since ctg has the registers,
10157 * include it in the check anyway.
10158 */
10159 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10160 return true;
10161
10162 /*
10163 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10164 * used the same base address. In that case the mmio flip might
10165 * have completed, but the CS hasn't even executed the flip yet.
10166 *
10167 * A flip count check isn't enough as the CS might have updated
10168 * the base address just after start of vblank, but before we
10169 * managed to process the interrupt. This means we'd complete the
10170 * CS flip too soon.
10171 *
10172 * Combining both checks should get us a good enough result. It may
10173 * still happen that the CS flip has been executed, but has not
10174 * yet actually completed. But in case the base address is the same
10175 * anyway, we don't really care.
10176 */
10177 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10178 crtc->unpin_work->gtt_offset &&
10179 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10180 crtc->unpin_work->flip_count);
10181}
10182
6b95a207
KH
10183void intel_prepare_page_flip(struct drm_device *dev, int plane)
10184{
fbee40df 10185 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10186 struct intel_crtc *intel_crtc =
10187 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10188 unsigned long flags;
10189
f326038a
DV
10190
10191 /*
10192 * This is called both by irq handlers and the reset code (to complete
10193 * lost pageflips) so needs the full irqsave spinlocks.
10194 *
10195 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10196 * generate a page-flip completion irq, i.e. every modeset
10197 * is also accompanied by a spurious intel_prepare_page_flip().
10198 */
6b95a207 10199 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10200 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10201 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10202 spin_unlock_irqrestore(&dev->event_lock, flags);
10203}
10204
eba905b2 10205static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
10206{
10207 /* Ensure that the work item is consistent when activating it ... */
10208 smp_wmb();
10209 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10210 /* and that it is marked active as soon as the irq could fire. */
10211 smp_wmb();
10212}
10213
8c9f3aaf
JB
10214static int intel_gen2_queue_flip(struct drm_device *dev,
10215 struct drm_crtc *crtc,
10216 struct drm_framebuffer *fb,
ed8d1975 10217 struct drm_i915_gem_object *obj,
a4872ba6 10218 struct intel_engine_cs *ring,
ed8d1975 10219 uint32_t flags)
8c9f3aaf 10220{
8c9f3aaf 10221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10222 u32 flip_mask;
10223 int ret;
10224
6d90c952 10225 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10226 if (ret)
4fa62c89 10227 return ret;
8c9f3aaf
JB
10228
10229 /* Can't queue multiple flips, so wait for the previous
10230 * one to finish before executing the next.
10231 */
10232 if (intel_crtc->plane)
10233 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10234 else
10235 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10236 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10237 intel_ring_emit(ring, MI_NOOP);
10238 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10239 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10240 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10241 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10242 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
10243
10244 intel_mark_page_flip_active(intel_crtc);
09246732 10245 __intel_ring_advance(ring);
83d4092b 10246 return 0;
8c9f3aaf
JB
10247}
10248
10249static int intel_gen3_queue_flip(struct drm_device *dev,
10250 struct drm_crtc *crtc,
10251 struct drm_framebuffer *fb,
ed8d1975 10252 struct drm_i915_gem_object *obj,
a4872ba6 10253 struct intel_engine_cs *ring,
ed8d1975 10254 uint32_t flags)
8c9f3aaf 10255{
8c9f3aaf 10256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10257 u32 flip_mask;
10258 int ret;
10259
6d90c952 10260 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10261 if (ret)
4fa62c89 10262 return ret;
8c9f3aaf
JB
10263
10264 if (intel_crtc->plane)
10265 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10266 else
10267 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10268 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10269 intel_ring_emit(ring, MI_NOOP);
10270 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10271 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10272 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10273 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10274 intel_ring_emit(ring, MI_NOOP);
10275
e7d841ca 10276 intel_mark_page_flip_active(intel_crtc);
09246732 10277 __intel_ring_advance(ring);
83d4092b 10278 return 0;
8c9f3aaf
JB
10279}
10280
10281static int intel_gen4_queue_flip(struct drm_device *dev,
10282 struct drm_crtc *crtc,
10283 struct drm_framebuffer *fb,
ed8d1975 10284 struct drm_i915_gem_object *obj,
a4872ba6 10285 struct intel_engine_cs *ring,
ed8d1975 10286 uint32_t flags)
8c9f3aaf
JB
10287{
10288 struct drm_i915_private *dev_priv = dev->dev_private;
10289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10290 uint32_t pf, pipesrc;
10291 int ret;
10292
6d90c952 10293 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10294 if (ret)
4fa62c89 10295 return ret;
8c9f3aaf
JB
10296
10297 /* i965+ uses the linear or tiled offsets from the
10298 * Display Registers (which do not change across a page-flip)
10299 * so we need only reprogram the base address.
10300 */
6d90c952
DV
10301 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10302 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10303 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10304 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10305 obj->tiling_mode);
8c9f3aaf
JB
10306
10307 /* XXX Enabling the panel-fitter across page-flip is so far
10308 * untested on non-native modes, so ignore it for now.
10309 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10310 */
10311 pf = 0;
10312 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10313 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10314
10315 intel_mark_page_flip_active(intel_crtc);
09246732 10316 __intel_ring_advance(ring);
83d4092b 10317 return 0;
8c9f3aaf
JB
10318}
10319
10320static int intel_gen6_queue_flip(struct drm_device *dev,
10321 struct drm_crtc *crtc,
10322 struct drm_framebuffer *fb,
ed8d1975 10323 struct drm_i915_gem_object *obj,
a4872ba6 10324 struct intel_engine_cs *ring,
ed8d1975 10325 uint32_t flags)
8c9f3aaf
JB
10326{
10327 struct drm_i915_private *dev_priv = dev->dev_private;
10328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10329 uint32_t pf, pipesrc;
10330 int ret;
10331
6d90c952 10332 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10333 if (ret)
4fa62c89 10334 return ret;
8c9f3aaf 10335
6d90c952
DV
10336 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10337 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10338 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 10339 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 10340
dc257cf1
DV
10341 /* Contrary to the suggestions in the documentation,
10342 * "Enable Panel Fitter" does not seem to be required when page
10343 * flipping with a non-native mode, and worse causes a normal
10344 * modeset to fail.
10345 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10346 */
10347 pf = 0;
8c9f3aaf 10348 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10349 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10350
10351 intel_mark_page_flip_active(intel_crtc);
09246732 10352 __intel_ring_advance(ring);
83d4092b 10353 return 0;
8c9f3aaf
JB
10354}
10355
7c9017e5
JB
10356static int intel_gen7_queue_flip(struct drm_device *dev,
10357 struct drm_crtc *crtc,
10358 struct drm_framebuffer *fb,
ed8d1975 10359 struct drm_i915_gem_object *obj,
a4872ba6 10360 struct intel_engine_cs *ring,
ed8d1975 10361 uint32_t flags)
7c9017e5 10362{
7c9017e5 10363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 10364 uint32_t plane_bit = 0;
ffe74d75
CW
10365 int len, ret;
10366
eba905b2 10367 switch (intel_crtc->plane) {
cb05d8de
DV
10368 case PLANE_A:
10369 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10370 break;
10371 case PLANE_B:
10372 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10373 break;
10374 case PLANE_C:
10375 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10376 break;
10377 default:
10378 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 10379 return -ENODEV;
cb05d8de
DV
10380 }
10381
ffe74d75 10382 len = 4;
f476828a 10383 if (ring->id == RCS) {
ffe74d75 10384 len += 6;
f476828a
DL
10385 /*
10386 * On Gen 8, SRM is now taking an extra dword to accommodate
10387 * 48bits addresses, and we need a NOOP for the batch size to
10388 * stay even.
10389 */
10390 if (IS_GEN8(dev))
10391 len += 2;
10392 }
ffe74d75 10393
f66fab8e
VS
10394 /*
10395 * BSpec MI_DISPLAY_FLIP for IVB:
10396 * "The full packet must be contained within the same cache line."
10397 *
10398 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10399 * cacheline, if we ever start emitting more commands before
10400 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10401 * then do the cacheline alignment, and finally emit the
10402 * MI_DISPLAY_FLIP.
10403 */
10404 ret = intel_ring_cacheline_align(ring);
10405 if (ret)
4fa62c89 10406 return ret;
f66fab8e 10407
ffe74d75 10408 ret = intel_ring_begin(ring, len);
7c9017e5 10409 if (ret)
4fa62c89 10410 return ret;
7c9017e5 10411
ffe74d75
CW
10412 /* Unmask the flip-done completion message. Note that the bspec says that
10413 * we should do this for both the BCS and RCS, and that we must not unmask
10414 * more than one flip event at any time (or ensure that one flip message
10415 * can be sent by waiting for flip-done prior to queueing new flips).
10416 * Experimentation says that BCS works despite DERRMR masking all
10417 * flip-done completion events and that unmasking all planes at once
10418 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10419 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10420 */
10421 if (ring->id == RCS) {
10422 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10423 intel_ring_emit(ring, DERRMR);
10424 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10425 DERRMR_PIPEB_PRI_FLIP_DONE |
10426 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
10427 if (IS_GEN8(dev))
10428 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10429 MI_SRM_LRM_GLOBAL_GTT);
10430 else
10431 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10432 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
10433 intel_ring_emit(ring, DERRMR);
10434 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
10435 if (IS_GEN8(dev)) {
10436 intel_ring_emit(ring, 0);
10437 intel_ring_emit(ring, MI_NOOP);
10438 }
ffe74d75
CW
10439 }
10440
cb05d8de 10441 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 10442 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 10443 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 10444 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
10445
10446 intel_mark_page_flip_active(intel_crtc);
09246732 10447 __intel_ring_advance(ring);
83d4092b 10448 return 0;
7c9017e5
JB
10449}
10450
84c33a64
SG
10451static bool use_mmio_flip(struct intel_engine_cs *ring,
10452 struct drm_i915_gem_object *obj)
10453{
10454 /*
10455 * This is not being used for older platforms, because
10456 * non-availability of flip done interrupt forces us to use
10457 * CS flips. Older platforms derive flip done using some clever
10458 * tricks involving the flip_pending status bits and vblank irqs.
10459 * So using MMIO flips there would disrupt this mechanism.
10460 */
10461
8e09bf83
CW
10462 if (ring == NULL)
10463 return true;
10464
84c33a64
SG
10465 if (INTEL_INFO(ring->dev)->gen < 5)
10466 return false;
10467
10468 if (i915.use_mmio_flip < 0)
10469 return false;
10470 else if (i915.use_mmio_flip > 0)
10471 return true;
14bf993e
OM
10472 else if (i915.enable_execlists)
10473 return true;
84c33a64 10474 else
41c52415 10475 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
10476}
10477
ff944564
DL
10478static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10479{
10480 struct drm_device *dev = intel_crtc->base.dev;
10481 struct drm_i915_private *dev_priv = dev->dev_private;
10482 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10483 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10484 struct drm_i915_gem_object *obj = intel_fb->obj;
10485 const enum pipe pipe = intel_crtc->pipe;
10486 u32 ctl, stride;
10487
10488 ctl = I915_READ(PLANE_CTL(pipe, 0));
10489 ctl &= ~PLANE_CTL_TILED_MASK;
10490 if (obj->tiling_mode == I915_TILING_X)
10491 ctl |= PLANE_CTL_TILED_X;
10492
10493 /*
10494 * The stride is either expressed as a multiple of 64 bytes chunks for
10495 * linear buffers or in number of tiles for tiled buffers.
10496 */
10497 stride = fb->pitches[0] >> 6;
10498 if (obj->tiling_mode == I915_TILING_X)
10499 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
10500
10501 /*
10502 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10503 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10504 */
10505 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10506 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10507
10508 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10509 POSTING_READ(PLANE_SURF(pipe, 0));
10510}
10511
10512static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
10513{
10514 struct drm_device *dev = intel_crtc->base.dev;
10515 struct drm_i915_private *dev_priv = dev->dev_private;
10516 struct intel_framebuffer *intel_fb =
10517 to_intel_framebuffer(intel_crtc->base.primary->fb);
10518 struct drm_i915_gem_object *obj = intel_fb->obj;
10519 u32 dspcntr;
10520 u32 reg;
10521
84c33a64
SG
10522 reg = DSPCNTR(intel_crtc->plane);
10523 dspcntr = I915_READ(reg);
10524
c5d97472
DL
10525 if (obj->tiling_mode != I915_TILING_NONE)
10526 dspcntr |= DISPPLANE_TILED;
10527 else
10528 dspcntr &= ~DISPPLANE_TILED;
10529
84c33a64
SG
10530 I915_WRITE(reg, dspcntr);
10531
10532 I915_WRITE(DSPSURF(intel_crtc->plane),
10533 intel_crtc->unpin_work->gtt_offset);
10534 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 10535
ff944564
DL
10536}
10537
10538/*
10539 * XXX: This is the temporary way to update the plane registers until we get
10540 * around to using the usual plane update functions for MMIO flips
10541 */
10542static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10543{
10544 struct drm_device *dev = intel_crtc->base.dev;
10545 bool atomic_update;
10546 u32 start_vbl_count;
10547
10548 intel_mark_page_flip_active(intel_crtc);
10549
10550 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10551
10552 if (INTEL_INFO(dev)->gen >= 9)
10553 skl_do_mmio_flip(intel_crtc);
10554 else
10555 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10556 ilk_do_mmio_flip(intel_crtc);
10557
9362c7c5
ACO
10558 if (atomic_update)
10559 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
10560}
10561
9362c7c5 10562static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 10563{
cc8c4cc2 10564 struct intel_crtc *crtc =
9362c7c5 10565 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 10566 struct intel_mmio_flip *mmio_flip;
84c33a64 10567
cc8c4cc2
JH
10568 mmio_flip = &crtc->mmio_flip;
10569 if (mmio_flip->req)
9c654818
JH
10570 WARN_ON(__i915_wait_request(mmio_flip->req,
10571 crtc->reset_counter,
10572 false, NULL, NULL) != 0);
84c33a64 10573
cc8c4cc2
JH
10574 intel_do_mmio_flip(crtc);
10575 if (mmio_flip->req) {
10576 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 10577 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
10578 mutex_unlock(&crtc->base.dev->struct_mutex);
10579 }
84c33a64
SG
10580}
10581
10582static int intel_queue_mmio_flip(struct drm_device *dev,
10583 struct drm_crtc *crtc,
10584 struct drm_framebuffer *fb,
10585 struct drm_i915_gem_object *obj,
10586 struct intel_engine_cs *ring,
10587 uint32_t flags)
10588{
84c33a64 10589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 10590
cc8c4cc2
JH
10591 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10592 obj->last_write_req);
536f5b5e
ACO
10593
10594 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 10595
84c33a64
SG
10596 return 0;
10597}
10598
8c9f3aaf
JB
10599static int intel_default_queue_flip(struct drm_device *dev,
10600 struct drm_crtc *crtc,
10601 struct drm_framebuffer *fb,
ed8d1975 10602 struct drm_i915_gem_object *obj,
a4872ba6 10603 struct intel_engine_cs *ring,
ed8d1975 10604 uint32_t flags)
8c9f3aaf
JB
10605{
10606 return -ENODEV;
10607}
10608
d6bbafa1
CW
10609static bool __intel_pageflip_stall_check(struct drm_device *dev,
10610 struct drm_crtc *crtc)
10611{
10612 struct drm_i915_private *dev_priv = dev->dev_private;
10613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10614 struct intel_unpin_work *work = intel_crtc->unpin_work;
10615 u32 addr;
10616
10617 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10618 return true;
10619
10620 if (!work->enable_stall_check)
10621 return false;
10622
10623 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
10624 if (work->flip_queued_req &&
10625 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
10626 return false;
10627
1e3feefd 10628 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
10629 }
10630
1e3feefd 10631 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
10632 return false;
10633
10634 /* Potential stall - if we see that the flip has happened,
10635 * assume a missed interrupt. */
10636 if (INTEL_INFO(dev)->gen >= 4)
10637 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10638 else
10639 addr = I915_READ(DSPADDR(intel_crtc->plane));
10640
10641 /* There is a potential issue here with a false positive after a flip
10642 * to the same address. We could address this by checking for a
10643 * non-incrementing frame counter.
10644 */
10645 return addr == work->gtt_offset;
10646}
10647
10648void intel_check_page_flip(struct drm_device *dev, int pipe)
10649{
10650 struct drm_i915_private *dev_priv = dev->dev_private;
10651 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 10653 struct intel_unpin_work *work;
f326038a 10654
6c51d46f 10655 WARN_ON(!in_interrupt());
d6bbafa1
CW
10656
10657 if (crtc == NULL)
10658 return;
10659
f326038a 10660 spin_lock(&dev->event_lock);
6ad790c0
CW
10661 work = intel_crtc->unpin_work;
10662 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 10663 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 10664 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 10665 page_flip_completed(intel_crtc);
6ad790c0 10666 work = NULL;
d6bbafa1 10667 }
6ad790c0
CW
10668 if (work != NULL &&
10669 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10670 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 10671 spin_unlock(&dev->event_lock);
d6bbafa1
CW
10672}
10673
6b95a207
KH
10674static int intel_crtc_page_flip(struct drm_crtc *crtc,
10675 struct drm_framebuffer *fb,
ed8d1975
KP
10676 struct drm_pending_vblank_event *event,
10677 uint32_t page_flip_flags)
6b95a207
KH
10678{
10679 struct drm_device *dev = crtc->dev;
10680 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 10681 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 10682 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 10683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 10684 struct drm_plane *primary = crtc->primary;
a071fa00 10685 enum pipe pipe = intel_crtc->pipe;
6b95a207 10686 struct intel_unpin_work *work;
a4872ba6 10687 struct intel_engine_cs *ring;
cf5d8a46 10688 bool mmio_flip;
52e68630 10689 int ret;
6b95a207 10690
2ff8fde1
MR
10691 /*
10692 * drm_mode_page_flip_ioctl() should already catch this, but double
10693 * check to be safe. In the future we may enable pageflipping from
10694 * a disabled primary plane.
10695 */
10696 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10697 return -EBUSY;
10698
e6a595d2 10699 /* Can't change pixel format via MI display flips. */
f4510a27 10700 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10701 return -EINVAL;
10702
10703 /*
10704 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10705 * Note that pitch changes could also affect these register.
10706 */
10707 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10708 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10709 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10710 return -EINVAL;
10711
f900db47
CW
10712 if (i915_terminally_wedged(&dev_priv->gpu_error))
10713 goto out_hang;
10714
b14c5679 10715 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10716 if (work == NULL)
10717 return -ENOMEM;
10718
6b95a207 10719 work->event = event;
b4a98e57 10720 work->crtc = crtc;
ab8d6675 10721 work->old_fb = old_fb;
6b95a207
KH
10722 INIT_WORK(&work->work, intel_unpin_work_fn);
10723
87b6b101 10724 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10725 if (ret)
10726 goto free_work;
10727
6b95a207 10728 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10729 spin_lock_irq(&dev->event_lock);
6b95a207 10730 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10731 /* Before declaring the flip queue wedged, check if
10732 * the hardware completed the operation behind our backs.
10733 */
10734 if (__intel_pageflip_stall_check(dev, crtc)) {
10735 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10736 page_flip_completed(intel_crtc);
10737 } else {
10738 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10739 spin_unlock_irq(&dev->event_lock);
468f0b44 10740
d6bbafa1
CW
10741 drm_crtc_vblank_put(crtc);
10742 kfree(work);
10743 return -EBUSY;
10744 }
6b95a207
KH
10745 }
10746 intel_crtc->unpin_work = work;
5e2d7afc 10747 spin_unlock_irq(&dev->event_lock);
6b95a207 10748
b4a98e57
CW
10749 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10750 flush_workqueue(dev_priv->wq);
10751
75dfca80 10752 /* Reference the objects for the scheduled work. */
ab8d6675 10753 drm_framebuffer_reference(work->old_fb);
05394f39 10754 drm_gem_object_reference(&obj->base);
6b95a207 10755
f4510a27 10756 crtc->primary->fb = fb;
afd65eb4 10757 update_state_fb(crtc->primary);
1ed1f968 10758
e1f99ce6 10759 work->pending_flip_obj = obj;
e1f99ce6 10760
89ed88ba
CW
10761 ret = i915_mutex_lock_interruptible(dev);
10762 if (ret)
10763 goto cleanup;
10764
b4a98e57 10765 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10766 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10767
75f7f3ec 10768 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10769 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10770
4fa62c89
VS
10771 if (IS_VALLEYVIEW(dev)) {
10772 ring = &dev_priv->ring[BCS];
ab8d6675 10773 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
10774 /* vlv: DISPLAY_FLIP fails to change tiling */
10775 ring = NULL;
48bf5b2d 10776 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 10777 ring = &dev_priv->ring[BCS];
4fa62c89 10778 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 10779 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
10780 if (ring == NULL || ring->id != RCS)
10781 ring = &dev_priv->ring[BCS];
10782 } else {
10783 ring = &dev_priv->ring[RCS];
10784 }
10785
cf5d8a46
CW
10786 mmio_flip = use_mmio_flip(ring, obj);
10787
10788 /* When using CS flips, we want to emit semaphores between rings.
10789 * However, when using mmio flips we will create a task to do the
10790 * synchronisation, so all we want here is to pin the framebuffer
10791 * into the display plane and skip any waits.
10792 */
82bc3b2d 10793 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46
CW
10794 crtc->primary->state,
10795 mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
8c9f3aaf
JB
10796 if (ret)
10797 goto cleanup_pending;
6b95a207 10798
121920fa
TU
10799 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10800 + intel_crtc->dspaddr_offset;
4fa62c89 10801
cf5d8a46 10802 if (mmio_flip) {
84c33a64
SG
10803 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10804 page_flip_flags);
d6bbafa1
CW
10805 if (ret)
10806 goto cleanup_unpin;
10807
f06cc1b9
JH
10808 i915_gem_request_assign(&work->flip_queued_req,
10809 obj->last_write_req);
d6bbafa1 10810 } else {
84c33a64 10811 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10812 page_flip_flags);
10813 if (ret)
10814 goto cleanup_unpin;
10815
f06cc1b9
JH
10816 i915_gem_request_assign(&work->flip_queued_req,
10817 intel_ring_get_request(ring));
d6bbafa1
CW
10818 }
10819
1e3feefd 10820 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 10821 work->enable_stall_check = true;
4fa62c89 10822
ab8d6675 10823 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
10824 INTEL_FRONTBUFFER_PRIMARY(pipe));
10825
7ff0ebcc 10826 intel_fbc_disable(dev);
f99d7069 10827 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10828 mutex_unlock(&dev->struct_mutex);
10829
e5510fac
JB
10830 trace_i915_flip_request(intel_crtc->plane, obj);
10831
6b95a207 10832 return 0;
96b099fd 10833
4fa62c89 10834cleanup_unpin:
82bc3b2d 10835 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 10836cleanup_pending:
b4a98e57 10837 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
10838 mutex_unlock(&dev->struct_mutex);
10839cleanup:
f4510a27 10840 crtc->primary->fb = old_fb;
afd65eb4 10841 update_state_fb(crtc->primary);
89ed88ba
CW
10842
10843 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 10844 drm_framebuffer_unreference(work->old_fb);
96b099fd 10845
5e2d7afc 10846 spin_lock_irq(&dev->event_lock);
96b099fd 10847 intel_crtc->unpin_work = NULL;
5e2d7afc 10848 spin_unlock_irq(&dev->event_lock);
96b099fd 10849
87b6b101 10850 drm_crtc_vblank_put(crtc);
7317c75e 10851free_work:
96b099fd
CW
10852 kfree(work);
10853
f900db47
CW
10854 if (ret == -EIO) {
10855out_hang:
53a366b9 10856 ret = intel_plane_restore(primary);
f0d3dad3 10857 if (ret == 0 && event) {
5e2d7afc 10858 spin_lock_irq(&dev->event_lock);
a071fa00 10859 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 10860 spin_unlock_irq(&dev->event_lock);
f0d3dad3 10861 }
f900db47 10862 }
96b099fd 10863 return ret;
6b95a207
KH
10864}
10865
f6e5b160 10866static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10867 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10868 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
10869 .atomic_begin = intel_begin_crtc_commit,
10870 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
10871};
10872
9a935856
DV
10873/**
10874 * intel_modeset_update_staged_output_state
10875 *
10876 * Updates the staged output configuration state, e.g. after we've read out the
10877 * current hw state.
10878 */
10879static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10880{
7668851f 10881 struct intel_crtc *crtc;
9a935856
DV
10882 struct intel_encoder *encoder;
10883 struct intel_connector *connector;
f6e5b160 10884
3a3371ff 10885 for_each_intel_connector(dev, connector) {
9a935856
DV
10886 connector->new_encoder =
10887 to_intel_encoder(connector->base.encoder);
10888 }
f6e5b160 10889
b2784e15 10890 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10891 encoder->new_crtc =
10892 to_intel_crtc(encoder->base.crtc);
10893 }
7668851f 10894
d3fcc808 10895 for_each_intel_crtc(dev, crtc) {
83d65738 10896 crtc->new_enabled = crtc->base.state->enable;
7668851f 10897 }
f6e5b160
CW
10898}
10899
d29b2f9d
ACO
10900/* Transitional helper to copy current connector/encoder state to
10901 * connector->state. This is needed so that code that is partially
10902 * converted to atomic does the right thing.
10903 */
10904static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10905{
10906 struct intel_connector *connector;
10907
10908 for_each_intel_connector(dev, connector) {
10909 if (connector->base.encoder) {
10910 connector->base.state->best_encoder =
10911 connector->base.encoder;
10912 connector->base.state->crtc =
10913 connector->base.encoder->crtc;
10914 } else {
10915 connector->base.state->best_encoder = NULL;
10916 connector->base.state->crtc = NULL;
10917 }
10918 }
10919}
10920
9a935856
DV
10921/**
10922 * intel_modeset_commit_output_state
10923 *
10924 * This function copies the stage display pipe configuration to the real one.
10925 */
10926static void intel_modeset_commit_output_state(struct drm_device *dev)
10927{
7668851f 10928 struct intel_crtc *crtc;
9a935856
DV
10929 struct intel_encoder *encoder;
10930 struct intel_connector *connector;
f6e5b160 10931
3a3371ff 10932 for_each_intel_connector(dev, connector) {
9a935856
DV
10933 connector->base.encoder = &connector->new_encoder->base;
10934 }
f6e5b160 10935
b2784e15 10936 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10937 encoder->base.crtc = &encoder->new_crtc->base;
10938 }
7668851f 10939
d3fcc808 10940 for_each_intel_crtc(dev, crtc) {
83d65738 10941 crtc->base.state->enable = crtc->new_enabled;
7668851f
VS
10942 crtc->base.enabled = crtc->new_enabled;
10943 }
d29b2f9d
ACO
10944
10945 intel_modeset_update_connector_atomic_state(dev);
9a935856
DV
10946}
10947
050f7aeb 10948static void
eba905b2 10949connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10950 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10951{
10952 int bpp = pipe_config->pipe_bpp;
10953
10954 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10955 connector->base.base.id,
c23cc417 10956 connector->base.name);
050f7aeb
DV
10957
10958 /* Don't use an invalid EDID bpc value */
10959 if (connector->base.display_info.bpc &&
10960 connector->base.display_info.bpc * 3 < bpp) {
10961 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10962 bpp, connector->base.display_info.bpc*3);
10963 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10964 }
10965
10966 /* Clamp bpp to 8 on screens without EDID 1.4 */
10967 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10968 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10969 bpp);
10970 pipe_config->pipe_bpp = 24;
10971 }
10972}
10973
4e53c2e0 10974static int
050f7aeb 10975compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 10976 struct intel_crtc_state *pipe_config)
4e53c2e0 10977{
050f7aeb 10978 struct drm_device *dev = crtc->base.dev;
1486017f 10979 struct drm_atomic_state *state;
050f7aeb 10980 struct intel_connector *connector;
1486017f 10981 int bpp, i;
4e53c2e0 10982
d328c9d7 10983 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 10984 bpp = 10*3;
d328c9d7
DV
10985 else if (INTEL_INFO(dev)->gen >= 5)
10986 bpp = 12*3;
10987 else
10988 bpp = 8*3;
10989
4e53c2e0 10990
4e53c2e0
DV
10991 pipe_config->pipe_bpp = bpp;
10992
1486017f
ACO
10993 state = pipe_config->base.state;
10994
4e53c2e0 10995 /* Clamp display bpp to EDID value */
1486017f
ACO
10996 for (i = 0; i < state->num_connector; i++) {
10997 if (!state->connectors[i])
10998 continue;
10999
11000 connector = to_intel_connector(state->connectors[i]);
11001 if (state->connector_states[i]->crtc != &crtc->base)
4e53c2e0
DV
11002 continue;
11003
050f7aeb 11004 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
11005 }
11006
11007 return bpp;
11008}
11009
644db711
DV
11010static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11011{
11012 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11013 "type: 0x%x flags: 0x%x\n",
1342830c 11014 mode->crtc_clock,
644db711
DV
11015 mode->crtc_hdisplay, mode->crtc_hsync_start,
11016 mode->crtc_hsync_end, mode->crtc_htotal,
11017 mode->crtc_vdisplay, mode->crtc_vsync_start,
11018 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11019}
11020
c0b03411 11021static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11022 struct intel_crtc_state *pipe_config,
c0b03411
DV
11023 const char *context)
11024{
6a60cd87
CK
11025 struct drm_device *dev = crtc->base.dev;
11026 struct drm_plane *plane;
11027 struct intel_plane *intel_plane;
11028 struct intel_plane_state *state;
11029 struct drm_framebuffer *fb;
11030
11031 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11032 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11033
11034 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11035 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11036 pipe_config->pipe_bpp, pipe_config->dither);
11037 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11038 pipe_config->has_pch_encoder,
11039 pipe_config->fdi_lanes,
11040 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11041 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11042 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11043 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11044 pipe_config->has_dp_encoder,
11045 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11046 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11047 pipe_config->dp_m_n.tu);
b95af8be
VK
11048
11049 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11050 pipe_config->has_dp_encoder,
11051 pipe_config->dp_m2_n2.gmch_m,
11052 pipe_config->dp_m2_n2.gmch_n,
11053 pipe_config->dp_m2_n2.link_m,
11054 pipe_config->dp_m2_n2.link_n,
11055 pipe_config->dp_m2_n2.tu);
11056
55072d19
DV
11057 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11058 pipe_config->has_audio,
11059 pipe_config->has_infoframe);
11060
c0b03411 11061 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 11062 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 11063 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
11064 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11065 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 11066 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
11067 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11068 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
6a60cd87
CK
11069 DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11070 DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11071 DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
c0b03411
DV
11072 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11073 pipe_config->gmch_pfit.control,
11074 pipe_config->gmch_pfit.pgm_ratios,
11075 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 11076 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 11077 pipe_config->pch_pfit.pos,
fd4daa9c
CW
11078 pipe_config->pch_pfit.size,
11079 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 11080 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 11081 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87
CK
11082
11083 DRM_DEBUG_KMS("planes on this crtc\n");
11084 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11085 intel_plane = to_intel_plane(plane);
11086 if (intel_plane->pipe != crtc->pipe)
11087 continue;
11088
11089 state = to_intel_plane_state(plane->state);
11090 fb = state->base.fb;
11091 if (!fb) {
11092 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11093 "disabled, scaler_id = %d\n",
11094 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11095 plane->base.id, intel_plane->pipe,
11096 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11097 drm_plane_index(plane), state->scaler_id);
11098 continue;
11099 }
11100
11101 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11102 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11103 plane->base.id, intel_plane->pipe,
11104 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11105 drm_plane_index(plane));
11106 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11107 fb->base.id, fb->width, fb->height, fb->pixel_format);
11108 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11109 state->scaler_id,
11110 state->src.x1 >> 16, state->src.y1 >> 16,
11111 drm_rect_width(&state->src) >> 16,
11112 drm_rect_height(&state->src) >> 16,
11113 state->dst.x1, state->dst.y1,
11114 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11115 }
c0b03411
DV
11116}
11117
bc079e8b
VS
11118static bool encoders_cloneable(const struct intel_encoder *a,
11119 const struct intel_encoder *b)
accfc0c5 11120{
bc079e8b
VS
11121 /* masks could be asymmetric, so check both ways */
11122 return a == b || (a->cloneable & (1 << b->type) &&
11123 b->cloneable & (1 << a->type));
11124}
11125
98a221da
ACO
11126static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11127 struct intel_crtc *crtc,
bc079e8b
VS
11128 struct intel_encoder *encoder)
11129{
bc079e8b 11130 struct intel_encoder *source_encoder;
98a221da
ACO
11131 struct drm_connector_state *connector_state;
11132 int i;
11133
11134 for (i = 0; i < state->num_connector; i++) {
11135 if (!state->connectors[i])
11136 continue;
bc079e8b 11137
98a221da
ACO
11138 connector_state = state->connector_states[i];
11139 if (connector_state->crtc != &crtc->base)
bc079e8b
VS
11140 continue;
11141
98a221da
ACO
11142 source_encoder =
11143 to_intel_encoder(connector_state->best_encoder);
bc079e8b
VS
11144 if (!encoders_cloneable(encoder, source_encoder))
11145 return false;
11146 }
11147
11148 return true;
11149}
11150
98a221da
ACO
11151static bool check_encoder_cloning(struct drm_atomic_state *state,
11152 struct intel_crtc *crtc)
bc079e8b 11153{
accfc0c5 11154 struct intel_encoder *encoder;
98a221da
ACO
11155 struct drm_connector_state *connector_state;
11156 int i;
accfc0c5 11157
98a221da
ACO
11158 for (i = 0; i < state->num_connector; i++) {
11159 if (!state->connectors[i])
accfc0c5
DV
11160 continue;
11161
98a221da
ACO
11162 connector_state = state->connector_states[i];
11163 if (connector_state->crtc != &crtc->base)
11164 continue;
11165
11166 encoder = to_intel_encoder(connector_state->best_encoder);
11167 if (!check_single_encoder_cloning(state, crtc, encoder))
bc079e8b 11168 return false;
accfc0c5
DV
11169 }
11170
bc079e8b 11171 return true;
accfc0c5
DV
11172}
11173
5448a00d 11174static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 11175{
5448a00d
ACO
11176 struct drm_device *dev = state->dev;
11177 struct intel_encoder *encoder;
11178 struct drm_connector_state *connector_state;
00f0b378 11179 unsigned int used_ports = 0;
5448a00d 11180 int i;
00f0b378
VS
11181
11182 /*
11183 * Walk the connector list instead of the encoder
11184 * list to detect the problem on ddi platforms
11185 * where there's just one encoder per digital port.
11186 */
5448a00d
ACO
11187 for (i = 0; i < state->num_connector; i++) {
11188 if (!state->connectors[i])
11189 continue;
00f0b378 11190
5448a00d
ACO
11191 connector_state = state->connector_states[i];
11192 if (!connector_state->best_encoder)
00f0b378
VS
11193 continue;
11194
5448a00d
ACO
11195 encoder = to_intel_encoder(connector_state->best_encoder);
11196
11197 WARN_ON(!connector_state->crtc);
00f0b378
VS
11198
11199 switch (encoder->type) {
11200 unsigned int port_mask;
11201 case INTEL_OUTPUT_UNKNOWN:
11202 if (WARN_ON(!HAS_DDI(dev)))
11203 break;
11204 case INTEL_OUTPUT_DISPLAYPORT:
11205 case INTEL_OUTPUT_HDMI:
11206 case INTEL_OUTPUT_EDP:
11207 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11208
11209 /* the same port mustn't appear more than once */
11210 if (used_ports & port_mask)
11211 return false;
11212
11213 used_ports |= port_mask;
11214 default:
11215 break;
11216 }
11217 }
11218
11219 return true;
11220}
11221
83a57153
ACO
11222static void
11223clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11224{
11225 struct drm_crtc_state tmp_state;
663a3640 11226 struct intel_crtc_scaler_state scaler_state;
83a57153 11227
663a3640 11228 /* Clear only the intel specific part of the crtc state excluding scalers */
83a57153 11229 tmp_state = crtc_state->base;
663a3640 11230 scaler_state = crtc_state->scaler_state;
83a57153
ACO
11231 memset(crtc_state, 0, sizeof *crtc_state);
11232 crtc_state->base = tmp_state;
663a3640 11233 crtc_state->scaler_state = scaler_state;
83a57153
ACO
11234}
11235
5cec258b 11236static struct intel_crtc_state *
b8cecdf5 11237intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 11238 struct drm_framebuffer *fb,
83a57153
ACO
11239 struct drm_display_mode *mode,
11240 struct drm_atomic_state *state)
ee7b9f93 11241{
7758a113 11242 struct intel_encoder *encoder;
0b901879
ACO
11243 struct intel_connector *connector;
11244 struct drm_connector_state *connector_state;
5cec258b 11245 struct intel_crtc_state *pipe_config;
d328c9d7 11246 int base_bpp, ret = -EINVAL;
0b901879 11247 int i;
e29c22c0 11248 bool retry = true;
ee7b9f93 11249
98a221da 11250 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
accfc0c5
DV
11251 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11252 return ERR_PTR(-EINVAL);
11253 }
11254
5448a00d 11255 if (!check_digital_port_conflicts(state)) {
00f0b378
VS
11256 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11257 return ERR_PTR(-EINVAL);
11258 }
11259
83a57153
ACO
11260 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
11261 if (IS_ERR(pipe_config))
11262 return pipe_config;
11263
11264 clear_intel_crtc_state(pipe_config);
7758a113 11265
07878248 11266 pipe_config->base.crtc = crtc;
2d112de7
ACO
11267 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
11268 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 11269
e143a21c
DV
11270 pipe_config->cpu_transcoder =
11271 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 11272 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 11273
2960bc9c
ID
11274 /*
11275 * Sanitize sync polarity flags based on requested ones. If neither
11276 * positive or negative polarity is requested, treat this as meaning
11277 * negative polarity.
11278 */
2d112de7 11279 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11280 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 11281 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 11282
2d112de7 11283 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11284 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 11285 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 11286
050f7aeb
DV
11287 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11288 * plane pixel format and any sink constraints into account. Returns the
11289 * source plane bpp so that dithering can be selected on mismatches
11290 * after encoders and crtc also have had their say. */
d328c9d7
DV
11291 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11292 pipe_config);
11293 if (base_bpp < 0)
4e53c2e0
DV
11294 goto fail;
11295
e41a56be
VS
11296 /*
11297 * Determine the real pipe dimensions. Note that stereo modes can
11298 * increase the actual pipe size due to the frame doubling and
11299 * insertion of additional space for blanks between the frame. This
11300 * is stored in the crtc timings. We use the requested mode to do this
11301 * computation to clearly distinguish it from the adjusted mode, which
11302 * can be changed by the connectors in the below retry loop.
11303 */
2d112de7 11304 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
11305 &pipe_config->pipe_src_w,
11306 &pipe_config->pipe_src_h);
e41a56be 11307
e29c22c0 11308encoder_retry:
ef1b460d 11309 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 11310 pipe_config->port_clock = 0;
ef1b460d 11311 pipe_config->pixel_multiplier = 1;
ff9a6750 11312
135c81b8 11313 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
11314 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11315 CRTC_STEREO_DOUBLE);
135c81b8 11316
7758a113
DV
11317 /* Pass our mode to the connectors and the CRTC to give them a chance to
11318 * adjust it according to limitations or connector properties, and also
11319 * a chance to reject the mode entirely.
47f1c6c9 11320 */
0b901879
ACO
11321 for (i = 0; i < state->num_connector; i++) {
11322 connector = to_intel_connector(state->connectors[i]);
11323 if (!connector)
11324 continue;
47f1c6c9 11325
0b901879
ACO
11326 connector_state = state->connector_states[i];
11327 if (connector_state->crtc != crtc)
7758a113 11328 continue;
7ae89233 11329
0b901879
ACO
11330 encoder = to_intel_encoder(connector_state->best_encoder);
11331
efea6e8e
DV
11332 if (!(encoder->compute_config(encoder, pipe_config))) {
11333 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
11334 goto fail;
11335 }
ee7b9f93 11336 }
47f1c6c9 11337
ff9a6750
DV
11338 /* Set default port clock if not overwritten by the encoder. Needs to be
11339 * done afterwards in case the encoder adjusts the mode. */
11340 if (!pipe_config->port_clock)
2d112de7 11341 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 11342 * pipe_config->pixel_multiplier;
ff9a6750 11343
a43f6e0f 11344 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 11345 if (ret < 0) {
7758a113
DV
11346 DRM_DEBUG_KMS("CRTC fixup failed\n");
11347 goto fail;
ee7b9f93 11348 }
e29c22c0
DV
11349
11350 if (ret == RETRY) {
11351 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11352 ret = -EINVAL;
11353 goto fail;
11354 }
11355
11356 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11357 retry = false;
11358 goto encoder_retry;
11359 }
11360
d328c9d7 11361 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 11362 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 11363 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 11364
b8cecdf5 11365 return pipe_config;
7758a113 11366fail:
e29c22c0 11367 return ERR_PTR(ret);
ee7b9f93 11368}
47f1c6c9 11369
e2e1ed41
DV
11370/* Computes which crtcs are affected and sets the relevant bits in the mask. For
11371 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
11372static void
11373intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
11374 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
11375{
11376 struct intel_crtc *intel_crtc;
e2e1ed41
DV
11377 struct drm_device *dev = crtc->dev;
11378 struct intel_encoder *encoder;
11379 struct intel_connector *connector;
11380 struct drm_crtc *tmp_crtc;
79e53945 11381
e2e1ed41 11382 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 11383
e2e1ed41
DV
11384 /* Check which crtcs have changed outputs connected to them, these need
11385 * to be part of the prepare_pipes mask. We don't (yet) support global
11386 * modeset across multiple crtcs, so modeset_pipes will only have one
11387 * bit set at most. */
3a3371ff 11388 for_each_intel_connector(dev, connector) {
e2e1ed41
DV
11389 if (connector->base.encoder == &connector->new_encoder->base)
11390 continue;
79e53945 11391
e2e1ed41
DV
11392 if (connector->base.encoder) {
11393 tmp_crtc = connector->base.encoder->crtc;
11394
11395 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11396 }
11397
11398 if (connector->new_encoder)
11399 *prepare_pipes |=
11400 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
11401 }
11402
b2784e15 11403 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
11404 if (encoder->base.crtc == &encoder->new_crtc->base)
11405 continue;
11406
11407 if (encoder->base.crtc) {
11408 tmp_crtc = encoder->base.crtc;
11409
11410 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11411 }
11412
11413 if (encoder->new_crtc)
11414 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
11415 }
11416
7668851f 11417 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 11418 for_each_intel_crtc(dev, intel_crtc) {
83d65738 11419 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
e2e1ed41 11420 continue;
7e7d76c3 11421
7668851f 11422 if (!intel_crtc->new_enabled)
e2e1ed41 11423 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
11424 else
11425 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
11426 }
11427
e2e1ed41
DV
11428
11429 /* set_mode is also used to update properties on life display pipes. */
11430 intel_crtc = to_intel_crtc(crtc);
7668851f 11431 if (intel_crtc->new_enabled)
e2e1ed41
DV
11432 *prepare_pipes |= 1 << intel_crtc->pipe;
11433
b6c5164d
DV
11434 /*
11435 * For simplicity do a full modeset on any pipe where the output routing
11436 * changed. We could be more clever, but that would require us to be
11437 * more careful with calling the relevant encoder->mode_set functions.
11438 */
e2e1ed41
DV
11439 if (*prepare_pipes)
11440 *modeset_pipes = *prepare_pipes;
11441
11442 /* ... and mask these out. */
11443 *modeset_pipes &= ~(*disable_pipes);
11444 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
11445
11446 /*
11447 * HACK: We don't (yet) fully support global modesets. intel_set_config
11448 * obies this rule, but the modeset restore mode of
11449 * intel_modeset_setup_hw_state does not.
11450 */
11451 *modeset_pipes &= 1 << intel_crtc->pipe;
11452 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
11453
11454 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
11455 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 11456}
79e53945 11457
ea9d758d 11458static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 11459{
ea9d758d 11460 struct drm_encoder *encoder;
f6e5b160 11461 struct drm_device *dev = crtc->dev;
f6e5b160 11462
ea9d758d
DV
11463 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11464 if (encoder->crtc == crtc)
11465 return true;
11466
11467 return false;
11468}
11469
11470static void
11471intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
11472{
ba41c0de 11473 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
11474 struct intel_encoder *intel_encoder;
11475 struct intel_crtc *intel_crtc;
11476 struct drm_connector *connector;
11477
ba41c0de
DV
11478 intel_shared_dpll_commit(dev_priv);
11479
b2784e15 11480 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
11481 if (!intel_encoder->base.crtc)
11482 continue;
11483
11484 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
11485
11486 if (prepare_pipes & (1 << intel_crtc->pipe))
11487 intel_encoder->connectors_active = false;
11488 }
11489
11490 intel_modeset_commit_output_state(dev);
11491
7668851f 11492 /* Double check state. */
d3fcc808 11493 for_each_intel_crtc(dev, intel_crtc) {
83d65738 11494 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
ea9d758d
DV
11495 }
11496
11497 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11498 if (!connector->encoder || !connector->encoder->crtc)
11499 continue;
11500
11501 intel_crtc = to_intel_crtc(connector->encoder->crtc);
11502
11503 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
11504 struct drm_property *dpms_property =
11505 dev->mode_config.dpms_property;
11506
ea9d758d 11507 connector->dpms = DRM_MODE_DPMS_ON;
662595df 11508 drm_object_property_set_value(&connector->base,
68d34720
DV
11509 dpms_property,
11510 DRM_MODE_DPMS_ON);
ea9d758d
DV
11511
11512 intel_encoder = to_intel_encoder(connector->encoder);
11513 intel_encoder->connectors_active = true;
11514 }
11515 }
11516
11517}
11518
3bd26263 11519static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 11520{
3bd26263 11521 int diff;
f1f644dc
JB
11522
11523 if (clock1 == clock2)
11524 return true;
11525
11526 if (!clock1 || !clock2)
11527 return false;
11528
11529 diff = abs(clock1 - clock2);
11530
11531 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11532 return true;
11533
11534 return false;
11535}
11536
25c5b266
DV
11537#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11538 list_for_each_entry((intel_crtc), \
11539 &(dev)->mode_config.crtc_list, \
11540 base.head) \
0973f18f 11541 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 11542
0e8ffe1b 11543static bool
2fa2fe9a 11544intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
11545 struct intel_crtc_state *current_config,
11546 struct intel_crtc_state *pipe_config)
0e8ffe1b 11547{
66e985c0
DV
11548#define PIPE_CONF_CHECK_X(name) \
11549 if (current_config->name != pipe_config->name) { \
11550 DRM_ERROR("mismatch in " #name " " \
11551 "(expected 0x%08x, found 0x%08x)\n", \
11552 current_config->name, \
11553 pipe_config->name); \
11554 return false; \
11555 }
11556
08a24034
DV
11557#define PIPE_CONF_CHECK_I(name) \
11558 if (current_config->name != pipe_config->name) { \
11559 DRM_ERROR("mismatch in " #name " " \
11560 "(expected %i, found %i)\n", \
11561 current_config->name, \
11562 pipe_config->name); \
11563 return false; \
88adfff1
DV
11564 }
11565
b95af8be
VK
11566/* This is required for BDW+ where there is only one set of registers for
11567 * switching between high and low RR.
11568 * This macro can be used whenever a comparison has to be made between one
11569 * hw state and multiple sw state variables.
11570 */
11571#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11572 if ((current_config->name != pipe_config->name) && \
11573 (current_config->alt_name != pipe_config->name)) { \
11574 DRM_ERROR("mismatch in " #name " " \
11575 "(expected %i or %i, found %i)\n", \
11576 current_config->name, \
11577 current_config->alt_name, \
11578 pipe_config->name); \
11579 return false; \
11580 }
11581
1bd1bd80
DV
11582#define PIPE_CONF_CHECK_FLAGS(name, mask) \
11583 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 11584 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
11585 "(expected %i, found %i)\n", \
11586 current_config->name & (mask), \
11587 pipe_config->name & (mask)); \
11588 return false; \
11589 }
11590
5e550656
VS
11591#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11592 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11593 DRM_ERROR("mismatch in " #name " " \
11594 "(expected %i, found %i)\n", \
11595 current_config->name, \
11596 pipe_config->name); \
11597 return false; \
11598 }
11599
bb760063
DV
11600#define PIPE_CONF_QUIRK(quirk) \
11601 ((current_config->quirks | pipe_config->quirks) & (quirk))
11602
eccb140b
DV
11603 PIPE_CONF_CHECK_I(cpu_transcoder);
11604
08a24034
DV
11605 PIPE_CONF_CHECK_I(has_pch_encoder);
11606 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
11607 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11608 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11609 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11610 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11611 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 11612
eb14cb74 11613 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
11614
11615 if (INTEL_INFO(dev)->gen < 8) {
11616 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11617 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11618 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11619 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11620 PIPE_CONF_CHECK_I(dp_m_n.tu);
11621
11622 if (current_config->has_drrs) {
11623 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11624 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11625 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11626 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11627 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11628 }
11629 } else {
11630 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11631 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11632 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11633 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11634 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11635 }
eb14cb74 11636
2d112de7
ACO
11637 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11638 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11639 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11640 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11641 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11642 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 11643
2d112de7
ACO
11644 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11645 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11646 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11647 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11648 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11649 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 11650
c93f54cf 11651 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 11652 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
11653 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11654 IS_VALLEYVIEW(dev))
11655 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 11656 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 11657
9ed109a7
DV
11658 PIPE_CONF_CHECK_I(has_audio);
11659
2d112de7 11660 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
11661 DRM_MODE_FLAG_INTERLACE);
11662
bb760063 11663 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 11664 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11665 DRM_MODE_FLAG_PHSYNC);
2d112de7 11666 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11667 DRM_MODE_FLAG_NHSYNC);
2d112de7 11668 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11669 DRM_MODE_FLAG_PVSYNC);
2d112de7 11670 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
11671 DRM_MODE_FLAG_NVSYNC);
11672 }
045ac3b5 11673
37327abd
VS
11674 PIPE_CONF_CHECK_I(pipe_src_w);
11675 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 11676
9953599b
DV
11677 /*
11678 * FIXME: BIOS likes to set up a cloned config with lvds+external
11679 * screen. Since we don't yet re-compute the pipe config when moving
11680 * just the lvds port away to another pipe the sw tracking won't match.
11681 *
11682 * Proper atomic modesets with recomputed global state will fix this.
11683 * Until then just don't check gmch state for inherited modes.
11684 */
11685 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11686 PIPE_CONF_CHECK_I(gmch_pfit.control);
11687 /* pfit ratios are autocomputed by the hw on gen4+ */
11688 if (INTEL_INFO(dev)->gen < 4)
11689 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11690 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11691 }
11692
fd4daa9c
CW
11693 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11694 if (current_config->pch_pfit.enabled) {
11695 PIPE_CONF_CHECK_I(pch_pfit.pos);
11696 PIPE_CONF_CHECK_I(pch_pfit.size);
11697 }
2fa2fe9a 11698
a1b2278e
CK
11699 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11700
e59150dc
JB
11701 /* BDW+ don't expose a synchronous way to read the state */
11702 if (IS_HASWELL(dev))
11703 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 11704
282740f7
VS
11705 PIPE_CONF_CHECK_I(double_wide);
11706
26804afd
DV
11707 PIPE_CONF_CHECK_X(ddi_pll_sel);
11708
c0d43d62 11709 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 11710 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 11711 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
11712 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11713 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 11714 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
11715 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11716 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11717 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 11718
42571aef
VS
11719 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11720 PIPE_CONF_CHECK_I(pipe_bpp);
11721
2d112de7 11722 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 11723 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 11724
66e985c0 11725#undef PIPE_CONF_CHECK_X
08a24034 11726#undef PIPE_CONF_CHECK_I
b95af8be 11727#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 11728#undef PIPE_CONF_CHECK_FLAGS
5e550656 11729#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 11730#undef PIPE_CONF_QUIRK
88adfff1 11731
0e8ffe1b
DV
11732 return true;
11733}
11734
08db6652
DL
11735static void check_wm_state(struct drm_device *dev)
11736{
11737 struct drm_i915_private *dev_priv = dev->dev_private;
11738 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11739 struct intel_crtc *intel_crtc;
11740 int plane;
11741
11742 if (INTEL_INFO(dev)->gen < 9)
11743 return;
11744
11745 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11746 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11747
11748 for_each_intel_crtc(dev, intel_crtc) {
11749 struct skl_ddb_entry *hw_entry, *sw_entry;
11750 const enum pipe pipe = intel_crtc->pipe;
11751
11752 if (!intel_crtc->active)
11753 continue;
11754
11755 /* planes */
dd740780 11756 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
11757 hw_entry = &hw_ddb.plane[pipe][plane];
11758 sw_entry = &sw_ddb->plane[pipe][plane];
11759
11760 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11761 continue;
11762
11763 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11764 "(expected (%u,%u), found (%u,%u))\n",
11765 pipe_name(pipe), plane + 1,
11766 sw_entry->start, sw_entry->end,
11767 hw_entry->start, hw_entry->end);
11768 }
11769
11770 /* cursor */
11771 hw_entry = &hw_ddb.cursor[pipe];
11772 sw_entry = &sw_ddb->cursor[pipe];
11773
11774 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11775 continue;
11776
11777 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11778 "(expected (%u,%u), found (%u,%u))\n",
11779 pipe_name(pipe),
11780 sw_entry->start, sw_entry->end,
11781 hw_entry->start, hw_entry->end);
11782 }
11783}
11784
91d1b4bd
DV
11785static void
11786check_connector_state(struct drm_device *dev)
8af6cf88 11787{
8af6cf88
DV
11788 struct intel_connector *connector;
11789
3a3371ff 11790 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11791 /* This also checks the encoder/connector hw state with the
11792 * ->get_hw_state callbacks. */
11793 intel_connector_check_state(connector);
11794
e2c719b7 11795 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11796 "connector's staged encoder doesn't match current encoder\n");
11797 }
91d1b4bd
DV
11798}
11799
11800static void
11801check_encoder_state(struct drm_device *dev)
11802{
11803 struct intel_encoder *encoder;
11804 struct intel_connector *connector;
8af6cf88 11805
b2784e15 11806 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11807 bool enabled = false;
11808 bool active = false;
11809 enum pipe pipe, tracked_pipe;
11810
11811 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11812 encoder->base.base.id,
8e329a03 11813 encoder->base.name);
8af6cf88 11814
e2c719b7 11815 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11816 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11817 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11818 "encoder's active_connectors set, but no crtc\n");
11819
3a3371ff 11820 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11821 if (connector->base.encoder != &encoder->base)
11822 continue;
11823 enabled = true;
11824 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11825 active = true;
11826 }
0e32b39c
DA
11827 /*
11828 * for MST connectors if we unplug the connector is gone
11829 * away but the encoder is still connected to a crtc
11830 * until a modeset happens in response to the hotplug.
11831 */
11832 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11833 continue;
11834
e2c719b7 11835 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
11836 "encoder's enabled state mismatch "
11837 "(expected %i, found %i)\n",
11838 !!encoder->base.crtc, enabled);
e2c719b7 11839 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
11840 "active encoder with no crtc\n");
11841
e2c719b7 11842 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
11843 "encoder's computed active state doesn't match tracked active state "
11844 "(expected %i, found %i)\n", active, encoder->connectors_active);
11845
11846 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 11847 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
11848 "encoder's hw state doesn't match sw tracking "
11849 "(expected %i, found %i)\n",
11850 encoder->connectors_active, active);
11851
11852 if (!encoder->base.crtc)
11853 continue;
11854
11855 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 11856 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
11857 "active encoder's pipe doesn't match"
11858 "(expected %i, found %i)\n",
11859 tracked_pipe, pipe);
11860
11861 }
91d1b4bd
DV
11862}
11863
11864static void
11865check_crtc_state(struct drm_device *dev)
11866{
fbee40df 11867 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11868 struct intel_crtc *crtc;
11869 struct intel_encoder *encoder;
5cec258b 11870 struct intel_crtc_state pipe_config;
8af6cf88 11871
d3fcc808 11872 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
11873 bool enabled = false;
11874 bool active = false;
11875
045ac3b5
JB
11876 memset(&pipe_config, 0, sizeof(pipe_config));
11877
8af6cf88
DV
11878 DRM_DEBUG_KMS("[CRTC:%d]\n",
11879 crtc->base.base.id);
11880
83d65738 11881 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
11882 "active crtc, but not enabled in sw tracking\n");
11883
b2784e15 11884 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11885 if (encoder->base.crtc != &crtc->base)
11886 continue;
11887 enabled = true;
11888 if (encoder->connectors_active)
11889 active = true;
11890 }
6c49f241 11891
e2c719b7 11892 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
11893 "crtc's computed active state doesn't match tracked active state "
11894 "(expected %i, found %i)\n", active, crtc->active);
83d65738 11895 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 11896 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
11897 "(expected %i, found %i)\n", enabled,
11898 crtc->base.state->enable);
8af6cf88 11899
0e8ffe1b
DV
11900 active = dev_priv->display.get_pipe_config(crtc,
11901 &pipe_config);
d62cf62a 11902
b6b5d049
VS
11903 /* hw state is inconsistent with the pipe quirk */
11904 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11905 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
11906 active = crtc->active;
11907
b2784e15 11908 for_each_intel_encoder(dev, encoder) {
3eaba51c 11909 enum pipe pipe;
6c49f241
DV
11910 if (encoder->base.crtc != &crtc->base)
11911 continue;
1d37b689 11912 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11913 encoder->get_config(encoder, &pipe_config);
11914 }
11915
e2c719b7 11916 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
11917 "crtc active state doesn't match with hw state "
11918 "(expected %i, found %i)\n", crtc->active, active);
11919
c0b03411 11920 if (active &&
6e3c9717 11921 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 11922 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
11923 intel_dump_pipe_config(crtc, &pipe_config,
11924 "[hw state]");
6e3c9717 11925 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
11926 "[sw state]");
11927 }
8af6cf88
DV
11928 }
11929}
11930
91d1b4bd
DV
11931static void
11932check_shared_dpll_state(struct drm_device *dev)
11933{
fbee40df 11934 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11935 struct intel_crtc *crtc;
11936 struct intel_dpll_hw_state dpll_hw_state;
11937 int i;
5358901f
DV
11938
11939 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11940 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11941 int enabled_crtcs = 0, active_crtcs = 0;
11942 bool active;
11943
11944 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11945
11946 DRM_DEBUG_KMS("%s\n", pll->name);
11947
11948 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11949
e2c719b7 11950 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 11951 "more active pll users than references: %i vs %i\n",
3e369b76 11952 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 11953 I915_STATE_WARN(pll->active && !pll->on,
5358901f 11954 "pll in active use but not on in sw tracking\n");
e2c719b7 11955 I915_STATE_WARN(pll->on && !pll->active,
35c95375 11956 "pll in on but not on in use in sw tracking\n");
e2c719b7 11957 I915_STATE_WARN(pll->on != active,
5358901f
DV
11958 "pll on state mismatch (expected %i, found %i)\n",
11959 pll->on, active);
11960
d3fcc808 11961 for_each_intel_crtc(dev, crtc) {
83d65738 11962 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
11963 enabled_crtcs++;
11964 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11965 active_crtcs++;
11966 }
e2c719b7 11967 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
11968 "pll active crtcs mismatch (expected %i, found %i)\n",
11969 pll->active, active_crtcs);
e2c719b7 11970 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 11971 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 11972 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 11973
e2c719b7 11974 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
11975 sizeof(dpll_hw_state)),
11976 "pll hw state mismatch\n");
5358901f 11977 }
8af6cf88
DV
11978}
11979
91d1b4bd
DV
11980void
11981intel_modeset_check_state(struct drm_device *dev)
11982{
08db6652 11983 check_wm_state(dev);
91d1b4bd
DV
11984 check_connector_state(dev);
11985 check_encoder_state(dev);
11986 check_crtc_state(dev);
11987 check_shared_dpll_state(dev);
11988}
11989
5cec258b 11990void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
11991 int dotclock)
11992{
11993 /*
11994 * FDI already provided one idea for the dotclock.
11995 * Yell if the encoder disagrees.
11996 */
2d112de7 11997 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11998 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11999 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12000}
12001
80715b2f
VS
12002static void update_scanline_offset(struct intel_crtc *crtc)
12003{
12004 struct drm_device *dev = crtc->base.dev;
12005
12006 /*
12007 * The scanline counter increments at the leading edge of hsync.
12008 *
12009 * On most platforms it starts counting from vtotal-1 on the
12010 * first active line. That means the scanline counter value is
12011 * always one less than what we would expect. Ie. just after
12012 * start of vblank, which also occurs at start of hsync (on the
12013 * last active line), the scanline counter will read vblank_start-1.
12014 *
12015 * On gen2 the scanline counter starts counting from 1 instead
12016 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12017 * to keep the value positive), instead of adding one.
12018 *
12019 * On HSW+ the behaviour of the scanline counter depends on the output
12020 * type. For DP ports it behaves like most other platforms, but on HDMI
12021 * there's an extra 1 line difference. So we need to add two instead of
12022 * one to the value.
12023 */
12024 if (IS_GEN2(dev)) {
6e3c9717 12025 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12026 int vtotal;
12027
12028 vtotal = mode->crtc_vtotal;
12029 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12030 vtotal /= 2;
12031
12032 crtc->scanline_offset = vtotal - 1;
12033 } else if (HAS_DDI(dev) &&
409ee761 12034 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12035 crtc->scanline_offset = 2;
12036 } else
12037 crtc->scanline_offset = 1;
12038}
12039
5cec258b 12040static struct intel_crtc_state *
7f27126e
JB
12041intel_modeset_compute_config(struct drm_crtc *crtc,
12042 struct drm_display_mode *mode,
12043 struct drm_framebuffer *fb,
83a57153 12044 struct drm_atomic_state *state,
7f27126e
JB
12045 unsigned *modeset_pipes,
12046 unsigned *prepare_pipes,
12047 unsigned *disable_pipes)
12048{
db7542dd 12049 struct drm_device *dev = crtc->dev;
5cec258b 12050 struct intel_crtc_state *pipe_config = NULL;
db7542dd 12051 struct intel_crtc *intel_crtc;
0b901879
ACO
12052 int ret = 0;
12053
12054 ret = drm_atomic_add_affected_connectors(state, crtc);
12055 if (ret)
12056 return ERR_PTR(ret);
7f27126e
JB
12057
12058 intel_modeset_affected_pipes(crtc, modeset_pipes,
12059 prepare_pipes, disable_pipes);
12060
db7542dd
ACO
12061 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
12062 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12063 if (IS_ERR(pipe_config))
12064 return pipe_config;
12065
12066 pipe_config->base.enable = false;
12067 }
7f27126e
JB
12068
12069 /*
12070 * Note this needs changes when we start tracking multiple modes
12071 * and crtcs. At that point we'll need to compute the whole config
12072 * (i.e. one pipe_config for each crtc) rather than just the one
12073 * for this crtc.
12074 */
db7542dd
ACO
12075 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
12076 /* FIXME: For now we still expect modeset_pipes has at most
12077 * one bit set. */
12078 if (WARN_ON(&intel_crtc->base != crtc))
12079 continue;
83a57153 12080
db7542dd
ACO
12081 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
12082 if (IS_ERR(pipe_config))
12083 return pipe_config;
7f27126e 12084
304603f4
ACO
12085 pipe_config->base.enable = true;
12086
db7542dd
ACO
12087 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12088 "[modeset]");
12089 }
12090
12091 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
7f27126e
JB
12092}
12093
225da59b 12094static int __intel_set_mode_setup_plls(struct drm_atomic_state *state,
ed6739ef
ACO
12095 unsigned modeset_pipes,
12096 unsigned disable_pipes)
12097{
225da59b 12098 struct drm_device *dev = state->dev;
ed6739ef
ACO
12099 struct drm_i915_private *dev_priv = to_i915(dev);
12100 unsigned clear_pipes = modeset_pipes | disable_pipes;
12101 struct intel_crtc *intel_crtc;
12102 int ret = 0;
12103
12104 if (!dev_priv->display.crtc_compute_clock)
12105 return 0;
12106
12107 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12108 if (ret)
12109 goto done;
12110
12111 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
225da59b
ACO
12112 struct intel_crtc_state *crtc_state =
12113 intel_atomic_get_crtc_state(state, intel_crtc);
12114
12115 /* Modeset pipes should have a new state by now */
12116 if (WARN_ON(IS_ERR(crtc_state)))
12117 continue;
12118
ed6739ef 12119 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
225da59b 12120 crtc_state);
ed6739ef
ACO
12121 if (ret) {
12122 intel_shared_dpll_abort_config(dev_priv);
12123 goto done;
12124 }
12125 }
12126
12127done:
12128 return ret;
12129}
12130
f30da187
DV
12131static int __intel_set_mode(struct drm_crtc *crtc,
12132 struct drm_display_mode *mode,
7f27126e 12133 int x, int y, struct drm_framebuffer *fb,
5cec258b 12134 struct intel_crtc_state *pipe_config,
7f27126e
JB
12135 unsigned modeset_pipes,
12136 unsigned prepare_pipes,
12137 unsigned disable_pipes)
a6778b3c
DV
12138{
12139 struct drm_device *dev = crtc->dev;
fbee40df 12140 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 12141 struct drm_display_mode *saved_mode;
304603f4 12142 struct drm_atomic_state *state = pipe_config->base.state;
83a57153 12143 struct intel_crtc_state *crtc_state_copy = NULL;
25c5b266 12144 struct intel_crtc *intel_crtc;
c0c36b94 12145 int ret = 0;
a6778b3c 12146
4b4b9238 12147 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
12148 if (!saved_mode)
12149 return -ENOMEM;
a6778b3c 12150
83a57153
ACO
12151 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
12152 if (!crtc_state_copy) {
12153 ret = -ENOMEM;
12154 goto done;
12155 }
12156
3ac18232 12157 *saved_mode = crtc->mode;
a6778b3c 12158
30a970c6
JB
12159 /*
12160 * See if the config requires any additional preparation, e.g.
12161 * to adjust global state with pipes off. We need to do this
12162 * here so we can get the modeset_pipe updated config for the new
12163 * mode set on this crtc. For other crtcs we need to use the
12164 * adjusted_mode bits in the crtc directly.
12165 */
f8437dd1 12166 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
304603f4
ACO
12167 ret = valleyview_modeset_global_pipes(state, &prepare_pipes);
12168 if (ret)
12169 goto done;
30a970c6 12170
c164f833
VS
12171 /* may have added more to prepare_pipes than we should */
12172 prepare_pipes &= ~disable_pipes;
12173 }
12174
225da59b 12175 ret = __intel_set_mode_setup_plls(state, modeset_pipes, disable_pipes);
ed6739ef
ACO
12176 if (ret)
12177 goto done;
8bd31e67 12178
460da916
DV
12179 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
12180 intel_crtc_disable(&intel_crtc->base);
12181
ea9d758d 12182 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
83d65738 12183 if (intel_crtc->base.state->enable)
ea9d758d
DV
12184 dev_priv->display.crtc_disable(&intel_crtc->base);
12185 }
a6778b3c 12186
6c4c86f5
DV
12187 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12188 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
12189 *
12190 * Note we'll need to fix this up when we start tracking multiple
12191 * pipes; here we assume a single modeset_pipe and only track the
12192 * single crtc and mode.
f6e5b160 12193 */
b8cecdf5 12194 if (modeset_pipes) {
25c5b266 12195 crtc->mode = *mode;
b8cecdf5
DV
12196 /* mode_set/enable/disable functions rely on a correct pipe
12197 * config. */
f5de6e07 12198 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
12199
12200 /*
12201 * Calculate and store various constants which
12202 * are later needed by vblank and swap-completion
12203 * timestamping. They are derived from true hwmode.
12204 */
12205 drm_calc_timestamping_constants(crtc,
2d112de7 12206 &pipe_config->base.adjusted_mode);
b8cecdf5 12207 }
7758a113 12208
ea9d758d
DV
12209 /* Only after disabling all output pipelines that will be changed can we
12210 * update the the output configuration. */
12211 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 12212
304603f4 12213 modeset_update_crtc_power_domains(state);
47fab737 12214
25c5b266 12215 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
12216 struct drm_plane *primary = intel_crtc->base.primary;
12217 int vdisplay, hdisplay;
4c10794f 12218
455a6808 12219 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
70a101f8
MR
12220 ret = drm_plane_helper_update(primary, &intel_crtc->base,
12221 fb, 0, 0,
12222 hdisplay, vdisplay,
12223 x << 16, y << 16,
12224 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
12225 }
12226
12227 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
12228 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12229 update_scanline_offset(intel_crtc);
12230
25c5b266 12231 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 12232 }
a6778b3c 12233
a6778b3c
DV
12234 /* FIXME: add subpixel order */
12235done:
83d65738 12236 if (ret && crtc->state->enable)
3ac18232 12237 crtc->mode = *saved_mode;
a6778b3c 12238
83a57153
ACO
12239 if (ret == 0 && pipe_config) {
12240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12241
12242 /* The pipe_config will be freed with the atomic state, so
12243 * make a copy. */
12244 memcpy(crtc_state_copy, intel_crtc->config,
12245 sizeof *crtc_state_copy);
12246 intel_crtc->config = crtc_state_copy;
12247 intel_crtc->base.state = &crtc_state_copy->base;
83a57153
ACO
12248 } else {
12249 kfree(crtc_state_copy);
12250 }
12251
3ac18232 12252 kfree(saved_mode);
a6778b3c 12253 return ret;
f6e5b160
CW
12254}
12255
7f27126e
JB
12256static int intel_set_mode_pipes(struct drm_crtc *crtc,
12257 struct drm_display_mode *mode,
12258 int x, int y, struct drm_framebuffer *fb,
5cec258b 12259 struct intel_crtc_state *pipe_config,
7f27126e
JB
12260 unsigned modeset_pipes,
12261 unsigned prepare_pipes,
12262 unsigned disable_pipes)
f30da187
DV
12263{
12264 int ret;
12265
7f27126e
JB
12266 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
12267 prepare_pipes, disable_pipes);
f30da187
DV
12268
12269 if (ret == 0)
12270 intel_modeset_check_state(crtc->dev);
12271
12272 return ret;
12273}
12274
7f27126e
JB
12275static int intel_set_mode(struct drm_crtc *crtc,
12276 struct drm_display_mode *mode,
83a57153
ACO
12277 int x, int y, struct drm_framebuffer *fb,
12278 struct drm_atomic_state *state)
7f27126e 12279{
5cec258b 12280 struct intel_crtc_state *pipe_config;
7f27126e 12281 unsigned modeset_pipes, prepare_pipes, disable_pipes;
83a57153 12282 int ret = 0;
7f27126e 12283
83a57153 12284 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
7f27126e
JB
12285 &modeset_pipes,
12286 &prepare_pipes,
12287 &disable_pipes);
12288
83a57153
ACO
12289 if (IS_ERR(pipe_config)) {
12290 ret = PTR_ERR(pipe_config);
12291 goto out;
12292 }
12293
12294 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
12295 modeset_pipes, prepare_pipes,
12296 disable_pipes);
12297 if (ret)
12298 goto out;
7f27126e 12299
83a57153
ACO
12300out:
12301 return ret;
7f27126e
JB
12302}
12303
c0c36b94
CW
12304void intel_crtc_restore_mode(struct drm_crtc *crtc)
12305{
83a57153
ACO
12306 struct drm_device *dev = crtc->dev;
12307 struct drm_atomic_state *state;
12308 struct intel_encoder *encoder;
12309 struct intel_connector *connector;
12310 struct drm_connector_state *connector_state;
12311
12312 state = drm_atomic_state_alloc(dev);
12313 if (!state) {
12314 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12315 crtc->base.id);
12316 return;
12317 }
12318
12319 state->acquire_ctx = dev->mode_config.acquire_ctx;
12320
12321 /* The force restore path in the HW readout code relies on the staged
12322 * config still keeping the user requested config while the actual
12323 * state has been overwritten by the configuration read from HW. We
12324 * need to copy the staged config to the atomic state, otherwise the
12325 * mode set will just reapply the state the HW is already in. */
12326 for_each_intel_encoder(dev, encoder) {
12327 if (&encoder->new_crtc->base != crtc)
12328 continue;
12329
12330 for_each_intel_connector(dev, connector) {
12331 if (connector->new_encoder != encoder)
12332 continue;
12333
12334 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12335 if (IS_ERR(connector_state)) {
12336 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12337 connector->base.base.id,
12338 connector->base.name,
12339 PTR_ERR(connector_state));
12340 continue;
12341 }
12342
12343 connector_state->crtc = crtc;
12344 connector_state->best_encoder = &encoder->base;
12345 }
12346 }
12347
12348 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
12349 state);
12350
12351 drm_atomic_state_free(state);
c0c36b94
CW
12352}
12353
25c5b266
DV
12354#undef for_each_intel_crtc_masked
12355
d9e55608
DV
12356static void intel_set_config_free(struct intel_set_config *config)
12357{
12358 if (!config)
12359 return;
12360
1aa4b628
DV
12361 kfree(config->save_connector_encoders);
12362 kfree(config->save_encoder_crtcs);
7668851f 12363 kfree(config->save_crtc_enabled);
d9e55608
DV
12364 kfree(config);
12365}
12366
85f9eb71
DV
12367static int intel_set_config_save_state(struct drm_device *dev,
12368 struct intel_set_config *config)
12369{
7668851f 12370 struct drm_crtc *crtc;
85f9eb71
DV
12371 struct drm_encoder *encoder;
12372 struct drm_connector *connector;
12373 int count;
12374
7668851f
VS
12375 config->save_crtc_enabled =
12376 kcalloc(dev->mode_config.num_crtc,
12377 sizeof(bool), GFP_KERNEL);
12378 if (!config->save_crtc_enabled)
12379 return -ENOMEM;
12380
1aa4b628
DV
12381 config->save_encoder_crtcs =
12382 kcalloc(dev->mode_config.num_encoder,
12383 sizeof(struct drm_crtc *), GFP_KERNEL);
12384 if (!config->save_encoder_crtcs)
85f9eb71
DV
12385 return -ENOMEM;
12386
1aa4b628
DV
12387 config->save_connector_encoders =
12388 kcalloc(dev->mode_config.num_connector,
12389 sizeof(struct drm_encoder *), GFP_KERNEL);
12390 if (!config->save_connector_encoders)
85f9eb71
DV
12391 return -ENOMEM;
12392
12393 /* Copy data. Note that driver private data is not affected.
12394 * Should anything bad happen only the expected state is
12395 * restored, not the drivers personal bookkeeping.
12396 */
7668851f 12397 count = 0;
70e1e0ec 12398 for_each_crtc(dev, crtc) {
83d65738 12399 config->save_crtc_enabled[count++] = crtc->state->enable;
7668851f
VS
12400 }
12401
85f9eb71
DV
12402 count = 0;
12403 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 12404 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
12405 }
12406
12407 count = 0;
12408 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 12409 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
12410 }
12411
12412 return 0;
12413}
12414
12415static void intel_set_config_restore_state(struct drm_device *dev,
12416 struct intel_set_config *config)
12417{
7668851f 12418 struct intel_crtc *crtc;
9a935856
DV
12419 struct intel_encoder *encoder;
12420 struct intel_connector *connector;
85f9eb71
DV
12421 int count;
12422
7668851f 12423 count = 0;
d3fcc808 12424 for_each_intel_crtc(dev, crtc) {
7668851f
VS
12425 crtc->new_enabled = config->save_crtc_enabled[count++];
12426 }
12427
85f9eb71 12428 count = 0;
b2784e15 12429 for_each_intel_encoder(dev, encoder) {
9a935856
DV
12430 encoder->new_crtc =
12431 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
12432 }
12433
12434 count = 0;
3a3371ff 12435 for_each_intel_connector(dev, connector) {
9a935856
DV
12436 connector->new_encoder =
12437 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
12438 }
12439}
12440
e3de42b6 12441static bool
2e57f47d 12442is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
12443{
12444 int i;
12445
2e57f47d
CW
12446 if (set->num_connectors == 0)
12447 return false;
12448
12449 if (WARN_ON(set->connectors == NULL))
12450 return false;
12451
12452 for (i = 0; i < set->num_connectors; i++)
12453 if (set->connectors[i]->encoder &&
12454 set->connectors[i]->encoder->crtc == set->crtc &&
12455 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
12456 return true;
12457
12458 return false;
12459}
12460
5e2b584e
DV
12461static void
12462intel_set_config_compute_mode_changes(struct drm_mode_set *set,
12463 struct intel_set_config *config)
12464{
12465
12466 /* We should be able to check here if the fb has the same properties
12467 * and then just flip_or_move it */
2e57f47d
CW
12468 if (is_crtc_connector_off(set)) {
12469 config->mode_changed = true;
f4510a27 12470 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
12471 /*
12472 * If we have no fb, we can only flip as long as the crtc is
12473 * active, otherwise we need a full mode set. The crtc may
12474 * be active if we've only disabled the primary plane, or
12475 * in fastboot situations.
12476 */
f4510a27 12477 if (set->crtc->primary->fb == NULL) {
319d9827
JB
12478 struct intel_crtc *intel_crtc =
12479 to_intel_crtc(set->crtc);
12480
3b150f08 12481 if (intel_crtc->active) {
319d9827
JB
12482 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
12483 config->fb_changed = true;
12484 } else {
12485 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
12486 config->mode_changed = true;
12487 }
5e2b584e
DV
12488 } else if (set->fb == NULL) {
12489 config->mode_changed = true;
72f4901e 12490 } else if (set->fb->pixel_format !=
f4510a27 12491 set->crtc->primary->fb->pixel_format) {
5e2b584e 12492 config->mode_changed = true;
e3de42b6 12493 } else {
5e2b584e 12494 config->fb_changed = true;
e3de42b6 12495 }
5e2b584e
DV
12496 }
12497
835c5873 12498 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
12499 config->fb_changed = true;
12500
12501 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
12502 DRM_DEBUG_KMS("modes are different, full mode set\n");
12503 drm_mode_debug_printmodeline(&set->crtc->mode);
12504 drm_mode_debug_printmodeline(set->mode);
12505 config->mode_changed = true;
12506 }
a1d95703
CW
12507
12508 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
12509 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
12510}
12511
2e431051 12512static int
9a935856
DV
12513intel_modeset_stage_output_state(struct drm_device *dev,
12514 struct drm_mode_set *set,
944b0c76
ACO
12515 struct intel_set_config *config,
12516 struct drm_atomic_state *state)
50f56119 12517{
9a935856 12518 struct intel_connector *connector;
944b0c76 12519 struct drm_connector_state *connector_state;
9a935856 12520 struct intel_encoder *encoder;
7668851f 12521 struct intel_crtc *crtc;
f3f08572 12522 int ro;
50f56119 12523
9abdda74 12524 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
12525 * of connectors. For paranoia, double-check this. */
12526 WARN_ON(!set->fb && (set->num_connectors != 0));
12527 WARN_ON(set->fb && (set->num_connectors == 0));
12528
3a3371ff 12529 for_each_intel_connector(dev, connector) {
9a935856
DV
12530 /* Otherwise traverse passed in connector list and get encoders
12531 * for them. */
50f56119 12532 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 12533 if (set->connectors[ro] == &connector->base) {
0e32b39c 12534 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
12535 break;
12536 }
12537 }
12538
9a935856
DV
12539 /* If we disable the crtc, disable all its connectors. Also, if
12540 * the connector is on the changing crtc but not on the new
12541 * connector list, disable it. */
12542 if ((!set->fb || ro == set->num_connectors) &&
12543 connector->base.encoder &&
12544 connector->base.encoder->crtc == set->crtc) {
12545 connector->new_encoder = NULL;
12546
12547 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12548 connector->base.base.id,
c23cc417 12549 connector->base.name);
9a935856
DV
12550 }
12551
12552
12553 if (&connector->new_encoder->base != connector->base.encoder) {
10634189
ACO
12554 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
12555 connector->base.base.id,
12556 connector->base.name);
5e2b584e 12557 config->mode_changed = true;
50f56119
DV
12558 }
12559 }
9a935856 12560 /* connector->new_encoder is now updated for all connectors. */
50f56119 12561
9a935856 12562 /* Update crtc of enabled connectors. */
3a3371ff 12563 for_each_intel_connector(dev, connector) {
7668851f
VS
12564 struct drm_crtc *new_crtc;
12565
9a935856 12566 if (!connector->new_encoder)
50f56119
DV
12567 continue;
12568
9a935856 12569 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
12570
12571 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 12572 if (set->connectors[ro] == &connector->base)
50f56119
DV
12573 new_crtc = set->crtc;
12574 }
12575
12576 /* Make sure the new CRTC will work with the encoder */
14509916
TR
12577 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
12578 new_crtc)) {
5e2b584e 12579 return -EINVAL;
50f56119 12580 }
0e32b39c 12581 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856 12582
944b0c76
ACO
12583 connector_state =
12584 drm_atomic_get_connector_state(state, &connector->base);
12585 if (IS_ERR(connector_state))
12586 return PTR_ERR(connector_state);
12587
12588 connector_state->crtc = new_crtc;
12589 connector_state->best_encoder = &connector->new_encoder->base;
12590
9a935856
DV
12591 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12592 connector->base.base.id,
c23cc417 12593 connector->base.name,
9a935856
DV
12594 new_crtc->base.id);
12595 }
12596
12597 /* Check for any encoders that needs to be disabled. */
b2784e15 12598 for_each_intel_encoder(dev, encoder) {
5a65f358 12599 int num_connectors = 0;
3a3371ff 12600 for_each_intel_connector(dev, connector) {
9a935856
DV
12601 if (connector->new_encoder == encoder) {
12602 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 12603 num_connectors++;
9a935856
DV
12604 }
12605 }
5a65f358
PZ
12606
12607 if (num_connectors == 0)
12608 encoder->new_crtc = NULL;
12609 else if (num_connectors > 1)
12610 return -EINVAL;
12611
9a935856
DV
12612 /* Only now check for crtc changes so we don't miss encoders
12613 * that will be disabled. */
12614 if (&encoder->new_crtc->base != encoder->base.crtc) {
10634189
ACO
12615 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12616 encoder->base.base.id,
12617 encoder->base.name);
5e2b584e 12618 config->mode_changed = true;
50f56119
DV
12619 }
12620 }
9a935856 12621 /* Now we've also updated encoder->new_crtc for all encoders. */
3a3371ff 12622 for_each_intel_connector(dev, connector) {
944b0c76
ACO
12623 connector_state =
12624 drm_atomic_get_connector_state(state, &connector->base);
9d918c15
ACO
12625 if (IS_ERR(connector_state))
12626 return PTR_ERR(connector_state);
944b0c76
ACO
12627
12628 if (connector->new_encoder) {
0e32b39c
DA
12629 if (connector->new_encoder != connector->encoder)
12630 connector->encoder = connector->new_encoder;
944b0c76
ACO
12631 } else {
12632 connector_state->crtc = NULL;
f61cccf3 12633 connector_state->best_encoder = NULL;
944b0c76 12634 }
0e32b39c 12635 }
d3fcc808 12636 for_each_intel_crtc(dev, crtc) {
7668851f
VS
12637 crtc->new_enabled = false;
12638
b2784e15 12639 for_each_intel_encoder(dev, encoder) {
7668851f
VS
12640 if (encoder->new_crtc == crtc) {
12641 crtc->new_enabled = true;
12642 break;
12643 }
12644 }
12645
83d65738 12646 if (crtc->new_enabled != crtc->base.state->enable) {
10634189
ACO
12647 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12648 crtc->base.base.id,
7668851f
VS
12649 crtc->new_enabled ? "en" : "dis");
12650 config->mode_changed = true;
12651 }
12652 }
12653
2e431051
DV
12654 return 0;
12655}
12656
7d00a1f5
VS
12657static void disable_crtc_nofb(struct intel_crtc *crtc)
12658{
12659 struct drm_device *dev = crtc->base.dev;
12660 struct intel_encoder *encoder;
12661 struct intel_connector *connector;
12662
12663 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12664 pipe_name(crtc->pipe));
12665
3a3371ff 12666 for_each_intel_connector(dev, connector) {
7d00a1f5
VS
12667 if (connector->new_encoder &&
12668 connector->new_encoder->new_crtc == crtc)
12669 connector->new_encoder = NULL;
12670 }
12671
b2784e15 12672 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
12673 if (encoder->new_crtc == crtc)
12674 encoder->new_crtc = NULL;
12675 }
12676
12677 crtc->new_enabled = false;
12678}
12679
2e431051
DV
12680static int intel_crtc_set_config(struct drm_mode_set *set)
12681{
12682 struct drm_device *dev;
2e431051 12683 struct drm_mode_set save_set;
83a57153 12684 struct drm_atomic_state *state = NULL;
2e431051 12685 struct intel_set_config *config;
5cec258b 12686 struct intel_crtc_state *pipe_config;
50f52756 12687 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 12688 int ret;
2e431051 12689
8d3e375e
DV
12690 BUG_ON(!set);
12691 BUG_ON(!set->crtc);
12692 BUG_ON(!set->crtc->helper_private);
2e431051 12693
7e53f3a4
DV
12694 /* Enforce sane interface api - has been abused by the fb helper. */
12695 BUG_ON(!set->mode && set->fb);
12696 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 12697
2e431051
DV
12698 if (set->fb) {
12699 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12700 set->crtc->base.id, set->fb->base.id,
12701 (int)set->num_connectors, set->x, set->y);
12702 } else {
12703 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
12704 }
12705
12706 dev = set->crtc->dev;
12707
12708 ret = -ENOMEM;
12709 config = kzalloc(sizeof(*config), GFP_KERNEL);
12710 if (!config)
12711 goto out_config;
12712
12713 ret = intel_set_config_save_state(dev, config);
12714 if (ret)
12715 goto out_config;
12716
12717 save_set.crtc = set->crtc;
12718 save_set.mode = &set->crtc->mode;
12719 save_set.x = set->crtc->x;
12720 save_set.y = set->crtc->y;
f4510a27 12721 save_set.fb = set->crtc->primary->fb;
2e431051
DV
12722
12723 /* Compute whether we need a full modeset, only an fb base update or no
12724 * change at all. In the future we might also check whether only the
12725 * mode changed, e.g. for LVDS where we only change the panel fitter in
12726 * such cases. */
12727 intel_set_config_compute_mode_changes(set, config);
12728
83a57153
ACO
12729 state = drm_atomic_state_alloc(dev);
12730 if (!state) {
12731 ret = -ENOMEM;
12732 goto out_config;
12733 }
12734
12735 state->acquire_ctx = dev->mode_config.acquire_ctx;
12736
944b0c76 12737 ret = intel_modeset_stage_output_state(dev, set, config, state);
2e431051
DV
12738 if (ret)
12739 goto fail;
12740
50f52756 12741 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
83a57153 12742 set->fb, state,
50f52756
JB
12743 &modeset_pipes,
12744 &prepare_pipes,
12745 &disable_pipes);
20664591 12746 if (IS_ERR(pipe_config)) {
6ac0483b 12747 ret = PTR_ERR(pipe_config);
50f52756 12748 goto fail;
20664591 12749 } else if (pipe_config) {
b9950a13 12750 if (pipe_config->has_audio !=
6e3c9717 12751 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
12752 config->mode_changed = true;
12753
af15d2ce
JB
12754 /*
12755 * Note we have an issue here with infoframes: current code
12756 * only updates them on the full mode set path per hw
12757 * requirements. So here we should be checking for any
12758 * required changes and forcing a mode set.
12759 */
20664591 12760 }
50f52756 12761
1f9954d0
JB
12762 intel_update_pipe_size(to_intel_crtc(set->crtc));
12763
5e2b584e 12764 if (config->mode_changed) {
50f52756
JB
12765 ret = intel_set_mode_pipes(set->crtc, set->mode,
12766 set->x, set->y, set->fb, pipe_config,
12767 modeset_pipes, prepare_pipes,
12768 disable_pipes);
5e2b584e 12769 } else if (config->fb_changed) {
3b150f08 12770 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
12771 struct drm_plane *primary = set->crtc->primary;
12772 int vdisplay, hdisplay;
3b150f08 12773
455a6808 12774 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
70a101f8
MR
12775 ret = drm_plane_helper_update(primary, set->crtc, set->fb,
12776 0, 0, hdisplay, vdisplay,
12777 set->x << 16, set->y << 16,
12778 hdisplay << 16, vdisplay << 16);
3b150f08
MR
12779
12780 /*
12781 * We need to make sure the primary plane is re-enabled if it
12782 * has previously been turned off.
12783 */
12784 if (!intel_crtc->primary_enabled && ret == 0) {
12785 WARN_ON(!intel_crtc->active);
fdd508a6 12786 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
12787 }
12788
7ca51a3a
JB
12789 /*
12790 * In the fastboot case this may be our only check of the
12791 * state after boot. It would be better to only do it on
12792 * the first update, but we don't have a nice way of doing that
12793 * (and really, set_config isn't used much for high freq page
12794 * flipping, so increasing its cost here shouldn't be a big
12795 * deal).
12796 */
d330a953 12797 if (i915.fastboot && ret == 0)
7ca51a3a 12798 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12799 }
12800
2d05eae1 12801 if (ret) {
bf67dfeb
DV
12802 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12803 set->crtc->base.id, ret);
50f56119 12804fail:
2d05eae1 12805 intel_set_config_restore_state(dev, config);
50f56119 12806
83a57153
ACO
12807 drm_atomic_state_clear(state);
12808
7d00a1f5
VS
12809 /*
12810 * HACK: if the pipe was on, but we didn't have a framebuffer,
12811 * force the pipe off to avoid oopsing in the modeset code
12812 * due to fb==NULL. This should only happen during boot since
12813 * we don't yet reconstruct the FB from the hardware state.
12814 */
12815 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12816 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12817
2d05eae1
CW
12818 /* Try to restore the config */
12819 if (config->mode_changed &&
12820 intel_set_mode(save_set.crtc, save_set.mode,
83a57153
ACO
12821 save_set.x, save_set.y, save_set.fb,
12822 state))
2d05eae1
CW
12823 DRM_ERROR("failed to restore config after modeset failure\n");
12824 }
50f56119 12825
d9e55608 12826out_config:
83a57153
ACO
12827 if (state)
12828 drm_atomic_state_free(state);
12829
d9e55608 12830 intel_set_config_free(config);
50f56119
DV
12831 return ret;
12832}
f6e5b160
CW
12833
12834static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12835 .gamma_set = intel_crtc_gamma_set,
50f56119 12836 .set_config = intel_crtc_set_config,
f6e5b160
CW
12837 .destroy = intel_crtc_destroy,
12838 .page_flip = intel_crtc_page_flip,
1356837e
MR
12839 .atomic_duplicate_state = intel_crtc_duplicate_state,
12840 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12841};
12842
5358901f
DV
12843static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12844 struct intel_shared_dpll *pll,
12845 struct intel_dpll_hw_state *hw_state)
ee7b9f93 12846{
5358901f 12847 uint32_t val;
ee7b9f93 12848
f458ebbc 12849 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
12850 return false;
12851
5358901f 12852 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
12853 hw_state->dpll = val;
12854 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12855 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
12856
12857 return val & DPLL_VCO_ENABLE;
12858}
12859
15bdd4cf
DV
12860static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12861 struct intel_shared_dpll *pll)
12862{
3e369b76
ACO
12863 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12864 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
12865}
12866
e7b903d2
DV
12867static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12868 struct intel_shared_dpll *pll)
12869{
e7b903d2 12870 /* PCH refclock must be enabled first */
89eff4be 12871 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 12872
3e369b76 12873 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
12874
12875 /* Wait for the clocks to stabilize. */
12876 POSTING_READ(PCH_DPLL(pll->id));
12877 udelay(150);
12878
12879 /* The pixel multiplier can only be updated once the
12880 * DPLL is enabled and the clocks are stable.
12881 *
12882 * So write it again.
12883 */
3e369b76 12884 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 12885 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12886 udelay(200);
12887}
12888
12889static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12890 struct intel_shared_dpll *pll)
12891{
12892 struct drm_device *dev = dev_priv->dev;
12893 struct intel_crtc *crtc;
e7b903d2
DV
12894
12895 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 12896 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
12897 if (intel_crtc_to_shared_dpll(crtc) == pll)
12898 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
12899 }
12900
15bdd4cf
DV
12901 I915_WRITE(PCH_DPLL(pll->id), 0);
12902 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12903 udelay(200);
12904}
12905
46edb027
DV
12906static char *ibx_pch_dpll_names[] = {
12907 "PCH DPLL A",
12908 "PCH DPLL B",
12909};
12910
7c74ade1 12911static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12912{
e7b903d2 12913 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12914 int i;
12915
7c74ade1 12916 dev_priv->num_shared_dpll = 2;
ee7b9f93 12917
e72f9fbf 12918 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12919 dev_priv->shared_dplls[i].id = i;
12920 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12921 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12922 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12923 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12924 dev_priv->shared_dplls[i].get_hw_state =
12925 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12926 }
12927}
12928
7c74ade1
DV
12929static void intel_shared_dpll_init(struct drm_device *dev)
12930{
e7b903d2 12931 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12932
9cd86933
DV
12933 if (HAS_DDI(dev))
12934 intel_ddi_pll_init(dev);
12935 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12936 ibx_pch_dpll_init(dev);
12937 else
12938 dev_priv->num_shared_dpll = 0;
12939
12940 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12941}
12942
1fc0a8f7
TU
12943/**
12944 * intel_wm_need_update - Check whether watermarks need updating
12945 * @plane: drm plane
12946 * @state: new plane state
12947 *
12948 * Check current plane state versus the new one to determine whether
12949 * watermarks need to be recalculated.
12950 *
12951 * Returns true or false.
12952 */
12953bool intel_wm_need_update(struct drm_plane *plane,
12954 struct drm_plane_state *state)
12955{
12956 /* Update watermarks on tiling changes. */
12957 if (!plane->state->fb || !state->fb ||
12958 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12959 plane->state->rotation != state->rotation)
12960 return true;
12961
12962 return false;
12963}
12964
6beb8c23
MR
12965/**
12966 * intel_prepare_plane_fb - Prepare fb for usage on plane
12967 * @plane: drm plane to prepare for
12968 * @fb: framebuffer to prepare for presentation
12969 *
12970 * Prepares a framebuffer for usage on a display plane. Generally this
12971 * involves pinning the underlying object and updating the frontbuffer tracking
12972 * bits. Some older platforms need special physical address handling for
12973 * cursor planes.
12974 *
12975 * Returns 0 on success, negative error code on failure.
12976 */
12977int
12978intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12979 struct drm_framebuffer *fb,
12980 const struct drm_plane_state *new_state)
465c120c
MR
12981{
12982 struct drm_device *dev = plane->dev;
6beb8c23
MR
12983 struct intel_plane *intel_plane = to_intel_plane(plane);
12984 enum pipe pipe = intel_plane->pipe;
12985 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12986 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12987 unsigned frontbuffer_bits = 0;
12988 int ret = 0;
465c120c 12989
ea2c67bb 12990 if (!obj)
465c120c
MR
12991 return 0;
12992
6beb8c23
MR
12993 switch (plane->type) {
12994 case DRM_PLANE_TYPE_PRIMARY:
12995 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12996 break;
12997 case DRM_PLANE_TYPE_CURSOR:
12998 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12999 break;
13000 case DRM_PLANE_TYPE_OVERLAY:
13001 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13002 break;
13003 }
465c120c 13004
6beb8c23 13005 mutex_lock(&dev->struct_mutex);
465c120c 13006
6beb8c23
MR
13007 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13008 INTEL_INFO(dev)->cursor_needs_physical) {
13009 int align = IS_I830(dev) ? 16 * 1024 : 256;
13010 ret = i915_gem_object_attach_phys(obj, align);
13011 if (ret)
13012 DRM_DEBUG_KMS("failed to attach phys object\n");
13013 } else {
82bc3b2d 13014 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 13015 }
465c120c 13016
6beb8c23
MR
13017 if (ret == 0)
13018 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 13019
4c34574f 13020 mutex_unlock(&dev->struct_mutex);
465c120c 13021
6beb8c23
MR
13022 return ret;
13023}
13024
38f3ce3a
MR
13025/**
13026 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13027 * @plane: drm plane to clean up for
13028 * @fb: old framebuffer that was on plane
13029 *
13030 * Cleans up a framebuffer that has just been removed from a plane.
13031 */
13032void
13033intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
13034 struct drm_framebuffer *fb,
13035 const struct drm_plane_state *old_state)
38f3ce3a
MR
13036{
13037 struct drm_device *dev = plane->dev;
13038 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13039
13040 if (WARN_ON(!obj))
13041 return;
13042
13043 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13044 !INTEL_INFO(dev)->cursor_needs_physical) {
13045 mutex_lock(&dev->struct_mutex);
82bc3b2d 13046 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
13047 mutex_unlock(&dev->struct_mutex);
13048 }
465c120c
MR
13049}
13050
13051static int
3c692a41
GP
13052intel_check_primary_plane(struct drm_plane *plane,
13053 struct intel_plane_state *state)
13054{
32b7eeec
MR
13055 struct drm_device *dev = plane->dev;
13056 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 13057 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13058 struct intel_crtc *intel_crtc;
2b875c22 13059 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
13060 struct drm_rect *dest = &state->dst;
13061 struct drm_rect *src = &state->src;
13062 const struct drm_rect *clip = &state->clip;
d8106366 13063 bool can_position = false;
465c120c
MR
13064 int ret;
13065
ea2c67bb
MR
13066 crtc = crtc ? crtc : plane->crtc;
13067 intel_crtc = to_intel_crtc(crtc);
13068
d8106366
SJ
13069 if (INTEL_INFO(dev)->gen >= 9)
13070 can_position = true;
13071
c59cb179
MR
13072 ret = drm_plane_helper_check_update(plane, crtc, fb,
13073 src, dest, clip,
13074 DRM_PLANE_HELPER_NO_SCALING,
13075 DRM_PLANE_HELPER_NO_SCALING,
d8106366
SJ
13076 can_position, true,
13077 &state->visible);
c59cb179
MR
13078 if (ret)
13079 return ret;
465c120c 13080
32b7eeec
MR
13081 if (intel_crtc->active) {
13082 intel_crtc->atomic.wait_for_flips = true;
13083
13084 /*
13085 * FBC does not work on some platforms for rotated
13086 * planes, so disable it when rotation is not 0 and
13087 * update it when rotation is set back to 0.
13088 *
13089 * FIXME: This is redundant with the fbc update done in
13090 * the primary plane enable function except that that
13091 * one is done too late. We eventually need to unify
13092 * this.
13093 */
13094 if (intel_crtc->primary_enabled &&
13095 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 13096 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 13097 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
13098 intel_crtc->atomic.disable_fbc = true;
13099 }
13100
13101 if (state->visible) {
13102 /*
13103 * BDW signals flip done immediately if the plane
13104 * is disabled, even if the plane enable is already
13105 * armed to occur at the next vblank :(
13106 */
13107 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
13108 intel_crtc->atomic.wait_vblank = true;
13109 }
13110
13111 intel_crtc->atomic.fb_bits |=
13112 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13113
13114 intel_crtc->atomic.update_fbc = true;
0fda6568 13115
1fc0a8f7 13116 if (intel_wm_need_update(plane, &state->base))
0fda6568 13117 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
13118 }
13119
14af293f
GP
13120 return 0;
13121}
13122
13123static void
13124intel_commit_primary_plane(struct drm_plane *plane,
13125 struct intel_plane_state *state)
13126{
2b875c22
MR
13127 struct drm_crtc *crtc = state->base.crtc;
13128 struct drm_framebuffer *fb = state->base.fb;
13129 struct drm_device *dev = plane->dev;
14af293f 13130 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13131 struct intel_crtc *intel_crtc;
14af293f
GP
13132 struct drm_rect *src = &state->src;
13133
ea2c67bb
MR
13134 crtc = crtc ? crtc : plane->crtc;
13135 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13136
13137 plane->fb = fb;
9dc806fc
MR
13138 crtc->x = src->x1 >> 16;
13139 crtc->y = src->y1 >> 16;
ccc759dc 13140
ccc759dc 13141 if (intel_crtc->active) {
ccc759dc 13142 if (state->visible) {
ccc759dc
GP
13143 /* FIXME: kill this fastboot hack */
13144 intel_update_pipe_size(intel_crtc);
465c120c 13145
ccc759dc 13146 intel_crtc->primary_enabled = true;
465c120c 13147
ccc759dc
GP
13148 dev_priv->display.update_primary_plane(crtc, plane->fb,
13149 crtc->x, crtc->y);
ccc759dc
GP
13150 } else {
13151 /*
13152 * If clipping results in a non-visible primary plane,
13153 * we'll disable the primary plane. Note that this is
13154 * a bit different than what happens if userspace
13155 * explicitly disables the plane by passing fb=0
13156 * because plane->fb still gets set and pinned.
13157 */
13158 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 13159 }
ccc759dc 13160 }
465c120c
MR
13161}
13162
32b7eeec 13163static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 13164{
32b7eeec 13165 struct drm_device *dev = crtc->dev;
140fd38d 13166 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 13167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
13168 struct intel_plane *intel_plane;
13169 struct drm_plane *p;
13170 unsigned fb_bits = 0;
13171
13172 /* Track fb's for any planes being disabled */
13173 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13174 intel_plane = to_intel_plane(p);
13175
13176 if (intel_crtc->atomic.disabled_planes &
13177 (1 << drm_plane_index(p))) {
13178 switch (p->type) {
13179 case DRM_PLANE_TYPE_PRIMARY:
13180 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13181 break;
13182 case DRM_PLANE_TYPE_CURSOR:
13183 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13184 break;
13185 case DRM_PLANE_TYPE_OVERLAY:
13186 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13187 break;
13188 }
3c692a41 13189
ea2c67bb
MR
13190 mutex_lock(&dev->struct_mutex);
13191 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13192 mutex_unlock(&dev->struct_mutex);
13193 }
13194 }
3c692a41 13195
32b7eeec
MR
13196 if (intel_crtc->atomic.wait_for_flips)
13197 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 13198
32b7eeec
MR
13199 if (intel_crtc->atomic.disable_fbc)
13200 intel_fbc_disable(dev);
3c692a41 13201
32b7eeec
MR
13202 if (intel_crtc->atomic.pre_disable_primary)
13203 intel_pre_disable_primary(crtc);
3c692a41 13204
32b7eeec
MR
13205 if (intel_crtc->atomic.update_wm)
13206 intel_update_watermarks(crtc);
3c692a41 13207
32b7eeec 13208 intel_runtime_pm_get(dev_priv);
3c692a41 13209
c34c9ee4
MR
13210 /* Perform vblank evasion around commit operation */
13211 if (intel_crtc->active)
13212 intel_crtc->atomic.evade =
13213 intel_pipe_update_start(intel_crtc,
13214 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
13215}
13216
13217static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13218{
13219 struct drm_device *dev = crtc->dev;
13220 struct drm_i915_private *dev_priv = dev->dev_private;
13221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13222 struct drm_plane *p;
13223
c34c9ee4
MR
13224 if (intel_crtc->atomic.evade)
13225 intel_pipe_update_end(intel_crtc,
13226 intel_crtc->atomic.start_vbl_count);
3c692a41 13227
140fd38d 13228 intel_runtime_pm_put(dev_priv);
3c692a41 13229
32b7eeec
MR
13230 if (intel_crtc->atomic.wait_vblank)
13231 intel_wait_for_vblank(dev, intel_crtc->pipe);
13232
13233 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13234
13235 if (intel_crtc->atomic.update_fbc) {
ccc759dc 13236 mutex_lock(&dev->struct_mutex);
7ff0ebcc 13237 intel_fbc_update(dev);
ccc759dc 13238 mutex_unlock(&dev->struct_mutex);
38f3ce3a 13239 }
3c692a41 13240
32b7eeec
MR
13241 if (intel_crtc->atomic.post_enable_primary)
13242 intel_post_enable_primary(crtc);
3c692a41 13243
32b7eeec
MR
13244 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13245 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13246 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13247 false, false);
13248
13249 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
13250}
13251
cf4c7c12 13252/**
4a3b8769
MR
13253 * intel_plane_destroy - destroy a plane
13254 * @plane: plane to destroy
cf4c7c12 13255 *
4a3b8769
MR
13256 * Common destruction function for all types of planes (primary, cursor,
13257 * sprite).
cf4c7c12 13258 */
4a3b8769 13259void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13260{
13261 struct intel_plane *intel_plane = to_intel_plane(plane);
13262 drm_plane_cleanup(plane);
13263 kfree(intel_plane);
13264}
13265
65a3fea0 13266const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13267 .update_plane = drm_atomic_helper_update_plane,
13268 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13269 .destroy = intel_plane_destroy,
c196e1d6 13270 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13271 .atomic_get_property = intel_plane_atomic_get_property,
13272 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13273 .atomic_duplicate_state = intel_plane_duplicate_state,
13274 .atomic_destroy_state = intel_plane_destroy_state,
13275
465c120c
MR
13276};
13277
13278static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13279 int pipe)
13280{
13281 struct intel_plane *primary;
8e7d688b 13282 struct intel_plane_state *state;
465c120c
MR
13283 const uint32_t *intel_primary_formats;
13284 int num_formats;
13285
13286 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13287 if (primary == NULL)
13288 return NULL;
13289
8e7d688b
MR
13290 state = intel_create_plane_state(&primary->base);
13291 if (!state) {
ea2c67bb
MR
13292 kfree(primary);
13293 return NULL;
13294 }
8e7d688b 13295 primary->base.state = &state->base;
ea2c67bb 13296
465c120c
MR
13297 primary->can_scale = false;
13298 primary->max_downscale = 1;
549e2bfb 13299 state->scaler_id = -1;
465c120c
MR
13300 primary->pipe = pipe;
13301 primary->plane = pipe;
c59cb179
MR
13302 primary->check_plane = intel_check_primary_plane;
13303 primary->commit_plane = intel_commit_primary_plane;
08e221fb 13304 primary->ckey.flags = I915_SET_COLORKEY_NONE;
465c120c
MR
13305 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13306 primary->plane = !pipe;
13307
13308 if (INTEL_INFO(dev)->gen <= 3) {
13309 intel_primary_formats = intel_primary_formats_gen2;
13310 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13311 } else {
13312 intel_primary_formats = intel_primary_formats_gen4;
13313 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13314 }
13315
13316 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13317 &intel_plane_funcs,
465c120c
MR
13318 intel_primary_formats, num_formats,
13319 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13320
3b7a5119
SJ
13321 if (INTEL_INFO(dev)->gen >= 4)
13322 intel_create_rotation_property(dev, primary);
48404c1e 13323
ea2c67bb
MR
13324 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13325
465c120c
MR
13326 return &primary->base;
13327}
13328
3b7a5119
SJ
13329void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13330{
13331 if (!dev->mode_config.rotation_property) {
13332 unsigned long flags = BIT(DRM_ROTATE_0) |
13333 BIT(DRM_ROTATE_180);
13334
13335 if (INTEL_INFO(dev)->gen >= 9)
13336 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13337
13338 dev->mode_config.rotation_property =
13339 drm_mode_create_rotation_property(dev, flags);
13340 }
13341 if (dev->mode_config.rotation_property)
13342 drm_object_attach_property(&plane->base.base,
13343 dev->mode_config.rotation_property,
13344 plane->base.state->rotation);
13345}
13346
3d7d6510 13347static int
852e787c
GP
13348intel_check_cursor_plane(struct drm_plane *plane,
13349 struct intel_plane_state *state)
3d7d6510 13350{
2b875c22 13351 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13352 struct drm_device *dev = plane->dev;
2b875c22 13353 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
13354 struct drm_rect *dest = &state->dst;
13355 struct drm_rect *src = &state->src;
13356 const struct drm_rect *clip = &state->clip;
757f9a3e 13357 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 13358 struct intel_crtc *intel_crtc;
757f9a3e
GP
13359 unsigned stride;
13360 int ret;
3d7d6510 13361
ea2c67bb
MR
13362 crtc = crtc ? crtc : plane->crtc;
13363 intel_crtc = to_intel_crtc(crtc);
13364
757f9a3e 13365 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 13366 src, dest, clip,
3d7d6510
MR
13367 DRM_PLANE_HELPER_NO_SCALING,
13368 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13369 true, true, &state->visible);
757f9a3e
GP
13370 if (ret)
13371 return ret;
13372
13373
13374 /* if we want to turn off the cursor ignore width and height */
13375 if (!obj)
32b7eeec 13376 goto finish;
757f9a3e 13377
757f9a3e 13378 /* Check for which cursor types we support */
ea2c67bb
MR
13379 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13380 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13381 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13382 return -EINVAL;
13383 }
13384
ea2c67bb
MR
13385 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13386 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13387 DRM_DEBUG_KMS("buffer is too small\n");
13388 return -ENOMEM;
13389 }
13390
3a656b54 13391 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
13392 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13393 ret = -EINVAL;
13394 }
757f9a3e 13395
32b7eeec
MR
13396finish:
13397 if (intel_crtc->active) {
3749f463 13398 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
13399 intel_crtc->atomic.update_wm = true;
13400
13401 intel_crtc->atomic.fb_bits |=
13402 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13403 }
13404
757f9a3e 13405 return ret;
852e787c 13406}
3d7d6510 13407
f4a2cf29 13408static void
852e787c
GP
13409intel_commit_cursor_plane(struct drm_plane *plane,
13410 struct intel_plane_state *state)
13411{
2b875c22 13412 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13413 struct drm_device *dev = plane->dev;
13414 struct intel_crtc *intel_crtc;
2b875c22 13415 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13416 uint32_t addr;
852e787c 13417
ea2c67bb
MR
13418 crtc = crtc ? crtc : plane->crtc;
13419 intel_crtc = to_intel_crtc(crtc);
13420
2b875c22 13421 plane->fb = state->base.fb;
ea2c67bb
MR
13422 crtc->cursor_x = state->base.crtc_x;
13423 crtc->cursor_y = state->base.crtc_y;
13424
a912f12f
GP
13425 if (intel_crtc->cursor_bo == obj)
13426 goto update;
4ed91096 13427
f4a2cf29 13428 if (!obj)
a912f12f 13429 addr = 0;
f4a2cf29 13430 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13431 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13432 else
a912f12f 13433 addr = obj->phys_handle->busaddr;
852e787c 13434
a912f12f
GP
13435 intel_crtc->cursor_addr = addr;
13436 intel_crtc->cursor_bo = obj;
13437update:
852e787c 13438
32b7eeec 13439 if (intel_crtc->active)
a912f12f 13440 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13441}
13442
3d7d6510
MR
13443static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13444 int pipe)
13445{
13446 struct intel_plane *cursor;
8e7d688b 13447 struct intel_plane_state *state;
3d7d6510
MR
13448
13449 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13450 if (cursor == NULL)
13451 return NULL;
13452
8e7d688b
MR
13453 state = intel_create_plane_state(&cursor->base);
13454 if (!state) {
ea2c67bb
MR
13455 kfree(cursor);
13456 return NULL;
13457 }
8e7d688b 13458 cursor->base.state = &state->base;
ea2c67bb 13459
3d7d6510
MR
13460 cursor->can_scale = false;
13461 cursor->max_downscale = 1;
13462 cursor->pipe = pipe;
13463 cursor->plane = pipe;
549e2bfb 13464 state->scaler_id = -1;
c59cb179
MR
13465 cursor->check_plane = intel_check_cursor_plane;
13466 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
13467
13468 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 13469 &intel_plane_funcs,
3d7d6510
MR
13470 intel_cursor_formats,
13471 ARRAY_SIZE(intel_cursor_formats),
13472 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
13473
13474 if (INTEL_INFO(dev)->gen >= 4) {
13475 if (!dev->mode_config.rotation_property)
13476 dev->mode_config.rotation_property =
13477 drm_mode_create_rotation_property(dev,
13478 BIT(DRM_ROTATE_0) |
13479 BIT(DRM_ROTATE_180));
13480 if (dev->mode_config.rotation_property)
13481 drm_object_attach_property(&cursor->base.base,
13482 dev->mode_config.rotation_property,
8e7d688b 13483 state->base.rotation);
4398ad45
VS
13484 }
13485
ea2c67bb
MR
13486 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13487
3d7d6510
MR
13488 return &cursor->base;
13489}
13490
549e2bfb
CK
13491static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13492 struct intel_crtc_state *crtc_state)
13493{
13494 int i;
13495 struct intel_scaler *intel_scaler;
13496 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13497
13498 for (i = 0; i < intel_crtc->num_scalers; i++) {
13499 intel_scaler = &scaler_state->scalers[i];
13500 intel_scaler->in_use = 0;
13501 intel_scaler->id = i;
13502
13503 intel_scaler->mode = PS_SCALER_MODE_DYN;
13504 }
13505
13506 scaler_state->scaler_id = -1;
13507}
13508
b358d0a6 13509static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 13510{
fbee40df 13511 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 13512 struct intel_crtc *intel_crtc;
f5de6e07 13513 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
13514 struct drm_plane *primary = NULL;
13515 struct drm_plane *cursor = NULL;
465c120c 13516 int i, ret;
79e53945 13517
955382f3 13518 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
13519 if (intel_crtc == NULL)
13520 return;
13521
f5de6e07
ACO
13522 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13523 if (!crtc_state)
13524 goto fail;
13525 intel_crtc_set_state(intel_crtc, crtc_state);
07878248 13526 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 13527
549e2bfb
CK
13528 /* initialize shared scalers */
13529 if (INTEL_INFO(dev)->gen >= 9) {
13530 if (pipe == PIPE_C)
13531 intel_crtc->num_scalers = 1;
13532 else
13533 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13534
13535 skl_init_scalers(dev, intel_crtc, crtc_state);
13536 }
13537
465c120c 13538 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
13539 if (!primary)
13540 goto fail;
13541
13542 cursor = intel_cursor_plane_create(dev, pipe);
13543 if (!cursor)
13544 goto fail;
13545
465c120c 13546 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
13547 cursor, &intel_crtc_funcs);
13548 if (ret)
13549 goto fail;
79e53945
JB
13550
13551 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
13552 for (i = 0; i < 256; i++) {
13553 intel_crtc->lut_r[i] = i;
13554 intel_crtc->lut_g[i] = i;
13555 intel_crtc->lut_b[i] = i;
13556 }
13557
1f1c2e24
VS
13558 /*
13559 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 13560 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 13561 */
80824003
JB
13562 intel_crtc->pipe = pipe;
13563 intel_crtc->plane = pipe;
3a77c4c4 13564 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 13565 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 13566 intel_crtc->plane = !pipe;
80824003
JB
13567 }
13568
4b0e333e
CW
13569 intel_crtc->cursor_base = ~0;
13570 intel_crtc->cursor_cntl = ~0;
dc41c154 13571 intel_crtc->cursor_size = ~0;
8d7849db 13572
22fd0fab
JB
13573 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13574 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13575 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13576 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13577
9362c7c5
ACO
13578 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
13579
79e53945 13580 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
13581
13582 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
13583 return;
13584
13585fail:
13586 if (primary)
13587 drm_plane_cleanup(primary);
13588 if (cursor)
13589 drm_plane_cleanup(cursor);
f5de6e07 13590 kfree(crtc_state);
3d7d6510 13591 kfree(intel_crtc);
79e53945
JB
13592}
13593
752aa88a
JB
13594enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13595{
13596 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 13597 struct drm_device *dev = connector->base.dev;
752aa88a 13598
51fd371b 13599 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 13600
d3babd3f 13601 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
13602 return INVALID_PIPE;
13603
13604 return to_intel_crtc(encoder->crtc)->pipe;
13605}
13606
08d7b3d1 13607int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 13608 struct drm_file *file)
08d7b3d1 13609{
08d7b3d1 13610 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 13611 struct drm_crtc *drmmode_crtc;
c05422d5 13612 struct intel_crtc *crtc;
08d7b3d1 13613
7707e653 13614 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 13615
7707e653 13616 if (!drmmode_crtc) {
08d7b3d1 13617 DRM_ERROR("no such CRTC id\n");
3f2c2057 13618 return -ENOENT;
08d7b3d1
CW
13619 }
13620
7707e653 13621 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 13622 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 13623
c05422d5 13624 return 0;
08d7b3d1
CW
13625}
13626
66a9278e 13627static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 13628{
66a9278e
DV
13629 struct drm_device *dev = encoder->base.dev;
13630 struct intel_encoder *source_encoder;
79e53945 13631 int index_mask = 0;
79e53945
JB
13632 int entry = 0;
13633
b2784e15 13634 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 13635 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
13636 index_mask |= (1 << entry);
13637
79e53945
JB
13638 entry++;
13639 }
4ef69c7a 13640
79e53945
JB
13641 return index_mask;
13642}
13643
4d302442
CW
13644static bool has_edp_a(struct drm_device *dev)
13645{
13646 struct drm_i915_private *dev_priv = dev->dev_private;
13647
13648 if (!IS_MOBILE(dev))
13649 return false;
13650
13651 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13652 return false;
13653
e3589908 13654 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
13655 return false;
13656
13657 return true;
13658}
13659
84b4e042
JB
13660static bool intel_crt_present(struct drm_device *dev)
13661{
13662 struct drm_i915_private *dev_priv = dev->dev_private;
13663
884497ed
DL
13664 if (INTEL_INFO(dev)->gen >= 9)
13665 return false;
13666
cf404ce4 13667 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
13668 return false;
13669
13670 if (IS_CHERRYVIEW(dev))
13671 return false;
13672
13673 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13674 return false;
13675
13676 return true;
13677}
13678
79e53945
JB
13679static void intel_setup_outputs(struct drm_device *dev)
13680{
725e30ad 13681 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 13682 struct intel_encoder *encoder;
cb0953d7 13683 bool dpd_is_edp = false;
79e53945 13684
c9093354 13685 intel_lvds_init(dev);
79e53945 13686
84b4e042 13687 if (intel_crt_present(dev))
79935fca 13688 intel_crt_init(dev);
cb0953d7 13689
c776eb2e
VK
13690 if (IS_BROXTON(dev)) {
13691 /*
13692 * FIXME: Broxton doesn't support port detection via the
13693 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13694 * detect the ports.
13695 */
13696 intel_ddi_init(dev, PORT_A);
13697 intel_ddi_init(dev, PORT_B);
13698 intel_ddi_init(dev, PORT_C);
13699 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
13700 int found;
13701
de31facd
JB
13702 /*
13703 * Haswell uses DDI functions to detect digital outputs.
13704 * On SKL pre-D0 the strap isn't connected, so we assume
13705 * it's there.
13706 */
0e72a5b5 13707 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
13708 /* WaIgnoreDDIAStrap: skl */
13709 if (found ||
13710 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
13711 intel_ddi_init(dev, PORT_A);
13712
13713 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13714 * register */
13715 found = I915_READ(SFUSE_STRAP);
13716
13717 if (found & SFUSE_STRAP_DDIB_DETECTED)
13718 intel_ddi_init(dev, PORT_B);
13719 if (found & SFUSE_STRAP_DDIC_DETECTED)
13720 intel_ddi_init(dev, PORT_C);
13721 if (found & SFUSE_STRAP_DDID_DETECTED)
13722 intel_ddi_init(dev, PORT_D);
13723 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 13724 int found;
5d8a7752 13725 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
13726
13727 if (has_edp_a(dev))
13728 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 13729
dc0fa718 13730 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 13731 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 13732 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 13733 if (!found)
e2debe91 13734 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 13735 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 13736 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
13737 }
13738
dc0fa718 13739 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 13740 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 13741
dc0fa718 13742 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 13743 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 13744
5eb08b69 13745 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 13746 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 13747
270b3042 13748 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 13749 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 13750 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
13751 /*
13752 * The DP_DETECTED bit is the latched state of the DDC
13753 * SDA pin at boot. However since eDP doesn't require DDC
13754 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13755 * eDP ports may have been muxed to an alternate function.
13756 * Thus we can't rely on the DP_DETECTED bit alone to detect
13757 * eDP ports. Consult the VBT as well as DP_DETECTED to
13758 * detect eDP ports.
13759 */
d2182a66
VS
13760 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13761 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
13762 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13763 PORT_B);
e17ac6db
VS
13764 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13765 intel_dp_is_edp(dev, PORT_B))
13766 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 13767
d2182a66
VS
13768 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13769 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
13770 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13771 PORT_C);
e17ac6db
VS
13772 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13773 intel_dp_is_edp(dev, PORT_C))
13774 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 13775
9418c1f1 13776 if (IS_CHERRYVIEW(dev)) {
e17ac6db 13777 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
13778 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13779 PORT_D);
e17ac6db
VS
13780 /* eDP not supported on port D, so don't check VBT */
13781 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13782 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
13783 }
13784
3cfca973 13785 intel_dsi_init(dev);
103a196f 13786 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 13787 bool found = false;
7d57382e 13788
e2debe91 13789 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13790 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 13791 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
13792 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13793 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 13794 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 13795 }
27185ae1 13796
e7281eab 13797 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13798 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 13799 }
13520b05
KH
13800
13801 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 13802
e2debe91 13803 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13804 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 13805 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 13806 }
27185ae1 13807
e2debe91 13808 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 13809
b01f2c3a
JB
13810 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13811 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 13812 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 13813 }
e7281eab 13814 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13815 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 13816 }
27185ae1 13817
b01f2c3a 13818 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 13819 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 13820 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 13821 } else if (IS_GEN2(dev))
79e53945
JB
13822 intel_dvo_init(dev);
13823
103a196f 13824 if (SUPPORTS_TV(dev))
79e53945
JB
13825 intel_tv_init(dev);
13826
0bc12bcb 13827 intel_psr_init(dev);
7c8f8a70 13828
b2784e15 13829 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
13830 encoder->base.possible_crtcs = encoder->crtc_mask;
13831 encoder->base.possible_clones =
66a9278e 13832 intel_encoder_clones(encoder);
79e53945 13833 }
47356eb6 13834
dde86e2d 13835 intel_init_pch_refclk(dev);
270b3042
DV
13836
13837 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
13838}
13839
13840static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13841{
60a5ca01 13842 struct drm_device *dev = fb->dev;
79e53945 13843 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 13844
ef2d633e 13845 drm_framebuffer_cleanup(fb);
60a5ca01 13846 mutex_lock(&dev->struct_mutex);
ef2d633e 13847 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
13848 drm_gem_object_unreference(&intel_fb->obj->base);
13849 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13850 kfree(intel_fb);
13851}
13852
13853static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 13854 struct drm_file *file,
79e53945
JB
13855 unsigned int *handle)
13856{
13857 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 13858 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 13859
05394f39 13860 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
13861}
13862
13863static const struct drm_framebuffer_funcs intel_fb_funcs = {
13864 .destroy = intel_user_framebuffer_destroy,
13865 .create_handle = intel_user_framebuffer_create_handle,
13866};
13867
b321803d
DL
13868static
13869u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13870 uint32_t pixel_format)
13871{
13872 u32 gen = INTEL_INFO(dev)->gen;
13873
13874 if (gen >= 9) {
13875 /* "The stride in bytes must not exceed the of the size of 8K
13876 * pixels and 32K bytes."
13877 */
13878 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13879 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13880 return 32*1024;
13881 } else if (gen >= 4) {
13882 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13883 return 16*1024;
13884 else
13885 return 32*1024;
13886 } else if (gen >= 3) {
13887 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13888 return 8*1024;
13889 else
13890 return 16*1024;
13891 } else {
13892 /* XXX DSPC is limited to 4k tiled */
13893 return 8*1024;
13894 }
13895}
13896
b5ea642a
DV
13897static int intel_framebuffer_init(struct drm_device *dev,
13898 struct intel_framebuffer *intel_fb,
13899 struct drm_mode_fb_cmd2 *mode_cmd,
13900 struct drm_i915_gem_object *obj)
79e53945 13901{
6761dd31 13902 unsigned int aligned_height;
79e53945 13903 int ret;
b321803d 13904 u32 pitch_limit, stride_alignment;
79e53945 13905
dd4916c5
DV
13906 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13907
2a80eada
DV
13908 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13909 /* Enforce that fb modifier and tiling mode match, but only for
13910 * X-tiled. This is needed for FBC. */
13911 if (!!(obj->tiling_mode == I915_TILING_X) !=
13912 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13913 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13914 return -EINVAL;
13915 }
13916 } else {
13917 if (obj->tiling_mode == I915_TILING_X)
13918 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13919 else if (obj->tiling_mode == I915_TILING_Y) {
13920 DRM_DEBUG("No Y tiling for legacy addfb\n");
13921 return -EINVAL;
13922 }
13923 }
13924
9a8f0a12
TU
13925 /* Passed in modifier sanity checking. */
13926 switch (mode_cmd->modifier[0]) {
13927 case I915_FORMAT_MOD_Y_TILED:
13928 case I915_FORMAT_MOD_Yf_TILED:
13929 if (INTEL_INFO(dev)->gen < 9) {
13930 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13931 mode_cmd->modifier[0]);
13932 return -EINVAL;
13933 }
13934 case DRM_FORMAT_MOD_NONE:
13935 case I915_FORMAT_MOD_X_TILED:
13936 break;
13937 default:
c0f40428
JB
13938 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13939 mode_cmd->modifier[0]);
57cd6508 13940 return -EINVAL;
c16ed4be 13941 }
57cd6508 13942
b321803d
DL
13943 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13944 mode_cmd->pixel_format);
13945 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13946 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13947 mode_cmd->pitches[0], stride_alignment);
57cd6508 13948 return -EINVAL;
c16ed4be 13949 }
57cd6508 13950
b321803d
DL
13951 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13952 mode_cmd->pixel_format);
a35cdaa0 13953 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13954 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13955 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13956 "tiled" : "linear",
a35cdaa0 13957 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13958 return -EINVAL;
c16ed4be 13959 }
5d7bd705 13960
2a80eada 13961 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13962 mode_cmd->pitches[0] != obj->stride) {
13963 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13964 mode_cmd->pitches[0], obj->stride);
5d7bd705 13965 return -EINVAL;
c16ed4be 13966 }
5d7bd705 13967
57779d06 13968 /* Reject formats not supported by any plane early. */
308e5bcb 13969 switch (mode_cmd->pixel_format) {
57779d06 13970 case DRM_FORMAT_C8:
04b3924d
VS
13971 case DRM_FORMAT_RGB565:
13972 case DRM_FORMAT_XRGB8888:
13973 case DRM_FORMAT_ARGB8888:
57779d06
VS
13974 break;
13975 case DRM_FORMAT_XRGB1555:
13976 case DRM_FORMAT_ARGB1555:
c16ed4be 13977 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13978 DRM_DEBUG("unsupported pixel format: %s\n",
13979 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13980 return -EINVAL;
c16ed4be 13981 }
57779d06
VS
13982 break;
13983 case DRM_FORMAT_XBGR8888:
13984 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13985 case DRM_FORMAT_XRGB2101010:
13986 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13987 case DRM_FORMAT_XBGR2101010:
13988 case DRM_FORMAT_ABGR2101010:
c16ed4be 13989 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13990 DRM_DEBUG("unsupported pixel format: %s\n",
13991 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13992 return -EINVAL;
c16ed4be 13993 }
b5626747 13994 break;
04b3924d
VS
13995 case DRM_FORMAT_YUYV:
13996 case DRM_FORMAT_UYVY:
13997 case DRM_FORMAT_YVYU:
13998 case DRM_FORMAT_VYUY:
c16ed4be 13999 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14000 DRM_DEBUG("unsupported pixel format: %s\n",
14001 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14002 return -EINVAL;
c16ed4be 14003 }
57cd6508
CW
14004 break;
14005 default:
4ee62c76
VS
14006 DRM_DEBUG("unsupported pixel format: %s\n",
14007 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14008 return -EINVAL;
14009 }
14010
90f9a336
VS
14011 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14012 if (mode_cmd->offsets[0] != 0)
14013 return -EINVAL;
14014
ec2c981e 14015 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14016 mode_cmd->pixel_format,
14017 mode_cmd->modifier[0]);
53155c0a
DV
14018 /* FIXME drm helper for size checks (especially planar formats)? */
14019 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14020 return -EINVAL;
14021
c7d73f6a
DV
14022 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14023 intel_fb->obj = obj;
80075d49 14024 intel_fb->obj->framebuffer_references++;
c7d73f6a 14025
79e53945
JB
14026 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14027 if (ret) {
14028 DRM_ERROR("framebuffer init failed %d\n", ret);
14029 return ret;
14030 }
14031
79e53945
JB
14032 return 0;
14033}
14034
79e53945
JB
14035static struct drm_framebuffer *
14036intel_user_framebuffer_create(struct drm_device *dev,
14037 struct drm_file *filp,
308e5bcb 14038 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14039{
05394f39 14040 struct drm_i915_gem_object *obj;
79e53945 14041
308e5bcb
JB
14042 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14043 mode_cmd->handles[0]));
c8725226 14044 if (&obj->base == NULL)
cce13ff7 14045 return ERR_PTR(-ENOENT);
79e53945 14046
d2dff872 14047 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14048}
14049
4520f53a 14050#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14051static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14052{
14053}
14054#endif
14055
79e53945 14056static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14057 .fb_create = intel_user_framebuffer_create,
0632fef6 14058 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14059 .atomic_check = intel_atomic_check,
14060 .atomic_commit = intel_atomic_commit,
79e53945
JB
14061};
14062
e70236a8
JB
14063/* Set up chip specific display functions */
14064static void intel_init_display(struct drm_device *dev)
14065{
14066 struct drm_i915_private *dev_priv = dev->dev_private;
14067
ee9300bb
DV
14068 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14069 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14070 else if (IS_CHERRYVIEW(dev))
14071 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14072 else if (IS_VALLEYVIEW(dev))
14073 dev_priv->display.find_dpll = vlv_find_best_dpll;
14074 else if (IS_PINEVIEW(dev))
14075 dev_priv->display.find_dpll = pnv_find_best_dpll;
14076 else
14077 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14078
bc8d7dff
DL
14079 if (INTEL_INFO(dev)->gen >= 9) {
14080 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14081 dev_priv->display.get_initial_plane_config =
14082 skylake_get_initial_plane_config;
bc8d7dff
DL
14083 dev_priv->display.crtc_compute_clock =
14084 haswell_crtc_compute_clock;
14085 dev_priv->display.crtc_enable = haswell_crtc_enable;
14086 dev_priv->display.crtc_disable = haswell_crtc_disable;
14087 dev_priv->display.off = ironlake_crtc_off;
14088 dev_priv->display.update_primary_plane =
14089 skylake_update_primary_plane;
14090 } else if (HAS_DDI(dev)) {
0e8ffe1b 14091 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14092 dev_priv->display.get_initial_plane_config =
14093 ironlake_get_initial_plane_config;
797d0259
ACO
14094 dev_priv->display.crtc_compute_clock =
14095 haswell_crtc_compute_clock;
4f771f10
PZ
14096 dev_priv->display.crtc_enable = haswell_crtc_enable;
14097 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 14098 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
14099 dev_priv->display.update_primary_plane =
14100 ironlake_update_primary_plane;
09b4ddf9 14101 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14102 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14103 dev_priv->display.get_initial_plane_config =
14104 ironlake_get_initial_plane_config;
3fb37703
ACO
14105 dev_priv->display.crtc_compute_clock =
14106 ironlake_crtc_compute_clock;
76e5a89c
DV
14107 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14108 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 14109 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
14110 dev_priv->display.update_primary_plane =
14111 ironlake_update_primary_plane;
89b667f8
JB
14112 } else if (IS_VALLEYVIEW(dev)) {
14113 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14114 dev_priv->display.get_initial_plane_config =
14115 i9xx_get_initial_plane_config;
d6dfee7a 14116 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14117 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14118 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14119 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14120 dev_priv->display.update_primary_plane =
14121 i9xx_update_primary_plane;
f564048e 14122 } else {
0e8ffe1b 14123 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14124 dev_priv->display.get_initial_plane_config =
14125 i9xx_get_initial_plane_config;
d6dfee7a 14126 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14127 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14128 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 14129 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14130 dev_priv->display.update_primary_plane =
14131 i9xx_update_primary_plane;
f564048e 14132 }
e70236a8 14133
e70236a8 14134 /* Returns the core display clock speed */
1652d19e
VS
14135 if (IS_SKYLAKE(dev))
14136 dev_priv->display.get_display_clock_speed =
14137 skylake_get_display_clock_speed;
14138 else if (IS_BROADWELL(dev))
14139 dev_priv->display.get_display_clock_speed =
14140 broadwell_get_display_clock_speed;
14141 else if (IS_HASWELL(dev))
14142 dev_priv->display.get_display_clock_speed =
14143 haswell_get_display_clock_speed;
14144 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14145 dev_priv->display.get_display_clock_speed =
14146 valleyview_get_display_clock_speed;
b37a6434
VS
14147 else if (IS_GEN5(dev))
14148 dev_priv->display.get_display_clock_speed =
14149 ilk_get_display_clock_speed;
a7c66cd8
VS
14150 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14151 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
14152 dev_priv->display.get_display_clock_speed =
14153 i945_get_display_clock_speed;
14154 else if (IS_I915G(dev))
14155 dev_priv->display.get_display_clock_speed =
14156 i915_get_display_clock_speed;
257a7ffc 14157 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14158 dev_priv->display.get_display_clock_speed =
14159 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14160 else if (IS_PINEVIEW(dev))
14161 dev_priv->display.get_display_clock_speed =
14162 pnv_get_display_clock_speed;
e70236a8
JB
14163 else if (IS_I915GM(dev))
14164 dev_priv->display.get_display_clock_speed =
14165 i915gm_get_display_clock_speed;
14166 else if (IS_I865G(dev))
14167 dev_priv->display.get_display_clock_speed =
14168 i865_get_display_clock_speed;
f0f8a9ce 14169 else if (IS_I85X(dev))
e70236a8
JB
14170 dev_priv->display.get_display_clock_speed =
14171 i855_get_display_clock_speed;
14172 else /* 852, 830 */
14173 dev_priv->display.get_display_clock_speed =
14174 i830_get_display_clock_speed;
14175
7c10a2b5 14176 if (IS_GEN5(dev)) {
3bb11b53 14177 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14178 } else if (IS_GEN6(dev)) {
14179 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14180 } else if (IS_IVYBRIDGE(dev)) {
14181 /* FIXME: detect B0+ stepping and use auto training */
14182 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14183 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14184 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
14185 } else if (IS_VALLEYVIEW(dev)) {
14186 dev_priv->display.modeset_global_resources =
14187 valleyview_modeset_global_resources;
f8437dd1
VK
14188 } else if (IS_BROXTON(dev)) {
14189 dev_priv->display.modeset_global_resources =
14190 broxton_modeset_global_resources;
e70236a8 14191 }
8c9f3aaf 14192
8c9f3aaf
JB
14193 switch (INTEL_INFO(dev)->gen) {
14194 case 2:
14195 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14196 break;
14197
14198 case 3:
14199 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14200 break;
14201
14202 case 4:
14203 case 5:
14204 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14205 break;
14206
14207 case 6:
14208 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14209 break;
7c9017e5 14210 case 7:
4e0bbc31 14211 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14212 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14213 break;
830c81db 14214 case 9:
ba343e02
TU
14215 /* Drop through - unsupported since execlist only. */
14216 default:
14217 /* Default just returns -ENODEV to indicate unsupported */
14218 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14219 }
7bd688cd
JN
14220
14221 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14222
14223 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14224}
14225
b690e96c
JB
14226/*
14227 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14228 * resume, or other times. This quirk makes sure that's the case for
14229 * affected systems.
14230 */
0206e353 14231static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14232{
14233 struct drm_i915_private *dev_priv = dev->dev_private;
14234
14235 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14236 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14237}
14238
b6b5d049
VS
14239static void quirk_pipeb_force(struct drm_device *dev)
14240{
14241 struct drm_i915_private *dev_priv = dev->dev_private;
14242
14243 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14244 DRM_INFO("applying pipe b force quirk\n");
14245}
14246
435793df
KP
14247/*
14248 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14249 */
14250static void quirk_ssc_force_disable(struct drm_device *dev)
14251{
14252 struct drm_i915_private *dev_priv = dev->dev_private;
14253 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14254 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14255}
14256
4dca20ef 14257/*
5a15ab5b
CE
14258 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14259 * brightness value
4dca20ef
CE
14260 */
14261static void quirk_invert_brightness(struct drm_device *dev)
14262{
14263 struct drm_i915_private *dev_priv = dev->dev_private;
14264 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14265 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14266}
14267
9c72cc6f
SD
14268/* Some VBT's incorrectly indicate no backlight is present */
14269static void quirk_backlight_present(struct drm_device *dev)
14270{
14271 struct drm_i915_private *dev_priv = dev->dev_private;
14272 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14273 DRM_INFO("applying backlight present quirk\n");
14274}
14275
b690e96c
JB
14276struct intel_quirk {
14277 int device;
14278 int subsystem_vendor;
14279 int subsystem_device;
14280 void (*hook)(struct drm_device *dev);
14281};
14282
5f85f176
EE
14283/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14284struct intel_dmi_quirk {
14285 void (*hook)(struct drm_device *dev);
14286 const struct dmi_system_id (*dmi_id_list)[];
14287};
14288
14289static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14290{
14291 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14292 return 1;
14293}
14294
14295static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14296 {
14297 .dmi_id_list = &(const struct dmi_system_id[]) {
14298 {
14299 .callback = intel_dmi_reverse_brightness,
14300 .ident = "NCR Corporation",
14301 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14302 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14303 },
14304 },
14305 { } /* terminating entry */
14306 },
14307 .hook = quirk_invert_brightness,
14308 },
14309};
14310
c43b5634 14311static struct intel_quirk intel_quirks[] = {
b690e96c 14312 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 14313 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 14314
b690e96c
JB
14315 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14316 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14317
b690e96c
JB
14318 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14319 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14320
5f080c0f
VS
14321 /* 830 needs to leave pipe A & dpll A up */
14322 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14323
b6b5d049
VS
14324 /* 830 needs to leave pipe B & dpll B up */
14325 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14326
435793df
KP
14327 /* Lenovo U160 cannot use SSC on LVDS */
14328 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14329
14330 /* Sony Vaio Y cannot use SSC on LVDS */
14331 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14332
be505f64
AH
14333 /* Acer Aspire 5734Z must invert backlight brightness */
14334 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14335
14336 /* Acer/eMachines G725 */
14337 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14338
14339 /* Acer/eMachines e725 */
14340 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14341
14342 /* Acer/Packard Bell NCL20 */
14343 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14344
14345 /* Acer Aspire 4736Z */
14346 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14347
14348 /* Acer Aspire 5336 */
14349 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14350
14351 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14352 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14353
dfb3d47b
SD
14354 /* Acer C720 Chromebook (Core i3 4005U) */
14355 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14356
b2a9601c 14357 /* Apple Macbook 2,1 (Core 2 T7400) */
14358 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14359
d4967d8c
SD
14360 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14361 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14362
14363 /* HP Chromebook 14 (Celeron 2955U) */
14364 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14365
14366 /* Dell Chromebook 11 */
14367 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14368};
14369
14370static void intel_init_quirks(struct drm_device *dev)
14371{
14372 struct pci_dev *d = dev->pdev;
14373 int i;
14374
14375 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14376 struct intel_quirk *q = &intel_quirks[i];
14377
14378 if (d->device == q->device &&
14379 (d->subsystem_vendor == q->subsystem_vendor ||
14380 q->subsystem_vendor == PCI_ANY_ID) &&
14381 (d->subsystem_device == q->subsystem_device ||
14382 q->subsystem_device == PCI_ANY_ID))
14383 q->hook(dev);
14384 }
5f85f176
EE
14385 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14386 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14387 intel_dmi_quirks[i].hook(dev);
14388 }
b690e96c
JB
14389}
14390
9cce37f4
JB
14391/* Disable the VGA plane that we never use */
14392static void i915_disable_vga(struct drm_device *dev)
14393{
14394 struct drm_i915_private *dev_priv = dev->dev_private;
14395 u8 sr1;
766aa1c4 14396 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14397
2b37c616 14398 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14399 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14400 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14401 sr1 = inb(VGA_SR_DATA);
14402 outb(sr1 | 1<<5, VGA_SR_DATA);
14403 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14404 udelay(300);
14405
01f5a626 14406 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14407 POSTING_READ(vga_reg);
14408}
14409
f817586c
DV
14410void intel_modeset_init_hw(struct drm_device *dev)
14411{
a8f78b58
ED
14412 intel_prepare_ddi(dev);
14413
f8bf63fd
VS
14414 if (IS_VALLEYVIEW(dev))
14415 vlv_update_cdclk(dev);
14416
f817586c
DV
14417 intel_init_clock_gating(dev);
14418
8090c6b9 14419 intel_enable_gt_powersave(dev);
f817586c
DV
14420}
14421
79e53945
JB
14422void intel_modeset_init(struct drm_device *dev)
14423{
652c393a 14424 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14425 int sprite, ret;
8cc87b75 14426 enum pipe pipe;
46f297fb 14427 struct intel_crtc *crtc;
79e53945
JB
14428
14429 drm_mode_config_init(dev);
14430
14431 dev->mode_config.min_width = 0;
14432 dev->mode_config.min_height = 0;
14433
019d96cb
DA
14434 dev->mode_config.preferred_depth = 24;
14435 dev->mode_config.prefer_shadow = 1;
14436
25bab385
TU
14437 dev->mode_config.allow_fb_modifiers = true;
14438
e6ecefaa 14439 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 14440
b690e96c
JB
14441 intel_init_quirks(dev);
14442
1fa61106
ED
14443 intel_init_pm(dev);
14444
e3c74757
BW
14445 if (INTEL_INFO(dev)->num_pipes == 0)
14446 return;
14447
e70236a8 14448 intel_init_display(dev);
7c10a2b5 14449 intel_init_audio(dev);
e70236a8 14450
a6c45cf0
CW
14451 if (IS_GEN2(dev)) {
14452 dev->mode_config.max_width = 2048;
14453 dev->mode_config.max_height = 2048;
14454 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
14455 dev->mode_config.max_width = 4096;
14456 dev->mode_config.max_height = 4096;
79e53945 14457 } else {
a6c45cf0
CW
14458 dev->mode_config.max_width = 8192;
14459 dev->mode_config.max_height = 8192;
79e53945 14460 }
068be561 14461
dc41c154
VS
14462 if (IS_845G(dev) || IS_I865G(dev)) {
14463 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14464 dev->mode_config.cursor_height = 1023;
14465 } else if (IS_GEN2(dev)) {
068be561
DL
14466 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14467 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14468 } else {
14469 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14470 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14471 }
14472
5d4545ae 14473 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 14474
28c97730 14475 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
14476 INTEL_INFO(dev)->num_pipes,
14477 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 14478
055e393f 14479 for_each_pipe(dev_priv, pipe) {
8cc87b75 14480 intel_crtc_init(dev, pipe);
3bdcfc0c 14481 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 14482 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 14483 if (ret)
06da8da2 14484 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 14485 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 14486 }
79e53945
JB
14487 }
14488
f42bb70d
JB
14489 intel_init_dpio(dev);
14490
e72f9fbf 14491 intel_shared_dpll_init(dev);
ee7b9f93 14492
9cce37f4
JB
14493 /* Just disable it once at startup */
14494 i915_disable_vga(dev);
79e53945 14495 intel_setup_outputs(dev);
11be49eb
CW
14496
14497 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 14498 intel_fbc_disable(dev);
fa9fa083 14499
6e9f798d 14500 drm_modeset_lock_all(dev);
fa9fa083 14501 intel_modeset_setup_hw_state(dev, false);
6e9f798d 14502 drm_modeset_unlock_all(dev);
46f297fb 14503
d3fcc808 14504 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
14505 if (!crtc->active)
14506 continue;
14507
46f297fb 14508 /*
46f297fb
JB
14509 * Note that reserving the BIOS fb up front prevents us
14510 * from stuffing other stolen allocations like the ring
14511 * on top. This prevents some ugliness at boot time, and
14512 * can even allow for smooth boot transitions if the BIOS
14513 * fb is large enough for the active pipe configuration.
14514 */
5724dbd1
DL
14515 if (dev_priv->display.get_initial_plane_config) {
14516 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
14517 &crtc->plane_config);
14518 /*
14519 * If the fb is shared between multiple heads, we'll
14520 * just get the first one.
14521 */
f6936e29 14522 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 14523 }
46f297fb 14524 }
2c7111db
CW
14525}
14526
7fad798e
DV
14527static void intel_enable_pipe_a(struct drm_device *dev)
14528{
14529 struct intel_connector *connector;
14530 struct drm_connector *crt = NULL;
14531 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 14532 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
14533
14534 /* We can't just switch on the pipe A, we need to set things up with a
14535 * proper mode and output configuration. As a gross hack, enable pipe A
14536 * by enabling the load detect pipe once. */
3a3371ff 14537 for_each_intel_connector(dev, connector) {
7fad798e
DV
14538 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14539 crt = &connector->base;
14540 break;
14541 }
14542 }
14543
14544 if (!crt)
14545 return;
14546
208bf9fd 14547 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 14548 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
14549}
14550
fa555837
DV
14551static bool
14552intel_check_plane_mapping(struct intel_crtc *crtc)
14553{
7eb552ae
BW
14554 struct drm_device *dev = crtc->base.dev;
14555 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
14556 u32 reg, val;
14557
7eb552ae 14558 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
14559 return true;
14560
14561 reg = DSPCNTR(!crtc->plane);
14562 val = I915_READ(reg);
14563
14564 if ((val & DISPLAY_PLANE_ENABLE) &&
14565 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14566 return false;
14567
14568 return true;
14569}
14570
24929352
DV
14571static void intel_sanitize_crtc(struct intel_crtc *crtc)
14572{
14573 struct drm_device *dev = crtc->base.dev;
14574 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 14575 u32 reg;
24929352 14576
24929352 14577 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 14578 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
14579 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14580
d3eaf884 14581 /* restore vblank interrupts to correct state */
9625604c 14582 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
14583 if (crtc->active) {
14584 update_scanline_offset(crtc);
9625604c
DV
14585 drm_crtc_vblank_on(&crtc->base);
14586 }
d3eaf884 14587
24929352 14588 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
14589 * disable the crtc (and hence change the state) if it is wrong. Note
14590 * that gen4+ has a fixed plane -> pipe mapping. */
14591 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
14592 struct intel_connector *connector;
14593 bool plane;
14594
24929352
DV
14595 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14596 crtc->base.base.id);
14597
14598 /* Pipe has the wrong plane attached and the plane is active.
14599 * Temporarily change the plane mapping and disable everything
14600 * ... */
14601 plane = crtc->plane;
14602 crtc->plane = !plane;
9c8958bc 14603 crtc->primary_enabled = true;
24929352
DV
14604 dev_priv->display.crtc_disable(&crtc->base);
14605 crtc->plane = plane;
14606
14607 /* ... and break all links. */
3a3371ff 14608 for_each_intel_connector(dev, connector) {
24929352
DV
14609 if (connector->encoder->base.crtc != &crtc->base)
14610 continue;
14611
7f1950fb
EE
14612 connector->base.dpms = DRM_MODE_DPMS_OFF;
14613 connector->base.encoder = NULL;
24929352 14614 }
7f1950fb
EE
14615 /* multiple connectors may have the same encoder:
14616 * handle them and break crtc link separately */
3a3371ff 14617 for_each_intel_connector(dev, connector)
7f1950fb
EE
14618 if (connector->encoder->base.crtc == &crtc->base) {
14619 connector->encoder->base.crtc = NULL;
14620 connector->encoder->connectors_active = false;
14621 }
24929352
DV
14622
14623 WARN_ON(crtc->active);
83d65738 14624 crtc->base.state->enable = false;
24929352
DV
14625 crtc->base.enabled = false;
14626 }
24929352 14627
7fad798e
DV
14628 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14629 crtc->pipe == PIPE_A && !crtc->active) {
14630 /* BIOS forgot to enable pipe A, this mostly happens after
14631 * resume. Force-enable the pipe to fix this, the update_dpms
14632 * call below we restore the pipe to the right state, but leave
14633 * the required bits on. */
14634 intel_enable_pipe_a(dev);
14635 }
14636
24929352
DV
14637 /* Adjust the state of the output pipe according to whether we
14638 * have active connectors/encoders. */
14639 intel_crtc_update_dpms(&crtc->base);
14640
83d65738 14641 if (crtc->active != crtc->base.state->enable) {
24929352
DV
14642 struct intel_encoder *encoder;
14643
14644 /* This can happen either due to bugs in the get_hw_state
14645 * functions or because the pipe is force-enabled due to the
14646 * pipe A quirk. */
14647 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14648 crtc->base.base.id,
83d65738 14649 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
14650 crtc->active ? "enabled" : "disabled");
14651
83d65738 14652 crtc->base.state->enable = crtc->active;
24929352
DV
14653 crtc->base.enabled = crtc->active;
14654
14655 /* Because we only establish the connector -> encoder ->
14656 * crtc links if something is active, this means the
14657 * crtc is now deactivated. Break the links. connector
14658 * -> encoder links are only establish when things are
14659 * actually up, hence no need to break them. */
14660 WARN_ON(crtc->active);
14661
14662 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14663 WARN_ON(encoder->connectors_active);
14664 encoder->base.crtc = NULL;
14665 }
14666 }
c5ab3bc0 14667
a3ed6aad 14668 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
14669 /*
14670 * We start out with underrun reporting disabled to avoid races.
14671 * For correct bookkeeping mark this on active crtcs.
14672 *
c5ab3bc0
DV
14673 * Also on gmch platforms we dont have any hardware bits to
14674 * disable the underrun reporting. Which means we need to start
14675 * out with underrun reporting disabled also on inactive pipes,
14676 * since otherwise we'll complain about the garbage we read when
14677 * e.g. coming up after runtime pm.
14678 *
4cc31489
DV
14679 * No protection against concurrent access is required - at
14680 * worst a fifo underrun happens which also sets this to false.
14681 */
14682 crtc->cpu_fifo_underrun_disabled = true;
14683 crtc->pch_fifo_underrun_disabled = true;
14684 }
24929352
DV
14685}
14686
14687static void intel_sanitize_encoder(struct intel_encoder *encoder)
14688{
14689 struct intel_connector *connector;
14690 struct drm_device *dev = encoder->base.dev;
14691
14692 /* We need to check both for a crtc link (meaning that the
14693 * encoder is active and trying to read from a pipe) and the
14694 * pipe itself being active. */
14695 bool has_active_crtc = encoder->base.crtc &&
14696 to_intel_crtc(encoder->base.crtc)->active;
14697
14698 if (encoder->connectors_active && !has_active_crtc) {
14699 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14700 encoder->base.base.id,
8e329a03 14701 encoder->base.name);
24929352
DV
14702
14703 /* Connector is active, but has no active pipe. This is
14704 * fallout from our resume register restoring. Disable
14705 * the encoder manually again. */
14706 if (encoder->base.crtc) {
14707 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14708 encoder->base.base.id,
8e329a03 14709 encoder->base.name);
24929352 14710 encoder->disable(encoder);
a62d1497
VS
14711 if (encoder->post_disable)
14712 encoder->post_disable(encoder);
24929352 14713 }
7f1950fb
EE
14714 encoder->base.crtc = NULL;
14715 encoder->connectors_active = false;
24929352
DV
14716
14717 /* Inconsistent output/port/pipe state happens presumably due to
14718 * a bug in one of the get_hw_state functions. Or someplace else
14719 * in our code, like the register restore mess on resume. Clamp
14720 * things to off as a safer default. */
3a3371ff 14721 for_each_intel_connector(dev, connector) {
24929352
DV
14722 if (connector->encoder != encoder)
14723 continue;
7f1950fb
EE
14724 connector->base.dpms = DRM_MODE_DPMS_OFF;
14725 connector->base.encoder = NULL;
24929352
DV
14726 }
14727 }
14728 /* Enabled encoders without active connectors will be fixed in
14729 * the crtc fixup. */
14730}
14731
04098753 14732void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
14733{
14734 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 14735 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 14736
04098753
ID
14737 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14738 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14739 i915_disable_vga(dev);
14740 }
14741}
14742
14743void i915_redisable_vga(struct drm_device *dev)
14744{
14745 struct drm_i915_private *dev_priv = dev->dev_private;
14746
8dc8a27c
PZ
14747 /* This function can be called both from intel_modeset_setup_hw_state or
14748 * at a very early point in our resume sequence, where the power well
14749 * structures are not yet restored. Since this function is at a very
14750 * paranoid "someone might have enabled VGA while we were not looking"
14751 * level, just check if the power well is enabled instead of trying to
14752 * follow the "don't touch the power well if we don't need it" policy
14753 * the rest of the driver uses. */
f458ebbc 14754 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
14755 return;
14756
04098753 14757 i915_redisable_vga_power_on(dev);
0fde901f
KM
14758}
14759
98ec7739
VS
14760static bool primary_get_hw_state(struct intel_crtc *crtc)
14761{
14762 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14763
14764 if (!crtc->active)
14765 return false;
14766
14767 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14768}
14769
30e984df 14770static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
14771{
14772 struct drm_i915_private *dev_priv = dev->dev_private;
14773 enum pipe pipe;
24929352
DV
14774 struct intel_crtc *crtc;
14775 struct intel_encoder *encoder;
14776 struct intel_connector *connector;
5358901f 14777 int i;
24929352 14778
d3fcc808 14779 for_each_intel_crtc(dev, crtc) {
6e3c9717 14780 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 14781
6e3c9717 14782 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 14783
0e8ffe1b 14784 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 14785 crtc->config);
24929352 14786
83d65738 14787 crtc->base.state->enable = crtc->active;
24929352 14788 crtc->base.enabled = crtc->active;
98ec7739 14789 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
14790
14791 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14792 crtc->base.base.id,
14793 crtc->active ? "enabled" : "disabled");
14794 }
14795
5358901f
DV
14796 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14797 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14798
3e369b76
ACO
14799 pll->on = pll->get_hw_state(dev_priv, pll,
14800 &pll->config.hw_state);
5358901f 14801 pll->active = 0;
3e369b76 14802 pll->config.crtc_mask = 0;
d3fcc808 14803 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 14804 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 14805 pll->active++;
3e369b76 14806 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 14807 }
5358901f 14808 }
5358901f 14809
1e6f2ddc 14810 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 14811 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 14812
3e369b76 14813 if (pll->config.crtc_mask)
bd2bb1b9 14814 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
14815 }
14816
b2784e15 14817 for_each_intel_encoder(dev, encoder) {
24929352
DV
14818 pipe = 0;
14819
14820 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
14821 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14822 encoder->base.crtc = &crtc->base;
6e3c9717 14823 encoder->get_config(encoder, crtc->config);
24929352
DV
14824 } else {
14825 encoder->base.crtc = NULL;
14826 }
14827
14828 encoder->connectors_active = false;
6f2bcceb 14829 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 14830 encoder->base.base.id,
8e329a03 14831 encoder->base.name,
24929352 14832 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 14833 pipe_name(pipe));
24929352
DV
14834 }
14835
3a3371ff 14836 for_each_intel_connector(dev, connector) {
24929352
DV
14837 if (connector->get_hw_state(connector)) {
14838 connector->base.dpms = DRM_MODE_DPMS_ON;
14839 connector->encoder->connectors_active = true;
14840 connector->base.encoder = &connector->encoder->base;
14841 } else {
14842 connector->base.dpms = DRM_MODE_DPMS_OFF;
14843 connector->base.encoder = NULL;
14844 }
14845 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14846 connector->base.base.id,
c23cc417 14847 connector->base.name,
24929352
DV
14848 connector->base.encoder ? "enabled" : "disabled");
14849 }
30e984df
DV
14850}
14851
14852/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14853 * and i915 state tracking structures. */
14854void intel_modeset_setup_hw_state(struct drm_device *dev,
14855 bool force_restore)
14856{
14857 struct drm_i915_private *dev_priv = dev->dev_private;
14858 enum pipe pipe;
30e984df
DV
14859 struct intel_crtc *crtc;
14860 struct intel_encoder *encoder;
35c95375 14861 int i;
30e984df
DV
14862
14863 intel_modeset_readout_hw_state(dev);
24929352 14864
babea61d
JB
14865 /*
14866 * Now that we have the config, copy it to each CRTC struct
14867 * Note that this could go away if we move to using crtc_config
14868 * checking everywhere.
14869 */
d3fcc808 14870 for_each_intel_crtc(dev, crtc) {
d330a953 14871 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
14872 intel_mode_from_pipe_config(&crtc->base.mode,
14873 crtc->config);
babea61d
JB
14874 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14875 crtc->base.base.id);
14876 drm_mode_debug_printmodeline(&crtc->base.mode);
14877 }
14878 }
14879
24929352 14880 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 14881 for_each_intel_encoder(dev, encoder) {
24929352
DV
14882 intel_sanitize_encoder(encoder);
14883 }
14884
055e393f 14885 for_each_pipe(dev_priv, pipe) {
24929352
DV
14886 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14887 intel_sanitize_crtc(crtc);
6e3c9717
ACO
14888 intel_dump_pipe_config(crtc, crtc->config,
14889 "[setup_hw_state]");
24929352 14890 }
9a935856 14891
d29b2f9d
ACO
14892 intel_modeset_update_connector_atomic_state(dev);
14893
35c95375
DV
14894 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14895 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14896
14897 if (!pll->on || pll->active)
14898 continue;
14899
14900 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14901
14902 pll->disable(dev_priv, pll);
14903 pll->on = false;
14904 }
14905
3078999f
PB
14906 if (IS_GEN9(dev))
14907 skl_wm_get_hw_state(dev);
14908 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
14909 ilk_wm_get_hw_state(dev);
14910
45e2b5f6 14911 if (force_restore) {
7d0bc1ea
VS
14912 i915_redisable_vga(dev);
14913
f30da187
DV
14914 /*
14915 * We need to use raw interfaces for restoring state to avoid
14916 * checking (bogus) intermediate states.
14917 */
055e393f 14918 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
14919 struct drm_crtc *crtc =
14920 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 14921
83a57153 14922 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
14923 }
14924 } else {
14925 intel_modeset_update_staged_output_state(dev);
14926 }
8af6cf88
DV
14927
14928 intel_modeset_check_state(dev);
2c7111db
CW
14929}
14930
14931void intel_modeset_gem_init(struct drm_device *dev)
14932{
92122789 14933 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 14934 struct drm_crtc *c;
2ff8fde1 14935 struct drm_i915_gem_object *obj;
484b41dd 14936
ae48434c
ID
14937 mutex_lock(&dev->struct_mutex);
14938 intel_init_gt_powersave(dev);
14939 mutex_unlock(&dev->struct_mutex);
14940
92122789
JB
14941 /*
14942 * There may be no VBT; and if the BIOS enabled SSC we can
14943 * just keep using it to avoid unnecessary flicker. Whereas if the
14944 * BIOS isn't using it, don't assume it will work even if the VBT
14945 * indicates as much.
14946 */
14947 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14948 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14949 DREF_SSC1_ENABLE);
14950
1833b134 14951 intel_modeset_init_hw(dev);
02e792fb
DV
14952
14953 intel_setup_overlay(dev);
484b41dd
JB
14954
14955 /*
14956 * Make sure any fbs we allocated at startup are properly
14957 * pinned & fenced. When we do the allocation it's too early
14958 * for this.
14959 */
14960 mutex_lock(&dev->struct_mutex);
70e1e0ec 14961 for_each_crtc(dev, c) {
2ff8fde1
MR
14962 obj = intel_fb_obj(c->primary->fb);
14963 if (obj == NULL)
484b41dd
JB
14964 continue;
14965
850c4cdc
TU
14966 if (intel_pin_and_fence_fb_obj(c->primary,
14967 c->primary->fb,
82bc3b2d 14968 c->primary->state,
850c4cdc 14969 NULL)) {
484b41dd
JB
14970 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14971 to_intel_crtc(c)->pipe);
66e514c1
DA
14972 drm_framebuffer_unreference(c->primary->fb);
14973 c->primary->fb = NULL;
afd65eb4 14974 update_state_fb(c->primary);
484b41dd
JB
14975 }
14976 }
14977 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
14978
14979 intel_backlight_register(dev);
79e53945
JB
14980}
14981
4932e2c3
ID
14982void intel_connector_unregister(struct intel_connector *intel_connector)
14983{
14984 struct drm_connector *connector = &intel_connector->base;
14985
14986 intel_panel_destroy_backlight(connector);
34ea3d38 14987 drm_connector_unregister(connector);
4932e2c3
ID
14988}
14989
79e53945
JB
14990void intel_modeset_cleanup(struct drm_device *dev)
14991{
652c393a 14992 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 14993 struct drm_connector *connector;
652c393a 14994
2eb5252e
ID
14995 intel_disable_gt_powersave(dev);
14996
0962c3c9
VS
14997 intel_backlight_unregister(dev);
14998
fd0c0642
DV
14999 /*
15000 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15001 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15002 * experience fancy races otherwise.
15003 */
2aeb7d3a 15004 intel_irq_uninstall(dev_priv);
eb21b92b 15005
fd0c0642
DV
15006 /*
15007 * Due to the hpd irq storm handling the hotplug work can re-arm the
15008 * poll handlers. Hence disable polling after hpd handling is shut down.
15009 */
f87ea761 15010 drm_kms_helper_poll_fini(dev);
fd0c0642 15011
652c393a
JB
15012 mutex_lock(&dev->struct_mutex);
15013
723bfd70
JB
15014 intel_unregister_dsm_handler();
15015
7ff0ebcc 15016 intel_fbc_disable(dev);
e70236a8 15017
69341a5e
KH
15018 mutex_unlock(&dev->struct_mutex);
15019
1630fe75
CW
15020 /* flush any delayed tasks or pending work */
15021 flush_scheduled_work();
15022
db31af1d
JN
15023 /* destroy the backlight and sysfs files before encoders/connectors */
15024 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15025 struct intel_connector *intel_connector;
15026
15027 intel_connector = to_intel_connector(connector);
15028 intel_connector->unregister(intel_connector);
db31af1d 15029 }
d9255d57 15030
79e53945 15031 drm_mode_config_cleanup(dev);
4d7bb011
DV
15032
15033 intel_cleanup_overlay(dev);
ae48434c
ID
15034
15035 mutex_lock(&dev->struct_mutex);
15036 intel_cleanup_gt_powersave(dev);
15037 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15038}
15039
f1c79df3
ZW
15040/*
15041 * Return which encoder is currently attached for connector.
15042 */
df0e9248 15043struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15044{
df0e9248
CW
15045 return &intel_attached_encoder(connector)->base;
15046}
f1c79df3 15047
df0e9248
CW
15048void intel_connector_attach_encoder(struct intel_connector *connector,
15049 struct intel_encoder *encoder)
15050{
15051 connector->encoder = encoder;
15052 drm_mode_connector_attach_encoder(&connector->base,
15053 &encoder->base);
79e53945 15054}
28d52043
DA
15055
15056/*
15057 * set vga decode state - true == enable VGA decode
15058 */
15059int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15060{
15061 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15062 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15063 u16 gmch_ctrl;
15064
75fa041d
CW
15065 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15066 DRM_ERROR("failed to read control word\n");
15067 return -EIO;
15068 }
15069
c0cc8a55
CW
15070 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15071 return 0;
15072
28d52043
DA
15073 if (state)
15074 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15075 else
15076 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15077
15078 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15079 DRM_ERROR("failed to write control word\n");
15080 return -EIO;
15081 }
15082
28d52043
DA
15083 return 0;
15084}
c4a1d9e4 15085
c4a1d9e4 15086struct intel_display_error_state {
ff57f1b0
PZ
15087
15088 u32 power_well_driver;
15089
63b66e5b
CW
15090 int num_transcoders;
15091
c4a1d9e4
CW
15092 struct intel_cursor_error_state {
15093 u32 control;
15094 u32 position;
15095 u32 base;
15096 u32 size;
52331309 15097 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15098
15099 struct intel_pipe_error_state {
ddf9c536 15100 bool power_domain_on;
c4a1d9e4 15101 u32 source;
f301b1e1 15102 u32 stat;
52331309 15103 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15104
15105 struct intel_plane_error_state {
15106 u32 control;
15107 u32 stride;
15108 u32 size;
15109 u32 pos;
15110 u32 addr;
15111 u32 surface;
15112 u32 tile_offset;
52331309 15113 } plane[I915_MAX_PIPES];
63b66e5b
CW
15114
15115 struct intel_transcoder_error_state {
ddf9c536 15116 bool power_domain_on;
63b66e5b
CW
15117 enum transcoder cpu_transcoder;
15118
15119 u32 conf;
15120
15121 u32 htotal;
15122 u32 hblank;
15123 u32 hsync;
15124 u32 vtotal;
15125 u32 vblank;
15126 u32 vsync;
15127 } transcoder[4];
c4a1d9e4
CW
15128};
15129
15130struct intel_display_error_state *
15131intel_display_capture_error_state(struct drm_device *dev)
15132{
fbee40df 15133 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15134 struct intel_display_error_state *error;
63b66e5b
CW
15135 int transcoders[] = {
15136 TRANSCODER_A,
15137 TRANSCODER_B,
15138 TRANSCODER_C,
15139 TRANSCODER_EDP,
15140 };
c4a1d9e4
CW
15141 int i;
15142
63b66e5b
CW
15143 if (INTEL_INFO(dev)->num_pipes == 0)
15144 return NULL;
15145
9d1cb914 15146 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15147 if (error == NULL)
15148 return NULL;
15149
190be112 15150 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15151 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15152
055e393f 15153 for_each_pipe(dev_priv, i) {
ddf9c536 15154 error->pipe[i].power_domain_on =
f458ebbc
DV
15155 __intel_display_power_is_enabled(dev_priv,
15156 POWER_DOMAIN_PIPE(i));
ddf9c536 15157 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15158 continue;
15159
5efb3e28
VS
15160 error->cursor[i].control = I915_READ(CURCNTR(i));
15161 error->cursor[i].position = I915_READ(CURPOS(i));
15162 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15163
15164 error->plane[i].control = I915_READ(DSPCNTR(i));
15165 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15166 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15167 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15168 error->plane[i].pos = I915_READ(DSPPOS(i));
15169 }
ca291363
PZ
15170 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15171 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15172 if (INTEL_INFO(dev)->gen >= 4) {
15173 error->plane[i].surface = I915_READ(DSPSURF(i));
15174 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15175 }
15176
c4a1d9e4 15177 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15178
3abfce77 15179 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15180 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15181 }
15182
15183 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15184 if (HAS_DDI(dev_priv->dev))
15185 error->num_transcoders++; /* Account for eDP. */
15186
15187 for (i = 0; i < error->num_transcoders; i++) {
15188 enum transcoder cpu_transcoder = transcoders[i];
15189
ddf9c536 15190 error->transcoder[i].power_domain_on =
f458ebbc 15191 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15192 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15193 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15194 continue;
15195
63b66e5b
CW
15196 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15197
15198 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15199 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15200 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15201 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15202 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15203 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15204 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15205 }
15206
15207 return error;
15208}
15209
edc3d884
MK
15210#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15211
c4a1d9e4 15212void
edc3d884 15213intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15214 struct drm_device *dev,
15215 struct intel_display_error_state *error)
15216{
055e393f 15217 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15218 int i;
15219
63b66e5b
CW
15220 if (!error)
15221 return;
15222
edc3d884 15223 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15224 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15225 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15226 error->power_well_driver);
055e393f 15227 for_each_pipe(dev_priv, i) {
edc3d884 15228 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15229 err_printf(m, " Power: %s\n",
15230 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15231 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15232 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15233
15234 err_printf(m, "Plane [%d]:\n", i);
15235 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15236 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15237 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15238 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15239 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15240 }
4b71a570 15241 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15242 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15243 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15244 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15245 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15246 }
15247
edc3d884
MK
15248 err_printf(m, "Cursor [%d]:\n", i);
15249 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15250 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15251 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15252 }
63b66e5b
CW
15253
15254 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15255 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15256 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15257 err_printf(m, " Power: %s\n",
15258 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15259 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15260 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15261 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15262 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15263 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15264 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15265 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15266 }
c4a1d9e4 15267}
e2fcdaa9
VS
15268
15269void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15270{
15271 struct intel_crtc *crtc;
15272
15273 for_each_intel_crtc(dev, crtc) {
15274 struct intel_unpin_work *work;
e2fcdaa9 15275
5e2d7afc 15276 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15277
15278 work = crtc->unpin_work;
15279
15280 if (work && work->event &&
15281 work->event->base.file_priv == file) {
15282 kfree(work->event);
15283 work->event = NULL;
15284 }
15285
5e2d7afc 15286 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15287 }
15288}