]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915/bxt: add workaround to avoid PTE corruption
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
56static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
63static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
e7457a9a 85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
83a57153
ACO
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
eb1bfe80
JB
88static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
5b18e57c
DV
92static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 94static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
29407aab 97static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
98static void haswell_set_pipeconf(struct drm_crtc *crtc);
99static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 100static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
d288f65f 102static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 103 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
104static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 106
0e32b39c
DA
107static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108{
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113}
114
79e53945 115typedef struct {
0206e353 116 int min, max;
79e53945
JB
117} intel_range_t;
118
119typedef struct {
0206e353
AJ
120 int dot_limit;
121 int p2_slow, p2_fast;
79e53945
JB
122} intel_p2_t;
123
d4906093
ML
124typedef struct intel_limit intel_limit_t;
125struct intel_limit {
0206e353
AJ
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
d4906093 128};
79e53945 129
d2acd215
DV
130int
131intel_pch_rawclk(struct drm_device *dev)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138}
139
021357ac
CW
140static inline u32 /* units of 100MHz */
141intel_fdi_link_freq(struct drm_device *dev)
142{
8b99e68c
CW
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
021357ac
CW
148}
149
5d536e28 150static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 151 .dot = { .min = 25000, .max = 350000 },
9c333719 152 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 153 .n = { .min = 2, .max = 16 },
0206e353
AJ
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
161};
162
5d536e28
DV
163static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
9c333719 165 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 166 .n = { .min = 2, .max = 16 },
5d536e28
DV
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174};
175
e4b36699 176static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 177 .dot = { .min = 25000, .max = 350000 },
9c333719 178 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 179 .n = { .min = 2, .max = 16 },
0206e353
AJ
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
e4b36699 187};
273e27ca 188
e4b36699 189static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
200};
201
202static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
213};
214
273e27ca 215
e4b36699 216static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
044c7c41 228 },
e4b36699
KP
229};
230
231static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
242};
243
244static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
044c7c41 255 },
e4b36699
KP
256};
257
258static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
044c7c41 269 },
e4b36699
KP
270};
271
f2b115e6 272static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 275 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
273e27ca 278 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
285};
286
f2b115e6 287static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
298};
299
273e27ca
EA
300/* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
b91ad0ec 305static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
316};
317
b91ad0ec 318static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
342};
343
273e27ca 344/* LVDS 100mhz refclk limits. */
b91ad0ec 345static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
0206e353 353 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
356};
357
358static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
0206e353 366 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
369};
370
dc730512 371static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 379 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 380 .n = { .min = 1, .max = 7 },
a0c4da24
JB
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
b99ab663 383 .p1 = { .min = 2, .max = 3 },
5fdc9c49 384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
385};
386
ef9348c8
CML
387static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 395 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401};
402
6b4bf1c4
VS
403static void vlv_clock(int refclk, intel_clock_t *clock)
404{
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
fb03ac01
VS
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
411}
412
e0638cdf
PZ
413/**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
4093561b 416bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 417{
409ee761 418 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
419 struct intel_encoder *encoder;
420
409ee761 421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
422 if (encoder->type == type)
423 return true;
424
425 return false;
426}
427
d0737e1d
ACO
428/**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
a93e255f
ACO
434static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
435 int type)
d0737e1d 436{
a93e255f
ACO
437 struct drm_atomic_state *state = crtc_state->base.state;
438 struct drm_connector_state *connector_state;
d0737e1d 439 struct intel_encoder *encoder;
a93e255f
ACO
440 int i, num_connectors = 0;
441
442 for (i = 0; i < state->num_connector; i++) {
443 if (!state->connectors[i])
444 continue;
445
446 connector_state = state->connector_states[i];
447 if (connector_state->crtc != crtc_state->base.crtc)
448 continue;
449
450 num_connectors++;
d0737e1d 451
a93e255f
ACO
452 encoder = to_intel_encoder(connector_state->best_encoder);
453 if (encoder->type == type)
d0737e1d 454 return true;
a93e255f
ACO
455 }
456
457 WARN_ON(num_connectors == 0);
d0737e1d
ACO
458
459 return false;
460}
461
a93e255f
ACO
462static const intel_limit_t *
463intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 464{
a93e255f 465 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 466 const intel_limit_t *limit;
b91ad0ec 467
a93e255f 468 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 469 if (intel_is_dual_link_lvds(dev)) {
1b894b59 470 if (refclk == 100000)
b91ad0ec
ZW
471 limit = &intel_limits_ironlake_dual_lvds_100m;
472 else
473 limit = &intel_limits_ironlake_dual_lvds;
474 } else {
1b894b59 475 if (refclk == 100000)
b91ad0ec
ZW
476 limit = &intel_limits_ironlake_single_lvds_100m;
477 else
478 limit = &intel_limits_ironlake_single_lvds;
479 }
c6bb3538 480 } else
b91ad0ec 481 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
482
483 return limit;
484}
485
a93e255f
ACO
486static const intel_limit_t *
487intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 488{
a93e255f 489 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
490 const intel_limit_t *limit;
491
a93e255f 492 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 493 if (intel_is_dual_link_lvds(dev))
e4b36699 494 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 495 else
e4b36699 496 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
497 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
498 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 499 limit = &intel_limits_g4x_hdmi;
a93e255f 500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 501 limit = &intel_limits_g4x_sdvo;
044c7c41 502 } else /* The option is for other outputs */
e4b36699 503 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
504
505 return limit;
506}
507
a93e255f
ACO
508static const intel_limit_t *
509intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 510{
a93e255f 511 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
512 const intel_limit_t *limit;
513
bad720ff 514 if (HAS_PCH_SPLIT(dev))
a93e255f 515 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 516 else if (IS_G4X(dev)) {
a93e255f 517 limit = intel_g4x_limit(crtc_state);
f2b115e6 518 } else if (IS_PINEVIEW(dev)) {
a93e255f 519 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 520 limit = &intel_limits_pineview_lvds;
2177832f 521 else
f2b115e6 522 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
523 } else if (IS_CHERRYVIEW(dev)) {
524 limit = &intel_limits_chv;
a0c4da24 525 } else if (IS_VALLEYVIEW(dev)) {
dc730512 526 limit = &intel_limits_vlv;
a6c45cf0 527 } else if (!IS_GEN2(dev)) {
a93e255f 528 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
529 limit = &intel_limits_i9xx_lvds;
530 else
531 limit = &intel_limits_i9xx_sdvo;
79e53945 532 } else {
a93e255f 533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 534 limit = &intel_limits_i8xx_lvds;
a93e255f 535 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 536 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
537 else
538 limit = &intel_limits_i8xx_dac;
79e53945
JB
539 }
540 return limit;
541}
542
f2b115e6
AJ
543/* m1 is reserved as 0 in Pineview, n is a ring counter */
544static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 545{
2177832f
SL
546 clock->m = clock->m2 + 2;
547 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
548 if (WARN_ON(clock->n == 0 || clock->p == 0))
549 return;
fb03ac01
VS
550 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
551 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
552}
553
7429e9d4
DV
554static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555{
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557}
558
ac58c3f0 559static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 560{
7429e9d4 561 clock->m = i9xx_dpll_compute_m(clock);
79e53945 562 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return;
fb03ac01
VS
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
567}
568
ef9348c8
CML
569static void chv_clock(int refclk, intel_clock_t *clock)
570{
571 clock->m = clock->m1 * clock->m2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
576 clock->n << 22);
577 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578}
579
7c04d1d9 580#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
581/**
582 * Returns whether the given set of divisors are valid for a given refclk with
583 * the given connectors.
584 */
585
1b894b59
CW
586static bool intel_PLL_is_valid(struct drm_device *dev,
587 const intel_limit_t *limit,
588 const intel_clock_t *clock)
79e53945 589{
f01b7962
VS
590 if (clock->n < limit->n.min || limit->n.max < clock->n)
591 INTELPllInvalid("n out of range\n");
79e53945 592 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 593 INTELPllInvalid("p1 out of range\n");
79e53945 594 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 595 INTELPllInvalid("m2 out of range\n");
79e53945 596 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 597 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
598
599 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
600 if (clock->m1 <= clock->m2)
601 INTELPllInvalid("m1 <= m2\n");
602
603 if (!IS_VALLEYVIEW(dev)) {
604 if (clock->p < limit->p.min || limit->p.max < clock->p)
605 INTELPllInvalid("p out of range\n");
606 if (clock->m < limit->m.min || limit->m.max < clock->m)
607 INTELPllInvalid("m out of range\n");
608 }
609
79e53945 610 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 611 INTELPllInvalid("vco out of range\n");
79e53945
JB
612 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613 * connector, etc., rather than just a single range.
614 */
615 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 616 INTELPllInvalid("dot out of range\n");
79e53945
JB
617
618 return true;
619}
620
d4906093 621static bool
a93e255f
ACO
622i9xx_find_best_dpll(const intel_limit_t *limit,
623 struct intel_crtc_state *crtc_state,
cec2f356
SP
624 int target, int refclk, intel_clock_t *match_clock,
625 intel_clock_t *best_clock)
79e53945 626{
a93e255f 627 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 628 struct drm_device *dev = crtc->base.dev;
79e53945 629 intel_clock_t clock;
79e53945
JB
630 int err = target;
631
a93e255f 632 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 633 /*
a210b028
DV
634 * For LVDS just rely on its current settings for dual-channel.
635 * We haven't figured out how to reliably set up different
636 * single/dual channel state, if we even can.
79e53945 637 */
1974cad0 638 if (intel_is_dual_link_lvds(dev))
79e53945
JB
639 clock.p2 = limit->p2.p2_fast;
640 else
641 clock.p2 = limit->p2.p2_slow;
642 } else {
643 if (target < limit->p2.dot_limit)
644 clock.p2 = limit->p2.p2_slow;
645 else
646 clock.p2 = limit->p2.p2_fast;
647 }
648
0206e353 649 memset(best_clock, 0, sizeof(*best_clock));
79e53945 650
42158660
ZY
651 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
652 clock.m1++) {
653 for (clock.m2 = limit->m2.min;
654 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 655 if (clock.m2 >= clock.m1)
42158660
ZY
656 break;
657 for (clock.n = limit->n.min;
658 clock.n <= limit->n.max; clock.n++) {
659 for (clock.p1 = limit->p1.min;
660 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
661 int this_err;
662
ac58c3f0
DV
663 i9xx_clock(refclk, &clock);
664 if (!intel_PLL_is_valid(dev, limit,
665 &clock))
666 continue;
667 if (match_clock &&
668 clock.p != match_clock->p)
669 continue;
670
671 this_err = abs(clock.dot - target);
672 if (this_err < err) {
673 *best_clock = clock;
674 err = this_err;
675 }
676 }
677 }
678 }
679 }
680
681 return (err != target);
682}
683
684static bool
a93e255f
ACO
685pnv_find_best_dpll(const intel_limit_t *limit,
686 struct intel_crtc_state *crtc_state,
ee9300bb
DV
687 int target, int refclk, intel_clock_t *match_clock,
688 intel_clock_t *best_clock)
79e53945 689{
a93e255f 690 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 691 struct drm_device *dev = crtc->base.dev;
79e53945 692 intel_clock_t clock;
79e53945
JB
693 int err = target;
694
a93e255f 695 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 696 /*
a210b028
DV
697 * For LVDS just rely on its current settings for dual-channel.
698 * We haven't figured out how to reliably set up different
699 * single/dual channel state, if we even can.
79e53945 700 */
1974cad0 701 if (intel_is_dual_link_lvds(dev))
79e53945
JB
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
0206e353 712 memset(best_clock, 0, sizeof(*best_clock));
79e53945 713
42158660
ZY
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
718 for (clock.n = limit->n.min;
719 clock.n <= limit->n.max; clock.n++) {
720 for (clock.p1 = limit->p1.min;
721 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
722 int this_err;
723
ac58c3f0 724 pineview_clock(refclk, &clock);
1b894b59
CW
725 if (!intel_PLL_is_valid(dev, limit,
726 &clock))
79e53945 727 continue;
cec2f356
SP
728 if (match_clock &&
729 clock.p != match_clock->p)
730 continue;
79e53945
JB
731
732 this_err = abs(clock.dot - target);
733 if (this_err < err) {
734 *best_clock = clock;
735 err = this_err;
736 }
737 }
738 }
739 }
740 }
741
742 return (err != target);
743}
744
d4906093 745static bool
a93e255f
ACO
746g4x_find_best_dpll(const intel_limit_t *limit,
747 struct intel_crtc_state *crtc_state,
ee9300bb
DV
748 int target, int refclk, intel_clock_t *match_clock,
749 intel_clock_t *best_clock)
d4906093 750{
a93e255f 751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 752 struct drm_device *dev = crtc->base.dev;
d4906093
ML
753 intel_clock_t clock;
754 int max_n;
755 bool found;
6ba770dc
AJ
756 /* approximately equals target * 0.00585 */
757 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
758 found = false;
759
a93e255f 760 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 761 if (intel_is_dual_link_lvds(dev))
d4906093
ML
762 clock.p2 = limit->p2.p2_fast;
763 else
764 clock.p2 = limit->p2.p2_slow;
765 } else {
766 if (target < limit->p2.dot_limit)
767 clock.p2 = limit->p2.p2_slow;
768 else
769 clock.p2 = limit->p2.p2_fast;
770 }
771
772 memset(best_clock, 0, sizeof(*best_clock));
773 max_n = limit->n.max;
f77f13e2 774 /* based on hardware requirement, prefer smaller n to precision */
d4906093 775 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 776 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
777 for (clock.m1 = limit->m1.max;
778 clock.m1 >= limit->m1.min; clock.m1--) {
779 for (clock.m2 = limit->m2.max;
780 clock.m2 >= limit->m2.min; clock.m2--) {
781 for (clock.p1 = limit->p1.max;
782 clock.p1 >= limit->p1.min; clock.p1--) {
783 int this_err;
784
ac58c3f0 785 i9xx_clock(refclk, &clock);
1b894b59
CW
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
d4906093 788 continue;
1b894b59
CW
789
790 this_err = abs(clock.dot - target);
d4906093
ML
791 if (this_err < err_most) {
792 *best_clock = clock;
793 err_most = this_err;
794 max_n = clock.n;
795 found = true;
796 }
797 }
798 }
799 }
800 }
2c07245f
ZW
801 return found;
802}
803
d5dd62bd
ID
804/*
805 * Check if the calculated PLL configuration is more optimal compared to the
806 * best configuration and error found so far. Return the calculated error.
807 */
808static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
809 const intel_clock_t *calculated_clock,
810 const intel_clock_t *best_clock,
811 unsigned int best_error_ppm,
812 unsigned int *error_ppm)
813{
9ca3ba01
ID
814 /*
815 * For CHV ignore the error and consider only the P value.
816 * Prefer a bigger P value based on HW requirements.
817 */
818 if (IS_CHERRYVIEW(dev)) {
819 *error_ppm = 0;
820
821 return calculated_clock->p > best_clock->p;
822 }
823
24be4e46
ID
824 if (WARN_ON_ONCE(!target_freq))
825 return false;
826
d5dd62bd
ID
827 *error_ppm = div_u64(1000000ULL *
828 abs(target_freq - calculated_clock->dot),
829 target_freq);
830 /*
831 * Prefer a better P value over a better (smaller) error if the error
832 * is small. Ensure this preference for future configurations too by
833 * setting the error to 0.
834 */
835 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
836 *error_ppm = 0;
837
838 return true;
839 }
840
841 return *error_ppm + 10 < best_error_ppm;
842}
843
a0c4da24 844static bool
a93e255f
ACO
845vlv_find_best_dpll(const intel_limit_t *limit,
846 struct intel_crtc_state *crtc_state,
ee9300bb
DV
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
a0c4da24 849{
a93e255f 850 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 851 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 852 intel_clock_t clock;
69e4f900 853 unsigned int bestppm = 1000000;
27e639bf
VS
854 /* min update 19.2 MHz */
855 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 856 bool found = false;
a0c4da24 857
6b4bf1c4
VS
858 target *= 5; /* fast clock */
859
860 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
861
862 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 863 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 864 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 865 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 866 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 867 clock.p = clock.p1 * clock.p2;
a0c4da24 868 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 869 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 870 unsigned int ppm;
69e4f900 871
6b4bf1c4
VS
872 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
873 refclk * clock.m1);
874
875 vlv_clock(refclk, &clock);
43b0ac53 876
f01b7962
VS
877 if (!intel_PLL_is_valid(dev, limit,
878 &clock))
43b0ac53
VS
879 continue;
880
d5dd62bd
ID
881 if (!vlv_PLL_is_optimal(dev, target,
882 &clock,
883 best_clock,
884 bestppm, &ppm))
885 continue;
6b4bf1c4 886
d5dd62bd
ID
887 *best_clock = clock;
888 bestppm = ppm;
889 found = true;
a0c4da24
JB
890 }
891 }
892 }
893 }
a0c4da24 894
49e497ef 895 return found;
a0c4da24 896}
a4fc5ed6 897
ef9348c8 898static bool
a93e255f
ACO
899chv_find_best_dpll(const intel_limit_t *limit,
900 struct intel_crtc_state *crtc_state,
ef9348c8
CML
901 int target, int refclk, intel_clock_t *match_clock,
902 intel_clock_t *best_clock)
903{
a93e255f 904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 905 struct drm_device *dev = crtc->base.dev;
9ca3ba01 906 unsigned int best_error_ppm;
ef9348c8
CML
907 intel_clock_t clock;
908 uint64_t m2;
909 int found = false;
910
911 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 912 best_error_ppm = 1000000;
ef9348c8
CML
913
914 /*
915 * Based on hardware doc, the n always set to 1, and m1 always
916 * set to 2. If requires to support 200Mhz refclk, we need to
917 * revisit this because n may not 1 anymore.
918 */
919 clock.n = 1, clock.m1 = 2;
920 target *= 5; /* fast clock */
921
922 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
923 for (clock.p2 = limit->p2.p2_fast;
924 clock.p2 >= limit->p2.p2_slow;
925 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 926 unsigned int error_ppm;
ef9348c8
CML
927
928 clock.p = clock.p1 * clock.p2;
929
930 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
931 clock.n) << 22, refclk * clock.m1);
932
933 if (m2 > INT_MAX/clock.m1)
934 continue;
935
936 clock.m2 = m2;
937
938 chv_clock(refclk, &clock);
939
940 if (!intel_PLL_is_valid(dev, limit, &clock))
941 continue;
942
9ca3ba01
ID
943 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
944 best_error_ppm, &error_ppm))
945 continue;
946
947 *best_clock = clock;
948 best_error_ppm = error_ppm;
949 found = true;
ef9348c8
CML
950 }
951 }
952
953 return found;
954}
955
20ddf665
VS
956bool intel_crtc_active(struct drm_crtc *crtc)
957{
958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
959
960 /* Be paranoid as we can arrive here with only partial
961 * state retrieved from the hardware during setup.
962 *
241bfc38 963 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
964 * as Haswell has gained clock readout/fastboot support.
965 *
66e514c1 966 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 967 * properly reconstruct framebuffers.
c3d1f436
MR
968 *
969 * FIXME: The intel_crtc->active here should be switched to
970 * crtc->state->active once we have proper CRTC states wired up
971 * for atomic.
20ddf665 972 */
c3d1f436 973 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 974 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
975}
976
a5c961d1
PZ
977enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
978 enum pipe pipe)
979{
980 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
982
6e3c9717 983 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
984}
985
fbf49ea2
VS
986static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
987{
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 reg = PIPEDSL(pipe);
990 u32 line1, line2;
991 u32 line_mask;
992
993 if (IS_GEN2(dev))
994 line_mask = DSL_LINEMASK_GEN2;
995 else
996 line_mask = DSL_LINEMASK_GEN3;
997
998 line1 = I915_READ(reg) & line_mask;
999 mdelay(5);
1000 line2 = I915_READ(reg) & line_mask;
1001
1002 return line1 == line2;
1003}
1004
ab7ad7f6
KP
1005/*
1006 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1007 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1008 *
1009 * After disabling a pipe, we can't wait for vblank in the usual way,
1010 * spinning on the vblank interrupt status bit, since we won't actually
1011 * see an interrupt when the pipe is disabled.
1012 *
ab7ad7f6
KP
1013 * On Gen4 and above:
1014 * wait for the pipe register state bit to turn off
1015 *
1016 * Otherwise:
1017 * wait for the display line value to settle (it usually
1018 * ends up stopping at the start of the next frame).
58e10eb9 1019 *
9d0498a2 1020 */
575f7ab7 1021static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1022{
575f7ab7 1023 struct drm_device *dev = crtc->base.dev;
9d0498a2 1024 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1025 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1026 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1027
1028 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1029 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1030
1031 /* Wait for the Pipe State to go off */
58e10eb9
CW
1032 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1033 100))
284637d9 1034 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1035 } else {
ab7ad7f6 1036 /* Wait for the display line to settle */
fbf49ea2 1037 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1038 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1039 }
79e53945
JB
1040}
1041
b0ea7d37
DL
1042/*
1043 * ibx_digital_port_connected - is the specified port connected?
1044 * @dev_priv: i915 private structure
1045 * @port: the port to test
1046 *
1047 * Returns true if @port is connected, false otherwise.
1048 */
1049bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1050 struct intel_digital_port *port)
1051{
1052 u32 bit;
1053
c36346e3 1054 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1055 switch (port->port) {
c36346e3
DL
1056 case PORT_B:
1057 bit = SDE_PORTB_HOTPLUG;
1058 break;
1059 case PORT_C:
1060 bit = SDE_PORTC_HOTPLUG;
1061 break;
1062 case PORT_D:
1063 bit = SDE_PORTD_HOTPLUG;
1064 break;
1065 default:
1066 return true;
1067 }
1068 } else {
eba905b2 1069 switch (port->port) {
c36346e3
DL
1070 case PORT_B:
1071 bit = SDE_PORTB_HOTPLUG_CPT;
1072 break;
1073 case PORT_C:
1074 bit = SDE_PORTC_HOTPLUG_CPT;
1075 break;
1076 case PORT_D:
1077 bit = SDE_PORTD_HOTPLUG_CPT;
1078 break;
1079 default:
1080 return true;
1081 }
b0ea7d37
DL
1082 }
1083
1084 return I915_READ(SDEISR) & bit;
1085}
1086
b24e7179
JB
1087static const char *state_string(bool enabled)
1088{
1089 return enabled ? "on" : "off";
1090}
1091
1092/* Only for pre-ILK configs */
55607e8a
DV
1093void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
b24e7179
JB
1095{
1096 int reg;
1097 u32 val;
1098 bool cur_state;
1099
1100 reg = DPLL(pipe);
1101 val = I915_READ(reg);
1102 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1103 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1104 "PLL state assertion failure (expected %s, current %s)\n",
1105 state_string(state), state_string(cur_state));
1106}
b24e7179 1107
23538ef1
JN
1108/* XXX: the dsi pll is shared between MIPI DSI ports */
1109static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110{
1111 u32 val;
1112 bool cur_state;
1113
1114 mutex_lock(&dev_priv->dpio_lock);
1115 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1116 mutex_unlock(&dev_priv->dpio_lock);
1117
1118 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1119 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1120 "DSI PLL state assertion failure (expected %s, current %s)\n",
1121 state_string(state), state_string(cur_state));
1122}
1123#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1124#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1125
55607e8a 1126struct intel_shared_dpll *
e2b78267
DV
1127intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1128{
1129 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1130
6e3c9717 1131 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1132 return NULL;
1133
6e3c9717 1134 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1135}
1136
040484af 1137/* For ILK+ */
55607e8a
DV
1138void assert_shared_dpll(struct drm_i915_private *dev_priv,
1139 struct intel_shared_dpll *pll,
1140 bool state)
040484af 1141{
040484af 1142 bool cur_state;
5358901f 1143 struct intel_dpll_hw_state hw_state;
040484af 1144
92b27b08 1145 if (WARN (!pll,
46edb027 1146 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1147 return;
ee7b9f93 1148
5358901f 1149 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1150 I915_STATE_WARN(cur_state != state,
5358901f
DV
1151 "%s assertion failure (expected %s, current %s)\n",
1152 pll->name, state_string(state), state_string(cur_state));
040484af 1153}
040484af
JB
1154
1155static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1156 enum pipe pipe, bool state)
1157{
1158 int reg;
1159 u32 val;
1160 bool cur_state;
ad80a810
PZ
1161 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1162 pipe);
040484af 1163
affa9354
PZ
1164 if (HAS_DDI(dev_priv->dev)) {
1165 /* DDI does not have a specific FDI_TX register */
ad80a810 1166 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1167 val = I915_READ(reg);
ad80a810 1168 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1169 } else {
1170 reg = FDI_TX_CTL(pipe);
1171 val = I915_READ(reg);
1172 cur_state = !!(val & FDI_TX_ENABLE);
1173 }
e2c719b7 1174 I915_STATE_WARN(cur_state != state,
040484af
JB
1175 "FDI TX state assertion failure (expected %s, current %s)\n",
1176 state_string(state), state_string(cur_state));
1177}
1178#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1179#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1180
1181static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, bool state)
1183{
1184 int reg;
1185 u32 val;
1186 bool cur_state;
1187
d63fa0dc
PZ
1188 reg = FDI_RX_CTL(pipe);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1191 I915_STATE_WARN(cur_state != state,
040484af
JB
1192 "FDI RX state assertion failure (expected %s, current %s)\n",
1193 state_string(state), state_string(cur_state));
1194}
1195#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
1198static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199 enum pipe pipe)
1200{
1201 int reg;
1202 u32 val;
1203
1204 /* ILK FDI PLL is always enabled */
3d13ef2e 1205 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1206 return;
1207
bf507ef7 1208 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1209 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1210 return;
1211
040484af
JB
1212 reg = FDI_TX_CTL(pipe);
1213 val = I915_READ(reg);
e2c719b7 1214 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1215}
1216
55607e8a
DV
1217void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
040484af
JB
1219{
1220 int reg;
1221 u32 val;
55607e8a 1222 bool cur_state;
040484af
JB
1223
1224 reg = FDI_RX_CTL(pipe);
1225 val = I915_READ(reg);
55607e8a 1226 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1227 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1228 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1229 state_string(state), state_string(cur_state));
040484af
JB
1230}
1231
b680c37a
DV
1232void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
ea0760cf 1234{
bedd4dba
JN
1235 struct drm_device *dev = dev_priv->dev;
1236 int pp_reg;
ea0760cf
JB
1237 u32 val;
1238 enum pipe panel_pipe = PIPE_A;
0de3b485 1239 bool locked = true;
ea0760cf 1240
bedd4dba
JN
1241 if (WARN_ON(HAS_DDI(dev)))
1242 return;
1243
1244 if (HAS_PCH_SPLIT(dev)) {
1245 u32 port_sel;
1246
ea0760cf 1247 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1248 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1249
1250 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1251 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1252 panel_pipe = PIPE_B;
1253 /* XXX: else fix for eDP */
1254 } else if (IS_VALLEYVIEW(dev)) {
1255 /* presumably write lock depends on pipe, not port select */
1256 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1257 panel_pipe = pipe;
ea0760cf
JB
1258 } else {
1259 pp_reg = PP_CONTROL;
bedd4dba
JN
1260 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1261 panel_pipe = PIPE_B;
ea0760cf
JB
1262 }
1263
1264 val = I915_READ(pp_reg);
1265 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1266 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1267 locked = false;
1268
e2c719b7 1269 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1270 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1271 pipe_name(pipe));
ea0760cf
JB
1272}
1273
93ce0ba6
JN
1274static void assert_cursor(struct drm_i915_private *dev_priv,
1275 enum pipe pipe, bool state)
1276{
1277 struct drm_device *dev = dev_priv->dev;
1278 bool cur_state;
1279
d9d82081 1280 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1281 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1282 else
5efb3e28 1283 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1284
e2c719b7 1285 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1286 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1287 pipe_name(pipe), state_string(state), state_string(cur_state));
1288}
1289#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1290#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1291
b840d907
JB
1292void assert_pipe(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, bool state)
b24e7179
JB
1294{
1295 int reg;
1296 u32 val;
63d7bbe9 1297 bool cur_state;
702e7a56
PZ
1298 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299 pipe);
b24e7179 1300
b6b5d049
VS
1301 /* if we need the pipe quirk it must be always on */
1302 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1304 state = true;
1305
f458ebbc 1306 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1307 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1308 cur_state = false;
1309 } else {
1310 reg = PIPECONF(cpu_transcoder);
1311 val = I915_READ(reg);
1312 cur_state = !!(val & PIPECONF_ENABLE);
1313 }
1314
e2c719b7 1315 I915_STATE_WARN(cur_state != state,
63d7bbe9 1316 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1317 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1318}
1319
931872fc
CW
1320static void assert_plane(struct drm_i915_private *dev_priv,
1321 enum plane plane, bool state)
b24e7179
JB
1322{
1323 int reg;
1324 u32 val;
931872fc 1325 bool cur_state;
b24e7179
JB
1326
1327 reg = DSPCNTR(plane);
1328 val = I915_READ(reg);
931872fc 1329 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1330 I915_STATE_WARN(cur_state != state,
931872fc
CW
1331 "plane %c assertion failure (expected %s, current %s)\n",
1332 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1333}
1334
931872fc
CW
1335#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
b24e7179
JB
1338static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe)
1340{
653e1026 1341 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1342 int reg, i;
1343 u32 val;
1344 int cur_pipe;
1345
653e1026
VS
1346 /* Primary planes are fixed to pipes on gen4+ */
1347 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1348 reg = DSPCNTR(pipe);
1349 val = I915_READ(reg);
e2c719b7 1350 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1351 "plane %c assertion failure, should be disabled but not\n",
1352 plane_name(pipe));
19ec1358 1353 return;
28c05794 1354 }
19ec1358 1355
b24e7179 1356 /* Need to check both planes against the pipe */
055e393f 1357 for_each_pipe(dev_priv, i) {
b24e7179
JB
1358 reg = DSPCNTR(i);
1359 val = I915_READ(reg);
1360 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1361 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1362 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1363 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1364 plane_name(i), pipe_name(pipe));
b24e7179
JB
1365 }
1366}
1367
19332d7a
JB
1368static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1369 enum pipe pipe)
1370{
20674eef 1371 struct drm_device *dev = dev_priv->dev;
1fe47785 1372 int reg, sprite;
19332d7a
JB
1373 u32 val;
1374
7feb8b88 1375 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1376 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1377 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1378 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1379 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1380 sprite, pipe_name(pipe));
1381 }
1382 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1383 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1384 reg = SPCNTR(pipe, sprite);
20674eef 1385 val = I915_READ(reg);
e2c719b7 1386 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1387 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1388 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1389 }
1390 } else if (INTEL_INFO(dev)->gen >= 7) {
1391 reg = SPRCTL(pipe);
19332d7a 1392 val = I915_READ(reg);
e2c719b7 1393 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1394 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1395 plane_name(pipe), pipe_name(pipe));
1396 } else if (INTEL_INFO(dev)->gen >= 5) {
1397 reg = DVSCNTR(pipe);
19332d7a 1398 val = I915_READ(reg);
e2c719b7 1399 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1400 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1401 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1402 }
1403}
1404
08c71e5e
VS
1405static void assert_vblank_disabled(struct drm_crtc *crtc)
1406{
e2c719b7 1407 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1408 drm_crtc_vblank_put(crtc);
1409}
1410
89eff4be 1411static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1412{
1413 u32 val;
1414 bool enabled;
1415
e2c719b7 1416 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1417
92f2584a
JB
1418 val = I915_READ(PCH_DREF_CONTROL);
1419 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1420 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1421 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1422}
1423
ab9412ba
DV
1424static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1425 enum pipe pipe)
92f2584a
JB
1426{
1427 int reg;
1428 u32 val;
1429 bool enabled;
1430
ab9412ba 1431 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1432 val = I915_READ(reg);
1433 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1434 I915_STATE_WARN(enabled,
9db4a9c7
JB
1435 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1436 pipe_name(pipe));
92f2584a
JB
1437}
1438
4e634389
KP
1439static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1440 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1441{
1442 if ((val & DP_PORT_EN) == 0)
1443 return false;
1444
1445 if (HAS_PCH_CPT(dev_priv->dev)) {
1446 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1447 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1448 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1449 return false;
44f37d1f
CML
1450 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1451 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1452 return false;
f0575e92
KP
1453 } else {
1454 if ((val & DP_PIPE_MASK) != (pipe << 30))
1455 return false;
1456 }
1457 return true;
1458}
1459
1519b995
KP
1460static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe, u32 val)
1462{
dc0fa718 1463 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1464 return false;
1465
1466 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1467 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1468 return false;
44f37d1f
CML
1469 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1470 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1471 return false;
1519b995 1472 } else {
dc0fa718 1473 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1474 return false;
1475 }
1476 return true;
1477}
1478
1479static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, u32 val)
1481{
1482 if ((val & LVDS_PORT_EN) == 0)
1483 return false;
1484
1485 if (HAS_PCH_CPT(dev_priv->dev)) {
1486 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1487 return false;
1488 } else {
1489 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1490 return false;
1491 }
1492 return true;
1493}
1494
1495static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497{
1498 if ((val & ADPA_DAC_ENABLE) == 0)
1499 return false;
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1502 return false;
1503 } else {
1504 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1505 return false;
1506 }
1507 return true;
1508}
1509
291906f1 1510static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1511 enum pipe pipe, int reg, u32 port_sel)
291906f1 1512{
47a05eca 1513 u32 val = I915_READ(reg);
e2c719b7 1514 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1515 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1516 reg, pipe_name(pipe));
de9a35ab 1517
e2c719b7 1518 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1519 && (val & DP_PIPEB_SELECT),
de9a35ab 1520 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1521}
1522
1523static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1524 enum pipe pipe, int reg)
1525{
47a05eca 1526 u32 val = I915_READ(reg);
e2c719b7 1527 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1528 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1529 reg, pipe_name(pipe));
de9a35ab 1530
e2c719b7 1531 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1532 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1533 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1534}
1535
1536static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1537 enum pipe pipe)
1538{
1539 int reg;
1540 u32 val;
291906f1 1541
f0575e92
KP
1542 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1543 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1544 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1545
1546 reg = PCH_ADPA;
1547 val = I915_READ(reg);
e2c719b7 1548 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1549 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1550 pipe_name(pipe));
291906f1
JB
1551
1552 reg = PCH_LVDS;
1553 val = I915_READ(reg);
e2c719b7 1554 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1555 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1556 pipe_name(pipe));
291906f1 1557
e2debe91
PZ
1558 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1559 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1560 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1561}
1562
40e9cf64
JB
1563static void intel_init_dpio(struct drm_device *dev)
1564{
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566
1567 if (!IS_VALLEYVIEW(dev))
1568 return;
1569
a09caddd
CML
1570 /*
1571 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1572 * CHV x1 PHY (DP/HDMI D)
1573 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1574 */
1575 if (IS_CHERRYVIEW(dev)) {
1576 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1577 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1578 } else {
1579 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1580 }
5382f5f3
JB
1581}
1582
d288f65f 1583static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1584 const struct intel_crtc_state *pipe_config)
87442f73 1585{
426115cf
DV
1586 struct drm_device *dev = crtc->base.dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int reg = DPLL(crtc->pipe);
d288f65f 1589 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1590
426115cf 1591 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1592
1593 /* No really, not for ILK+ */
1594 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1595
1596 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1597 if (IS_MOBILE(dev_priv->dev))
426115cf 1598 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1599
426115cf
DV
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150);
1603
1604 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1605 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1606
d288f65f 1607 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1608 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1609
1610 /* We do this three times for luck */
426115cf 1611 I915_WRITE(reg, dpll);
87442f73
DV
1612 POSTING_READ(reg);
1613 udelay(150); /* wait for warmup */
426115cf 1614 I915_WRITE(reg, dpll);
87442f73
DV
1615 POSTING_READ(reg);
1616 udelay(150); /* wait for warmup */
426115cf 1617 I915_WRITE(reg, dpll);
87442f73
DV
1618 POSTING_READ(reg);
1619 udelay(150); /* wait for warmup */
1620}
1621
d288f65f 1622static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1623 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1624{
1625 struct drm_device *dev = crtc->base.dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 int pipe = crtc->pipe;
1628 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1629 u32 tmp;
1630
1631 assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1634
1635 mutex_lock(&dev_priv->dpio_lock);
1636
1637 /* Enable back the 10bit clock to display controller */
1638 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1639 tmp |= DPIO_DCLKP_EN;
1640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1641
1642 /*
1643 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1644 */
1645 udelay(1);
1646
1647 /* Enable PLL */
d288f65f 1648 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1649
1650 /* Check PLL is locked */
a11b0703 1651 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1652 DRM_ERROR("PLL %d failed to lock\n", pipe);
1653
a11b0703 1654 /* not sure when this should be written */
d288f65f 1655 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1656 POSTING_READ(DPLL_MD(pipe));
1657
9d556c99
CML
1658 mutex_unlock(&dev_priv->dpio_lock);
1659}
1660
1c4e0274
VS
1661static int intel_num_dvo_pipes(struct drm_device *dev)
1662{
1663 struct intel_crtc *crtc;
1664 int count = 0;
1665
1666 for_each_intel_crtc(dev, crtc)
1667 count += crtc->active &&
409ee761 1668 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1669
1670 return count;
1671}
1672
66e3d5c0 1673static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1674{
66e3d5c0
DV
1675 struct drm_device *dev = crtc->base.dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 int reg = DPLL(crtc->pipe);
6e3c9717 1678 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1679
66e3d5c0 1680 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1681
63d7bbe9 1682 /* No really, not for ILK+ */
3d13ef2e 1683 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1684
1685 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1686 if (IS_MOBILE(dev) && !IS_I830(dev))
1687 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1688
1c4e0274
VS
1689 /* Enable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1691 /*
1692 * It appears to be important that we don't enable this
1693 * for the current pipe before otherwise configuring the
1694 * PLL. No idea how this should be handled if multiple
1695 * DVO outputs are enabled simultaneosly.
1696 */
1697 dpll |= DPLL_DVO_2X_MODE;
1698 I915_WRITE(DPLL(!crtc->pipe),
1699 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1700 }
66e3d5c0
DV
1701
1702 /* Wait for the clocks to stabilize. */
1703 POSTING_READ(reg);
1704 udelay(150);
1705
1706 if (INTEL_INFO(dev)->gen >= 4) {
1707 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1708 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1709 } else {
1710 /* The pixel multiplier can only be updated once the
1711 * DPLL is enabled and the clocks are stable.
1712 *
1713 * So write it again.
1714 */
1715 I915_WRITE(reg, dpll);
1716 }
63d7bbe9
JB
1717
1718 /* We do this three times for luck */
66e3d5c0 1719 I915_WRITE(reg, dpll);
63d7bbe9
JB
1720 POSTING_READ(reg);
1721 udelay(150); /* wait for warmup */
66e3d5c0 1722 I915_WRITE(reg, dpll);
63d7bbe9
JB
1723 POSTING_READ(reg);
1724 udelay(150); /* wait for warmup */
66e3d5c0 1725 I915_WRITE(reg, dpll);
63d7bbe9
JB
1726 POSTING_READ(reg);
1727 udelay(150); /* wait for warmup */
1728}
1729
1730/**
50b44a44 1731 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1732 * @dev_priv: i915 private structure
1733 * @pipe: pipe PLL to disable
1734 *
1735 * Disable the PLL for @pipe, making sure the pipe is off first.
1736 *
1737 * Note! This is for pre-ILK only.
1738 */
1c4e0274 1739static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1740{
1c4e0274
VS
1741 struct drm_device *dev = crtc->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 enum pipe pipe = crtc->pipe;
1744
1745 /* Disable DVO 2x clock on both PLLs if necessary */
1746 if (IS_I830(dev) &&
409ee761 1747 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1748 intel_num_dvo_pipes(dev) == 1) {
1749 I915_WRITE(DPLL(PIPE_B),
1750 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1751 I915_WRITE(DPLL(PIPE_A),
1752 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1753 }
1754
b6b5d049
VS
1755 /* Don't disable pipe or pipe PLLs if needed */
1756 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1757 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1758 return;
1759
1760 /* Make sure the pipe isn't still relying on us */
1761 assert_pipe_disabled(dev_priv, pipe);
1762
50b44a44
DV
1763 I915_WRITE(DPLL(pipe), 0);
1764 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1765}
1766
f6071166
JB
1767static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1768{
1769 u32 val = 0;
1770
1771 /* Make sure the pipe isn't still relying on us */
1772 assert_pipe_disabled(dev_priv, pipe);
1773
e5cbfbfb
ID
1774 /*
1775 * Leave integrated clock source and reference clock enabled for pipe B.
1776 * The latter is needed for VGA hotplug / manual detection.
1777 */
f6071166 1778 if (pipe == PIPE_B)
e5cbfbfb 1779 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1780 I915_WRITE(DPLL(pipe), val);
1781 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1782
1783}
1784
1785static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1786{
d752048d 1787 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1788 u32 val;
1789
a11b0703
VS
1790 /* Make sure the pipe isn't still relying on us */
1791 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1792
a11b0703 1793 /* Set PLL en = 0 */
d17ec4ce 1794 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1795 if (pipe != PIPE_A)
1796 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1797 I915_WRITE(DPLL(pipe), val);
1798 POSTING_READ(DPLL(pipe));
d752048d
VS
1799
1800 mutex_lock(&dev_priv->dpio_lock);
1801
1802 /* Disable 10bit clock to display controller */
1803 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1804 val &= ~DPIO_DCLKP_EN;
1805 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1806
61407f6d
VS
1807 /* disable left/right clock distribution */
1808 if (pipe != PIPE_B) {
1809 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1810 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1811 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1812 } else {
1813 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1814 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1815 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1816 }
1817
d752048d 1818 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1819}
1820
e4607fcf
CML
1821void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1822 struct intel_digital_port *dport)
89b667f8
JB
1823{
1824 u32 port_mask;
00fc31b7 1825 int dpll_reg;
89b667f8 1826
e4607fcf
CML
1827 switch (dport->port) {
1828 case PORT_B:
89b667f8 1829 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1830 dpll_reg = DPLL(0);
e4607fcf
CML
1831 break;
1832 case PORT_C:
89b667f8 1833 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1834 dpll_reg = DPLL(0);
1835 break;
1836 case PORT_D:
1837 port_mask = DPLL_PORTD_READY_MASK;
1838 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1839 break;
1840 default:
1841 BUG();
1842 }
89b667f8 1843
00fc31b7 1844 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1845 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1846 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1847}
1848
b14b1055
DV
1849static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1850{
1851 struct drm_device *dev = crtc->base.dev;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1854
be19f0ff
CW
1855 if (WARN_ON(pll == NULL))
1856 return;
1857
3e369b76 1858 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1859 if (pll->active == 0) {
1860 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1861 WARN_ON(pll->on);
1862 assert_shared_dpll_disabled(dev_priv, pll);
1863
1864 pll->mode_set(dev_priv, pll);
1865 }
1866}
1867
92f2584a 1868/**
85b3894f 1869 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1870 * @dev_priv: i915 private structure
1871 * @pipe: pipe PLL to enable
1872 *
1873 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1874 * drives the transcoder clock.
1875 */
85b3894f 1876static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1877{
3d13ef2e
DL
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1881
87a875bb 1882 if (WARN_ON(pll == NULL))
48da64a8
CW
1883 return;
1884
3e369b76 1885 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1886 return;
ee7b9f93 1887
74dd6928 1888 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1889 pll->name, pll->active, pll->on,
e2b78267 1890 crtc->base.base.id);
92f2584a 1891
cdbd2316
DV
1892 if (pll->active++) {
1893 WARN_ON(!pll->on);
e9d6944e 1894 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1895 return;
1896 }
f4a091c7 1897 WARN_ON(pll->on);
ee7b9f93 1898
bd2bb1b9
PZ
1899 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1900
46edb027 1901 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1902 pll->enable(dev_priv, pll);
ee7b9f93 1903 pll->on = true;
92f2584a
JB
1904}
1905
f6daaec2 1906static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1907{
3d13ef2e
DL
1908 struct drm_device *dev = crtc->base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1910 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1911
92f2584a 1912 /* PCH only available on ILK+ */
3d13ef2e 1913 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1914 if (WARN_ON(pll == NULL))
ee7b9f93 1915 return;
92f2584a 1916
3e369b76 1917 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1918 return;
7a419866 1919
46edb027
DV
1920 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1921 pll->name, pll->active, pll->on,
e2b78267 1922 crtc->base.base.id);
7a419866 1923
48da64a8 1924 if (WARN_ON(pll->active == 0)) {
e9d6944e 1925 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1926 return;
1927 }
1928
e9d6944e 1929 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1930 WARN_ON(!pll->on);
cdbd2316 1931 if (--pll->active)
7a419866 1932 return;
ee7b9f93 1933
46edb027 1934 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1935 pll->disable(dev_priv, pll);
ee7b9f93 1936 pll->on = false;
bd2bb1b9
PZ
1937
1938 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1939}
1940
b8a4f404
PZ
1941static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
040484af 1943{
23670b32 1944 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1945 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1947 uint32_t reg, val, pipeconf_val;
040484af
JB
1948
1949 /* PCH only available on ILK+ */
55522f37 1950 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1951
1952 /* Make sure PCH DPLL is enabled */
e72f9fbf 1953 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1954 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1955
1956 /* FDI must be feeding us bits for PCH ports */
1957 assert_fdi_tx_enabled(dev_priv, pipe);
1958 assert_fdi_rx_enabled(dev_priv, pipe);
1959
23670b32
DV
1960 if (HAS_PCH_CPT(dev)) {
1961 /* Workaround: Set the timing override bit before enabling the
1962 * pch transcoder. */
1963 reg = TRANS_CHICKEN2(pipe);
1964 val = I915_READ(reg);
1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966 I915_WRITE(reg, val);
59c859d6 1967 }
23670b32 1968
ab9412ba 1969 reg = PCH_TRANSCONF(pipe);
040484af 1970 val = I915_READ(reg);
5f7f726d 1971 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1972
1973 if (HAS_PCH_IBX(dev_priv->dev)) {
1974 /*
1975 * make the BPC in transcoder be consistent with
1976 * that in pipeconf reg.
1977 */
dfd07d72
DV
1978 val &= ~PIPECONF_BPC_MASK;
1979 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1980 }
5f7f726d
PZ
1981
1982 val &= ~TRANS_INTERLACE_MASK;
1983 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1984 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1985 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1986 val |= TRANS_LEGACY_INTERLACED_ILK;
1987 else
1988 val |= TRANS_INTERLACED;
5f7f726d
PZ
1989 else
1990 val |= TRANS_PROGRESSIVE;
1991
040484af
JB
1992 I915_WRITE(reg, val | TRANS_ENABLE);
1993 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1994 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1995}
1996
8fb033d7 1997static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1998 enum transcoder cpu_transcoder)
040484af 1999{
8fb033d7 2000 u32 val, pipeconf_val;
8fb033d7
PZ
2001
2002 /* PCH only available on ILK+ */
55522f37 2003 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2004
8fb033d7 2005 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2006 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2007 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2008
223a6fdf
PZ
2009 /* Workaround: set timing override bit. */
2010 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2011 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2012 I915_WRITE(_TRANSA_CHICKEN2, val);
2013
25f3ef11 2014 val = TRANS_ENABLE;
937bb610 2015 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2016
9a76b1c6
PZ
2017 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2018 PIPECONF_INTERLACED_ILK)
a35f2679 2019 val |= TRANS_INTERLACED;
8fb033d7
PZ
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
ab9412ba
DV
2023 I915_WRITE(LPT_TRANSCONF, val);
2024 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2025 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2026}
2027
b8a4f404
PZ
2028static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2029 enum pipe pipe)
040484af 2030{
23670b32
DV
2031 struct drm_device *dev = dev_priv->dev;
2032 uint32_t reg, val;
040484af
JB
2033
2034 /* FDI relies on the transcoder */
2035 assert_fdi_tx_disabled(dev_priv, pipe);
2036 assert_fdi_rx_disabled(dev_priv, pipe);
2037
291906f1
JB
2038 /* Ports must be off as well */
2039 assert_pch_ports_disabled(dev_priv, pipe);
2040
ab9412ba 2041 reg = PCH_TRANSCONF(pipe);
040484af
JB
2042 val = I915_READ(reg);
2043 val &= ~TRANS_ENABLE;
2044 I915_WRITE(reg, val);
2045 /* wait for PCH transcoder off, transcoder state */
2046 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2047 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2048
2049 if (!HAS_PCH_IBX(dev)) {
2050 /* Workaround: Clear the timing override chicken bit again. */
2051 reg = TRANS_CHICKEN2(pipe);
2052 val = I915_READ(reg);
2053 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2054 I915_WRITE(reg, val);
2055 }
040484af
JB
2056}
2057
ab4d966c 2058static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2059{
8fb033d7
PZ
2060 u32 val;
2061
ab9412ba 2062 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2063 val &= ~TRANS_ENABLE;
ab9412ba 2064 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2065 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2066 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2067 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2068
2069 /* Workaround: clear timing override bit. */
2070 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2071 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2072 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2073}
2074
b24e7179 2075/**
309cfea8 2076 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2077 * @crtc: crtc responsible for the pipe
b24e7179 2078 *
0372264a 2079 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2080 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2081 */
e1fdc473 2082static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2083{
0372264a
PZ
2084 struct drm_device *dev = crtc->base.dev;
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2088 pipe);
1a240d4d 2089 enum pipe pch_transcoder;
b24e7179
JB
2090 int reg;
2091 u32 val;
2092
58c6eaa2 2093 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2094 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2095 assert_sprites_disabled(dev_priv, pipe);
2096
681e5811 2097 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2098 pch_transcoder = TRANSCODER_A;
2099 else
2100 pch_transcoder = pipe;
2101
b24e7179
JB
2102 /*
2103 * A pipe without a PLL won't actually be able to drive bits from
2104 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2105 * need the check.
2106 */
2107 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2108 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2109 assert_dsi_pll_enabled(dev_priv);
2110 else
2111 assert_pll_enabled(dev_priv, pipe);
040484af 2112 else {
6e3c9717 2113 if (crtc->config->has_pch_encoder) {
040484af 2114 /* if driving the PCH, we need FDI enabled */
cc391bbb 2115 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2116 assert_fdi_tx_pll_enabled(dev_priv,
2117 (enum pipe) cpu_transcoder);
040484af
JB
2118 }
2119 /* FIXME: assert CPU port conditions for SNB+ */
2120 }
b24e7179 2121
702e7a56 2122 reg = PIPECONF(cpu_transcoder);
b24e7179 2123 val = I915_READ(reg);
7ad25d48 2124 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2125 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2126 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2127 return;
7ad25d48 2128 }
00d70b15
CW
2129
2130 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2131 POSTING_READ(reg);
b24e7179
JB
2132}
2133
2134/**
309cfea8 2135 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2136 * @crtc: crtc whose pipes is to be disabled
b24e7179 2137 *
575f7ab7
VS
2138 * Disable the pipe of @crtc, making sure that various hardware
2139 * specific requirements are met, if applicable, e.g. plane
2140 * disabled, panel fitter off, etc.
b24e7179
JB
2141 *
2142 * Will wait until the pipe has shut down before returning.
2143 */
575f7ab7 2144static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2145{
575f7ab7 2146 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2147 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2148 enum pipe pipe = crtc->pipe;
b24e7179
JB
2149 int reg;
2150 u32 val;
2151
2152 /*
2153 * Make sure planes won't keep trying to pump pixels to us,
2154 * or we might hang the display.
2155 */
2156 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2157 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2158 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2159
702e7a56 2160 reg = PIPECONF(cpu_transcoder);
b24e7179 2161 val = I915_READ(reg);
00d70b15
CW
2162 if ((val & PIPECONF_ENABLE) == 0)
2163 return;
2164
67adc644
VS
2165 /*
2166 * Double wide has implications for planes
2167 * so best keep it disabled when not needed.
2168 */
6e3c9717 2169 if (crtc->config->double_wide)
67adc644
VS
2170 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2173 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2175 val &= ~PIPECONF_ENABLE;
2176
2177 I915_WRITE(reg, val);
2178 if ((val & PIPECONF_ENABLE) == 0)
2179 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2180}
2181
d74362c9
KP
2182/*
2183 * Plane regs are double buffered, going from enabled->disabled needs a
2184 * trigger in order to latch. The display address reg provides this.
2185 */
1dba99f4
VS
2186void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2187 enum plane plane)
d74362c9 2188{
3d13ef2e
DL
2189 struct drm_device *dev = dev_priv->dev;
2190 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2191
2192 I915_WRITE(reg, I915_READ(reg));
2193 POSTING_READ(reg);
d74362c9
KP
2194}
2195
b24e7179 2196/**
262ca2b0 2197 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2198 * @plane: plane to be enabled
2199 * @crtc: crtc for the plane
b24e7179 2200 *
fdd508a6 2201 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2202 */
fdd508a6
VS
2203static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2204 struct drm_crtc *crtc)
b24e7179 2205{
fdd508a6
VS
2206 struct drm_device *dev = plane->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2209
2210 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2211 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2212
98ec7739
VS
2213 if (intel_crtc->primary_enabled)
2214 return;
0037f71c 2215
4c445e0e 2216 intel_crtc->primary_enabled = true;
939c2fe8 2217
fdd508a6
VS
2218 dev_priv->display.update_primary_plane(crtc, plane->fb,
2219 crtc->x, crtc->y);
33c3b0d1
VS
2220
2221 /*
2222 * BDW signals flip done immediately if the plane
2223 * is disabled, even if the plane enable is already
2224 * armed to occur at the next vblank :(
2225 */
2226 if (IS_BROADWELL(dev))
2227 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2228}
2229
b24e7179 2230/**
262ca2b0 2231 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2232 * @plane: plane to be disabled
2233 * @crtc: crtc for the plane
b24e7179 2234 *
fdd508a6 2235 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2236 */
fdd508a6
VS
2237static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2238 struct drm_crtc *crtc)
b24e7179 2239{
fdd508a6
VS
2240 struct drm_device *dev = plane->dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2243
32b7eeec
MR
2244 if (WARN_ON(!intel_crtc->active))
2245 return;
b24e7179 2246
98ec7739
VS
2247 if (!intel_crtc->primary_enabled)
2248 return;
0037f71c 2249
4c445e0e 2250 intel_crtc->primary_enabled = false;
939c2fe8 2251
fdd508a6
VS
2252 dev_priv->display.update_primary_plane(crtc, plane->fb,
2253 crtc->x, crtc->y);
b24e7179
JB
2254}
2255
693db184
CW
2256static bool need_vtd_wa(struct drm_device *dev)
2257{
2258#ifdef CONFIG_INTEL_IOMMU
2259 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2260 return true;
2261#endif
2262 return false;
2263}
2264
50470bb0 2265unsigned int
6761dd31
TU
2266intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2267 uint64_t fb_format_modifier)
a57ce0b2 2268{
6761dd31
TU
2269 unsigned int tile_height;
2270 uint32_t pixel_bytes;
a57ce0b2 2271
b5d0e9bf
DL
2272 switch (fb_format_modifier) {
2273 case DRM_FORMAT_MOD_NONE:
2274 tile_height = 1;
2275 break;
2276 case I915_FORMAT_MOD_X_TILED:
2277 tile_height = IS_GEN2(dev) ? 16 : 8;
2278 break;
2279 case I915_FORMAT_MOD_Y_TILED:
2280 tile_height = 32;
2281 break;
2282 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2283 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2284 switch (pixel_bytes) {
b5d0e9bf 2285 default:
6761dd31 2286 case 1:
b5d0e9bf
DL
2287 tile_height = 64;
2288 break;
6761dd31
TU
2289 case 2:
2290 case 4:
b5d0e9bf
DL
2291 tile_height = 32;
2292 break;
6761dd31 2293 case 8:
b5d0e9bf
DL
2294 tile_height = 16;
2295 break;
6761dd31 2296 case 16:
b5d0e9bf
DL
2297 WARN_ONCE(1,
2298 "128-bit pixels are not supported for display!");
2299 tile_height = 16;
2300 break;
2301 }
2302 break;
2303 default:
2304 MISSING_CASE(fb_format_modifier);
2305 tile_height = 1;
2306 break;
2307 }
091df6cb 2308
6761dd31
TU
2309 return tile_height;
2310}
2311
2312unsigned int
2313intel_fb_align_height(struct drm_device *dev, unsigned int height,
2314 uint32_t pixel_format, uint64_t fb_format_modifier)
2315{
2316 return ALIGN(height, intel_tile_height(dev, pixel_format,
2317 fb_format_modifier));
a57ce0b2
JB
2318}
2319
f64b98cd
TU
2320static int
2321intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2322 const struct drm_plane_state *plane_state)
2323{
50470bb0 2324 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2325
f64b98cd
TU
2326 *view = i915_ggtt_view_normal;
2327
50470bb0
TU
2328 if (!plane_state)
2329 return 0;
2330
121920fa 2331 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2332 return 0;
2333
9abc4648 2334 *view = i915_ggtt_view_rotated;
50470bb0
TU
2335
2336 info->height = fb->height;
2337 info->pixel_format = fb->pixel_format;
2338 info->pitch = fb->pitches[0];
2339 info->fb_modifier = fb->modifier[0];
2340
2341 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2342 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2343 DRM_DEBUG_KMS(
2344 "Y or Yf tiling is needed for 90/270 rotation!\n");
2345 return -EINVAL;
2346 }
2347
f64b98cd
TU
2348 return 0;
2349}
2350
127bd2ac 2351int
850c4cdc
TU
2352intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2353 struct drm_framebuffer *fb,
82bc3b2d 2354 const struct drm_plane_state *plane_state,
a4872ba6 2355 struct intel_engine_cs *pipelined)
6b95a207 2356{
850c4cdc 2357 struct drm_device *dev = fb->dev;
ce453d81 2358 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2359 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2360 struct i915_ggtt_view view;
6b95a207
KH
2361 u32 alignment;
2362 int ret;
2363
ebcdd39e
MR
2364 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2365
7b911adc
TU
2366 switch (fb->modifier[0]) {
2367 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2368 if (INTEL_INFO(dev)->gen >= 9)
2369 alignment = 256 * 1024;
2370 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2371 alignment = 128 * 1024;
a6c45cf0 2372 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2373 alignment = 4 * 1024;
2374 else
2375 alignment = 64 * 1024;
6b95a207 2376 break;
7b911adc 2377 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2378 if (INTEL_INFO(dev)->gen >= 9)
2379 alignment = 256 * 1024;
2380 else {
2381 /* pin() will align the object as required by fence */
2382 alignment = 0;
2383 }
6b95a207 2384 break;
7b911adc 2385 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2386 case I915_FORMAT_MOD_Yf_TILED:
2387 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2388 "Y tiling bo slipped through, driver bug!\n"))
2389 return -EINVAL;
2390 alignment = 1 * 1024 * 1024;
2391 break;
6b95a207 2392 default:
7b911adc
TU
2393 MISSING_CASE(fb->modifier[0]);
2394 return -EINVAL;
6b95a207
KH
2395 }
2396
f64b98cd
TU
2397 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2398 if (ret)
2399 return ret;
2400
693db184
CW
2401 /* Note that the w/a also requires 64 PTE of padding following the
2402 * bo. We currently fill all unused PTE with the shadow page and so
2403 * we should always have valid PTE following the scanout preventing
2404 * the VT-d warning.
2405 */
2406 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2407 alignment = 256 * 1024;
2408
d6dd6843
PZ
2409 /*
2410 * Global gtt pte registers are special registers which actually forward
2411 * writes to a chunk of system memory. Which means that there is no risk
2412 * that the register values disappear as soon as we call
2413 * intel_runtime_pm_put(), so it is correct to wrap only the
2414 * pin/unpin/fence and not more.
2415 */
2416 intel_runtime_pm_get(dev_priv);
2417
ce453d81 2418 dev_priv->mm.interruptible = false;
e6617330 2419 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2420 &view);
48b956c5 2421 if (ret)
ce453d81 2422 goto err_interruptible;
6b95a207
KH
2423
2424 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2425 * fence, whereas 965+ only requires a fence if using
2426 * framebuffer compression. For simplicity, we always install
2427 * a fence as the cost is not that onerous.
2428 */
06d98131 2429 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2430 if (ret)
2431 goto err_unpin;
1690e1eb 2432
9a5a53b3 2433 i915_gem_object_pin_fence(obj);
6b95a207 2434
ce453d81 2435 dev_priv->mm.interruptible = true;
d6dd6843 2436 intel_runtime_pm_put(dev_priv);
6b95a207 2437 return 0;
48b956c5
CW
2438
2439err_unpin:
f64b98cd 2440 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2441err_interruptible:
2442 dev_priv->mm.interruptible = true;
d6dd6843 2443 intel_runtime_pm_put(dev_priv);
48b956c5 2444 return ret;
6b95a207
KH
2445}
2446
82bc3b2d
TU
2447static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2448 const struct drm_plane_state *plane_state)
1690e1eb 2449{
82bc3b2d 2450 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2451 struct i915_ggtt_view view;
2452 int ret;
82bc3b2d 2453
ebcdd39e
MR
2454 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2455
f64b98cd
TU
2456 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2457 WARN_ONCE(ret, "Couldn't get view from plane state!");
2458
1690e1eb 2459 i915_gem_object_unpin_fence(obj);
f64b98cd 2460 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2461}
2462
c2c75131
DV
2463/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2464 * is assumed to be a power-of-two. */
bc752862
CW
2465unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2466 unsigned int tiling_mode,
2467 unsigned int cpp,
2468 unsigned int pitch)
c2c75131 2469{
bc752862
CW
2470 if (tiling_mode != I915_TILING_NONE) {
2471 unsigned int tile_rows, tiles;
c2c75131 2472
bc752862
CW
2473 tile_rows = *y / 8;
2474 *y %= 8;
c2c75131 2475
bc752862
CW
2476 tiles = *x / (512/cpp);
2477 *x %= 512/cpp;
2478
2479 return tile_rows * pitch * 8 + tiles * 4096;
2480 } else {
2481 unsigned int offset;
2482
2483 offset = *y * pitch + *x * cpp;
2484 *y = 0;
2485 *x = (offset & 4095) / cpp;
2486 return offset & -4096;
2487 }
c2c75131
DV
2488}
2489
b35d63fa 2490static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2491{
2492 switch (format) {
2493 case DISPPLANE_8BPP:
2494 return DRM_FORMAT_C8;
2495 case DISPPLANE_BGRX555:
2496 return DRM_FORMAT_XRGB1555;
2497 case DISPPLANE_BGRX565:
2498 return DRM_FORMAT_RGB565;
2499 default:
2500 case DISPPLANE_BGRX888:
2501 return DRM_FORMAT_XRGB8888;
2502 case DISPPLANE_RGBX888:
2503 return DRM_FORMAT_XBGR8888;
2504 case DISPPLANE_BGRX101010:
2505 return DRM_FORMAT_XRGB2101010;
2506 case DISPPLANE_RGBX101010:
2507 return DRM_FORMAT_XBGR2101010;
2508 }
2509}
2510
bc8d7dff
DL
2511static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2512{
2513 switch (format) {
2514 case PLANE_CTL_FORMAT_RGB_565:
2515 return DRM_FORMAT_RGB565;
2516 default:
2517 case PLANE_CTL_FORMAT_XRGB_8888:
2518 if (rgb_order) {
2519 if (alpha)
2520 return DRM_FORMAT_ABGR8888;
2521 else
2522 return DRM_FORMAT_XBGR8888;
2523 } else {
2524 if (alpha)
2525 return DRM_FORMAT_ARGB8888;
2526 else
2527 return DRM_FORMAT_XRGB8888;
2528 }
2529 case PLANE_CTL_FORMAT_XRGB_2101010:
2530 if (rgb_order)
2531 return DRM_FORMAT_XBGR2101010;
2532 else
2533 return DRM_FORMAT_XRGB2101010;
2534 }
2535}
2536
5724dbd1 2537static bool
f6936e29
DV
2538intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2539 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2540{
2541 struct drm_device *dev = crtc->base.dev;
2542 struct drm_i915_gem_object *obj = NULL;
2543 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2544 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2545 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2546 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2547 PAGE_SIZE);
2548
2549 size_aligned -= base_aligned;
46f297fb 2550
ff2652ea
CW
2551 if (plane_config->size == 0)
2552 return false;
2553
f37b5c2b
DV
2554 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555 base_aligned,
2556 base_aligned,
2557 size_aligned);
46f297fb 2558 if (!obj)
484b41dd 2559 return false;
46f297fb 2560
49af449b
DL
2561 obj->tiling_mode = plane_config->tiling;
2562 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2563 obj->stride = fb->pitches[0];
46f297fb 2564
6bf129df
DL
2565 mode_cmd.pixel_format = fb->pixel_format;
2566 mode_cmd.width = fb->width;
2567 mode_cmd.height = fb->height;
2568 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2569 mode_cmd.modifier[0] = fb->modifier[0];
2570 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2571
2572 mutex_lock(&dev->struct_mutex);
6bf129df 2573 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2574 &mode_cmd, obj)) {
46f297fb
JB
2575 DRM_DEBUG_KMS("intel fb init failed\n");
2576 goto out_unref_obj;
2577 }
46f297fb 2578 mutex_unlock(&dev->struct_mutex);
484b41dd 2579
f6936e29 2580 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2581 return true;
46f297fb
JB
2582
2583out_unref_obj:
2584 drm_gem_object_unreference(&obj->base);
2585 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2586 return false;
2587}
2588
afd65eb4
MR
2589/* Update plane->state->fb to match plane->fb after driver-internal updates */
2590static void
2591update_state_fb(struct drm_plane *plane)
2592{
2593 if (plane->fb == plane->state->fb)
2594 return;
2595
2596 if (plane->state->fb)
2597 drm_framebuffer_unreference(plane->state->fb);
2598 plane->state->fb = plane->fb;
2599 if (plane->state->fb)
2600 drm_framebuffer_reference(plane->state->fb);
2601}
2602
5724dbd1 2603static void
f6936e29
DV
2604intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2606{
2607 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2608 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2609 struct drm_crtc *c;
2610 struct intel_crtc *i;
2ff8fde1 2611 struct drm_i915_gem_object *obj;
88595ac9
DV
2612 struct drm_plane *primary = intel_crtc->base.primary;
2613 struct drm_framebuffer *fb;
484b41dd 2614
2d14030b 2615 if (!plane_config->fb)
484b41dd
JB
2616 return;
2617
f6936e29 2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
f55548b5 2621 }
484b41dd 2622
2d14030b 2623 kfree(plane_config->fb);
484b41dd
JB
2624
2625 /*
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2628 */
70e1e0ec 2629 for_each_crtc(dev, c) {
484b41dd
JB
2630 i = to_intel_crtc(c);
2631
2632 if (c == &intel_crtc->base)
2633 continue;
2634
2ff8fde1
MR
2635 if (!i->active)
2636 continue;
2637
88595ac9
DV
2638 fb = c->primary->fb;
2639 if (!fb)
484b41dd
JB
2640 continue;
2641
88595ac9 2642 obj = intel_fb_obj(fb);
2ff8fde1 2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
484b41dd
JB
2646 }
2647 }
88595ac9
DV
2648
2649 return;
2650
2651valid_fb:
2652 obj = intel_fb_obj(fb);
2653 if (obj->tiling_mode != I915_TILING_NONE)
2654 dev_priv->preserve_bios_swizzle = true;
2655
2656 primary->fb = fb;
2657 primary->state->crtc = &intel_crtc->base;
2658 primary->crtc = &intel_crtc->base;
2659 update_state_fb(primary);
2660 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2661}
2662
29b9bde6
DV
2663static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2664 struct drm_framebuffer *fb,
2665 int x, int y)
81255565
JB
2666{
2667 struct drm_device *dev = crtc->dev;
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2670 struct drm_i915_gem_object *obj;
81255565 2671 int plane = intel_crtc->plane;
e506a0c6 2672 unsigned long linear_offset;
81255565 2673 u32 dspcntr;
f45651ba 2674 u32 reg = DSPCNTR(plane);
48404c1e 2675 int pixel_size;
f45651ba 2676
fdd508a6
VS
2677 if (!intel_crtc->primary_enabled) {
2678 I915_WRITE(reg, 0);
2679 if (INTEL_INFO(dev)->gen >= 4)
2680 I915_WRITE(DSPSURF(plane), 0);
2681 else
2682 I915_WRITE(DSPADDR(plane), 0);
2683 POSTING_READ(reg);
2684 return;
2685 }
2686
c9ba6fad
VS
2687 obj = intel_fb_obj(fb);
2688 if (WARN_ON(obj == NULL))
2689 return;
2690
2691 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2692
f45651ba
VS
2693 dspcntr = DISPPLANE_GAMMA_ENABLE;
2694
fdd508a6 2695 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2696
2697 if (INTEL_INFO(dev)->gen < 4) {
2698 if (intel_crtc->pipe == PIPE_B)
2699 dspcntr |= DISPPLANE_SEL_PIPE_B;
2700
2701 /* pipesrc and dspsize control the size that is scaled from,
2702 * which should always be the user's requested size.
2703 */
2704 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2705 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2706 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2707 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2708 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2709 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2710 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2711 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2712 I915_WRITE(PRIMPOS(plane), 0);
2713 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2714 }
81255565 2715
57779d06
VS
2716 switch (fb->pixel_format) {
2717 case DRM_FORMAT_C8:
81255565
JB
2718 dspcntr |= DISPPLANE_8BPP;
2719 break;
57779d06
VS
2720 case DRM_FORMAT_XRGB1555:
2721 case DRM_FORMAT_ARGB1555:
2722 dspcntr |= DISPPLANE_BGRX555;
81255565 2723 break;
57779d06
VS
2724 case DRM_FORMAT_RGB565:
2725 dspcntr |= DISPPLANE_BGRX565;
2726 break;
2727 case DRM_FORMAT_XRGB8888:
2728 case DRM_FORMAT_ARGB8888:
2729 dspcntr |= DISPPLANE_BGRX888;
2730 break;
2731 case DRM_FORMAT_XBGR8888:
2732 case DRM_FORMAT_ABGR8888:
2733 dspcntr |= DISPPLANE_RGBX888;
2734 break;
2735 case DRM_FORMAT_XRGB2101010:
2736 case DRM_FORMAT_ARGB2101010:
2737 dspcntr |= DISPPLANE_BGRX101010;
2738 break;
2739 case DRM_FORMAT_XBGR2101010:
2740 case DRM_FORMAT_ABGR2101010:
2741 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2742 break;
2743 default:
baba133a 2744 BUG();
81255565 2745 }
57779d06 2746
f45651ba
VS
2747 if (INTEL_INFO(dev)->gen >= 4 &&
2748 obj->tiling_mode != I915_TILING_NONE)
2749 dspcntr |= DISPPLANE_TILED;
81255565 2750
de1aa629
VS
2751 if (IS_G4X(dev))
2752 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2753
b9897127 2754 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2755
c2c75131
DV
2756 if (INTEL_INFO(dev)->gen >= 4) {
2757 intel_crtc->dspaddr_offset =
bc752862 2758 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2759 pixel_size,
bc752862 2760 fb->pitches[0]);
c2c75131
DV
2761 linear_offset -= intel_crtc->dspaddr_offset;
2762 } else {
e506a0c6 2763 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2764 }
e506a0c6 2765
8e7d688b 2766 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2767 dspcntr |= DISPPLANE_ROTATE_180;
2768
6e3c9717
ACO
2769 x += (intel_crtc->config->pipe_src_w - 1);
2770 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2771
2772 /* Finding the last pixel of the last line of the display
2773 data and adding to linear_offset*/
2774 linear_offset +=
6e3c9717
ACO
2775 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2776 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2777 }
2778
2779 I915_WRITE(reg, dspcntr);
2780
01f2c773 2781 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2782 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2783 I915_WRITE(DSPSURF(plane),
2784 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2785 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2786 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2787 } else
f343c5f6 2788 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2789 POSTING_READ(reg);
17638cd6
JB
2790}
2791
29b9bde6
DV
2792static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793 struct drm_framebuffer *fb,
2794 int x, int y)
17638cd6
JB
2795{
2796 struct drm_device *dev = crtc->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2799 struct drm_i915_gem_object *obj;
17638cd6 2800 int plane = intel_crtc->plane;
e506a0c6 2801 unsigned long linear_offset;
17638cd6 2802 u32 dspcntr;
f45651ba 2803 u32 reg = DSPCNTR(plane);
48404c1e 2804 int pixel_size;
f45651ba 2805
fdd508a6
VS
2806 if (!intel_crtc->primary_enabled) {
2807 I915_WRITE(reg, 0);
2808 I915_WRITE(DSPSURF(plane), 0);
2809 POSTING_READ(reg);
2810 return;
2811 }
2812
c9ba6fad
VS
2813 obj = intel_fb_obj(fb);
2814 if (WARN_ON(obj == NULL))
2815 return;
2816
2817 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
f45651ba
VS
2819 dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
fdd508a6 2821 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2822
2823 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2825
57779d06
VS
2826 switch (fb->pixel_format) {
2827 case DRM_FORMAT_C8:
17638cd6
JB
2828 dspcntr |= DISPPLANE_8BPP;
2829 break;
57779d06
VS
2830 case DRM_FORMAT_RGB565:
2831 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2832 break;
57779d06
VS
2833 case DRM_FORMAT_XRGB8888:
2834 case DRM_FORMAT_ARGB8888:
2835 dspcntr |= DISPPLANE_BGRX888;
2836 break;
2837 case DRM_FORMAT_XBGR8888:
2838 case DRM_FORMAT_ABGR8888:
2839 dspcntr |= DISPPLANE_RGBX888;
2840 break;
2841 case DRM_FORMAT_XRGB2101010:
2842 case DRM_FORMAT_ARGB2101010:
2843 dspcntr |= DISPPLANE_BGRX101010;
2844 break;
2845 case DRM_FORMAT_XBGR2101010:
2846 case DRM_FORMAT_ABGR2101010:
2847 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2848 break;
2849 default:
baba133a 2850 BUG();
17638cd6
JB
2851 }
2852
2853 if (obj->tiling_mode != I915_TILING_NONE)
2854 dspcntr |= DISPPLANE_TILED;
17638cd6 2855
f45651ba 2856 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2857 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2858
b9897127 2859 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2860 intel_crtc->dspaddr_offset =
bc752862 2861 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2862 pixel_size,
bc752862 2863 fb->pitches[0]);
c2c75131 2864 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2865 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2866 dspcntr |= DISPPLANE_ROTATE_180;
2867
2868 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2869 x += (intel_crtc->config->pipe_src_w - 1);
2870 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2871
2872 /* Finding the last pixel of the last line of the display
2873 data and adding to linear_offset*/
2874 linear_offset +=
6e3c9717
ACO
2875 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2876 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2877 }
2878 }
2879
2880 I915_WRITE(reg, dspcntr);
17638cd6 2881
01f2c773 2882 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2883 I915_WRITE(DSPSURF(plane),
2884 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2885 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2886 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887 } else {
2888 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890 }
17638cd6 2891 POSTING_READ(reg);
17638cd6
JB
2892}
2893
b321803d
DL
2894u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895 uint32_t pixel_format)
2896{
2897 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899 /*
2900 * The stride is either expressed as a multiple of 64 bytes
2901 * chunks for linear buffers or in number of tiles for tiled
2902 * buffers.
2903 */
2904 switch (fb_modifier) {
2905 case DRM_FORMAT_MOD_NONE:
2906 return 64;
2907 case I915_FORMAT_MOD_X_TILED:
2908 if (INTEL_INFO(dev)->gen == 2)
2909 return 128;
2910 return 512;
2911 case I915_FORMAT_MOD_Y_TILED:
2912 /* No need to check for old gens and Y tiling since this is
2913 * about the display engine and those will be blocked before
2914 * we get here.
2915 */
2916 return 128;
2917 case I915_FORMAT_MOD_Yf_TILED:
2918 if (bits_per_pixel == 8)
2919 return 64;
2920 else
2921 return 128;
2922 default:
2923 MISSING_CASE(fb_modifier);
2924 return 64;
2925 }
2926}
2927
121920fa
TU
2928unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2929 struct drm_i915_gem_object *obj)
2930{
9abc4648 2931 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2932
2933 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2934 view = &i915_ggtt_view_rotated;
121920fa
TU
2935
2936 return i915_gem_obj_ggtt_offset_view(obj, view);
2937}
2938
70d21f0e
DL
2939static void skylake_update_primary_plane(struct drm_crtc *crtc,
2940 struct drm_framebuffer *fb,
2941 int x, int y)
2942{
2943 struct drm_device *dev = crtc->dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
70d21f0e
DL
2946 struct drm_i915_gem_object *obj;
2947 int pipe = intel_crtc->pipe;
b321803d 2948 u32 plane_ctl, stride_div;
121920fa 2949 unsigned long surf_addr;
70d21f0e
DL
2950
2951 if (!intel_crtc->primary_enabled) {
2952 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2953 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2954 POSTING_READ(PLANE_CTL(pipe, 0));
2955 return;
2956 }
2957
2958 plane_ctl = PLANE_CTL_ENABLE |
2959 PLANE_CTL_PIPE_GAMMA_ENABLE |
2960 PLANE_CTL_PIPE_CSC_ENABLE;
2961
2962 switch (fb->pixel_format) {
2963 case DRM_FORMAT_RGB565:
2964 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2965 break;
2966 case DRM_FORMAT_XRGB8888:
2967 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2968 break;
f75fb42a
JN
2969 case DRM_FORMAT_ARGB8888:
2970 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2971 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2972 break;
70d21f0e
DL
2973 case DRM_FORMAT_XBGR8888:
2974 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2975 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2976 break;
f75fb42a
JN
2977 case DRM_FORMAT_ABGR8888:
2978 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2979 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2980 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2981 break;
70d21f0e
DL
2982 case DRM_FORMAT_XRGB2101010:
2983 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2984 break;
2985 case DRM_FORMAT_XBGR2101010:
2986 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2987 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2988 break;
2989 default:
2990 BUG();
2991 }
2992
30af77c4
DV
2993 switch (fb->modifier[0]) {
2994 case DRM_FORMAT_MOD_NONE:
70d21f0e 2995 break;
30af77c4 2996 case I915_FORMAT_MOD_X_TILED:
70d21f0e 2997 plane_ctl |= PLANE_CTL_TILED_X;
b321803d
DL
2998 break;
2999 case I915_FORMAT_MOD_Y_TILED:
3000 plane_ctl |= PLANE_CTL_TILED_Y;
3001 break;
3002 case I915_FORMAT_MOD_Yf_TILED:
3003 plane_ctl |= PLANE_CTL_TILED_YF;
70d21f0e
DL
3004 break;
3005 default:
b321803d 3006 MISSING_CASE(fb->modifier[0]);
70d21f0e
DL
3007 }
3008
3009 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 3010 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 3011 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e 3012
b321803d
DL
3013 obj = intel_fb_obj(fb);
3014 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3015 fb->pixel_format);
121920fa 3016 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
b321803d 3017
70d21f0e 3018 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
70d21f0e
DL
3019 I915_WRITE(PLANE_POS(pipe, 0), 0);
3020 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
3021 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
3022 (intel_crtc->config->pipe_src_h - 1) << 16 |
3023 (intel_crtc->config->pipe_src_w - 1));
b321803d 3024 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
121920fa 3025 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3026
3027 POSTING_READ(PLANE_SURF(pipe, 0));
3028}
3029
17638cd6
JB
3030/* Assume fb object is pinned & idle & fenced and just update base pointers */
3031static int
3032intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3033 int x, int y, enum mode_set_atomic state)
3034{
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3037
6b8e6ed0
CW
3038 if (dev_priv->display.disable_fbc)
3039 dev_priv->display.disable_fbc(dev);
81255565 3040
29b9bde6
DV
3041 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3042
3043 return 0;
81255565
JB
3044}
3045
7514747d 3046static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3047{
96a02917
VS
3048 struct drm_crtc *crtc;
3049
70e1e0ec 3050 for_each_crtc(dev, crtc) {
96a02917
VS
3051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3052 enum plane plane = intel_crtc->plane;
3053
3054 intel_prepare_page_flip(dev, plane);
3055 intel_finish_page_flip_plane(dev, plane);
3056 }
7514747d
VS
3057}
3058
3059static void intel_update_primary_planes(struct drm_device *dev)
3060{
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct drm_crtc *crtc;
96a02917 3063
70e1e0ec 3064 for_each_crtc(dev, crtc) {
96a02917
VS
3065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066
51fd371b 3067 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3068 /*
3069 * FIXME: Once we have proper support for primary planes (and
3070 * disabling them without disabling the entire crtc) allow again
66e514c1 3071 * a NULL crtc->primary->fb.
947fdaad 3072 */
f4510a27 3073 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3074 dev_priv->display.update_primary_plane(crtc,
66e514c1 3075 crtc->primary->fb,
262ca2b0
MR
3076 crtc->x,
3077 crtc->y);
51fd371b 3078 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3079 }
3080}
3081
7514747d
VS
3082void intel_prepare_reset(struct drm_device *dev)
3083{
f98ce92f
VS
3084 struct drm_i915_private *dev_priv = to_i915(dev);
3085 struct intel_crtc *crtc;
3086
7514747d
VS
3087 /* no reset support for gen2 */
3088 if (IS_GEN2(dev))
3089 return;
3090
3091 /* reset doesn't touch the display */
3092 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3093 return;
3094
3095 drm_modeset_lock_all(dev);
f98ce92f
VS
3096
3097 /*
3098 * Disabling the crtcs gracefully seems nicer. Also the
3099 * g33 docs say we should at least disable all the planes.
3100 */
3101 for_each_intel_crtc(dev, crtc) {
3102 if (crtc->active)
3103 dev_priv->display.crtc_disable(&crtc->base);
3104 }
7514747d
VS
3105}
3106
3107void intel_finish_reset(struct drm_device *dev)
3108{
3109 struct drm_i915_private *dev_priv = to_i915(dev);
3110
3111 /*
3112 * Flips in the rings will be nuked by the reset,
3113 * so complete all pending flips so that user space
3114 * will get its events and not get stuck.
3115 */
3116 intel_complete_page_flips(dev);
3117
3118 /* no reset support for gen2 */
3119 if (IS_GEN2(dev))
3120 return;
3121
3122 /* reset doesn't touch the display */
3123 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3124 /*
3125 * Flips in the rings have been nuked by the reset,
3126 * so update the base address of all primary
3127 * planes to the the last fb to make sure we're
3128 * showing the correct fb after a reset.
3129 */
3130 intel_update_primary_planes(dev);
3131 return;
3132 }
3133
3134 /*
3135 * The display has been reset as well,
3136 * so need a full re-initialization.
3137 */
3138 intel_runtime_pm_disable_interrupts(dev_priv);
3139 intel_runtime_pm_enable_interrupts(dev_priv);
3140
3141 intel_modeset_init_hw(dev);
3142
3143 spin_lock_irq(&dev_priv->irq_lock);
3144 if (dev_priv->display.hpd_irq_setup)
3145 dev_priv->display.hpd_irq_setup(dev);
3146 spin_unlock_irq(&dev_priv->irq_lock);
3147
3148 intel_modeset_setup_hw_state(dev, true);
3149
3150 intel_hpd_init(dev_priv);
3151
3152 drm_modeset_unlock_all(dev);
3153}
3154
14667a4b
CW
3155static int
3156intel_finish_fb(struct drm_framebuffer *old_fb)
3157{
2ff8fde1 3158 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
3159 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3160 bool was_interruptible = dev_priv->mm.interruptible;
3161 int ret;
3162
14667a4b
CW
3163 /* Big Hammer, we also need to ensure that any pending
3164 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3165 * current scanout is retired before unpinning the old
3166 * framebuffer.
3167 *
3168 * This should only fail upon a hung GPU, in which case we
3169 * can safely continue.
3170 */
3171 dev_priv->mm.interruptible = false;
3172 ret = i915_gem_object_finish_gpu(obj);
3173 dev_priv->mm.interruptible = was_interruptible;
3174
3175 return ret;
3176}
3177
7d5e3799
CW
3178static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3179{
3180 struct drm_device *dev = crtc->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3183 bool pending;
3184
3185 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3186 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3187 return false;
3188
5e2d7afc 3189 spin_lock_irq(&dev->event_lock);
7d5e3799 3190 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3191 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3192
3193 return pending;
3194}
3195
e30e8f75
GP
3196static void intel_update_pipe_size(struct intel_crtc *crtc)
3197{
3198 struct drm_device *dev = crtc->base.dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 const struct drm_display_mode *adjusted_mode;
3201
3202 if (!i915.fastboot)
3203 return;
3204
3205 /*
3206 * Update pipe size and adjust fitter if needed: the reason for this is
3207 * that in compute_mode_changes we check the native mode (not the pfit
3208 * mode) to see if we can flip rather than do a full mode set. In the
3209 * fastboot case, we'll flip, but if we don't update the pipesrc and
3210 * pfit state, we'll end up with a big fb scanned out into the wrong
3211 * sized surface.
3212 *
3213 * To fix this properly, we need to hoist the checks up into
3214 * compute_mode_changes (or above), check the actual pfit state and
3215 * whether the platform allows pfit disable with pipe active, and only
3216 * then update the pipesrc and pfit state, even on the flip path.
3217 */
3218
6e3c9717 3219 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3220
3221 I915_WRITE(PIPESRC(crtc->pipe),
3222 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3223 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3224 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3225 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3226 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3227 I915_WRITE(PF_CTL(crtc->pipe), 0);
3228 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3229 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3230 }
6e3c9717
ACO
3231 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3232 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3233}
3234
5e84e1a4
ZW
3235static void intel_fdi_normal_train(struct drm_crtc *crtc)
3236{
3237 struct drm_device *dev = crtc->dev;
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240 int pipe = intel_crtc->pipe;
3241 u32 reg, temp;
3242
3243 /* enable normal train */
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
61e499bf 3246 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3247 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3248 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3249 } else {
3250 temp &= ~FDI_LINK_TRAIN_NONE;
3251 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3252 }
5e84e1a4
ZW
3253 I915_WRITE(reg, temp);
3254
3255 reg = FDI_RX_CTL(pipe);
3256 temp = I915_READ(reg);
3257 if (HAS_PCH_CPT(dev)) {
3258 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3259 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3260 } else {
3261 temp &= ~FDI_LINK_TRAIN_NONE;
3262 temp |= FDI_LINK_TRAIN_NONE;
3263 }
3264 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3265
3266 /* wait one idle pattern time */
3267 POSTING_READ(reg);
3268 udelay(1000);
357555c0
JB
3269
3270 /* IVB wants error correction enabled */
3271 if (IS_IVYBRIDGE(dev))
3272 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3273 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3274}
3275
8db9d77b
ZW
3276/* The FDI link training functions for ILK/Ibexpeak. */
3277static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3278{
3279 struct drm_device *dev = crtc->dev;
3280 struct drm_i915_private *dev_priv = dev->dev_private;
3281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282 int pipe = intel_crtc->pipe;
5eddb70b 3283 u32 reg, temp, tries;
8db9d77b 3284
1c8562f6 3285 /* FDI needs bits from pipe first */
0fc932b8 3286 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3287
e1a44743
AJ
3288 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3289 for train result */
5eddb70b
CW
3290 reg = FDI_RX_IMR(pipe);
3291 temp = I915_READ(reg);
e1a44743
AJ
3292 temp &= ~FDI_RX_SYMBOL_LOCK;
3293 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3294 I915_WRITE(reg, temp);
3295 I915_READ(reg);
e1a44743
AJ
3296 udelay(150);
3297
8db9d77b 3298 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3299 reg = FDI_TX_CTL(pipe);
3300 temp = I915_READ(reg);
627eb5a3 3301 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3302 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3303 temp &= ~FDI_LINK_TRAIN_NONE;
3304 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3305 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3306
5eddb70b
CW
3307 reg = FDI_RX_CTL(pipe);
3308 temp = I915_READ(reg);
8db9d77b
ZW
3309 temp &= ~FDI_LINK_TRAIN_NONE;
3310 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3311 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3312
3313 POSTING_READ(reg);
8db9d77b
ZW
3314 udelay(150);
3315
5b2adf89 3316 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3317 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3318 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3319 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3320
5eddb70b 3321 reg = FDI_RX_IIR(pipe);
e1a44743 3322 for (tries = 0; tries < 5; tries++) {
5eddb70b 3323 temp = I915_READ(reg);
8db9d77b
ZW
3324 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3325
3326 if ((temp & FDI_RX_BIT_LOCK)) {
3327 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3328 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3329 break;
3330 }
8db9d77b 3331 }
e1a44743 3332 if (tries == 5)
5eddb70b 3333 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3334
3335 /* Train 2 */
5eddb70b
CW
3336 reg = FDI_TX_CTL(pipe);
3337 temp = I915_READ(reg);
8db9d77b
ZW
3338 temp &= ~FDI_LINK_TRAIN_NONE;
3339 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3340 I915_WRITE(reg, temp);
8db9d77b 3341
5eddb70b
CW
3342 reg = FDI_RX_CTL(pipe);
3343 temp = I915_READ(reg);
8db9d77b
ZW
3344 temp &= ~FDI_LINK_TRAIN_NONE;
3345 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3346 I915_WRITE(reg, temp);
8db9d77b 3347
5eddb70b
CW
3348 POSTING_READ(reg);
3349 udelay(150);
8db9d77b 3350
5eddb70b 3351 reg = FDI_RX_IIR(pipe);
e1a44743 3352 for (tries = 0; tries < 5; tries++) {
5eddb70b 3353 temp = I915_READ(reg);
8db9d77b
ZW
3354 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3355
3356 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3357 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3358 DRM_DEBUG_KMS("FDI train 2 done.\n");
3359 break;
3360 }
8db9d77b 3361 }
e1a44743 3362 if (tries == 5)
5eddb70b 3363 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3364
3365 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3366
8db9d77b
ZW
3367}
3368
0206e353 3369static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3370 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3371 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3372 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3373 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3374};
3375
3376/* The FDI link training functions for SNB/Cougarpoint. */
3377static void gen6_fdi_link_train(struct drm_crtc *crtc)
3378{
3379 struct drm_device *dev = crtc->dev;
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382 int pipe = intel_crtc->pipe;
fa37d39e 3383 u32 reg, temp, i, retry;
8db9d77b 3384
e1a44743
AJ
3385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3386 for train result */
5eddb70b
CW
3387 reg = FDI_RX_IMR(pipe);
3388 temp = I915_READ(reg);
e1a44743
AJ
3389 temp &= ~FDI_RX_SYMBOL_LOCK;
3390 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3391 I915_WRITE(reg, temp);
3392
3393 POSTING_READ(reg);
e1a44743
AJ
3394 udelay(150);
3395
8db9d77b 3396 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3397 reg = FDI_TX_CTL(pipe);
3398 temp = I915_READ(reg);
627eb5a3 3399 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3400 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3401 temp &= ~FDI_LINK_TRAIN_NONE;
3402 temp |= FDI_LINK_TRAIN_PATTERN_1;
3403 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3404 /* SNB-B */
3405 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3406 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3407
d74cf324
DV
3408 I915_WRITE(FDI_RX_MISC(pipe),
3409 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3410
5eddb70b
CW
3411 reg = FDI_RX_CTL(pipe);
3412 temp = I915_READ(reg);
8db9d77b
ZW
3413 if (HAS_PCH_CPT(dev)) {
3414 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3415 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3416 } else {
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 }
5eddb70b
CW
3420 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3421
3422 POSTING_READ(reg);
8db9d77b
ZW
3423 udelay(150);
3424
0206e353 3425 for (i = 0; i < 4; i++) {
5eddb70b
CW
3426 reg = FDI_TX_CTL(pipe);
3427 temp = I915_READ(reg);
8db9d77b
ZW
3428 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3429 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3430 I915_WRITE(reg, temp);
3431
3432 POSTING_READ(reg);
8db9d77b
ZW
3433 udelay(500);
3434
fa37d39e
SP
3435 for (retry = 0; retry < 5; retry++) {
3436 reg = FDI_RX_IIR(pipe);
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439 if (temp & FDI_RX_BIT_LOCK) {
3440 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 break;
3443 }
3444 udelay(50);
8db9d77b 3445 }
fa37d39e
SP
3446 if (retry < 5)
3447 break;
8db9d77b
ZW
3448 }
3449 if (i == 4)
5eddb70b 3450 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3451
3452 /* Train 2 */
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 if (IS_GEN6(dev)) {
3458 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3459 /* SNB-B */
3460 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3461 }
5eddb70b 3462 I915_WRITE(reg, temp);
8db9d77b 3463
5eddb70b
CW
3464 reg = FDI_RX_CTL(pipe);
3465 temp = I915_READ(reg);
8db9d77b
ZW
3466 if (HAS_PCH_CPT(dev)) {
3467 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3468 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3469 } else {
3470 temp &= ~FDI_LINK_TRAIN_NONE;
3471 temp |= FDI_LINK_TRAIN_PATTERN_2;
3472 }
5eddb70b
CW
3473 I915_WRITE(reg, temp);
3474
3475 POSTING_READ(reg);
8db9d77b
ZW
3476 udelay(150);
3477
0206e353 3478 for (i = 0; i < 4; i++) {
5eddb70b
CW
3479 reg = FDI_TX_CTL(pipe);
3480 temp = I915_READ(reg);
8db9d77b
ZW
3481 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3482 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3483 I915_WRITE(reg, temp);
3484
3485 POSTING_READ(reg);
8db9d77b
ZW
3486 udelay(500);
3487
fa37d39e
SP
3488 for (retry = 0; retry < 5; retry++) {
3489 reg = FDI_RX_IIR(pipe);
3490 temp = I915_READ(reg);
3491 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3492 if (temp & FDI_RX_SYMBOL_LOCK) {
3493 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3494 DRM_DEBUG_KMS("FDI train 2 done.\n");
3495 break;
3496 }
3497 udelay(50);
8db9d77b 3498 }
fa37d39e
SP
3499 if (retry < 5)
3500 break;
8db9d77b
ZW
3501 }
3502 if (i == 4)
5eddb70b 3503 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3504
3505 DRM_DEBUG_KMS("FDI train done.\n");
3506}
3507
357555c0
JB
3508/* Manual link training for Ivy Bridge A0 parts */
3509static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3510{
3511 struct drm_device *dev = crtc->dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514 int pipe = intel_crtc->pipe;
139ccd3f 3515 u32 reg, temp, i, j;
357555c0
JB
3516
3517 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3518 for train result */
3519 reg = FDI_RX_IMR(pipe);
3520 temp = I915_READ(reg);
3521 temp &= ~FDI_RX_SYMBOL_LOCK;
3522 temp &= ~FDI_RX_BIT_LOCK;
3523 I915_WRITE(reg, temp);
3524
3525 POSTING_READ(reg);
3526 udelay(150);
3527
01a415fd
DV
3528 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3529 I915_READ(FDI_RX_IIR(pipe)));
3530
139ccd3f
JB
3531 /* Try each vswing and preemphasis setting twice before moving on */
3532 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3533 /* disable first in case we need to retry */
3534 reg = FDI_TX_CTL(pipe);
3535 temp = I915_READ(reg);
3536 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3537 temp &= ~FDI_TX_ENABLE;
3538 I915_WRITE(reg, temp);
357555c0 3539
139ccd3f
JB
3540 reg = FDI_RX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_AUTO;
3543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3544 temp &= ~FDI_RX_ENABLE;
3545 I915_WRITE(reg, temp);
357555c0 3546
139ccd3f 3547 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3548 reg = FDI_TX_CTL(pipe);
3549 temp = I915_READ(reg);
139ccd3f 3550 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3551 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3552 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3554 temp |= snb_b_fdi_train_param[j/2];
3555 temp |= FDI_COMPOSITE_SYNC;
3556 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3557
139ccd3f
JB
3558 I915_WRITE(FDI_RX_MISC(pipe),
3559 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3560
139ccd3f 3561 reg = FDI_RX_CTL(pipe);
357555c0 3562 temp = I915_READ(reg);
139ccd3f
JB
3563 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564 temp |= FDI_COMPOSITE_SYNC;
3565 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3566
139ccd3f
JB
3567 POSTING_READ(reg);
3568 udelay(1); /* should be 0.5us */
357555c0 3569
139ccd3f
JB
3570 for (i = 0; i < 4; i++) {
3571 reg = FDI_RX_IIR(pipe);
3572 temp = I915_READ(reg);
3573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3574
139ccd3f
JB
3575 if (temp & FDI_RX_BIT_LOCK ||
3576 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3578 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3579 i);
3580 break;
3581 }
3582 udelay(1); /* should be 0.5us */
3583 }
3584 if (i == 4) {
3585 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3586 continue;
3587 }
357555c0 3588
139ccd3f 3589 /* Train 2 */
357555c0
JB
3590 reg = FDI_TX_CTL(pipe);
3591 temp = I915_READ(reg);
139ccd3f
JB
3592 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3593 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3594 I915_WRITE(reg, temp);
3595
3596 reg = FDI_RX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3599 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3600 I915_WRITE(reg, temp);
3601
3602 POSTING_READ(reg);
139ccd3f 3603 udelay(2); /* should be 1.5us */
357555c0 3604
139ccd3f
JB
3605 for (i = 0; i < 4; i++) {
3606 reg = FDI_RX_IIR(pipe);
3607 temp = I915_READ(reg);
3608 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3609
139ccd3f
JB
3610 if (temp & FDI_RX_SYMBOL_LOCK ||
3611 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3612 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3613 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3614 i);
3615 goto train_done;
3616 }
3617 udelay(2); /* should be 1.5us */
357555c0 3618 }
139ccd3f
JB
3619 if (i == 4)
3620 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3621 }
357555c0 3622
139ccd3f 3623train_done:
357555c0
JB
3624 DRM_DEBUG_KMS("FDI train done.\n");
3625}
3626
88cefb6c 3627static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3628{
88cefb6c 3629 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3630 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3631 int pipe = intel_crtc->pipe;
5eddb70b 3632 u32 reg, temp;
79e53945 3633
c64e311e 3634
c98e9dcf 3635 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3636 reg = FDI_RX_CTL(pipe);
3637 temp = I915_READ(reg);
627eb5a3 3638 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3639 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3640 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3641 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3642
3643 POSTING_READ(reg);
c98e9dcf
JB
3644 udelay(200);
3645
3646 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp | FDI_PCDCLK);
3649
3650 POSTING_READ(reg);
c98e9dcf
JB
3651 udelay(200);
3652
20749730
PZ
3653 /* Enable CPU FDI TX PLL, always on for Ironlake */
3654 reg = FDI_TX_CTL(pipe);
3655 temp = I915_READ(reg);
3656 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3657 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3658
20749730
PZ
3659 POSTING_READ(reg);
3660 udelay(100);
6be4a607 3661 }
0e23b99d
JB
3662}
3663
88cefb6c
DV
3664static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3665{
3666 struct drm_device *dev = intel_crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 int pipe = intel_crtc->pipe;
3669 u32 reg, temp;
3670
3671 /* Switch from PCDclk to Rawclk */
3672 reg = FDI_RX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3675
3676 /* Disable CPU FDI TX PLL */
3677 reg = FDI_TX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3680
3681 POSTING_READ(reg);
3682 udelay(100);
3683
3684 reg = FDI_RX_CTL(pipe);
3685 temp = I915_READ(reg);
3686 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3687
3688 /* Wait for the clocks to turn off. */
3689 POSTING_READ(reg);
3690 udelay(100);
3691}
3692
0fc932b8
JB
3693static void ironlake_fdi_disable(struct drm_crtc *crtc)
3694{
3695 struct drm_device *dev = crtc->dev;
3696 struct drm_i915_private *dev_priv = dev->dev_private;
3697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698 int pipe = intel_crtc->pipe;
3699 u32 reg, temp;
3700
3701 /* disable CPU FDI tx and PCH FDI rx */
3702 reg = FDI_TX_CTL(pipe);
3703 temp = I915_READ(reg);
3704 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3705 POSTING_READ(reg);
3706
3707 reg = FDI_RX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~(0x7 << 16);
dfd07d72 3710 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3711 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3712
3713 POSTING_READ(reg);
3714 udelay(100);
3715
3716 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3717 if (HAS_PCH_IBX(dev))
6f06ce18 3718 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3719
3720 /* still set train pattern 1 */
3721 reg = FDI_TX_CTL(pipe);
3722 temp = I915_READ(reg);
3723 temp &= ~FDI_LINK_TRAIN_NONE;
3724 temp |= FDI_LINK_TRAIN_PATTERN_1;
3725 I915_WRITE(reg, temp);
3726
3727 reg = FDI_RX_CTL(pipe);
3728 temp = I915_READ(reg);
3729 if (HAS_PCH_CPT(dev)) {
3730 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3731 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3732 } else {
3733 temp &= ~FDI_LINK_TRAIN_NONE;
3734 temp |= FDI_LINK_TRAIN_PATTERN_1;
3735 }
3736 /* BPC in FDI rx is consistent with that in PIPECONF */
3737 temp &= ~(0x07 << 16);
dfd07d72 3738 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3739 I915_WRITE(reg, temp);
3740
3741 POSTING_READ(reg);
3742 udelay(100);
3743}
3744
5dce5b93
CW
3745bool intel_has_pending_fb_unpin(struct drm_device *dev)
3746{
3747 struct intel_crtc *crtc;
3748
3749 /* Note that we don't need to be called with mode_config.lock here
3750 * as our list of CRTC objects is static for the lifetime of the
3751 * device and so cannot disappear as we iterate. Similarly, we can
3752 * happily treat the predicates as racy, atomic checks as userspace
3753 * cannot claim and pin a new fb without at least acquring the
3754 * struct_mutex and so serialising with us.
3755 */
d3fcc808 3756 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3757 if (atomic_read(&crtc->unpin_work_count) == 0)
3758 continue;
3759
3760 if (crtc->unpin_work)
3761 intel_wait_for_vblank(dev, crtc->pipe);
3762
3763 return true;
3764 }
3765
3766 return false;
3767}
3768
d6bbafa1
CW
3769static void page_flip_completed(struct intel_crtc *intel_crtc)
3770{
3771 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3772 struct intel_unpin_work *work = intel_crtc->unpin_work;
3773
3774 /* ensure that the unpin work is consistent wrt ->pending. */
3775 smp_rmb();
3776 intel_crtc->unpin_work = NULL;
3777
3778 if (work->event)
3779 drm_send_vblank_event(intel_crtc->base.dev,
3780 intel_crtc->pipe,
3781 work->event);
3782
3783 drm_crtc_vblank_put(&intel_crtc->base);
3784
3785 wake_up_all(&dev_priv->pending_flip_queue);
3786 queue_work(dev_priv->wq, &work->work);
3787
3788 trace_i915_flip_complete(intel_crtc->plane,
3789 work->pending_flip_obj);
3790}
3791
46a55d30 3792void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3793{
0f91128d 3794 struct drm_device *dev = crtc->dev;
5bb61643 3795 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3796
2c10d571 3797 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3798 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3799 !intel_crtc_has_pending_flip(crtc),
3800 60*HZ) == 0)) {
3801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3802
5e2d7afc 3803 spin_lock_irq(&dev->event_lock);
9c787942
CW
3804 if (intel_crtc->unpin_work) {
3805 WARN_ONCE(1, "Removing stuck page flip\n");
3806 page_flip_completed(intel_crtc);
3807 }
5e2d7afc 3808 spin_unlock_irq(&dev->event_lock);
9c787942 3809 }
5bb61643 3810
975d568a
CW
3811 if (crtc->primary->fb) {
3812 mutex_lock(&dev->struct_mutex);
3813 intel_finish_fb(crtc->primary->fb);
3814 mutex_unlock(&dev->struct_mutex);
3815 }
e6c3a2a6
CW
3816}
3817
e615efe4
ED
3818/* Program iCLKIP clock to the desired frequency */
3819static void lpt_program_iclkip(struct drm_crtc *crtc)
3820{
3821 struct drm_device *dev = crtc->dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3823 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3824 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3825 u32 temp;
3826
09153000
DV
3827 mutex_lock(&dev_priv->dpio_lock);
3828
e615efe4
ED
3829 /* It is necessary to ungate the pixclk gate prior to programming
3830 * the divisors, and gate it back when it is done.
3831 */
3832 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834 /* Disable SSCCTL */
3835 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3836 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3837 SBI_SSCCTL_DISABLE,
3838 SBI_ICLK);
e615efe4
ED
3839
3840 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3841 if (clock == 20000) {
e615efe4
ED
3842 auxdiv = 1;
3843 divsel = 0x41;
3844 phaseinc = 0x20;
3845 } else {
3846 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3847 * but the adjusted_mode->crtc_clock in in KHz. To get the
3848 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3849 * convert the virtual clock precision to KHz here for higher
3850 * precision.
3851 */
3852 u32 iclk_virtual_root_freq = 172800 * 1000;
3853 u32 iclk_pi_range = 64;
3854 u32 desired_divisor, msb_divisor_value, pi_value;
3855
12d7ceed 3856 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3857 msb_divisor_value = desired_divisor / iclk_pi_range;
3858 pi_value = desired_divisor % iclk_pi_range;
3859
3860 auxdiv = 0;
3861 divsel = msb_divisor_value - 2;
3862 phaseinc = pi_value;
3863 }
3864
3865 /* This should not happen with any sane values */
3866 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3867 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3868 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3869 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3870
3871 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3872 clock,
e615efe4
ED
3873 auxdiv,
3874 divsel,
3875 phasedir,
3876 phaseinc);
3877
3878 /* Program SSCDIVINTPHASE6 */
988d6ee8 3879 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3880 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3881 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3882 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3883 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3884 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3885 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3886 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3887
3888 /* Program SSCAUXDIV */
988d6ee8 3889 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3890 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3891 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3892 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3893
3894 /* Enable modulator and associated divider */
988d6ee8 3895 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3896 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3897 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3898
3899 /* Wait for initialization time */
3900 udelay(24);
3901
3902 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3903
3904 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3905}
3906
275f01b2
DV
3907static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3908 enum pipe pch_transcoder)
3909{
3910 struct drm_device *dev = crtc->base.dev;
3911 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3912 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3913
3914 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3915 I915_READ(HTOTAL(cpu_transcoder)));
3916 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3917 I915_READ(HBLANK(cpu_transcoder)));
3918 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3919 I915_READ(HSYNC(cpu_transcoder)));
3920
3921 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3922 I915_READ(VTOTAL(cpu_transcoder)));
3923 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3924 I915_READ(VBLANK(cpu_transcoder)));
3925 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3926 I915_READ(VSYNC(cpu_transcoder)));
3927 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3928 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3929}
3930
003632d9 3931static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3932{
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 uint32_t temp;
3935
3936 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 3937 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
3938 return;
3939
3940 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3941 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3942
003632d9
ACO
3943 temp &= ~FDI_BC_BIFURCATION_SELECT;
3944 if (enable)
3945 temp |= FDI_BC_BIFURCATION_SELECT;
3946
3947 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
3948 I915_WRITE(SOUTH_CHICKEN1, temp);
3949 POSTING_READ(SOUTH_CHICKEN1);
3950}
3951
3952static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3953{
3954 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
3955
3956 switch (intel_crtc->pipe) {
3957 case PIPE_A:
3958 break;
3959 case PIPE_B:
6e3c9717 3960 if (intel_crtc->config->fdi_lanes > 2)
003632d9 3961 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 3962 else
003632d9 3963 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3964
3965 break;
3966 case PIPE_C:
003632d9 3967 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3968
3969 break;
3970 default:
3971 BUG();
3972 }
3973}
3974
f67a559d
JB
3975/*
3976 * Enable PCH resources required for PCH ports:
3977 * - PCH PLLs
3978 * - FDI training & RX/TX
3979 * - update transcoder timings
3980 * - DP transcoding bits
3981 * - transcoder
3982 */
3983static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3984{
3985 struct drm_device *dev = crtc->dev;
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988 int pipe = intel_crtc->pipe;
ee7b9f93 3989 u32 reg, temp;
2c07245f 3990
ab9412ba 3991 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3992
1fbc0d78
DV
3993 if (IS_IVYBRIDGE(dev))
3994 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3995
cd986abb
DV
3996 /* Write the TU size bits before fdi link training, so that error
3997 * detection works. */
3998 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3999 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4000
c98e9dcf 4001 /* For PCH output, training FDI link */
674cf967 4002 dev_priv->display.fdi_link_train(crtc);
2c07245f 4003
3ad8a208
DV
4004 /* We need to program the right clock selection before writing the pixel
4005 * mutliplier into the DPLL. */
303b81e0 4006 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4007 u32 sel;
4b645f14 4008
c98e9dcf 4009 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4010 temp |= TRANS_DPLL_ENABLE(pipe);
4011 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4012 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4013 temp |= sel;
4014 else
4015 temp &= ~sel;
c98e9dcf 4016 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4017 }
5eddb70b 4018
3ad8a208
DV
4019 /* XXX: pch pll's can be enabled any time before we enable the PCH
4020 * transcoder, and we actually should do this to not upset any PCH
4021 * transcoder that already use the clock when we share it.
4022 *
4023 * Note that enable_shared_dpll tries to do the right thing, but
4024 * get_shared_dpll unconditionally resets the pll - we need that to have
4025 * the right LVDS enable sequence. */
85b3894f 4026 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4027
d9b6cb56
JB
4028 /* set transcoder timing, panel must allow it */
4029 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4030 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4031
303b81e0 4032 intel_fdi_normal_train(crtc);
5e84e1a4 4033
c98e9dcf 4034 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4035 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4036 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4037 reg = TRANS_DP_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4040 TRANS_DP_SYNC_MASK |
4041 TRANS_DP_BPC_MASK);
5eddb70b
CW
4042 temp |= (TRANS_DP_OUTPUT_ENABLE |
4043 TRANS_DP_ENH_FRAMING);
9325c9f0 4044 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4045
4046 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4047 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4048 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4049 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4050
4051 switch (intel_trans_dp_port_sel(crtc)) {
4052 case PCH_DP_B:
5eddb70b 4053 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4054 break;
4055 case PCH_DP_C:
5eddb70b 4056 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4057 break;
4058 case PCH_DP_D:
5eddb70b 4059 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4060 break;
4061 default:
e95d41e1 4062 BUG();
32f9d658 4063 }
2c07245f 4064
5eddb70b 4065 I915_WRITE(reg, temp);
6be4a607 4066 }
b52eb4dc 4067
b8a4f404 4068 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4069}
4070
1507e5bd
PZ
4071static void lpt_pch_enable(struct drm_crtc *crtc)
4072{
4073 struct drm_device *dev = crtc->dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4076 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4077
ab9412ba 4078 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4079
8c52b5e8 4080 lpt_program_iclkip(crtc);
1507e5bd 4081
0540e488 4082 /* Set transcoder timing. */
275f01b2 4083 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4084
937bb610 4085 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4086}
4087
716c2e55 4088void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4089{
e2b78267 4090 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4091
4092 if (pll == NULL)
4093 return;
4094
3e369b76 4095 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4096 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4097 return;
4098 }
4099
3e369b76
ACO
4100 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4101 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4102 WARN_ON(pll->on);
4103 WARN_ON(pll->active);
4104 }
4105
6e3c9717 4106 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4107}
4108
190f68c5
ACO
4109struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4110 struct intel_crtc_state *crtc_state)
ee7b9f93 4111{
e2b78267 4112 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4113 struct intel_shared_dpll *pll;
e2b78267 4114 enum intel_dpll_id i;
ee7b9f93 4115
98b6bd99
DV
4116 if (HAS_PCH_IBX(dev_priv->dev)) {
4117 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4118 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4119 pll = &dev_priv->shared_dplls[i];
98b6bd99 4120
46edb027
DV
4121 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4122 crtc->base.base.id, pll->name);
98b6bd99 4123
8bd31e67 4124 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4125
98b6bd99
DV
4126 goto found;
4127 }
4128
e72f9fbf
DV
4129 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4130 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4131
4132 /* Only want to check enabled timings first */
8bd31e67 4133 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4134 continue;
4135
190f68c5 4136 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4137 &pll->new_config->hw_state,
4138 sizeof(pll->new_config->hw_state)) == 0) {
4139 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4140 crtc->base.base.id, pll->name,
8bd31e67
ACO
4141 pll->new_config->crtc_mask,
4142 pll->active);
ee7b9f93
JB
4143 goto found;
4144 }
4145 }
4146
4147 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4149 pll = &dev_priv->shared_dplls[i];
8bd31e67 4150 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4151 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4152 crtc->base.base.id, pll->name);
ee7b9f93
JB
4153 goto found;
4154 }
4155 }
4156
4157 return NULL;
4158
4159found:
8bd31e67 4160 if (pll->new_config->crtc_mask == 0)
190f68c5 4161 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4162
190f68c5 4163 crtc_state->shared_dpll = i;
46edb027
DV
4164 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4165 pipe_name(crtc->pipe));
ee7b9f93 4166
8bd31e67 4167 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4168
ee7b9f93
JB
4169 return pll;
4170}
4171
8bd31e67
ACO
4172/**
4173 * intel_shared_dpll_start_config - start a new PLL staged config
4174 * @dev_priv: DRM device
4175 * @clear_pipes: mask of pipes that will have their PLLs freed
4176 *
4177 * Starts a new PLL staged config, copying the current config but
4178 * releasing the references of pipes specified in clear_pipes.
4179 */
4180static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4181 unsigned clear_pipes)
4182{
4183 struct intel_shared_dpll *pll;
4184 enum intel_dpll_id i;
4185
4186 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4187 pll = &dev_priv->shared_dplls[i];
4188
4189 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4190 GFP_KERNEL);
4191 if (!pll->new_config)
4192 goto cleanup;
4193
4194 pll->new_config->crtc_mask &= ~clear_pipes;
4195 }
4196
4197 return 0;
4198
4199cleanup:
4200 while (--i >= 0) {
4201 pll = &dev_priv->shared_dplls[i];
f354d733 4202 kfree(pll->new_config);
8bd31e67
ACO
4203 pll->new_config = NULL;
4204 }
4205
4206 return -ENOMEM;
4207}
4208
4209static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4210{
4211 struct intel_shared_dpll *pll;
4212 enum intel_dpll_id i;
4213
4214 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4215 pll = &dev_priv->shared_dplls[i];
4216
4217 WARN_ON(pll->new_config == &pll->config);
4218
4219 pll->config = *pll->new_config;
4220 kfree(pll->new_config);
4221 pll->new_config = NULL;
4222 }
4223}
4224
4225static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4226{
4227 struct intel_shared_dpll *pll;
4228 enum intel_dpll_id i;
4229
4230 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4231 pll = &dev_priv->shared_dplls[i];
4232
4233 WARN_ON(pll->new_config == &pll->config);
4234
4235 kfree(pll->new_config);
4236 pll->new_config = NULL;
4237 }
4238}
4239
a1520318 4240static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4241{
4242 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4243 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4244 u32 temp;
4245
4246 temp = I915_READ(dslreg);
4247 udelay(500);
4248 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4249 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4250 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4251 }
4252}
4253
bd2e244f
JB
4254static void skylake_pfit_enable(struct intel_crtc *crtc)
4255{
4256 struct drm_device *dev = crtc->base.dev;
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258 int pipe = crtc->pipe;
4259
6e3c9717 4260 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4261 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4262 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4263 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4264 }
4265}
4266
b074cec8
JB
4267static void ironlake_pfit_enable(struct intel_crtc *crtc)
4268{
4269 struct drm_device *dev = crtc->base.dev;
4270 struct drm_i915_private *dev_priv = dev->dev_private;
4271 int pipe = crtc->pipe;
4272
6e3c9717 4273 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4274 /* Force use of hard-coded filter coefficients
4275 * as some pre-programmed values are broken,
4276 * e.g. x201.
4277 */
4278 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4279 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4280 PF_PIPE_SEL_IVB(pipe));
4281 else
4282 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4283 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4284 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4285 }
4286}
4287
4a3b8769 4288static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4289{
4290 struct drm_device *dev = crtc->dev;
4291 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4292 struct drm_plane *plane;
bb53d4ae
VS
4293 struct intel_plane *intel_plane;
4294
af2b653b
MR
4295 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4296 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4297 if (intel_plane->pipe == pipe)
4298 intel_plane_restore(&intel_plane->base);
af2b653b 4299 }
bb53d4ae
VS
4300}
4301
0d703d4e
MR
4302/*
4303 * Disable a plane internally without actually modifying the plane's state.
4304 * This will allow us to easily restore the plane later by just reprogramming
4305 * its state.
4306 */
4307static void disable_plane_internal(struct drm_plane *plane)
4308{
4309 struct intel_plane *intel_plane = to_intel_plane(plane);
4310 struct drm_plane_state *state =
4311 plane->funcs->atomic_duplicate_state(plane);
4312 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4313
4314 intel_state->visible = false;
4315 intel_plane->commit_plane(plane, intel_state);
4316
4317 intel_plane_destroy_state(plane, state);
4318}
4319
4a3b8769 4320static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4321{
4322 struct drm_device *dev = crtc->dev;
4323 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4324 struct drm_plane *plane;
bb53d4ae
VS
4325 struct intel_plane *intel_plane;
4326
af2b653b
MR
4327 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4328 intel_plane = to_intel_plane(plane);
0d703d4e
MR
4329 if (plane->fb && intel_plane->pipe == pipe)
4330 disable_plane_internal(plane);
af2b653b 4331 }
bb53d4ae
VS
4332}
4333
20bc8673 4334void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4335{
cea165c3
VS
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4338
6e3c9717 4339 if (!crtc->config->ips_enabled)
d77e4531
PZ
4340 return;
4341
cea165c3
VS
4342 /* We can only enable IPS after we enable a plane and wait for a vblank */
4343 intel_wait_for_vblank(dev, crtc->pipe);
4344
d77e4531 4345 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4346 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4347 mutex_lock(&dev_priv->rps.hw_lock);
4348 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4349 mutex_unlock(&dev_priv->rps.hw_lock);
4350 /* Quoting Art Runyan: "its not safe to expect any particular
4351 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4352 * mailbox." Moreover, the mailbox may return a bogus state,
4353 * so we need to just enable it and continue on.
2a114cc1
BW
4354 */
4355 } else {
4356 I915_WRITE(IPS_CTL, IPS_ENABLE);
4357 /* The bit only becomes 1 in the next vblank, so this wait here
4358 * is essentially intel_wait_for_vblank. If we don't have this
4359 * and don't wait for vblanks until the end of crtc_enable, then
4360 * the HW state readout code will complain that the expected
4361 * IPS_CTL value is not the one we read. */
4362 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4363 DRM_ERROR("Timed out waiting for IPS enable\n");
4364 }
d77e4531
PZ
4365}
4366
20bc8673 4367void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4368{
4369 struct drm_device *dev = crtc->base.dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371
6e3c9717 4372 if (!crtc->config->ips_enabled)
d77e4531
PZ
4373 return;
4374
4375 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4376 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4377 mutex_lock(&dev_priv->rps.hw_lock);
4378 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4379 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4380 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4381 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4382 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4383 } else {
2a114cc1 4384 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4385 POSTING_READ(IPS_CTL);
4386 }
d77e4531
PZ
4387
4388 /* We need to wait for a vblank before we can disable the plane. */
4389 intel_wait_for_vblank(dev, crtc->pipe);
4390}
4391
4392/** Loads the palette/gamma unit for the CRTC with the prepared values */
4393static void intel_crtc_load_lut(struct drm_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->dev;
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398 enum pipe pipe = intel_crtc->pipe;
4399 int palreg = PALETTE(pipe);
4400 int i;
4401 bool reenable_ips = false;
4402
4403 /* The clocks have to be on to load the palette. */
83d65738 4404 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4405 return;
4406
4407 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4408 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4409 assert_dsi_pll_enabled(dev_priv);
4410 else
4411 assert_pll_enabled(dev_priv, pipe);
4412 }
4413
4414 /* use legacy palette for Ironlake */
7a1db49a 4415 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4416 palreg = LGC_PALETTE(pipe);
4417
4418 /* Workaround : Do not read or write the pipe palette/gamma data while
4419 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4420 */
6e3c9717 4421 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4422 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4423 GAMMA_MODE_MODE_SPLIT)) {
4424 hsw_disable_ips(intel_crtc);
4425 reenable_ips = true;
4426 }
4427
4428 for (i = 0; i < 256; i++) {
4429 I915_WRITE(palreg + 4 * i,
4430 (intel_crtc->lut_r[i] << 16) |
4431 (intel_crtc->lut_g[i] << 8) |
4432 intel_crtc->lut_b[i]);
4433 }
4434
4435 if (reenable_ips)
4436 hsw_enable_ips(intel_crtc);
4437}
4438
d3eedb1a
VS
4439static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4440{
4441 if (!enable && intel_crtc->overlay) {
4442 struct drm_device *dev = intel_crtc->base.dev;
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445 mutex_lock(&dev->struct_mutex);
4446 dev_priv->mm.interruptible = false;
4447 (void) intel_overlay_switch_off(intel_crtc->overlay);
4448 dev_priv->mm.interruptible = true;
4449 mutex_unlock(&dev->struct_mutex);
4450 }
4451
4452 /* Let userspace switch the overlay on again. In most cases userspace
4453 * has to recompute where to put it anyway.
4454 */
4455}
4456
d3eedb1a 4457static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4458{
4459 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
a5c4d7bc 4462
fdd508a6 4463 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4464 intel_enable_sprite_planes(crtc);
a5c4d7bc 4465 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4466 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4467
4468 hsw_enable_ips(intel_crtc);
4469
4470 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4471 intel_fbc_update(dev);
a5c4d7bc 4472 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4473
4474 /*
4475 * FIXME: Once we grow proper nuclear flip support out of this we need
4476 * to compute the mask of flip planes precisely. For the time being
4477 * consider this a flip from a NULL plane.
4478 */
4479 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4480}
4481
d3eedb1a 4482static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4483{
4484 struct drm_device *dev = crtc->dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4488
4489 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4490
e35fef21 4491 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4492 intel_fbc_disable(dev);
a5c4d7bc
VS
4493
4494 hsw_disable_ips(intel_crtc);
4495
d3eedb1a 4496 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4497 intel_crtc_update_cursor(crtc, false);
4a3b8769 4498 intel_disable_sprite_planes(crtc);
fdd508a6 4499 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4500
f99d7069
DV
4501 /*
4502 * FIXME: Once we grow proper nuclear flip support out of this we need
4503 * to compute the mask of flip planes precisely. For the time being
4504 * consider this a flip to a NULL plane.
4505 */
4506 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4507}
4508
f67a559d
JB
4509static void ironlake_crtc_enable(struct drm_crtc *crtc)
4510{
4511 struct drm_device *dev = crtc->dev;
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4514 struct intel_encoder *encoder;
f67a559d 4515 int pipe = intel_crtc->pipe;
f67a559d 4516
83d65738 4517 WARN_ON(!crtc->state->enable);
08a48469 4518
f67a559d
JB
4519 if (intel_crtc->active)
4520 return;
4521
6e3c9717 4522 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4523 intel_prepare_shared_dpll(intel_crtc);
4524
6e3c9717 4525 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4526 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4527
4528 intel_set_pipe_timings(intel_crtc);
4529
6e3c9717 4530 if (intel_crtc->config->has_pch_encoder) {
29407aab 4531 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4532 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4533 }
4534
4535 ironlake_set_pipeconf(crtc);
4536
f67a559d 4537 intel_crtc->active = true;
8664281b 4538
a72e4c9f
DV
4539 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4540 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4541
f6736a1a 4542 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4543 if (encoder->pre_enable)
4544 encoder->pre_enable(encoder);
f67a559d 4545
6e3c9717 4546 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4547 /* Note: FDI PLL enabling _must_ be done before we enable the
4548 * cpu pipes, hence this is separate from all the other fdi/pch
4549 * enabling. */
88cefb6c 4550 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4551 } else {
4552 assert_fdi_tx_disabled(dev_priv, pipe);
4553 assert_fdi_rx_disabled(dev_priv, pipe);
4554 }
f67a559d 4555
b074cec8 4556 ironlake_pfit_enable(intel_crtc);
f67a559d 4557
9c54c0dd
JB
4558 /*
4559 * On ILK+ LUT must be loaded before the pipe is running but with
4560 * clocks enabled
4561 */
4562 intel_crtc_load_lut(crtc);
4563
f37fcc2a 4564 intel_update_watermarks(crtc);
e1fdc473 4565 intel_enable_pipe(intel_crtc);
f67a559d 4566
6e3c9717 4567 if (intel_crtc->config->has_pch_encoder)
f67a559d 4568 ironlake_pch_enable(crtc);
c98e9dcf 4569
f9b61ff6
DV
4570 assert_vblank_disabled(crtc);
4571 drm_crtc_vblank_on(crtc);
4572
fa5c73b1
DV
4573 for_each_encoder_on_crtc(dev, crtc, encoder)
4574 encoder->enable(encoder);
61b77ddd
DV
4575
4576 if (HAS_PCH_CPT(dev))
a1520318 4577 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4578
d3eedb1a 4579 intel_crtc_enable_planes(crtc);
6be4a607
JB
4580}
4581
42db64ef
PZ
4582/* IPS only exists on ULT machines and is tied to pipe A. */
4583static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4584{
f5adf94e 4585 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4586}
4587
e4916946
PZ
4588/*
4589 * This implements the workaround described in the "notes" section of the mode
4590 * set sequence documentation. When going from no pipes or single pipe to
4591 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4592 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4593 */
4594static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4595{
4596 struct drm_device *dev = crtc->base.dev;
4597 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4598
4599 /* We want to get the other_active_crtc only if there's only 1 other
4600 * active crtc. */
d3fcc808 4601 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4602 if (!crtc_it->active || crtc_it == crtc)
4603 continue;
4604
4605 if (other_active_crtc)
4606 return;
4607
4608 other_active_crtc = crtc_it;
4609 }
4610 if (!other_active_crtc)
4611 return;
4612
4613 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4614 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4615}
4616
4f771f10
PZ
4617static void haswell_crtc_enable(struct drm_crtc *crtc)
4618{
4619 struct drm_device *dev = crtc->dev;
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622 struct intel_encoder *encoder;
4623 int pipe = intel_crtc->pipe;
4f771f10 4624
83d65738 4625 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4626
4627 if (intel_crtc->active)
4628 return;
4629
df8ad70c
DV
4630 if (intel_crtc_to_shared_dpll(intel_crtc))
4631 intel_enable_shared_dpll(intel_crtc);
4632
6e3c9717 4633 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4634 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4635
4636 intel_set_pipe_timings(intel_crtc);
4637
6e3c9717
ACO
4638 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4639 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4640 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4641 }
4642
6e3c9717 4643 if (intel_crtc->config->has_pch_encoder) {
229fca97 4644 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4645 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4646 }
4647
4648 haswell_set_pipeconf(crtc);
4649
4650 intel_set_pipe_csc(crtc);
4651
4f771f10 4652 intel_crtc->active = true;
8664281b 4653
a72e4c9f 4654 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4655 for_each_encoder_on_crtc(dev, crtc, encoder)
4656 if (encoder->pre_enable)
4657 encoder->pre_enable(encoder);
4658
6e3c9717 4659 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4660 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4661 true);
4fe9467d
ID
4662 dev_priv->display.fdi_link_train(crtc);
4663 }
4664
1f544388 4665 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4666
bd2e244f
JB
4667 if (IS_SKYLAKE(dev))
4668 skylake_pfit_enable(intel_crtc);
4669 else
4670 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4671
4672 /*
4673 * On ILK+ LUT must be loaded before the pipe is running but with
4674 * clocks enabled
4675 */
4676 intel_crtc_load_lut(crtc);
4677
1f544388 4678 intel_ddi_set_pipe_settings(crtc);
8228c251 4679 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4680
f37fcc2a 4681 intel_update_watermarks(crtc);
e1fdc473 4682 intel_enable_pipe(intel_crtc);
42db64ef 4683
6e3c9717 4684 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4685 lpt_pch_enable(crtc);
4f771f10 4686
6e3c9717 4687 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4688 intel_ddi_set_vc_payload_alloc(crtc, true);
4689
f9b61ff6
DV
4690 assert_vblank_disabled(crtc);
4691 drm_crtc_vblank_on(crtc);
4692
8807e55b 4693 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4694 encoder->enable(encoder);
8807e55b
JN
4695 intel_opregion_notify_encoder(encoder, true);
4696 }
4f771f10 4697
e4916946
PZ
4698 /* If we change the relative order between pipe/planes enabling, we need
4699 * to change the workaround. */
4700 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4701 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4702}
4703
bd2e244f
JB
4704static void skylake_pfit_disable(struct intel_crtc *crtc)
4705{
4706 struct drm_device *dev = crtc->base.dev;
4707 struct drm_i915_private *dev_priv = dev->dev_private;
4708 int pipe = crtc->pipe;
4709
4710 /* To avoid upsetting the power well on haswell only disable the pfit if
4711 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4712 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4713 I915_WRITE(PS_CTL(pipe), 0);
4714 I915_WRITE(PS_WIN_POS(pipe), 0);
4715 I915_WRITE(PS_WIN_SZ(pipe), 0);
4716 }
4717}
4718
3f8dce3a
DV
4719static void ironlake_pfit_disable(struct intel_crtc *crtc)
4720{
4721 struct drm_device *dev = crtc->base.dev;
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 int pipe = crtc->pipe;
4724
4725 /* To avoid upsetting the power well on haswell only disable the pfit if
4726 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4727 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4728 I915_WRITE(PF_CTL(pipe), 0);
4729 I915_WRITE(PF_WIN_POS(pipe), 0);
4730 I915_WRITE(PF_WIN_SZ(pipe), 0);
4731 }
4732}
4733
6be4a607
JB
4734static void ironlake_crtc_disable(struct drm_crtc *crtc)
4735{
4736 struct drm_device *dev = crtc->dev;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4739 struct intel_encoder *encoder;
6be4a607 4740 int pipe = intel_crtc->pipe;
5eddb70b 4741 u32 reg, temp;
b52eb4dc 4742
f7abfe8b
CW
4743 if (!intel_crtc->active)
4744 return;
4745
d3eedb1a 4746 intel_crtc_disable_planes(crtc);
a5c4d7bc 4747
ea9d758d
DV
4748 for_each_encoder_on_crtc(dev, crtc, encoder)
4749 encoder->disable(encoder);
4750
f9b61ff6
DV
4751 drm_crtc_vblank_off(crtc);
4752 assert_vblank_disabled(crtc);
4753
6e3c9717 4754 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4755 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4756
575f7ab7 4757 intel_disable_pipe(intel_crtc);
32f9d658 4758
3f8dce3a 4759 ironlake_pfit_disable(intel_crtc);
2c07245f 4760
bf49ec8c
DV
4761 for_each_encoder_on_crtc(dev, crtc, encoder)
4762 if (encoder->post_disable)
4763 encoder->post_disable(encoder);
2c07245f 4764
6e3c9717 4765 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4766 ironlake_fdi_disable(crtc);
913d8d11 4767
d925c59a 4768 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4769
d925c59a
DV
4770 if (HAS_PCH_CPT(dev)) {
4771 /* disable TRANS_DP_CTL */
4772 reg = TRANS_DP_CTL(pipe);
4773 temp = I915_READ(reg);
4774 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4775 TRANS_DP_PORT_SEL_MASK);
4776 temp |= TRANS_DP_PORT_SEL_NONE;
4777 I915_WRITE(reg, temp);
4778
4779 /* disable DPLL_SEL */
4780 temp = I915_READ(PCH_DPLL_SEL);
11887397 4781 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4782 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4783 }
e3421a18 4784
d925c59a 4785 /* disable PCH DPLL */
e72f9fbf 4786 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4787
d925c59a
DV
4788 ironlake_fdi_pll_disable(intel_crtc);
4789 }
6b383a7f 4790
f7abfe8b 4791 intel_crtc->active = false;
46ba614c 4792 intel_update_watermarks(crtc);
d1ebd816
BW
4793
4794 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4795 intel_fbc_update(dev);
d1ebd816 4796 mutex_unlock(&dev->struct_mutex);
6be4a607 4797}
1b3c7a47 4798
4f771f10 4799static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4800{
4f771f10
PZ
4801 struct drm_device *dev = crtc->dev;
4802 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4804 struct intel_encoder *encoder;
6e3c9717 4805 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4806
4f771f10
PZ
4807 if (!intel_crtc->active)
4808 return;
4809
d3eedb1a 4810 intel_crtc_disable_planes(crtc);
dda9a66a 4811
8807e55b
JN
4812 for_each_encoder_on_crtc(dev, crtc, encoder) {
4813 intel_opregion_notify_encoder(encoder, false);
4f771f10 4814 encoder->disable(encoder);
8807e55b 4815 }
4f771f10 4816
f9b61ff6
DV
4817 drm_crtc_vblank_off(crtc);
4818 assert_vblank_disabled(crtc);
4819
6e3c9717 4820 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4821 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4822 false);
575f7ab7 4823 intel_disable_pipe(intel_crtc);
4f771f10 4824
6e3c9717 4825 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4826 intel_ddi_set_vc_payload_alloc(crtc, false);
4827
ad80a810 4828 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4829
bd2e244f
JB
4830 if (IS_SKYLAKE(dev))
4831 skylake_pfit_disable(intel_crtc);
4832 else
4833 ironlake_pfit_disable(intel_crtc);
4f771f10 4834
1f544388 4835 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4836
6e3c9717 4837 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4838 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4839 intel_ddi_fdi_disable(crtc);
83616634 4840 }
4f771f10 4841
97b040aa
ID
4842 for_each_encoder_on_crtc(dev, crtc, encoder)
4843 if (encoder->post_disable)
4844 encoder->post_disable(encoder);
4845
4f771f10 4846 intel_crtc->active = false;
46ba614c 4847 intel_update_watermarks(crtc);
4f771f10
PZ
4848
4849 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4850 intel_fbc_update(dev);
4f771f10 4851 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4852
4853 if (intel_crtc_to_shared_dpll(intel_crtc))
4854 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4855}
4856
ee7b9f93
JB
4857static void ironlake_crtc_off(struct drm_crtc *crtc)
4858{
4859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4860 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4861}
4862
6441ab5f 4863
2dd24552
JB
4864static void i9xx_pfit_enable(struct intel_crtc *crtc)
4865{
4866 struct drm_device *dev = crtc->base.dev;
4867 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4868 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4869
681a8504 4870 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4871 return;
4872
2dd24552 4873 /*
c0b03411
DV
4874 * The panel fitter should only be adjusted whilst the pipe is disabled,
4875 * according to register description and PRM.
2dd24552 4876 */
c0b03411
DV
4877 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4878 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4879
b074cec8
JB
4880 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4881 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4882
4883 /* Border color in case we don't scale up to the full screen. Black by
4884 * default, change to something else for debugging. */
4885 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4886}
4887
d05410f9
DA
4888static enum intel_display_power_domain port_to_power_domain(enum port port)
4889{
4890 switch (port) {
4891 case PORT_A:
4892 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4893 case PORT_B:
4894 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4895 case PORT_C:
4896 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4897 case PORT_D:
4898 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4899 default:
4900 WARN_ON_ONCE(1);
4901 return POWER_DOMAIN_PORT_OTHER;
4902 }
4903}
4904
77d22dca
ID
4905#define for_each_power_domain(domain, mask) \
4906 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4907 if ((1 << (domain)) & (mask))
4908
319be8ae
ID
4909enum intel_display_power_domain
4910intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4911{
4912 struct drm_device *dev = intel_encoder->base.dev;
4913 struct intel_digital_port *intel_dig_port;
4914
4915 switch (intel_encoder->type) {
4916 case INTEL_OUTPUT_UNKNOWN:
4917 /* Only DDI platforms should ever use this output type */
4918 WARN_ON_ONCE(!HAS_DDI(dev));
4919 case INTEL_OUTPUT_DISPLAYPORT:
4920 case INTEL_OUTPUT_HDMI:
4921 case INTEL_OUTPUT_EDP:
4922 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4923 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4924 case INTEL_OUTPUT_DP_MST:
4925 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4926 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4927 case INTEL_OUTPUT_ANALOG:
4928 return POWER_DOMAIN_PORT_CRT;
4929 case INTEL_OUTPUT_DSI:
4930 return POWER_DOMAIN_PORT_DSI;
4931 default:
4932 return POWER_DOMAIN_PORT_OTHER;
4933 }
4934}
4935
4936static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4937{
319be8ae
ID
4938 struct drm_device *dev = crtc->dev;
4939 struct intel_encoder *intel_encoder;
4940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4942 unsigned long mask;
4943 enum transcoder transcoder;
4944
4945 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4946
4947 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4948 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4949 if (intel_crtc->config->pch_pfit.enabled ||
4950 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4951 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4952
319be8ae
ID
4953 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4954 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4955
77d22dca
ID
4956 return mask;
4957}
4958
679dacd4 4959static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 4960{
679dacd4 4961 struct drm_device *dev = state->dev;
77d22dca
ID
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4964 struct intel_crtc *crtc;
4965
4966 /*
4967 * First get all needed power domains, then put all unneeded, to avoid
4968 * any unnecessary toggling of the power wells.
4969 */
d3fcc808 4970 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4971 enum intel_display_power_domain domain;
4972
83d65738 4973 if (!crtc->base.state->enable)
77d22dca
ID
4974 continue;
4975
319be8ae 4976 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4977
4978 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4979 intel_display_power_get(dev_priv, domain);
4980 }
4981
50f6e502 4982 if (dev_priv->display.modeset_global_resources)
679dacd4 4983 dev_priv->display.modeset_global_resources(state);
50f6e502 4984
d3fcc808 4985 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4986 enum intel_display_power_domain domain;
4987
4988 for_each_power_domain(domain, crtc->enabled_power_domains)
4989 intel_display_power_put(dev_priv, domain);
4990
4991 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4992 }
4993
4994 intel_display_set_init_power(dev_priv, false);
4995}
4996
dfcab17e 4997/* returns HPLL frequency in kHz */
f8bf63fd 4998static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4999{
586f49dc 5000 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5001
586f49dc
JB
5002 /* Obtain SKU information */
5003 mutex_lock(&dev_priv->dpio_lock);
5004 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5005 CCK_FUSE_HPLL_FREQ_MASK;
5006 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 5007
dfcab17e 5008 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5009}
5010
f8bf63fd
VS
5011static void vlv_update_cdclk(struct drm_device *dev)
5012{
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 5016 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
5017 dev_priv->vlv_cdclk_freq);
5018
5019 /*
5020 * Program the gmbus_freq based on the cdclk frequency.
5021 * BSpec erroneously claims we should aim for 4MHz, but
5022 * in fact 1MHz is the correct frequency.
5023 */
6be1e3d3 5024 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
5025}
5026
30a970c6
JB
5027/* Adjust CDclk dividers to allow high res or save power if possible */
5028static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5029{
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 u32 val, cmd;
5032
d197b7d3 5033 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 5034
dfcab17e 5035 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5036 cmd = 2;
dfcab17e 5037 else if (cdclk == 266667)
30a970c6
JB
5038 cmd = 1;
5039 else
5040 cmd = 0;
5041
5042 mutex_lock(&dev_priv->rps.hw_lock);
5043 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5044 val &= ~DSPFREQGUAR_MASK;
5045 val |= (cmd << DSPFREQGUAR_SHIFT);
5046 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5047 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5048 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5049 50)) {
5050 DRM_ERROR("timed out waiting for CDclk change\n");
5051 }
5052 mutex_unlock(&dev_priv->rps.hw_lock);
5053
dfcab17e 5054 if (cdclk == 400000) {
6bcda4f0 5055 u32 divider;
30a970c6 5056
6bcda4f0 5057 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5058
5059 mutex_lock(&dev_priv->dpio_lock);
5060 /* adjust cdclk divider */
5061 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5062 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5063 val |= divider;
5064 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5065
5066 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5067 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5068 50))
5069 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5070 mutex_unlock(&dev_priv->dpio_lock);
5071 }
5072
5073 mutex_lock(&dev_priv->dpio_lock);
5074 /* adjust self-refresh exit latency value */
5075 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5076 val &= ~0x7f;
5077
5078 /*
5079 * For high bandwidth configs, we set a higher latency in the bunit
5080 * so that the core display fetch happens in time to avoid underruns.
5081 */
dfcab17e 5082 if (cdclk == 400000)
30a970c6
JB
5083 val |= 4500 / 250; /* 4.5 usec */
5084 else
5085 val |= 3000 / 250; /* 3.0 usec */
5086 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5087 mutex_unlock(&dev_priv->dpio_lock);
5088
f8bf63fd 5089 vlv_update_cdclk(dev);
30a970c6
JB
5090}
5091
383c5a6a
VS
5092static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5093{
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 u32 val, cmd;
5096
5097 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5098
5099 switch (cdclk) {
383c5a6a
VS
5100 case 333333:
5101 case 320000:
383c5a6a 5102 case 266667:
383c5a6a 5103 case 200000:
383c5a6a
VS
5104 break;
5105 default:
5f77eeb0 5106 MISSING_CASE(cdclk);
383c5a6a
VS
5107 return;
5108 }
5109
9d0d3fda
VS
5110 /*
5111 * Specs are full of misinformation, but testing on actual
5112 * hardware has shown that we just need to write the desired
5113 * CCK divider into the Punit register.
5114 */
5115 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5116
383c5a6a
VS
5117 mutex_lock(&dev_priv->rps.hw_lock);
5118 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5119 val &= ~DSPFREQGUAR_MASK_CHV;
5120 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5121 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5122 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5123 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5124 50)) {
5125 DRM_ERROR("timed out waiting for CDclk change\n");
5126 }
5127 mutex_unlock(&dev_priv->rps.hw_lock);
5128
5129 vlv_update_cdclk(dev);
5130}
5131
30a970c6
JB
5132static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5133 int max_pixclk)
5134{
6bcda4f0 5135 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5136 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5137
30a970c6
JB
5138 /*
5139 * Really only a few cases to deal with, as only 4 CDclks are supported:
5140 * 200MHz
5141 * 267MHz
29dc7ef3 5142 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5143 * 400MHz (VLV only)
5144 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5145 * of the lower bin and adjust if needed.
e37c67a1
VS
5146 *
5147 * We seem to get an unstable or solid color picture at 200MHz.
5148 * Not sure what's wrong. For now use 200MHz only when all pipes
5149 * are off.
30a970c6 5150 */
6cca3195
VS
5151 if (!IS_CHERRYVIEW(dev_priv) &&
5152 max_pixclk > freq_320*limit/100)
dfcab17e 5153 return 400000;
6cca3195 5154 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5155 return freq_320;
e37c67a1 5156 else if (max_pixclk > 0)
dfcab17e 5157 return 266667;
e37c67a1
VS
5158 else
5159 return 200000;
30a970c6
JB
5160}
5161
2f2d7aa1
VS
5162/* compute the max pixel clock for new configuration */
5163static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
5164{
5165 struct drm_device *dev = dev_priv->dev;
5166 struct intel_crtc *intel_crtc;
5167 int max_pixclk = 0;
5168
d3fcc808 5169 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 5170 if (intel_crtc->new_enabled)
30a970c6 5171 max_pixclk = max(max_pixclk,
2d112de7 5172 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
5173 }
5174
5175 return max_pixclk;
5176}
5177
5178static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 5179 unsigned *prepare_pipes)
30a970c6
JB
5180{
5181 struct drm_i915_private *dev_priv = dev->dev_private;
5182 struct intel_crtc *intel_crtc;
2f2d7aa1 5183 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 5184
d60c4473
ID
5185 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5186 dev_priv->vlv_cdclk_freq)
30a970c6
JB
5187 return;
5188
2f2d7aa1 5189 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 5190 for_each_intel_crtc(dev, intel_crtc)
83d65738 5191 if (intel_crtc->base.state->enable)
30a970c6
JB
5192 *prepare_pipes |= (1 << intel_crtc->pipe);
5193}
5194
1e69cd74
VS
5195static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5196{
5197 unsigned int credits, default_credits;
5198
5199 if (IS_CHERRYVIEW(dev_priv))
5200 default_credits = PFI_CREDIT(12);
5201 else
5202 default_credits = PFI_CREDIT(8);
5203
5204 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5205 /* CHV suggested value is 31 or 63 */
5206 if (IS_CHERRYVIEW(dev_priv))
5207 credits = PFI_CREDIT_31;
5208 else
5209 credits = PFI_CREDIT(15);
5210 } else {
5211 credits = default_credits;
5212 }
5213
5214 /*
5215 * WA - write default credits before re-programming
5216 * FIXME: should we also set the resend bit here?
5217 */
5218 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5219 default_credits);
5220
5221 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5222 credits | PFI_CREDIT_RESEND);
5223
5224 /*
5225 * FIXME is this guaranteed to clear
5226 * immediately or should we poll for it?
5227 */
5228 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5229}
5230
679dacd4 5231static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
30a970c6 5232{
679dacd4 5233 struct drm_device *dev = state->dev;
30a970c6 5234 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 5235 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5236 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5237
383c5a6a 5238 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5239 /*
5240 * FIXME: We can end up here with all power domains off, yet
5241 * with a CDCLK frequency other than the minimum. To account
5242 * for this take the PIPE-A power domain, which covers the HW
5243 * blocks needed for the following programming. This can be
5244 * removed once it's guaranteed that we get here either with
5245 * the minimum CDCLK set, or the required power domains
5246 * enabled.
5247 */
5248 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5249
383c5a6a
VS
5250 if (IS_CHERRYVIEW(dev))
5251 cherryview_set_cdclk(dev, req_cdclk);
5252 else
5253 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5254
1e69cd74
VS
5255 vlv_program_pfi_credits(dev_priv);
5256
738c05c0 5257 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5258 }
30a970c6
JB
5259}
5260
89b667f8
JB
5261static void valleyview_crtc_enable(struct drm_crtc *crtc)
5262{
5263 struct drm_device *dev = crtc->dev;
a72e4c9f 5264 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266 struct intel_encoder *encoder;
5267 int pipe = intel_crtc->pipe;
23538ef1 5268 bool is_dsi;
89b667f8 5269
83d65738 5270 WARN_ON(!crtc->state->enable);
89b667f8
JB
5271
5272 if (intel_crtc->active)
5273 return;
5274
409ee761 5275 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5276
1ae0d137
VS
5277 if (!is_dsi) {
5278 if (IS_CHERRYVIEW(dev))
6e3c9717 5279 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5280 else
6e3c9717 5281 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5282 }
5b18e57c 5283
6e3c9717 5284 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5285 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5286
5287 intel_set_pipe_timings(intel_crtc);
5288
c14b0485
VS
5289 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5293 I915_WRITE(CHV_CANVAS(pipe), 0);
5294 }
5295
5b18e57c
DV
5296 i9xx_set_pipeconf(intel_crtc);
5297
89b667f8 5298 intel_crtc->active = true;
89b667f8 5299
a72e4c9f 5300 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5301
89b667f8
JB
5302 for_each_encoder_on_crtc(dev, crtc, encoder)
5303 if (encoder->pre_pll_enable)
5304 encoder->pre_pll_enable(encoder);
5305
9d556c99
CML
5306 if (!is_dsi) {
5307 if (IS_CHERRYVIEW(dev))
6e3c9717 5308 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5309 else
6e3c9717 5310 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5311 }
89b667f8
JB
5312
5313 for_each_encoder_on_crtc(dev, crtc, encoder)
5314 if (encoder->pre_enable)
5315 encoder->pre_enable(encoder);
5316
2dd24552
JB
5317 i9xx_pfit_enable(intel_crtc);
5318
63cbb074
VS
5319 intel_crtc_load_lut(crtc);
5320
f37fcc2a 5321 intel_update_watermarks(crtc);
e1fdc473 5322 intel_enable_pipe(intel_crtc);
be6a6f8e 5323
4b3a9526
VS
5324 assert_vblank_disabled(crtc);
5325 drm_crtc_vblank_on(crtc);
5326
f9b61ff6
DV
5327 for_each_encoder_on_crtc(dev, crtc, encoder)
5328 encoder->enable(encoder);
5329
9ab0460b 5330 intel_crtc_enable_planes(crtc);
d40d9187 5331
56b80e1f 5332 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5333 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5334}
5335
f13c2ef3
DV
5336static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5337{
5338 struct drm_device *dev = crtc->base.dev;
5339 struct drm_i915_private *dev_priv = dev->dev_private;
5340
6e3c9717
ACO
5341 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5342 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5343}
5344
0b8765c6 5345static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5346{
5347 struct drm_device *dev = crtc->dev;
a72e4c9f 5348 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5350 struct intel_encoder *encoder;
79e53945 5351 int pipe = intel_crtc->pipe;
79e53945 5352
83d65738 5353 WARN_ON(!crtc->state->enable);
08a48469 5354
f7abfe8b
CW
5355 if (intel_crtc->active)
5356 return;
5357
f13c2ef3
DV
5358 i9xx_set_pll_dividers(intel_crtc);
5359
6e3c9717 5360 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5361 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5362
5363 intel_set_pipe_timings(intel_crtc);
5364
5b18e57c
DV
5365 i9xx_set_pipeconf(intel_crtc);
5366
f7abfe8b 5367 intel_crtc->active = true;
6b383a7f 5368
4a3436e8 5369 if (!IS_GEN2(dev))
a72e4c9f 5370 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5371
9d6d9f19
MK
5372 for_each_encoder_on_crtc(dev, crtc, encoder)
5373 if (encoder->pre_enable)
5374 encoder->pre_enable(encoder);
5375
f6736a1a
DV
5376 i9xx_enable_pll(intel_crtc);
5377
2dd24552
JB
5378 i9xx_pfit_enable(intel_crtc);
5379
63cbb074
VS
5380 intel_crtc_load_lut(crtc);
5381
f37fcc2a 5382 intel_update_watermarks(crtc);
e1fdc473 5383 intel_enable_pipe(intel_crtc);
be6a6f8e 5384
4b3a9526
VS
5385 assert_vblank_disabled(crtc);
5386 drm_crtc_vblank_on(crtc);
5387
f9b61ff6
DV
5388 for_each_encoder_on_crtc(dev, crtc, encoder)
5389 encoder->enable(encoder);
5390
9ab0460b 5391 intel_crtc_enable_planes(crtc);
d40d9187 5392
4a3436e8
VS
5393 /*
5394 * Gen2 reports pipe underruns whenever all planes are disabled.
5395 * So don't enable underrun reporting before at least some planes
5396 * are enabled.
5397 * FIXME: Need to fix the logic to work when we turn off all planes
5398 * but leave the pipe running.
5399 */
5400 if (IS_GEN2(dev))
a72e4c9f 5401 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5402
56b80e1f 5403 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5404 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5405}
79e53945 5406
87476d63
DV
5407static void i9xx_pfit_disable(struct intel_crtc *crtc)
5408{
5409 struct drm_device *dev = crtc->base.dev;
5410 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5411
6e3c9717 5412 if (!crtc->config->gmch_pfit.control)
328d8e82 5413 return;
87476d63 5414
328d8e82 5415 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5416
328d8e82
DV
5417 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5418 I915_READ(PFIT_CONTROL));
5419 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5420}
5421
0b8765c6
JB
5422static void i9xx_crtc_disable(struct drm_crtc *crtc)
5423{
5424 struct drm_device *dev = crtc->dev;
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5427 struct intel_encoder *encoder;
0b8765c6 5428 int pipe = intel_crtc->pipe;
ef9c3aee 5429
f7abfe8b
CW
5430 if (!intel_crtc->active)
5431 return;
5432
4a3436e8
VS
5433 /*
5434 * Gen2 reports pipe underruns whenever all planes are disabled.
5435 * So diasble underrun reporting before all the planes get disabled.
5436 * FIXME: Need to fix the logic to work when we turn off all planes
5437 * but leave the pipe running.
5438 */
5439 if (IS_GEN2(dev))
a72e4c9f 5440 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5441
564ed191
ID
5442 /*
5443 * Vblank time updates from the shadow to live plane control register
5444 * are blocked if the memory self-refresh mode is active at that
5445 * moment. So to make sure the plane gets truly disabled, disable
5446 * first the self-refresh mode. The self-refresh enable bit in turn
5447 * will be checked/applied by the HW only at the next frame start
5448 * event which is after the vblank start event, so we need to have a
5449 * wait-for-vblank between disabling the plane and the pipe.
5450 */
5451 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5452 intel_crtc_disable_planes(crtc);
5453
6304cd91
VS
5454 /*
5455 * On gen2 planes are double buffered but the pipe isn't, so we must
5456 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5457 * We also need to wait on all gmch platforms because of the
5458 * self-refresh mode constraint explained above.
6304cd91 5459 */
564ed191 5460 intel_wait_for_vblank(dev, pipe);
6304cd91 5461
4b3a9526
VS
5462 for_each_encoder_on_crtc(dev, crtc, encoder)
5463 encoder->disable(encoder);
5464
f9b61ff6
DV
5465 drm_crtc_vblank_off(crtc);
5466 assert_vblank_disabled(crtc);
5467
575f7ab7 5468 intel_disable_pipe(intel_crtc);
24a1f16d 5469
87476d63 5470 i9xx_pfit_disable(intel_crtc);
24a1f16d 5471
89b667f8
JB
5472 for_each_encoder_on_crtc(dev, crtc, encoder)
5473 if (encoder->post_disable)
5474 encoder->post_disable(encoder);
5475
409ee761 5476 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5477 if (IS_CHERRYVIEW(dev))
5478 chv_disable_pll(dev_priv, pipe);
5479 else if (IS_VALLEYVIEW(dev))
5480 vlv_disable_pll(dev_priv, pipe);
5481 else
1c4e0274 5482 i9xx_disable_pll(intel_crtc);
076ed3b2 5483 }
0b8765c6 5484
4a3436e8 5485 if (!IS_GEN2(dev))
a72e4c9f 5486 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5487
f7abfe8b 5488 intel_crtc->active = false;
46ba614c 5489 intel_update_watermarks(crtc);
f37fcc2a 5490
efa9624e 5491 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5492 intel_fbc_update(dev);
efa9624e 5493 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5494}
5495
ee7b9f93
JB
5496static void i9xx_crtc_off(struct drm_crtc *crtc)
5497{
5498}
5499
b04c5bd6
BF
5500/* Master function to enable/disable CRTC and corresponding power wells */
5501void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5502{
5503 struct drm_device *dev = crtc->dev;
5504 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5506 enum intel_display_power_domain domain;
5507 unsigned long domains;
976f8a20 5508
0e572fe7
DV
5509 if (enable) {
5510 if (!intel_crtc->active) {
e1e9fb84
DV
5511 domains = get_crtc_power_domains(crtc);
5512 for_each_power_domain(domain, domains)
5513 intel_display_power_get(dev_priv, domain);
5514 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5515
5516 dev_priv->display.crtc_enable(crtc);
5517 }
5518 } else {
5519 if (intel_crtc->active) {
5520 dev_priv->display.crtc_disable(crtc);
5521
e1e9fb84
DV
5522 domains = intel_crtc->enabled_power_domains;
5523 for_each_power_domain(domain, domains)
5524 intel_display_power_put(dev_priv, domain);
5525 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5526 }
5527 }
b04c5bd6
BF
5528}
5529
5530/**
5531 * Sets the power management mode of the pipe and plane.
5532 */
5533void intel_crtc_update_dpms(struct drm_crtc *crtc)
5534{
5535 struct drm_device *dev = crtc->dev;
5536 struct intel_encoder *intel_encoder;
5537 bool enable = false;
5538
5539 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5540 enable |= intel_encoder->connectors_active;
5541
5542 intel_crtc_control(crtc, enable);
976f8a20
DV
5543}
5544
cdd59983
CW
5545static void intel_crtc_disable(struct drm_crtc *crtc)
5546{
cdd59983 5547 struct drm_device *dev = crtc->dev;
976f8a20 5548 struct drm_connector *connector;
ee7b9f93 5549 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5550
976f8a20 5551 /* crtc should still be enabled when we disable it. */
83d65738 5552 WARN_ON(!crtc->state->enable);
976f8a20
DV
5553
5554 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5555 dev_priv->display.off(crtc);
5556
455a6808 5557 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5558
5559 /* Update computed state. */
5560 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5561 if (!connector->encoder || !connector->encoder->crtc)
5562 continue;
5563
5564 if (connector->encoder->crtc != crtc)
5565 continue;
5566
5567 connector->dpms = DRM_MODE_DPMS_OFF;
5568 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5569 }
5570}
5571
ea5b213a 5572void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5573{
4ef69c7a 5574 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5575
ea5b213a
CW
5576 drm_encoder_cleanup(encoder);
5577 kfree(intel_encoder);
7e7d76c3
JB
5578}
5579
9237329d 5580/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5581 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5582 * state of the entire output pipe. */
9237329d 5583static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5584{
5ab432ef
DV
5585 if (mode == DRM_MODE_DPMS_ON) {
5586 encoder->connectors_active = true;
5587
b2cabb0e 5588 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5589 } else {
5590 encoder->connectors_active = false;
5591
b2cabb0e 5592 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5593 }
79e53945
JB
5594}
5595
0a91ca29
DV
5596/* Cross check the actual hw state with our own modeset state tracking (and it's
5597 * internal consistency). */
b980514c 5598static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5599{
0a91ca29
DV
5600 if (connector->get_hw_state(connector)) {
5601 struct intel_encoder *encoder = connector->encoder;
5602 struct drm_crtc *crtc;
5603 bool encoder_enabled;
5604 enum pipe pipe;
5605
5606 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5607 connector->base.base.id,
c23cc417 5608 connector->base.name);
0a91ca29 5609
0e32b39c
DA
5610 /* there is no real hw state for MST connectors */
5611 if (connector->mst_port)
5612 return;
5613
e2c719b7 5614 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5615 "wrong connector dpms state\n");
e2c719b7 5616 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5617 "active connector not linked to encoder\n");
0a91ca29 5618
36cd7444 5619 if (encoder) {
e2c719b7 5620 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5621 "encoder->connectors_active not set\n");
5622
5623 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5624 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5625 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5626 return;
0a91ca29 5627
36cd7444 5628 crtc = encoder->base.crtc;
0a91ca29 5629
83d65738
MR
5630 I915_STATE_WARN(!crtc->state->enable,
5631 "crtc not enabled\n");
e2c719b7
RC
5632 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5633 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5634 "encoder active on the wrong pipe\n");
5635 }
0a91ca29 5636 }
79e53945
JB
5637}
5638
5ab432ef
DV
5639/* Even simpler default implementation, if there's really no special case to
5640 * consider. */
5641void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5642{
5ab432ef
DV
5643 /* All the simple cases only support two dpms states. */
5644 if (mode != DRM_MODE_DPMS_ON)
5645 mode = DRM_MODE_DPMS_OFF;
d4270e57 5646
5ab432ef
DV
5647 if (mode == connector->dpms)
5648 return;
5649
5650 connector->dpms = mode;
5651
5652 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5653 if (connector->encoder)
5654 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5655
b980514c 5656 intel_modeset_check_state(connector->dev);
79e53945
JB
5657}
5658
f0947c37
DV
5659/* Simple connector->get_hw_state implementation for encoders that support only
5660 * one connector and no cloning and hence the encoder state determines the state
5661 * of the connector. */
5662bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5663{
24929352 5664 enum pipe pipe = 0;
f0947c37 5665 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5666
f0947c37 5667 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5668}
5669
d272ddfa
VS
5670static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5671{
5672 struct intel_crtc *crtc =
5673 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5674
5675 if (crtc->base.state->enable &&
5676 crtc->config->has_pch_encoder)
5677 return crtc->config->fdi_lanes;
5678
5679 return 0;
5680}
5681
1857e1da 5682static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5683 struct intel_crtc_state *pipe_config)
1857e1da 5684{
1857e1da
DV
5685 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5686 pipe_name(pipe), pipe_config->fdi_lanes);
5687 if (pipe_config->fdi_lanes > 4) {
5688 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5689 pipe_name(pipe), pipe_config->fdi_lanes);
5690 return false;
5691 }
5692
bafb6553 5693 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5694 if (pipe_config->fdi_lanes > 2) {
5695 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5696 pipe_config->fdi_lanes);
5697 return false;
5698 } else {
5699 return true;
5700 }
5701 }
5702
5703 if (INTEL_INFO(dev)->num_pipes == 2)
5704 return true;
5705
5706 /* Ivybridge 3 pipe is really complicated */
5707 switch (pipe) {
5708 case PIPE_A:
5709 return true;
5710 case PIPE_B:
d272ddfa
VS
5711 if (pipe_config->fdi_lanes > 2 &&
5712 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
1857e1da
DV
5713 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5714 pipe_name(pipe), pipe_config->fdi_lanes);
5715 return false;
5716 }
5717 return true;
5718 case PIPE_C:
251cc67c
VS
5719 if (pipe_config->fdi_lanes > 2) {
5720 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5721 pipe_name(pipe), pipe_config->fdi_lanes);
5722 return false;
5723 }
d272ddfa 5724 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
1857e1da
DV
5725 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5726 return false;
5727 }
5728 return true;
5729 default:
5730 BUG();
5731 }
5732}
5733
e29c22c0
DV
5734#define RETRY 1
5735static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5736 struct intel_crtc_state *pipe_config)
877d48d5 5737{
1857e1da 5738 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5739 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5740 int lane, link_bw, fdi_dotclock;
e29c22c0 5741 bool setup_ok, needs_recompute = false;
877d48d5 5742
e29c22c0 5743retry:
877d48d5
DV
5744 /* FDI is a binary signal running at ~2.7GHz, encoding
5745 * each output octet as 10 bits. The actual frequency
5746 * is stored as a divider into a 100MHz clock, and the
5747 * mode pixel clock is stored in units of 1KHz.
5748 * Hence the bw of each lane in terms of the mode signal
5749 * is:
5750 */
5751 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5752
241bfc38 5753 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5754
2bd89a07 5755 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5756 pipe_config->pipe_bpp);
5757
5758 pipe_config->fdi_lanes = lane;
5759
2bd89a07 5760 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5761 link_bw, &pipe_config->fdi_m_n);
1857e1da 5762
e29c22c0
DV
5763 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5764 intel_crtc->pipe, pipe_config);
5765 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5766 pipe_config->pipe_bpp -= 2*3;
5767 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5768 pipe_config->pipe_bpp);
5769 needs_recompute = true;
5770 pipe_config->bw_constrained = true;
5771
5772 goto retry;
5773 }
5774
5775 if (needs_recompute)
5776 return RETRY;
5777
5778 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5779}
5780
42db64ef 5781static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5782 struct intel_crtc_state *pipe_config)
42db64ef 5783{
d330a953 5784 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5785 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5786 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5787}
5788
a43f6e0f 5789static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5790 struct intel_crtc_state *pipe_config)
79e53945 5791{
a43f6e0f 5792 struct drm_device *dev = crtc->base.dev;
8bd31e67 5793 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5794 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5795
ad3a4479 5796 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5797 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5798 int clock_limit =
5799 dev_priv->display.get_display_clock_speed(dev);
5800
5801 /*
5802 * Enable pixel doubling when the dot clock
5803 * is > 90% of the (display) core speed.
5804 *
b397c96b
VS
5805 * GDG double wide on either pipe,
5806 * otherwise pipe A only.
cf532bb2 5807 */
b397c96b 5808 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5809 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5810 clock_limit *= 2;
cf532bb2 5811 pipe_config->double_wide = true;
ad3a4479
VS
5812 }
5813
241bfc38 5814 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5815 return -EINVAL;
2c07245f 5816 }
89749350 5817
1d1d0e27
VS
5818 /*
5819 * Pipe horizontal size must be even in:
5820 * - DVO ganged mode
5821 * - LVDS dual channel mode
5822 * - Double wide pipe
5823 */
a93e255f 5824 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5825 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5826 pipe_config->pipe_src_w &= ~1;
5827
8693a824
DL
5828 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5829 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5830 */
5831 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5832 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5833 return -EINVAL;
44f46b42 5834
bd080ee5 5835 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5836 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5837 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5838 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5839 * for lvds. */
5840 pipe_config->pipe_bpp = 8*3;
5841 }
5842
f5adf94e 5843 if (HAS_IPS(dev))
a43f6e0f
DV
5844 hsw_compute_ips_config(crtc, pipe_config);
5845
877d48d5 5846 if (pipe_config->has_pch_encoder)
a43f6e0f 5847 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5848
e29c22c0 5849 return 0;
79e53945
JB
5850}
5851
25eb05fc
JB
5852static int valleyview_get_display_clock_speed(struct drm_device *dev)
5853{
d197b7d3 5854 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5855 u32 val;
5856 int divider;
5857
6bcda4f0
VS
5858 if (dev_priv->hpll_freq == 0)
5859 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5860
d197b7d3
VS
5861 mutex_lock(&dev_priv->dpio_lock);
5862 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5863 mutex_unlock(&dev_priv->dpio_lock);
5864
5865 divider = val & DISPLAY_FREQUENCY_VALUES;
5866
7d007f40
VS
5867 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5868 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5869 "cdclk change in progress\n");
5870
6bcda4f0 5871 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5872}
5873
e70236a8
JB
5874static int i945_get_display_clock_speed(struct drm_device *dev)
5875{
5876 return 400000;
5877}
79e53945 5878
e70236a8 5879static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5880{
e70236a8
JB
5881 return 333000;
5882}
79e53945 5883
e70236a8
JB
5884static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5885{
5886 return 200000;
5887}
79e53945 5888
257a7ffc
DV
5889static int pnv_get_display_clock_speed(struct drm_device *dev)
5890{
5891 u16 gcfgc = 0;
5892
5893 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5894
5895 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5896 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5897 return 267000;
5898 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5899 return 333000;
5900 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5901 return 444000;
5902 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5903 return 200000;
5904 default:
5905 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5906 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5907 return 133000;
5908 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5909 return 167000;
5910 }
5911}
5912
e70236a8
JB
5913static int i915gm_get_display_clock_speed(struct drm_device *dev)
5914{
5915 u16 gcfgc = 0;
79e53945 5916
e70236a8
JB
5917 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5918
5919 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5920 return 133000;
5921 else {
5922 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5923 case GC_DISPLAY_CLOCK_333_MHZ:
5924 return 333000;
5925 default:
5926 case GC_DISPLAY_CLOCK_190_200_MHZ:
5927 return 190000;
79e53945 5928 }
e70236a8
JB
5929 }
5930}
5931
5932static int i865_get_display_clock_speed(struct drm_device *dev)
5933{
5934 return 266000;
5935}
5936
5937static int i855_get_display_clock_speed(struct drm_device *dev)
5938{
5939 u16 hpllcc = 0;
5940 /* Assume that the hardware is in the high speed state. This
5941 * should be the default.
5942 */
5943 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5944 case GC_CLOCK_133_200:
5945 case GC_CLOCK_100_200:
5946 return 200000;
5947 case GC_CLOCK_166_250:
5948 return 250000;
5949 case GC_CLOCK_100_133:
79e53945 5950 return 133000;
e70236a8 5951 }
79e53945 5952
e70236a8
JB
5953 /* Shouldn't happen */
5954 return 0;
5955}
79e53945 5956
e70236a8
JB
5957static int i830_get_display_clock_speed(struct drm_device *dev)
5958{
5959 return 133000;
79e53945
JB
5960}
5961
2c07245f 5962static void
a65851af 5963intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5964{
a65851af
VS
5965 while (*num > DATA_LINK_M_N_MASK ||
5966 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5967 *num >>= 1;
5968 *den >>= 1;
5969 }
5970}
5971
a65851af
VS
5972static void compute_m_n(unsigned int m, unsigned int n,
5973 uint32_t *ret_m, uint32_t *ret_n)
5974{
5975 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5976 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5977 intel_reduce_m_n_ratio(ret_m, ret_n);
5978}
5979
e69d0bc1
DV
5980void
5981intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5982 int pixel_clock, int link_clock,
5983 struct intel_link_m_n *m_n)
2c07245f 5984{
e69d0bc1 5985 m_n->tu = 64;
a65851af
VS
5986
5987 compute_m_n(bits_per_pixel * pixel_clock,
5988 link_clock * nlanes * 8,
5989 &m_n->gmch_m, &m_n->gmch_n);
5990
5991 compute_m_n(pixel_clock, link_clock,
5992 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5993}
5994
a7615030
CW
5995static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5996{
d330a953
JN
5997 if (i915.panel_use_ssc >= 0)
5998 return i915.panel_use_ssc != 0;
41aa3448 5999 return dev_priv->vbt.lvds_use_ssc
435793df 6000 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
6001}
6002
a93e255f
ACO
6003static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6004 int num_connectors)
c65d77d8 6005{
a93e255f 6006 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
6007 struct drm_i915_private *dev_priv = dev->dev_private;
6008 int refclk;
6009
a93e255f
ACO
6010 WARN_ON(!crtc_state->base.state);
6011
a0c4da24 6012 if (IS_VALLEYVIEW(dev)) {
9a0ea498 6013 refclk = 100000;
a93e255f 6014 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 6015 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
6016 refclk = dev_priv->vbt.lvds_ssc_freq;
6017 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
6018 } else if (!IS_GEN2(dev)) {
6019 refclk = 96000;
6020 } else {
6021 refclk = 48000;
6022 }
6023
6024 return refclk;
6025}
6026
7429e9d4 6027static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 6028{
7df00d7a 6029 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6030}
f47709a9 6031
7429e9d4
DV
6032static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6033{
6034 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6035}
6036
f47709a9 6037static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6038 struct intel_crtc_state *crtc_state,
a7516a05
JB
6039 intel_clock_t *reduced_clock)
6040{
f47709a9 6041 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6042 u32 fp, fp2 = 0;
6043
6044 if (IS_PINEVIEW(dev)) {
190f68c5 6045 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6046 if (reduced_clock)
7429e9d4 6047 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6048 } else {
190f68c5 6049 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6050 if (reduced_clock)
7429e9d4 6051 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6052 }
6053
190f68c5 6054 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6055
f47709a9 6056 crtc->lowfreq_avail = false;
a93e255f 6057 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 6058 reduced_clock) {
190f68c5 6059 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6060 crtc->lowfreq_avail = true;
a7516a05 6061 } else {
190f68c5 6062 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6063 }
6064}
6065
5e69f97f
CML
6066static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6067 pipe)
89b667f8
JB
6068{
6069 u32 reg_val;
6070
6071 /*
6072 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6073 * and set it to a reasonable value instead.
6074 */
ab3c759a 6075 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6076 reg_val &= 0xffffff00;
6077 reg_val |= 0x00000030;
ab3c759a 6078 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6079
ab3c759a 6080 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6081 reg_val &= 0x8cffffff;
6082 reg_val = 0x8c000000;
ab3c759a 6083 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6084
ab3c759a 6085 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6086 reg_val &= 0xffffff00;
ab3c759a 6087 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6088
ab3c759a 6089 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6090 reg_val &= 0x00ffffff;
6091 reg_val |= 0xb0000000;
ab3c759a 6092 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6093}
6094
b551842d
DV
6095static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6096 struct intel_link_m_n *m_n)
6097{
6098 struct drm_device *dev = crtc->base.dev;
6099 struct drm_i915_private *dev_priv = dev->dev_private;
6100 int pipe = crtc->pipe;
6101
e3b95f1e
DV
6102 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6103 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6104 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6105 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6106}
6107
6108static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6109 struct intel_link_m_n *m_n,
6110 struct intel_link_m_n *m2_n2)
b551842d
DV
6111{
6112 struct drm_device *dev = crtc->base.dev;
6113 struct drm_i915_private *dev_priv = dev->dev_private;
6114 int pipe = crtc->pipe;
6e3c9717 6115 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6116
6117 if (INTEL_INFO(dev)->gen >= 5) {
6118 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6119 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6120 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6121 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6122 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6123 * for gen < 8) and if DRRS is supported (to make sure the
6124 * registers are not unnecessarily accessed).
6125 */
44395bfe 6126 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6127 crtc->config->has_drrs) {
f769cd24
VK
6128 I915_WRITE(PIPE_DATA_M2(transcoder),
6129 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6130 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6131 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6132 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6133 }
b551842d 6134 } else {
e3b95f1e
DV
6135 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6136 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6137 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6138 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6139 }
6140}
6141
fe3cd48d 6142void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6143{
fe3cd48d
R
6144 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6145
6146 if (m_n == M1_N1) {
6147 dp_m_n = &crtc->config->dp_m_n;
6148 dp_m2_n2 = &crtc->config->dp_m2_n2;
6149 } else if (m_n == M2_N2) {
6150
6151 /*
6152 * M2_N2 registers are not supported. Hence m2_n2 divider value
6153 * needs to be programmed into M1_N1.
6154 */
6155 dp_m_n = &crtc->config->dp_m2_n2;
6156 } else {
6157 DRM_ERROR("Unsupported divider value\n");
6158 return;
6159 }
6160
6e3c9717
ACO
6161 if (crtc->config->has_pch_encoder)
6162 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6163 else
fe3cd48d 6164 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6165}
6166
d288f65f 6167static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6168 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6169{
6170 u32 dpll, dpll_md;
6171
6172 /*
6173 * Enable DPIO clock input. We should never disable the reference
6174 * clock for pipe B, since VGA hotplug / manual detection depends
6175 * on it.
6176 */
6177 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6178 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6179 /* We should never disable this, set it here for state tracking */
6180 if (crtc->pipe == PIPE_B)
6181 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6182 dpll |= DPLL_VCO_ENABLE;
d288f65f 6183 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6184
d288f65f 6185 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6186 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6187 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6188}
6189
d288f65f 6190static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6191 const struct intel_crtc_state *pipe_config)
a0c4da24 6192{
f47709a9 6193 struct drm_device *dev = crtc->base.dev;
a0c4da24 6194 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6195 int pipe = crtc->pipe;
bdd4b6a6 6196 u32 mdiv;
a0c4da24 6197 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6198 u32 coreclk, reg_val;
a0c4da24 6199
09153000
DV
6200 mutex_lock(&dev_priv->dpio_lock);
6201
d288f65f
VS
6202 bestn = pipe_config->dpll.n;
6203 bestm1 = pipe_config->dpll.m1;
6204 bestm2 = pipe_config->dpll.m2;
6205 bestp1 = pipe_config->dpll.p1;
6206 bestp2 = pipe_config->dpll.p2;
a0c4da24 6207
89b667f8
JB
6208 /* See eDP HDMI DPIO driver vbios notes doc */
6209
6210 /* PLL B needs special handling */
bdd4b6a6 6211 if (pipe == PIPE_B)
5e69f97f 6212 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6213
6214 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6215 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6216
6217 /* Disable target IRef on PLL */
ab3c759a 6218 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6219 reg_val &= 0x00ffffff;
ab3c759a 6220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6221
6222 /* Disable fast lock */
ab3c759a 6223 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6224
6225 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6226 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6227 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6228 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6229 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6230
6231 /*
6232 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6233 * but we don't support that).
6234 * Note: don't use the DAC post divider as it seems unstable.
6235 */
6236 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6238
a0c4da24 6239 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6240 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6241
89b667f8 6242 /* Set HBR and RBR LPF coefficients */
d288f65f 6243 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6244 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6245 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6247 0x009f0003);
89b667f8 6248 else
ab3c759a 6249 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6250 0x00d0000f);
6251
681a8504 6252 if (pipe_config->has_dp_encoder) {
89b667f8 6253 /* Use SSC source */
bdd4b6a6 6254 if (pipe == PIPE_A)
ab3c759a 6255 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6256 0x0df40000);
6257 else
ab3c759a 6258 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6259 0x0df70000);
6260 } else { /* HDMI or VGA */
6261 /* Use bend source */
bdd4b6a6 6262 if (pipe == PIPE_A)
ab3c759a 6263 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6264 0x0df70000);
6265 else
ab3c759a 6266 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6267 0x0df40000);
6268 }
a0c4da24 6269
ab3c759a 6270 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6271 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6272 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6273 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6274 coreclk |= 0x01000000;
ab3c759a 6275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6276
ab3c759a 6277 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6278 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6279}
6280
d288f65f 6281static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6282 struct intel_crtc_state *pipe_config)
1ae0d137 6283{
d288f65f 6284 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6285 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6286 DPLL_VCO_ENABLE;
6287 if (crtc->pipe != PIPE_A)
d288f65f 6288 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6289
d288f65f
VS
6290 pipe_config->dpll_hw_state.dpll_md =
6291 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6292}
6293
d288f65f 6294static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6295 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6296{
6297 struct drm_device *dev = crtc->base.dev;
6298 struct drm_i915_private *dev_priv = dev->dev_private;
6299 int pipe = crtc->pipe;
6300 int dpll_reg = DPLL(crtc->pipe);
6301 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 6302 u32 loopfilter, tribuf_calcntr;
9d556c99 6303 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 6304 u32 dpio_val;
9cbe40c1 6305 int vco;
9d556c99 6306
d288f65f
VS
6307 bestn = pipe_config->dpll.n;
6308 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6309 bestm1 = pipe_config->dpll.m1;
6310 bestm2 = pipe_config->dpll.m2 >> 22;
6311 bestp1 = pipe_config->dpll.p1;
6312 bestp2 = pipe_config->dpll.p2;
9cbe40c1 6313 vco = pipe_config->dpll.vco;
a945ce7e 6314 dpio_val = 0;
9cbe40c1 6315 loopfilter = 0;
9d556c99
CML
6316
6317 /*
6318 * Enable Refclk and SSC
6319 */
a11b0703 6320 I915_WRITE(dpll_reg,
d288f65f 6321 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6322
6323 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6324
9d556c99
CML
6325 /* p1 and p2 divider */
6326 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6327 5 << DPIO_CHV_S1_DIV_SHIFT |
6328 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6329 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6330 1 << DPIO_CHV_K_DIV_SHIFT);
6331
6332 /* Feedback post-divider - m2 */
6333 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6334
6335 /* Feedback refclk divider - n and m1 */
6336 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6337 DPIO_CHV_M1_DIV_BY_2 |
6338 1 << DPIO_CHV_N_DIV_SHIFT);
6339
6340 /* M2 fraction division */
a945ce7e
VP
6341 if (bestm2_frac)
6342 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
6343
6344 /* M2 fraction division enable */
a945ce7e
VP
6345 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6346 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6347 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6348 if (bestm2_frac)
6349 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6350 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 6351
de3a0fde
VP
6352 /* Program digital lock detect threshold */
6353 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6354 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6355 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6356 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6357 if (!bestm2_frac)
6358 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6359 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6360
9d556c99 6361 /* Loop filter */
9cbe40c1
VP
6362 if (vco == 5400000) {
6363 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6364 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6365 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6366 tribuf_calcntr = 0x9;
6367 } else if (vco <= 6200000) {
6368 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6369 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6370 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6371 tribuf_calcntr = 0x9;
6372 } else if (vco <= 6480000) {
6373 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6374 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6375 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6376 tribuf_calcntr = 0x8;
6377 } else {
6378 /* Not supported. Apply the same limits as in the max case */
6379 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6380 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6381 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6382 tribuf_calcntr = 0;
6383 }
9d556c99
CML
6384 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6385
968040b2 6386 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
6387 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6388 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6389 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6390
9d556c99
CML
6391 /* AFC Recal */
6392 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6393 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6394 DPIO_AFC_RECAL);
6395
6396 mutex_unlock(&dev_priv->dpio_lock);
6397}
6398
d288f65f
VS
6399/**
6400 * vlv_force_pll_on - forcibly enable just the PLL
6401 * @dev_priv: i915 private structure
6402 * @pipe: pipe PLL to enable
6403 * @dpll: PLL configuration
6404 *
6405 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6406 * in cases where we need the PLL enabled even when @pipe is not going to
6407 * be enabled.
6408 */
6409void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6410 const struct dpll *dpll)
6411{
6412 struct intel_crtc *crtc =
6413 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6414 struct intel_crtc_state pipe_config = {
a93e255f 6415 .base.crtc = &crtc->base,
d288f65f
VS
6416 .pixel_multiplier = 1,
6417 .dpll = *dpll,
6418 };
6419
6420 if (IS_CHERRYVIEW(dev)) {
6421 chv_update_pll(crtc, &pipe_config);
6422 chv_prepare_pll(crtc, &pipe_config);
6423 chv_enable_pll(crtc, &pipe_config);
6424 } else {
6425 vlv_update_pll(crtc, &pipe_config);
6426 vlv_prepare_pll(crtc, &pipe_config);
6427 vlv_enable_pll(crtc, &pipe_config);
6428 }
6429}
6430
6431/**
6432 * vlv_force_pll_off - forcibly disable just the PLL
6433 * @dev_priv: i915 private structure
6434 * @pipe: pipe PLL to disable
6435 *
6436 * Disable the PLL for @pipe. To be used in cases where we need
6437 * the PLL enabled even when @pipe is not going to be enabled.
6438 */
6439void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6440{
6441 if (IS_CHERRYVIEW(dev))
6442 chv_disable_pll(to_i915(dev), pipe);
6443 else
6444 vlv_disable_pll(to_i915(dev), pipe);
6445}
6446
f47709a9 6447static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6448 struct intel_crtc_state *crtc_state,
f47709a9 6449 intel_clock_t *reduced_clock,
eb1cbe48
DV
6450 int num_connectors)
6451{
f47709a9 6452 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6453 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6454 u32 dpll;
6455 bool is_sdvo;
190f68c5 6456 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6457
190f68c5 6458 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6459
a93e255f
ACO
6460 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6461 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6462
6463 dpll = DPLL_VGA_MODE_DIS;
6464
a93e255f 6465 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6466 dpll |= DPLLB_MODE_LVDS;
6467 else
6468 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6469
ef1b460d 6470 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6471 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6472 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6473 }
198a037f
DV
6474
6475 if (is_sdvo)
4a33e48d 6476 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6477
190f68c5 6478 if (crtc_state->has_dp_encoder)
4a33e48d 6479 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6480
6481 /* compute bitmask from p1 value */
6482 if (IS_PINEVIEW(dev))
6483 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6484 else {
6485 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6486 if (IS_G4X(dev) && reduced_clock)
6487 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6488 }
6489 switch (clock->p2) {
6490 case 5:
6491 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6492 break;
6493 case 7:
6494 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6495 break;
6496 case 10:
6497 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6498 break;
6499 case 14:
6500 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6501 break;
6502 }
6503 if (INTEL_INFO(dev)->gen >= 4)
6504 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6505
190f68c5 6506 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6507 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 6508 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6509 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6510 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6511 else
6512 dpll |= PLL_REF_INPUT_DREFCLK;
6513
6514 dpll |= DPLL_VCO_ENABLE;
190f68c5 6515 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6516
eb1cbe48 6517 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6518 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6519 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6520 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6521 }
6522}
6523
f47709a9 6524static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6525 struct intel_crtc_state *crtc_state,
f47709a9 6526 intel_clock_t *reduced_clock,
eb1cbe48
DV
6527 int num_connectors)
6528{
f47709a9 6529 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6530 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6531 u32 dpll;
190f68c5 6532 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6533
190f68c5 6534 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6535
eb1cbe48
DV
6536 dpll = DPLL_VGA_MODE_DIS;
6537
a93e255f 6538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6539 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6540 } else {
6541 if (clock->p1 == 2)
6542 dpll |= PLL_P1_DIVIDE_BY_TWO;
6543 else
6544 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6545 if (clock->p2 == 4)
6546 dpll |= PLL_P2_DIVIDE_BY_4;
6547 }
6548
a93e255f 6549 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
6550 dpll |= DPLL_DVO_2X_MODE;
6551
a93e255f 6552 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6553 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6554 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6555 else
6556 dpll |= PLL_REF_INPUT_DREFCLK;
6557
6558 dpll |= DPLL_VCO_ENABLE;
190f68c5 6559 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6560}
6561
8a654f3b 6562static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6563{
6564 struct drm_device *dev = intel_crtc->base.dev;
6565 struct drm_i915_private *dev_priv = dev->dev_private;
6566 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6567 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6568 struct drm_display_mode *adjusted_mode =
6e3c9717 6569 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6570 uint32_t crtc_vtotal, crtc_vblank_end;
6571 int vsyncshift = 0;
4d8a62ea
DV
6572
6573 /* We need to be careful not to changed the adjusted mode, for otherwise
6574 * the hw state checker will get angry at the mismatch. */
6575 crtc_vtotal = adjusted_mode->crtc_vtotal;
6576 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6577
609aeaca 6578 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6579 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6580 crtc_vtotal -= 1;
6581 crtc_vblank_end -= 1;
609aeaca 6582
409ee761 6583 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6584 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6585 else
6586 vsyncshift = adjusted_mode->crtc_hsync_start -
6587 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6588 if (vsyncshift < 0)
6589 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6590 }
6591
6592 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6593 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6594
fe2b8f9d 6595 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6596 (adjusted_mode->crtc_hdisplay - 1) |
6597 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6598 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6599 (adjusted_mode->crtc_hblank_start - 1) |
6600 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6601 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6602 (adjusted_mode->crtc_hsync_start - 1) |
6603 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6604
fe2b8f9d 6605 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6606 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6607 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6608 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6609 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6610 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6611 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6612 (adjusted_mode->crtc_vsync_start - 1) |
6613 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6614
b5e508d4
PZ
6615 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6616 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6617 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6618 * bits. */
6619 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6620 (pipe == PIPE_B || pipe == PIPE_C))
6621 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6622
b0e77b9c
PZ
6623 /* pipesrc controls the size that is scaled from, which should
6624 * always be the user's requested size.
6625 */
6626 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6627 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6628 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6629}
6630
1bd1bd80 6631static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6632 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6633{
6634 struct drm_device *dev = crtc->base.dev;
6635 struct drm_i915_private *dev_priv = dev->dev_private;
6636 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6637 uint32_t tmp;
6638
6639 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6640 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6641 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6642 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6643 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6644 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6645 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6646 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6647 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6648
6649 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6650 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6651 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6652 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6653 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6654 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6655 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6656 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6657 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6658
6659 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6660 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6661 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6662 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6663 }
6664
6665 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6666 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6667 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6668
2d112de7
ACO
6669 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6670 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6671}
6672
f6a83288 6673void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6674 struct intel_crtc_state *pipe_config)
babea61d 6675{
2d112de7
ACO
6676 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6677 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6678 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6679 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6680
2d112de7
ACO
6681 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6682 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6683 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6684 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6685
2d112de7 6686 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6687
2d112de7
ACO
6688 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6689 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6690}
6691
84b046f3
DV
6692static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6693{
6694 struct drm_device *dev = intel_crtc->base.dev;
6695 struct drm_i915_private *dev_priv = dev->dev_private;
6696 uint32_t pipeconf;
6697
9f11a9e4 6698 pipeconf = 0;
84b046f3 6699
b6b5d049
VS
6700 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6701 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6702 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6703
6e3c9717 6704 if (intel_crtc->config->double_wide)
cf532bb2 6705 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6706
ff9ce46e
DV
6707 /* only g4x and later have fancy bpc/dither controls */
6708 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6709 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6710 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6711 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6712 PIPECONF_DITHER_TYPE_SP;
84b046f3 6713
6e3c9717 6714 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6715 case 18:
6716 pipeconf |= PIPECONF_6BPC;
6717 break;
6718 case 24:
6719 pipeconf |= PIPECONF_8BPC;
6720 break;
6721 case 30:
6722 pipeconf |= PIPECONF_10BPC;
6723 break;
6724 default:
6725 /* Case prevented by intel_choose_pipe_bpp_dither. */
6726 BUG();
84b046f3
DV
6727 }
6728 }
6729
6730 if (HAS_PIPE_CXSR(dev)) {
6731 if (intel_crtc->lowfreq_avail) {
6732 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6733 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6734 } else {
6735 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6736 }
6737 }
6738
6e3c9717 6739 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6740 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6741 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6742 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6743 else
6744 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6745 } else
84b046f3
DV
6746 pipeconf |= PIPECONF_PROGRESSIVE;
6747
6e3c9717 6748 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6749 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6750
84b046f3
DV
6751 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6752 POSTING_READ(PIPECONF(intel_crtc->pipe));
6753}
6754
190f68c5
ACO
6755static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6756 struct intel_crtc_state *crtc_state)
79e53945 6757{
c7653199 6758 struct drm_device *dev = crtc->base.dev;
79e53945 6759 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6760 int refclk, num_connectors = 0;
652c393a 6761 intel_clock_t clock, reduced_clock;
a16af721 6762 bool ok, has_reduced_clock = false;
e9fd1c02 6763 bool is_lvds = false, is_dsi = false;
5eddb70b 6764 struct intel_encoder *encoder;
d4906093 6765 const intel_limit_t *limit;
55bb9992
ACO
6766 struct drm_atomic_state *state = crtc_state->base.state;
6767 struct drm_connector_state *connector_state;
6768 int i;
79e53945 6769
55bb9992
ACO
6770 for (i = 0; i < state->num_connector; i++) {
6771 if (!state->connectors[i])
d0737e1d
ACO
6772 continue;
6773
55bb9992
ACO
6774 connector_state = state->connector_states[i];
6775 if (connector_state->crtc != &crtc->base)
6776 continue;
6777
6778 encoder = to_intel_encoder(connector_state->best_encoder);
6779
5eddb70b 6780 switch (encoder->type) {
79e53945
JB
6781 case INTEL_OUTPUT_LVDS:
6782 is_lvds = true;
6783 break;
e9fd1c02
JN
6784 case INTEL_OUTPUT_DSI:
6785 is_dsi = true;
6786 break;
6847d71b
PZ
6787 default:
6788 break;
79e53945 6789 }
43565a06 6790
c751ce4f 6791 num_connectors++;
79e53945
JB
6792 }
6793
f2335330 6794 if (is_dsi)
5b18e57c 6795 return 0;
f2335330 6796
190f68c5 6797 if (!crtc_state->clock_set) {
a93e255f 6798 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 6799
e9fd1c02
JN
6800 /*
6801 * Returns a set of divisors for the desired target clock with
6802 * the given refclk, or FALSE. The returned values represent
6803 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6804 * 2) / p1 / p2.
6805 */
a93e255f
ACO
6806 limit = intel_limit(crtc_state, refclk);
6807 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 6808 crtc_state->port_clock,
e9fd1c02 6809 refclk, NULL, &clock);
f2335330 6810 if (!ok) {
e9fd1c02
JN
6811 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6812 return -EINVAL;
6813 }
79e53945 6814
f2335330
JN
6815 if (is_lvds && dev_priv->lvds_downclock_avail) {
6816 /*
6817 * Ensure we match the reduced clock's P to the target
6818 * clock. If the clocks don't match, we can't switch
6819 * the display clock by using the FP0/FP1. In such case
6820 * we will disable the LVDS downclock feature.
6821 */
6822 has_reduced_clock =
a93e255f 6823 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
6824 dev_priv->lvds_downclock,
6825 refclk, &clock,
6826 &reduced_clock);
6827 }
6828 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6829 crtc_state->dpll.n = clock.n;
6830 crtc_state->dpll.m1 = clock.m1;
6831 crtc_state->dpll.m2 = clock.m2;
6832 crtc_state->dpll.p1 = clock.p1;
6833 crtc_state->dpll.p2 = clock.p2;
f47709a9 6834 }
7026d4ac 6835
e9fd1c02 6836 if (IS_GEN2(dev)) {
190f68c5 6837 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6838 has_reduced_clock ? &reduced_clock : NULL,
6839 num_connectors);
9d556c99 6840 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6841 chv_update_pll(crtc, crtc_state);
e9fd1c02 6842 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6843 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6844 } else {
190f68c5 6845 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6846 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6847 num_connectors);
e9fd1c02 6848 }
79e53945 6849
c8f7a0db 6850 return 0;
f564048e
EA
6851}
6852
2fa2fe9a 6853static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6854 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6855{
6856 struct drm_device *dev = crtc->base.dev;
6857 struct drm_i915_private *dev_priv = dev->dev_private;
6858 uint32_t tmp;
6859
dc9e7dec
VS
6860 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6861 return;
6862
2fa2fe9a 6863 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6864 if (!(tmp & PFIT_ENABLE))
6865 return;
2fa2fe9a 6866
06922821 6867 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6868 if (INTEL_INFO(dev)->gen < 4) {
6869 if (crtc->pipe != PIPE_B)
6870 return;
2fa2fe9a
DV
6871 } else {
6872 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6873 return;
6874 }
6875
06922821 6876 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6877 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6878 if (INTEL_INFO(dev)->gen < 5)
6879 pipe_config->gmch_pfit.lvds_border_bits =
6880 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6881}
6882
acbec814 6883static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6884 struct intel_crtc_state *pipe_config)
acbec814
JB
6885{
6886 struct drm_device *dev = crtc->base.dev;
6887 struct drm_i915_private *dev_priv = dev->dev_private;
6888 int pipe = pipe_config->cpu_transcoder;
6889 intel_clock_t clock;
6890 u32 mdiv;
662c6ecb 6891 int refclk = 100000;
acbec814 6892
f573de5a
SK
6893 /* In case of MIPI DPLL will not even be used */
6894 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6895 return;
6896
acbec814 6897 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6898 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6899 mutex_unlock(&dev_priv->dpio_lock);
6900
6901 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6902 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6903 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6904 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6905 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6906
f646628b 6907 vlv_clock(refclk, &clock);
acbec814 6908
f646628b
VS
6909 /* clock.dot is the fast clock */
6910 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6911}
6912
5724dbd1
DL
6913static void
6914i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6915 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6916{
6917 struct drm_device *dev = crtc->base.dev;
6918 struct drm_i915_private *dev_priv = dev->dev_private;
6919 u32 val, base, offset;
6920 int pipe = crtc->pipe, plane = crtc->plane;
6921 int fourcc, pixel_format;
6761dd31 6922 unsigned int aligned_height;
b113d5ee 6923 struct drm_framebuffer *fb;
1b842c89 6924 struct intel_framebuffer *intel_fb;
1ad292b5 6925
42a7b088
DL
6926 val = I915_READ(DSPCNTR(plane));
6927 if (!(val & DISPLAY_PLANE_ENABLE))
6928 return;
6929
d9806c9f 6930 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6931 if (!intel_fb) {
1ad292b5
JB
6932 DRM_DEBUG_KMS("failed to alloc fb\n");
6933 return;
6934 }
6935
1b842c89
DL
6936 fb = &intel_fb->base;
6937
18c5247e
DV
6938 if (INTEL_INFO(dev)->gen >= 4) {
6939 if (val & DISPPLANE_TILED) {
49af449b 6940 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6941 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6942 }
6943 }
1ad292b5
JB
6944
6945 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6946 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6947 fb->pixel_format = fourcc;
6948 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6949
6950 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6951 if (plane_config->tiling)
1ad292b5
JB
6952 offset = I915_READ(DSPTILEOFF(plane));
6953 else
6954 offset = I915_READ(DSPLINOFF(plane));
6955 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6956 } else {
6957 base = I915_READ(DSPADDR(plane));
6958 }
6959 plane_config->base = base;
6960
6961 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6962 fb->width = ((val >> 16) & 0xfff) + 1;
6963 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6964
6965 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6966 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6967
b113d5ee 6968 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6969 fb->pixel_format,
6970 fb->modifier[0]);
1ad292b5 6971
f37b5c2b 6972 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 6973
2844a921
DL
6974 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6975 pipe_name(pipe), plane, fb->width, fb->height,
6976 fb->bits_per_pixel, base, fb->pitches[0],
6977 plane_config->size);
1ad292b5 6978
2d14030b 6979 plane_config->fb = intel_fb;
1ad292b5
JB
6980}
6981
70b23a98 6982static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6983 struct intel_crtc_state *pipe_config)
70b23a98
VS
6984{
6985 struct drm_device *dev = crtc->base.dev;
6986 struct drm_i915_private *dev_priv = dev->dev_private;
6987 int pipe = pipe_config->cpu_transcoder;
6988 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6989 intel_clock_t clock;
6990 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6991 int refclk = 100000;
6992
6993 mutex_lock(&dev_priv->dpio_lock);
6994 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6995 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6996 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6997 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6998 mutex_unlock(&dev_priv->dpio_lock);
6999
7000 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7001 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7002 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7003 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7004 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7005
7006 chv_clock(refclk, &clock);
7007
7008 /* clock.dot is the fast clock */
7009 pipe_config->port_clock = clock.dot / 5;
7010}
7011
0e8ffe1b 7012static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7013 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7014{
7015 struct drm_device *dev = crtc->base.dev;
7016 struct drm_i915_private *dev_priv = dev->dev_private;
7017 uint32_t tmp;
7018
f458ebbc
DV
7019 if (!intel_display_power_is_enabled(dev_priv,
7020 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
7021 return false;
7022
e143a21c 7023 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7024 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7025
0e8ffe1b
DV
7026 tmp = I915_READ(PIPECONF(crtc->pipe));
7027 if (!(tmp & PIPECONF_ENABLE))
7028 return false;
7029
42571aef
VS
7030 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7031 switch (tmp & PIPECONF_BPC_MASK) {
7032 case PIPECONF_6BPC:
7033 pipe_config->pipe_bpp = 18;
7034 break;
7035 case PIPECONF_8BPC:
7036 pipe_config->pipe_bpp = 24;
7037 break;
7038 case PIPECONF_10BPC:
7039 pipe_config->pipe_bpp = 30;
7040 break;
7041 default:
7042 break;
7043 }
7044 }
7045
b5a9fa09
DV
7046 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7047 pipe_config->limited_color_range = true;
7048
282740f7
VS
7049 if (INTEL_INFO(dev)->gen < 4)
7050 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7051
1bd1bd80
DV
7052 intel_get_pipe_timings(crtc, pipe_config);
7053
2fa2fe9a
DV
7054 i9xx_get_pfit_config(crtc, pipe_config);
7055
6c49f241
DV
7056 if (INTEL_INFO(dev)->gen >= 4) {
7057 tmp = I915_READ(DPLL_MD(crtc->pipe));
7058 pipe_config->pixel_multiplier =
7059 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7060 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7061 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7062 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7063 tmp = I915_READ(DPLL(crtc->pipe));
7064 pipe_config->pixel_multiplier =
7065 ((tmp & SDVO_MULTIPLIER_MASK)
7066 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7067 } else {
7068 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7069 * port and will be fixed up in the encoder->get_config
7070 * function. */
7071 pipe_config->pixel_multiplier = 1;
7072 }
8bcc2795
DV
7073 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7074 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7075 /*
7076 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7077 * on 830. Filter it out here so that we don't
7078 * report errors due to that.
7079 */
7080 if (IS_I830(dev))
7081 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7082
8bcc2795
DV
7083 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7084 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7085 } else {
7086 /* Mask out read-only status bits. */
7087 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7088 DPLL_PORTC_READY_MASK |
7089 DPLL_PORTB_READY_MASK);
8bcc2795 7090 }
6c49f241 7091
70b23a98
VS
7092 if (IS_CHERRYVIEW(dev))
7093 chv_crtc_clock_get(crtc, pipe_config);
7094 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7095 vlv_crtc_clock_get(crtc, pipe_config);
7096 else
7097 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7098
0e8ffe1b
DV
7099 return true;
7100}
7101
dde86e2d 7102static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7103{
7104 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7105 struct intel_encoder *encoder;
74cfd7ac 7106 u32 val, final;
13d83a67 7107 bool has_lvds = false;
199e5d79 7108 bool has_cpu_edp = false;
199e5d79 7109 bool has_panel = false;
99eb6a01
KP
7110 bool has_ck505 = false;
7111 bool can_ssc = false;
13d83a67
JB
7112
7113 /* We need to take the global config into account */
b2784e15 7114 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7115 switch (encoder->type) {
7116 case INTEL_OUTPUT_LVDS:
7117 has_panel = true;
7118 has_lvds = true;
7119 break;
7120 case INTEL_OUTPUT_EDP:
7121 has_panel = true;
2de6905f 7122 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7123 has_cpu_edp = true;
7124 break;
6847d71b
PZ
7125 default:
7126 break;
13d83a67
JB
7127 }
7128 }
7129
99eb6a01 7130 if (HAS_PCH_IBX(dev)) {
41aa3448 7131 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7132 can_ssc = has_ck505;
7133 } else {
7134 has_ck505 = false;
7135 can_ssc = true;
7136 }
7137
2de6905f
ID
7138 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7139 has_panel, has_lvds, has_ck505);
13d83a67
JB
7140
7141 /* Ironlake: try to setup display ref clock before DPLL
7142 * enabling. This is only under driver's control after
7143 * PCH B stepping, previous chipset stepping should be
7144 * ignoring this setting.
7145 */
74cfd7ac
CW
7146 val = I915_READ(PCH_DREF_CONTROL);
7147
7148 /* As we must carefully and slowly disable/enable each source in turn,
7149 * compute the final state we want first and check if we need to
7150 * make any changes at all.
7151 */
7152 final = val;
7153 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7154 if (has_ck505)
7155 final |= DREF_NONSPREAD_CK505_ENABLE;
7156 else
7157 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7158
7159 final &= ~DREF_SSC_SOURCE_MASK;
7160 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7161 final &= ~DREF_SSC1_ENABLE;
7162
7163 if (has_panel) {
7164 final |= DREF_SSC_SOURCE_ENABLE;
7165
7166 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7167 final |= DREF_SSC1_ENABLE;
7168
7169 if (has_cpu_edp) {
7170 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7171 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7172 else
7173 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7174 } else
7175 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7176 } else {
7177 final |= DREF_SSC_SOURCE_DISABLE;
7178 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7179 }
7180
7181 if (final == val)
7182 return;
7183
13d83a67 7184 /* Always enable nonspread source */
74cfd7ac 7185 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7186
99eb6a01 7187 if (has_ck505)
74cfd7ac 7188 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7189 else
74cfd7ac 7190 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7191
199e5d79 7192 if (has_panel) {
74cfd7ac
CW
7193 val &= ~DREF_SSC_SOURCE_MASK;
7194 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7195
199e5d79 7196 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7197 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7198 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7199 val |= DREF_SSC1_ENABLE;
e77166b5 7200 } else
74cfd7ac 7201 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7202
7203 /* Get SSC going before enabling the outputs */
74cfd7ac 7204 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7205 POSTING_READ(PCH_DREF_CONTROL);
7206 udelay(200);
7207
74cfd7ac 7208 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7209
7210 /* Enable CPU source on CPU attached eDP */
199e5d79 7211 if (has_cpu_edp) {
99eb6a01 7212 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7213 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7214 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7215 } else
74cfd7ac 7216 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7217 } else
74cfd7ac 7218 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7219
74cfd7ac 7220 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7221 POSTING_READ(PCH_DREF_CONTROL);
7222 udelay(200);
7223 } else {
7224 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7225
74cfd7ac 7226 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7227
7228 /* Turn off CPU output */
74cfd7ac 7229 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7230
74cfd7ac 7231 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7232 POSTING_READ(PCH_DREF_CONTROL);
7233 udelay(200);
7234
7235 /* Turn off the SSC source */
74cfd7ac
CW
7236 val &= ~DREF_SSC_SOURCE_MASK;
7237 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7238
7239 /* Turn off SSC1 */
74cfd7ac 7240 val &= ~DREF_SSC1_ENABLE;
199e5d79 7241
74cfd7ac 7242 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7243 POSTING_READ(PCH_DREF_CONTROL);
7244 udelay(200);
7245 }
74cfd7ac
CW
7246
7247 BUG_ON(val != final);
13d83a67
JB
7248}
7249
f31f2d55 7250static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7251{
f31f2d55 7252 uint32_t tmp;
dde86e2d 7253
0ff066a9
PZ
7254 tmp = I915_READ(SOUTH_CHICKEN2);
7255 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7256 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7257
0ff066a9
PZ
7258 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7259 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7260 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7261
0ff066a9
PZ
7262 tmp = I915_READ(SOUTH_CHICKEN2);
7263 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7264 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7265
0ff066a9
PZ
7266 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7267 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7268 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7269}
7270
7271/* WaMPhyProgramming:hsw */
7272static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7273{
7274 uint32_t tmp;
dde86e2d
PZ
7275
7276 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7277 tmp &= ~(0xFF << 24);
7278 tmp |= (0x12 << 24);
7279 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7280
dde86e2d
PZ
7281 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7282 tmp |= (1 << 11);
7283 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7284
7285 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7286 tmp |= (1 << 11);
7287 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7288
dde86e2d
PZ
7289 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7290 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7291 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7292
7293 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7294 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7295 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7296
0ff066a9
PZ
7297 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7298 tmp &= ~(7 << 13);
7299 tmp |= (5 << 13);
7300 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 7301
0ff066a9
PZ
7302 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7303 tmp &= ~(7 << 13);
7304 tmp |= (5 << 13);
7305 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7306
7307 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7308 tmp &= ~0xFF;
7309 tmp |= 0x1C;
7310 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7311
7312 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7313 tmp &= ~0xFF;
7314 tmp |= 0x1C;
7315 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7316
7317 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7318 tmp &= ~(0xFF << 16);
7319 tmp |= (0x1C << 16);
7320 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7321
7322 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7323 tmp &= ~(0xFF << 16);
7324 tmp |= (0x1C << 16);
7325 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7326
0ff066a9
PZ
7327 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7328 tmp |= (1 << 27);
7329 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7330
0ff066a9
PZ
7331 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7332 tmp |= (1 << 27);
7333 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7334
0ff066a9
PZ
7335 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7336 tmp &= ~(0xF << 28);
7337 tmp |= (4 << 28);
7338 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7339
0ff066a9
PZ
7340 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7341 tmp &= ~(0xF << 28);
7342 tmp |= (4 << 28);
7343 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7344}
7345
2fa86a1f
PZ
7346/* Implements 3 different sequences from BSpec chapter "Display iCLK
7347 * Programming" based on the parameters passed:
7348 * - Sequence to enable CLKOUT_DP
7349 * - Sequence to enable CLKOUT_DP without spread
7350 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7351 */
7352static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7353 bool with_fdi)
f31f2d55
PZ
7354{
7355 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7356 uint32_t reg, tmp;
7357
7358 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7359 with_spread = true;
7360 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7361 with_fdi, "LP PCH doesn't have FDI\n"))
7362 with_fdi = false;
f31f2d55
PZ
7363
7364 mutex_lock(&dev_priv->dpio_lock);
7365
7366 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7367 tmp &= ~SBI_SSCCTL_DISABLE;
7368 tmp |= SBI_SSCCTL_PATHALT;
7369 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7370
7371 udelay(24);
7372
2fa86a1f
PZ
7373 if (with_spread) {
7374 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7375 tmp &= ~SBI_SSCCTL_PATHALT;
7376 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7377
2fa86a1f
PZ
7378 if (with_fdi) {
7379 lpt_reset_fdi_mphy(dev_priv);
7380 lpt_program_fdi_mphy(dev_priv);
7381 }
7382 }
dde86e2d 7383
2fa86a1f
PZ
7384 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7385 SBI_GEN0 : SBI_DBUFF0;
7386 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7387 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7388 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7389
7390 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7391}
7392
47701c3b
PZ
7393/* Sequence to disable CLKOUT_DP */
7394static void lpt_disable_clkout_dp(struct drm_device *dev)
7395{
7396 struct drm_i915_private *dev_priv = dev->dev_private;
7397 uint32_t reg, tmp;
7398
7399 mutex_lock(&dev_priv->dpio_lock);
7400
7401 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7402 SBI_GEN0 : SBI_DBUFF0;
7403 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7404 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7405 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7406
7407 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7408 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7409 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7410 tmp |= SBI_SSCCTL_PATHALT;
7411 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7412 udelay(32);
7413 }
7414 tmp |= SBI_SSCCTL_DISABLE;
7415 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7416 }
7417
7418 mutex_unlock(&dev_priv->dpio_lock);
7419}
7420
bf8fa3d3
PZ
7421static void lpt_init_pch_refclk(struct drm_device *dev)
7422{
bf8fa3d3
PZ
7423 struct intel_encoder *encoder;
7424 bool has_vga = false;
7425
b2784e15 7426 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7427 switch (encoder->type) {
7428 case INTEL_OUTPUT_ANALOG:
7429 has_vga = true;
7430 break;
6847d71b
PZ
7431 default:
7432 break;
bf8fa3d3
PZ
7433 }
7434 }
7435
47701c3b
PZ
7436 if (has_vga)
7437 lpt_enable_clkout_dp(dev, true, true);
7438 else
7439 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7440}
7441
dde86e2d
PZ
7442/*
7443 * Initialize reference clocks when the driver loads
7444 */
7445void intel_init_pch_refclk(struct drm_device *dev)
7446{
7447 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7448 ironlake_init_pch_refclk(dev);
7449 else if (HAS_PCH_LPT(dev))
7450 lpt_init_pch_refclk(dev);
7451}
7452
55bb9992 7453static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 7454{
55bb9992 7455 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 7456 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992
ACO
7457 struct drm_atomic_state *state = crtc_state->base.state;
7458 struct drm_connector_state *connector_state;
d9d444cb 7459 struct intel_encoder *encoder;
55bb9992 7460 int num_connectors = 0, i;
d9d444cb
JB
7461 bool is_lvds = false;
7462
55bb9992
ACO
7463 for (i = 0; i < state->num_connector; i++) {
7464 if (!state->connectors[i])
d0737e1d
ACO
7465 continue;
7466
55bb9992
ACO
7467 connector_state = state->connector_states[i];
7468 if (connector_state->crtc != crtc_state->base.crtc)
7469 continue;
7470
7471 encoder = to_intel_encoder(connector_state->best_encoder);
7472
d9d444cb
JB
7473 switch (encoder->type) {
7474 case INTEL_OUTPUT_LVDS:
7475 is_lvds = true;
7476 break;
6847d71b
PZ
7477 default:
7478 break;
d9d444cb
JB
7479 }
7480 num_connectors++;
7481 }
7482
7483 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7484 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7485 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7486 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7487 }
7488
7489 return 120000;
7490}
7491
6ff93609 7492static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7493{
c8203565 7494 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7496 int pipe = intel_crtc->pipe;
c8203565
PZ
7497 uint32_t val;
7498
78114071 7499 val = 0;
c8203565 7500
6e3c9717 7501 switch (intel_crtc->config->pipe_bpp) {
c8203565 7502 case 18:
dfd07d72 7503 val |= PIPECONF_6BPC;
c8203565
PZ
7504 break;
7505 case 24:
dfd07d72 7506 val |= PIPECONF_8BPC;
c8203565
PZ
7507 break;
7508 case 30:
dfd07d72 7509 val |= PIPECONF_10BPC;
c8203565
PZ
7510 break;
7511 case 36:
dfd07d72 7512 val |= PIPECONF_12BPC;
c8203565
PZ
7513 break;
7514 default:
cc769b62
PZ
7515 /* Case prevented by intel_choose_pipe_bpp_dither. */
7516 BUG();
c8203565
PZ
7517 }
7518
6e3c9717 7519 if (intel_crtc->config->dither)
c8203565
PZ
7520 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7521
6e3c9717 7522 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7523 val |= PIPECONF_INTERLACED_ILK;
7524 else
7525 val |= PIPECONF_PROGRESSIVE;
7526
6e3c9717 7527 if (intel_crtc->config->limited_color_range)
3685a8f3 7528 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7529
c8203565
PZ
7530 I915_WRITE(PIPECONF(pipe), val);
7531 POSTING_READ(PIPECONF(pipe));
7532}
7533
86d3efce
VS
7534/*
7535 * Set up the pipe CSC unit.
7536 *
7537 * Currently only full range RGB to limited range RGB conversion
7538 * is supported, but eventually this should handle various
7539 * RGB<->YCbCr scenarios as well.
7540 */
50f3b016 7541static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7542{
7543 struct drm_device *dev = crtc->dev;
7544 struct drm_i915_private *dev_priv = dev->dev_private;
7545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7546 int pipe = intel_crtc->pipe;
7547 uint16_t coeff = 0x7800; /* 1.0 */
7548
7549 /*
7550 * TODO: Check what kind of values actually come out of the pipe
7551 * with these coeff/postoff values and adjust to get the best
7552 * accuracy. Perhaps we even need to take the bpc value into
7553 * consideration.
7554 */
7555
6e3c9717 7556 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7557 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7558
7559 /*
7560 * GY/GU and RY/RU should be the other way around according
7561 * to BSpec, but reality doesn't agree. Just set them up in
7562 * a way that results in the correct picture.
7563 */
7564 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7565 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7566
7567 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7568 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7569
7570 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7571 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7572
7573 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7574 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7575 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7576
7577 if (INTEL_INFO(dev)->gen > 6) {
7578 uint16_t postoff = 0;
7579
6e3c9717 7580 if (intel_crtc->config->limited_color_range)
32cf0cb0 7581 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7582
7583 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7584 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7585 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7586
7587 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7588 } else {
7589 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7590
6e3c9717 7591 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7592 mode |= CSC_BLACK_SCREEN_OFFSET;
7593
7594 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7595 }
7596}
7597
6ff93609 7598static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7599{
756f85cf
PZ
7600 struct drm_device *dev = crtc->dev;
7601 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7603 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7604 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7605 uint32_t val;
7606
3eff4faa 7607 val = 0;
ee2b0b38 7608
6e3c9717 7609 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7610 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7611
6e3c9717 7612 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7613 val |= PIPECONF_INTERLACED_ILK;
7614 else
7615 val |= PIPECONF_PROGRESSIVE;
7616
702e7a56
PZ
7617 I915_WRITE(PIPECONF(cpu_transcoder), val);
7618 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7619
7620 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7621 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7622
3cdf122c 7623 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7624 val = 0;
7625
6e3c9717 7626 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7627 case 18:
7628 val |= PIPEMISC_DITHER_6_BPC;
7629 break;
7630 case 24:
7631 val |= PIPEMISC_DITHER_8_BPC;
7632 break;
7633 case 30:
7634 val |= PIPEMISC_DITHER_10_BPC;
7635 break;
7636 case 36:
7637 val |= PIPEMISC_DITHER_12_BPC;
7638 break;
7639 default:
7640 /* Case prevented by pipe_config_set_bpp. */
7641 BUG();
7642 }
7643
6e3c9717 7644 if (intel_crtc->config->dither)
756f85cf
PZ
7645 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7646
7647 I915_WRITE(PIPEMISC(pipe), val);
7648 }
ee2b0b38
PZ
7649}
7650
6591c6e4 7651static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7652 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7653 intel_clock_t *clock,
7654 bool *has_reduced_clock,
7655 intel_clock_t *reduced_clock)
7656{
7657 struct drm_device *dev = crtc->dev;
7658 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 7659 int refclk;
d4906093 7660 const intel_limit_t *limit;
a16af721 7661 bool ret, is_lvds = false;
79e53945 7662
a93e255f 7663 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 7664
55bb9992 7665 refclk = ironlake_get_refclk(crtc_state);
79e53945 7666
d4906093
ML
7667 /*
7668 * Returns a set of divisors for the desired target clock with the given
7669 * refclk, or FALSE. The returned values represent the clock equation:
7670 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7671 */
a93e255f
ACO
7672 limit = intel_limit(crtc_state, refclk);
7673 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7674 crtc_state->port_clock,
ee9300bb 7675 refclk, NULL, clock);
6591c6e4
PZ
7676 if (!ret)
7677 return false;
cda4b7d3 7678
ddc9003c 7679 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7680 /*
7681 * Ensure we match the reduced clock's P to the target clock.
7682 * If the clocks don't match, we can't switch the display clock
7683 * by using the FP0/FP1. In such case we will disable the LVDS
7684 * downclock feature.
7685 */
ee9300bb 7686 *has_reduced_clock =
a93e255f 7687 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
7688 dev_priv->lvds_downclock,
7689 refclk, clock,
7690 reduced_clock);
652c393a 7691 }
61e9653f 7692
6591c6e4
PZ
7693 return true;
7694}
7695
d4b1931c
PZ
7696int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7697{
7698 /*
7699 * Account for spread spectrum to avoid
7700 * oversubscribing the link. Max center spread
7701 * is 2.5%; use 5% for safety's sake.
7702 */
7703 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7704 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7705}
7706
7429e9d4 7707static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7708{
7429e9d4 7709 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7710}
7711
de13a2e3 7712static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7713 struct intel_crtc_state *crtc_state,
7429e9d4 7714 u32 *fp,
9a7c7890 7715 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7716{
de13a2e3 7717 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7718 struct drm_device *dev = crtc->dev;
7719 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992
ACO
7720 struct drm_atomic_state *state = crtc_state->base.state;
7721 struct drm_connector_state *connector_state;
7722 struct intel_encoder *encoder;
de13a2e3 7723 uint32_t dpll;
55bb9992 7724 int factor, num_connectors = 0, i;
09ede541 7725 bool is_lvds = false, is_sdvo = false;
79e53945 7726
55bb9992
ACO
7727 for (i = 0; i < state->num_connector; i++) {
7728 if (!state->connectors[i])
d0737e1d
ACO
7729 continue;
7730
55bb9992
ACO
7731 connector_state = state->connector_states[i];
7732 if (connector_state->crtc != crtc_state->base.crtc)
7733 continue;
7734
7735 encoder = to_intel_encoder(connector_state->best_encoder);
7736
7737 switch (encoder->type) {
79e53945
JB
7738 case INTEL_OUTPUT_LVDS:
7739 is_lvds = true;
7740 break;
7741 case INTEL_OUTPUT_SDVO:
7d57382e 7742 case INTEL_OUTPUT_HDMI:
79e53945 7743 is_sdvo = true;
79e53945 7744 break;
6847d71b
PZ
7745 default:
7746 break;
79e53945 7747 }
43565a06 7748
c751ce4f 7749 num_connectors++;
79e53945 7750 }
79e53945 7751
c1858123 7752 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7753 factor = 21;
7754 if (is_lvds) {
7755 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7756 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7757 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7758 factor = 25;
190f68c5 7759 } else if (crtc_state->sdvo_tv_clock)
8febb297 7760 factor = 20;
c1858123 7761
190f68c5 7762 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7763 *fp |= FP_CB_TUNE;
2c07245f 7764
9a7c7890
DV
7765 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7766 *fp2 |= FP_CB_TUNE;
7767
5eddb70b 7768 dpll = 0;
2c07245f 7769
a07d6787
EA
7770 if (is_lvds)
7771 dpll |= DPLLB_MODE_LVDS;
7772 else
7773 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7774
190f68c5 7775 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7776 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7777
7778 if (is_sdvo)
4a33e48d 7779 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7780 if (crtc_state->has_dp_encoder)
4a33e48d 7781 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7782
a07d6787 7783 /* compute bitmask from p1 value */
190f68c5 7784 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7785 /* also FPA1 */
190f68c5 7786 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7787
190f68c5 7788 switch (crtc_state->dpll.p2) {
a07d6787
EA
7789 case 5:
7790 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7791 break;
7792 case 7:
7793 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7794 break;
7795 case 10:
7796 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7797 break;
7798 case 14:
7799 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7800 break;
79e53945
JB
7801 }
7802
b4c09f3b 7803 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7804 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7805 else
7806 dpll |= PLL_REF_INPUT_DREFCLK;
7807
959e16d6 7808 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7809}
7810
190f68c5
ACO
7811static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7812 struct intel_crtc_state *crtc_state)
de13a2e3 7813{
c7653199 7814 struct drm_device *dev = crtc->base.dev;
de13a2e3 7815 intel_clock_t clock, reduced_clock;
cbbab5bd 7816 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7817 bool ok, has_reduced_clock = false;
8b47047b 7818 bool is_lvds = false;
e2b78267 7819 struct intel_shared_dpll *pll;
de13a2e3 7820
409ee761 7821 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7822
5dc5298b
PZ
7823 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7824 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7825
190f68c5 7826 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7827 &has_reduced_clock, &reduced_clock);
190f68c5 7828 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7829 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7830 return -EINVAL;
79e53945 7831 }
f47709a9 7832 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7833 if (!crtc_state->clock_set) {
7834 crtc_state->dpll.n = clock.n;
7835 crtc_state->dpll.m1 = clock.m1;
7836 crtc_state->dpll.m2 = clock.m2;
7837 crtc_state->dpll.p1 = clock.p1;
7838 crtc_state->dpll.p2 = clock.p2;
f47709a9 7839 }
79e53945 7840
5dc5298b 7841 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7842 if (crtc_state->has_pch_encoder) {
7843 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7844 if (has_reduced_clock)
7429e9d4 7845 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7846
190f68c5 7847 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7848 &fp, &reduced_clock,
7849 has_reduced_clock ? &fp2 : NULL);
7850
190f68c5
ACO
7851 crtc_state->dpll_hw_state.dpll = dpll;
7852 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7853 if (has_reduced_clock)
190f68c5 7854 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7855 else
190f68c5 7856 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7857
190f68c5 7858 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7859 if (pll == NULL) {
84f44ce7 7860 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7861 pipe_name(crtc->pipe));
4b645f14
JB
7862 return -EINVAL;
7863 }
3fb37703 7864 }
79e53945 7865
ab585dea 7866 if (is_lvds && has_reduced_clock)
c7653199 7867 crtc->lowfreq_avail = true;
bcd644e0 7868 else
c7653199 7869 crtc->lowfreq_avail = false;
e2b78267 7870
c8f7a0db 7871 return 0;
79e53945
JB
7872}
7873
eb14cb74
VS
7874static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7875 struct intel_link_m_n *m_n)
7876{
7877 struct drm_device *dev = crtc->base.dev;
7878 struct drm_i915_private *dev_priv = dev->dev_private;
7879 enum pipe pipe = crtc->pipe;
7880
7881 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7882 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7883 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7884 & ~TU_SIZE_MASK;
7885 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7886 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7887 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7888}
7889
7890static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7891 enum transcoder transcoder,
b95af8be
VK
7892 struct intel_link_m_n *m_n,
7893 struct intel_link_m_n *m2_n2)
72419203
DV
7894{
7895 struct drm_device *dev = crtc->base.dev;
7896 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7897 enum pipe pipe = crtc->pipe;
72419203 7898
eb14cb74
VS
7899 if (INTEL_INFO(dev)->gen >= 5) {
7900 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7901 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7902 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7903 & ~TU_SIZE_MASK;
7904 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7905 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7906 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7907 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7908 * gen < 8) and if DRRS is supported (to make sure the
7909 * registers are not unnecessarily read).
7910 */
7911 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7912 crtc->config->has_drrs) {
b95af8be
VK
7913 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7914 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7915 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7916 & ~TU_SIZE_MASK;
7917 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7918 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7919 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7920 }
eb14cb74
VS
7921 } else {
7922 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7923 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7924 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7925 & ~TU_SIZE_MASK;
7926 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7927 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7928 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7929 }
7930}
7931
7932void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7933 struct intel_crtc_state *pipe_config)
eb14cb74 7934{
681a8504 7935 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7936 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7937 else
7938 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7939 &pipe_config->dp_m_n,
7940 &pipe_config->dp_m2_n2);
eb14cb74 7941}
72419203 7942
eb14cb74 7943static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7944 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7945{
7946 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7947 &pipe_config->fdi_m_n, NULL);
72419203
DV
7948}
7949
bd2e244f 7950static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7951 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7952{
7953 struct drm_device *dev = crtc->base.dev;
7954 struct drm_i915_private *dev_priv = dev->dev_private;
7955 uint32_t tmp;
7956
7957 tmp = I915_READ(PS_CTL(crtc->pipe));
7958
7959 if (tmp & PS_ENABLE) {
7960 pipe_config->pch_pfit.enabled = true;
7961 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7962 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7963 }
7964}
7965
5724dbd1
DL
7966static void
7967skylake_get_initial_plane_config(struct intel_crtc *crtc,
7968 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7969{
7970 struct drm_device *dev = crtc->base.dev;
7971 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 7972 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
7973 int pipe = crtc->pipe;
7974 int fourcc, pixel_format;
6761dd31 7975 unsigned int aligned_height;
bc8d7dff 7976 struct drm_framebuffer *fb;
1b842c89 7977 struct intel_framebuffer *intel_fb;
bc8d7dff 7978
d9806c9f 7979 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7980 if (!intel_fb) {
bc8d7dff
DL
7981 DRM_DEBUG_KMS("failed to alloc fb\n");
7982 return;
7983 }
7984
1b842c89
DL
7985 fb = &intel_fb->base;
7986
bc8d7dff 7987 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7988 if (!(val & PLANE_CTL_ENABLE))
7989 goto error;
7990
bc8d7dff
DL
7991 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7992 fourcc = skl_format_to_fourcc(pixel_format,
7993 val & PLANE_CTL_ORDER_RGBX,
7994 val & PLANE_CTL_ALPHA_MASK);
7995 fb->pixel_format = fourcc;
7996 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7997
40f46283
DL
7998 tiling = val & PLANE_CTL_TILED_MASK;
7999 switch (tiling) {
8000 case PLANE_CTL_TILED_LINEAR:
8001 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8002 break;
8003 case PLANE_CTL_TILED_X:
8004 plane_config->tiling = I915_TILING_X;
8005 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8006 break;
8007 case PLANE_CTL_TILED_Y:
8008 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8009 break;
8010 case PLANE_CTL_TILED_YF:
8011 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8012 break;
8013 default:
8014 MISSING_CASE(tiling);
8015 goto error;
8016 }
8017
bc8d7dff
DL
8018 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8019 plane_config->base = base;
8020
8021 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8022
8023 val = I915_READ(PLANE_SIZE(pipe, 0));
8024 fb->height = ((val >> 16) & 0xfff) + 1;
8025 fb->width = ((val >> 0) & 0x1fff) + 1;
8026
8027 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
8028 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8029 fb->pixel_format);
bc8d7dff
DL
8030 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8031
8032 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8033 fb->pixel_format,
8034 fb->modifier[0]);
bc8d7dff 8035
f37b5c2b 8036 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
8037
8038 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8039 pipe_name(pipe), fb->width, fb->height,
8040 fb->bits_per_pixel, base, fb->pitches[0],
8041 plane_config->size);
8042
2d14030b 8043 plane_config->fb = intel_fb;
bc8d7dff
DL
8044 return;
8045
8046error:
8047 kfree(fb);
8048}
8049
2fa2fe9a 8050static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8051 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8052{
8053 struct drm_device *dev = crtc->base.dev;
8054 struct drm_i915_private *dev_priv = dev->dev_private;
8055 uint32_t tmp;
8056
8057 tmp = I915_READ(PF_CTL(crtc->pipe));
8058
8059 if (tmp & PF_ENABLE) {
fd4daa9c 8060 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8061 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8062 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8063
8064 /* We currently do not free assignements of panel fitters on
8065 * ivb/hsw (since we don't use the higher upscaling modes which
8066 * differentiates them) so just WARN about this case for now. */
8067 if (IS_GEN7(dev)) {
8068 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8069 PF_PIPE_SEL_IVB(crtc->pipe));
8070 }
2fa2fe9a 8071 }
79e53945
JB
8072}
8073
5724dbd1
DL
8074static void
8075ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8076 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8077{
8078 struct drm_device *dev = crtc->base.dev;
8079 struct drm_i915_private *dev_priv = dev->dev_private;
8080 u32 val, base, offset;
aeee5a49 8081 int pipe = crtc->pipe;
4c6baa59 8082 int fourcc, pixel_format;
6761dd31 8083 unsigned int aligned_height;
b113d5ee 8084 struct drm_framebuffer *fb;
1b842c89 8085 struct intel_framebuffer *intel_fb;
4c6baa59 8086
42a7b088
DL
8087 val = I915_READ(DSPCNTR(pipe));
8088 if (!(val & DISPLAY_PLANE_ENABLE))
8089 return;
8090
d9806c9f 8091 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8092 if (!intel_fb) {
4c6baa59
JB
8093 DRM_DEBUG_KMS("failed to alloc fb\n");
8094 return;
8095 }
8096
1b842c89
DL
8097 fb = &intel_fb->base;
8098
18c5247e
DV
8099 if (INTEL_INFO(dev)->gen >= 4) {
8100 if (val & DISPPLANE_TILED) {
49af449b 8101 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8102 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8103 }
8104 }
4c6baa59
JB
8105
8106 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8107 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8108 fb->pixel_format = fourcc;
8109 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8110
aeee5a49 8111 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8112 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8113 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8114 } else {
49af449b 8115 if (plane_config->tiling)
aeee5a49 8116 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8117 else
aeee5a49 8118 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8119 }
8120 plane_config->base = base;
8121
8122 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8123 fb->width = ((val >> 16) & 0xfff) + 1;
8124 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8125
8126 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8127 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8128
b113d5ee 8129 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8130 fb->pixel_format,
8131 fb->modifier[0]);
4c6baa59 8132
f37b5c2b 8133 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8134
2844a921
DL
8135 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8136 pipe_name(pipe), fb->width, fb->height,
8137 fb->bits_per_pixel, base, fb->pitches[0],
8138 plane_config->size);
b113d5ee 8139
2d14030b 8140 plane_config->fb = intel_fb;
4c6baa59
JB
8141}
8142
0e8ffe1b 8143static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8144 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8145{
8146 struct drm_device *dev = crtc->base.dev;
8147 struct drm_i915_private *dev_priv = dev->dev_private;
8148 uint32_t tmp;
8149
f458ebbc
DV
8150 if (!intel_display_power_is_enabled(dev_priv,
8151 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8152 return false;
8153
e143a21c 8154 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8155 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8156
0e8ffe1b
DV
8157 tmp = I915_READ(PIPECONF(crtc->pipe));
8158 if (!(tmp & PIPECONF_ENABLE))
8159 return false;
8160
42571aef
VS
8161 switch (tmp & PIPECONF_BPC_MASK) {
8162 case PIPECONF_6BPC:
8163 pipe_config->pipe_bpp = 18;
8164 break;
8165 case PIPECONF_8BPC:
8166 pipe_config->pipe_bpp = 24;
8167 break;
8168 case PIPECONF_10BPC:
8169 pipe_config->pipe_bpp = 30;
8170 break;
8171 case PIPECONF_12BPC:
8172 pipe_config->pipe_bpp = 36;
8173 break;
8174 default:
8175 break;
8176 }
8177
b5a9fa09
DV
8178 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8179 pipe_config->limited_color_range = true;
8180
ab9412ba 8181 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8182 struct intel_shared_dpll *pll;
8183
88adfff1
DV
8184 pipe_config->has_pch_encoder = true;
8185
627eb5a3
DV
8186 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8187 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8188 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8189
8190 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8191
c0d43d62 8192 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8193 pipe_config->shared_dpll =
8194 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8195 } else {
8196 tmp = I915_READ(PCH_DPLL_SEL);
8197 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8198 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8199 else
8200 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8201 }
66e985c0
DV
8202
8203 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8204
8205 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8206 &pipe_config->dpll_hw_state));
c93f54cf
DV
8207
8208 tmp = pipe_config->dpll_hw_state.dpll;
8209 pipe_config->pixel_multiplier =
8210 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8211 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8212
8213 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8214 } else {
8215 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8216 }
8217
1bd1bd80
DV
8218 intel_get_pipe_timings(crtc, pipe_config);
8219
2fa2fe9a
DV
8220 ironlake_get_pfit_config(crtc, pipe_config);
8221
0e8ffe1b
DV
8222 return true;
8223}
8224
be256dc7
PZ
8225static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8226{
8227 struct drm_device *dev = dev_priv->dev;
be256dc7 8228 struct intel_crtc *crtc;
be256dc7 8229
d3fcc808 8230 for_each_intel_crtc(dev, crtc)
e2c719b7 8231 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8232 pipe_name(crtc->pipe));
8233
e2c719b7
RC
8234 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8235 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8236 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8237 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8238 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8239 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8240 "CPU PWM1 enabled\n");
c5107b87 8241 if (IS_HASWELL(dev))
e2c719b7 8242 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8243 "CPU PWM2 enabled\n");
e2c719b7 8244 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8245 "PCH PWM1 enabled\n");
e2c719b7 8246 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8247 "Utility pin enabled\n");
e2c719b7 8248 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8249
9926ada1
PZ
8250 /*
8251 * In theory we can still leave IRQs enabled, as long as only the HPD
8252 * interrupts remain enabled. We used to check for that, but since it's
8253 * gen-specific and since we only disable LCPLL after we fully disable
8254 * the interrupts, the check below should be enough.
8255 */
e2c719b7 8256 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8257}
8258
9ccd5aeb
PZ
8259static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8260{
8261 struct drm_device *dev = dev_priv->dev;
8262
8263 if (IS_HASWELL(dev))
8264 return I915_READ(D_COMP_HSW);
8265 else
8266 return I915_READ(D_COMP_BDW);
8267}
8268
3c4c9b81
PZ
8269static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8270{
8271 struct drm_device *dev = dev_priv->dev;
8272
8273 if (IS_HASWELL(dev)) {
8274 mutex_lock(&dev_priv->rps.hw_lock);
8275 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8276 val))
f475dadf 8277 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
8278 mutex_unlock(&dev_priv->rps.hw_lock);
8279 } else {
9ccd5aeb
PZ
8280 I915_WRITE(D_COMP_BDW, val);
8281 POSTING_READ(D_COMP_BDW);
3c4c9b81 8282 }
be256dc7
PZ
8283}
8284
8285/*
8286 * This function implements pieces of two sequences from BSpec:
8287 * - Sequence for display software to disable LCPLL
8288 * - Sequence for display software to allow package C8+
8289 * The steps implemented here are just the steps that actually touch the LCPLL
8290 * register. Callers should take care of disabling all the display engine
8291 * functions, doing the mode unset, fixing interrupts, etc.
8292 */
6ff58d53
PZ
8293static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8294 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
8295{
8296 uint32_t val;
8297
8298 assert_can_disable_lcpll(dev_priv);
8299
8300 val = I915_READ(LCPLL_CTL);
8301
8302 if (switch_to_fclk) {
8303 val |= LCPLL_CD_SOURCE_FCLK;
8304 I915_WRITE(LCPLL_CTL, val);
8305
8306 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8307 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8308 DRM_ERROR("Switching to FCLK failed\n");
8309
8310 val = I915_READ(LCPLL_CTL);
8311 }
8312
8313 val |= LCPLL_PLL_DISABLE;
8314 I915_WRITE(LCPLL_CTL, val);
8315 POSTING_READ(LCPLL_CTL);
8316
8317 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8318 DRM_ERROR("LCPLL still locked\n");
8319
9ccd5aeb 8320 val = hsw_read_dcomp(dev_priv);
be256dc7 8321 val |= D_COMP_COMP_DISABLE;
3c4c9b81 8322 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8323 ndelay(100);
8324
9ccd5aeb
PZ
8325 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8326 1))
be256dc7
PZ
8327 DRM_ERROR("D_COMP RCOMP still in progress\n");
8328
8329 if (allow_power_down) {
8330 val = I915_READ(LCPLL_CTL);
8331 val |= LCPLL_POWER_DOWN_ALLOW;
8332 I915_WRITE(LCPLL_CTL, val);
8333 POSTING_READ(LCPLL_CTL);
8334 }
8335}
8336
8337/*
8338 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8339 * source.
8340 */
6ff58d53 8341static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8342{
8343 uint32_t val;
8344
8345 val = I915_READ(LCPLL_CTL);
8346
8347 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8348 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8349 return;
8350
a8a8bd54
PZ
8351 /*
8352 * Make sure we're not on PC8 state before disabling PC8, otherwise
8353 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8354 */
59bad947 8355 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8356
be256dc7
PZ
8357 if (val & LCPLL_POWER_DOWN_ALLOW) {
8358 val &= ~LCPLL_POWER_DOWN_ALLOW;
8359 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8360 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8361 }
8362
9ccd5aeb 8363 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8364 val |= D_COMP_COMP_FORCE;
8365 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8366 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8367
8368 val = I915_READ(LCPLL_CTL);
8369 val &= ~LCPLL_PLL_DISABLE;
8370 I915_WRITE(LCPLL_CTL, val);
8371
8372 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8373 DRM_ERROR("LCPLL not locked yet\n");
8374
8375 if (val & LCPLL_CD_SOURCE_FCLK) {
8376 val = I915_READ(LCPLL_CTL);
8377 val &= ~LCPLL_CD_SOURCE_FCLK;
8378 I915_WRITE(LCPLL_CTL, val);
8379
8380 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8381 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8382 DRM_ERROR("Switching back to LCPLL failed\n");
8383 }
215733fa 8384
59bad947 8385 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8386}
8387
765dab67
PZ
8388/*
8389 * Package states C8 and deeper are really deep PC states that can only be
8390 * reached when all the devices on the system allow it, so even if the graphics
8391 * device allows PC8+, it doesn't mean the system will actually get to these
8392 * states. Our driver only allows PC8+ when going into runtime PM.
8393 *
8394 * The requirements for PC8+ are that all the outputs are disabled, the power
8395 * well is disabled and most interrupts are disabled, and these are also
8396 * requirements for runtime PM. When these conditions are met, we manually do
8397 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8398 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8399 * hang the machine.
8400 *
8401 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8402 * the state of some registers, so when we come back from PC8+ we need to
8403 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8404 * need to take care of the registers kept by RC6. Notice that this happens even
8405 * if we don't put the device in PCI D3 state (which is what currently happens
8406 * because of the runtime PM support).
8407 *
8408 * For more, read "Display Sequences for Package C8" on the hardware
8409 * documentation.
8410 */
a14cb6fc 8411void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8412{
c67a470b
PZ
8413 struct drm_device *dev = dev_priv->dev;
8414 uint32_t val;
8415
c67a470b
PZ
8416 DRM_DEBUG_KMS("Enabling package C8+\n");
8417
c67a470b
PZ
8418 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8419 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8420 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8421 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8422 }
8423
8424 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8425 hsw_disable_lcpll(dev_priv, true, true);
8426}
8427
a14cb6fc 8428void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8429{
8430 struct drm_device *dev = dev_priv->dev;
8431 uint32_t val;
8432
c67a470b
PZ
8433 DRM_DEBUG_KMS("Disabling package C8+\n");
8434
8435 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8436 lpt_init_pch_refclk(dev);
8437
8438 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8439 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8440 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8441 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8442 }
8443
8444 intel_prepare_ddi(dev);
c67a470b
PZ
8445}
8446
190f68c5
ACO
8447static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8448 struct intel_crtc_state *crtc_state)
09b4ddf9 8449{
190f68c5 8450 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8451 return -EINVAL;
716c2e55 8452
c7653199 8453 crtc->lowfreq_avail = false;
644cef34 8454
c8f7a0db 8455 return 0;
79e53945
JB
8456}
8457
96b7dfb7
S
8458static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8459 enum port port,
5cec258b 8460 struct intel_crtc_state *pipe_config)
96b7dfb7 8461{
3148ade7 8462 u32 temp, dpll_ctl1;
96b7dfb7
S
8463
8464 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8465 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8466
8467 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8468 case SKL_DPLL0:
8469 /*
8470 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8471 * of the shared DPLL framework and thus needs to be read out
8472 * separately
8473 */
8474 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8475 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8476 break;
96b7dfb7
S
8477 case SKL_DPLL1:
8478 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8479 break;
8480 case SKL_DPLL2:
8481 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8482 break;
8483 case SKL_DPLL3:
8484 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8485 break;
96b7dfb7
S
8486 }
8487}
8488
7d2c8175
DL
8489static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8490 enum port port,
5cec258b 8491 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8492{
8493 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8494
8495 switch (pipe_config->ddi_pll_sel) {
8496 case PORT_CLK_SEL_WRPLL1:
8497 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8498 break;
8499 case PORT_CLK_SEL_WRPLL2:
8500 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8501 break;
8502 }
8503}
8504
26804afd 8505static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8506 struct intel_crtc_state *pipe_config)
26804afd
DV
8507{
8508 struct drm_device *dev = crtc->base.dev;
8509 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8510 struct intel_shared_dpll *pll;
26804afd
DV
8511 enum port port;
8512 uint32_t tmp;
8513
8514 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8515
8516 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8517
96b7dfb7
S
8518 if (IS_SKYLAKE(dev))
8519 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8520 else
8521 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8522
d452c5b6
DV
8523 if (pipe_config->shared_dpll >= 0) {
8524 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8525
8526 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8527 &pipe_config->dpll_hw_state));
8528 }
8529
26804afd
DV
8530 /*
8531 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8532 * DDI E. So just check whether this pipe is wired to DDI E and whether
8533 * the PCH transcoder is on.
8534 */
ca370455
DL
8535 if (INTEL_INFO(dev)->gen < 9 &&
8536 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8537 pipe_config->has_pch_encoder = true;
8538
8539 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8540 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8541 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8542
8543 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8544 }
8545}
8546
0e8ffe1b 8547static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8548 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8549{
8550 struct drm_device *dev = crtc->base.dev;
8551 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8552 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8553 uint32_t tmp;
8554
f458ebbc 8555 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8556 POWER_DOMAIN_PIPE(crtc->pipe)))
8557 return false;
8558
e143a21c 8559 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8560 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8561
eccb140b
DV
8562 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8563 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8564 enum pipe trans_edp_pipe;
8565 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8566 default:
8567 WARN(1, "unknown pipe linked to edp transcoder\n");
8568 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8569 case TRANS_DDI_EDP_INPUT_A_ON:
8570 trans_edp_pipe = PIPE_A;
8571 break;
8572 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8573 trans_edp_pipe = PIPE_B;
8574 break;
8575 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8576 trans_edp_pipe = PIPE_C;
8577 break;
8578 }
8579
8580 if (trans_edp_pipe == crtc->pipe)
8581 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8582 }
8583
f458ebbc 8584 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8585 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8586 return false;
8587
eccb140b 8588 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8589 if (!(tmp & PIPECONF_ENABLE))
8590 return false;
8591
26804afd 8592 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8593
1bd1bd80
DV
8594 intel_get_pipe_timings(crtc, pipe_config);
8595
2fa2fe9a 8596 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8597 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8598 if (IS_SKYLAKE(dev))
8599 skylake_get_pfit_config(crtc, pipe_config);
8600 else
8601 ironlake_get_pfit_config(crtc, pipe_config);
8602 }
88adfff1 8603
e59150dc
JB
8604 if (IS_HASWELL(dev))
8605 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8606 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8607
ebb69c95
CT
8608 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8609 pipe_config->pixel_multiplier =
8610 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8611 } else {
8612 pipe_config->pixel_multiplier = 1;
8613 }
6c49f241 8614
0e8ffe1b
DV
8615 return true;
8616}
8617
560b85bb
CW
8618static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8619{
8620 struct drm_device *dev = crtc->dev;
8621 struct drm_i915_private *dev_priv = dev->dev_private;
8622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8623 uint32_t cntl = 0, size = 0;
560b85bb 8624
dc41c154 8625 if (base) {
3dd512fb
MR
8626 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8627 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
8628 unsigned int stride = roundup_pow_of_two(width) * 4;
8629
8630 switch (stride) {
8631 default:
8632 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8633 width, stride);
8634 stride = 256;
8635 /* fallthrough */
8636 case 256:
8637 case 512:
8638 case 1024:
8639 case 2048:
8640 break;
4b0e333e
CW
8641 }
8642
dc41c154
VS
8643 cntl |= CURSOR_ENABLE |
8644 CURSOR_GAMMA_ENABLE |
8645 CURSOR_FORMAT_ARGB |
8646 CURSOR_STRIDE(stride);
8647
8648 size = (height << 12) | width;
4b0e333e 8649 }
560b85bb 8650
dc41c154
VS
8651 if (intel_crtc->cursor_cntl != 0 &&
8652 (intel_crtc->cursor_base != base ||
8653 intel_crtc->cursor_size != size ||
8654 intel_crtc->cursor_cntl != cntl)) {
8655 /* On these chipsets we can only modify the base/size/stride
8656 * whilst the cursor is disabled.
8657 */
8658 I915_WRITE(_CURACNTR, 0);
4b0e333e 8659 POSTING_READ(_CURACNTR);
dc41c154 8660 intel_crtc->cursor_cntl = 0;
4b0e333e 8661 }
560b85bb 8662
99d1f387 8663 if (intel_crtc->cursor_base != base) {
9db4a9c7 8664 I915_WRITE(_CURABASE, base);
99d1f387
VS
8665 intel_crtc->cursor_base = base;
8666 }
4726e0b0 8667
dc41c154
VS
8668 if (intel_crtc->cursor_size != size) {
8669 I915_WRITE(CURSIZE, size);
8670 intel_crtc->cursor_size = size;
4b0e333e 8671 }
560b85bb 8672
4b0e333e 8673 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8674 I915_WRITE(_CURACNTR, cntl);
8675 POSTING_READ(_CURACNTR);
4b0e333e 8676 intel_crtc->cursor_cntl = cntl;
560b85bb 8677 }
560b85bb
CW
8678}
8679
560b85bb 8680static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8681{
8682 struct drm_device *dev = crtc->dev;
8683 struct drm_i915_private *dev_priv = dev->dev_private;
8684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8685 int pipe = intel_crtc->pipe;
4b0e333e
CW
8686 uint32_t cntl;
8687
8688 cntl = 0;
8689 if (base) {
8690 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 8691 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
8692 case 64:
8693 cntl |= CURSOR_MODE_64_ARGB_AX;
8694 break;
8695 case 128:
8696 cntl |= CURSOR_MODE_128_ARGB_AX;
8697 break;
8698 case 256:
8699 cntl |= CURSOR_MODE_256_ARGB_AX;
8700 break;
8701 default:
3dd512fb 8702 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 8703 return;
65a21cd6 8704 }
4b0e333e 8705 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8706
8707 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8708 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8709 }
65a21cd6 8710
8e7d688b 8711 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8712 cntl |= CURSOR_ROTATE_180;
8713
4b0e333e
CW
8714 if (intel_crtc->cursor_cntl != cntl) {
8715 I915_WRITE(CURCNTR(pipe), cntl);
8716 POSTING_READ(CURCNTR(pipe));
8717 intel_crtc->cursor_cntl = cntl;
65a21cd6 8718 }
4b0e333e 8719
65a21cd6 8720 /* and commit changes on next vblank */
5efb3e28
VS
8721 I915_WRITE(CURBASE(pipe), base);
8722 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8723
8724 intel_crtc->cursor_base = base;
65a21cd6
JB
8725}
8726
cda4b7d3 8727/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8728static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8729 bool on)
cda4b7d3
CW
8730{
8731 struct drm_device *dev = crtc->dev;
8732 struct drm_i915_private *dev_priv = dev->dev_private;
8733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8734 int pipe = intel_crtc->pipe;
3d7d6510
MR
8735 int x = crtc->cursor_x;
8736 int y = crtc->cursor_y;
d6e4db15 8737 u32 base = 0, pos = 0;
cda4b7d3 8738
d6e4db15 8739 if (on)
cda4b7d3 8740 base = intel_crtc->cursor_addr;
cda4b7d3 8741
6e3c9717 8742 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8743 base = 0;
8744
6e3c9717 8745 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8746 base = 0;
8747
8748 if (x < 0) {
3dd512fb 8749 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
8750 base = 0;
8751
8752 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8753 x = -x;
8754 }
8755 pos |= x << CURSOR_X_SHIFT;
8756
8757 if (y < 0) {
3dd512fb 8758 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
8759 base = 0;
8760
8761 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8762 y = -y;
8763 }
8764 pos |= y << CURSOR_Y_SHIFT;
8765
4b0e333e 8766 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8767 return;
8768
5efb3e28
VS
8769 I915_WRITE(CURPOS(pipe), pos);
8770
4398ad45
VS
8771 /* ILK+ do this automagically */
8772 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8773 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
8774 base += (intel_crtc->base.cursor->state->crtc_h *
8775 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
8776 }
8777
8ac54669 8778 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8779 i845_update_cursor(crtc, base);
8780 else
8781 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8782}
8783
dc41c154
VS
8784static bool cursor_size_ok(struct drm_device *dev,
8785 uint32_t width, uint32_t height)
8786{
8787 if (width == 0 || height == 0)
8788 return false;
8789
8790 /*
8791 * 845g/865g are special in that they are only limited by
8792 * the width of their cursors, the height is arbitrary up to
8793 * the precision of the register. Everything else requires
8794 * square cursors, limited to a few power-of-two sizes.
8795 */
8796 if (IS_845G(dev) || IS_I865G(dev)) {
8797 if ((width & 63) != 0)
8798 return false;
8799
8800 if (width > (IS_845G(dev) ? 64 : 512))
8801 return false;
8802
8803 if (height > 1023)
8804 return false;
8805 } else {
8806 switch (width | height) {
8807 case 256:
8808 case 128:
8809 if (IS_GEN2(dev))
8810 return false;
8811 case 64:
8812 break;
8813 default:
8814 return false;
8815 }
8816 }
8817
8818 return true;
8819}
8820
79e53945 8821static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8822 u16 *blue, uint32_t start, uint32_t size)
79e53945 8823{
7203425a 8824 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8826
7203425a 8827 for (i = start; i < end; i++) {
79e53945
JB
8828 intel_crtc->lut_r[i] = red[i] >> 8;
8829 intel_crtc->lut_g[i] = green[i] >> 8;
8830 intel_crtc->lut_b[i] = blue[i] >> 8;
8831 }
8832
8833 intel_crtc_load_lut(crtc);
8834}
8835
79e53945
JB
8836/* VESA 640x480x72Hz mode to set on the pipe */
8837static struct drm_display_mode load_detect_mode = {
8838 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8839 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8840};
8841
a8bb6818
DV
8842struct drm_framebuffer *
8843__intel_framebuffer_create(struct drm_device *dev,
8844 struct drm_mode_fb_cmd2 *mode_cmd,
8845 struct drm_i915_gem_object *obj)
d2dff872
CW
8846{
8847 struct intel_framebuffer *intel_fb;
8848 int ret;
8849
8850 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8851 if (!intel_fb) {
6ccb81f2 8852 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8853 return ERR_PTR(-ENOMEM);
8854 }
8855
8856 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8857 if (ret)
8858 goto err;
d2dff872
CW
8859
8860 return &intel_fb->base;
dd4916c5 8861err:
6ccb81f2 8862 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8863 kfree(intel_fb);
8864
8865 return ERR_PTR(ret);
d2dff872
CW
8866}
8867
b5ea642a 8868static struct drm_framebuffer *
a8bb6818
DV
8869intel_framebuffer_create(struct drm_device *dev,
8870 struct drm_mode_fb_cmd2 *mode_cmd,
8871 struct drm_i915_gem_object *obj)
8872{
8873 struct drm_framebuffer *fb;
8874 int ret;
8875
8876 ret = i915_mutex_lock_interruptible(dev);
8877 if (ret)
8878 return ERR_PTR(ret);
8879 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8880 mutex_unlock(&dev->struct_mutex);
8881
8882 return fb;
8883}
8884
d2dff872
CW
8885static u32
8886intel_framebuffer_pitch_for_width(int width, int bpp)
8887{
8888 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8889 return ALIGN(pitch, 64);
8890}
8891
8892static u32
8893intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8894{
8895 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8896 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8897}
8898
8899static struct drm_framebuffer *
8900intel_framebuffer_create_for_mode(struct drm_device *dev,
8901 struct drm_display_mode *mode,
8902 int depth, int bpp)
8903{
8904 struct drm_i915_gem_object *obj;
0fed39bd 8905 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8906
8907 obj = i915_gem_alloc_object(dev,
8908 intel_framebuffer_size_for_mode(mode, bpp));
8909 if (obj == NULL)
8910 return ERR_PTR(-ENOMEM);
8911
8912 mode_cmd.width = mode->hdisplay;
8913 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8914 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8915 bpp);
5ca0c34a 8916 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8917
8918 return intel_framebuffer_create(dev, &mode_cmd, obj);
8919}
8920
8921static struct drm_framebuffer *
8922mode_fits_in_fbdev(struct drm_device *dev,
8923 struct drm_display_mode *mode)
8924{
4520f53a 8925#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8926 struct drm_i915_private *dev_priv = dev->dev_private;
8927 struct drm_i915_gem_object *obj;
8928 struct drm_framebuffer *fb;
8929
4c0e5528 8930 if (!dev_priv->fbdev)
d2dff872
CW
8931 return NULL;
8932
4c0e5528 8933 if (!dev_priv->fbdev->fb)
d2dff872
CW
8934 return NULL;
8935
4c0e5528
DV
8936 obj = dev_priv->fbdev->fb->obj;
8937 BUG_ON(!obj);
8938
8bcd4553 8939 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8940 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8941 fb->bits_per_pixel))
d2dff872
CW
8942 return NULL;
8943
01f2c773 8944 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8945 return NULL;
8946
8947 return fb;
4520f53a
DV
8948#else
8949 return NULL;
8950#endif
d2dff872
CW
8951}
8952
d2434ab7 8953bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8954 struct drm_display_mode *mode,
51fd371b
RC
8955 struct intel_load_detect_pipe *old,
8956 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8957{
8958 struct intel_crtc *intel_crtc;
d2434ab7
DV
8959 struct intel_encoder *intel_encoder =
8960 intel_attached_encoder(connector);
79e53945 8961 struct drm_crtc *possible_crtc;
4ef69c7a 8962 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8963 struct drm_crtc *crtc = NULL;
8964 struct drm_device *dev = encoder->dev;
94352cf9 8965 struct drm_framebuffer *fb;
51fd371b 8966 struct drm_mode_config *config = &dev->mode_config;
83a57153 8967 struct drm_atomic_state *state = NULL;
944b0c76 8968 struct drm_connector_state *connector_state;
51fd371b 8969 int ret, i = -1;
79e53945 8970
d2dff872 8971 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8972 connector->base.id, connector->name,
8e329a03 8973 encoder->base.id, encoder->name);
d2dff872 8974
51fd371b
RC
8975retry:
8976 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8977 if (ret)
8978 goto fail_unlock;
6e9f798d 8979
79e53945
JB
8980 /*
8981 * Algorithm gets a little messy:
7a5e4805 8982 *
79e53945
JB
8983 * - if the connector already has an assigned crtc, use it (but make
8984 * sure it's on first)
7a5e4805 8985 *
79e53945
JB
8986 * - try to find the first unused crtc that can drive this connector,
8987 * and use that if we find one
79e53945
JB
8988 */
8989
8990 /* See if we already have a CRTC for this connector */
8991 if (encoder->crtc) {
8992 crtc = encoder->crtc;
8261b191 8993
51fd371b 8994 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8995 if (ret)
8996 goto fail_unlock;
8997 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8998 if (ret)
8999 goto fail_unlock;
7b24056b 9000
24218aac 9001 old->dpms_mode = connector->dpms;
8261b191
CW
9002 old->load_detect_temp = false;
9003
9004 /* Make sure the crtc and connector are running */
24218aac
DV
9005 if (connector->dpms != DRM_MODE_DPMS_ON)
9006 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 9007
7173188d 9008 return true;
79e53945
JB
9009 }
9010
9011 /* Find an unused one (if possible) */
70e1e0ec 9012 for_each_crtc(dev, possible_crtc) {
79e53945
JB
9013 i++;
9014 if (!(encoder->possible_crtcs & (1 << i)))
9015 continue;
83d65738 9016 if (possible_crtc->state->enable)
a459249c
VS
9017 continue;
9018 /* This can occur when applying the pipe A quirk on resume. */
9019 if (to_intel_crtc(possible_crtc)->new_enabled)
9020 continue;
9021
9022 crtc = possible_crtc;
9023 break;
79e53945
JB
9024 }
9025
9026 /*
9027 * If we didn't find an unused CRTC, don't use any.
9028 */
9029 if (!crtc) {
7173188d 9030 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 9031 goto fail_unlock;
79e53945
JB
9032 }
9033
51fd371b
RC
9034 ret = drm_modeset_lock(&crtc->mutex, ctx);
9035 if (ret)
4d02e2de
DV
9036 goto fail_unlock;
9037 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9038 if (ret)
51fd371b 9039 goto fail_unlock;
fc303101
DV
9040 intel_encoder->new_crtc = to_intel_crtc(crtc);
9041 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
9042
9043 intel_crtc = to_intel_crtc(crtc);
412b61d8 9044 intel_crtc->new_enabled = true;
6e3c9717 9045 intel_crtc->new_config = intel_crtc->config;
24218aac 9046 old->dpms_mode = connector->dpms;
8261b191 9047 old->load_detect_temp = true;
d2dff872 9048 old->release_fb = NULL;
79e53945 9049
83a57153
ACO
9050 state = drm_atomic_state_alloc(dev);
9051 if (!state)
9052 return false;
9053
9054 state->acquire_ctx = ctx;
9055
944b0c76
ACO
9056 connector_state = drm_atomic_get_connector_state(state, connector);
9057 if (IS_ERR(connector_state)) {
9058 ret = PTR_ERR(connector_state);
9059 goto fail;
9060 }
9061
9062 connector_state->crtc = crtc;
9063 connector_state->best_encoder = &intel_encoder->base;
9064
6492711d
CW
9065 if (!mode)
9066 mode = &load_detect_mode;
79e53945 9067
d2dff872
CW
9068 /* We need a framebuffer large enough to accommodate all accesses
9069 * that the plane may generate whilst we perform load detection.
9070 * We can not rely on the fbcon either being present (we get called
9071 * during its initialisation to detect all boot displays, or it may
9072 * not even exist) or that it is large enough to satisfy the
9073 * requested mode.
9074 */
94352cf9
DV
9075 fb = mode_fits_in_fbdev(dev, mode);
9076 if (fb == NULL) {
d2dff872 9077 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9078 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9079 old->release_fb = fb;
d2dff872
CW
9080 } else
9081 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9082 if (IS_ERR(fb)) {
d2dff872 9083 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9084 goto fail;
79e53945 9085 }
79e53945 9086
83a57153 9087 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
6492711d 9088 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9089 if (old->release_fb)
9090 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9091 goto fail;
79e53945 9092 }
9128b040 9093 crtc->primary->crtc = crtc;
7173188d 9094
79e53945 9095 /* let the connector get through one full cycle before testing */
9d0498a2 9096 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9097 return true;
412b61d8
VS
9098
9099 fail:
83d65738 9100 intel_crtc->new_enabled = crtc->state->enable;
412b61d8 9101 if (intel_crtc->new_enabled)
6e3c9717 9102 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
9103 else
9104 intel_crtc->new_config = NULL;
51fd371b 9105fail_unlock:
83a57153
ACO
9106 if (state) {
9107 drm_atomic_state_free(state);
9108 state = NULL;
9109 }
9110
51fd371b
RC
9111 if (ret == -EDEADLK) {
9112 drm_modeset_backoff(ctx);
9113 goto retry;
9114 }
9115
412b61d8 9116 return false;
79e53945
JB
9117}
9118
d2434ab7 9119void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
9120 struct intel_load_detect_pipe *old,
9121 struct drm_modeset_acquire_ctx *ctx)
79e53945 9122{
83a57153 9123 struct drm_device *dev = connector->dev;
d2434ab7
DV
9124 struct intel_encoder *intel_encoder =
9125 intel_attached_encoder(connector);
4ef69c7a 9126 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9127 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 9129 struct drm_atomic_state *state;
944b0c76 9130 struct drm_connector_state *connector_state;
79e53945 9131
d2dff872 9132 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9133 connector->base.id, connector->name,
8e329a03 9134 encoder->base.id, encoder->name);
d2dff872 9135
8261b191 9136 if (old->load_detect_temp) {
83a57153 9137 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
9138 if (!state)
9139 goto fail;
83a57153
ACO
9140
9141 state->acquire_ctx = ctx;
9142
944b0c76
ACO
9143 connector_state = drm_atomic_get_connector_state(state, connector);
9144 if (IS_ERR(connector_state))
9145 goto fail;
9146
fc303101
DV
9147 to_intel_connector(connector)->new_encoder = NULL;
9148 intel_encoder->new_crtc = NULL;
412b61d8
VS
9149 intel_crtc->new_enabled = false;
9150 intel_crtc->new_config = NULL;
944b0c76
ACO
9151
9152 connector_state->best_encoder = NULL;
9153 connector_state->crtc = NULL;
9154
83a57153
ACO
9155 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9156
9157 drm_atomic_state_free(state);
d2dff872 9158
36206361
DV
9159 if (old->release_fb) {
9160 drm_framebuffer_unregister_private(old->release_fb);
9161 drm_framebuffer_unreference(old->release_fb);
9162 }
d2dff872 9163
0622a53c 9164 return;
79e53945
JB
9165 }
9166
c751ce4f 9167 /* Switch crtc and encoder back off if necessary */
24218aac
DV
9168 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9169 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
9170
9171 return;
9172fail:
9173 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9174 drm_atomic_state_free(state);
79e53945
JB
9175}
9176
da4a1efa 9177static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 9178 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
9179{
9180 struct drm_i915_private *dev_priv = dev->dev_private;
9181 u32 dpll = pipe_config->dpll_hw_state.dpll;
9182
9183 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 9184 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
9185 else if (HAS_PCH_SPLIT(dev))
9186 return 120000;
9187 else if (!IS_GEN2(dev))
9188 return 96000;
9189 else
9190 return 48000;
9191}
9192
79e53945 9193/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 9194static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 9195 struct intel_crtc_state *pipe_config)
79e53945 9196{
f1f644dc 9197 struct drm_device *dev = crtc->base.dev;
79e53945 9198 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 9199 int pipe = pipe_config->cpu_transcoder;
293623f7 9200 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
9201 u32 fp;
9202 intel_clock_t clock;
da4a1efa 9203 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
9204
9205 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 9206 fp = pipe_config->dpll_hw_state.fp0;
79e53945 9207 else
293623f7 9208 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
9209
9210 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
9211 if (IS_PINEVIEW(dev)) {
9212 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9213 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
9214 } else {
9215 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9216 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9217 }
9218
a6c45cf0 9219 if (!IS_GEN2(dev)) {
f2b115e6
AJ
9220 if (IS_PINEVIEW(dev))
9221 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9222 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
9223 else
9224 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
9225 DPLL_FPA01_P1_POST_DIV_SHIFT);
9226
9227 switch (dpll & DPLL_MODE_MASK) {
9228 case DPLLB_MODE_DAC_SERIAL:
9229 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9230 5 : 10;
9231 break;
9232 case DPLLB_MODE_LVDS:
9233 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9234 7 : 14;
9235 break;
9236 default:
28c97730 9237 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 9238 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 9239 return;
79e53945
JB
9240 }
9241
ac58c3f0 9242 if (IS_PINEVIEW(dev))
da4a1efa 9243 pineview_clock(refclk, &clock);
ac58c3f0 9244 else
da4a1efa 9245 i9xx_clock(refclk, &clock);
79e53945 9246 } else {
0fb58223 9247 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 9248 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
9249
9250 if (is_lvds) {
9251 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9252 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
9253
9254 if (lvds & LVDS_CLKB_POWER_UP)
9255 clock.p2 = 7;
9256 else
9257 clock.p2 = 14;
79e53945
JB
9258 } else {
9259 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9260 clock.p1 = 2;
9261 else {
9262 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9263 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9264 }
9265 if (dpll & PLL_P2_DIVIDE_BY_4)
9266 clock.p2 = 4;
9267 else
9268 clock.p2 = 2;
79e53945 9269 }
da4a1efa
VS
9270
9271 i9xx_clock(refclk, &clock);
79e53945
JB
9272 }
9273
18442d08
VS
9274 /*
9275 * This value includes pixel_multiplier. We will use
241bfc38 9276 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
9277 * encoder's get_config() function.
9278 */
9279 pipe_config->port_clock = clock.dot;
f1f644dc
JB
9280}
9281
6878da05
VS
9282int intel_dotclock_calculate(int link_freq,
9283 const struct intel_link_m_n *m_n)
f1f644dc 9284{
f1f644dc
JB
9285 /*
9286 * The calculation for the data clock is:
1041a02f 9287 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 9288 * But we want to avoid losing precison if possible, so:
1041a02f 9289 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
9290 *
9291 * and the link clock is simpler:
1041a02f 9292 * link_clock = (m * link_clock) / n
f1f644dc
JB
9293 */
9294
6878da05
VS
9295 if (!m_n->link_n)
9296 return 0;
f1f644dc 9297
6878da05
VS
9298 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9299}
f1f644dc 9300
18442d08 9301static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 9302 struct intel_crtc_state *pipe_config)
6878da05
VS
9303{
9304 struct drm_device *dev = crtc->base.dev;
79e53945 9305
18442d08
VS
9306 /* read out port_clock from the DPLL */
9307 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9308
f1f644dc 9309 /*
18442d08 9310 * This value does not include pixel_multiplier.
241bfc38 9311 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9312 * agree once we know their relationship in the encoder's
9313 * get_config() function.
79e53945 9314 */
2d112de7 9315 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
9316 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9317 &pipe_config->fdi_m_n);
79e53945
JB
9318}
9319
9320/** Returns the currently programmed mode of the given pipe. */
9321struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9322 struct drm_crtc *crtc)
9323{
548f245b 9324 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9326 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 9327 struct drm_display_mode *mode;
5cec258b 9328 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
9329 int htot = I915_READ(HTOTAL(cpu_transcoder));
9330 int hsync = I915_READ(HSYNC(cpu_transcoder));
9331 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9332 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9333 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9334
9335 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9336 if (!mode)
9337 return NULL;
9338
f1f644dc
JB
9339 /*
9340 * Construct a pipe_config sufficient for getting the clock info
9341 * back out of crtc_clock_get.
9342 *
9343 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9344 * to use a real value here instead.
9345 */
293623f7 9346 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9347 pipe_config.pixel_multiplier = 1;
293623f7
VS
9348 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9349 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9350 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9351 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9352
773ae034 9353 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9354 mode->hdisplay = (htot & 0xffff) + 1;
9355 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9356 mode->hsync_start = (hsync & 0xffff) + 1;
9357 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9358 mode->vdisplay = (vtot & 0xffff) + 1;
9359 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9360 mode->vsync_start = (vsync & 0xffff) + 1;
9361 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9362
9363 drm_mode_set_name(mode);
79e53945
JB
9364
9365 return mode;
9366}
9367
652c393a
JB
9368static void intel_decrease_pllclock(struct drm_crtc *crtc)
9369{
9370 struct drm_device *dev = crtc->dev;
fbee40df 9371 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9373
baff296c 9374 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9375 return;
9376
9377 if (!dev_priv->lvds_downclock_avail)
9378 return;
9379
9380 /*
9381 * Since this is called by a timer, we should never get here in
9382 * the manual case.
9383 */
9384 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9385 int pipe = intel_crtc->pipe;
9386 int dpll_reg = DPLL(pipe);
9387 int dpll;
f6e5b160 9388
44d98a61 9389 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9390
8ac5a6d5 9391 assert_panel_unlocked(dev_priv, pipe);
652c393a 9392
dc257cf1 9393 dpll = I915_READ(dpll_reg);
652c393a
JB
9394 dpll |= DISPLAY_RATE_SELECT_FPA1;
9395 I915_WRITE(dpll_reg, dpll);
9d0498a2 9396 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9397 dpll = I915_READ(dpll_reg);
9398 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9399 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9400 }
9401
9402}
9403
f047e395
CW
9404void intel_mark_busy(struct drm_device *dev)
9405{
c67a470b
PZ
9406 struct drm_i915_private *dev_priv = dev->dev_private;
9407
f62a0076
CW
9408 if (dev_priv->mm.busy)
9409 return;
9410
43694d69 9411 intel_runtime_pm_get(dev_priv);
c67a470b 9412 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
9413 if (INTEL_INFO(dev)->gen >= 6)
9414 gen6_rps_busy(dev_priv);
f62a0076 9415 dev_priv->mm.busy = true;
f047e395
CW
9416}
9417
9418void intel_mark_idle(struct drm_device *dev)
652c393a 9419{
c67a470b 9420 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9421 struct drm_crtc *crtc;
652c393a 9422
f62a0076
CW
9423 if (!dev_priv->mm.busy)
9424 return;
9425
9426 dev_priv->mm.busy = false;
9427
70e1e0ec 9428 for_each_crtc(dev, crtc) {
f4510a27 9429 if (!crtc->primary->fb)
652c393a
JB
9430 continue;
9431
725a5b54 9432 intel_decrease_pllclock(crtc);
652c393a 9433 }
b29c19b6 9434
3d13ef2e 9435 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9436 gen6_rps_idle(dev->dev_private);
bb4cdd53 9437
43694d69 9438 intel_runtime_pm_put(dev_priv);
652c393a
JB
9439}
9440
f5de6e07
ACO
9441static void intel_crtc_set_state(struct intel_crtc *crtc,
9442 struct intel_crtc_state *crtc_state)
9443{
9444 kfree(crtc->config);
9445 crtc->config = crtc_state;
16f3f658 9446 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9447}
9448
79e53945
JB
9449static void intel_crtc_destroy(struct drm_crtc *crtc)
9450{
9451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9452 struct drm_device *dev = crtc->dev;
9453 struct intel_unpin_work *work;
67e77c5a 9454
5e2d7afc 9455 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9456 work = intel_crtc->unpin_work;
9457 intel_crtc->unpin_work = NULL;
5e2d7afc 9458 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9459
9460 if (work) {
9461 cancel_work_sync(&work->work);
9462 kfree(work);
9463 }
79e53945 9464
f5de6e07 9465 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9466 drm_crtc_cleanup(crtc);
67e77c5a 9467
79e53945
JB
9468 kfree(intel_crtc);
9469}
9470
6b95a207
KH
9471static void intel_unpin_work_fn(struct work_struct *__work)
9472{
9473 struct intel_unpin_work *work =
9474 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9475 struct drm_device *dev = work->crtc->dev;
f99d7069 9476 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9477
b4a98e57 9478 mutex_lock(&dev->struct_mutex);
82bc3b2d 9479 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 9480 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 9481
7ff0ebcc 9482 intel_fbc_update(dev);
f06cc1b9
JH
9483
9484 if (work->flip_queued_req)
146d84f0 9485 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9486 mutex_unlock(&dev->struct_mutex);
9487
f99d7069 9488 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 9489 drm_framebuffer_unreference(work->old_fb);
f99d7069 9490
b4a98e57
CW
9491 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9492 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9493
6b95a207
KH
9494 kfree(work);
9495}
9496
1afe3e9d 9497static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9498 struct drm_crtc *crtc)
6b95a207 9499{
6b95a207
KH
9500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9501 struct intel_unpin_work *work;
6b95a207
KH
9502 unsigned long flags;
9503
9504 /* Ignore early vblank irqs */
9505 if (intel_crtc == NULL)
9506 return;
9507
f326038a
DV
9508 /*
9509 * This is called both by irq handlers and the reset code (to complete
9510 * lost pageflips) so needs the full irqsave spinlocks.
9511 */
6b95a207
KH
9512 spin_lock_irqsave(&dev->event_lock, flags);
9513 work = intel_crtc->unpin_work;
e7d841ca
CW
9514
9515 /* Ensure we don't miss a work->pending update ... */
9516 smp_rmb();
9517
9518 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9519 spin_unlock_irqrestore(&dev->event_lock, flags);
9520 return;
9521 }
9522
d6bbafa1 9523 page_flip_completed(intel_crtc);
0af7e4df 9524
6b95a207 9525 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9526}
9527
1afe3e9d
JB
9528void intel_finish_page_flip(struct drm_device *dev, int pipe)
9529{
fbee40df 9530 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9531 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9532
49b14a5c 9533 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9534}
9535
9536void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9537{
fbee40df 9538 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9539 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9540
49b14a5c 9541 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9542}
9543
75f7f3ec
VS
9544/* Is 'a' after or equal to 'b'? */
9545static bool g4x_flip_count_after_eq(u32 a, u32 b)
9546{
9547 return !((a - b) & 0x80000000);
9548}
9549
9550static bool page_flip_finished(struct intel_crtc *crtc)
9551{
9552 struct drm_device *dev = crtc->base.dev;
9553 struct drm_i915_private *dev_priv = dev->dev_private;
9554
bdfa7542
VS
9555 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9556 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9557 return true;
9558
75f7f3ec
VS
9559 /*
9560 * The relevant registers doen't exist on pre-ctg.
9561 * As the flip done interrupt doesn't trigger for mmio
9562 * flips on gmch platforms, a flip count check isn't
9563 * really needed there. But since ctg has the registers,
9564 * include it in the check anyway.
9565 */
9566 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9567 return true;
9568
9569 /*
9570 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9571 * used the same base address. In that case the mmio flip might
9572 * have completed, but the CS hasn't even executed the flip yet.
9573 *
9574 * A flip count check isn't enough as the CS might have updated
9575 * the base address just after start of vblank, but before we
9576 * managed to process the interrupt. This means we'd complete the
9577 * CS flip too soon.
9578 *
9579 * Combining both checks should get us a good enough result. It may
9580 * still happen that the CS flip has been executed, but has not
9581 * yet actually completed. But in case the base address is the same
9582 * anyway, we don't really care.
9583 */
9584 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9585 crtc->unpin_work->gtt_offset &&
9586 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9587 crtc->unpin_work->flip_count);
9588}
9589
6b95a207
KH
9590void intel_prepare_page_flip(struct drm_device *dev, int plane)
9591{
fbee40df 9592 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9593 struct intel_crtc *intel_crtc =
9594 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9595 unsigned long flags;
9596
f326038a
DV
9597
9598 /*
9599 * This is called both by irq handlers and the reset code (to complete
9600 * lost pageflips) so needs the full irqsave spinlocks.
9601 *
9602 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9603 * generate a page-flip completion irq, i.e. every modeset
9604 * is also accompanied by a spurious intel_prepare_page_flip().
9605 */
6b95a207 9606 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9607 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9608 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9609 spin_unlock_irqrestore(&dev->event_lock, flags);
9610}
9611
eba905b2 9612static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9613{
9614 /* Ensure that the work item is consistent when activating it ... */
9615 smp_wmb();
9616 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9617 /* and that it is marked active as soon as the irq could fire. */
9618 smp_wmb();
9619}
9620
8c9f3aaf
JB
9621static int intel_gen2_queue_flip(struct drm_device *dev,
9622 struct drm_crtc *crtc,
9623 struct drm_framebuffer *fb,
ed8d1975 9624 struct drm_i915_gem_object *obj,
a4872ba6 9625 struct intel_engine_cs *ring,
ed8d1975 9626 uint32_t flags)
8c9f3aaf 9627{
8c9f3aaf 9628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9629 u32 flip_mask;
9630 int ret;
9631
6d90c952 9632 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9633 if (ret)
4fa62c89 9634 return ret;
8c9f3aaf
JB
9635
9636 /* Can't queue multiple flips, so wait for the previous
9637 * one to finish before executing the next.
9638 */
9639 if (intel_crtc->plane)
9640 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9641 else
9642 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9643 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9644 intel_ring_emit(ring, MI_NOOP);
9645 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9646 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9647 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9648 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9649 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9650
9651 intel_mark_page_flip_active(intel_crtc);
09246732 9652 __intel_ring_advance(ring);
83d4092b 9653 return 0;
8c9f3aaf
JB
9654}
9655
9656static int intel_gen3_queue_flip(struct drm_device *dev,
9657 struct drm_crtc *crtc,
9658 struct drm_framebuffer *fb,
ed8d1975 9659 struct drm_i915_gem_object *obj,
a4872ba6 9660 struct intel_engine_cs *ring,
ed8d1975 9661 uint32_t flags)
8c9f3aaf 9662{
8c9f3aaf 9663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9664 u32 flip_mask;
9665 int ret;
9666
6d90c952 9667 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9668 if (ret)
4fa62c89 9669 return ret;
8c9f3aaf
JB
9670
9671 if (intel_crtc->plane)
9672 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9673 else
9674 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9675 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9676 intel_ring_emit(ring, MI_NOOP);
9677 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9678 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9679 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9680 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9681 intel_ring_emit(ring, MI_NOOP);
9682
e7d841ca 9683 intel_mark_page_flip_active(intel_crtc);
09246732 9684 __intel_ring_advance(ring);
83d4092b 9685 return 0;
8c9f3aaf
JB
9686}
9687
9688static int intel_gen4_queue_flip(struct drm_device *dev,
9689 struct drm_crtc *crtc,
9690 struct drm_framebuffer *fb,
ed8d1975 9691 struct drm_i915_gem_object *obj,
a4872ba6 9692 struct intel_engine_cs *ring,
ed8d1975 9693 uint32_t flags)
8c9f3aaf
JB
9694{
9695 struct drm_i915_private *dev_priv = dev->dev_private;
9696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9697 uint32_t pf, pipesrc;
9698 int ret;
9699
6d90c952 9700 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9701 if (ret)
4fa62c89 9702 return ret;
8c9f3aaf
JB
9703
9704 /* i965+ uses the linear or tiled offsets from the
9705 * Display Registers (which do not change across a page-flip)
9706 * so we need only reprogram the base address.
9707 */
6d90c952
DV
9708 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9709 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9710 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9711 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9712 obj->tiling_mode);
8c9f3aaf
JB
9713
9714 /* XXX Enabling the panel-fitter across page-flip is so far
9715 * untested on non-native modes, so ignore it for now.
9716 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9717 */
9718 pf = 0;
9719 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9720 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9721
9722 intel_mark_page_flip_active(intel_crtc);
09246732 9723 __intel_ring_advance(ring);
83d4092b 9724 return 0;
8c9f3aaf
JB
9725}
9726
9727static int intel_gen6_queue_flip(struct drm_device *dev,
9728 struct drm_crtc *crtc,
9729 struct drm_framebuffer *fb,
ed8d1975 9730 struct drm_i915_gem_object *obj,
a4872ba6 9731 struct intel_engine_cs *ring,
ed8d1975 9732 uint32_t flags)
8c9f3aaf
JB
9733{
9734 struct drm_i915_private *dev_priv = dev->dev_private;
9735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9736 uint32_t pf, pipesrc;
9737 int ret;
9738
6d90c952 9739 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9740 if (ret)
4fa62c89 9741 return ret;
8c9f3aaf 9742
6d90c952
DV
9743 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9744 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9745 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9746 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9747
dc257cf1
DV
9748 /* Contrary to the suggestions in the documentation,
9749 * "Enable Panel Fitter" does not seem to be required when page
9750 * flipping with a non-native mode, and worse causes a normal
9751 * modeset to fail.
9752 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9753 */
9754 pf = 0;
8c9f3aaf 9755 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9756 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9757
9758 intel_mark_page_flip_active(intel_crtc);
09246732 9759 __intel_ring_advance(ring);
83d4092b 9760 return 0;
8c9f3aaf
JB
9761}
9762
7c9017e5
JB
9763static int intel_gen7_queue_flip(struct drm_device *dev,
9764 struct drm_crtc *crtc,
9765 struct drm_framebuffer *fb,
ed8d1975 9766 struct drm_i915_gem_object *obj,
a4872ba6 9767 struct intel_engine_cs *ring,
ed8d1975 9768 uint32_t flags)
7c9017e5 9769{
7c9017e5 9770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9771 uint32_t plane_bit = 0;
ffe74d75
CW
9772 int len, ret;
9773
eba905b2 9774 switch (intel_crtc->plane) {
cb05d8de
DV
9775 case PLANE_A:
9776 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9777 break;
9778 case PLANE_B:
9779 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9780 break;
9781 case PLANE_C:
9782 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9783 break;
9784 default:
9785 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9786 return -ENODEV;
cb05d8de
DV
9787 }
9788
ffe74d75 9789 len = 4;
f476828a 9790 if (ring->id == RCS) {
ffe74d75 9791 len += 6;
f476828a
DL
9792 /*
9793 * On Gen 8, SRM is now taking an extra dword to accommodate
9794 * 48bits addresses, and we need a NOOP for the batch size to
9795 * stay even.
9796 */
9797 if (IS_GEN8(dev))
9798 len += 2;
9799 }
ffe74d75 9800
f66fab8e
VS
9801 /*
9802 * BSpec MI_DISPLAY_FLIP for IVB:
9803 * "The full packet must be contained within the same cache line."
9804 *
9805 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9806 * cacheline, if we ever start emitting more commands before
9807 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9808 * then do the cacheline alignment, and finally emit the
9809 * MI_DISPLAY_FLIP.
9810 */
9811 ret = intel_ring_cacheline_align(ring);
9812 if (ret)
4fa62c89 9813 return ret;
f66fab8e 9814
ffe74d75 9815 ret = intel_ring_begin(ring, len);
7c9017e5 9816 if (ret)
4fa62c89 9817 return ret;
7c9017e5 9818
ffe74d75
CW
9819 /* Unmask the flip-done completion message. Note that the bspec says that
9820 * we should do this for both the BCS and RCS, and that we must not unmask
9821 * more than one flip event at any time (or ensure that one flip message
9822 * can be sent by waiting for flip-done prior to queueing new flips).
9823 * Experimentation says that BCS works despite DERRMR masking all
9824 * flip-done completion events and that unmasking all planes at once
9825 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9826 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9827 */
9828 if (ring->id == RCS) {
9829 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9830 intel_ring_emit(ring, DERRMR);
9831 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9832 DERRMR_PIPEB_PRI_FLIP_DONE |
9833 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9834 if (IS_GEN8(dev))
9835 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9836 MI_SRM_LRM_GLOBAL_GTT);
9837 else
9838 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9839 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9840 intel_ring_emit(ring, DERRMR);
9841 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9842 if (IS_GEN8(dev)) {
9843 intel_ring_emit(ring, 0);
9844 intel_ring_emit(ring, MI_NOOP);
9845 }
ffe74d75
CW
9846 }
9847
cb05d8de 9848 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9849 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9850 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9851 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9852
9853 intel_mark_page_flip_active(intel_crtc);
09246732 9854 __intel_ring_advance(ring);
83d4092b 9855 return 0;
7c9017e5
JB
9856}
9857
84c33a64
SG
9858static bool use_mmio_flip(struct intel_engine_cs *ring,
9859 struct drm_i915_gem_object *obj)
9860{
9861 /*
9862 * This is not being used for older platforms, because
9863 * non-availability of flip done interrupt forces us to use
9864 * CS flips. Older platforms derive flip done using some clever
9865 * tricks involving the flip_pending status bits and vblank irqs.
9866 * So using MMIO flips there would disrupt this mechanism.
9867 */
9868
8e09bf83
CW
9869 if (ring == NULL)
9870 return true;
9871
84c33a64
SG
9872 if (INTEL_INFO(ring->dev)->gen < 5)
9873 return false;
9874
9875 if (i915.use_mmio_flip < 0)
9876 return false;
9877 else if (i915.use_mmio_flip > 0)
9878 return true;
14bf993e
OM
9879 else if (i915.enable_execlists)
9880 return true;
84c33a64 9881 else
41c52415 9882 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9883}
9884
ff944564
DL
9885static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9886{
9887 struct drm_device *dev = intel_crtc->base.dev;
9888 struct drm_i915_private *dev_priv = dev->dev_private;
9889 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9890 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9891 struct drm_i915_gem_object *obj = intel_fb->obj;
9892 const enum pipe pipe = intel_crtc->pipe;
9893 u32 ctl, stride;
9894
9895 ctl = I915_READ(PLANE_CTL(pipe, 0));
9896 ctl &= ~PLANE_CTL_TILED_MASK;
9897 if (obj->tiling_mode == I915_TILING_X)
9898 ctl |= PLANE_CTL_TILED_X;
9899
9900 /*
9901 * The stride is either expressed as a multiple of 64 bytes chunks for
9902 * linear buffers or in number of tiles for tiled buffers.
9903 */
9904 stride = fb->pitches[0] >> 6;
9905 if (obj->tiling_mode == I915_TILING_X)
9906 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9907
9908 /*
9909 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9910 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9911 */
9912 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9913 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9914
9915 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9916 POSTING_READ(PLANE_SURF(pipe, 0));
9917}
9918
9919static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9920{
9921 struct drm_device *dev = intel_crtc->base.dev;
9922 struct drm_i915_private *dev_priv = dev->dev_private;
9923 struct intel_framebuffer *intel_fb =
9924 to_intel_framebuffer(intel_crtc->base.primary->fb);
9925 struct drm_i915_gem_object *obj = intel_fb->obj;
9926 u32 dspcntr;
9927 u32 reg;
9928
84c33a64
SG
9929 reg = DSPCNTR(intel_crtc->plane);
9930 dspcntr = I915_READ(reg);
9931
c5d97472
DL
9932 if (obj->tiling_mode != I915_TILING_NONE)
9933 dspcntr |= DISPPLANE_TILED;
9934 else
9935 dspcntr &= ~DISPPLANE_TILED;
9936
84c33a64
SG
9937 I915_WRITE(reg, dspcntr);
9938
9939 I915_WRITE(DSPSURF(intel_crtc->plane),
9940 intel_crtc->unpin_work->gtt_offset);
9941 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9942
ff944564
DL
9943}
9944
9945/*
9946 * XXX: This is the temporary way to update the plane registers until we get
9947 * around to using the usual plane update functions for MMIO flips
9948 */
9949static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9950{
9951 struct drm_device *dev = intel_crtc->base.dev;
9952 bool atomic_update;
9953 u32 start_vbl_count;
9954
9955 intel_mark_page_flip_active(intel_crtc);
9956
9957 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9958
9959 if (INTEL_INFO(dev)->gen >= 9)
9960 skl_do_mmio_flip(intel_crtc);
9961 else
9962 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9963 ilk_do_mmio_flip(intel_crtc);
9964
9362c7c5
ACO
9965 if (atomic_update)
9966 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9967}
9968
9362c7c5 9969static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9970{
cc8c4cc2 9971 struct intel_crtc *crtc =
9362c7c5 9972 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9973 struct intel_mmio_flip *mmio_flip;
84c33a64 9974
cc8c4cc2
JH
9975 mmio_flip = &crtc->mmio_flip;
9976 if (mmio_flip->req)
9c654818
JH
9977 WARN_ON(__i915_wait_request(mmio_flip->req,
9978 crtc->reset_counter,
9979 false, NULL, NULL) != 0);
84c33a64 9980
cc8c4cc2
JH
9981 intel_do_mmio_flip(crtc);
9982 if (mmio_flip->req) {
9983 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9984 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9985 mutex_unlock(&crtc->base.dev->struct_mutex);
9986 }
84c33a64
SG
9987}
9988
9989static int intel_queue_mmio_flip(struct drm_device *dev,
9990 struct drm_crtc *crtc,
9991 struct drm_framebuffer *fb,
9992 struct drm_i915_gem_object *obj,
9993 struct intel_engine_cs *ring,
9994 uint32_t flags)
9995{
84c33a64 9996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9997
cc8c4cc2
JH
9998 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9999 obj->last_write_req);
536f5b5e
ACO
10000
10001 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 10002
84c33a64
SG
10003 return 0;
10004}
10005
8c9f3aaf
JB
10006static int intel_default_queue_flip(struct drm_device *dev,
10007 struct drm_crtc *crtc,
10008 struct drm_framebuffer *fb,
ed8d1975 10009 struct drm_i915_gem_object *obj,
a4872ba6 10010 struct intel_engine_cs *ring,
ed8d1975 10011 uint32_t flags)
8c9f3aaf
JB
10012{
10013 return -ENODEV;
10014}
10015
d6bbafa1
CW
10016static bool __intel_pageflip_stall_check(struct drm_device *dev,
10017 struct drm_crtc *crtc)
10018{
10019 struct drm_i915_private *dev_priv = dev->dev_private;
10020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10021 struct intel_unpin_work *work = intel_crtc->unpin_work;
10022 u32 addr;
10023
10024 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10025 return true;
10026
10027 if (!work->enable_stall_check)
10028 return false;
10029
10030 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
10031 if (work->flip_queued_req &&
10032 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
10033 return false;
10034
1e3feefd 10035 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
10036 }
10037
1e3feefd 10038 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
10039 return false;
10040
10041 /* Potential stall - if we see that the flip has happened,
10042 * assume a missed interrupt. */
10043 if (INTEL_INFO(dev)->gen >= 4)
10044 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10045 else
10046 addr = I915_READ(DSPADDR(intel_crtc->plane));
10047
10048 /* There is a potential issue here with a false positive after a flip
10049 * to the same address. We could address this by checking for a
10050 * non-incrementing frame counter.
10051 */
10052 return addr == work->gtt_offset;
10053}
10054
10055void intel_check_page_flip(struct drm_device *dev, int pipe)
10056{
10057 struct drm_i915_private *dev_priv = dev->dev_private;
10058 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a 10060
6c51d46f 10061 WARN_ON(!in_interrupt());
d6bbafa1
CW
10062
10063 if (crtc == NULL)
10064 return;
10065
f326038a 10066 spin_lock(&dev->event_lock);
d6bbafa1
CW
10067 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10068 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
1e3feefd
DV
10069 intel_crtc->unpin_work->flip_queued_vblank,
10070 drm_vblank_count(dev, pipe));
d6bbafa1
CW
10071 page_flip_completed(intel_crtc);
10072 }
f326038a 10073 spin_unlock(&dev->event_lock);
d6bbafa1
CW
10074}
10075
6b95a207
KH
10076static int intel_crtc_page_flip(struct drm_crtc *crtc,
10077 struct drm_framebuffer *fb,
ed8d1975
KP
10078 struct drm_pending_vblank_event *event,
10079 uint32_t page_flip_flags)
6b95a207
KH
10080{
10081 struct drm_device *dev = crtc->dev;
10082 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 10083 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 10084 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 10085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 10086 struct drm_plane *primary = crtc->primary;
a071fa00 10087 enum pipe pipe = intel_crtc->pipe;
6b95a207 10088 struct intel_unpin_work *work;
a4872ba6 10089 struct intel_engine_cs *ring;
52e68630 10090 int ret;
6b95a207 10091
2ff8fde1
MR
10092 /*
10093 * drm_mode_page_flip_ioctl() should already catch this, but double
10094 * check to be safe. In the future we may enable pageflipping from
10095 * a disabled primary plane.
10096 */
10097 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10098 return -EBUSY;
10099
e6a595d2 10100 /* Can't change pixel format via MI display flips. */
f4510a27 10101 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10102 return -EINVAL;
10103
10104 /*
10105 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10106 * Note that pitch changes could also affect these register.
10107 */
10108 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10109 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10110 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10111 return -EINVAL;
10112
f900db47
CW
10113 if (i915_terminally_wedged(&dev_priv->gpu_error))
10114 goto out_hang;
10115
b14c5679 10116 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10117 if (work == NULL)
10118 return -ENOMEM;
10119
6b95a207 10120 work->event = event;
b4a98e57 10121 work->crtc = crtc;
ab8d6675 10122 work->old_fb = old_fb;
6b95a207
KH
10123 INIT_WORK(&work->work, intel_unpin_work_fn);
10124
87b6b101 10125 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10126 if (ret)
10127 goto free_work;
10128
6b95a207 10129 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10130 spin_lock_irq(&dev->event_lock);
6b95a207 10131 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10132 /* Before declaring the flip queue wedged, check if
10133 * the hardware completed the operation behind our backs.
10134 */
10135 if (__intel_pageflip_stall_check(dev, crtc)) {
10136 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10137 page_flip_completed(intel_crtc);
10138 } else {
10139 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10140 spin_unlock_irq(&dev->event_lock);
468f0b44 10141
d6bbafa1
CW
10142 drm_crtc_vblank_put(crtc);
10143 kfree(work);
10144 return -EBUSY;
10145 }
6b95a207
KH
10146 }
10147 intel_crtc->unpin_work = work;
5e2d7afc 10148 spin_unlock_irq(&dev->event_lock);
6b95a207 10149
b4a98e57
CW
10150 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10151 flush_workqueue(dev_priv->wq);
10152
75dfca80 10153 /* Reference the objects for the scheduled work. */
ab8d6675 10154 drm_framebuffer_reference(work->old_fb);
05394f39 10155 drm_gem_object_reference(&obj->base);
6b95a207 10156
f4510a27 10157 crtc->primary->fb = fb;
afd65eb4 10158 update_state_fb(crtc->primary);
1ed1f968 10159
e1f99ce6 10160 work->pending_flip_obj = obj;
e1f99ce6 10161
89ed88ba
CW
10162 ret = i915_mutex_lock_interruptible(dev);
10163 if (ret)
10164 goto cleanup;
10165
b4a98e57 10166 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10167 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10168
75f7f3ec 10169 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10170 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10171
4fa62c89
VS
10172 if (IS_VALLEYVIEW(dev)) {
10173 ring = &dev_priv->ring[BCS];
ab8d6675 10174 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
10175 /* vlv: DISPLAY_FLIP fails to change tiling */
10176 ring = NULL;
48bf5b2d 10177 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 10178 ring = &dev_priv->ring[BCS];
4fa62c89 10179 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 10180 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
10181 if (ring == NULL || ring->id != RCS)
10182 ring = &dev_priv->ring[BCS];
10183 } else {
10184 ring = &dev_priv->ring[RCS];
10185 }
10186
82bc3b2d
TU
10187 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10188 crtc->primary->state, ring);
8c9f3aaf
JB
10189 if (ret)
10190 goto cleanup_pending;
6b95a207 10191
121920fa
TU
10192 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10193 + intel_crtc->dspaddr_offset;
4fa62c89 10194
d6bbafa1 10195 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10196 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10197 page_flip_flags);
d6bbafa1
CW
10198 if (ret)
10199 goto cleanup_unpin;
10200
f06cc1b9
JH
10201 i915_gem_request_assign(&work->flip_queued_req,
10202 obj->last_write_req);
d6bbafa1 10203 } else {
84c33a64 10204 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10205 page_flip_flags);
10206 if (ret)
10207 goto cleanup_unpin;
10208
f06cc1b9
JH
10209 i915_gem_request_assign(&work->flip_queued_req,
10210 intel_ring_get_request(ring));
d6bbafa1
CW
10211 }
10212
1e3feefd 10213 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 10214 work->enable_stall_check = true;
4fa62c89 10215
ab8d6675 10216 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
10217 INTEL_FRONTBUFFER_PRIMARY(pipe));
10218
7ff0ebcc 10219 intel_fbc_disable(dev);
f99d7069 10220 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10221 mutex_unlock(&dev->struct_mutex);
10222
e5510fac
JB
10223 trace_i915_flip_request(intel_crtc->plane, obj);
10224
6b95a207 10225 return 0;
96b099fd 10226
4fa62c89 10227cleanup_unpin:
82bc3b2d 10228 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 10229cleanup_pending:
b4a98e57 10230 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
10231 mutex_unlock(&dev->struct_mutex);
10232cleanup:
f4510a27 10233 crtc->primary->fb = old_fb;
afd65eb4 10234 update_state_fb(crtc->primary);
89ed88ba
CW
10235
10236 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 10237 drm_framebuffer_unreference(work->old_fb);
96b099fd 10238
5e2d7afc 10239 spin_lock_irq(&dev->event_lock);
96b099fd 10240 intel_crtc->unpin_work = NULL;
5e2d7afc 10241 spin_unlock_irq(&dev->event_lock);
96b099fd 10242
87b6b101 10243 drm_crtc_vblank_put(crtc);
7317c75e 10244free_work:
96b099fd
CW
10245 kfree(work);
10246
f900db47
CW
10247 if (ret == -EIO) {
10248out_hang:
53a366b9 10249 ret = intel_plane_restore(primary);
f0d3dad3 10250 if (ret == 0 && event) {
5e2d7afc 10251 spin_lock_irq(&dev->event_lock);
a071fa00 10252 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 10253 spin_unlock_irq(&dev->event_lock);
f0d3dad3 10254 }
f900db47 10255 }
96b099fd 10256 return ret;
6b95a207
KH
10257}
10258
f6e5b160 10259static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10260 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10261 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
10262 .atomic_begin = intel_begin_crtc_commit,
10263 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
10264};
10265
9a935856
DV
10266/**
10267 * intel_modeset_update_staged_output_state
10268 *
10269 * Updates the staged output configuration state, e.g. after we've read out the
10270 * current hw state.
10271 */
10272static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10273{
7668851f 10274 struct intel_crtc *crtc;
9a935856
DV
10275 struct intel_encoder *encoder;
10276 struct intel_connector *connector;
f6e5b160 10277
3a3371ff 10278 for_each_intel_connector(dev, connector) {
9a935856
DV
10279 connector->new_encoder =
10280 to_intel_encoder(connector->base.encoder);
10281 }
f6e5b160 10282
b2784e15 10283 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10284 encoder->new_crtc =
10285 to_intel_crtc(encoder->base.crtc);
10286 }
7668851f 10287
d3fcc808 10288 for_each_intel_crtc(dev, crtc) {
83d65738 10289 crtc->new_enabled = crtc->base.state->enable;
7bd0a8e7
VS
10290
10291 if (crtc->new_enabled)
6e3c9717 10292 crtc->new_config = crtc->config;
7bd0a8e7
VS
10293 else
10294 crtc->new_config = NULL;
7668851f 10295 }
f6e5b160
CW
10296}
10297
d29b2f9d
ACO
10298/* Transitional helper to copy current connector/encoder state to
10299 * connector->state. This is needed so that code that is partially
10300 * converted to atomic does the right thing.
10301 */
10302static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10303{
10304 struct intel_connector *connector;
10305
10306 for_each_intel_connector(dev, connector) {
10307 if (connector->base.encoder) {
10308 connector->base.state->best_encoder =
10309 connector->base.encoder;
10310 connector->base.state->crtc =
10311 connector->base.encoder->crtc;
10312 } else {
10313 connector->base.state->best_encoder = NULL;
10314 connector->base.state->crtc = NULL;
10315 }
10316 }
10317}
10318
9a935856
DV
10319/**
10320 * intel_modeset_commit_output_state
10321 *
10322 * This function copies the stage display pipe configuration to the real one.
10323 */
10324static void intel_modeset_commit_output_state(struct drm_device *dev)
10325{
7668851f 10326 struct intel_crtc *crtc;
9a935856
DV
10327 struct intel_encoder *encoder;
10328 struct intel_connector *connector;
f6e5b160 10329
3a3371ff 10330 for_each_intel_connector(dev, connector) {
9a935856
DV
10331 connector->base.encoder = &connector->new_encoder->base;
10332 }
f6e5b160 10333
b2784e15 10334 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10335 encoder->base.crtc = &encoder->new_crtc->base;
10336 }
7668851f 10337
d3fcc808 10338 for_each_intel_crtc(dev, crtc) {
83d65738 10339 crtc->base.state->enable = crtc->new_enabled;
7668851f
VS
10340 crtc->base.enabled = crtc->new_enabled;
10341 }
d29b2f9d
ACO
10342
10343 intel_modeset_update_connector_atomic_state(dev);
9a935856
DV
10344}
10345
050f7aeb 10346static void
eba905b2 10347connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10348 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10349{
10350 int bpp = pipe_config->pipe_bpp;
10351
10352 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10353 connector->base.base.id,
c23cc417 10354 connector->base.name);
050f7aeb
DV
10355
10356 /* Don't use an invalid EDID bpc value */
10357 if (connector->base.display_info.bpc &&
10358 connector->base.display_info.bpc * 3 < bpp) {
10359 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10360 bpp, connector->base.display_info.bpc*3);
10361 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10362 }
10363
10364 /* Clamp bpp to 8 on screens without EDID 1.4 */
10365 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10366 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10367 bpp);
10368 pipe_config->pipe_bpp = 24;
10369 }
10370}
10371
4e53c2e0 10372static int
050f7aeb
DV
10373compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10374 struct drm_framebuffer *fb,
5cec258b 10375 struct intel_crtc_state *pipe_config)
4e53c2e0 10376{
050f7aeb 10377 struct drm_device *dev = crtc->base.dev;
1486017f 10378 struct drm_atomic_state *state;
050f7aeb 10379 struct intel_connector *connector;
1486017f 10380 int bpp, i;
4e53c2e0 10381
d42264b1
DV
10382 switch (fb->pixel_format) {
10383 case DRM_FORMAT_C8:
4e53c2e0
DV
10384 bpp = 8*3; /* since we go through a colormap */
10385 break;
d42264b1
DV
10386 case DRM_FORMAT_XRGB1555:
10387 case DRM_FORMAT_ARGB1555:
10388 /* checked in intel_framebuffer_init already */
10389 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10390 return -EINVAL;
10391 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10392 bpp = 6*3; /* min is 18bpp */
10393 break;
d42264b1
DV
10394 case DRM_FORMAT_XBGR8888:
10395 case DRM_FORMAT_ABGR8888:
10396 /* checked in intel_framebuffer_init already */
10397 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10398 return -EINVAL;
10399 case DRM_FORMAT_XRGB8888:
10400 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10401 bpp = 8*3;
10402 break;
d42264b1
DV
10403 case DRM_FORMAT_XRGB2101010:
10404 case DRM_FORMAT_ARGB2101010:
10405 case DRM_FORMAT_XBGR2101010:
10406 case DRM_FORMAT_ABGR2101010:
10407 /* checked in intel_framebuffer_init already */
10408 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10409 return -EINVAL;
4e53c2e0
DV
10410 bpp = 10*3;
10411 break;
baba133a 10412 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10413 default:
10414 DRM_DEBUG_KMS("unsupported depth\n");
10415 return -EINVAL;
10416 }
10417
4e53c2e0
DV
10418 pipe_config->pipe_bpp = bpp;
10419
1486017f
ACO
10420 state = pipe_config->base.state;
10421
4e53c2e0 10422 /* Clamp display bpp to EDID value */
1486017f
ACO
10423 for (i = 0; i < state->num_connector; i++) {
10424 if (!state->connectors[i])
10425 continue;
10426
10427 connector = to_intel_connector(state->connectors[i]);
10428 if (state->connector_states[i]->crtc != &crtc->base)
4e53c2e0
DV
10429 continue;
10430
050f7aeb 10431 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10432 }
10433
10434 return bpp;
10435}
10436
644db711
DV
10437static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10438{
10439 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10440 "type: 0x%x flags: 0x%x\n",
1342830c 10441 mode->crtc_clock,
644db711
DV
10442 mode->crtc_hdisplay, mode->crtc_hsync_start,
10443 mode->crtc_hsync_end, mode->crtc_htotal,
10444 mode->crtc_vdisplay, mode->crtc_vsync_start,
10445 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10446}
10447
c0b03411 10448static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10449 struct intel_crtc_state *pipe_config,
c0b03411
DV
10450 const char *context)
10451{
10452 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10453 context, pipe_name(crtc->pipe));
10454
10455 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10456 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10457 pipe_config->pipe_bpp, pipe_config->dither);
10458 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10459 pipe_config->has_pch_encoder,
10460 pipe_config->fdi_lanes,
10461 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10462 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10463 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10464 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10465 pipe_config->has_dp_encoder,
10466 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10467 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10468 pipe_config->dp_m_n.tu);
b95af8be
VK
10469
10470 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10471 pipe_config->has_dp_encoder,
10472 pipe_config->dp_m2_n2.gmch_m,
10473 pipe_config->dp_m2_n2.gmch_n,
10474 pipe_config->dp_m2_n2.link_m,
10475 pipe_config->dp_m2_n2.link_n,
10476 pipe_config->dp_m2_n2.tu);
10477
55072d19
DV
10478 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10479 pipe_config->has_audio,
10480 pipe_config->has_infoframe);
10481
c0b03411 10482 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10483 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10484 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10485 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10486 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10487 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10488 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10489 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10490 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10491 pipe_config->gmch_pfit.control,
10492 pipe_config->gmch_pfit.pgm_ratios,
10493 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10494 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10495 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10496 pipe_config->pch_pfit.size,
10497 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10498 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10499 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10500}
10501
bc079e8b
VS
10502static bool encoders_cloneable(const struct intel_encoder *a,
10503 const struct intel_encoder *b)
accfc0c5 10504{
bc079e8b
VS
10505 /* masks could be asymmetric, so check both ways */
10506 return a == b || (a->cloneable & (1 << b->type) &&
10507 b->cloneable & (1 << a->type));
10508}
10509
10510static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10511 struct intel_encoder *encoder)
10512{
10513 struct drm_device *dev = crtc->base.dev;
10514 struct intel_encoder *source_encoder;
10515
b2784e15 10516 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10517 if (source_encoder->new_crtc != crtc)
10518 continue;
10519
10520 if (!encoders_cloneable(encoder, source_encoder))
10521 return false;
10522 }
10523
10524 return true;
10525}
10526
10527static bool check_encoder_cloning(struct intel_crtc *crtc)
10528{
10529 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10530 struct intel_encoder *encoder;
10531
b2784e15 10532 for_each_intel_encoder(dev, encoder) {
bc079e8b 10533 if (encoder->new_crtc != crtc)
accfc0c5
DV
10534 continue;
10535
bc079e8b
VS
10536 if (!check_single_encoder_cloning(crtc, encoder))
10537 return false;
accfc0c5
DV
10538 }
10539
bc079e8b 10540 return true;
accfc0c5
DV
10541}
10542
00f0b378
VS
10543static bool check_digital_port_conflicts(struct drm_device *dev)
10544{
10545 struct intel_connector *connector;
10546 unsigned int used_ports = 0;
10547
10548 /*
10549 * Walk the connector list instead of the encoder
10550 * list to detect the problem on ddi platforms
10551 * where there's just one encoder per digital port.
10552 */
3a3371ff 10553 for_each_intel_connector(dev, connector) {
00f0b378
VS
10554 struct intel_encoder *encoder = connector->new_encoder;
10555
10556 if (!encoder)
10557 continue;
10558
10559 WARN_ON(!encoder->new_crtc);
10560
10561 switch (encoder->type) {
10562 unsigned int port_mask;
10563 case INTEL_OUTPUT_UNKNOWN:
10564 if (WARN_ON(!HAS_DDI(dev)))
10565 break;
10566 case INTEL_OUTPUT_DISPLAYPORT:
10567 case INTEL_OUTPUT_HDMI:
10568 case INTEL_OUTPUT_EDP:
10569 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10570
10571 /* the same port mustn't appear more than once */
10572 if (used_ports & port_mask)
10573 return false;
10574
10575 used_ports |= port_mask;
10576 default:
10577 break;
10578 }
10579 }
10580
10581 return true;
10582}
10583
83a57153
ACO
10584static void
10585clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10586{
10587 struct drm_crtc_state tmp_state;
10588
10589 /* Clear only the intel specific part of the crtc state */
10590 tmp_state = crtc_state->base;
10591 memset(crtc_state, 0, sizeof *crtc_state);
10592 crtc_state->base = tmp_state;
10593}
10594
5cec258b 10595static struct intel_crtc_state *
b8cecdf5 10596intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10597 struct drm_framebuffer *fb,
83a57153
ACO
10598 struct drm_display_mode *mode,
10599 struct drm_atomic_state *state)
ee7b9f93 10600{
7758a113 10601 struct drm_device *dev = crtc->dev;
7758a113 10602 struct intel_encoder *encoder;
0b901879
ACO
10603 struct intel_connector *connector;
10604 struct drm_connector_state *connector_state;
5cec258b 10605 struct intel_crtc_state *pipe_config;
e29c22c0 10606 int plane_bpp, ret = -EINVAL;
0b901879 10607 int i;
e29c22c0 10608 bool retry = true;
ee7b9f93 10609
bc079e8b 10610 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10611 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10612 return ERR_PTR(-EINVAL);
10613 }
10614
00f0b378
VS
10615 if (!check_digital_port_conflicts(dev)) {
10616 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10617 return ERR_PTR(-EINVAL);
10618 }
10619
83a57153
ACO
10620 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10621 if (IS_ERR(pipe_config))
10622 return pipe_config;
10623
10624 clear_intel_crtc_state(pipe_config);
7758a113 10625
07878248 10626 pipe_config->base.crtc = crtc;
2d112de7
ACO
10627 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10628 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10629
e143a21c
DV
10630 pipe_config->cpu_transcoder =
10631 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10632 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10633
2960bc9c
ID
10634 /*
10635 * Sanitize sync polarity flags based on requested ones. If neither
10636 * positive or negative polarity is requested, treat this as meaning
10637 * negative polarity.
10638 */
2d112de7 10639 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10640 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10641 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10642
2d112de7 10643 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10644 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10645 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10646
050f7aeb
DV
10647 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10648 * plane pixel format and any sink constraints into account. Returns the
10649 * source plane bpp so that dithering can be selected on mismatches
10650 * after encoders and crtc also have had their say. */
10651 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10652 fb, pipe_config);
4e53c2e0
DV
10653 if (plane_bpp < 0)
10654 goto fail;
10655
e41a56be
VS
10656 /*
10657 * Determine the real pipe dimensions. Note that stereo modes can
10658 * increase the actual pipe size due to the frame doubling and
10659 * insertion of additional space for blanks between the frame. This
10660 * is stored in the crtc timings. We use the requested mode to do this
10661 * computation to clearly distinguish it from the adjusted mode, which
10662 * can be changed by the connectors in the below retry loop.
10663 */
2d112de7 10664 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10665 &pipe_config->pipe_src_w,
10666 &pipe_config->pipe_src_h);
e41a56be 10667
e29c22c0 10668encoder_retry:
ef1b460d 10669 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10670 pipe_config->port_clock = 0;
ef1b460d 10671 pipe_config->pixel_multiplier = 1;
ff9a6750 10672
135c81b8 10673 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10674 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10675 CRTC_STEREO_DOUBLE);
135c81b8 10676
7758a113
DV
10677 /* Pass our mode to the connectors and the CRTC to give them a chance to
10678 * adjust it according to limitations or connector properties, and also
10679 * a chance to reject the mode entirely.
47f1c6c9 10680 */
0b901879
ACO
10681 for (i = 0; i < state->num_connector; i++) {
10682 connector = to_intel_connector(state->connectors[i]);
10683 if (!connector)
10684 continue;
47f1c6c9 10685
0b901879
ACO
10686 connector_state = state->connector_states[i];
10687 if (connector_state->crtc != crtc)
7758a113 10688 continue;
7ae89233 10689
0b901879
ACO
10690 encoder = to_intel_encoder(connector_state->best_encoder);
10691
efea6e8e
DV
10692 if (!(encoder->compute_config(encoder, pipe_config))) {
10693 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10694 goto fail;
10695 }
ee7b9f93 10696 }
47f1c6c9 10697
ff9a6750
DV
10698 /* Set default port clock if not overwritten by the encoder. Needs to be
10699 * done afterwards in case the encoder adjusts the mode. */
10700 if (!pipe_config->port_clock)
2d112de7 10701 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10702 * pipe_config->pixel_multiplier;
ff9a6750 10703
a43f6e0f 10704 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10705 if (ret < 0) {
7758a113
DV
10706 DRM_DEBUG_KMS("CRTC fixup failed\n");
10707 goto fail;
ee7b9f93 10708 }
e29c22c0
DV
10709
10710 if (ret == RETRY) {
10711 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10712 ret = -EINVAL;
10713 goto fail;
10714 }
10715
10716 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10717 retry = false;
10718 goto encoder_retry;
10719 }
10720
4e53c2e0
DV
10721 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10722 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10723 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10724
b8cecdf5 10725 return pipe_config;
7758a113 10726fail:
e29c22c0 10727 return ERR_PTR(ret);
ee7b9f93 10728}
47f1c6c9 10729
e2e1ed41
DV
10730/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10731 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10732static void
10733intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10734 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10735{
10736 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10737 struct drm_device *dev = crtc->dev;
10738 struct intel_encoder *encoder;
10739 struct intel_connector *connector;
10740 struct drm_crtc *tmp_crtc;
79e53945 10741
e2e1ed41 10742 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10743
e2e1ed41
DV
10744 /* Check which crtcs have changed outputs connected to them, these need
10745 * to be part of the prepare_pipes mask. We don't (yet) support global
10746 * modeset across multiple crtcs, so modeset_pipes will only have one
10747 * bit set at most. */
3a3371ff 10748 for_each_intel_connector(dev, connector) {
e2e1ed41
DV
10749 if (connector->base.encoder == &connector->new_encoder->base)
10750 continue;
79e53945 10751
e2e1ed41
DV
10752 if (connector->base.encoder) {
10753 tmp_crtc = connector->base.encoder->crtc;
10754
10755 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10756 }
10757
10758 if (connector->new_encoder)
10759 *prepare_pipes |=
10760 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10761 }
10762
b2784e15 10763 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10764 if (encoder->base.crtc == &encoder->new_crtc->base)
10765 continue;
10766
10767 if (encoder->base.crtc) {
10768 tmp_crtc = encoder->base.crtc;
10769
10770 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10771 }
10772
10773 if (encoder->new_crtc)
10774 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10775 }
10776
7668851f 10777 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10778 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10779 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
e2e1ed41 10780 continue;
7e7d76c3 10781
7668851f 10782 if (!intel_crtc->new_enabled)
e2e1ed41 10783 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10784 else
10785 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10786 }
10787
e2e1ed41
DV
10788
10789 /* set_mode is also used to update properties on life display pipes. */
10790 intel_crtc = to_intel_crtc(crtc);
7668851f 10791 if (intel_crtc->new_enabled)
e2e1ed41
DV
10792 *prepare_pipes |= 1 << intel_crtc->pipe;
10793
b6c5164d
DV
10794 /*
10795 * For simplicity do a full modeset on any pipe where the output routing
10796 * changed. We could be more clever, but that would require us to be
10797 * more careful with calling the relevant encoder->mode_set functions.
10798 */
e2e1ed41
DV
10799 if (*prepare_pipes)
10800 *modeset_pipes = *prepare_pipes;
10801
10802 /* ... and mask these out. */
10803 *modeset_pipes &= ~(*disable_pipes);
10804 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10805
10806 /*
10807 * HACK: We don't (yet) fully support global modesets. intel_set_config
10808 * obies this rule, but the modeset restore mode of
10809 * intel_modeset_setup_hw_state does not.
10810 */
10811 *modeset_pipes &= 1 << intel_crtc->pipe;
10812 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10813
10814 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10815 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10816}
79e53945 10817
ea9d758d 10818static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10819{
ea9d758d 10820 struct drm_encoder *encoder;
f6e5b160 10821 struct drm_device *dev = crtc->dev;
f6e5b160 10822
ea9d758d
DV
10823 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10824 if (encoder->crtc == crtc)
10825 return true;
10826
10827 return false;
10828}
10829
10830static void
10831intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10832{
ba41c0de 10833 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10834 struct intel_encoder *intel_encoder;
10835 struct intel_crtc *intel_crtc;
10836 struct drm_connector *connector;
10837
ba41c0de
DV
10838 intel_shared_dpll_commit(dev_priv);
10839
b2784e15 10840 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10841 if (!intel_encoder->base.crtc)
10842 continue;
10843
10844 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10845
10846 if (prepare_pipes & (1 << intel_crtc->pipe))
10847 intel_encoder->connectors_active = false;
10848 }
10849
10850 intel_modeset_commit_output_state(dev);
10851
7668851f 10852 /* Double check state. */
d3fcc808 10853 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10854 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10855 WARN_ON(intel_crtc->new_config &&
6e3c9717 10856 intel_crtc->new_config != intel_crtc->config);
83d65738 10857 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
ea9d758d
DV
10858 }
10859
10860 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10861 if (!connector->encoder || !connector->encoder->crtc)
10862 continue;
10863
10864 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10865
10866 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10867 struct drm_property *dpms_property =
10868 dev->mode_config.dpms_property;
10869
ea9d758d 10870 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10871 drm_object_property_set_value(&connector->base,
68d34720
DV
10872 dpms_property,
10873 DRM_MODE_DPMS_ON);
ea9d758d
DV
10874
10875 intel_encoder = to_intel_encoder(connector->encoder);
10876 intel_encoder->connectors_active = true;
10877 }
10878 }
10879
10880}
10881
3bd26263 10882static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10883{
3bd26263 10884 int diff;
f1f644dc
JB
10885
10886 if (clock1 == clock2)
10887 return true;
10888
10889 if (!clock1 || !clock2)
10890 return false;
10891
10892 diff = abs(clock1 - clock2);
10893
10894 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10895 return true;
10896
10897 return false;
10898}
10899
25c5b266
DV
10900#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10901 list_for_each_entry((intel_crtc), \
10902 &(dev)->mode_config.crtc_list, \
10903 base.head) \
0973f18f 10904 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10905
0e8ffe1b 10906static bool
2fa2fe9a 10907intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10908 struct intel_crtc_state *current_config,
10909 struct intel_crtc_state *pipe_config)
0e8ffe1b 10910{
66e985c0
DV
10911#define PIPE_CONF_CHECK_X(name) \
10912 if (current_config->name != pipe_config->name) { \
10913 DRM_ERROR("mismatch in " #name " " \
10914 "(expected 0x%08x, found 0x%08x)\n", \
10915 current_config->name, \
10916 pipe_config->name); \
10917 return false; \
10918 }
10919
08a24034
DV
10920#define PIPE_CONF_CHECK_I(name) \
10921 if (current_config->name != pipe_config->name) { \
10922 DRM_ERROR("mismatch in " #name " " \
10923 "(expected %i, found %i)\n", \
10924 current_config->name, \
10925 pipe_config->name); \
10926 return false; \
88adfff1
DV
10927 }
10928
b95af8be
VK
10929/* This is required for BDW+ where there is only one set of registers for
10930 * switching between high and low RR.
10931 * This macro can be used whenever a comparison has to be made between one
10932 * hw state and multiple sw state variables.
10933 */
10934#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10935 if ((current_config->name != pipe_config->name) && \
10936 (current_config->alt_name != pipe_config->name)) { \
10937 DRM_ERROR("mismatch in " #name " " \
10938 "(expected %i or %i, found %i)\n", \
10939 current_config->name, \
10940 current_config->alt_name, \
10941 pipe_config->name); \
10942 return false; \
10943 }
10944
1bd1bd80
DV
10945#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10946 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10947 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10948 "(expected %i, found %i)\n", \
10949 current_config->name & (mask), \
10950 pipe_config->name & (mask)); \
10951 return false; \
10952 }
10953
5e550656
VS
10954#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10955 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10956 DRM_ERROR("mismatch in " #name " " \
10957 "(expected %i, found %i)\n", \
10958 current_config->name, \
10959 pipe_config->name); \
10960 return false; \
10961 }
10962
bb760063
DV
10963#define PIPE_CONF_QUIRK(quirk) \
10964 ((current_config->quirks | pipe_config->quirks) & (quirk))
10965
eccb140b
DV
10966 PIPE_CONF_CHECK_I(cpu_transcoder);
10967
08a24034
DV
10968 PIPE_CONF_CHECK_I(has_pch_encoder);
10969 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10970 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10971 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10972 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10973 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10974 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10975
eb14cb74 10976 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10977
10978 if (INTEL_INFO(dev)->gen < 8) {
10979 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10980 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10981 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10982 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10983 PIPE_CONF_CHECK_I(dp_m_n.tu);
10984
10985 if (current_config->has_drrs) {
10986 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10987 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10988 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10989 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10990 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10991 }
10992 } else {
10993 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10994 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10995 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10996 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10997 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10998 }
eb14cb74 10999
2d112de7
ACO
11000 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11001 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11002 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11003 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11004 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11005 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 11006
2d112de7
ACO
11007 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11008 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11009 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11010 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11011 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11012 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 11013
c93f54cf 11014 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 11015 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
11016 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11017 IS_VALLEYVIEW(dev))
11018 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 11019 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 11020
9ed109a7
DV
11021 PIPE_CONF_CHECK_I(has_audio);
11022
2d112de7 11023 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
11024 DRM_MODE_FLAG_INTERLACE);
11025
bb760063 11026 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 11027 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11028 DRM_MODE_FLAG_PHSYNC);
2d112de7 11029 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11030 DRM_MODE_FLAG_NHSYNC);
2d112de7 11031 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 11032 DRM_MODE_FLAG_PVSYNC);
2d112de7 11033 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
11034 DRM_MODE_FLAG_NVSYNC);
11035 }
045ac3b5 11036
37327abd
VS
11037 PIPE_CONF_CHECK_I(pipe_src_w);
11038 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 11039
9953599b
DV
11040 /*
11041 * FIXME: BIOS likes to set up a cloned config with lvds+external
11042 * screen. Since we don't yet re-compute the pipe config when moving
11043 * just the lvds port away to another pipe the sw tracking won't match.
11044 *
11045 * Proper atomic modesets with recomputed global state will fix this.
11046 * Until then just don't check gmch state for inherited modes.
11047 */
11048 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11049 PIPE_CONF_CHECK_I(gmch_pfit.control);
11050 /* pfit ratios are autocomputed by the hw on gen4+ */
11051 if (INTEL_INFO(dev)->gen < 4)
11052 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11053 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11054 }
11055
fd4daa9c
CW
11056 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11057 if (current_config->pch_pfit.enabled) {
11058 PIPE_CONF_CHECK_I(pch_pfit.pos);
11059 PIPE_CONF_CHECK_I(pch_pfit.size);
11060 }
2fa2fe9a 11061
e59150dc
JB
11062 /* BDW+ don't expose a synchronous way to read the state */
11063 if (IS_HASWELL(dev))
11064 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 11065
282740f7
VS
11066 PIPE_CONF_CHECK_I(double_wide);
11067
26804afd
DV
11068 PIPE_CONF_CHECK_X(ddi_pll_sel);
11069
c0d43d62 11070 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 11071 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 11072 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
11073 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11074 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 11075 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
11076 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11077 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11078 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 11079
42571aef
VS
11080 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11081 PIPE_CONF_CHECK_I(pipe_bpp);
11082
2d112de7 11083 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 11084 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 11085
66e985c0 11086#undef PIPE_CONF_CHECK_X
08a24034 11087#undef PIPE_CONF_CHECK_I
b95af8be 11088#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 11089#undef PIPE_CONF_CHECK_FLAGS
5e550656 11090#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 11091#undef PIPE_CONF_QUIRK
88adfff1 11092
0e8ffe1b
DV
11093 return true;
11094}
11095
08db6652
DL
11096static void check_wm_state(struct drm_device *dev)
11097{
11098 struct drm_i915_private *dev_priv = dev->dev_private;
11099 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11100 struct intel_crtc *intel_crtc;
11101 int plane;
11102
11103 if (INTEL_INFO(dev)->gen < 9)
11104 return;
11105
11106 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11107 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11108
11109 for_each_intel_crtc(dev, intel_crtc) {
11110 struct skl_ddb_entry *hw_entry, *sw_entry;
11111 const enum pipe pipe = intel_crtc->pipe;
11112
11113 if (!intel_crtc->active)
11114 continue;
11115
11116 /* planes */
dd740780 11117 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
11118 hw_entry = &hw_ddb.plane[pipe][plane];
11119 sw_entry = &sw_ddb->plane[pipe][plane];
11120
11121 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11122 continue;
11123
11124 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11125 "(expected (%u,%u), found (%u,%u))\n",
11126 pipe_name(pipe), plane + 1,
11127 sw_entry->start, sw_entry->end,
11128 hw_entry->start, hw_entry->end);
11129 }
11130
11131 /* cursor */
11132 hw_entry = &hw_ddb.cursor[pipe];
11133 sw_entry = &sw_ddb->cursor[pipe];
11134
11135 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11136 continue;
11137
11138 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11139 "(expected (%u,%u), found (%u,%u))\n",
11140 pipe_name(pipe),
11141 sw_entry->start, sw_entry->end,
11142 hw_entry->start, hw_entry->end);
11143 }
11144}
11145
91d1b4bd
DV
11146static void
11147check_connector_state(struct drm_device *dev)
8af6cf88 11148{
8af6cf88
DV
11149 struct intel_connector *connector;
11150
3a3371ff 11151 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11152 /* This also checks the encoder/connector hw state with the
11153 * ->get_hw_state callbacks. */
11154 intel_connector_check_state(connector);
11155
e2c719b7 11156 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11157 "connector's staged encoder doesn't match current encoder\n");
11158 }
91d1b4bd
DV
11159}
11160
11161static void
11162check_encoder_state(struct drm_device *dev)
11163{
11164 struct intel_encoder *encoder;
11165 struct intel_connector *connector;
8af6cf88 11166
b2784e15 11167 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11168 bool enabled = false;
11169 bool active = false;
11170 enum pipe pipe, tracked_pipe;
11171
11172 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11173 encoder->base.base.id,
8e329a03 11174 encoder->base.name);
8af6cf88 11175
e2c719b7 11176 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11177 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11178 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11179 "encoder's active_connectors set, but no crtc\n");
11180
3a3371ff 11181 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11182 if (connector->base.encoder != &encoder->base)
11183 continue;
11184 enabled = true;
11185 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11186 active = true;
11187 }
0e32b39c
DA
11188 /*
11189 * for MST connectors if we unplug the connector is gone
11190 * away but the encoder is still connected to a crtc
11191 * until a modeset happens in response to the hotplug.
11192 */
11193 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11194 continue;
11195
e2c719b7 11196 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
11197 "encoder's enabled state mismatch "
11198 "(expected %i, found %i)\n",
11199 !!encoder->base.crtc, enabled);
e2c719b7 11200 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
11201 "active encoder with no crtc\n");
11202
e2c719b7 11203 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
11204 "encoder's computed active state doesn't match tracked active state "
11205 "(expected %i, found %i)\n", active, encoder->connectors_active);
11206
11207 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 11208 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
11209 "encoder's hw state doesn't match sw tracking "
11210 "(expected %i, found %i)\n",
11211 encoder->connectors_active, active);
11212
11213 if (!encoder->base.crtc)
11214 continue;
11215
11216 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 11217 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
11218 "active encoder's pipe doesn't match"
11219 "(expected %i, found %i)\n",
11220 tracked_pipe, pipe);
11221
11222 }
91d1b4bd
DV
11223}
11224
11225static void
11226check_crtc_state(struct drm_device *dev)
11227{
fbee40df 11228 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11229 struct intel_crtc *crtc;
11230 struct intel_encoder *encoder;
5cec258b 11231 struct intel_crtc_state pipe_config;
8af6cf88 11232
d3fcc808 11233 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
11234 bool enabled = false;
11235 bool active = false;
11236
045ac3b5
JB
11237 memset(&pipe_config, 0, sizeof(pipe_config));
11238
8af6cf88
DV
11239 DRM_DEBUG_KMS("[CRTC:%d]\n",
11240 crtc->base.base.id);
11241
83d65738 11242 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
11243 "active crtc, but not enabled in sw tracking\n");
11244
b2784e15 11245 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11246 if (encoder->base.crtc != &crtc->base)
11247 continue;
11248 enabled = true;
11249 if (encoder->connectors_active)
11250 active = true;
11251 }
6c49f241 11252
e2c719b7 11253 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
11254 "crtc's computed active state doesn't match tracked active state "
11255 "(expected %i, found %i)\n", active, crtc->active);
83d65738 11256 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 11257 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
11258 "(expected %i, found %i)\n", enabled,
11259 crtc->base.state->enable);
8af6cf88 11260
0e8ffe1b
DV
11261 active = dev_priv->display.get_pipe_config(crtc,
11262 &pipe_config);
d62cf62a 11263
b6b5d049
VS
11264 /* hw state is inconsistent with the pipe quirk */
11265 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11266 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
11267 active = crtc->active;
11268
b2784e15 11269 for_each_intel_encoder(dev, encoder) {
3eaba51c 11270 enum pipe pipe;
6c49f241
DV
11271 if (encoder->base.crtc != &crtc->base)
11272 continue;
1d37b689 11273 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11274 encoder->get_config(encoder, &pipe_config);
11275 }
11276
e2c719b7 11277 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
11278 "crtc active state doesn't match with hw state "
11279 "(expected %i, found %i)\n", crtc->active, active);
11280
c0b03411 11281 if (active &&
6e3c9717 11282 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 11283 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
11284 intel_dump_pipe_config(crtc, &pipe_config,
11285 "[hw state]");
6e3c9717 11286 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
11287 "[sw state]");
11288 }
8af6cf88
DV
11289 }
11290}
11291
91d1b4bd
DV
11292static void
11293check_shared_dpll_state(struct drm_device *dev)
11294{
fbee40df 11295 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11296 struct intel_crtc *crtc;
11297 struct intel_dpll_hw_state dpll_hw_state;
11298 int i;
5358901f
DV
11299
11300 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11301 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11302 int enabled_crtcs = 0, active_crtcs = 0;
11303 bool active;
11304
11305 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11306
11307 DRM_DEBUG_KMS("%s\n", pll->name);
11308
11309 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11310
e2c719b7 11311 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 11312 "more active pll users than references: %i vs %i\n",
3e369b76 11313 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 11314 I915_STATE_WARN(pll->active && !pll->on,
5358901f 11315 "pll in active use but not on in sw tracking\n");
e2c719b7 11316 I915_STATE_WARN(pll->on && !pll->active,
35c95375 11317 "pll in on but not on in use in sw tracking\n");
e2c719b7 11318 I915_STATE_WARN(pll->on != active,
5358901f
DV
11319 "pll on state mismatch (expected %i, found %i)\n",
11320 pll->on, active);
11321
d3fcc808 11322 for_each_intel_crtc(dev, crtc) {
83d65738 11323 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
11324 enabled_crtcs++;
11325 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11326 active_crtcs++;
11327 }
e2c719b7 11328 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
11329 "pll active crtcs mismatch (expected %i, found %i)\n",
11330 pll->active, active_crtcs);
e2c719b7 11331 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 11332 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 11333 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 11334
e2c719b7 11335 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
11336 sizeof(dpll_hw_state)),
11337 "pll hw state mismatch\n");
5358901f 11338 }
8af6cf88
DV
11339}
11340
91d1b4bd
DV
11341void
11342intel_modeset_check_state(struct drm_device *dev)
11343{
08db6652 11344 check_wm_state(dev);
91d1b4bd
DV
11345 check_connector_state(dev);
11346 check_encoder_state(dev);
11347 check_crtc_state(dev);
11348 check_shared_dpll_state(dev);
11349}
11350
5cec258b 11351void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
11352 int dotclock)
11353{
11354 /*
11355 * FDI already provided one idea for the dotclock.
11356 * Yell if the encoder disagrees.
11357 */
2d112de7 11358 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11359 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11360 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11361}
11362
80715b2f
VS
11363static void update_scanline_offset(struct intel_crtc *crtc)
11364{
11365 struct drm_device *dev = crtc->base.dev;
11366
11367 /*
11368 * The scanline counter increments at the leading edge of hsync.
11369 *
11370 * On most platforms it starts counting from vtotal-1 on the
11371 * first active line. That means the scanline counter value is
11372 * always one less than what we would expect. Ie. just after
11373 * start of vblank, which also occurs at start of hsync (on the
11374 * last active line), the scanline counter will read vblank_start-1.
11375 *
11376 * On gen2 the scanline counter starts counting from 1 instead
11377 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11378 * to keep the value positive), instead of adding one.
11379 *
11380 * On HSW+ the behaviour of the scanline counter depends on the output
11381 * type. For DP ports it behaves like most other platforms, but on HDMI
11382 * there's an extra 1 line difference. So we need to add two instead of
11383 * one to the value.
11384 */
11385 if (IS_GEN2(dev)) {
6e3c9717 11386 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
11387 int vtotal;
11388
11389 vtotal = mode->crtc_vtotal;
11390 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11391 vtotal /= 2;
11392
11393 crtc->scanline_offset = vtotal - 1;
11394 } else if (HAS_DDI(dev) &&
409ee761 11395 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
11396 crtc->scanline_offset = 2;
11397 } else
11398 crtc->scanline_offset = 1;
11399}
11400
5cec258b 11401static struct intel_crtc_state *
7f27126e
JB
11402intel_modeset_compute_config(struct drm_crtc *crtc,
11403 struct drm_display_mode *mode,
11404 struct drm_framebuffer *fb,
83a57153 11405 struct drm_atomic_state *state,
7f27126e
JB
11406 unsigned *modeset_pipes,
11407 unsigned *prepare_pipes,
11408 unsigned *disable_pipes)
11409{
db7542dd 11410 struct drm_device *dev = crtc->dev;
5cec258b 11411 struct intel_crtc_state *pipe_config = NULL;
db7542dd 11412 struct intel_crtc *intel_crtc;
0b901879
ACO
11413 int ret = 0;
11414
11415 ret = drm_atomic_add_affected_connectors(state, crtc);
11416 if (ret)
11417 return ERR_PTR(ret);
7f27126e
JB
11418
11419 intel_modeset_affected_pipes(crtc, modeset_pipes,
11420 prepare_pipes, disable_pipes);
11421
db7542dd
ACO
11422 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11423 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11424 if (IS_ERR(pipe_config))
11425 return pipe_config;
11426
11427 pipe_config->base.enable = false;
11428 }
7f27126e
JB
11429
11430 /*
11431 * Note this needs changes when we start tracking multiple modes
11432 * and crtcs. At that point we'll need to compute the whole config
11433 * (i.e. one pipe_config for each crtc) rather than just the one
11434 * for this crtc.
11435 */
db7542dd
ACO
11436 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11437 /* FIXME: For now we still expect modeset_pipes has at most
11438 * one bit set. */
11439 if (WARN_ON(&intel_crtc->base != crtc))
11440 continue;
83a57153 11441
db7542dd
ACO
11442 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11443 if (IS_ERR(pipe_config))
11444 return pipe_config;
7f27126e 11445
db7542dd
ACO
11446 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11447 "[modeset]");
11448 }
11449
11450 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
7f27126e
JB
11451}
11452
ed6739ef
ACO
11453static int __intel_set_mode_setup_plls(struct drm_device *dev,
11454 unsigned modeset_pipes,
11455 unsigned disable_pipes)
11456{
11457 struct drm_i915_private *dev_priv = to_i915(dev);
11458 unsigned clear_pipes = modeset_pipes | disable_pipes;
11459 struct intel_crtc *intel_crtc;
11460 int ret = 0;
11461
11462 if (!dev_priv->display.crtc_compute_clock)
11463 return 0;
11464
11465 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11466 if (ret)
11467 goto done;
11468
11469 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11470 struct intel_crtc_state *state = intel_crtc->new_config;
11471 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11472 state);
11473 if (ret) {
11474 intel_shared_dpll_abort_config(dev_priv);
11475 goto done;
11476 }
11477 }
11478
11479done:
11480 return ret;
11481}
11482
f30da187
DV
11483static int __intel_set_mode(struct drm_crtc *crtc,
11484 struct drm_display_mode *mode,
7f27126e 11485 int x, int y, struct drm_framebuffer *fb,
5cec258b 11486 struct intel_crtc_state *pipe_config,
7f27126e
JB
11487 unsigned modeset_pipes,
11488 unsigned prepare_pipes,
11489 unsigned disable_pipes)
a6778b3c
DV
11490{
11491 struct drm_device *dev = crtc->dev;
fbee40df 11492 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11493 struct drm_display_mode *saved_mode;
83a57153 11494 struct intel_crtc_state *crtc_state_copy = NULL;
25c5b266 11495 struct intel_crtc *intel_crtc;
c0c36b94 11496 int ret = 0;
a6778b3c 11497
4b4b9238 11498 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11499 if (!saved_mode)
11500 return -ENOMEM;
a6778b3c 11501
83a57153
ACO
11502 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11503 if (!crtc_state_copy) {
11504 ret = -ENOMEM;
11505 goto done;
11506 }
11507
3ac18232 11508 *saved_mode = crtc->mode;
a6778b3c 11509
b9950a13
VS
11510 if (modeset_pipes)
11511 to_intel_crtc(crtc)->new_config = pipe_config;
11512
30a970c6
JB
11513 /*
11514 * See if the config requires any additional preparation, e.g.
11515 * to adjust global state with pipes off. We need to do this
11516 * here so we can get the modeset_pipe updated config for the new
11517 * mode set on this crtc. For other crtcs we need to use the
11518 * adjusted_mode bits in the crtc directly.
11519 */
c164f833 11520 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11521 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11522
c164f833
VS
11523 /* may have added more to prepare_pipes than we should */
11524 prepare_pipes &= ~disable_pipes;
11525 }
11526
ed6739ef
ACO
11527 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11528 if (ret)
11529 goto done;
8bd31e67 11530
460da916
DV
11531 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11532 intel_crtc_disable(&intel_crtc->base);
11533
ea9d758d 11534 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
83d65738 11535 if (intel_crtc->base.state->enable)
ea9d758d
DV
11536 dev_priv->display.crtc_disable(&intel_crtc->base);
11537 }
a6778b3c 11538
6c4c86f5
DV
11539 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11540 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11541 *
11542 * Note we'll need to fix this up when we start tracking multiple
11543 * pipes; here we assume a single modeset_pipe and only track the
11544 * single crtc and mode.
f6e5b160 11545 */
b8cecdf5 11546 if (modeset_pipes) {
25c5b266 11547 crtc->mode = *mode;
b8cecdf5
DV
11548 /* mode_set/enable/disable functions rely on a correct pipe
11549 * config. */
f5de6e07 11550 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11551
11552 /*
11553 * Calculate and store various constants which
11554 * are later needed by vblank and swap-completion
11555 * timestamping. They are derived from true hwmode.
11556 */
11557 drm_calc_timestamping_constants(crtc,
2d112de7 11558 &pipe_config->base.adjusted_mode);
b8cecdf5 11559 }
7758a113 11560
ea9d758d
DV
11561 /* Only after disabling all output pipelines that will be changed can we
11562 * update the the output configuration. */
11563 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11564
679dacd4 11565 modeset_update_crtc_power_domains(pipe_config->base.state);
47fab737 11566
a6778b3c
DV
11567 /* Set up the DPLL and any encoders state that needs to adjust or depend
11568 * on the DPLL.
f6e5b160 11569 */
25c5b266 11570 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11571 struct drm_plane *primary = intel_crtc->base.primary;
11572 int vdisplay, hdisplay;
4c10794f 11573
455a6808
GP
11574 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11575 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11576 fb, 0, 0,
11577 hdisplay, vdisplay,
11578 x << 16, y << 16,
11579 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11580 }
11581
11582 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11583 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11584 update_scanline_offset(intel_crtc);
11585
25c5b266 11586 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11587 }
a6778b3c 11588
a6778b3c
DV
11589 /* FIXME: add subpixel order */
11590done:
83d65738 11591 if (ret && crtc->state->enable)
3ac18232 11592 crtc->mode = *saved_mode;
a6778b3c 11593
83a57153
ACO
11594 if (ret == 0 && pipe_config) {
11595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11596
11597 /* The pipe_config will be freed with the atomic state, so
11598 * make a copy. */
11599 memcpy(crtc_state_copy, intel_crtc->config,
11600 sizeof *crtc_state_copy);
11601 intel_crtc->config = crtc_state_copy;
11602 intel_crtc->base.state = &crtc_state_copy->base;
11603
11604 if (modeset_pipes)
11605 intel_crtc->new_config = intel_crtc->config;
11606 } else {
11607 kfree(crtc_state_copy);
11608 }
11609
3ac18232 11610 kfree(saved_mode);
a6778b3c 11611 return ret;
f6e5b160
CW
11612}
11613
7f27126e
JB
11614static int intel_set_mode_pipes(struct drm_crtc *crtc,
11615 struct drm_display_mode *mode,
11616 int x, int y, struct drm_framebuffer *fb,
5cec258b 11617 struct intel_crtc_state *pipe_config,
7f27126e
JB
11618 unsigned modeset_pipes,
11619 unsigned prepare_pipes,
11620 unsigned disable_pipes)
f30da187
DV
11621{
11622 int ret;
11623
7f27126e
JB
11624 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11625 prepare_pipes, disable_pipes);
f30da187
DV
11626
11627 if (ret == 0)
11628 intel_modeset_check_state(crtc->dev);
11629
11630 return ret;
11631}
11632
7f27126e
JB
11633static int intel_set_mode(struct drm_crtc *crtc,
11634 struct drm_display_mode *mode,
83a57153
ACO
11635 int x, int y, struct drm_framebuffer *fb,
11636 struct drm_atomic_state *state)
7f27126e 11637{
5cec258b 11638 struct intel_crtc_state *pipe_config;
7f27126e 11639 unsigned modeset_pipes, prepare_pipes, disable_pipes;
83a57153 11640 int ret = 0;
7f27126e 11641
83a57153 11642 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
7f27126e
JB
11643 &modeset_pipes,
11644 &prepare_pipes,
11645 &disable_pipes);
11646
83a57153
ACO
11647 if (IS_ERR(pipe_config)) {
11648 ret = PTR_ERR(pipe_config);
11649 goto out;
11650 }
11651
11652 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11653 modeset_pipes, prepare_pipes,
11654 disable_pipes);
11655 if (ret)
11656 goto out;
7f27126e 11657
83a57153
ACO
11658out:
11659 return ret;
7f27126e
JB
11660}
11661
c0c36b94
CW
11662void intel_crtc_restore_mode(struct drm_crtc *crtc)
11663{
83a57153
ACO
11664 struct drm_device *dev = crtc->dev;
11665 struct drm_atomic_state *state;
11666 struct intel_encoder *encoder;
11667 struct intel_connector *connector;
11668 struct drm_connector_state *connector_state;
11669
11670 state = drm_atomic_state_alloc(dev);
11671 if (!state) {
11672 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11673 crtc->base.id);
11674 return;
11675 }
11676
11677 state->acquire_ctx = dev->mode_config.acquire_ctx;
11678
11679 /* The force restore path in the HW readout code relies on the staged
11680 * config still keeping the user requested config while the actual
11681 * state has been overwritten by the configuration read from HW. We
11682 * need to copy the staged config to the atomic state, otherwise the
11683 * mode set will just reapply the state the HW is already in. */
11684 for_each_intel_encoder(dev, encoder) {
11685 if (&encoder->new_crtc->base != crtc)
11686 continue;
11687
11688 for_each_intel_connector(dev, connector) {
11689 if (connector->new_encoder != encoder)
11690 continue;
11691
11692 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11693 if (IS_ERR(connector_state)) {
11694 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11695 connector->base.base.id,
11696 connector->base.name,
11697 PTR_ERR(connector_state));
11698 continue;
11699 }
11700
11701 connector_state->crtc = crtc;
11702 connector_state->best_encoder = &encoder->base;
11703 }
11704 }
11705
11706 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11707 state);
11708
11709 drm_atomic_state_free(state);
c0c36b94
CW
11710}
11711
25c5b266
DV
11712#undef for_each_intel_crtc_masked
11713
d9e55608
DV
11714static void intel_set_config_free(struct intel_set_config *config)
11715{
11716 if (!config)
11717 return;
11718
1aa4b628
DV
11719 kfree(config->save_connector_encoders);
11720 kfree(config->save_encoder_crtcs);
7668851f 11721 kfree(config->save_crtc_enabled);
d9e55608
DV
11722 kfree(config);
11723}
11724
85f9eb71
DV
11725static int intel_set_config_save_state(struct drm_device *dev,
11726 struct intel_set_config *config)
11727{
7668851f 11728 struct drm_crtc *crtc;
85f9eb71
DV
11729 struct drm_encoder *encoder;
11730 struct drm_connector *connector;
11731 int count;
11732
7668851f
VS
11733 config->save_crtc_enabled =
11734 kcalloc(dev->mode_config.num_crtc,
11735 sizeof(bool), GFP_KERNEL);
11736 if (!config->save_crtc_enabled)
11737 return -ENOMEM;
11738
1aa4b628
DV
11739 config->save_encoder_crtcs =
11740 kcalloc(dev->mode_config.num_encoder,
11741 sizeof(struct drm_crtc *), GFP_KERNEL);
11742 if (!config->save_encoder_crtcs)
85f9eb71
DV
11743 return -ENOMEM;
11744
1aa4b628
DV
11745 config->save_connector_encoders =
11746 kcalloc(dev->mode_config.num_connector,
11747 sizeof(struct drm_encoder *), GFP_KERNEL);
11748 if (!config->save_connector_encoders)
85f9eb71
DV
11749 return -ENOMEM;
11750
11751 /* Copy data. Note that driver private data is not affected.
11752 * Should anything bad happen only the expected state is
11753 * restored, not the drivers personal bookkeeping.
11754 */
7668851f 11755 count = 0;
70e1e0ec 11756 for_each_crtc(dev, crtc) {
83d65738 11757 config->save_crtc_enabled[count++] = crtc->state->enable;
7668851f
VS
11758 }
11759
85f9eb71
DV
11760 count = 0;
11761 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11762 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11763 }
11764
11765 count = 0;
11766 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11767 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11768 }
11769
11770 return 0;
11771}
11772
11773static void intel_set_config_restore_state(struct drm_device *dev,
11774 struct intel_set_config *config)
11775{
7668851f 11776 struct intel_crtc *crtc;
9a935856
DV
11777 struct intel_encoder *encoder;
11778 struct intel_connector *connector;
85f9eb71
DV
11779 int count;
11780
7668851f 11781 count = 0;
d3fcc808 11782 for_each_intel_crtc(dev, crtc) {
7668851f 11783 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11784
11785 if (crtc->new_enabled)
6e3c9717 11786 crtc->new_config = crtc->config;
7bd0a8e7
VS
11787 else
11788 crtc->new_config = NULL;
7668851f
VS
11789 }
11790
85f9eb71 11791 count = 0;
b2784e15 11792 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11793 encoder->new_crtc =
11794 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11795 }
11796
11797 count = 0;
3a3371ff 11798 for_each_intel_connector(dev, connector) {
9a935856
DV
11799 connector->new_encoder =
11800 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11801 }
11802}
11803
e3de42b6 11804static bool
2e57f47d 11805is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11806{
11807 int i;
11808
2e57f47d
CW
11809 if (set->num_connectors == 0)
11810 return false;
11811
11812 if (WARN_ON(set->connectors == NULL))
11813 return false;
11814
11815 for (i = 0; i < set->num_connectors; i++)
11816 if (set->connectors[i]->encoder &&
11817 set->connectors[i]->encoder->crtc == set->crtc &&
11818 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11819 return true;
11820
11821 return false;
11822}
11823
5e2b584e
DV
11824static void
11825intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11826 struct intel_set_config *config)
11827{
11828
11829 /* We should be able to check here if the fb has the same properties
11830 * and then just flip_or_move it */
2e57f47d
CW
11831 if (is_crtc_connector_off(set)) {
11832 config->mode_changed = true;
f4510a27 11833 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11834 /*
11835 * If we have no fb, we can only flip as long as the crtc is
11836 * active, otherwise we need a full mode set. The crtc may
11837 * be active if we've only disabled the primary plane, or
11838 * in fastboot situations.
11839 */
f4510a27 11840 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11841 struct intel_crtc *intel_crtc =
11842 to_intel_crtc(set->crtc);
11843
3b150f08 11844 if (intel_crtc->active) {
319d9827
JB
11845 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11846 config->fb_changed = true;
11847 } else {
11848 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11849 config->mode_changed = true;
11850 }
5e2b584e
DV
11851 } else if (set->fb == NULL) {
11852 config->mode_changed = true;
72f4901e 11853 } else if (set->fb->pixel_format !=
f4510a27 11854 set->crtc->primary->fb->pixel_format) {
5e2b584e 11855 config->mode_changed = true;
e3de42b6 11856 } else {
5e2b584e 11857 config->fb_changed = true;
e3de42b6 11858 }
5e2b584e
DV
11859 }
11860
835c5873 11861 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11862 config->fb_changed = true;
11863
11864 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11865 DRM_DEBUG_KMS("modes are different, full mode set\n");
11866 drm_mode_debug_printmodeline(&set->crtc->mode);
11867 drm_mode_debug_printmodeline(set->mode);
11868 config->mode_changed = true;
11869 }
a1d95703
CW
11870
11871 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11872 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11873}
11874
2e431051 11875static int
9a935856
DV
11876intel_modeset_stage_output_state(struct drm_device *dev,
11877 struct drm_mode_set *set,
944b0c76
ACO
11878 struct intel_set_config *config,
11879 struct drm_atomic_state *state)
50f56119 11880{
9a935856 11881 struct intel_connector *connector;
944b0c76 11882 struct drm_connector_state *connector_state;
9a935856 11883 struct intel_encoder *encoder;
7668851f 11884 struct intel_crtc *crtc;
f3f08572 11885 int ro;
50f56119 11886
9abdda74 11887 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11888 * of connectors. For paranoia, double-check this. */
11889 WARN_ON(!set->fb && (set->num_connectors != 0));
11890 WARN_ON(set->fb && (set->num_connectors == 0));
11891
3a3371ff 11892 for_each_intel_connector(dev, connector) {
9a935856
DV
11893 /* Otherwise traverse passed in connector list and get encoders
11894 * for them. */
50f56119 11895 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11896 if (set->connectors[ro] == &connector->base) {
0e32b39c 11897 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11898 break;
11899 }
11900 }
11901
9a935856
DV
11902 /* If we disable the crtc, disable all its connectors. Also, if
11903 * the connector is on the changing crtc but not on the new
11904 * connector list, disable it. */
11905 if ((!set->fb || ro == set->num_connectors) &&
11906 connector->base.encoder &&
11907 connector->base.encoder->crtc == set->crtc) {
11908 connector->new_encoder = NULL;
11909
11910 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11911 connector->base.base.id,
c23cc417 11912 connector->base.name);
9a935856
DV
11913 }
11914
11915
11916 if (&connector->new_encoder->base != connector->base.encoder) {
10634189
ACO
11917 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11918 connector->base.base.id,
11919 connector->base.name);
5e2b584e 11920 config->mode_changed = true;
50f56119
DV
11921 }
11922 }
9a935856 11923 /* connector->new_encoder is now updated for all connectors. */
50f56119 11924
9a935856 11925 /* Update crtc of enabled connectors. */
3a3371ff 11926 for_each_intel_connector(dev, connector) {
7668851f
VS
11927 struct drm_crtc *new_crtc;
11928
9a935856 11929 if (!connector->new_encoder)
50f56119
DV
11930 continue;
11931
9a935856 11932 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11933
11934 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11935 if (set->connectors[ro] == &connector->base)
50f56119
DV
11936 new_crtc = set->crtc;
11937 }
11938
11939 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11940 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11941 new_crtc)) {
5e2b584e 11942 return -EINVAL;
50f56119 11943 }
0e32b39c 11944 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856 11945
944b0c76
ACO
11946 connector_state =
11947 drm_atomic_get_connector_state(state, &connector->base);
11948 if (IS_ERR(connector_state))
11949 return PTR_ERR(connector_state);
11950
11951 connector_state->crtc = new_crtc;
11952 connector_state->best_encoder = &connector->new_encoder->base;
11953
9a935856
DV
11954 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11955 connector->base.base.id,
c23cc417 11956 connector->base.name,
9a935856
DV
11957 new_crtc->base.id);
11958 }
11959
11960 /* Check for any encoders that needs to be disabled. */
b2784e15 11961 for_each_intel_encoder(dev, encoder) {
5a65f358 11962 int num_connectors = 0;
3a3371ff 11963 for_each_intel_connector(dev, connector) {
9a935856
DV
11964 if (connector->new_encoder == encoder) {
11965 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11966 num_connectors++;
9a935856
DV
11967 }
11968 }
5a65f358
PZ
11969
11970 if (num_connectors == 0)
11971 encoder->new_crtc = NULL;
11972 else if (num_connectors > 1)
11973 return -EINVAL;
11974
9a935856
DV
11975 /* Only now check for crtc changes so we don't miss encoders
11976 * that will be disabled. */
11977 if (&encoder->new_crtc->base != encoder->base.crtc) {
10634189
ACO
11978 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11979 encoder->base.base.id,
11980 encoder->base.name);
5e2b584e 11981 config->mode_changed = true;
50f56119
DV
11982 }
11983 }
9a935856 11984 /* Now we've also updated encoder->new_crtc for all encoders. */
3a3371ff 11985 for_each_intel_connector(dev, connector) {
944b0c76
ACO
11986 connector_state =
11987 drm_atomic_get_connector_state(state, &connector->base);
9d918c15
ACO
11988 if (IS_ERR(connector_state))
11989 return PTR_ERR(connector_state);
944b0c76
ACO
11990
11991 if (connector->new_encoder) {
0e32b39c
DA
11992 if (connector->new_encoder != connector->encoder)
11993 connector->encoder = connector->new_encoder;
944b0c76
ACO
11994 } else {
11995 connector_state->crtc = NULL;
11996 }
0e32b39c 11997 }
d3fcc808 11998 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11999 crtc->new_enabled = false;
12000
b2784e15 12001 for_each_intel_encoder(dev, encoder) {
7668851f
VS
12002 if (encoder->new_crtc == crtc) {
12003 crtc->new_enabled = true;
12004 break;
12005 }
12006 }
12007
83d65738 12008 if (crtc->new_enabled != crtc->base.state->enable) {
10634189
ACO
12009 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12010 crtc->base.base.id,
7668851f
VS
12011 crtc->new_enabled ? "en" : "dis");
12012 config->mode_changed = true;
12013 }
7bd0a8e7
VS
12014
12015 if (crtc->new_enabled)
6e3c9717 12016 crtc->new_config = crtc->config;
7bd0a8e7
VS
12017 else
12018 crtc->new_config = NULL;
7668851f
VS
12019 }
12020
2e431051
DV
12021 return 0;
12022}
12023
7d00a1f5
VS
12024static void disable_crtc_nofb(struct intel_crtc *crtc)
12025{
12026 struct drm_device *dev = crtc->base.dev;
12027 struct intel_encoder *encoder;
12028 struct intel_connector *connector;
12029
12030 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12031 pipe_name(crtc->pipe));
12032
3a3371ff 12033 for_each_intel_connector(dev, connector) {
7d00a1f5
VS
12034 if (connector->new_encoder &&
12035 connector->new_encoder->new_crtc == crtc)
12036 connector->new_encoder = NULL;
12037 }
12038
b2784e15 12039 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
12040 if (encoder->new_crtc == crtc)
12041 encoder->new_crtc = NULL;
12042 }
12043
12044 crtc->new_enabled = false;
7bd0a8e7 12045 crtc->new_config = NULL;
7d00a1f5
VS
12046}
12047
2e431051
DV
12048static int intel_crtc_set_config(struct drm_mode_set *set)
12049{
12050 struct drm_device *dev;
2e431051 12051 struct drm_mode_set save_set;
83a57153 12052 struct drm_atomic_state *state = NULL;
2e431051 12053 struct intel_set_config *config;
5cec258b 12054 struct intel_crtc_state *pipe_config;
50f52756 12055 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 12056 int ret;
2e431051 12057
8d3e375e
DV
12058 BUG_ON(!set);
12059 BUG_ON(!set->crtc);
12060 BUG_ON(!set->crtc->helper_private);
2e431051 12061
7e53f3a4
DV
12062 /* Enforce sane interface api - has been abused by the fb helper. */
12063 BUG_ON(!set->mode && set->fb);
12064 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 12065
2e431051
DV
12066 if (set->fb) {
12067 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12068 set->crtc->base.id, set->fb->base.id,
12069 (int)set->num_connectors, set->x, set->y);
12070 } else {
12071 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
12072 }
12073
12074 dev = set->crtc->dev;
12075
12076 ret = -ENOMEM;
12077 config = kzalloc(sizeof(*config), GFP_KERNEL);
12078 if (!config)
12079 goto out_config;
12080
12081 ret = intel_set_config_save_state(dev, config);
12082 if (ret)
12083 goto out_config;
12084
12085 save_set.crtc = set->crtc;
12086 save_set.mode = &set->crtc->mode;
12087 save_set.x = set->crtc->x;
12088 save_set.y = set->crtc->y;
f4510a27 12089 save_set.fb = set->crtc->primary->fb;
2e431051
DV
12090
12091 /* Compute whether we need a full modeset, only an fb base update or no
12092 * change at all. In the future we might also check whether only the
12093 * mode changed, e.g. for LVDS where we only change the panel fitter in
12094 * such cases. */
12095 intel_set_config_compute_mode_changes(set, config);
12096
83a57153
ACO
12097 state = drm_atomic_state_alloc(dev);
12098 if (!state) {
12099 ret = -ENOMEM;
12100 goto out_config;
12101 }
12102
12103 state->acquire_ctx = dev->mode_config.acquire_ctx;
12104
944b0c76 12105 ret = intel_modeset_stage_output_state(dev, set, config, state);
2e431051
DV
12106 if (ret)
12107 goto fail;
12108
50f52756 12109 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
83a57153 12110 set->fb, state,
50f52756
JB
12111 &modeset_pipes,
12112 &prepare_pipes,
12113 &disable_pipes);
20664591 12114 if (IS_ERR(pipe_config)) {
6ac0483b 12115 ret = PTR_ERR(pipe_config);
50f52756 12116 goto fail;
20664591 12117 } else if (pipe_config) {
b9950a13 12118 if (pipe_config->has_audio !=
6e3c9717 12119 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
12120 config->mode_changed = true;
12121
af15d2ce
JB
12122 /*
12123 * Note we have an issue here with infoframes: current code
12124 * only updates them on the full mode set path per hw
12125 * requirements. So here we should be checking for any
12126 * required changes and forcing a mode set.
12127 */
20664591 12128 }
50f52756 12129
1f9954d0
JB
12130 intel_update_pipe_size(to_intel_crtc(set->crtc));
12131
5e2b584e 12132 if (config->mode_changed) {
50f52756
JB
12133 ret = intel_set_mode_pipes(set->crtc, set->mode,
12134 set->x, set->y, set->fb, pipe_config,
12135 modeset_pipes, prepare_pipes,
12136 disable_pipes);
5e2b584e 12137 } else if (config->fb_changed) {
3b150f08 12138 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
12139 struct drm_plane *primary = set->crtc->primary;
12140 int vdisplay, hdisplay;
3b150f08 12141
455a6808
GP
12142 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12143 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12144 0, 0, hdisplay, vdisplay,
12145 set->x << 16, set->y << 16,
12146 hdisplay << 16, vdisplay << 16);
3b150f08
MR
12147
12148 /*
12149 * We need to make sure the primary plane is re-enabled if it
12150 * has previously been turned off.
12151 */
12152 if (!intel_crtc->primary_enabled && ret == 0) {
12153 WARN_ON(!intel_crtc->active);
fdd508a6 12154 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
12155 }
12156
7ca51a3a
JB
12157 /*
12158 * In the fastboot case this may be our only check of the
12159 * state after boot. It would be better to only do it on
12160 * the first update, but we don't have a nice way of doing that
12161 * (and really, set_config isn't used much for high freq page
12162 * flipping, so increasing its cost here shouldn't be a big
12163 * deal).
12164 */
d330a953 12165 if (i915.fastboot && ret == 0)
7ca51a3a 12166 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12167 }
12168
2d05eae1 12169 if (ret) {
bf67dfeb
DV
12170 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12171 set->crtc->base.id, ret);
50f56119 12172fail:
2d05eae1 12173 intel_set_config_restore_state(dev, config);
50f56119 12174
83a57153
ACO
12175 drm_atomic_state_clear(state);
12176
7d00a1f5
VS
12177 /*
12178 * HACK: if the pipe was on, but we didn't have a framebuffer,
12179 * force the pipe off to avoid oopsing in the modeset code
12180 * due to fb==NULL. This should only happen during boot since
12181 * we don't yet reconstruct the FB from the hardware state.
12182 */
12183 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12184 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12185
2d05eae1
CW
12186 /* Try to restore the config */
12187 if (config->mode_changed &&
12188 intel_set_mode(save_set.crtc, save_set.mode,
83a57153
ACO
12189 save_set.x, save_set.y, save_set.fb,
12190 state))
2d05eae1
CW
12191 DRM_ERROR("failed to restore config after modeset failure\n");
12192 }
50f56119 12193
d9e55608 12194out_config:
83a57153
ACO
12195 if (state)
12196 drm_atomic_state_free(state);
12197
d9e55608 12198 intel_set_config_free(config);
50f56119
DV
12199 return ret;
12200}
f6e5b160
CW
12201
12202static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12203 .gamma_set = intel_crtc_gamma_set,
50f56119 12204 .set_config = intel_crtc_set_config,
f6e5b160
CW
12205 .destroy = intel_crtc_destroy,
12206 .page_flip = intel_crtc_page_flip,
1356837e
MR
12207 .atomic_duplicate_state = intel_crtc_duplicate_state,
12208 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12209};
12210
5358901f
DV
12211static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12212 struct intel_shared_dpll *pll,
12213 struct intel_dpll_hw_state *hw_state)
ee7b9f93 12214{
5358901f 12215 uint32_t val;
ee7b9f93 12216
f458ebbc 12217 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
12218 return false;
12219
5358901f 12220 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
12221 hw_state->dpll = val;
12222 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12223 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
12224
12225 return val & DPLL_VCO_ENABLE;
12226}
12227
15bdd4cf
DV
12228static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12229 struct intel_shared_dpll *pll)
12230{
3e369b76
ACO
12231 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12232 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
12233}
12234
e7b903d2
DV
12235static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12236 struct intel_shared_dpll *pll)
12237{
e7b903d2 12238 /* PCH refclock must be enabled first */
89eff4be 12239 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 12240
3e369b76 12241 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
12242
12243 /* Wait for the clocks to stabilize. */
12244 POSTING_READ(PCH_DPLL(pll->id));
12245 udelay(150);
12246
12247 /* The pixel multiplier can only be updated once the
12248 * DPLL is enabled and the clocks are stable.
12249 *
12250 * So write it again.
12251 */
3e369b76 12252 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 12253 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12254 udelay(200);
12255}
12256
12257static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12258 struct intel_shared_dpll *pll)
12259{
12260 struct drm_device *dev = dev_priv->dev;
12261 struct intel_crtc *crtc;
e7b903d2
DV
12262
12263 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 12264 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
12265 if (intel_crtc_to_shared_dpll(crtc) == pll)
12266 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
12267 }
12268
15bdd4cf
DV
12269 I915_WRITE(PCH_DPLL(pll->id), 0);
12270 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12271 udelay(200);
12272}
12273
46edb027
DV
12274static char *ibx_pch_dpll_names[] = {
12275 "PCH DPLL A",
12276 "PCH DPLL B",
12277};
12278
7c74ade1 12279static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12280{
e7b903d2 12281 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12282 int i;
12283
7c74ade1 12284 dev_priv->num_shared_dpll = 2;
ee7b9f93 12285
e72f9fbf 12286 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12287 dev_priv->shared_dplls[i].id = i;
12288 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12289 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12290 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12291 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12292 dev_priv->shared_dplls[i].get_hw_state =
12293 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12294 }
12295}
12296
7c74ade1
DV
12297static void intel_shared_dpll_init(struct drm_device *dev)
12298{
e7b903d2 12299 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12300
9cd86933
DV
12301 if (HAS_DDI(dev))
12302 intel_ddi_pll_init(dev);
12303 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12304 ibx_pch_dpll_init(dev);
12305 else
12306 dev_priv->num_shared_dpll = 0;
12307
12308 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12309}
12310
1fc0a8f7
TU
12311/**
12312 * intel_wm_need_update - Check whether watermarks need updating
12313 * @plane: drm plane
12314 * @state: new plane state
12315 *
12316 * Check current plane state versus the new one to determine whether
12317 * watermarks need to be recalculated.
12318 *
12319 * Returns true or false.
12320 */
12321bool intel_wm_need_update(struct drm_plane *plane,
12322 struct drm_plane_state *state)
12323{
12324 /* Update watermarks on tiling changes. */
12325 if (!plane->state->fb || !state->fb ||
12326 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12327 plane->state->rotation != state->rotation)
12328 return true;
12329
12330 return false;
12331}
12332
6beb8c23
MR
12333/**
12334 * intel_prepare_plane_fb - Prepare fb for usage on plane
12335 * @plane: drm plane to prepare for
12336 * @fb: framebuffer to prepare for presentation
12337 *
12338 * Prepares a framebuffer for usage on a display plane. Generally this
12339 * involves pinning the underlying object and updating the frontbuffer tracking
12340 * bits. Some older platforms need special physical address handling for
12341 * cursor planes.
12342 *
12343 * Returns 0 on success, negative error code on failure.
12344 */
12345int
12346intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12347 struct drm_framebuffer *fb,
12348 const struct drm_plane_state *new_state)
465c120c
MR
12349{
12350 struct drm_device *dev = plane->dev;
6beb8c23
MR
12351 struct intel_plane *intel_plane = to_intel_plane(plane);
12352 enum pipe pipe = intel_plane->pipe;
12353 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12354 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12355 unsigned frontbuffer_bits = 0;
12356 int ret = 0;
465c120c 12357
ea2c67bb 12358 if (!obj)
465c120c
MR
12359 return 0;
12360
6beb8c23
MR
12361 switch (plane->type) {
12362 case DRM_PLANE_TYPE_PRIMARY:
12363 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12364 break;
12365 case DRM_PLANE_TYPE_CURSOR:
12366 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12367 break;
12368 case DRM_PLANE_TYPE_OVERLAY:
12369 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12370 break;
12371 }
465c120c 12372
6beb8c23 12373 mutex_lock(&dev->struct_mutex);
465c120c 12374
6beb8c23
MR
12375 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12376 INTEL_INFO(dev)->cursor_needs_physical) {
12377 int align = IS_I830(dev) ? 16 * 1024 : 256;
12378 ret = i915_gem_object_attach_phys(obj, align);
12379 if (ret)
12380 DRM_DEBUG_KMS("failed to attach phys object\n");
12381 } else {
82bc3b2d 12382 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 12383 }
465c120c 12384
6beb8c23
MR
12385 if (ret == 0)
12386 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 12387
4c34574f 12388 mutex_unlock(&dev->struct_mutex);
465c120c 12389
6beb8c23
MR
12390 return ret;
12391}
12392
38f3ce3a
MR
12393/**
12394 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12395 * @plane: drm plane to clean up for
12396 * @fb: old framebuffer that was on plane
12397 *
12398 * Cleans up a framebuffer that has just been removed from a plane.
12399 */
12400void
12401intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
12402 struct drm_framebuffer *fb,
12403 const struct drm_plane_state *old_state)
38f3ce3a
MR
12404{
12405 struct drm_device *dev = plane->dev;
12406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12407
12408 if (WARN_ON(!obj))
12409 return;
12410
12411 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12412 !INTEL_INFO(dev)->cursor_needs_physical) {
12413 mutex_lock(&dev->struct_mutex);
82bc3b2d 12414 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
12415 mutex_unlock(&dev->struct_mutex);
12416 }
465c120c
MR
12417}
12418
12419static int
3c692a41
GP
12420intel_check_primary_plane(struct drm_plane *plane,
12421 struct intel_plane_state *state)
12422{
32b7eeec
MR
12423 struct drm_device *dev = plane->dev;
12424 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 12425 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12426 struct intel_crtc *intel_crtc;
2b875c22 12427 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
12428 struct drm_rect *dest = &state->dst;
12429 struct drm_rect *src = &state->src;
12430 const struct drm_rect *clip = &state->clip;
465c120c
MR
12431 int ret;
12432
ea2c67bb
MR
12433 crtc = crtc ? crtc : plane->crtc;
12434 intel_crtc = to_intel_crtc(crtc);
12435
c59cb179
MR
12436 ret = drm_plane_helper_check_update(plane, crtc, fb,
12437 src, dest, clip,
12438 DRM_PLANE_HELPER_NO_SCALING,
12439 DRM_PLANE_HELPER_NO_SCALING,
12440 false, true, &state->visible);
12441 if (ret)
12442 return ret;
465c120c 12443
32b7eeec
MR
12444 if (intel_crtc->active) {
12445 intel_crtc->atomic.wait_for_flips = true;
12446
12447 /*
12448 * FBC does not work on some platforms for rotated
12449 * planes, so disable it when rotation is not 0 and
12450 * update it when rotation is set back to 0.
12451 *
12452 * FIXME: This is redundant with the fbc update done in
12453 * the primary plane enable function except that that
12454 * one is done too late. We eventually need to unify
12455 * this.
12456 */
12457 if (intel_crtc->primary_enabled &&
12458 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 12459 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 12460 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
12461 intel_crtc->atomic.disable_fbc = true;
12462 }
12463
12464 if (state->visible) {
12465 /*
12466 * BDW signals flip done immediately if the plane
12467 * is disabled, even if the plane enable is already
12468 * armed to occur at the next vblank :(
12469 */
12470 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12471 intel_crtc->atomic.wait_vblank = true;
12472 }
12473
12474 intel_crtc->atomic.fb_bits |=
12475 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12476
12477 intel_crtc->atomic.update_fbc = true;
0fda6568 12478
1fc0a8f7 12479 if (intel_wm_need_update(plane, &state->base))
0fda6568 12480 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
12481 }
12482
14af293f
GP
12483 return 0;
12484}
12485
12486static void
12487intel_commit_primary_plane(struct drm_plane *plane,
12488 struct intel_plane_state *state)
12489{
2b875c22
MR
12490 struct drm_crtc *crtc = state->base.crtc;
12491 struct drm_framebuffer *fb = state->base.fb;
12492 struct drm_device *dev = plane->dev;
14af293f 12493 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 12494 struct intel_crtc *intel_crtc;
14af293f
GP
12495 struct drm_rect *src = &state->src;
12496
ea2c67bb
MR
12497 crtc = crtc ? crtc : plane->crtc;
12498 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
12499
12500 plane->fb = fb;
9dc806fc
MR
12501 crtc->x = src->x1 >> 16;
12502 crtc->y = src->y1 >> 16;
ccc759dc 12503
ccc759dc 12504 if (intel_crtc->active) {
ccc759dc 12505 if (state->visible) {
ccc759dc
GP
12506 /* FIXME: kill this fastboot hack */
12507 intel_update_pipe_size(intel_crtc);
465c120c 12508
ccc759dc 12509 intel_crtc->primary_enabled = true;
465c120c 12510
ccc759dc
GP
12511 dev_priv->display.update_primary_plane(crtc, plane->fb,
12512 crtc->x, crtc->y);
ccc759dc
GP
12513 } else {
12514 /*
12515 * If clipping results in a non-visible primary plane,
12516 * we'll disable the primary plane. Note that this is
12517 * a bit different than what happens if userspace
12518 * explicitly disables the plane by passing fb=0
12519 * because plane->fb still gets set and pinned.
12520 */
12521 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 12522 }
ccc759dc 12523 }
465c120c
MR
12524}
12525
32b7eeec 12526static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 12527{
32b7eeec 12528 struct drm_device *dev = crtc->dev;
140fd38d 12529 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 12530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
12531 struct intel_plane *intel_plane;
12532 struct drm_plane *p;
12533 unsigned fb_bits = 0;
12534
12535 /* Track fb's for any planes being disabled */
12536 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12537 intel_plane = to_intel_plane(p);
12538
12539 if (intel_crtc->atomic.disabled_planes &
12540 (1 << drm_plane_index(p))) {
12541 switch (p->type) {
12542 case DRM_PLANE_TYPE_PRIMARY:
12543 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12544 break;
12545 case DRM_PLANE_TYPE_CURSOR:
12546 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12547 break;
12548 case DRM_PLANE_TYPE_OVERLAY:
12549 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12550 break;
12551 }
3c692a41 12552
ea2c67bb
MR
12553 mutex_lock(&dev->struct_mutex);
12554 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12555 mutex_unlock(&dev->struct_mutex);
12556 }
12557 }
3c692a41 12558
32b7eeec
MR
12559 if (intel_crtc->atomic.wait_for_flips)
12560 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12561
32b7eeec
MR
12562 if (intel_crtc->atomic.disable_fbc)
12563 intel_fbc_disable(dev);
3c692a41 12564
32b7eeec
MR
12565 if (intel_crtc->atomic.pre_disable_primary)
12566 intel_pre_disable_primary(crtc);
3c692a41 12567
32b7eeec
MR
12568 if (intel_crtc->atomic.update_wm)
12569 intel_update_watermarks(crtc);
3c692a41 12570
32b7eeec 12571 intel_runtime_pm_get(dev_priv);
3c692a41 12572
c34c9ee4
MR
12573 /* Perform vblank evasion around commit operation */
12574 if (intel_crtc->active)
12575 intel_crtc->atomic.evade =
12576 intel_pipe_update_start(intel_crtc,
12577 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12578}
12579
12580static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12581{
12582 struct drm_device *dev = crtc->dev;
12583 struct drm_i915_private *dev_priv = dev->dev_private;
12584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12585 struct drm_plane *p;
12586
c34c9ee4
MR
12587 if (intel_crtc->atomic.evade)
12588 intel_pipe_update_end(intel_crtc,
12589 intel_crtc->atomic.start_vbl_count);
3c692a41 12590
140fd38d 12591 intel_runtime_pm_put(dev_priv);
3c692a41 12592
32b7eeec
MR
12593 if (intel_crtc->atomic.wait_vblank)
12594 intel_wait_for_vblank(dev, intel_crtc->pipe);
12595
12596 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12597
12598 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12599 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12600 intel_fbc_update(dev);
ccc759dc 12601 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12602 }
3c692a41 12603
32b7eeec
MR
12604 if (intel_crtc->atomic.post_enable_primary)
12605 intel_post_enable_primary(crtc);
3c692a41 12606
32b7eeec
MR
12607 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12608 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12609 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12610 false, false);
12611
12612 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12613}
12614
cf4c7c12 12615/**
4a3b8769
MR
12616 * intel_plane_destroy - destroy a plane
12617 * @plane: plane to destroy
cf4c7c12 12618 *
4a3b8769
MR
12619 * Common destruction function for all types of planes (primary, cursor,
12620 * sprite).
cf4c7c12 12621 */
4a3b8769 12622void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12623{
12624 struct intel_plane *intel_plane = to_intel_plane(plane);
12625 drm_plane_cleanup(plane);
12626 kfree(intel_plane);
12627}
12628
65a3fea0 12629const struct drm_plane_funcs intel_plane_funcs = {
ff42e093
DV
12630 .update_plane = drm_plane_helper_update,
12631 .disable_plane = drm_plane_helper_disable,
3d7d6510 12632 .destroy = intel_plane_destroy,
c196e1d6 12633 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12634 .atomic_get_property = intel_plane_atomic_get_property,
12635 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12636 .atomic_duplicate_state = intel_plane_duplicate_state,
12637 .atomic_destroy_state = intel_plane_destroy_state,
12638
465c120c
MR
12639};
12640
12641static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12642 int pipe)
12643{
12644 struct intel_plane *primary;
8e7d688b 12645 struct intel_plane_state *state;
465c120c
MR
12646 const uint32_t *intel_primary_formats;
12647 int num_formats;
12648
12649 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12650 if (primary == NULL)
12651 return NULL;
12652
8e7d688b
MR
12653 state = intel_create_plane_state(&primary->base);
12654 if (!state) {
ea2c67bb
MR
12655 kfree(primary);
12656 return NULL;
12657 }
8e7d688b 12658 primary->base.state = &state->base;
ea2c67bb 12659
465c120c
MR
12660 primary->can_scale = false;
12661 primary->max_downscale = 1;
12662 primary->pipe = pipe;
12663 primary->plane = pipe;
c59cb179
MR
12664 primary->check_plane = intel_check_primary_plane;
12665 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12666 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12667 primary->plane = !pipe;
12668
12669 if (INTEL_INFO(dev)->gen <= 3) {
12670 intel_primary_formats = intel_primary_formats_gen2;
12671 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12672 } else {
12673 intel_primary_formats = intel_primary_formats_gen4;
12674 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12675 }
12676
12677 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12678 &intel_plane_funcs,
465c120c
MR
12679 intel_primary_formats, num_formats,
12680 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12681
12682 if (INTEL_INFO(dev)->gen >= 4) {
12683 if (!dev->mode_config.rotation_property)
12684 dev->mode_config.rotation_property =
12685 drm_mode_create_rotation_property(dev,
12686 BIT(DRM_ROTATE_0) |
12687 BIT(DRM_ROTATE_180));
12688 if (dev->mode_config.rotation_property)
12689 drm_object_attach_property(&primary->base.base,
12690 dev->mode_config.rotation_property,
8e7d688b 12691 state->base.rotation);
48404c1e
SJ
12692 }
12693
ea2c67bb
MR
12694 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12695
465c120c
MR
12696 return &primary->base;
12697}
12698
3d7d6510 12699static int
852e787c
GP
12700intel_check_cursor_plane(struct drm_plane *plane,
12701 struct intel_plane_state *state)
3d7d6510 12702{
2b875c22 12703 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12704 struct drm_device *dev = plane->dev;
2b875c22 12705 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12706 struct drm_rect *dest = &state->dst;
12707 struct drm_rect *src = &state->src;
12708 const struct drm_rect *clip = &state->clip;
757f9a3e 12709 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12710 struct intel_crtc *intel_crtc;
757f9a3e
GP
12711 unsigned stride;
12712 int ret;
3d7d6510 12713
ea2c67bb
MR
12714 crtc = crtc ? crtc : plane->crtc;
12715 intel_crtc = to_intel_crtc(crtc);
12716
757f9a3e 12717 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12718 src, dest, clip,
3d7d6510
MR
12719 DRM_PLANE_HELPER_NO_SCALING,
12720 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12721 true, true, &state->visible);
757f9a3e
GP
12722 if (ret)
12723 return ret;
12724
12725
12726 /* if we want to turn off the cursor ignore width and height */
12727 if (!obj)
32b7eeec 12728 goto finish;
757f9a3e 12729
757f9a3e 12730 /* Check for which cursor types we support */
ea2c67bb
MR
12731 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12732 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12733 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12734 return -EINVAL;
12735 }
12736
ea2c67bb
MR
12737 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12738 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12739 DRM_DEBUG_KMS("buffer is too small\n");
12740 return -ENOMEM;
12741 }
12742
3a656b54 12743 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
12744 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12745 ret = -EINVAL;
12746 }
757f9a3e 12747
32b7eeec
MR
12748finish:
12749 if (intel_crtc->active) {
3749f463 12750 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
12751 intel_crtc->atomic.update_wm = true;
12752
12753 intel_crtc->atomic.fb_bits |=
12754 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12755 }
12756
757f9a3e 12757 return ret;
852e787c 12758}
3d7d6510 12759
f4a2cf29 12760static void
852e787c
GP
12761intel_commit_cursor_plane(struct drm_plane *plane,
12762 struct intel_plane_state *state)
12763{
2b875c22 12764 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12765 struct drm_device *dev = plane->dev;
12766 struct intel_crtc *intel_crtc;
2b875c22 12767 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12768 uint32_t addr;
852e787c 12769
ea2c67bb
MR
12770 crtc = crtc ? crtc : plane->crtc;
12771 intel_crtc = to_intel_crtc(crtc);
12772
2b875c22 12773 plane->fb = state->base.fb;
ea2c67bb
MR
12774 crtc->cursor_x = state->base.crtc_x;
12775 crtc->cursor_y = state->base.crtc_y;
12776
a912f12f
GP
12777 if (intel_crtc->cursor_bo == obj)
12778 goto update;
4ed91096 12779
f4a2cf29 12780 if (!obj)
a912f12f 12781 addr = 0;
f4a2cf29 12782 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12783 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12784 else
a912f12f 12785 addr = obj->phys_handle->busaddr;
852e787c 12786
a912f12f
GP
12787 intel_crtc->cursor_addr = addr;
12788 intel_crtc->cursor_bo = obj;
12789update:
852e787c 12790
32b7eeec 12791 if (intel_crtc->active)
a912f12f 12792 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12793}
12794
3d7d6510
MR
12795static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12796 int pipe)
12797{
12798 struct intel_plane *cursor;
8e7d688b 12799 struct intel_plane_state *state;
3d7d6510
MR
12800
12801 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12802 if (cursor == NULL)
12803 return NULL;
12804
8e7d688b
MR
12805 state = intel_create_plane_state(&cursor->base);
12806 if (!state) {
ea2c67bb
MR
12807 kfree(cursor);
12808 return NULL;
12809 }
8e7d688b 12810 cursor->base.state = &state->base;
ea2c67bb 12811
3d7d6510
MR
12812 cursor->can_scale = false;
12813 cursor->max_downscale = 1;
12814 cursor->pipe = pipe;
12815 cursor->plane = pipe;
c59cb179
MR
12816 cursor->check_plane = intel_check_cursor_plane;
12817 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12818
12819 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12820 &intel_plane_funcs,
3d7d6510
MR
12821 intel_cursor_formats,
12822 ARRAY_SIZE(intel_cursor_formats),
12823 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12824
12825 if (INTEL_INFO(dev)->gen >= 4) {
12826 if (!dev->mode_config.rotation_property)
12827 dev->mode_config.rotation_property =
12828 drm_mode_create_rotation_property(dev,
12829 BIT(DRM_ROTATE_0) |
12830 BIT(DRM_ROTATE_180));
12831 if (dev->mode_config.rotation_property)
12832 drm_object_attach_property(&cursor->base.base,
12833 dev->mode_config.rotation_property,
8e7d688b 12834 state->base.rotation);
4398ad45
VS
12835 }
12836
ea2c67bb
MR
12837 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12838
3d7d6510
MR
12839 return &cursor->base;
12840}
12841
b358d0a6 12842static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12843{
fbee40df 12844 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12845 struct intel_crtc *intel_crtc;
f5de6e07 12846 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12847 struct drm_plane *primary = NULL;
12848 struct drm_plane *cursor = NULL;
465c120c 12849 int i, ret;
79e53945 12850
955382f3 12851 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12852 if (intel_crtc == NULL)
12853 return;
12854
f5de6e07
ACO
12855 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12856 if (!crtc_state)
12857 goto fail;
12858 intel_crtc_set_state(intel_crtc, crtc_state);
07878248 12859 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 12860
465c120c 12861 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12862 if (!primary)
12863 goto fail;
12864
12865 cursor = intel_cursor_plane_create(dev, pipe);
12866 if (!cursor)
12867 goto fail;
12868
465c120c 12869 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12870 cursor, &intel_crtc_funcs);
12871 if (ret)
12872 goto fail;
79e53945
JB
12873
12874 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12875 for (i = 0; i < 256; i++) {
12876 intel_crtc->lut_r[i] = i;
12877 intel_crtc->lut_g[i] = i;
12878 intel_crtc->lut_b[i] = i;
12879 }
12880
1f1c2e24
VS
12881 /*
12882 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12883 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12884 */
80824003
JB
12885 intel_crtc->pipe = pipe;
12886 intel_crtc->plane = pipe;
3a77c4c4 12887 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12888 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12889 intel_crtc->plane = !pipe;
80824003
JB
12890 }
12891
4b0e333e
CW
12892 intel_crtc->cursor_base = ~0;
12893 intel_crtc->cursor_cntl = ~0;
dc41c154 12894 intel_crtc->cursor_size = ~0;
8d7849db 12895
22fd0fab
JB
12896 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12897 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12898 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12899 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12900
9362c7c5
ACO
12901 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12902
79e53945 12903 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12904
12905 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12906 return;
12907
12908fail:
12909 if (primary)
12910 drm_plane_cleanup(primary);
12911 if (cursor)
12912 drm_plane_cleanup(cursor);
f5de6e07 12913 kfree(crtc_state);
3d7d6510 12914 kfree(intel_crtc);
79e53945
JB
12915}
12916
752aa88a
JB
12917enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12918{
12919 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12920 struct drm_device *dev = connector->base.dev;
752aa88a 12921
51fd371b 12922 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12923
d3babd3f 12924 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12925 return INVALID_PIPE;
12926
12927 return to_intel_crtc(encoder->crtc)->pipe;
12928}
12929
08d7b3d1 12930int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12931 struct drm_file *file)
08d7b3d1 12932{
08d7b3d1 12933 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12934 struct drm_crtc *drmmode_crtc;
c05422d5 12935 struct intel_crtc *crtc;
08d7b3d1 12936
7707e653 12937 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12938
7707e653 12939 if (!drmmode_crtc) {
08d7b3d1 12940 DRM_ERROR("no such CRTC id\n");
3f2c2057 12941 return -ENOENT;
08d7b3d1
CW
12942 }
12943
7707e653 12944 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12945 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12946
c05422d5 12947 return 0;
08d7b3d1
CW
12948}
12949
66a9278e 12950static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12951{
66a9278e
DV
12952 struct drm_device *dev = encoder->base.dev;
12953 struct intel_encoder *source_encoder;
79e53945 12954 int index_mask = 0;
79e53945
JB
12955 int entry = 0;
12956
b2784e15 12957 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12958 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12959 index_mask |= (1 << entry);
12960
79e53945
JB
12961 entry++;
12962 }
4ef69c7a 12963
79e53945
JB
12964 return index_mask;
12965}
12966
4d302442
CW
12967static bool has_edp_a(struct drm_device *dev)
12968{
12969 struct drm_i915_private *dev_priv = dev->dev_private;
12970
12971 if (!IS_MOBILE(dev))
12972 return false;
12973
12974 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12975 return false;
12976
e3589908 12977 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12978 return false;
12979
12980 return true;
12981}
12982
84b4e042
JB
12983static bool intel_crt_present(struct drm_device *dev)
12984{
12985 struct drm_i915_private *dev_priv = dev->dev_private;
12986
884497ed
DL
12987 if (INTEL_INFO(dev)->gen >= 9)
12988 return false;
12989
cf404ce4 12990 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12991 return false;
12992
12993 if (IS_CHERRYVIEW(dev))
12994 return false;
12995
12996 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12997 return false;
12998
12999 return true;
13000}
13001
79e53945
JB
13002static void intel_setup_outputs(struct drm_device *dev)
13003{
725e30ad 13004 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 13005 struct intel_encoder *encoder;
c6f95f27 13006 struct drm_connector *connector;
cb0953d7 13007 bool dpd_is_edp = false;
79e53945 13008
c9093354 13009 intel_lvds_init(dev);
79e53945 13010
84b4e042 13011 if (intel_crt_present(dev))
79935fca 13012 intel_crt_init(dev);
cb0953d7 13013
affa9354 13014 if (HAS_DDI(dev)) {
0e72a5b5
ED
13015 int found;
13016
de31facd
JB
13017 /*
13018 * Haswell uses DDI functions to detect digital outputs.
13019 * On SKL pre-D0 the strap isn't connected, so we assume
13020 * it's there.
13021 */
0e72a5b5 13022 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
13023 /* WaIgnoreDDIAStrap: skl */
13024 if (found ||
13025 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
13026 intel_ddi_init(dev, PORT_A);
13027
13028 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13029 * register */
13030 found = I915_READ(SFUSE_STRAP);
13031
13032 if (found & SFUSE_STRAP_DDIB_DETECTED)
13033 intel_ddi_init(dev, PORT_B);
13034 if (found & SFUSE_STRAP_DDIC_DETECTED)
13035 intel_ddi_init(dev, PORT_C);
13036 if (found & SFUSE_STRAP_DDID_DETECTED)
13037 intel_ddi_init(dev, PORT_D);
13038 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 13039 int found;
5d8a7752 13040 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
13041
13042 if (has_edp_a(dev))
13043 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 13044
dc0fa718 13045 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 13046 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 13047 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 13048 if (!found)
e2debe91 13049 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 13050 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 13051 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
13052 }
13053
dc0fa718 13054 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 13055 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 13056
dc0fa718 13057 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 13058 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 13059
5eb08b69 13060 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 13061 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 13062
270b3042 13063 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 13064 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 13065 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
13066 /*
13067 * The DP_DETECTED bit is the latched state of the DDC
13068 * SDA pin at boot. However since eDP doesn't require DDC
13069 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13070 * eDP ports may have been muxed to an alternate function.
13071 * Thus we can't rely on the DP_DETECTED bit alone to detect
13072 * eDP ports. Consult the VBT as well as DP_DETECTED to
13073 * detect eDP ports.
13074 */
d2182a66
VS
13075 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13076 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
13077 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13078 PORT_B);
e17ac6db
VS
13079 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13080 intel_dp_is_edp(dev, PORT_B))
13081 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 13082
d2182a66
VS
13083 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13084 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
13085 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13086 PORT_C);
e17ac6db
VS
13087 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13088 intel_dp_is_edp(dev, PORT_C))
13089 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 13090
9418c1f1 13091 if (IS_CHERRYVIEW(dev)) {
e17ac6db 13092 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
13093 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13094 PORT_D);
e17ac6db
VS
13095 /* eDP not supported on port D, so don't check VBT */
13096 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13097 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
13098 }
13099
3cfca973 13100 intel_dsi_init(dev);
103a196f 13101 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 13102 bool found = false;
7d57382e 13103
e2debe91 13104 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13105 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 13106 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
13107 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13108 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 13109 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 13110 }
27185ae1 13111
e7281eab 13112 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13113 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 13114 }
13520b05
KH
13115
13116 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 13117
e2debe91 13118 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13119 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 13120 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 13121 }
27185ae1 13122
e2debe91 13123 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 13124
b01f2c3a
JB
13125 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13126 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 13127 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 13128 }
e7281eab 13129 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13130 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 13131 }
27185ae1 13132
b01f2c3a 13133 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 13134 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 13135 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 13136 } else if (IS_GEN2(dev))
79e53945
JB
13137 intel_dvo_init(dev);
13138
103a196f 13139 if (SUPPORTS_TV(dev))
79e53945
JB
13140 intel_tv_init(dev);
13141
c6f95f27
MR
13142 /*
13143 * FIXME: We don't have full atomic support yet, but we want to be
13144 * able to enable/test plane updates via the atomic interface in the
13145 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
13146 * will take some atomic codepaths to lookup properties during
13147 * drmModeGetConnector() that unconditionally dereference
13148 * connector->state.
13149 *
13150 * We create a dummy connector state here for each connector to ensure
13151 * the DRM core doesn't try to dereference a NULL connector->state.
13152 * The actual connector properties will never be updated or contain
13153 * useful information, but since we're doing this specifically for
13154 * testing/debug of the plane operations (and only when a specific
13155 * kernel module option is given), that shouldn't really matter.
13156 *
d29b2f9d
ACO
13157 * We are also relying on these states to convert the legacy mode set
13158 * to use a drm_atomic_state struct. The states are kept consistent
13159 * with actual state, so that it is safe to rely on that instead of
13160 * the staged config.
13161 *
c6f95f27
MR
13162 * Once atomic support for crtc's + connectors lands, this loop should
13163 * be removed since we'll be setting up real connector state, which
13164 * will contain Intel-specific properties.
13165 */
d29b2f9d
ACO
13166 list_for_each_entry(connector,
13167 &dev->mode_config.connector_list,
13168 head) {
13169 if (!WARN_ON(connector->state)) {
13170 connector->state = kzalloc(sizeof(*connector->state),
13171 GFP_KERNEL);
c6f95f27
MR
13172 }
13173 }
13174
0bc12bcb 13175 intel_psr_init(dev);
7c8f8a70 13176
b2784e15 13177 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
13178 encoder->base.possible_crtcs = encoder->crtc_mask;
13179 encoder->base.possible_clones =
66a9278e 13180 intel_encoder_clones(encoder);
79e53945 13181 }
47356eb6 13182
dde86e2d 13183 intel_init_pch_refclk(dev);
270b3042
DV
13184
13185 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
13186}
13187
13188static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13189{
60a5ca01 13190 struct drm_device *dev = fb->dev;
79e53945 13191 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 13192
ef2d633e 13193 drm_framebuffer_cleanup(fb);
60a5ca01 13194 mutex_lock(&dev->struct_mutex);
ef2d633e 13195 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
13196 drm_gem_object_unreference(&intel_fb->obj->base);
13197 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13198 kfree(intel_fb);
13199}
13200
13201static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 13202 struct drm_file *file,
79e53945
JB
13203 unsigned int *handle)
13204{
13205 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 13206 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 13207
05394f39 13208 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
13209}
13210
13211static const struct drm_framebuffer_funcs intel_fb_funcs = {
13212 .destroy = intel_user_framebuffer_destroy,
13213 .create_handle = intel_user_framebuffer_create_handle,
13214};
13215
b321803d
DL
13216static
13217u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13218 uint32_t pixel_format)
13219{
13220 u32 gen = INTEL_INFO(dev)->gen;
13221
13222 if (gen >= 9) {
13223 /* "The stride in bytes must not exceed the of the size of 8K
13224 * pixels and 32K bytes."
13225 */
13226 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13227 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13228 return 32*1024;
13229 } else if (gen >= 4) {
13230 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13231 return 16*1024;
13232 else
13233 return 32*1024;
13234 } else if (gen >= 3) {
13235 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13236 return 8*1024;
13237 else
13238 return 16*1024;
13239 } else {
13240 /* XXX DSPC is limited to 4k tiled */
13241 return 8*1024;
13242 }
13243}
13244
b5ea642a
DV
13245static int intel_framebuffer_init(struct drm_device *dev,
13246 struct intel_framebuffer *intel_fb,
13247 struct drm_mode_fb_cmd2 *mode_cmd,
13248 struct drm_i915_gem_object *obj)
79e53945 13249{
6761dd31 13250 unsigned int aligned_height;
79e53945 13251 int ret;
b321803d 13252 u32 pitch_limit, stride_alignment;
79e53945 13253
dd4916c5
DV
13254 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13255
2a80eada
DV
13256 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13257 /* Enforce that fb modifier and tiling mode match, but only for
13258 * X-tiled. This is needed for FBC. */
13259 if (!!(obj->tiling_mode == I915_TILING_X) !=
13260 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13261 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13262 return -EINVAL;
13263 }
13264 } else {
13265 if (obj->tiling_mode == I915_TILING_X)
13266 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13267 else if (obj->tiling_mode == I915_TILING_Y) {
13268 DRM_DEBUG("No Y tiling for legacy addfb\n");
13269 return -EINVAL;
13270 }
13271 }
13272
9a8f0a12
TU
13273 /* Passed in modifier sanity checking. */
13274 switch (mode_cmd->modifier[0]) {
13275 case I915_FORMAT_MOD_Y_TILED:
13276 case I915_FORMAT_MOD_Yf_TILED:
13277 if (INTEL_INFO(dev)->gen < 9) {
13278 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13279 mode_cmd->modifier[0]);
13280 return -EINVAL;
13281 }
13282 case DRM_FORMAT_MOD_NONE:
13283 case I915_FORMAT_MOD_X_TILED:
13284 break;
13285 default:
c0f40428
JB
13286 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13287 mode_cmd->modifier[0]);
57cd6508 13288 return -EINVAL;
c16ed4be 13289 }
57cd6508 13290
b321803d
DL
13291 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13292 mode_cmd->pixel_format);
13293 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13294 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13295 mode_cmd->pitches[0], stride_alignment);
57cd6508 13296 return -EINVAL;
c16ed4be 13297 }
57cd6508 13298
b321803d
DL
13299 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13300 mode_cmd->pixel_format);
a35cdaa0 13301 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13302 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13303 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13304 "tiled" : "linear",
a35cdaa0 13305 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13306 return -EINVAL;
c16ed4be 13307 }
5d7bd705 13308
2a80eada 13309 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13310 mode_cmd->pitches[0] != obj->stride) {
13311 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13312 mode_cmd->pitches[0], obj->stride);
5d7bd705 13313 return -EINVAL;
c16ed4be 13314 }
5d7bd705 13315
57779d06 13316 /* Reject formats not supported by any plane early. */
308e5bcb 13317 switch (mode_cmd->pixel_format) {
57779d06 13318 case DRM_FORMAT_C8:
04b3924d
VS
13319 case DRM_FORMAT_RGB565:
13320 case DRM_FORMAT_XRGB8888:
13321 case DRM_FORMAT_ARGB8888:
57779d06
VS
13322 break;
13323 case DRM_FORMAT_XRGB1555:
13324 case DRM_FORMAT_ARGB1555:
c16ed4be 13325 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13326 DRM_DEBUG("unsupported pixel format: %s\n",
13327 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13328 return -EINVAL;
c16ed4be 13329 }
57779d06
VS
13330 break;
13331 case DRM_FORMAT_XBGR8888:
13332 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13333 case DRM_FORMAT_XRGB2101010:
13334 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13335 case DRM_FORMAT_XBGR2101010:
13336 case DRM_FORMAT_ABGR2101010:
c16ed4be 13337 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13338 DRM_DEBUG("unsupported pixel format: %s\n",
13339 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13340 return -EINVAL;
c16ed4be 13341 }
b5626747 13342 break;
04b3924d
VS
13343 case DRM_FORMAT_YUYV:
13344 case DRM_FORMAT_UYVY:
13345 case DRM_FORMAT_YVYU:
13346 case DRM_FORMAT_VYUY:
c16ed4be 13347 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
13348 DRM_DEBUG("unsupported pixel format: %s\n",
13349 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13350 return -EINVAL;
c16ed4be 13351 }
57cd6508
CW
13352 break;
13353 default:
4ee62c76
VS
13354 DRM_DEBUG("unsupported pixel format: %s\n",
13355 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
13356 return -EINVAL;
13357 }
13358
90f9a336
VS
13359 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13360 if (mode_cmd->offsets[0] != 0)
13361 return -EINVAL;
13362
ec2c981e 13363 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
13364 mode_cmd->pixel_format,
13365 mode_cmd->modifier[0]);
53155c0a
DV
13366 /* FIXME drm helper for size checks (especially planar formats)? */
13367 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13368 return -EINVAL;
13369
c7d73f6a
DV
13370 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13371 intel_fb->obj = obj;
80075d49 13372 intel_fb->obj->framebuffer_references++;
c7d73f6a 13373
79e53945
JB
13374 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13375 if (ret) {
13376 DRM_ERROR("framebuffer init failed %d\n", ret);
13377 return ret;
13378 }
13379
79e53945
JB
13380 return 0;
13381}
13382
79e53945
JB
13383static struct drm_framebuffer *
13384intel_user_framebuffer_create(struct drm_device *dev,
13385 struct drm_file *filp,
308e5bcb 13386 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 13387{
05394f39 13388 struct drm_i915_gem_object *obj;
79e53945 13389
308e5bcb
JB
13390 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13391 mode_cmd->handles[0]));
c8725226 13392 if (&obj->base == NULL)
cce13ff7 13393 return ERR_PTR(-ENOENT);
79e53945 13394
d2dff872 13395 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
13396}
13397
4520f53a 13398#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 13399static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
13400{
13401}
13402#endif
13403
79e53945 13404static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 13405 .fb_create = intel_user_framebuffer_create,
0632fef6 13406 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
13407 .atomic_check = intel_atomic_check,
13408 .atomic_commit = intel_atomic_commit,
79e53945
JB
13409};
13410
e70236a8
JB
13411/* Set up chip specific display functions */
13412static void intel_init_display(struct drm_device *dev)
13413{
13414 struct drm_i915_private *dev_priv = dev->dev_private;
13415
ee9300bb
DV
13416 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13417 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
13418 else if (IS_CHERRYVIEW(dev))
13419 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
13420 else if (IS_VALLEYVIEW(dev))
13421 dev_priv->display.find_dpll = vlv_find_best_dpll;
13422 else if (IS_PINEVIEW(dev))
13423 dev_priv->display.find_dpll = pnv_find_best_dpll;
13424 else
13425 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13426
bc8d7dff
DL
13427 if (INTEL_INFO(dev)->gen >= 9) {
13428 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13429 dev_priv->display.get_initial_plane_config =
13430 skylake_get_initial_plane_config;
bc8d7dff
DL
13431 dev_priv->display.crtc_compute_clock =
13432 haswell_crtc_compute_clock;
13433 dev_priv->display.crtc_enable = haswell_crtc_enable;
13434 dev_priv->display.crtc_disable = haswell_crtc_disable;
13435 dev_priv->display.off = ironlake_crtc_off;
13436 dev_priv->display.update_primary_plane =
13437 skylake_update_primary_plane;
13438 } else if (HAS_DDI(dev)) {
0e8ffe1b 13439 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13440 dev_priv->display.get_initial_plane_config =
13441 ironlake_get_initial_plane_config;
797d0259
ACO
13442 dev_priv->display.crtc_compute_clock =
13443 haswell_crtc_compute_clock;
4f771f10
PZ
13444 dev_priv->display.crtc_enable = haswell_crtc_enable;
13445 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 13446 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
13447 dev_priv->display.update_primary_plane =
13448 ironlake_update_primary_plane;
09b4ddf9 13449 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 13450 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
13451 dev_priv->display.get_initial_plane_config =
13452 ironlake_get_initial_plane_config;
3fb37703
ACO
13453 dev_priv->display.crtc_compute_clock =
13454 ironlake_crtc_compute_clock;
76e5a89c
DV
13455 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13456 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 13457 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
13458 dev_priv->display.update_primary_plane =
13459 ironlake_update_primary_plane;
89b667f8
JB
13460 } else if (IS_VALLEYVIEW(dev)) {
13461 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13462 dev_priv->display.get_initial_plane_config =
13463 i9xx_get_initial_plane_config;
d6dfee7a 13464 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
13465 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13466 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13467 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13468 dev_priv->display.update_primary_plane =
13469 i9xx_update_primary_plane;
f564048e 13470 } else {
0e8ffe1b 13471 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13472 dev_priv->display.get_initial_plane_config =
13473 i9xx_get_initial_plane_config;
d6dfee7a 13474 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
13475 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13476 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 13477 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13478 dev_priv->display.update_primary_plane =
13479 i9xx_update_primary_plane;
f564048e 13480 }
e70236a8 13481
e70236a8 13482 /* Returns the core display clock speed */
25eb05fc
JB
13483 if (IS_VALLEYVIEW(dev))
13484 dev_priv->display.get_display_clock_speed =
13485 valleyview_get_display_clock_speed;
13486 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
13487 dev_priv->display.get_display_clock_speed =
13488 i945_get_display_clock_speed;
13489 else if (IS_I915G(dev))
13490 dev_priv->display.get_display_clock_speed =
13491 i915_get_display_clock_speed;
257a7ffc 13492 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
13493 dev_priv->display.get_display_clock_speed =
13494 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
13495 else if (IS_PINEVIEW(dev))
13496 dev_priv->display.get_display_clock_speed =
13497 pnv_get_display_clock_speed;
e70236a8
JB
13498 else if (IS_I915GM(dev))
13499 dev_priv->display.get_display_clock_speed =
13500 i915gm_get_display_clock_speed;
13501 else if (IS_I865G(dev))
13502 dev_priv->display.get_display_clock_speed =
13503 i865_get_display_clock_speed;
f0f8a9ce 13504 else if (IS_I85X(dev))
e70236a8
JB
13505 dev_priv->display.get_display_clock_speed =
13506 i855_get_display_clock_speed;
13507 else /* 852, 830 */
13508 dev_priv->display.get_display_clock_speed =
13509 i830_get_display_clock_speed;
13510
7c10a2b5 13511 if (IS_GEN5(dev)) {
3bb11b53 13512 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
13513 } else if (IS_GEN6(dev)) {
13514 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
13515 } else if (IS_IVYBRIDGE(dev)) {
13516 /* FIXME: detect B0+ stepping and use auto training */
13517 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 13518 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 13519 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
13520 } else if (IS_VALLEYVIEW(dev)) {
13521 dev_priv->display.modeset_global_resources =
13522 valleyview_modeset_global_resources;
e70236a8 13523 }
8c9f3aaf 13524
8c9f3aaf
JB
13525 switch (INTEL_INFO(dev)->gen) {
13526 case 2:
13527 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13528 break;
13529
13530 case 3:
13531 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13532 break;
13533
13534 case 4:
13535 case 5:
13536 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13537 break;
13538
13539 case 6:
13540 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13541 break;
7c9017e5 13542 case 7:
4e0bbc31 13543 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
13544 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13545 break;
830c81db 13546 case 9:
ba343e02
TU
13547 /* Drop through - unsupported since execlist only. */
13548 default:
13549 /* Default just returns -ENODEV to indicate unsupported */
13550 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 13551 }
7bd688cd
JN
13552
13553 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
13554
13555 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
13556}
13557
b690e96c
JB
13558/*
13559 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13560 * resume, or other times. This quirk makes sure that's the case for
13561 * affected systems.
13562 */
0206e353 13563static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
13564{
13565 struct drm_i915_private *dev_priv = dev->dev_private;
13566
13567 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 13568 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
13569}
13570
b6b5d049
VS
13571static void quirk_pipeb_force(struct drm_device *dev)
13572{
13573 struct drm_i915_private *dev_priv = dev->dev_private;
13574
13575 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13576 DRM_INFO("applying pipe b force quirk\n");
13577}
13578
435793df
KP
13579/*
13580 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13581 */
13582static void quirk_ssc_force_disable(struct drm_device *dev)
13583{
13584 struct drm_i915_private *dev_priv = dev->dev_private;
13585 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 13586 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
13587}
13588
4dca20ef 13589/*
5a15ab5b
CE
13590 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13591 * brightness value
4dca20ef
CE
13592 */
13593static void quirk_invert_brightness(struct drm_device *dev)
13594{
13595 struct drm_i915_private *dev_priv = dev->dev_private;
13596 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13597 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13598}
13599
9c72cc6f
SD
13600/* Some VBT's incorrectly indicate no backlight is present */
13601static void quirk_backlight_present(struct drm_device *dev)
13602{
13603 struct drm_i915_private *dev_priv = dev->dev_private;
13604 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13605 DRM_INFO("applying backlight present quirk\n");
13606}
13607
b690e96c
JB
13608struct intel_quirk {
13609 int device;
13610 int subsystem_vendor;
13611 int subsystem_device;
13612 void (*hook)(struct drm_device *dev);
13613};
13614
5f85f176
EE
13615/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13616struct intel_dmi_quirk {
13617 void (*hook)(struct drm_device *dev);
13618 const struct dmi_system_id (*dmi_id_list)[];
13619};
13620
13621static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13622{
13623 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13624 return 1;
13625}
13626
13627static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13628 {
13629 .dmi_id_list = &(const struct dmi_system_id[]) {
13630 {
13631 .callback = intel_dmi_reverse_brightness,
13632 .ident = "NCR Corporation",
13633 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13634 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13635 },
13636 },
13637 { } /* terminating entry */
13638 },
13639 .hook = quirk_invert_brightness,
13640 },
13641};
13642
c43b5634 13643static struct intel_quirk intel_quirks[] = {
b690e96c 13644 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13645 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13646
b690e96c
JB
13647 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13648 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13649
b690e96c
JB
13650 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13651 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13652
5f080c0f
VS
13653 /* 830 needs to leave pipe A & dpll A up */
13654 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13655
b6b5d049
VS
13656 /* 830 needs to leave pipe B & dpll B up */
13657 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13658
435793df
KP
13659 /* Lenovo U160 cannot use SSC on LVDS */
13660 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13661
13662 /* Sony Vaio Y cannot use SSC on LVDS */
13663 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13664
be505f64
AH
13665 /* Acer Aspire 5734Z must invert backlight brightness */
13666 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13667
13668 /* Acer/eMachines G725 */
13669 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13670
13671 /* Acer/eMachines e725 */
13672 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13673
13674 /* Acer/Packard Bell NCL20 */
13675 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13676
13677 /* Acer Aspire 4736Z */
13678 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13679
13680 /* Acer Aspire 5336 */
13681 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13682
13683 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13684 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13685
dfb3d47b
SD
13686 /* Acer C720 Chromebook (Core i3 4005U) */
13687 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13688
b2a9601c 13689 /* Apple Macbook 2,1 (Core 2 T7400) */
13690 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13691
d4967d8c
SD
13692 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13693 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13694
13695 /* HP Chromebook 14 (Celeron 2955U) */
13696 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
13697
13698 /* Dell Chromebook 11 */
13699 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
13700};
13701
13702static void intel_init_quirks(struct drm_device *dev)
13703{
13704 struct pci_dev *d = dev->pdev;
13705 int i;
13706
13707 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13708 struct intel_quirk *q = &intel_quirks[i];
13709
13710 if (d->device == q->device &&
13711 (d->subsystem_vendor == q->subsystem_vendor ||
13712 q->subsystem_vendor == PCI_ANY_ID) &&
13713 (d->subsystem_device == q->subsystem_device ||
13714 q->subsystem_device == PCI_ANY_ID))
13715 q->hook(dev);
13716 }
5f85f176
EE
13717 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13718 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13719 intel_dmi_quirks[i].hook(dev);
13720 }
b690e96c
JB
13721}
13722
9cce37f4
JB
13723/* Disable the VGA plane that we never use */
13724static void i915_disable_vga(struct drm_device *dev)
13725{
13726 struct drm_i915_private *dev_priv = dev->dev_private;
13727 u8 sr1;
766aa1c4 13728 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13729
2b37c616 13730 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13731 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13732 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13733 sr1 = inb(VGA_SR_DATA);
13734 outb(sr1 | 1<<5, VGA_SR_DATA);
13735 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13736 udelay(300);
13737
01f5a626 13738 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13739 POSTING_READ(vga_reg);
13740}
13741
f817586c
DV
13742void intel_modeset_init_hw(struct drm_device *dev)
13743{
a8f78b58
ED
13744 intel_prepare_ddi(dev);
13745
f8bf63fd
VS
13746 if (IS_VALLEYVIEW(dev))
13747 vlv_update_cdclk(dev);
13748
f817586c
DV
13749 intel_init_clock_gating(dev);
13750
8090c6b9 13751 intel_enable_gt_powersave(dev);
f817586c
DV
13752}
13753
79e53945
JB
13754void intel_modeset_init(struct drm_device *dev)
13755{
652c393a 13756 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13757 int sprite, ret;
8cc87b75 13758 enum pipe pipe;
46f297fb 13759 struct intel_crtc *crtc;
79e53945
JB
13760
13761 drm_mode_config_init(dev);
13762
13763 dev->mode_config.min_width = 0;
13764 dev->mode_config.min_height = 0;
13765
019d96cb
DA
13766 dev->mode_config.preferred_depth = 24;
13767 dev->mode_config.prefer_shadow = 1;
13768
25bab385
TU
13769 dev->mode_config.allow_fb_modifiers = true;
13770
e6ecefaa 13771 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13772
b690e96c
JB
13773 intel_init_quirks(dev);
13774
1fa61106
ED
13775 intel_init_pm(dev);
13776
e3c74757
BW
13777 if (INTEL_INFO(dev)->num_pipes == 0)
13778 return;
13779
e70236a8 13780 intel_init_display(dev);
7c10a2b5 13781 intel_init_audio(dev);
e70236a8 13782
a6c45cf0
CW
13783 if (IS_GEN2(dev)) {
13784 dev->mode_config.max_width = 2048;
13785 dev->mode_config.max_height = 2048;
13786 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13787 dev->mode_config.max_width = 4096;
13788 dev->mode_config.max_height = 4096;
79e53945 13789 } else {
a6c45cf0
CW
13790 dev->mode_config.max_width = 8192;
13791 dev->mode_config.max_height = 8192;
79e53945 13792 }
068be561 13793
dc41c154
VS
13794 if (IS_845G(dev) || IS_I865G(dev)) {
13795 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13796 dev->mode_config.cursor_height = 1023;
13797 } else if (IS_GEN2(dev)) {
068be561
DL
13798 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13799 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13800 } else {
13801 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13802 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13803 }
13804
5d4545ae 13805 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13806
28c97730 13807 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13808 INTEL_INFO(dev)->num_pipes,
13809 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13810
055e393f 13811 for_each_pipe(dev_priv, pipe) {
8cc87b75 13812 intel_crtc_init(dev, pipe);
3bdcfc0c 13813 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 13814 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13815 if (ret)
06da8da2 13816 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13817 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13818 }
79e53945
JB
13819 }
13820
f42bb70d
JB
13821 intel_init_dpio(dev);
13822
e72f9fbf 13823 intel_shared_dpll_init(dev);
ee7b9f93 13824
9cce37f4
JB
13825 /* Just disable it once at startup */
13826 i915_disable_vga(dev);
79e53945 13827 intel_setup_outputs(dev);
11be49eb
CW
13828
13829 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13830 intel_fbc_disable(dev);
fa9fa083 13831
6e9f798d 13832 drm_modeset_lock_all(dev);
fa9fa083 13833 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13834 drm_modeset_unlock_all(dev);
46f297fb 13835
d3fcc808 13836 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13837 if (!crtc->active)
13838 continue;
13839
46f297fb 13840 /*
46f297fb
JB
13841 * Note that reserving the BIOS fb up front prevents us
13842 * from stuffing other stolen allocations like the ring
13843 * on top. This prevents some ugliness at boot time, and
13844 * can even allow for smooth boot transitions if the BIOS
13845 * fb is large enough for the active pipe configuration.
13846 */
5724dbd1
DL
13847 if (dev_priv->display.get_initial_plane_config) {
13848 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13849 &crtc->plane_config);
13850 /*
13851 * If the fb is shared between multiple heads, we'll
13852 * just get the first one.
13853 */
f6936e29 13854 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 13855 }
46f297fb 13856 }
2c7111db
CW
13857}
13858
7fad798e
DV
13859static void intel_enable_pipe_a(struct drm_device *dev)
13860{
13861 struct intel_connector *connector;
13862 struct drm_connector *crt = NULL;
13863 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13864 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13865
13866 /* We can't just switch on the pipe A, we need to set things up with a
13867 * proper mode and output configuration. As a gross hack, enable pipe A
13868 * by enabling the load detect pipe once. */
3a3371ff 13869 for_each_intel_connector(dev, connector) {
7fad798e
DV
13870 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13871 crt = &connector->base;
13872 break;
13873 }
13874 }
13875
13876 if (!crt)
13877 return;
13878
208bf9fd 13879 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 13880 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
13881}
13882
fa555837
DV
13883static bool
13884intel_check_plane_mapping(struct intel_crtc *crtc)
13885{
7eb552ae
BW
13886 struct drm_device *dev = crtc->base.dev;
13887 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13888 u32 reg, val;
13889
7eb552ae 13890 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13891 return true;
13892
13893 reg = DSPCNTR(!crtc->plane);
13894 val = I915_READ(reg);
13895
13896 if ((val & DISPLAY_PLANE_ENABLE) &&
13897 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13898 return false;
13899
13900 return true;
13901}
13902
24929352
DV
13903static void intel_sanitize_crtc(struct intel_crtc *crtc)
13904{
13905 struct drm_device *dev = crtc->base.dev;
13906 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13907 u32 reg;
24929352 13908
24929352 13909 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13910 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13911 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13912
d3eaf884 13913 /* restore vblank interrupts to correct state */
9625604c 13914 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
13915 if (crtc->active) {
13916 update_scanline_offset(crtc);
9625604c
DV
13917 drm_crtc_vblank_on(&crtc->base);
13918 }
d3eaf884 13919
24929352 13920 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13921 * disable the crtc (and hence change the state) if it is wrong. Note
13922 * that gen4+ has a fixed plane -> pipe mapping. */
13923 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13924 struct intel_connector *connector;
13925 bool plane;
13926
24929352
DV
13927 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13928 crtc->base.base.id);
13929
13930 /* Pipe has the wrong plane attached and the plane is active.
13931 * Temporarily change the plane mapping and disable everything
13932 * ... */
13933 plane = crtc->plane;
13934 crtc->plane = !plane;
9c8958bc 13935 crtc->primary_enabled = true;
24929352
DV
13936 dev_priv->display.crtc_disable(&crtc->base);
13937 crtc->plane = plane;
13938
13939 /* ... and break all links. */
3a3371ff 13940 for_each_intel_connector(dev, connector) {
24929352
DV
13941 if (connector->encoder->base.crtc != &crtc->base)
13942 continue;
13943
7f1950fb
EE
13944 connector->base.dpms = DRM_MODE_DPMS_OFF;
13945 connector->base.encoder = NULL;
24929352 13946 }
7f1950fb
EE
13947 /* multiple connectors may have the same encoder:
13948 * handle them and break crtc link separately */
3a3371ff 13949 for_each_intel_connector(dev, connector)
7f1950fb
EE
13950 if (connector->encoder->base.crtc == &crtc->base) {
13951 connector->encoder->base.crtc = NULL;
13952 connector->encoder->connectors_active = false;
13953 }
24929352
DV
13954
13955 WARN_ON(crtc->active);
83d65738 13956 crtc->base.state->enable = false;
24929352
DV
13957 crtc->base.enabled = false;
13958 }
24929352 13959
7fad798e
DV
13960 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13961 crtc->pipe == PIPE_A && !crtc->active) {
13962 /* BIOS forgot to enable pipe A, this mostly happens after
13963 * resume. Force-enable the pipe to fix this, the update_dpms
13964 * call below we restore the pipe to the right state, but leave
13965 * the required bits on. */
13966 intel_enable_pipe_a(dev);
13967 }
13968
24929352
DV
13969 /* Adjust the state of the output pipe according to whether we
13970 * have active connectors/encoders. */
13971 intel_crtc_update_dpms(&crtc->base);
13972
83d65738 13973 if (crtc->active != crtc->base.state->enable) {
24929352
DV
13974 struct intel_encoder *encoder;
13975
13976 /* This can happen either due to bugs in the get_hw_state
13977 * functions or because the pipe is force-enabled due to the
13978 * pipe A quirk. */
13979 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13980 crtc->base.base.id,
83d65738 13981 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
13982 crtc->active ? "enabled" : "disabled");
13983
83d65738 13984 crtc->base.state->enable = crtc->active;
24929352
DV
13985 crtc->base.enabled = crtc->active;
13986
13987 /* Because we only establish the connector -> encoder ->
13988 * crtc links if something is active, this means the
13989 * crtc is now deactivated. Break the links. connector
13990 * -> encoder links are only establish when things are
13991 * actually up, hence no need to break them. */
13992 WARN_ON(crtc->active);
13993
13994 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13995 WARN_ON(encoder->connectors_active);
13996 encoder->base.crtc = NULL;
13997 }
13998 }
c5ab3bc0 13999
a3ed6aad 14000 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
14001 /*
14002 * We start out with underrun reporting disabled to avoid races.
14003 * For correct bookkeeping mark this on active crtcs.
14004 *
c5ab3bc0
DV
14005 * Also on gmch platforms we dont have any hardware bits to
14006 * disable the underrun reporting. Which means we need to start
14007 * out with underrun reporting disabled also on inactive pipes,
14008 * since otherwise we'll complain about the garbage we read when
14009 * e.g. coming up after runtime pm.
14010 *
4cc31489
DV
14011 * No protection against concurrent access is required - at
14012 * worst a fifo underrun happens which also sets this to false.
14013 */
14014 crtc->cpu_fifo_underrun_disabled = true;
14015 crtc->pch_fifo_underrun_disabled = true;
14016 }
24929352
DV
14017}
14018
14019static void intel_sanitize_encoder(struct intel_encoder *encoder)
14020{
14021 struct intel_connector *connector;
14022 struct drm_device *dev = encoder->base.dev;
14023
14024 /* We need to check both for a crtc link (meaning that the
14025 * encoder is active and trying to read from a pipe) and the
14026 * pipe itself being active. */
14027 bool has_active_crtc = encoder->base.crtc &&
14028 to_intel_crtc(encoder->base.crtc)->active;
14029
14030 if (encoder->connectors_active && !has_active_crtc) {
14031 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14032 encoder->base.base.id,
8e329a03 14033 encoder->base.name);
24929352
DV
14034
14035 /* Connector is active, but has no active pipe. This is
14036 * fallout from our resume register restoring. Disable
14037 * the encoder manually again. */
14038 if (encoder->base.crtc) {
14039 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14040 encoder->base.base.id,
8e329a03 14041 encoder->base.name);
24929352 14042 encoder->disable(encoder);
a62d1497
VS
14043 if (encoder->post_disable)
14044 encoder->post_disable(encoder);
24929352 14045 }
7f1950fb
EE
14046 encoder->base.crtc = NULL;
14047 encoder->connectors_active = false;
24929352
DV
14048
14049 /* Inconsistent output/port/pipe state happens presumably due to
14050 * a bug in one of the get_hw_state functions. Or someplace else
14051 * in our code, like the register restore mess on resume. Clamp
14052 * things to off as a safer default. */
3a3371ff 14053 for_each_intel_connector(dev, connector) {
24929352
DV
14054 if (connector->encoder != encoder)
14055 continue;
7f1950fb
EE
14056 connector->base.dpms = DRM_MODE_DPMS_OFF;
14057 connector->base.encoder = NULL;
24929352
DV
14058 }
14059 }
14060 /* Enabled encoders without active connectors will be fixed in
14061 * the crtc fixup. */
14062}
14063
04098753 14064void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
14065{
14066 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 14067 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 14068
04098753
ID
14069 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14070 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14071 i915_disable_vga(dev);
14072 }
14073}
14074
14075void i915_redisable_vga(struct drm_device *dev)
14076{
14077 struct drm_i915_private *dev_priv = dev->dev_private;
14078
8dc8a27c
PZ
14079 /* This function can be called both from intel_modeset_setup_hw_state or
14080 * at a very early point in our resume sequence, where the power well
14081 * structures are not yet restored. Since this function is at a very
14082 * paranoid "someone might have enabled VGA while we were not looking"
14083 * level, just check if the power well is enabled instead of trying to
14084 * follow the "don't touch the power well if we don't need it" policy
14085 * the rest of the driver uses. */
f458ebbc 14086 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
14087 return;
14088
04098753 14089 i915_redisable_vga_power_on(dev);
0fde901f
KM
14090}
14091
98ec7739
VS
14092static bool primary_get_hw_state(struct intel_crtc *crtc)
14093{
14094 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14095
14096 if (!crtc->active)
14097 return false;
14098
14099 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14100}
14101
30e984df 14102static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
14103{
14104 struct drm_i915_private *dev_priv = dev->dev_private;
14105 enum pipe pipe;
24929352
DV
14106 struct intel_crtc *crtc;
14107 struct intel_encoder *encoder;
14108 struct intel_connector *connector;
5358901f 14109 int i;
24929352 14110
d3fcc808 14111 for_each_intel_crtc(dev, crtc) {
6e3c9717 14112 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 14113
6e3c9717 14114 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 14115
0e8ffe1b 14116 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 14117 crtc->config);
24929352 14118
83d65738 14119 crtc->base.state->enable = crtc->active;
24929352 14120 crtc->base.enabled = crtc->active;
98ec7739 14121 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
14122
14123 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14124 crtc->base.base.id,
14125 crtc->active ? "enabled" : "disabled");
14126 }
14127
5358901f
DV
14128 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14129 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14130
3e369b76
ACO
14131 pll->on = pll->get_hw_state(dev_priv, pll,
14132 &pll->config.hw_state);
5358901f 14133 pll->active = 0;
3e369b76 14134 pll->config.crtc_mask = 0;
d3fcc808 14135 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 14136 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 14137 pll->active++;
3e369b76 14138 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 14139 }
5358901f 14140 }
5358901f 14141
1e6f2ddc 14142 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 14143 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 14144
3e369b76 14145 if (pll->config.crtc_mask)
bd2bb1b9 14146 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
14147 }
14148
b2784e15 14149 for_each_intel_encoder(dev, encoder) {
24929352
DV
14150 pipe = 0;
14151
14152 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
14153 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14154 encoder->base.crtc = &crtc->base;
6e3c9717 14155 encoder->get_config(encoder, crtc->config);
24929352
DV
14156 } else {
14157 encoder->base.crtc = NULL;
14158 }
14159
14160 encoder->connectors_active = false;
6f2bcceb 14161 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 14162 encoder->base.base.id,
8e329a03 14163 encoder->base.name,
24929352 14164 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 14165 pipe_name(pipe));
24929352
DV
14166 }
14167
3a3371ff 14168 for_each_intel_connector(dev, connector) {
24929352
DV
14169 if (connector->get_hw_state(connector)) {
14170 connector->base.dpms = DRM_MODE_DPMS_ON;
14171 connector->encoder->connectors_active = true;
14172 connector->base.encoder = &connector->encoder->base;
14173 } else {
14174 connector->base.dpms = DRM_MODE_DPMS_OFF;
14175 connector->base.encoder = NULL;
14176 }
14177 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14178 connector->base.base.id,
c23cc417 14179 connector->base.name,
24929352
DV
14180 connector->base.encoder ? "enabled" : "disabled");
14181 }
30e984df
DV
14182}
14183
14184/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14185 * and i915 state tracking structures. */
14186void intel_modeset_setup_hw_state(struct drm_device *dev,
14187 bool force_restore)
14188{
14189 struct drm_i915_private *dev_priv = dev->dev_private;
14190 enum pipe pipe;
30e984df
DV
14191 struct intel_crtc *crtc;
14192 struct intel_encoder *encoder;
35c95375 14193 int i;
30e984df
DV
14194
14195 intel_modeset_readout_hw_state(dev);
24929352 14196
babea61d
JB
14197 /*
14198 * Now that we have the config, copy it to each CRTC struct
14199 * Note that this could go away if we move to using crtc_config
14200 * checking everywhere.
14201 */
d3fcc808 14202 for_each_intel_crtc(dev, crtc) {
d330a953 14203 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
14204 intel_mode_from_pipe_config(&crtc->base.mode,
14205 crtc->config);
babea61d
JB
14206 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14207 crtc->base.base.id);
14208 drm_mode_debug_printmodeline(&crtc->base.mode);
14209 }
14210 }
14211
24929352 14212 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 14213 for_each_intel_encoder(dev, encoder) {
24929352
DV
14214 intel_sanitize_encoder(encoder);
14215 }
14216
055e393f 14217 for_each_pipe(dev_priv, pipe) {
24929352
DV
14218 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14219 intel_sanitize_crtc(crtc);
6e3c9717
ACO
14220 intel_dump_pipe_config(crtc, crtc->config,
14221 "[setup_hw_state]");
24929352 14222 }
9a935856 14223
d29b2f9d
ACO
14224 intel_modeset_update_connector_atomic_state(dev);
14225
35c95375
DV
14226 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14227 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14228
14229 if (!pll->on || pll->active)
14230 continue;
14231
14232 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14233
14234 pll->disable(dev_priv, pll);
14235 pll->on = false;
14236 }
14237
3078999f
PB
14238 if (IS_GEN9(dev))
14239 skl_wm_get_hw_state(dev);
14240 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
14241 ilk_wm_get_hw_state(dev);
14242
45e2b5f6 14243 if (force_restore) {
7d0bc1ea
VS
14244 i915_redisable_vga(dev);
14245
f30da187
DV
14246 /*
14247 * We need to use raw interfaces for restoring state to avoid
14248 * checking (bogus) intermediate states.
14249 */
055e393f 14250 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
14251 struct drm_crtc *crtc =
14252 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 14253
83a57153 14254 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
14255 }
14256 } else {
14257 intel_modeset_update_staged_output_state(dev);
14258 }
8af6cf88
DV
14259
14260 intel_modeset_check_state(dev);
2c7111db
CW
14261}
14262
14263void intel_modeset_gem_init(struct drm_device *dev)
14264{
92122789 14265 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 14266 struct drm_crtc *c;
2ff8fde1 14267 struct drm_i915_gem_object *obj;
484b41dd 14268
ae48434c
ID
14269 mutex_lock(&dev->struct_mutex);
14270 intel_init_gt_powersave(dev);
14271 mutex_unlock(&dev->struct_mutex);
14272
92122789
JB
14273 /*
14274 * There may be no VBT; and if the BIOS enabled SSC we can
14275 * just keep using it to avoid unnecessary flicker. Whereas if the
14276 * BIOS isn't using it, don't assume it will work even if the VBT
14277 * indicates as much.
14278 */
14279 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14280 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14281 DREF_SSC1_ENABLE);
14282
1833b134 14283 intel_modeset_init_hw(dev);
02e792fb
DV
14284
14285 intel_setup_overlay(dev);
484b41dd
JB
14286
14287 /*
14288 * Make sure any fbs we allocated at startup are properly
14289 * pinned & fenced. When we do the allocation it's too early
14290 * for this.
14291 */
14292 mutex_lock(&dev->struct_mutex);
70e1e0ec 14293 for_each_crtc(dev, c) {
2ff8fde1
MR
14294 obj = intel_fb_obj(c->primary->fb);
14295 if (obj == NULL)
484b41dd
JB
14296 continue;
14297
850c4cdc
TU
14298 if (intel_pin_and_fence_fb_obj(c->primary,
14299 c->primary->fb,
82bc3b2d 14300 c->primary->state,
850c4cdc 14301 NULL)) {
484b41dd
JB
14302 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14303 to_intel_crtc(c)->pipe);
66e514c1
DA
14304 drm_framebuffer_unreference(c->primary->fb);
14305 c->primary->fb = NULL;
afd65eb4 14306 update_state_fb(c->primary);
484b41dd
JB
14307 }
14308 }
14309 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
14310
14311 intel_backlight_register(dev);
79e53945
JB
14312}
14313
4932e2c3
ID
14314void intel_connector_unregister(struct intel_connector *intel_connector)
14315{
14316 struct drm_connector *connector = &intel_connector->base;
14317
14318 intel_panel_destroy_backlight(connector);
34ea3d38 14319 drm_connector_unregister(connector);
4932e2c3
ID
14320}
14321
79e53945
JB
14322void intel_modeset_cleanup(struct drm_device *dev)
14323{
652c393a 14324 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 14325 struct drm_connector *connector;
652c393a 14326
2eb5252e
ID
14327 intel_disable_gt_powersave(dev);
14328
0962c3c9
VS
14329 intel_backlight_unregister(dev);
14330
fd0c0642
DV
14331 /*
14332 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 14333 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
14334 * experience fancy races otherwise.
14335 */
2aeb7d3a 14336 intel_irq_uninstall(dev_priv);
eb21b92b 14337
fd0c0642
DV
14338 /*
14339 * Due to the hpd irq storm handling the hotplug work can re-arm the
14340 * poll handlers. Hence disable polling after hpd handling is shut down.
14341 */
f87ea761 14342 drm_kms_helper_poll_fini(dev);
fd0c0642 14343
652c393a
JB
14344 mutex_lock(&dev->struct_mutex);
14345
723bfd70
JB
14346 intel_unregister_dsm_handler();
14347
7ff0ebcc 14348 intel_fbc_disable(dev);
e70236a8 14349
69341a5e
KH
14350 mutex_unlock(&dev->struct_mutex);
14351
1630fe75
CW
14352 /* flush any delayed tasks or pending work */
14353 flush_scheduled_work();
14354
db31af1d
JN
14355 /* destroy the backlight and sysfs files before encoders/connectors */
14356 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
14357 struct intel_connector *intel_connector;
14358
14359 intel_connector = to_intel_connector(connector);
14360 intel_connector->unregister(intel_connector);
db31af1d 14361 }
d9255d57 14362
79e53945 14363 drm_mode_config_cleanup(dev);
4d7bb011
DV
14364
14365 intel_cleanup_overlay(dev);
ae48434c
ID
14366
14367 mutex_lock(&dev->struct_mutex);
14368 intel_cleanup_gt_powersave(dev);
14369 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14370}
14371
f1c79df3
ZW
14372/*
14373 * Return which encoder is currently attached for connector.
14374 */
df0e9248 14375struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 14376{
df0e9248
CW
14377 return &intel_attached_encoder(connector)->base;
14378}
f1c79df3 14379
df0e9248
CW
14380void intel_connector_attach_encoder(struct intel_connector *connector,
14381 struct intel_encoder *encoder)
14382{
14383 connector->encoder = encoder;
14384 drm_mode_connector_attach_encoder(&connector->base,
14385 &encoder->base);
79e53945 14386}
28d52043
DA
14387
14388/*
14389 * set vga decode state - true == enable VGA decode
14390 */
14391int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14392{
14393 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 14394 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
14395 u16 gmch_ctrl;
14396
75fa041d
CW
14397 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14398 DRM_ERROR("failed to read control word\n");
14399 return -EIO;
14400 }
14401
c0cc8a55
CW
14402 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14403 return 0;
14404
28d52043
DA
14405 if (state)
14406 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14407 else
14408 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
14409
14410 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14411 DRM_ERROR("failed to write control word\n");
14412 return -EIO;
14413 }
14414
28d52043
DA
14415 return 0;
14416}
c4a1d9e4 14417
c4a1d9e4 14418struct intel_display_error_state {
ff57f1b0
PZ
14419
14420 u32 power_well_driver;
14421
63b66e5b
CW
14422 int num_transcoders;
14423
c4a1d9e4
CW
14424 struct intel_cursor_error_state {
14425 u32 control;
14426 u32 position;
14427 u32 base;
14428 u32 size;
52331309 14429 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
14430
14431 struct intel_pipe_error_state {
ddf9c536 14432 bool power_domain_on;
c4a1d9e4 14433 u32 source;
f301b1e1 14434 u32 stat;
52331309 14435 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
14436
14437 struct intel_plane_error_state {
14438 u32 control;
14439 u32 stride;
14440 u32 size;
14441 u32 pos;
14442 u32 addr;
14443 u32 surface;
14444 u32 tile_offset;
52331309 14445 } plane[I915_MAX_PIPES];
63b66e5b
CW
14446
14447 struct intel_transcoder_error_state {
ddf9c536 14448 bool power_domain_on;
63b66e5b
CW
14449 enum transcoder cpu_transcoder;
14450
14451 u32 conf;
14452
14453 u32 htotal;
14454 u32 hblank;
14455 u32 hsync;
14456 u32 vtotal;
14457 u32 vblank;
14458 u32 vsync;
14459 } transcoder[4];
c4a1d9e4
CW
14460};
14461
14462struct intel_display_error_state *
14463intel_display_capture_error_state(struct drm_device *dev)
14464{
fbee40df 14465 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 14466 struct intel_display_error_state *error;
63b66e5b
CW
14467 int transcoders[] = {
14468 TRANSCODER_A,
14469 TRANSCODER_B,
14470 TRANSCODER_C,
14471 TRANSCODER_EDP,
14472 };
c4a1d9e4
CW
14473 int i;
14474
63b66e5b
CW
14475 if (INTEL_INFO(dev)->num_pipes == 0)
14476 return NULL;
14477
9d1cb914 14478 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
14479 if (error == NULL)
14480 return NULL;
14481
190be112 14482 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
14483 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14484
055e393f 14485 for_each_pipe(dev_priv, i) {
ddf9c536 14486 error->pipe[i].power_domain_on =
f458ebbc
DV
14487 __intel_display_power_is_enabled(dev_priv,
14488 POWER_DOMAIN_PIPE(i));
ddf9c536 14489 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
14490 continue;
14491
5efb3e28
VS
14492 error->cursor[i].control = I915_READ(CURCNTR(i));
14493 error->cursor[i].position = I915_READ(CURPOS(i));
14494 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
14495
14496 error->plane[i].control = I915_READ(DSPCNTR(i));
14497 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 14498 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 14499 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
14500 error->plane[i].pos = I915_READ(DSPPOS(i));
14501 }
ca291363
PZ
14502 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14503 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
14504 if (INTEL_INFO(dev)->gen >= 4) {
14505 error->plane[i].surface = I915_READ(DSPSURF(i));
14506 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14507 }
14508
c4a1d9e4 14509 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 14510
3abfce77 14511 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 14512 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
14513 }
14514
14515 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14516 if (HAS_DDI(dev_priv->dev))
14517 error->num_transcoders++; /* Account for eDP. */
14518
14519 for (i = 0; i < error->num_transcoders; i++) {
14520 enum transcoder cpu_transcoder = transcoders[i];
14521
ddf9c536 14522 error->transcoder[i].power_domain_on =
f458ebbc 14523 __intel_display_power_is_enabled(dev_priv,
38cc1daf 14524 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 14525 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
14526 continue;
14527
63b66e5b
CW
14528 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14529
14530 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14531 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14532 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14533 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14534 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14535 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14536 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
14537 }
14538
14539 return error;
14540}
14541
edc3d884
MK
14542#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14543
c4a1d9e4 14544void
edc3d884 14545intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
14546 struct drm_device *dev,
14547 struct intel_display_error_state *error)
14548{
055e393f 14549 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
14550 int i;
14551
63b66e5b
CW
14552 if (!error)
14553 return;
14554
edc3d884 14555 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 14556 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 14557 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 14558 error->power_well_driver);
055e393f 14559 for_each_pipe(dev_priv, i) {
edc3d884 14560 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
14561 err_printf(m, " Power: %s\n",
14562 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 14563 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 14564 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
14565
14566 err_printf(m, "Plane [%d]:\n", i);
14567 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14568 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 14569 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
14570 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14571 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 14572 }
4b71a570 14573 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 14574 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 14575 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
14576 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14577 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
14578 }
14579
edc3d884
MK
14580 err_printf(m, "Cursor [%d]:\n", i);
14581 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14582 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14583 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 14584 }
63b66e5b
CW
14585
14586 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 14587 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14588 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14589 err_printf(m, " Power: %s\n",
14590 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14591 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14592 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14593 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14594 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14595 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14596 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14597 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14598 }
c4a1d9e4 14599}
e2fcdaa9
VS
14600
14601void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14602{
14603 struct intel_crtc *crtc;
14604
14605 for_each_intel_crtc(dev, crtc) {
14606 struct intel_unpin_work *work;
e2fcdaa9 14607
5e2d7afc 14608 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14609
14610 work = crtc->unpin_work;
14611
14612 if (work && work->event &&
14613 work->event->base.file_priv == file) {
14614 kfree(work->event);
14615 work->event = NULL;
14616 }
14617
5e2d7afc 14618 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14619 }
14620}