]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: BUG on impossible pch dp port
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d2acd215
DV
83int
84intel_pch_rawclk(struct drm_device *dev)
85{
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91}
92
d4906093
ML
93static bool
94intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
d4906093
ML
97static bool
98intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
79e53945 101
a4fc5ed6
KP
102static bool
103intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
5eb08b69 106static bool
f2b115e6 107intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
a4fc5ed6 110
a0c4da24
JB
111static bool
112intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
021357ac
CW
116static inline u32 /* units of 100MHz */
117intel_fdi_link_freq(struct drm_device *dev)
118{
8b99e68c
CW
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
021357ac
CW
124}
125
e4b36699 126static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
d4906093 137 .find_pll = intel_find_best_PLL,
e4b36699
KP
138};
139
140static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
d4906093 151 .find_pll = intel_find_best_PLL,
e4b36699 152};
273e27ca 153
e4b36699 154static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
d4906093 165 .find_pll = intel_find_best_PLL,
e4b36699
KP
166};
167
168static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
d4906093 179 .find_pll = intel_find_best_PLL,
e4b36699
KP
180};
181
273e27ca 182
e4b36699 183static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
044c7c41 195 },
d4906093 196 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
d4906093 210 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
211};
212
213static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
044c7c41 224 },
d4906093 225 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
044c7c41 239 },
d4906093 240 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
241};
242
243static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
273e27ca 253 .p2_slow = 10, .p2_fast = 10 },
0206e353 254 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
255};
256
f2b115e6 257static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 260 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
273e27ca 263 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
6115707b 270 .find_pll = intel_find_best_PLL,
e4b36699
KP
271};
272
f2b115e6 273static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
6115707b 284 .find_pll = intel_find_best_PLL,
e4b36699
KP
285};
286
273e27ca
EA
287/* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
b91ad0ec 292static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
4547668a 303 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
304};
305
b91ad0ec 306static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
317 .find_pll = intel_g4x_find_best_PLL,
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331 .find_pll = intel_g4x_find_best_PLL,
332};
333
273e27ca 334/* LVDS 100mhz refclk limits. */
b91ad0ec 335static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
0206e353 343 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
346 .find_pll = intel_g4x_find_best_PLL,
347};
348
349static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
0206e353 357 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
360 .find_pll = intel_g4x_find_best_PLL,
361};
362
363static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
273e27ca 373 .p2_slow = 10, .p2_fast = 10 },
0206e353 374 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
375};
376
a0c4da24
JB
377static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389};
390
391static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
17dc9257 393 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403};
404
405static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 408 .n = { .min = 1, .max = 7 },
74a4dd2e 409 .m = { .min = 22, .max = 450 },
a0c4da24
JB
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417};
418
57f350b6
JB
419u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420{
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442}
443
a0c4da24
JB
444static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446{
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464}
465
57f350b6
JB
466static void vlv_init_dpio(struct drm_device *dev)
467{
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475}
476
618563e3
DV
477static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478{
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481}
482
483static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493};
494
b0354385
TI
495static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497{
498 unsigned int val;
499
121d527a
TI
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
618563e3
DV
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
b0354385
TI
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
14d94a3d 516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521}
522
1b894b59
CW
523static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
2c07245f 525{
b91ad0ec
ZW
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 528 const intel_limit_t *limit;
b91ad0ec
ZW
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 532 /* LVDS dual channel */
1b894b59 533 if (refclk == 100000)
b91ad0ec
ZW
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
1b894b59 538 if (refclk == 100000)
b91ad0ec
ZW
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
2c07245f 546 else
b91ad0ec 547 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
548
549 return limit;
550}
551
044c7c41
ML
552static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553{
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 559 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 560 /* LVDS with dual channel */
e4b36699 561 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
562 else
563 /* LVDS with dual channel */
e4b36699 564 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 567 limit = &intel_limits_g4x_hdmi;
044c7c41 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 569 limit = &intel_limits_g4x_sdvo;
0206e353 570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 571 limit = &intel_limits_g4x_display_port;
044c7c41 572 } else /* The option is for other outputs */
e4b36699 573 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
574
575 return limit;
576}
577
1b894b59 578static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
579{
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
bad720ff 583 if (HAS_PCH_SPLIT(dev))
1b894b59 584 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 585 else if (IS_G4X(dev)) {
044c7c41 586 limit = intel_g4x_limit(crtc);
f2b115e6 587 } else if (IS_PINEVIEW(dev)) {
2177832f 588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 589 limit = &intel_limits_pineview_lvds;
2177832f 590 else
f2b115e6 591 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 606 limit = &intel_limits_i8xx_lvds;
79e53945 607 else
e4b36699 608 limit = &intel_limits_i8xx_dvo;
79e53945
JB
609 }
610 return limit;
611}
612
f2b115e6
AJ
613/* m1 is reserved as 0 in Pineview, n is a ring counter */
614static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 615{
2177832f
SL
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620}
621
622static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623{
f2b115e6
AJ
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
2177832f
SL
626 return;
627 }
79e53945
JB
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632}
633
79e53945
JB
634/**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
4ef69c7a 637bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 638{
4ef69c7a 639 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
640 struct intel_encoder *encoder;
641
6c2b7c12
DV
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
4ef69c7a
CW
644 return true;
645
646 return false;
79e53945
JB
647}
648
7c04d1d9 649#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
650/**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
1b894b59
CW
655static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
79e53945 658{
79e53945 659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 660 INTELPllInvalid("p1 out of range\n");
79e53945 661 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 662 INTELPllInvalid("p out of range\n");
79e53945 663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 664 INTELPllInvalid("m2 out of range\n");
79e53945 665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 666 INTELPllInvalid("m1 out of range\n");
f2b115e6 667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 668 INTELPllInvalid("m1 <= m2\n");
79e53945 669 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 670 INTELPllInvalid("m out of range\n");
79e53945 671 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 672 INTELPllInvalid("n out of range\n");
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
d4906093
ML
684static bool
685intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
d4906093 688
79e53945
JB
689{
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
79e53945
JB
693 int err = target;
694
bc5e5718 695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 696 (I915_READ(LVDS)) != 0) {
79e53945
JB
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
b0354385 703 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
0206e353 714 memset(best_clock, 0, sizeof(*best_clock));
79e53945 715
42158660
ZY
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
727 int this_err;
728
2177832f 729 intel_clock(dev, refclk, &clock);
1b894b59
CW
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
79e53945 732 continue;
cec2f356
SP
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
79e53945
JB
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748}
749
d4906093
ML
750static bool
751intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
d4906093
ML
754{
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
6ba770dc
AJ
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
765 int lvds_reg;
766
c619eed4 767 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
f77f13e2 785 /* based on hardware requirement, prefer smaller n to precision */
d4906093 786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 787 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
2177832f 796 intel_clock(dev, refclk, &clock);
1b894b59
CW
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
d4906093 799 continue;
cec2f356
SP
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
1b894b59
CW
803
804 this_err = abs(clock.dot - target);
d4906093
ML
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
2c07245f
ZW
815 return found;
816}
817
5eb08b69 818static bool
f2b115e6 819intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
5eb08b69
ZW
822{
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
4547668a 825
5eb08b69
ZW
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842}
843
a4fc5ed6
KP
844/* DisplayPort has only two frequencies, 162MHz and 270MHz */
845static bool
846intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
a4fc5ed6 849{
5eddb70b
CW
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
a4fc5ed6 870}
a0c4da24
JB
871static bool
872intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875{
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
af447bd3 882 flag = 0;
a0c4da24
JB
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938}
a4fc5ed6 939
a5c961d1
PZ
940enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942{
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947}
948
a928d536
PZ
949static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958}
959
9d0498a2
JB
960/**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 969{
9d0498a2 970 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 971 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 972
a928d536
PZ
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
300387c0
CW
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
9d0498a2 994 /* Wait for vblank interrupt bit to set */
481b6af3
CW
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
9d0498a2
JB
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999}
1000
ab7ad7f6
KP
1001/*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
ab7ad7f6
KP
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
58e10eb9 1016 *
9d0498a2 1017 */
58e10eb9 1018void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1019{
1020 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
ab7ad7f6
KP
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1025 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1026
1027 /* Wait for the Pipe State to go off */
58e10eb9
CW
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
284637d9 1030 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1031 } else {
837ba00f 1032 u32 last_line, line_mask;
58e10eb9 1033 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
837ba00f
PZ
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
ab7ad7f6
KP
1041 /* Wait for the display line to settle */
1042 do {
837ba00f 1043 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1044 mdelay(5);
837ba00f 1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
284637d9 1048 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1049 }
79e53945
JB
1050}
1051
b24e7179
JB
1052static const char *state_string(bool enabled)
1053{
1054 return enabled ? "on" : "off";
1055}
1056
1057/* Only for pre-ILK configs */
1058static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060{
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071}
1072#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
040484af
JB
1075/* For ILK+ */
1076static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
040484af 1080{
040484af
JB
1081 u32 val;
1082 bool cur_state;
1083
9d82aa17
ED
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
92b27b08
CW
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1091 return;
ee7b9f93 1092
92b27b08
CW
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
d3ccbe86 1116 }
040484af 1117}
92b27b08
CW
1118#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1120
1121static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123{
1124 int reg;
1125 u32 val;
1126 bool cur_state;
ad80a810
PZ
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
040484af 1129
bf507ef7
ED
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1133 val = I915_READ(reg);
ad80a810 1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
040484af
JB
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143}
1144#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149{
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
59c859d6
ED
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
040484af
JB
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165}
1166#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171{
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
bf507ef7
ED
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
040484af
JB
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186}
1187
1188static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190{
1191 int reg;
1192 u32 val;
1193
59c859d6
ED
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
040484af
JB
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201}
1202
ea0760cf
JB
1203static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205{
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
0de3b485 1209 bool locked = true;
ea0760cf
JB
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1229 pipe_name(pipe));
ea0760cf
JB
1230}
1231
b840d907
JB
1232void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
b24e7179
JB
1234{
1235 int reg;
1236 u32 val;
63d7bbe9 1237 bool cur_state;
702e7a56
PZ
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
b24e7179 1240
8e636784
DV
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
702e7a56 1245 reg = PIPECONF(cpu_transcoder);
b24e7179 1246 val = I915_READ(reg);
63d7bbe9
JB
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1250 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1251}
1252
931872fc
CW
1253static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
b24e7179
JB
1255{
1256 int reg;
1257 u32 val;
931872fc 1258 bool cur_state;
b24e7179
JB
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
931872fc
CW
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1266}
1267
931872fc
CW
1268#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
b24e7179
JB
1271static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273{
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
19ec1358 1278 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
19ec1358 1285 return;
28c05794 1286 }
19ec1358 1287
b24e7179
JB
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
b24e7179
JB
1297 }
1298}
1299
92f2584a
JB
1300static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301{
1302 u32 val;
1303 bool enabled;
1304
9d82aa17
ED
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
92f2584a
JB
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314}
1315
1316static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318{
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
92f2584a
JB
1329}
1330
4e634389
KP
1331static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1333{
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347}
1348
1519b995
KP
1349static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351{
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363}
1364
1365static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367{
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379}
1380
1381static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383{
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394}
1395
291906f1 1396static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1397 enum pipe pipe, int reg, u32 port_sel)
291906f1 1398{
47a05eca 1399 u32 val = I915_READ(reg);
4e634389 1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1402 reg, pipe_name(pipe));
de9a35ab 1403
75c5da27
DV
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
de9a35ab 1406 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1407}
1408
1409static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411{
47a05eca 1412 u32 val = I915_READ(reg);
e9a851ed 1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1415 reg, pipe_name(pipe));
de9a35ab 1416
75c5da27
DV
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1419 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1420}
1421
1422static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424{
1425 int reg;
1426 u32 val;
291906f1 1427
f0575e92
KP
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
e9a851ed 1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1436 pipe_name(pipe));
291906f1
JB
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
e9a851ed 1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1442 pipe_name(pipe));
291906f1
JB
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447}
1448
63d7bbe9
JB
1449/**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
7434a255
TR
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1461 */
a37b9b34 1462static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1463{
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
a0c4da24 1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488}
1489
1490/**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500{
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516}
1517
a416edef
ED
1518/* SBI access */
1519static void
1520intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521{
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
39fb50f6 1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547}
1548
1549static u32
1550intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551{
1552 unsigned long flags;
39fb50f6 1553 u32 value = 0;
a416edef
ED
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
39fb50f6 1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579}
1580
92f2584a
JB
1581/**
1582 * intel_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
ee7b9f93 1589static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1590{
ee7b9f93 1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1592 struct intel_pch_pll *pll;
92f2584a
JB
1593 int reg;
1594 u32 val;
1595
48da64a8 1596 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1597 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
ee7b9f93
JB
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
92f2584a
JB
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
ee7b9f93 1612 if (pll->active++ && pll->on) {
92b27b08 1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
92f2584a
JB
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
ee7b9f93
JB
1625
1626 pll->on = true;
92f2584a
JB
1627}
1628
ee7b9f93 1629static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1630{
ee7b9f93
JB
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1633 int reg;
ee7b9f93 1634 u32 val;
4c609cb8 1635
92f2584a
JB
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1638 if (pll == NULL)
1639 return;
92f2584a 1640
48da64a8
CW
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
7a419866 1643
ee7b9f93
JB
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
7a419866 1647
48da64a8 1648 if (WARN_ON(pll->active == 0)) {
92b27b08 1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1650 return;
1651 }
1652
ee7b9f93 1653 if (--pll->active) {
92b27b08 1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1655 return;
ee7b9f93
JB
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1662
ee7b9f93 1663 reg = pll->pll_reg;
92f2584a
JB
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
ee7b9f93
JB
1669
1670 pll->on = false;
92f2584a
JB
1671}
1672
040484af
JB
1673static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675{
1676 int reg;
5f7f726d 1677 u32 val, pipeconf_val;
7c26e5c6 1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
040484af
JB
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
59c859d6
ED
1692 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694 return;
1695 }
040484af
JB
1696 reg = TRANSCONF(pipe);
1697 val = I915_READ(reg);
5f7f726d 1698 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1699
1700 if (HAS_PCH_IBX(dev_priv->dev)) {
1701 /*
1702 * make the BPC in transcoder be consistent with
1703 * that in pipeconf reg.
1704 */
1705 val &= ~PIPE_BPC_MASK;
5f7f726d 1706 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1707 }
5f7f726d
PZ
1708
1709 val &= ~TRANS_INTERLACE_MASK;
1710 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1711 if (HAS_PCH_IBX(dev_priv->dev) &&
1712 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713 val |= TRANS_LEGACY_INTERLACED_ILK;
1714 else
1715 val |= TRANS_INTERLACED;
5f7f726d
PZ
1716 else
1717 val |= TRANS_PROGRESSIVE;
1718
040484af
JB
1719 I915_WRITE(reg, val | TRANS_ENABLE);
1720 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722}
1723
1724static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725 enum pipe pipe)
1726{
1727 int reg;
1728 u32 val;
1729
1730 /* FDI relies on the transcoder */
1731 assert_fdi_tx_disabled(dev_priv, pipe);
1732 assert_fdi_rx_disabled(dev_priv, pipe);
1733
291906f1
JB
1734 /* Ports must be off as well */
1735 assert_pch_ports_disabled(dev_priv, pipe);
1736
040484af
JB
1737 reg = TRANSCONF(pipe);
1738 val = I915_READ(reg);
1739 val &= ~TRANS_ENABLE;
1740 I915_WRITE(reg, val);
1741 /* wait for PCH transcoder off, transcoder state */
1742 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1743 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1744}
1745
b24e7179 1746/**
309cfea8 1747 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1748 * @dev_priv: i915 private structure
1749 * @pipe: pipe to enable
040484af 1750 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1751 *
1752 * Enable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe is actually running (i.e. first vblank) before
1758 * returning.
1759 */
040484af
JB
1760static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761 bool pch_port)
b24e7179 1762{
702e7a56
PZ
1763 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764 pipe);
b24e7179
JB
1765 int reg;
1766 u32 val;
1767
1768 /*
1769 * A pipe without a PLL won't actually be able to drive bits from
1770 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1771 * need the check.
1772 */
1773 if (!HAS_PCH_SPLIT(dev_priv->dev))
1774 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1775 else {
1776 if (pch_port) {
1777 /* if driving the PCH, we need FDI enabled */
1778 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780 }
1781 /* FIXME: assert CPU port conditions for SNB+ */
1782 }
b24e7179 1783
702e7a56 1784 reg = PIPECONF(cpu_transcoder);
b24e7179 1785 val = I915_READ(reg);
00d70b15
CW
1786 if (val & PIPECONF_ENABLE)
1787 return;
1788
1789 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1790 intel_wait_for_vblank(dev_priv->dev, pipe);
1791}
1792
1793/**
309cfea8 1794 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1795 * @dev_priv: i915 private structure
1796 * @pipe: pipe to disable
1797 *
1798 * Disable @pipe, making sure that various hardware specific requirements
1799 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800 *
1801 * @pipe should be %PIPE_A or %PIPE_B.
1802 *
1803 * Will wait until the pipe has shut down before returning.
1804 */
1805static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807{
702e7a56
PZ
1808 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809 pipe);
b24e7179
JB
1810 int reg;
1811 u32 val;
1812
1813 /*
1814 * Make sure planes won't keep trying to pump pixels to us,
1815 * or we might hang the display.
1816 */
1817 assert_planes_disabled(dev_priv, pipe);
1818
1819 /* Don't disable pipe A or pipe A PLLs if needed */
1820 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821 return;
1822
702e7a56 1823 reg = PIPECONF(cpu_transcoder);
b24e7179 1824 val = I915_READ(reg);
00d70b15
CW
1825 if ((val & PIPECONF_ENABLE) == 0)
1826 return;
1827
1828 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1829 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830}
1831
d74362c9
KP
1832/*
1833 * Plane regs are double buffered, going from enabled->disabled needs a
1834 * trigger in order to latch. The display address reg provides this.
1835 */
6f1d69b0 1836void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1837 enum plane plane)
1838{
1839 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1840 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841}
1842
b24e7179
JB
1843/**
1844 * intel_enable_plane - enable a display plane on a given pipe
1845 * @dev_priv: i915 private structure
1846 * @plane: plane to enable
1847 * @pipe: pipe being fed
1848 *
1849 * Enable @plane on @pipe, making sure that @pipe is running first.
1850 */
1851static void intel_enable_plane(struct drm_i915_private *dev_priv,
1852 enum plane plane, enum pipe pipe)
1853{
1854 int reg;
1855 u32 val;
1856
1857 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1858 assert_pipe_enabled(dev_priv, pipe);
1859
1860 reg = DSPCNTR(plane);
1861 val = I915_READ(reg);
00d70b15
CW
1862 if (val & DISPLAY_PLANE_ENABLE)
1863 return;
1864
1865 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1866 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1867 intel_wait_for_vblank(dev_priv->dev, pipe);
1868}
1869
b24e7179
JB
1870/**
1871 * intel_disable_plane - disable a display plane
1872 * @dev_priv: i915 private structure
1873 * @plane: plane to disable
1874 * @pipe: pipe consuming the data
1875 *
1876 * Disable @plane; should be an independent operation.
1877 */
1878static void intel_disable_plane(struct drm_i915_private *dev_priv,
1879 enum plane plane, enum pipe pipe)
1880{
1881 int reg;
1882 u32 val;
1883
1884 reg = DSPCNTR(plane);
1885 val = I915_READ(reg);
00d70b15
CW
1886 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1887 return;
1888
1889 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1890 intel_flush_display_plane(dev_priv, plane);
1891 intel_wait_for_vblank(dev_priv->dev, pipe);
1892}
1893
127bd2ac 1894int
48b956c5 1895intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1896 struct drm_i915_gem_object *obj,
919926ae 1897 struct intel_ring_buffer *pipelined)
6b95a207 1898{
ce453d81 1899 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1900 u32 alignment;
1901 int ret;
1902
05394f39 1903 switch (obj->tiling_mode) {
6b95a207 1904 case I915_TILING_NONE:
534843da
CW
1905 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1906 alignment = 128 * 1024;
a6c45cf0 1907 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1908 alignment = 4 * 1024;
1909 else
1910 alignment = 64 * 1024;
6b95a207
KH
1911 break;
1912 case I915_TILING_X:
1913 /* pin() will align the object as required by fence */
1914 alignment = 0;
1915 break;
1916 case I915_TILING_Y:
1917 /* FIXME: Is this true? */
1918 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1919 return -EINVAL;
1920 default:
1921 BUG();
1922 }
1923
ce453d81 1924 dev_priv->mm.interruptible = false;
2da3b9b9 1925 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1926 if (ret)
ce453d81 1927 goto err_interruptible;
6b95a207
KH
1928
1929 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930 * fence, whereas 965+ only requires a fence if using
1931 * framebuffer compression. For simplicity, we always install
1932 * a fence as the cost is not that onerous.
1933 */
06d98131 1934 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1935 if (ret)
1936 goto err_unpin;
1690e1eb 1937
9a5a53b3 1938 i915_gem_object_pin_fence(obj);
6b95a207 1939
ce453d81 1940 dev_priv->mm.interruptible = true;
6b95a207 1941 return 0;
48b956c5
CW
1942
1943err_unpin:
1944 i915_gem_object_unpin(obj);
ce453d81
CW
1945err_interruptible:
1946 dev_priv->mm.interruptible = true;
48b956c5 1947 return ret;
6b95a207
KH
1948}
1949
1690e1eb
CW
1950void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951{
1952 i915_gem_object_unpin_fence(obj);
1953 i915_gem_object_unpin(obj);
1954}
1955
c2c75131
DV
1956/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957 * is assumed to be a power-of-two. */
1958static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1959 unsigned int bpp,
1960 unsigned int pitch)
1961{
1962 int tile_rows, tiles;
1963
1964 tile_rows = *y / 8;
1965 *y %= 8;
1966 tiles = *x / (512/bpp);
1967 *x %= 512/bpp;
1968
1969 return tile_rows * pitch * 8 + tiles * 4096;
1970}
1971
17638cd6
JB
1972static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1973 int x, int y)
81255565
JB
1974{
1975 struct drm_device *dev = crtc->dev;
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978 struct intel_framebuffer *intel_fb;
05394f39 1979 struct drm_i915_gem_object *obj;
81255565 1980 int plane = intel_crtc->plane;
e506a0c6 1981 unsigned long linear_offset;
81255565 1982 u32 dspcntr;
5eddb70b 1983 u32 reg;
81255565
JB
1984
1985 switch (plane) {
1986 case 0:
1987 case 1:
1988 break;
1989 default:
1990 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1991 return -EINVAL;
1992 }
1993
1994 intel_fb = to_intel_framebuffer(fb);
1995 obj = intel_fb->obj;
81255565 1996
5eddb70b
CW
1997 reg = DSPCNTR(plane);
1998 dspcntr = I915_READ(reg);
81255565
JB
1999 /* Mask out pixel format bits in case we change it */
2000 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2001 switch (fb->bits_per_pixel) {
2002 case 8:
2003 dspcntr |= DISPPLANE_8BPP;
2004 break;
2005 case 16:
2006 if (fb->depth == 15)
2007 dspcntr |= DISPPLANE_15_16BPP;
2008 else
2009 dspcntr |= DISPPLANE_16BPP;
2010 break;
2011 case 24:
2012 case 32:
2013 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2014 break;
2015 default:
17638cd6 2016 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
2017 return -EINVAL;
2018 }
a6c45cf0 2019 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2020 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2021 dspcntr |= DISPPLANE_TILED;
2022 else
2023 dspcntr &= ~DISPPLANE_TILED;
2024 }
2025
5eddb70b 2026 I915_WRITE(reg, dspcntr);
81255565 2027
e506a0c6 2028 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2029
c2c75131
DV
2030 if (INTEL_INFO(dev)->gen >= 4) {
2031 intel_crtc->dspaddr_offset =
2032 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2033 fb->bits_per_pixel / 8,
2034 fb->pitches[0]);
2035 linear_offset -= intel_crtc->dspaddr_offset;
2036 } else {
e506a0c6 2037 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2038 }
e506a0c6
DV
2039
2040 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2041 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2042 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2043 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2044 I915_MODIFY_DISPBASE(DSPSURF(plane),
2045 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2046 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2047 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2048 } else
e506a0c6 2049 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2050 POSTING_READ(reg);
81255565 2051
17638cd6
JB
2052 return 0;
2053}
2054
2055static int ironlake_update_plane(struct drm_crtc *crtc,
2056 struct drm_framebuffer *fb, int x, int y)
2057{
2058 struct drm_device *dev = crtc->dev;
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061 struct intel_framebuffer *intel_fb;
2062 struct drm_i915_gem_object *obj;
2063 int plane = intel_crtc->plane;
e506a0c6 2064 unsigned long linear_offset;
17638cd6
JB
2065 u32 dspcntr;
2066 u32 reg;
2067
2068 switch (plane) {
2069 case 0:
2070 case 1:
27f8227b 2071 case 2:
17638cd6
JB
2072 break;
2073 default:
2074 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2075 return -EINVAL;
2076 }
2077
2078 intel_fb = to_intel_framebuffer(fb);
2079 obj = intel_fb->obj;
2080
2081 reg = DSPCNTR(plane);
2082 dspcntr = I915_READ(reg);
2083 /* Mask out pixel format bits in case we change it */
2084 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2085 switch (fb->bits_per_pixel) {
2086 case 8:
2087 dspcntr |= DISPPLANE_8BPP;
2088 break;
2089 case 16:
2090 if (fb->depth != 16)
2091 return -EINVAL;
2092
2093 dspcntr |= DISPPLANE_16BPP;
2094 break;
2095 case 24:
2096 case 32:
2097 if (fb->depth == 24)
2098 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2099 else if (fb->depth == 30)
2100 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2101 else
2102 return -EINVAL;
2103 break;
2104 default:
2105 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2106 return -EINVAL;
2107 }
2108
2109 if (obj->tiling_mode != I915_TILING_NONE)
2110 dspcntr |= DISPPLANE_TILED;
2111 else
2112 dspcntr &= ~DISPPLANE_TILED;
2113
2114 /* must disable */
2115 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2116
2117 I915_WRITE(reg, dspcntr);
2118
e506a0c6 2119 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2120 intel_crtc->dspaddr_offset =
2121 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2122 fb->bits_per_pixel / 8,
2123 fb->pitches[0]);
2124 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2125
e506a0c6
DV
2126 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2127 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2128 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2129 I915_MODIFY_DISPBASE(DSPSURF(plane),
2130 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2131 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2132 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2133 POSTING_READ(reg);
2134
2135 return 0;
2136}
2137
2138/* Assume fb object is pinned & idle & fenced and just update base pointers */
2139static int
2140intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2141 int x, int y, enum mode_set_atomic state)
2142{
2143 struct drm_device *dev = crtc->dev;
2144 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2145
6b8e6ed0
CW
2146 if (dev_priv->display.disable_fbc)
2147 dev_priv->display.disable_fbc(dev);
3dec0095 2148 intel_increase_pllclock(crtc);
81255565 2149
6b8e6ed0 2150 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2151}
2152
14667a4b
CW
2153static int
2154intel_finish_fb(struct drm_framebuffer *old_fb)
2155{
2156 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2157 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158 bool was_interruptible = dev_priv->mm.interruptible;
2159 int ret;
2160
2161 wait_event(dev_priv->pending_flip_queue,
2162 atomic_read(&dev_priv->mm.wedged) ||
2163 atomic_read(&obj->pending_flip) == 0);
2164
2165 /* Big Hammer, we also need to ensure that any pending
2166 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2167 * current scanout is retired before unpinning the old
2168 * framebuffer.
2169 *
2170 * This should only fail upon a hung GPU, in which case we
2171 * can safely continue.
2172 */
2173 dev_priv->mm.interruptible = false;
2174 ret = i915_gem_object_finish_gpu(obj);
2175 dev_priv->mm.interruptible = was_interruptible;
2176
2177 return ret;
2178}
2179
5c3b82e2 2180static int
3c4fdcfb 2181intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2182 struct drm_framebuffer *fb)
79e53945
JB
2183{
2184 struct drm_device *dev = crtc->dev;
6b8e6ed0 2185 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2186 struct drm_i915_master_private *master_priv;
2187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2188 struct drm_framebuffer *old_fb;
5c3b82e2 2189 int ret;
79e53945
JB
2190
2191 /* no fb bound */
94352cf9 2192 if (!fb) {
a5071c2f 2193 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2194 return 0;
2195 }
2196
5826eca5
ED
2197 if(intel_crtc->plane > dev_priv->num_pipe) {
2198 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2199 intel_crtc->plane,
2200 dev_priv->num_pipe);
5c3b82e2 2201 return -EINVAL;
79e53945
JB
2202 }
2203
5c3b82e2 2204 mutex_lock(&dev->struct_mutex);
265db958 2205 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2206 to_intel_framebuffer(fb)->obj,
919926ae 2207 NULL);
5c3b82e2
CW
2208 if (ret != 0) {
2209 mutex_unlock(&dev->struct_mutex);
a5071c2f 2210 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2211 return ret;
2212 }
79e53945 2213
94352cf9
DV
2214 if (crtc->fb)
2215 intel_finish_fb(crtc->fb);
265db958 2216
94352cf9 2217 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2218 if (ret) {
94352cf9 2219 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2220 mutex_unlock(&dev->struct_mutex);
a5071c2f 2221 DRM_ERROR("failed to update base address\n");
4e6cfefc 2222 return ret;
79e53945 2223 }
3c4fdcfb 2224
94352cf9
DV
2225 old_fb = crtc->fb;
2226 crtc->fb = fb;
6c4c86f5
DV
2227 crtc->x = x;
2228 crtc->y = y;
94352cf9 2229
b7f1de28
CW
2230 if (old_fb) {
2231 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2232 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2233 }
652c393a 2234
6b8e6ed0 2235 intel_update_fbc(dev);
5c3b82e2 2236 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2237
2238 if (!dev->primary->master)
5c3b82e2 2239 return 0;
79e53945
JB
2240
2241 master_priv = dev->primary->master->driver_priv;
2242 if (!master_priv->sarea_priv)
5c3b82e2 2243 return 0;
79e53945 2244
265db958 2245 if (intel_crtc->pipe) {
79e53945
JB
2246 master_priv->sarea_priv->pipeB_x = x;
2247 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2248 } else {
2249 master_priv->sarea_priv->pipeA_x = x;
2250 master_priv->sarea_priv->pipeA_y = y;
79e53945 2251 }
5c3b82e2
CW
2252
2253 return 0;
79e53945
JB
2254}
2255
5eddb70b 2256static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2257{
2258 struct drm_device *dev = crtc->dev;
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 u32 dpa_ctl;
2261
28c97730 2262 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2263 dpa_ctl = I915_READ(DP_A);
2264 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266 if (clock < 200000) {
2267 u32 temp;
2268 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269 /* workaround for 160Mhz:
2270 1) program 0x4600c bits 15:0 = 0x8124
2271 2) program 0x46010 bit 0 = 1
2272 3) program 0x46034 bit 24 = 1
2273 4) program 0x64000 bit 14 = 1
2274 */
2275 temp = I915_READ(0x4600c);
2276 temp &= 0xffff0000;
2277 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279 temp = I915_READ(0x46010);
2280 I915_WRITE(0x46010, temp | 1);
2281
2282 temp = I915_READ(0x46034);
2283 I915_WRITE(0x46034, temp | (1 << 24));
2284 } else {
2285 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286 }
2287 I915_WRITE(DP_A, dpa_ctl);
2288
5eddb70b 2289 POSTING_READ(DP_A);
32f9d658
ZW
2290 udelay(500);
2291}
2292
5e84e1a4
ZW
2293static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294{
2295 struct drm_device *dev = crtc->dev;
2296 struct drm_i915_private *dev_priv = dev->dev_private;
2297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298 int pipe = intel_crtc->pipe;
2299 u32 reg, temp;
2300
2301 /* enable normal train */
2302 reg = FDI_TX_CTL(pipe);
2303 temp = I915_READ(reg);
61e499bf 2304 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2305 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2307 } else {
2308 temp &= ~FDI_LINK_TRAIN_NONE;
2309 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2310 }
5e84e1a4
ZW
2311 I915_WRITE(reg, temp);
2312
2313 reg = FDI_RX_CTL(pipe);
2314 temp = I915_READ(reg);
2315 if (HAS_PCH_CPT(dev)) {
2316 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318 } else {
2319 temp &= ~FDI_LINK_TRAIN_NONE;
2320 temp |= FDI_LINK_TRAIN_NONE;
2321 }
2322 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324 /* wait one idle pattern time */
2325 POSTING_READ(reg);
2326 udelay(1000);
357555c0
JB
2327
2328 /* IVB wants error correction enabled */
2329 if (IS_IVYBRIDGE(dev))
2330 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2332}
2333
291427f5
JB
2334static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335{
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339 flags |= FDI_PHASE_SYNC_OVR(pipe);
2340 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341 flags |= FDI_PHASE_SYNC_EN(pipe);
2342 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343 POSTING_READ(SOUTH_CHICKEN1);
2344}
2345
8db9d77b
ZW
2346/* The FDI link training functions for ILK/Ibexpeak. */
2347static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348{
2349 struct drm_device *dev = crtc->dev;
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352 int pipe = intel_crtc->pipe;
0fc932b8 2353 int plane = intel_crtc->plane;
5eddb70b 2354 u32 reg, temp, tries;
8db9d77b 2355
0fc932b8
JB
2356 /* FDI needs bits from pipe & plane first */
2357 assert_pipe_enabled(dev_priv, pipe);
2358 assert_plane_enabled(dev_priv, plane);
2359
e1a44743
AJ
2360 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361 for train result */
5eddb70b
CW
2362 reg = FDI_RX_IMR(pipe);
2363 temp = I915_READ(reg);
e1a44743
AJ
2364 temp &= ~FDI_RX_SYMBOL_LOCK;
2365 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2366 I915_WRITE(reg, temp);
2367 I915_READ(reg);
e1a44743
AJ
2368 udelay(150);
2369
8db9d77b 2370 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2371 reg = FDI_TX_CTL(pipe);
2372 temp = I915_READ(reg);
77ffb597
AJ
2373 temp &= ~(7 << 19);
2374 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2375 temp &= ~FDI_LINK_TRAIN_NONE;
2376 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2377 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2378
5eddb70b
CW
2379 reg = FDI_RX_CTL(pipe);
2380 temp = I915_READ(reg);
8db9d77b
ZW
2381 temp &= ~FDI_LINK_TRAIN_NONE;
2382 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2383 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385 POSTING_READ(reg);
8db9d77b
ZW
2386 udelay(150);
2387
5b2adf89 2388 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2389 if (HAS_PCH_IBX(dev)) {
2390 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392 FDI_RX_PHASE_SYNC_POINTER_EN);
2393 }
5b2adf89 2394
5eddb70b 2395 reg = FDI_RX_IIR(pipe);
e1a44743 2396 for (tries = 0; tries < 5; tries++) {
5eddb70b 2397 temp = I915_READ(reg);
8db9d77b
ZW
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400 if ((temp & FDI_RX_BIT_LOCK)) {
2401 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2402 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2403 break;
2404 }
8db9d77b 2405 }
e1a44743 2406 if (tries == 5)
5eddb70b 2407 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2408
2409 /* Train 2 */
5eddb70b
CW
2410 reg = FDI_TX_CTL(pipe);
2411 temp = I915_READ(reg);
8db9d77b
ZW
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2414 I915_WRITE(reg, temp);
8db9d77b 2415
5eddb70b
CW
2416 reg = FDI_RX_CTL(pipe);
2417 temp = I915_READ(reg);
8db9d77b
ZW
2418 temp &= ~FDI_LINK_TRAIN_NONE;
2419 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2420 I915_WRITE(reg, temp);
8db9d77b 2421
5eddb70b
CW
2422 POSTING_READ(reg);
2423 udelay(150);
8db9d77b 2424
5eddb70b 2425 reg = FDI_RX_IIR(pipe);
e1a44743 2426 for (tries = 0; tries < 5; tries++) {
5eddb70b 2427 temp = I915_READ(reg);
8db9d77b
ZW
2428 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2432 DRM_DEBUG_KMS("FDI train 2 done.\n");
2433 break;
2434 }
8db9d77b 2435 }
e1a44743 2436 if (tries == 5)
5eddb70b 2437 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2438
2439 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2440
8db9d77b
ZW
2441}
2442
0206e353 2443static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2444 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448};
2449
2450/* The FDI link training functions for SNB/Cougarpoint. */
2451static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452{
2453 struct drm_device *dev = crtc->dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456 int pipe = intel_crtc->pipe;
fa37d39e 2457 u32 reg, temp, i, retry;
8db9d77b 2458
e1a44743
AJ
2459 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460 for train result */
5eddb70b
CW
2461 reg = FDI_RX_IMR(pipe);
2462 temp = I915_READ(reg);
e1a44743
AJ
2463 temp &= ~FDI_RX_SYMBOL_LOCK;
2464 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2465 I915_WRITE(reg, temp);
2466
2467 POSTING_READ(reg);
e1a44743
AJ
2468 udelay(150);
2469
8db9d77b 2470 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
77ffb597
AJ
2473 temp &= ~(7 << 19);
2474 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2475 temp &= ~FDI_LINK_TRAIN_NONE;
2476 temp |= FDI_LINK_TRAIN_PATTERN_1;
2477 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478 /* SNB-B */
2479 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2480 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2481
d74cf324
DV
2482 I915_WRITE(FDI_RX_MISC(pipe),
2483 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2484
5eddb70b
CW
2485 reg = FDI_RX_CTL(pipe);
2486 temp = I915_READ(reg);
8db9d77b
ZW
2487 if (HAS_PCH_CPT(dev)) {
2488 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2490 } else {
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 }
5eddb70b
CW
2494 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2495
2496 POSTING_READ(reg);
8db9d77b
ZW
2497 udelay(150);
2498
291427f5
JB
2499 if (HAS_PCH_CPT(dev))
2500 cpt_phase_pointer_enable(dev, pipe);
2501
0206e353 2502 for (i = 0; i < 4; i++) {
5eddb70b
CW
2503 reg = FDI_TX_CTL(pipe);
2504 temp = I915_READ(reg);
8db9d77b
ZW
2505 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2506 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2507 I915_WRITE(reg, temp);
2508
2509 POSTING_READ(reg);
8db9d77b
ZW
2510 udelay(500);
2511
fa37d39e
SP
2512 for (retry = 0; retry < 5; retry++) {
2513 reg = FDI_RX_IIR(pipe);
2514 temp = I915_READ(reg);
2515 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516 if (temp & FDI_RX_BIT_LOCK) {
2517 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2518 DRM_DEBUG_KMS("FDI train 1 done.\n");
2519 break;
2520 }
2521 udelay(50);
8db9d77b 2522 }
fa37d39e
SP
2523 if (retry < 5)
2524 break;
8db9d77b
ZW
2525 }
2526 if (i == 4)
5eddb70b 2527 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2528
2529 /* Train 2 */
5eddb70b
CW
2530 reg = FDI_TX_CTL(pipe);
2531 temp = I915_READ(reg);
8db9d77b
ZW
2532 temp &= ~FDI_LINK_TRAIN_NONE;
2533 temp |= FDI_LINK_TRAIN_PATTERN_2;
2534 if (IS_GEN6(dev)) {
2535 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536 /* SNB-B */
2537 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2538 }
5eddb70b 2539 I915_WRITE(reg, temp);
8db9d77b 2540
5eddb70b
CW
2541 reg = FDI_RX_CTL(pipe);
2542 temp = I915_READ(reg);
8db9d77b
ZW
2543 if (HAS_PCH_CPT(dev)) {
2544 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2545 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2546 } else {
2547 temp &= ~FDI_LINK_TRAIN_NONE;
2548 temp |= FDI_LINK_TRAIN_PATTERN_2;
2549 }
5eddb70b
CW
2550 I915_WRITE(reg, temp);
2551
2552 POSTING_READ(reg);
8db9d77b
ZW
2553 udelay(150);
2554
0206e353 2555 for (i = 0; i < 4; i++) {
5eddb70b
CW
2556 reg = FDI_TX_CTL(pipe);
2557 temp = I915_READ(reg);
8db9d77b
ZW
2558 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2559 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2560 I915_WRITE(reg, temp);
2561
2562 POSTING_READ(reg);
8db9d77b
ZW
2563 udelay(500);
2564
fa37d39e
SP
2565 for (retry = 0; retry < 5; retry++) {
2566 reg = FDI_RX_IIR(pipe);
2567 temp = I915_READ(reg);
2568 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2569 if (temp & FDI_RX_SYMBOL_LOCK) {
2570 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2571 DRM_DEBUG_KMS("FDI train 2 done.\n");
2572 break;
2573 }
2574 udelay(50);
8db9d77b 2575 }
fa37d39e
SP
2576 if (retry < 5)
2577 break;
8db9d77b
ZW
2578 }
2579 if (i == 4)
5eddb70b 2580 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2581
2582 DRM_DEBUG_KMS("FDI train done.\n");
2583}
2584
357555c0
JB
2585/* Manual link training for Ivy Bridge A0 parts */
2586static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2587{
2588 struct drm_device *dev = crtc->dev;
2589 struct drm_i915_private *dev_priv = dev->dev_private;
2590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2591 int pipe = intel_crtc->pipe;
2592 u32 reg, temp, i;
2593
2594 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2595 for train result */
2596 reg = FDI_RX_IMR(pipe);
2597 temp = I915_READ(reg);
2598 temp &= ~FDI_RX_SYMBOL_LOCK;
2599 temp &= ~FDI_RX_BIT_LOCK;
2600 I915_WRITE(reg, temp);
2601
2602 POSTING_READ(reg);
2603 udelay(150);
2604
2605 /* enable CPU FDI TX and PCH FDI RX */
2606 reg = FDI_TX_CTL(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~(7 << 19);
2609 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2610 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2611 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2612 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2613 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2614 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2615 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2616
d74cf324
DV
2617 I915_WRITE(FDI_RX_MISC(pipe),
2618 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2619
357555c0
JB
2620 reg = FDI_RX_CTL(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~FDI_LINK_TRAIN_AUTO;
2623 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2624 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2625 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2626 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2627
2628 POSTING_READ(reg);
2629 udelay(150);
2630
291427f5
JB
2631 if (HAS_PCH_CPT(dev))
2632 cpt_phase_pointer_enable(dev, pipe);
2633
0206e353 2634 for (i = 0; i < 4; i++) {
357555c0
JB
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2638 temp |= snb_b_fdi_train_param[i];
2639 I915_WRITE(reg, temp);
2640
2641 POSTING_READ(reg);
2642 udelay(500);
2643
2644 reg = FDI_RX_IIR(pipe);
2645 temp = I915_READ(reg);
2646 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2647
2648 if (temp & FDI_RX_BIT_LOCK ||
2649 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2650 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2651 DRM_DEBUG_KMS("FDI train 1 done.\n");
2652 break;
2653 }
2654 }
2655 if (i == 4)
2656 DRM_ERROR("FDI train 1 fail!\n");
2657
2658 /* Train 2 */
2659 reg = FDI_TX_CTL(pipe);
2660 temp = I915_READ(reg);
2661 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2662 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2665 I915_WRITE(reg, temp);
2666
2667 reg = FDI_RX_CTL(pipe);
2668 temp = I915_READ(reg);
2669 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2670 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2671 I915_WRITE(reg, temp);
2672
2673 POSTING_READ(reg);
2674 udelay(150);
2675
0206e353 2676 for (i = 0; i < 4; i++) {
357555c0
JB
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2680 temp |= snb_b_fdi_train_param[i];
2681 I915_WRITE(reg, temp);
2682
2683 POSTING_READ(reg);
2684 udelay(500);
2685
2686 reg = FDI_RX_IIR(pipe);
2687 temp = I915_READ(reg);
2688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2689
2690 if (temp & FDI_RX_SYMBOL_LOCK) {
2691 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2692 DRM_DEBUG_KMS("FDI train 2 done.\n");
2693 break;
2694 }
2695 }
2696 if (i == 4)
2697 DRM_ERROR("FDI train 2 fail!\n");
2698
2699 DRM_DEBUG_KMS("FDI train done.\n");
2700}
2701
88cefb6c 2702static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2703{
88cefb6c 2704 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2705 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2706 int pipe = intel_crtc->pipe;
5eddb70b 2707 u32 reg, temp;
79e53945 2708
c64e311e 2709
c98e9dcf 2710 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2711 reg = FDI_RX_CTL(pipe);
2712 temp = I915_READ(reg);
2713 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2714 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2715 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2716 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2717
2718 POSTING_READ(reg);
c98e9dcf
JB
2719 udelay(200);
2720
2721 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2722 temp = I915_READ(reg);
2723 I915_WRITE(reg, temp | FDI_PCDCLK);
2724
2725 POSTING_READ(reg);
c98e9dcf
JB
2726 udelay(200);
2727
bf507ef7
ED
2728 /* On Haswell, the PLL configuration for ports and pipes is handled
2729 * separately, as part of DDI setup */
2730 if (!IS_HASWELL(dev)) {
2731 /* Enable CPU FDI TX PLL, always on for Ironlake */
2732 reg = FDI_TX_CTL(pipe);
2733 temp = I915_READ(reg);
2734 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2735 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2736
bf507ef7
ED
2737 POSTING_READ(reg);
2738 udelay(100);
2739 }
6be4a607 2740 }
0e23b99d
JB
2741}
2742
88cefb6c
DV
2743static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2744{
2745 struct drm_device *dev = intel_crtc->base.dev;
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 int pipe = intel_crtc->pipe;
2748 u32 reg, temp;
2749
2750 /* Switch from PCDclk to Rawclk */
2751 reg = FDI_RX_CTL(pipe);
2752 temp = I915_READ(reg);
2753 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2754
2755 /* Disable CPU FDI TX PLL */
2756 reg = FDI_TX_CTL(pipe);
2757 temp = I915_READ(reg);
2758 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2759
2760 POSTING_READ(reg);
2761 udelay(100);
2762
2763 reg = FDI_RX_CTL(pipe);
2764 temp = I915_READ(reg);
2765 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2766
2767 /* Wait for the clocks to turn off. */
2768 POSTING_READ(reg);
2769 udelay(100);
2770}
2771
291427f5
JB
2772static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2773{
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 u32 flags = I915_READ(SOUTH_CHICKEN1);
2776
2777 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2778 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2779 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2780 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2781 POSTING_READ(SOUTH_CHICKEN1);
2782}
0fc932b8
JB
2783static void ironlake_fdi_disable(struct drm_crtc *crtc)
2784{
2785 struct drm_device *dev = crtc->dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788 int pipe = intel_crtc->pipe;
2789 u32 reg, temp;
2790
2791 /* disable CPU FDI tx and PCH FDI rx */
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2795 POSTING_READ(reg);
2796
2797 reg = FDI_RX_CTL(pipe);
2798 temp = I915_READ(reg);
2799 temp &= ~(0x7 << 16);
2800 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2801 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2802
2803 POSTING_READ(reg);
2804 udelay(100);
2805
2806 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2807 if (HAS_PCH_IBX(dev)) {
2808 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2809 I915_WRITE(FDI_RX_CHICKEN(pipe),
2810 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2811 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2812 } else if (HAS_PCH_CPT(dev)) {
2813 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2814 }
0fc932b8
JB
2815
2816 /* still set train pattern 1 */
2817 reg = FDI_TX_CTL(pipe);
2818 temp = I915_READ(reg);
2819 temp &= ~FDI_LINK_TRAIN_NONE;
2820 temp |= FDI_LINK_TRAIN_PATTERN_1;
2821 I915_WRITE(reg, temp);
2822
2823 reg = FDI_RX_CTL(pipe);
2824 temp = I915_READ(reg);
2825 if (HAS_PCH_CPT(dev)) {
2826 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2827 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2828 } else {
2829 temp &= ~FDI_LINK_TRAIN_NONE;
2830 temp |= FDI_LINK_TRAIN_PATTERN_1;
2831 }
2832 /* BPC in FDI rx is consistent with that in PIPECONF */
2833 temp &= ~(0x07 << 16);
2834 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2835 I915_WRITE(reg, temp);
2836
2837 POSTING_READ(reg);
2838 udelay(100);
2839}
2840
5bb61643
CW
2841static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2842{
2843 struct drm_device *dev = crtc->dev;
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 unsigned long flags;
2846 bool pending;
2847
2848 if (atomic_read(&dev_priv->mm.wedged))
2849 return false;
2850
2851 spin_lock_irqsave(&dev->event_lock, flags);
2852 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2853 spin_unlock_irqrestore(&dev->event_lock, flags);
2854
2855 return pending;
2856}
2857
e6c3a2a6
CW
2858static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2859{
0f91128d 2860 struct drm_device *dev = crtc->dev;
5bb61643 2861 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2862
2863 if (crtc->fb == NULL)
2864 return;
2865
5bb61643
CW
2866 wait_event(dev_priv->pending_flip_queue,
2867 !intel_crtc_has_pending_flip(crtc));
2868
0f91128d
CW
2869 mutex_lock(&dev->struct_mutex);
2870 intel_finish_fb(crtc->fb);
2871 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2872}
2873
fc316cbe 2874static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2875{
2876 struct drm_device *dev = crtc->dev;
228d3e36 2877 struct intel_encoder *intel_encoder;
040484af
JB
2878
2879 /*
2880 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2881 * must be driven by its own crtc; no sharing is possible.
2882 */
228d3e36 2883 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2884 switch (intel_encoder->type) {
040484af 2885 case INTEL_OUTPUT_EDP:
228d3e36 2886 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2887 return false;
2888 continue;
2889 }
2890 }
2891
2892 return true;
2893}
2894
fc316cbe
PZ
2895static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2896{
2897 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2898}
2899
e615efe4
ED
2900/* Program iCLKIP clock to the desired frequency */
2901static void lpt_program_iclkip(struct drm_crtc *crtc)
2902{
2903 struct drm_device *dev = crtc->dev;
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2906 u32 temp;
2907
2908 /* It is necessary to ungate the pixclk gate prior to programming
2909 * the divisors, and gate it back when it is done.
2910 */
2911 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2912
2913 /* Disable SSCCTL */
2914 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2915 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2916 SBI_SSCCTL_DISABLE);
2917
2918 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2919 if (crtc->mode.clock == 20000) {
2920 auxdiv = 1;
2921 divsel = 0x41;
2922 phaseinc = 0x20;
2923 } else {
2924 /* The iCLK virtual clock root frequency is in MHz,
2925 * but the crtc->mode.clock in in KHz. To get the divisors,
2926 * it is necessary to divide one by another, so we
2927 * convert the virtual clock precision to KHz here for higher
2928 * precision.
2929 */
2930 u32 iclk_virtual_root_freq = 172800 * 1000;
2931 u32 iclk_pi_range = 64;
2932 u32 desired_divisor, msb_divisor_value, pi_value;
2933
2934 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2935 msb_divisor_value = desired_divisor / iclk_pi_range;
2936 pi_value = desired_divisor % iclk_pi_range;
2937
2938 auxdiv = 0;
2939 divsel = msb_divisor_value - 2;
2940 phaseinc = pi_value;
2941 }
2942
2943 /* This should not happen with any sane values */
2944 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2945 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2946 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2947 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2948
2949 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2950 crtc->mode.clock,
2951 auxdiv,
2952 divsel,
2953 phasedir,
2954 phaseinc);
2955
2956 /* Program SSCDIVINTPHASE6 */
2957 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2958 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2959 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2960 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2961 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2962 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2963 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2964
2965 intel_sbi_write(dev_priv,
2966 SBI_SSCDIVINTPHASE6,
2967 temp);
2968
2969 /* Program SSCAUXDIV */
2970 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2971 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2972 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2973 intel_sbi_write(dev_priv,
2974 SBI_SSCAUXDIV6,
2975 temp);
2976
2977
2978 /* Enable modulator and associated divider */
2979 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2980 temp &= ~SBI_SSCCTL_DISABLE;
2981 intel_sbi_write(dev_priv,
2982 SBI_SSCCTL6,
2983 temp);
2984
2985 /* Wait for initialization time */
2986 udelay(24);
2987
2988 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2989}
2990
f67a559d
JB
2991/*
2992 * Enable PCH resources required for PCH ports:
2993 * - PCH PLLs
2994 * - FDI training & RX/TX
2995 * - update transcoder timings
2996 * - DP transcoding bits
2997 * - transcoder
2998 */
2999static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3000{
3001 struct drm_device *dev = crtc->dev;
3002 struct drm_i915_private *dev_priv = dev->dev_private;
3003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3004 int pipe = intel_crtc->pipe;
ee7b9f93 3005 u32 reg, temp;
2c07245f 3006
e7e164db
CW
3007 assert_transcoder_disabled(dev_priv, pipe);
3008
cd986abb
DV
3009 /* Write the TU size bits before fdi link training, so that error
3010 * detection works. */
3011 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3012 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3013
c98e9dcf 3014 /* For PCH output, training FDI link */
674cf967 3015 dev_priv->display.fdi_link_train(crtc);
2c07245f 3016
572deb37
DV
3017 /* XXX: pch pll's can be enabled any time before we enable the PCH
3018 * transcoder, and we actually should do this to not upset any PCH
3019 * transcoder that already use the clock when we share it.
3020 *
3021 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3022 * unconditionally resets the pll - we need that to have the right LVDS
3023 * enable sequence. */
6f13b7b5
CW
3024 intel_enable_pch_pll(intel_crtc);
3025
e615efe4
ED
3026 if (HAS_PCH_LPT(dev)) {
3027 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3028 lpt_program_iclkip(crtc);
3029 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 3030 u32 sel;
4b645f14 3031
c98e9dcf 3032 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3033 switch (pipe) {
3034 default:
3035 case 0:
3036 temp |= TRANSA_DPLL_ENABLE;
3037 sel = TRANSA_DPLLB_SEL;
3038 break;
3039 case 1:
3040 temp |= TRANSB_DPLL_ENABLE;
3041 sel = TRANSB_DPLLB_SEL;
3042 break;
3043 case 2:
3044 temp |= TRANSC_DPLL_ENABLE;
3045 sel = TRANSC_DPLLB_SEL;
3046 break;
d64311ab 3047 }
ee7b9f93
JB
3048 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3049 temp |= sel;
3050 else
3051 temp &= ~sel;
c98e9dcf 3052 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3053 }
5eddb70b 3054
d9b6cb56
JB
3055 /* set transcoder timing, panel must allow it */
3056 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3057 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3058 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3059 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3060
5eddb70b
CW
3061 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3062 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3063 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3064 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3065
f57e1e3a
ED
3066 if (!IS_HASWELL(dev))
3067 intel_fdi_normal_train(crtc);
5e84e1a4 3068
c98e9dcf
JB
3069 /* For PCH DP, enable TRANS_DP_CTL */
3070 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3071 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3072 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3073 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3074 reg = TRANS_DP_CTL(pipe);
3075 temp = I915_READ(reg);
3076 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3077 TRANS_DP_SYNC_MASK |
3078 TRANS_DP_BPC_MASK);
5eddb70b
CW
3079 temp |= (TRANS_DP_OUTPUT_ENABLE |
3080 TRANS_DP_ENH_FRAMING);
9325c9f0 3081 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3082
3083 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3084 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3085 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3086 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3087
3088 switch (intel_trans_dp_port_sel(crtc)) {
3089 case PCH_DP_B:
5eddb70b 3090 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3091 break;
3092 case PCH_DP_C:
5eddb70b 3093 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3094 break;
3095 case PCH_DP_D:
5eddb70b 3096 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3097 break;
3098 default:
e95d41e1 3099 BUG();
32f9d658 3100 }
2c07245f 3101
5eddb70b 3102 I915_WRITE(reg, temp);
6be4a607 3103 }
b52eb4dc 3104
040484af 3105 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3106}
3107
ee7b9f93
JB
3108static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3109{
3110 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3111
3112 if (pll == NULL)
3113 return;
3114
3115 if (pll->refcount == 0) {
3116 WARN(1, "bad PCH PLL refcount\n");
3117 return;
3118 }
3119
3120 --pll->refcount;
3121 intel_crtc->pch_pll = NULL;
3122}
3123
3124static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3125{
3126 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3127 struct intel_pch_pll *pll;
3128 int i;
3129
3130 pll = intel_crtc->pch_pll;
3131 if (pll) {
3132 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3133 intel_crtc->base.base.id, pll->pll_reg);
3134 goto prepare;
3135 }
3136
98b6bd99
DV
3137 if (HAS_PCH_IBX(dev_priv->dev)) {
3138 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3139 i = intel_crtc->pipe;
3140 pll = &dev_priv->pch_plls[i];
3141
3142 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3143 intel_crtc->base.base.id, pll->pll_reg);
3144
3145 goto found;
3146 }
3147
ee7b9f93
JB
3148 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3149 pll = &dev_priv->pch_plls[i];
3150
3151 /* Only want to check enabled timings first */
3152 if (pll->refcount == 0)
3153 continue;
3154
3155 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3156 fp == I915_READ(pll->fp0_reg)) {
3157 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3158 intel_crtc->base.base.id,
3159 pll->pll_reg, pll->refcount, pll->active);
3160
3161 goto found;
3162 }
3163 }
3164
3165 /* Ok no matching timings, maybe there's a free one? */
3166 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3167 pll = &dev_priv->pch_plls[i];
3168 if (pll->refcount == 0) {
3169 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3170 intel_crtc->base.base.id, pll->pll_reg);
3171 goto found;
3172 }
3173 }
3174
3175 return NULL;
3176
3177found:
3178 intel_crtc->pch_pll = pll;
3179 pll->refcount++;
3180 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3181prepare: /* separate function? */
3182 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3183
e04c7350
CW
3184 /* Wait for the clocks to stabilize before rewriting the regs */
3185 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3186 POSTING_READ(pll->pll_reg);
3187 udelay(150);
e04c7350
CW
3188
3189 I915_WRITE(pll->fp0_reg, fp);
3190 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3191 pll->on = false;
3192 return pll;
3193}
3194
d4270e57
JB
3195void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3196{
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3199 u32 temp;
3200
3201 temp = I915_READ(dslreg);
3202 udelay(500);
3203 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3204 /* Without this, mode sets may fail silently on FDI */
3205 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3206 udelay(250);
3207 I915_WRITE(tc2reg, 0);
3208 if (wait_for(I915_READ(dslreg) != temp, 5))
3209 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3210 }
3211}
3212
f67a559d
JB
3213static void ironlake_crtc_enable(struct drm_crtc *crtc)
3214{
3215 struct drm_device *dev = crtc->dev;
3216 struct drm_i915_private *dev_priv = dev->dev_private;
3217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3218 struct intel_encoder *encoder;
f67a559d
JB
3219 int pipe = intel_crtc->pipe;
3220 int plane = intel_crtc->plane;
3221 u32 temp;
3222 bool is_pch_port;
3223
08a48469
DV
3224 WARN_ON(!crtc->enabled);
3225
f67a559d
JB
3226 if (intel_crtc->active)
3227 return;
3228
3229 intel_crtc->active = true;
3230 intel_update_watermarks(dev);
3231
3232 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3233 temp = I915_READ(PCH_LVDS);
3234 if ((temp & LVDS_PORT_EN) == 0)
3235 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3236 }
3237
fc316cbe 3238 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3239
46b6f814 3240 if (is_pch_port) {
fff367c7
DV
3241 /* Note: FDI PLL enabling _must_ be done before we enable the
3242 * cpu pipes, hence this is separate from all the other fdi/pch
3243 * enabling. */
88cefb6c 3244 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3245 } else {
3246 assert_fdi_tx_disabled(dev_priv, pipe);
3247 assert_fdi_rx_disabled(dev_priv, pipe);
3248 }
f67a559d 3249
bf49ec8c
DV
3250 for_each_encoder_on_crtc(dev, crtc, encoder)
3251 if (encoder->pre_enable)
3252 encoder->pre_enable(encoder);
3253
f67a559d
JB
3254 /* Enable panel fitting for LVDS */
3255 if (dev_priv->pch_pf_size &&
3256 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3257 /* Force use of hard-coded filter coefficients
3258 * as some pre-programmed values are broken,
3259 * e.g. x201.
3260 */
9db4a9c7
JB
3261 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3262 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3263 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3264 }
3265
9c54c0dd
JB
3266 /*
3267 * On ILK+ LUT must be loaded before the pipe is running but with
3268 * clocks enabled
3269 */
3270 intel_crtc_load_lut(crtc);
3271
f67a559d
JB
3272 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3273 intel_enable_plane(dev_priv, plane, pipe);
3274
3275 if (is_pch_port)
3276 ironlake_pch_enable(crtc);
c98e9dcf 3277
d1ebd816 3278 mutex_lock(&dev->struct_mutex);
bed4a673 3279 intel_update_fbc(dev);
d1ebd816
BW
3280 mutex_unlock(&dev->struct_mutex);
3281
6b383a7f 3282 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3283
fa5c73b1
DV
3284 for_each_encoder_on_crtc(dev, crtc, encoder)
3285 encoder->enable(encoder);
61b77ddd
DV
3286
3287 if (HAS_PCH_CPT(dev))
3288 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3289
3290 /*
3291 * There seems to be a race in PCH platform hw (at least on some
3292 * outputs) where an enabled pipe still completes any pageflip right
3293 * away (as if the pipe is off) instead of waiting for vblank. As soon
3294 * as the first vblank happend, everything works as expected. Hence just
3295 * wait for one vblank before returning to avoid strange things
3296 * happening.
3297 */
3298 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3299}
3300
4f771f10
PZ
3301static void haswell_crtc_enable(struct drm_crtc *crtc)
3302{
3303 struct drm_device *dev = crtc->dev;
3304 struct drm_i915_private *dev_priv = dev->dev_private;
3305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306 struct intel_encoder *encoder;
3307 int pipe = intel_crtc->pipe;
3308 int plane = intel_crtc->plane;
4f771f10
PZ
3309 bool is_pch_port;
3310
3311 WARN_ON(!crtc->enabled);
3312
3313 if (intel_crtc->active)
3314 return;
3315
3316 intel_crtc->active = true;
3317 intel_update_watermarks(dev);
3318
fc316cbe 3319 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3320
83616634 3321 if (is_pch_port)
4f771f10 3322 ironlake_fdi_pll_enable(intel_crtc);
4f771f10
PZ
3323
3324 for_each_encoder_on_crtc(dev, crtc, encoder)
3325 if (encoder->pre_enable)
3326 encoder->pre_enable(encoder);
3327
1f544388 3328 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3329
1f544388
PZ
3330 /* Enable panel fitting for eDP */
3331 if (dev_priv->pch_pf_size && HAS_eDP) {
4f771f10
PZ
3332 /* Force use of hard-coded filter coefficients
3333 * as some pre-programmed values are broken,
3334 * e.g. x201.
3335 */
3336 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3337 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3338 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3339 }
3340
3341 /*
3342 * On ILK+ LUT must be loaded before the pipe is running but with
3343 * clocks enabled
3344 */
3345 intel_crtc_load_lut(crtc);
3346
1f544388
PZ
3347 intel_ddi_set_pipe_settings(crtc);
3348 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3349
3350 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3351 intel_enable_plane(dev_priv, plane, pipe);
3352
3353 if (is_pch_port)
3354 ironlake_pch_enable(crtc);
3355
3356 mutex_lock(&dev->struct_mutex);
3357 intel_update_fbc(dev);
3358 mutex_unlock(&dev->struct_mutex);
3359
3360 intel_crtc_update_cursor(crtc, true);
3361
3362 for_each_encoder_on_crtc(dev, crtc, encoder)
3363 encoder->enable(encoder);
3364
4f771f10
PZ
3365 /*
3366 * There seems to be a race in PCH platform hw (at least on some
3367 * outputs) where an enabled pipe still completes any pageflip right
3368 * away (as if the pipe is off) instead of waiting for vblank. As soon
3369 * as the first vblank happend, everything works as expected. Hence just
3370 * wait for one vblank before returning to avoid strange things
3371 * happening.
3372 */
3373 intel_wait_for_vblank(dev, intel_crtc->pipe);
3374}
3375
6be4a607
JB
3376static void ironlake_crtc_disable(struct drm_crtc *crtc)
3377{
3378 struct drm_device *dev = crtc->dev;
3379 struct drm_i915_private *dev_priv = dev->dev_private;
3380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3381 struct intel_encoder *encoder;
6be4a607
JB
3382 int pipe = intel_crtc->pipe;
3383 int plane = intel_crtc->plane;
5eddb70b 3384 u32 reg, temp;
b52eb4dc 3385
ef9c3aee 3386
f7abfe8b
CW
3387 if (!intel_crtc->active)
3388 return;
3389
ea9d758d
DV
3390 for_each_encoder_on_crtc(dev, crtc, encoder)
3391 encoder->disable(encoder);
3392
e6c3a2a6 3393 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3394 drm_vblank_off(dev, pipe);
6b383a7f 3395 intel_crtc_update_cursor(crtc, false);
5eddb70b 3396
b24e7179 3397 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3398
973d04f9
CW
3399 if (dev_priv->cfb_plane == plane)
3400 intel_disable_fbc(dev);
2c07245f 3401
b24e7179 3402 intel_disable_pipe(dev_priv, pipe);
32f9d658 3403
6be4a607 3404 /* Disable PF */
9db4a9c7
JB
3405 I915_WRITE(PF_CTL(pipe), 0);
3406 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3407
bf49ec8c
DV
3408 for_each_encoder_on_crtc(dev, crtc, encoder)
3409 if (encoder->post_disable)
3410 encoder->post_disable(encoder);
3411
0fc932b8 3412 ironlake_fdi_disable(crtc);
2c07245f 3413
040484af 3414 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3415
6be4a607
JB
3416 if (HAS_PCH_CPT(dev)) {
3417 /* disable TRANS_DP_CTL */
5eddb70b
CW
3418 reg = TRANS_DP_CTL(pipe);
3419 temp = I915_READ(reg);
3420 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3421 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3422 I915_WRITE(reg, temp);
6be4a607
JB
3423
3424 /* disable DPLL_SEL */
3425 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3426 switch (pipe) {
3427 case 0:
d64311ab 3428 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3429 break;
3430 case 1:
6be4a607 3431 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3432 break;
3433 case 2:
4b645f14 3434 /* C shares PLL A or B */
d64311ab 3435 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3436 break;
3437 default:
3438 BUG(); /* wtf */
3439 }
6be4a607 3440 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3441 }
e3421a18 3442
6be4a607 3443 /* disable PCH DPLL */
ee7b9f93 3444 intel_disable_pch_pll(intel_crtc);
8db9d77b 3445
88cefb6c 3446 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3447
f7abfe8b 3448 intel_crtc->active = false;
6b383a7f 3449 intel_update_watermarks(dev);
d1ebd816
BW
3450
3451 mutex_lock(&dev->struct_mutex);
6b383a7f 3452 intel_update_fbc(dev);
d1ebd816 3453 mutex_unlock(&dev->struct_mutex);
6be4a607 3454}
1b3c7a47 3455
4f771f10
PZ
3456static void haswell_crtc_disable(struct drm_crtc *crtc)
3457{
3458 struct drm_device *dev = crtc->dev;
3459 struct drm_i915_private *dev_priv = dev->dev_private;
3460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3461 struct intel_encoder *encoder;
3462 int pipe = intel_crtc->pipe;
3463 int plane = intel_crtc->plane;
ad80a810 3464 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3465 bool is_pch_port;
4f771f10
PZ
3466
3467 if (!intel_crtc->active)
3468 return;
3469
83616634
PZ
3470 is_pch_port = haswell_crtc_driving_pch(crtc);
3471
4f771f10
PZ
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 encoder->disable(encoder);
3474
3475 intel_crtc_wait_for_pending_flips(crtc);
3476 drm_vblank_off(dev, pipe);
3477 intel_crtc_update_cursor(crtc, false);
3478
3479 intel_disable_plane(dev_priv, plane, pipe);
3480
3481 if (dev_priv->cfb_plane == plane)
3482 intel_disable_fbc(dev);
3483
3484 intel_disable_pipe(dev_priv, pipe);
3485
ad80a810 3486 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3487
3488 /* Disable PF */
3489 I915_WRITE(PF_CTL(pipe), 0);
3490 I915_WRITE(PF_WIN_SZ(pipe), 0);
3491
1f544388 3492 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3493
3494 for_each_encoder_on_crtc(dev, crtc, encoder)
3495 if (encoder->post_disable)
3496 encoder->post_disable(encoder);
3497
83616634
PZ
3498 if (is_pch_port) {
3499 ironlake_fdi_disable(crtc);
3500 intel_disable_transcoder(dev_priv, pipe);
3501 intel_disable_pch_pll(intel_crtc);
3502 ironlake_fdi_pll_disable(intel_crtc);
3503 }
4f771f10
PZ
3504
3505 intel_crtc->active = false;
3506 intel_update_watermarks(dev);
3507
3508 mutex_lock(&dev->struct_mutex);
3509 intel_update_fbc(dev);
3510 mutex_unlock(&dev->struct_mutex);
3511}
3512
ee7b9f93
JB
3513static void ironlake_crtc_off(struct drm_crtc *crtc)
3514{
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 intel_put_pch_pll(intel_crtc);
3517}
3518
6441ab5f
PZ
3519static void haswell_crtc_off(struct drm_crtc *crtc)
3520{
a5c961d1
PZ
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522
3523 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3524 * start using it. */
3525 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3526
6441ab5f
PZ
3527 intel_ddi_put_crtc_pll(crtc);
3528}
3529
02e792fb
DV
3530static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3531{
02e792fb 3532 if (!enable && intel_crtc->overlay) {
23f09ce3 3533 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3534 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3535
23f09ce3 3536 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3537 dev_priv->mm.interruptible = false;
3538 (void) intel_overlay_switch_off(intel_crtc->overlay);
3539 dev_priv->mm.interruptible = true;
23f09ce3 3540 mutex_unlock(&dev->struct_mutex);
02e792fb 3541 }
02e792fb 3542
5dcdbcb0
CW
3543 /* Let userspace switch the overlay on again. In most cases userspace
3544 * has to recompute where to put it anyway.
3545 */
02e792fb
DV
3546}
3547
0b8765c6 3548static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3549{
3550 struct drm_device *dev = crtc->dev;
79e53945
JB
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3553 struct intel_encoder *encoder;
79e53945 3554 int pipe = intel_crtc->pipe;
80824003 3555 int plane = intel_crtc->plane;
79e53945 3556
08a48469
DV
3557 WARN_ON(!crtc->enabled);
3558
f7abfe8b
CW
3559 if (intel_crtc->active)
3560 return;
3561
3562 intel_crtc->active = true;
6b383a7f
CW
3563 intel_update_watermarks(dev);
3564
63d7bbe9 3565 intel_enable_pll(dev_priv, pipe);
040484af 3566 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3567 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3568
0b8765c6 3569 intel_crtc_load_lut(crtc);
bed4a673 3570 intel_update_fbc(dev);
79e53945 3571
0b8765c6
JB
3572 /* Give the overlay scaler a chance to enable if it's on this pipe */
3573 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3574 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3575
fa5c73b1
DV
3576 for_each_encoder_on_crtc(dev, crtc, encoder)
3577 encoder->enable(encoder);
0b8765c6 3578}
79e53945 3579
0b8765c6
JB
3580static void i9xx_crtc_disable(struct drm_crtc *crtc)
3581{
3582 struct drm_device *dev = crtc->dev;
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3585 struct intel_encoder *encoder;
0b8765c6
JB
3586 int pipe = intel_crtc->pipe;
3587 int plane = intel_crtc->plane;
b690e96c 3588
ef9c3aee 3589
f7abfe8b
CW
3590 if (!intel_crtc->active)
3591 return;
3592
ea9d758d
DV
3593 for_each_encoder_on_crtc(dev, crtc, encoder)
3594 encoder->disable(encoder);
3595
0b8765c6 3596 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3597 intel_crtc_wait_for_pending_flips(crtc);
3598 drm_vblank_off(dev, pipe);
0b8765c6 3599 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3600 intel_crtc_update_cursor(crtc, false);
0b8765c6 3601
973d04f9
CW
3602 if (dev_priv->cfb_plane == plane)
3603 intel_disable_fbc(dev);
79e53945 3604
b24e7179 3605 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3606 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3607 intel_disable_pll(dev_priv, pipe);
0b8765c6 3608
f7abfe8b 3609 intel_crtc->active = false;
6b383a7f
CW
3610 intel_update_fbc(dev);
3611 intel_update_watermarks(dev);
0b8765c6
JB
3612}
3613
ee7b9f93
JB
3614static void i9xx_crtc_off(struct drm_crtc *crtc)
3615{
3616}
3617
976f8a20
DV
3618static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3619 bool enabled)
2c07245f
ZW
3620{
3621 struct drm_device *dev = crtc->dev;
3622 struct drm_i915_master_private *master_priv;
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624 int pipe = intel_crtc->pipe;
79e53945
JB
3625
3626 if (!dev->primary->master)
3627 return;
3628
3629 master_priv = dev->primary->master->driver_priv;
3630 if (!master_priv->sarea_priv)
3631 return;
3632
79e53945
JB
3633 switch (pipe) {
3634 case 0:
3635 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3636 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3637 break;
3638 case 1:
3639 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3640 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3641 break;
3642 default:
9db4a9c7 3643 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3644 break;
3645 }
79e53945
JB
3646}
3647
976f8a20
DV
3648/**
3649 * Sets the power management mode of the pipe and plane.
3650 */
3651void intel_crtc_update_dpms(struct drm_crtc *crtc)
3652{
3653 struct drm_device *dev = crtc->dev;
3654 struct drm_i915_private *dev_priv = dev->dev_private;
3655 struct intel_encoder *intel_encoder;
3656 bool enable = false;
3657
3658 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3659 enable |= intel_encoder->connectors_active;
3660
3661 if (enable)
3662 dev_priv->display.crtc_enable(crtc);
3663 else
3664 dev_priv->display.crtc_disable(crtc);
3665
3666 intel_crtc_update_sarea(crtc, enable);
3667}
3668
3669static void intel_crtc_noop(struct drm_crtc *crtc)
3670{
3671}
3672
cdd59983
CW
3673static void intel_crtc_disable(struct drm_crtc *crtc)
3674{
cdd59983 3675 struct drm_device *dev = crtc->dev;
976f8a20 3676 struct drm_connector *connector;
ee7b9f93 3677 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3678
976f8a20
DV
3679 /* crtc should still be enabled when we disable it. */
3680 WARN_ON(!crtc->enabled);
3681
3682 dev_priv->display.crtc_disable(crtc);
3683 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3684 dev_priv->display.off(crtc);
3685
931872fc
CW
3686 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3687 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3688
3689 if (crtc->fb) {
3690 mutex_lock(&dev->struct_mutex);
1690e1eb 3691 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3692 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3693 crtc->fb = NULL;
3694 }
3695
3696 /* Update computed state. */
3697 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3698 if (!connector->encoder || !connector->encoder->crtc)
3699 continue;
3700
3701 if (connector->encoder->crtc != crtc)
3702 continue;
3703
3704 connector->dpms = DRM_MODE_DPMS_OFF;
3705 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3706 }
3707}
3708
a261b246 3709void intel_modeset_disable(struct drm_device *dev)
79e53945 3710{
a261b246
DV
3711 struct drm_crtc *crtc;
3712
3713 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3714 if (crtc->enabled)
3715 intel_crtc_disable(crtc);
3716 }
79e53945
JB
3717}
3718
1f703855 3719void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3720{
7e7d76c3
JB
3721}
3722
ea5b213a 3723void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3724{
4ef69c7a 3725 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3726
ea5b213a
CW
3727 drm_encoder_cleanup(encoder);
3728 kfree(intel_encoder);
7e7d76c3
JB
3729}
3730
5ab432ef
DV
3731/* Simple dpms helper for encodres with just one connector, no cloning and only
3732 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3733 * state of the entire output pipe. */
3734void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3735{
5ab432ef
DV
3736 if (mode == DRM_MODE_DPMS_ON) {
3737 encoder->connectors_active = true;
3738
b2cabb0e 3739 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3740 } else {
3741 encoder->connectors_active = false;
3742
b2cabb0e 3743 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3744 }
79e53945
JB
3745}
3746
0a91ca29
DV
3747/* Cross check the actual hw state with our own modeset state tracking (and it's
3748 * internal consistency). */
b980514c 3749static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3750{
0a91ca29
DV
3751 if (connector->get_hw_state(connector)) {
3752 struct intel_encoder *encoder = connector->encoder;
3753 struct drm_crtc *crtc;
3754 bool encoder_enabled;
3755 enum pipe pipe;
3756
3757 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3758 connector->base.base.id,
3759 drm_get_connector_name(&connector->base));
3760
3761 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3762 "wrong connector dpms state\n");
3763 WARN(connector->base.encoder != &encoder->base,
3764 "active connector not linked to encoder\n");
3765 WARN(!encoder->connectors_active,
3766 "encoder->connectors_active not set\n");
3767
3768 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3769 WARN(!encoder_enabled, "encoder not enabled\n");
3770 if (WARN_ON(!encoder->base.crtc))
3771 return;
3772
3773 crtc = encoder->base.crtc;
3774
3775 WARN(!crtc->enabled, "crtc not enabled\n");
3776 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3777 WARN(pipe != to_intel_crtc(crtc)->pipe,
3778 "encoder active on the wrong pipe\n");
3779 }
79e53945
JB
3780}
3781
5ab432ef
DV
3782/* Even simpler default implementation, if there's really no special case to
3783 * consider. */
3784void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3785{
5ab432ef 3786 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3787
5ab432ef
DV
3788 /* All the simple cases only support two dpms states. */
3789 if (mode != DRM_MODE_DPMS_ON)
3790 mode = DRM_MODE_DPMS_OFF;
d4270e57 3791
5ab432ef
DV
3792 if (mode == connector->dpms)
3793 return;
3794
3795 connector->dpms = mode;
3796
3797 /* Only need to change hw state when actually enabled */
3798 if (encoder->base.crtc)
3799 intel_encoder_dpms(encoder, mode);
3800 else
8af6cf88 3801 WARN_ON(encoder->connectors_active != false);
0a91ca29 3802
b980514c 3803 intel_modeset_check_state(connector->dev);
79e53945
JB
3804}
3805
f0947c37
DV
3806/* Simple connector->get_hw_state implementation for encoders that support only
3807 * one connector and no cloning and hence the encoder state determines the state
3808 * of the connector. */
3809bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3810{
24929352 3811 enum pipe pipe = 0;
f0947c37 3812 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3813
f0947c37 3814 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3815}
3816
79e53945 3817static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3818 const struct drm_display_mode *mode,
79e53945
JB
3819 struct drm_display_mode *adjusted_mode)
3820{
2c07245f 3821 struct drm_device *dev = crtc->dev;
89749350 3822
bad720ff 3823 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3824 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3825 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3826 return false;
2c07245f 3827 }
89749350 3828
f9bef081
DV
3829 /* All interlaced capable intel hw wants timings in frames. Note though
3830 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3831 * timings, so we need to be careful not to clobber these.*/
3832 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3833 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3834
44f46b42
CW
3835 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3836 * with a hsync front porch of 0.
3837 */
3838 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3839 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3840 return false;
3841
79e53945
JB
3842 return true;
3843}
3844
25eb05fc
JB
3845static int valleyview_get_display_clock_speed(struct drm_device *dev)
3846{
3847 return 400000; /* FIXME */
3848}
3849
e70236a8
JB
3850static int i945_get_display_clock_speed(struct drm_device *dev)
3851{
3852 return 400000;
3853}
79e53945 3854
e70236a8 3855static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3856{
e70236a8
JB
3857 return 333000;
3858}
79e53945 3859
e70236a8
JB
3860static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3861{
3862 return 200000;
3863}
79e53945 3864
e70236a8
JB
3865static int i915gm_get_display_clock_speed(struct drm_device *dev)
3866{
3867 u16 gcfgc = 0;
79e53945 3868
e70236a8
JB
3869 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3870
3871 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3872 return 133000;
3873 else {
3874 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3875 case GC_DISPLAY_CLOCK_333_MHZ:
3876 return 333000;
3877 default:
3878 case GC_DISPLAY_CLOCK_190_200_MHZ:
3879 return 190000;
79e53945 3880 }
e70236a8
JB
3881 }
3882}
3883
3884static int i865_get_display_clock_speed(struct drm_device *dev)
3885{
3886 return 266000;
3887}
3888
3889static int i855_get_display_clock_speed(struct drm_device *dev)
3890{
3891 u16 hpllcc = 0;
3892 /* Assume that the hardware is in the high speed state. This
3893 * should be the default.
3894 */
3895 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3896 case GC_CLOCK_133_200:
3897 case GC_CLOCK_100_200:
3898 return 200000;
3899 case GC_CLOCK_166_250:
3900 return 250000;
3901 case GC_CLOCK_100_133:
79e53945 3902 return 133000;
e70236a8 3903 }
79e53945 3904
e70236a8
JB
3905 /* Shouldn't happen */
3906 return 0;
3907}
79e53945 3908
e70236a8
JB
3909static int i830_get_display_clock_speed(struct drm_device *dev)
3910{
3911 return 133000;
79e53945
JB
3912}
3913
2c07245f
ZW
3914struct fdi_m_n {
3915 u32 tu;
3916 u32 gmch_m;
3917 u32 gmch_n;
3918 u32 link_m;
3919 u32 link_n;
3920};
3921
3922static void
3923fdi_reduce_ratio(u32 *num, u32 *den)
3924{
3925 while (*num > 0xffffff || *den > 0xffffff) {
3926 *num >>= 1;
3927 *den >>= 1;
3928 }
3929}
3930
2c07245f 3931static void
f2b115e6
AJ
3932ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3933 int link_clock, struct fdi_m_n *m_n)
2c07245f 3934{
2c07245f
ZW
3935 m_n->tu = 64; /* default size */
3936
22ed1113
CW
3937 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3938 m_n->gmch_m = bits_per_pixel * pixel_clock;
3939 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3940 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3941
22ed1113
CW
3942 m_n->link_m = pixel_clock;
3943 m_n->link_n = link_clock;
2c07245f
ZW
3944 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3945}
3946
a7615030
CW
3947static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3948{
72bbe58c
KP
3949 if (i915_panel_use_ssc >= 0)
3950 return i915_panel_use_ssc != 0;
3951 return dev_priv->lvds_use_ssc
435793df 3952 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3953}
3954
5a354204
JB
3955/**
3956 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3957 * @crtc: CRTC structure
3b5c78a3 3958 * @mode: requested mode
5a354204
JB
3959 *
3960 * A pipe may be connected to one or more outputs. Based on the depth of the
3961 * attached framebuffer, choose a good color depth to use on the pipe.
3962 *
3963 * If possible, match the pipe depth to the fb depth. In some cases, this
3964 * isn't ideal, because the connected output supports a lesser or restricted
3965 * set of depths. Resolve that here:
3966 * LVDS typically supports only 6bpc, so clamp down in that case
3967 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3968 * Displays may support a restricted set as well, check EDID and clamp as
3969 * appropriate.
3b5c78a3 3970 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3971 *
3972 * RETURNS:
3973 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3974 * true if they don't match).
3975 */
3976static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3977 struct drm_framebuffer *fb,
3b5c78a3
AJ
3978 unsigned int *pipe_bpp,
3979 struct drm_display_mode *mode)
5a354204
JB
3980{
3981 struct drm_device *dev = crtc->dev;
3982 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3983 struct drm_connector *connector;
6c2b7c12 3984 struct intel_encoder *intel_encoder;
5a354204
JB
3985 unsigned int display_bpc = UINT_MAX, bpc;
3986
3987 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3988 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3989
3990 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3991 unsigned int lvds_bpc;
3992
3993 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3994 LVDS_A3_POWER_UP)
3995 lvds_bpc = 8;
3996 else
3997 lvds_bpc = 6;
3998
3999 if (lvds_bpc < display_bpc) {
82820490 4000 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4001 display_bpc = lvds_bpc;
4002 }
4003 continue;
4004 }
4005
5a354204
JB
4006 /* Not one of the known troublemakers, check the EDID */
4007 list_for_each_entry(connector, &dev->mode_config.connector_list,
4008 head) {
6c2b7c12 4009 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4010 continue;
4011
62ac41a6
JB
4012 /* Don't use an invalid EDID bpc value */
4013 if (connector->display_info.bpc &&
4014 connector->display_info.bpc < display_bpc) {
82820490 4015 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4016 display_bpc = connector->display_info.bpc;
4017 }
4018 }
4019
4020 /*
4021 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4022 * through, clamp it down. (Note: >12bpc will be caught below.)
4023 */
4024 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4025 if (display_bpc > 8 && display_bpc < 12) {
82820490 4026 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4027 display_bpc = 12;
4028 } else {
82820490 4029 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4030 display_bpc = 8;
4031 }
4032 }
4033 }
4034
3b5c78a3
AJ
4035 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4036 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4037 display_bpc = 6;
4038 }
4039
5a354204
JB
4040 /*
4041 * We could just drive the pipe at the highest bpc all the time and
4042 * enable dithering as needed, but that costs bandwidth. So choose
4043 * the minimum value that expresses the full color range of the fb but
4044 * also stays within the max display bpc discovered above.
4045 */
4046
94352cf9 4047 switch (fb->depth) {
5a354204
JB
4048 case 8:
4049 bpc = 8; /* since we go through a colormap */
4050 break;
4051 case 15:
4052 case 16:
4053 bpc = 6; /* min is 18bpp */
4054 break;
4055 case 24:
578393cd 4056 bpc = 8;
5a354204
JB
4057 break;
4058 case 30:
578393cd 4059 bpc = 10;
5a354204
JB
4060 break;
4061 case 48:
578393cd 4062 bpc = 12;
5a354204
JB
4063 break;
4064 default:
4065 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4066 bpc = min((unsigned int)8, display_bpc);
4067 break;
4068 }
4069
578393cd
KP
4070 display_bpc = min(display_bpc, bpc);
4071
82820490
AJ
4072 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4073 bpc, display_bpc);
5a354204 4074
578393cd 4075 *pipe_bpp = display_bpc * 3;
5a354204
JB
4076
4077 return display_bpc != bpc;
4078}
4079
a0c4da24
JB
4080static int vlv_get_refclk(struct drm_crtc *crtc)
4081{
4082 struct drm_device *dev = crtc->dev;
4083 struct drm_i915_private *dev_priv = dev->dev_private;
4084 int refclk = 27000; /* for DP & HDMI */
4085
4086 return 100000; /* only one validated so far */
4087
4088 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4089 refclk = 96000;
4090 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4091 if (intel_panel_use_ssc(dev_priv))
4092 refclk = 100000;
4093 else
4094 refclk = 96000;
4095 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4096 refclk = 100000;
4097 }
4098
4099 return refclk;
4100}
4101
c65d77d8
JB
4102static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4103{
4104 struct drm_device *dev = crtc->dev;
4105 struct drm_i915_private *dev_priv = dev->dev_private;
4106 int refclk;
4107
a0c4da24
JB
4108 if (IS_VALLEYVIEW(dev)) {
4109 refclk = vlv_get_refclk(crtc);
4110 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4111 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4112 refclk = dev_priv->lvds_ssc_freq * 1000;
4113 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4114 refclk / 1000);
4115 } else if (!IS_GEN2(dev)) {
4116 refclk = 96000;
4117 } else {
4118 refclk = 48000;
4119 }
4120
4121 return refclk;
4122}
4123
4124static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4125 intel_clock_t *clock)
4126{
4127 /* SDVO TV has fixed PLL values depend on its clock range,
4128 this mirrors vbios setting. */
4129 if (adjusted_mode->clock >= 100000
4130 && adjusted_mode->clock < 140500) {
4131 clock->p1 = 2;
4132 clock->p2 = 10;
4133 clock->n = 3;
4134 clock->m1 = 16;
4135 clock->m2 = 8;
4136 } else if (adjusted_mode->clock >= 140500
4137 && adjusted_mode->clock <= 200000) {
4138 clock->p1 = 1;
4139 clock->p2 = 10;
4140 clock->n = 6;
4141 clock->m1 = 12;
4142 clock->m2 = 8;
4143 }
4144}
4145
a7516a05
JB
4146static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4147 intel_clock_t *clock,
4148 intel_clock_t *reduced_clock)
4149{
4150 struct drm_device *dev = crtc->dev;
4151 struct drm_i915_private *dev_priv = dev->dev_private;
4152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4153 int pipe = intel_crtc->pipe;
4154 u32 fp, fp2 = 0;
4155
4156 if (IS_PINEVIEW(dev)) {
4157 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4158 if (reduced_clock)
4159 fp2 = (1 << reduced_clock->n) << 16 |
4160 reduced_clock->m1 << 8 | reduced_clock->m2;
4161 } else {
4162 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4163 if (reduced_clock)
4164 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4165 reduced_clock->m2;
4166 }
4167
4168 I915_WRITE(FP0(pipe), fp);
4169
4170 intel_crtc->lowfreq_avail = false;
4171 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4172 reduced_clock && i915_powersave) {
4173 I915_WRITE(FP1(pipe), fp2);
4174 intel_crtc->lowfreq_avail = true;
4175 } else {
4176 I915_WRITE(FP1(pipe), fp);
4177 }
4178}
4179
93e537a1
DV
4180static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4181 struct drm_display_mode *adjusted_mode)
4182{
4183 struct drm_device *dev = crtc->dev;
4184 struct drm_i915_private *dev_priv = dev->dev_private;
4185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186 int pipe = intel_crtc->pipe;
284d5df5 4187 u32 temp;
93e537a1
DV
4188
4189 temp = I915_READ(LVDS);
4190 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4191 if (pipe == 1) {
4192 temp |= LVDS_PIPEB_SELECT;
4193 } else {
4194 temp &= ~LVDS_PIPEB_SELECT;
4195 }
4196 /* set the corresponsding LVDS_BORDER bit */
4197 temp |= dev_priv->lvds_border_bits;
4198 /* Set the B0-B3 data pairs corresponding to whether we're going to
4199 * set the DPLLs for dual-channel mode or not.
4200 */
4201 if (clock->p2 == 7)
4202 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4203 else
4204 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4205
4206 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4207 * appropriately here, but we need to look more thoroughly into how
4208 * panels behave in the two modes.
4209 */
4210 /* set the dithering flag on LVDS as needed */
4211 if (INTEL_INFO(dev)->gen >= 4) {
4212 if (dev_priv->lvds_dither)
4213 temp |= LVDS_ENABLE_DITHER;
4214 else
4215 temp &= ~LVDS_ENABLE_DITHER;
4216 }
284d5df5 4217 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4218 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4219 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4220 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4221 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4222 I915_WRITE(LVDS, temp);
4223}
4224
a0c4da24
JB
4225static void vlv_update_pll(struct drm_crtc *crtc,
4226 struct drm_display_mode *mode,
4227 struct drm_display_mode *adjusted_mode,
4228 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4229 int num_connectors)
a0c4da24
JB
4230{
4231 struct drm_device *dev = crtc->dev;
4232 struct drm_i915_private *dev_priv = dev->dev_private;
4233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234 int pipe = intel_crtc->pipe;
4235 u32 dpll, mdiv, pdiv;
4236 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4237 bool is_sdvo;
4238 u32 temp;
4239
4240 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4241 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4242
2a8f64ca
VP
4243 dpll = DPLL_VGA_MODE_DIS;
4244 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4245 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4246 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4247
4248 I915_WRITE(DPLL(pipe), dpll);
4249 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4250
4251 bestn = clock->n;
4252 bestm1 = clock->m1;
4253 bestm2 = clock->m2;
4254 bestp1 = clock->p1;
4255 bestp2 = clock->p2;
4256
2a8f64ca
VP
4257 /*
4258 * In Valleyview PLL and program lane counter registers are exposed
4259 * through DPIO interface
4260 */
a0c4da24
JB
4261 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4262 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4263 mdiv |= ((bestn << DPIO_N_SHIFT));
4264 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4265 mdiv |= (1 << DPIO_K_SHIFT);
4266 mdiv |= DPIO_ENABLE_CALIBRATION;
4267 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4268
4269 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4270
2a8f64ca 4271 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4272 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4273 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4274 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4275 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4276
2a8f64ca 4277 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4278
4279 dpll |= DPLL_VCO_ENABLE;
4280 I915_WRITE(DPLL(pipe), dpll);
4281 POSTING_READ(DPLL(pipe));
4282 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4283 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4284
2a8f64ca
VP
4285 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4286
4287 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4288 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4289
4290 I915_WRITE(DPLL(pipe), dpll);
4291
4292 /* Wait for the clocks to stabilize. */
4293 POSTING_READ(DPLL(pipe));
4294 udelay(150);
a0c4da24 4295
2a8f64ca
VP
4296 temp = 0;
4297 if (is_sdvo) {
4298 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4299 if (temp > 1)
4300 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4301 else
4302 temp = 0;
a0c4da24 4303 }
2a8f64ca
VP
4304 I915_WRITE(DPLL_MD(pipe), temp);
4305 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4306
2a8f64ca
VP
4307 /* Now program lane control registers */
4308 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4309 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4310 {
4311 temp = 0x1000C4;
4312 if(pipe == 1)
4313 temp |= (1 << 21);
4314 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4315 }
4316 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4317 {
4318 temp = 0x1000C4;
4319 if(pipe == 1)
4320 temp |= (1 << 21);
4321 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4322 }
a0c4da24
JB
4323}
4324
eb1cbe48
DV
4325static void i9xx_update_pll(struct drm_crtc *crtc,
4326 struct drm_display_mode *mode,
4327 struct drm_display_mode *adjusted_mode,
4328 intel_clock_t *clock, intel_clock_t *reduced_clock,
4329 int num_connectors)
4330{
4331 struct drm_device *dev = crtc->dev;
4332 struct drm_i915_private *dev_priv = dev->dev_private;
4333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4334 int pipe = intel_crtc->pipe;
4335 u32 dpll;
4336 bool is_sdvo;
4337
2a8f64ca
VP
4338 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4339
eb1cbe48
DV
4340 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4341 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4342
4343 dpll = DPLL_VGA_MODE_DIS;
4344
4345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4346 dpll |= DPLLB_MODE_LVDS;
4347 else
4348 dpll |= DPLLB_MODE_DAC_SERIAL;
4349 if (is_sdvo) {
4350 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4351 if (pixel_multiplier > 1) {
4352 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4353 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4354 }
4355 dpll |= DPLL_DVO_HIGH_SPEED;
4356 }
4357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4358 dpll |= DPLL_DVO_HIGH_SPEED;
4359
4360 /* compute bitmask from p1 value */
4361 if (IS_PINEVIEW(dev))
4362 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4363 else {
4364 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4365 if (IS_G4X(dev) && reduced_clock)
4366 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4367 }
4368 switch (clock->p2) {
4369 case 5:
4370 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4371 break;
4372 case 7:
4373 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4374 break;
4375 case 10:
4376 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4377 break;
4378 case 14:
4379 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4380 break;
4381 }
4382 if (INTEL_INFO(dev)->gen >= 4)
4383 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4384
4385 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4386 dpll |= PLL_REF_INPUT_TVCLKINBC;
4387 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4388 /* XXX: just matching BIOS for now */
4389 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4390 dpll |= 3;
4391 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4392 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4393 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4394 else
4395 dpll |= PLL_REF_INPUT_DREFCLK;
4396
4397 dpll |= DPLL_VCO_ENABLE;
4398 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4399 POSTING_READ(DPLL(pipe));
4400 udelay(150);
4401
4402 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4403 * This is an exception to the general rule that mode_set doesn't turn
4404 * things on.
4405 */
4406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4407 intel_update_lvds(crtc, clock, adjusted_mode);
4408
4409 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4410 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4411
4412 I915_WRITE(DPLL(pipe), dpll);
4413
4414 /* Wait for the clocks to stabilize. */
4415 POSTING_READ(DPLL(pipe));
4416 udelay(150);
4417
4418 if (INTEL_INFO(dev)->gen >= 4) {
4419 u32 temp = 0;
4420 if (is_sdvo) {
4421 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4422 if (temp > 1)
4423 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4424 else
4425 temp = 0;
4426 }
4427 I915_WRITE(DPLL_MD(pipe), temp);
4428 } else {
4429 /* The pixel multiplier can only be updated once the
4430 * DPLL is enabled and the clocks are stable.
4431 *
4432 * So write it again.
4433 */
4434 I915_WRITE(DPLL(pipe), dpll);
4435 }
4436}
4437
4438static void i8xx_update_pll(struct drm_crtc *crtc,
4439 struct drm_display_mode *adjusted_mode,
2a8f64ca 4440 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4441 int num_connectors)
4442{
4443 struct drm_device *dev = crtc->dev;
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4446 int pipe = intel_crtc->pipe;
4447 u32 dpll;
4448
2a8f64ca
VP
4449 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4450
eb1cbe48
DV
4451 dpll = DPLL_VGA_MODE_DIS;
4452
4453 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4454 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4455 } else {
4456 if (clock->p1 == 2)
4457 dpll |= PLL_P1_DIVIDE_BY_TWO;
4458 else
4459 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4460 if (clock->p2 == 4)
4461 dpll |= PLL_P2_DIVIDE_BY_4;
4462 }
4463
4464 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4465 /* XXX: just matching BIOS for now */
4466 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4467 dpll |= 3;
4468 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4469 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4470 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4471 else
4472 dpll |= PLL_REF_INPUT_DREFCLK;
4473
4474 dpll |= DPLL_VCO_ENABLE;
4475 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4476 POSTING_READ(DPLL(pipe));
4477 udelay(150);
4478
eb1cbe48
DV
4479 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4480 * This is an exception to the general rule that mode_set doesn't turn
4481 * things on.
4482 */
4483 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4484 intel_update_lvds(crtc, clock, adjusted_mode);
4485
5b5896e4
DV
4486 I915_WRITE(DPLL(pipe), dpll);
4487
4488 /* Wait for the clocks to stabilize. */
4489 POSTING_READ(DPLL(pipe));
4490 udelay(150);
4491
eb1cbe48
DV
4492 /* The pixel multiplier can only be updated once the
4493 * DPLL is enabled and the clocks are stable.
4494 *
4495 * So write it again.
4496 */
4497 I915_WRITE(DPLL(pipe), dpll);
4498}
4499
b0e77b9c
PZ
4500static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4501 struct drm_display_mode *mode,
4502 struct drm_display_mode *adjusted_mode)
4503{
4504 struct drm_device *dev = intel_crtc->base.dev;
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4507 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4508 uint32_t vsyncshift;
4509
4510 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4511 /* the chip adds 2 halflines automatically */
4512 adjusted_mode->crtc_vtotal -= 1;
4513 adjusted_mode->crtc_vblank_end -= 1;
4514 vsyncshift = adjusted_mode->crtc_hsync_start
4515 - adjusted_mode->crtc_htotal / 2;
4516 } else {
4517 vsyncshift = 0;
4518 }
4519
4520 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4521 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4522
fe2b8f9d 4523 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4524 (adjusted_mode->crtc_hdisplay - 1) |
4525 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4526 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4527 (adjusted_mode->crtc_hblank_start - 1) |
4528 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4529 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4530 (adjusted_mode->crtc_hsync_start - 1) |
4531 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4532
fe2b8f9d 4533 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4534 (adjusted_mode->crtc_vdisplay - 1) |
4535 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4536 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4537 (adjusted_mode->crtc_vblank_start - 1) |
4538 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4539 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4540 (adjusted_mode->crtc_vsync_start - 1) |
4541 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4542
b5e508d4
PZ
4543 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4544 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4545 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4546 * bits. */
4547 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4548 (pipe == PIPE_B || pipe == PIPE_C))
4549 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4550
b0e77b9c
PZ
4551 /* pipesrc controls the size that is scaled from, which should
4552 * always be the user's requested size.
4553 */
4554 I915_WRITE(PIPESRC(pipe),
4555 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4556}
4557
f564048e
EA
4558static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4559 struct drm_display_mode *mode,
4560 struct drm_display_mode *adjusted_mode,
4561 int x, int y,
94352cf9 4562 struct drm_framebuffer *fb)
79e53945
JB
4563{
4564 struct drm_device *dev = crtc->dev;
4565 struct drm_i915_private *dev_priv = dev->dev_private;
4566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4567 int pipe = intel_crtc->pipe;
80824003 4568 int plane = intel_crtc->plane;
c751ce4f 4569 int refclk, num_connectors = 0;
652c393a 4570 intel_clock_t clock, reduced_clock;
b0e77b9c 4571 u32 dspcntr, pipeconf;
eb1cbe48
DV
4572 bool ok, has_reduced_clock = false, is_sdvo = false;
4573 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4574 struct intel_encoder *encoder;
d4906093 4575 const intel_limit_t *limit;
5c3b82e2 4576 int ret;
79e53945 4577
6c2b7c12 4578 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4579 switch (encoder->type) {
79e53945
JB
4580 case INTEL_OUTPUT_LVDS:
4581 is_lvds = true;
4582 break;
4583 case INTEL_OUTPUT_SDVO:
7d57382e 4584 case INTEL_OUTPUT_HDMI:
79e53945 4585 is_sdvo = true;
5eddb70b 4586 if (encoder->needs_tv_clock)
e2f0ba97 4587 is_tv = true;
79e53945 4588 break;
79e53945
JB
4589 case INTEL_OUTPUT_TVOUT:
4590 is_tv = true;
4591 break;
a4fc5ed6
KP
4592 case INTEL_OUTPUT_DISPLAYPORT:
4593 is_dp = true;
4594 break;
79e53945 4595 }
43565a06 4596
c751ce4f 4597 num_connectors++;
79e53945
JB
4598 }
4599
c65d77d8 4600 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4601
d4906093
ML
4602 /*
4603 * Returns a set of divisors for the desired target clock with the given
4604 * refclk, or FALSE. The returned values represent the clock equation:
4605 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4606 */
1b894b59 4607 limit = intel_limit(crtc, refclk);
cec2f356
SP
4608 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4609 &clock);
79e53945
JB
4610 if (!ok) {
4611 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4612 return -EINVAL;
79e53945
JB
4613 }
4614
cda4b7d3 4615 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4616 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4617
ddc9003c 4618 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4619 /*
4620 * Ensure we match the reduced clock's P to the target clock.
4621 * If the clocks don't match, we can't switch the display clock
4622 * by using the FP0/FP1. In such case we will disable the LVDS
4623 * downclock feature.
4624 */
ddc9003c 4625 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4626 dev_priv->lvds_downclock,
4627 refclk,
cec2f356 4628 &clock,
5eddb70b 4629 &reduced_clock);
7026d4ac
ZW
4630 }
4631
c65d77d8
JB
4632 if (is_sdvo && is_tv)
4633 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4634
eb1cbe48 4635 if (IS_GEN2(dev))
2a8f64ca
VP
4636 i8xx_update_pll(crtc, adjusted_mode, &clock,
4637 has_reduced_clock ? &reduced_clock : NULL,
4638 num_connectors);
a0c4da24 4639 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4640 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4641 has_reduced_clock ? &reduced_clock : NULL,
4642 num_connectors);
79e53945 4643 else
eb1cbe48
DV
4644 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4645 has_reduced_clock ? &reduced_clock : NULL,
4646 num_connectors);
79e53945
JB
4647
4648 /* setup pipeconf */
5eddb70b 4649 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4650
4651 /* Set up the display plane register */
4652 dspcntr = DISPPLANE_GAMMA_ENABLE;
4653
929c77fb
EA
4654 if (pipe == 0)
4655 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4656 else
4657 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4658
a6c45cf0 4659 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4660 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4661 * core speed.
4662 *
4663 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4664 * pipe == 0 check?
4665 */
e70236a8
JB
4666 if (mode->clock >
4667 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4668 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4669 else
5eddb70b 4670 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4671 }
4672
3b5c78a3
AJ
4673 /* default to 8bpc */
4674 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4675 if (is_dp) {
0c96c65b 4676 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4677 pipeconf |= PIPECONF_BPP_6 |
4678 PIPECONF_DITHER_EN |
4679 PIPECONF_DITHER_TYPE_SP;
4680 }
4681 }
4682
19c03924
GB
4683 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4684 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4685 pipeconf |= PIPECONF_BPP_6 |
4686 PIPECONF_ENABLE |
4687 I965_PIPECONF_ACTIVE;
4688 }
4689 }
4690
28c97730 4691 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4692 drm_mode_debug_printmodeline(mode);
4693
a7516a05
JB
4694 if (HAS_PIPE_CXSR(dev)) {
4695 if (intel_crtc->lowfreq_avail) {
28c97730 4696 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4697 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4698 } else {
28c97730 4699 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4700 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4701 }
4702 }
4703
617cf884 4704 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4705 if (!IS_GEN2(dev) &&
b0e77b9c 4706 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4707 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4708 else
617cf884 4709 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4710
b0e77b9c 4711 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4712
4713 /* pipesrc and dspsize control the size that is scaled from,
4714 * which should always be the user's requested size.
79e53945 4715 */
929c77fb
EA
4716 I915_WRITE(DSPSIZE(plane),
4717 ((mode->vdisplay - 1) << 16) |
4718 (mode->hdisplay - 1));
4719 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4720
f564048e
EA
4721 I915_WRITE(PIPECONF(pipe), pipeconf);
4722 POSTING_READ(PIPECONF(pipe));
929c77fb 4723 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4724
4725 intel_wait_for_vblank(dev, pipe);
4726
f564048e
EA
4727 I915_WRITE(DSPCNTR(plane), dspcntr);
4728 POSTING_READ(DSPCNTR(plane));
4729
94352cf9 4730 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4731
4732 intel_update_watermarks(dev);
4733
f564048e
EA
4734 return ret;
4735}
4736
9fb526db
KP
4737/*
4738 * Initialize reference clocks when the driver loads
4739 */
4740void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4741{
4742 struct drm_i915_private *dev_priv = dev->dev_private;
4743 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4744 struct intel_encoder *encoder;
13d83a67
JB
4745 u32 temp;
4746 bool has_lvds = false;
199e5d79
KP
4747 bool has_cpu_edp = false;
4748 bool has_pch_edp = false;
4749 bool has_panel = false;
99eb6a01
KP
4750 bool has_ck505 = false;
4751 bool can_ssc = false;
13d83a67
JB
4752
4753 /* We need to take the global config into account */
199e5d79
KP
4754 list_for_each_entry(encoder, &mode_config->encoder_list,
4755 base.head) {
4756 switch (encoder->type) {
4757 case INTEL_OUTPUT_LVDS:
4758 has_panel = true;
4759 has_lvds = true;
4760 break;
4761 case INTEL_OUTPUT_EDP:
4762 has_panel = true;
4763 if (intel_encoder_is_pch_edp(&encoder->base))
4764 has_pch_edp = true;
4765 else
4766 has_cpu_edp = true;
4767 break;
13d83a67
JB
4768 }
4769 }
4770
99eb6a01
KP
4771 if (HAS_PCH_IBX(dev)) {
4772 has_ck505 = dev_priv->display_clock_mode;
4773 can_ssc = has_ck505;
4774 } else {
4775 has_ck505 = false;
4776 can_ssc = true;
4777 }
4778
4779 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4780 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4781 has_ck505);
13d83a67
JB
4782
4783 /* Ironlake: try to setup display ref clock before DPLL
4784 * enabling. This is only under driver's control after
4785 * PCH B stepping, previous chipset stepping should be
4786 * ignoring this setting.
4787 */
4788 temp = I915_READ(PCH_DREF_CONTROL);
4789 /* Always enable nonspread source */
4790 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4791
99eb6a01
KP
4792 if (has_ck505)
4793 temp |= DREF_NONSPREAD_CK505_ENABLE;
4794 else
4795 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4796
199e5d79
KP
4797 if (has_panel) {
4798 temp &= ~DREF_SSC_SOURCE_MASK;
4799 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4800
199e5d79 4801 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4802 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4803 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4804 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4805 } else
4806 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4807
4808 /* Get SSC going before enabling the outputs */
4809 I915_WRITE(PCH_DREF_CONTROL, temp);
4810 POSTING_READ(PCH_DREF_CONTROL);
4811 udelay(200);
4812
13d83a67
JB
4813 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4814
4815 /* Enable CPU source on CPU attached eDP */
199e5d79 4816 if (has_cpu_edp) {
99eb6a01 4817 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4818 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4819 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4820 }
13d83a67
JB
4821 else
4822 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4823 } else
4824 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4825
4826 I915_WRITE(PCH_DREF_CONTROL, temp);
4827 POSTING_READ(PCH_DREF_CONTROL);
4828 udelay(200);
4829 } else {
4830 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4831
4832 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4833
4834 /* Turn off CPU output */
4835 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4836
4837 I915_WRITE(PCH_DREF_CONTROL, temp);
4838 POSTING_READ(PCH_DREF_CONTROL);
4839 udelay(200);
4840
4841 /* Turn off the SSC source */
4842 temp &= ~DREF_SSC_SOURCE_MASK;
4843 temp |= DREF_SSC_SOURCE_DISABLE;
4844
4845 /* Turn off SSC1 */
4846 temp &= ~ DREF_SSC1_ENABLE;
4847
13d83a67
JB
4848 I915_WRITE(PCH_DREF_CONTROL, temp);
4849 POSTING_READ(PCH_DREF_CONTROL);
4850 udelay(200);
4851 }
4852}
4853
d9d444cb
JB
4854static int ironlake_get_refclk(struct drm_crtc *crtc)
4855{
4856 struct drm_device *dev = crtc->dev;
4857 struct drm_i915_private *dev_priv = dev->dev_private;
4858 struct intel_encoder *encoder;
d9d444cb
JB
4859 struct intel_encoder *edp_encoder = NULL;
4860 int num_connectors = 0;
4861 bool is_lvds = false;
4862
6c2b7c12 4863 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4864 switch (encoder->type) {
4865 case INTEL_OUTPUT_LVDS:
4866 is_lvds = true;
4867 break;
4868 case INTEL_OUTPUT_EDP:
4869 edp_encoder = encoder;
4870 break;
4871 }
4872 num_connectors++;
4873 }
4874
4875 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4876 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4877 dev_priv->lvds_ssc_freq);
4878 return dev_priv->lvds_ssc_freq * 1000;
4879 }
4880
4881 return 120000;
4882}
4883
c8203565
PZ
4884static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4885 struct drm_display_mode *adjusted_mode,
4886 bool dither)
4887{
4888 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4890 int pipe = intel_crtc->pipe;
4891 uint32_t val;
4892
4893 val = I915_READ(PIPECONF(pipe));
4894
4895 val &= ~PIPE_BPC_MASK;
4896 switch (intel_crtc->bpp) {
4897 case 18:
4898 val |= PIPE_6BPC;
4899 break;
4900 case 24:
4901 val |= PIPE_8BPC;
4902 break;
4903 case 30:
4904 val |= PIPE_10BPC;
4905 break;
4906 case 36:
4907 val |= PIPE_12BPC;
4908 break;
4909 default:
cc769b62
PZ
4910 /* Case prevented by intel_choose_pipe_bpp_dither. */
4911 BUG();
c8203565
PZ
4912 }
4913
4914 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4915 if (dither)
4916 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4917
4918 val &= ~PIPECONF_INTERLACE_MASK;
4919 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4920 val |= PIPECONF_INTERLACED_ILK;
4921 else
4922 val |= PIPECONF_PROGRESSIVE;
4923
4924 I915_WRITE(PIPECONF(pipe), val);
4925 POSTING_READ(PIPECONF(pipe));
4926}
4927
ee2b0b38
PZ
4928static void haswell_set_pipeconf(struct drm_crtc *crtc,
4929 struct drm_display_mode *adjusted_mode,
4930 bool dither)
4931{
4932 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4933 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 4934 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
4935 uint32_t val;
4936
702e7a56 4937 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
4938
4939 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4940 if (dither)
4941 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4942
4943 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4944 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4945 val |= PIPECONF_INTERLACED_ILK;
4946 else
4947 val |= PIPECONF_PROGRESSIVE;
4948
702e7a56
PZ
4949 I915_WRITE(PIPECONF(cpu_transcoder), val);
4950 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
4951}
4952
6591c6e4
PZ
4953static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4954 struct drm_display_mode *adjusted_mode,
4955 intel_clock_t *clock,
4956 bool *has_reduced_clock,
4957 intel_clock_t *reduced_clock)
4958{
4959 struct drm_device *dev = crtc->dev;
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 struct intel_encoder *intel_encoder;
4962 int refclk;
4963 const intel_limit_t *limit;
4964 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4965
4966 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4967 switch (intel_encoder->type) {
4968 case INTEL_OUTPUT_LVDS:
4969 is_lvds = true;
4970 break;
4971 case INTEL_OUTPUT_SDVO:
4972 case INTEL_OUTPUT_HDMI:
4973 is_sdvo = true;
4974 if (intel_encoder->needs_tv_clock)
4975 is_tv = true;
4976 break;
4977 case INTEL_OUTPUT_TVOUT:
4978 is_tv = true;
4979 break;
4980 }
4981 }
4982
4983 refclk = ironlake_get_refclk(crtc);
4984
4985 /*
4986 * Returns a set of divisors for the desired target clock with the given
4987 * refclk, or FALSE. The returned values represent the clock equation:
4988 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4989 */
4990 limit = intel_limit(crtc, refclk);
4991 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4992 clock);
4993 if (!ret)
4994 return false;
4995
4996 if (is_lvds && dev_priv->lvds_downclock_avail) {
4997 /*
4998 * Ensure we match the reduced clock's P to the target clock.
4999 * If the clocks don't match, we can't switch the display clock
5000 * by using the FP0/FP1. In such case we will disable the LVDS
5001 * downclock feature.
5002 */
5003 *has_reduced_clock = limit->find_pll(limit, crtc,
5004 dev_priv->lvds_downclock,
5005 refclk,
5006 clock,
5007 reduced_clock);
5008 }
5009
5010 if (is_sdvo && is_tv)
5011 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5012
5013 return true;
5014}
5015
f48d8f23
PZ
5016static void ironlake_set_m_n(struct drm_crtc *crtc,
5017 struct drm_display_mode *mode,
5018 struct drm_display_mode *adjusted_mode)
5019{
5020 struct drm_device *dev = crtc->dev;
5021 struct drm_i915_private *dev_priv = dev->dev_private;
5022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5023 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23
PZ
5024 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5025 struct fdi_m_n m_n = {0};
5026 int target_clock, pixel_multiplier, lane, link_bw;
5027 bool is_dp = false, is_cpu_edp = false;
5028
5029 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5030 switch (intel_encoder->type) {
5031 case INTEL_OUTPUT_DISPLAYPORT:
5032 is_dp = true;
5033 break;
5034 case INTEL_OUTPUT_EDP:
5035 is_dp = true;
5036 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5037 is_cpu_edp = true;
5038 edp_encoder = intel_encoder;
5039 break;
5040 }
5041 }
5042
5043 /* FDI link */
5044 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5045 lane = 0;
5046 /* CPU eDP doesn't require FDI link, so just set DP M/N
5047 according to current link config */
5048 if (is_cpu_edp) {
5049 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5050 } else {
5051 /* FDI is a binary signal running at ~2.7GHz, encoding
5052 * each output octet as 10 bits. The actual frequency
5053 * is stored as a divider into a 100MHz clock, and the
5054 * mode pixel clock is stored in units of 1KHz.
5055 * Hence the bw of each lane in terms of the mode signal
5056 * is:
5057 */
5058 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5059 }
5060
5061 /* [e]DP over FDI requires target mode clock instead of link clock. */
5062 if (edp_encoder)
5063 target_clock = intel_edp_target_clock(edp_encoder, mode);
5064 else if (is_dp)
5065 target_clock = mode->clock;
5066 else
5067 target_clock = adjusted_mode->clock;
5068
5069 if (!lane) {
5070 /*
5071 * Account for spread spectrum to avoid
5072 * oversubscribing the link. Max center spread
5073 * is 2.5%; use 5% for safety's sake.
5074 */
5075 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5076 lane = bps / (link_bw * 8) + 1;
5077 }
5078
5079 intel_crtc->fdi_lanes = lane;
5080
5081 if (pixel_multiplier > 1)
5082 link_bw *= pixel_multiplier;
5083 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5084 &m_n);
5085
afe2fcf5
PZ
5086 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5087 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5088 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5089 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5090}
5091
de13a2e3
PZ
5092static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5093 struct drm_display_mode *adjusted_mode,
5094 intel_clock_t *clock, u32 fp)
79e53945 5095{
de13a2e3 5096 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5097 struct drm_device *dev = crtc->dev;
5098 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5099 struct intel_encoder *intel_encoder;
5100 uint32_t dpll;
5101 int factor, pixel_multiplier, num_connectors = 0;
5102 bool is_lvds = false, is_sdvo = false, is_tv = false;
5103 bool is_dp = false, is_cpu_edp = false;
79e53945 5104
de13a2e3
PZ
5105 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5106 switch (intel_encoder->type) {
79e53945
JB
5107 case INTEL_OUTPUT_LVDS:
5108 is_lvds = true;
5109 break;
5110 case INTEL_OUTPUT_SDVO:
7d57382e 5111 case INTEL_OUTPUT_HDMI:
79e53945 5112 is_sdvo = true;
de13a2e3 5113 if (intel_encoder->needs_tv_clock)
e2f0ba97 5114 is_tv = true;
79e53945 5115 break;
79e53945
JB
5116 case INTEL_OUTPUT_TVOUT:
5117 is_tv = true;
5118 break;
a4fc5ed6
KP
5119 case INTEL_OUTPUT_DISPLAYPORT:
5120 is_dp = true;
5121 break;
32f9d658 5122 case INTEL_OUTPUT_EDP:
e3aef172 5123 is_dp = true;
de13a2e3 5124 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5125 is_cpu_edp = true;
32f9d658 5126 break;
79e53945 5127 }
43565a06 5128
c751ce4f 5129 num_connectors++;
79e53945
JB
5130 }
5131
c1858123 5132 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5133 factor = 21;
5134 if (is_lvds) {
5135 if ((intel_panel_use_ssc(dev_priv) &&
5136 dev_priv->lvds_ssc_freq == 100) ||
5137 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5138 factor = 25;
5139 } else if (is_sdvo && is_tv)
5140 factor = 20;
c1858123 5141
de13a2e3 5142 if (clock->m < factor * clock->n)
8febb297 5143 fp |= FP_CB_TUNE;
2c07245f 5144
5eddb70b 5145 dpll = 0;
2c07245f 5146
a07d6787
EA
5147 if (is_lvds)
5148 dpll |= DPLLB_MODE_LVDS;
5149 else
5150 dpll |= DPLLB_MODE_DAC_SERIAL;
5151 if (is_sdvo) {
de13a2e3 5152 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5153 if (pixel_multiplier > 1) {
5154 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5155 }
a07d6787
EA
5156 dpll |= DPLL_DVO_HIGH_SPEED;
5157 }
e3aef172 5158 if (is_dp && !is_cpu_edp)
a07d6787 5159 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5160
a07d6787 5161 /* compute bitmask from p1 value */
de13a2e3 5162 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5163 /* also FPA1 */
de13a2e3 5164 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5165
de13a2e3 5166 switch (clock->p2) {
a07d6787
EA
5167 case 5:
5168 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5169 break;
5170 case 7:
5171 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5172 break;
5173 case 10:
5174 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5175 break;
5176 case 14:
5177 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5178 break;
79e53945
JB
5179 }
5180
43565a06
KH
5181 if (is_sdvo && is_tv)
5182 dpll |= PLL_REF_INPUT_TVCLKINBC;
5183 else if (is_tv)
79e53945 5184 /* XXX: just matching BIOS for now */
43565a06 5185 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5186 dpll |= 3;
a7615030 5187 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5188 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5189 else
5190 dpll |= PLL_REF_INPUT_DREFCLK;
5191
de13a2e3
PZ
5192 return dpll;
5193}
5194
5195static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5196 struct drm_display_mode *mode,
5197 struct drm_display_mode *adjusted_mode,
5198 int x, int y,
5199 struct drm_framebuffer *fb)
5200{
5201 struct drm_device *dev = crtc->dev;
5202 struct drm_i915_private *dev_priv = dev->dev_private;
5203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5204 int pipe = intel_crtc->pipe;
5205 int plane = intel_crtc->plane;
5206 int num_connectors = 0;
5207 intel_clock_t clock, reduced_clock;
5208 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5209 bool ok, has_reduced_clock = false;
5210 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5211 struct intel_encoder *encoder;
5212 u32 temp;
5213 int ret;
5214 bool dither;
de13a2e3
PZ
5215
5216 for_each_encoder_on_crtc(dev, crtc, encoder) {
5217 switch (encoder->type) {
5218 case INTEL_OUTPUT_LVDS:
5219 is_lvds = true;
5220 break;
de13a2e3
PZ
5221 case INTEL_OUTPUT_DISPLAYPORT:
5222 is_dp = true;
5223 break;
5224 case INTEL_OUTPUT_EDP:
5225 is_dp = true;
e2f12b07 5226 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5227 is_cpu_edp = true;
5228 break;
5229 }
5230
5231 num_connectors++;
5232 }
5233
5dc5298b
PZ
5234 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5235 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5236
de13a2e3
PZ
5237 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5238 &has_reduced_clock, &reduced_clock);
5239 if (!ok) {
5240 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5241 return -EINVAL;
5242 }
5243
5244 /* Ensure that the cursor is valid for the new mode before changing... */
5245 intel_crtc_update_cursor(crtc, true);
5246
5247 /* determine panel color depth */
c8241969
JN
5248 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5249 adjusted_mode);
de13a2e3
PZ
5250 if (is_lvds && dev_priv->lvds_dither)
5251 dither = true;
5252
5253 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5254 if (has_reduced_clock)
5255 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5256 reduced_clock.m2;
5257
5258 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5259
f7cb34d4 5260 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5261 drm_mode_debug_printmodeline(mode);
5262
5dc5298b
PZ
5263 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5264 if (!is_cpu_edp) {
ee7b9f93 5265 struct intel_pch_pll *pll;
4b645f14 5266
ee7b9f93
JB
5267 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5268 if (pll == NULL) {
5269 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5270 pipe);
4b645f14
JB
5271 return -EINVAL;
5272 }
ee7b9f93
JB
5273 } else
5274 intel_put_pch_pll(intel_crtc);
79e53945
JB
5275
5276 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5277 * This is an exception to the general rule that mode_set doesn't turn
5278 * things on.
5279 */
5280 if (is_lvds) {
fae14981 5281 temp = I915_READ(PCH_LVDS);
5eddb70b 5282 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5283 if (HAS_PCH_CPT(dev)) {
5284 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5285 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5286 } else {
5287 if (pipe == 1)
5288 temp |= LVDS_PIPEB_SELECT;
5289 else
5290 temp &= ~LVDS_PIPEB_SELECT;
5291 }
4b645f14 5292
a3e17eb8 5293 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5294 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5295 /* Set the B0-B3 data pairs corresponding to whether we're going to
5296 * set the DPLLs for dual-channel mode or not.
5297 */
5298 if (clock.p2 == 7)
5eddb70b 5299 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5300 else
5eddb70b 5301 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5302
5303 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5304 * appropriately here, but we need to look more thoroughly into how
5305 * panels behave in the two modes.
5306 */
284d5df5 5307 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5308 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5309 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5310 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5311 temp |= LVDS_VSYNC_POLARITY;
fae14981 5312 I915_WRITE(PCH_LVDS, temp);
79e53945 5313 }
434ed097 5314
e3aef172 5315 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5316 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5317 } else {
8db9d77b 5318 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5319 I915_WRITE(TRANSDATA_M1(pipe), 0);
5320 I915_WRITE(TRANSDATA_N1(pipe), 0);
5321 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5322 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5323 }
79e53945 5324
ee7b9f93
JB
5325 if (intel_crtc->pch_pll) {
5326 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5327
32f9d658 5328 /* Wait for the clocks to stabilize. */
ee7b9f93 5329 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5330 udelay(150);
5331
8febb297
EA
5332 /* The pixel multiplier can only be updated once the
5333 * DPLL is enabled and the clocks are stable.
5334 *
5335 * So write it again.
5336 */
ee7b9f93 5337 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5338 }
79e53945 5339
5eddb70b 5340 intel_crtc->lowfreq_avail = false;
ee7b9f93 5341 if (intel_crtc->pch_pll) {
4b645f14 5342 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5343 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5344 intel_crtc->lowfreq_avail = true;
4b645f14 5345 } else {
ee7b9f93 5346 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5347 }
5348 }
5349
b0e77b9c 5350 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5351
f48d8f23 5352 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5353
e3aef172 5354 if (is_cpu_edp)
8febb297 5355 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5356
c8203565 5357 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5358
9d0498a2 5359 intel_wait_for_vblank(dev, pipe);
79e53945 5360
a1f9e77e
PZ
5361 /* Set up the display plane register */
5362 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5363 POSTING_READ(DSPCNTR(plane));
79e53945 5364
94352cf9 5365 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5366
5367 intel_update_watermarks(dev);
5368
1f8eeabf
ED
5369 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5370
1f803ee5 5371 return ret;
79e53945
JB
5372}
5373
09b4ddf9
PZ
5374static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5375 struct drm_display_mode *mode,
5376 struct drm_display_mode *adjusted_mode,
5377 int x, int y,
5378 struct drm_framebuffer *fb)
5379{
5380 struct drm_device *dev = crtc->dev;
5381 struct drm_i915_private *dev_priv = dev->dev_private;
5382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5383 int pipe = intel_crtc->pipe;
5384 int plane = intel_crtc->plane;
5385 int num_connectors = 0;
5386 intel_clock_t clock, reduced_clock;
5dc5298b 5387 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5388 bool ok, has_reduced_clock = false;
5389 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5390 struct intel_encoder *encoder;
5391 u32 temp;
5392 int ret;
5393 bool dither;
5394
5395 for_each_encoder_on_crtc(dev, crtc, encoder) {
5396 switch (encoder->type) {
5397 case INTEL_OUTPUT_LVDS:
5398 is_lvds = true;
5399 break;
5400 case INTEL_OUTPUT_DISPLAYPORT:
5401 is_dp = true;
5402 break;
5403 case INTEL_OUTPUT_EDP:
5404 is_dp = true;
5405 if (!intel_encoder_is_pch_edp(&encoder->base))
5406 is_cpu_edp = true;
5407 break;
5408 }
5409
5410 num_connectors++;
5411 }
5412
a5c961d1
PZ
5413 if (is_cpu_edp)
5414 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5415 else
5416 intel_crtc->cpu_transcoder = pipe;
5417
5dc5298b
PZ
5418 /* We are not sure yet this won't happen. */
5419 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5420 INTEL_PCH_TYPE(dev));
5421
5422 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5423 num_connectors, pipe_name(pipe));
5424
702e7a56 5425 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5426 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5427
5428 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5429
6441ab5f
PZ
5430 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5431 return -EINVAL;
5432
5dc5298b
PZ
5433 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5434 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5435 &has_reduced_clock,
5436 &reduced_clock);
5437 if (!ok) {
5438 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5439 return -EINVAL;
5440 }
09b4ddf9
PZ
5441 }
5442
5443 /* Ensure that the cursor is valid for the new mode before changing... */
5444 intel_crtc_update_cursor(crtc, true);
5445
5446 /* determine panel color depth */
c8241969
JN
5447 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5448 adjusted_mode);
09b4ddf9
PZ
5449 if (is_lvds && dev_priv->lvds_dither)
5450 dither = true;
5451
09b4ddf9
PZ
5452 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5453 drm_mode_debug_printmodeline(mode);
5454
5dc5298b
PZ
5455 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5456 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5457 if (has_reduced_clock)
5458 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5459 reduced_clock.m2;
5460
5461 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5462 fp);
5463
5464 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5465 * own on pre-Haswell/LPT generation */
5466 if (!is_cpu_edp) {
5467 struct intel_pch_pll *pll;
5468
5469 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5470 if (pll == NULL) {
5471 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5472 pipe);
5473 return -EINVAL;
5474 }
5475 } else
5476 intel_put_pch_pll(intel_crtc);
09b4ddf9 5477
5dc5298b
PZ
5478 /* The LVDS pin pair needs to be on before the DPLLs are
5479 * enabled. This is an exception to the general rule that
5480 * mode_set doesn't turn things on.
5481 */
5482 if (is_lvds) {
5483 temp = I915_READ(PCH_LVDS);
5484 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5485 if (HAS_PCH_CPT(dev)) {
5486 temp &= ~PORT_TRANS_SEL_MASK;
5487 temp |= PORT_TRANS_SEL_CPT(pipe);
5488 } else {
5489 if (pipe == 1)
5490 temp |= LVDS_PIPEB_SELECT;
5491 else
5492 temp &= ~LVDS_PIPEB_SELECT;
5493 }
09b4ddf9 5494
5dc5298b
PZ
5495 /* set the corresponsding LVDS_BORDER bit */
5496 temp |= dev_priv->lvds_border_bits;
5497 /* Set the B0-B3 data pairs corresponding to whether
5498 * we're going to set the DPLLs for dual-channel mode or
5499 * not.
5500 */
5501 if (clock.p2 == 7)
5502 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5503 else
5dc5298b
PZ
5504 temp &= ~(LVDS_B0B3_POWER_UP |
5505 LVDS_CLKB_POWER_UP);
5506
5507 /* It would be nice to set 24 vs 18-bit mode
5508 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5509 * look more thoroughly into how panels behave in the
5510 * two modes.
5511 */
5512 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5513 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5514 temp |= LVDS_HSYNC_POLARITY;
5515 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5516 temp |= LVDS_VSYNC_POLARITY;
5517 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5518 }
09b4ddf9
PZ
5519 }
5520
5521 if (is_dp && !is_cpu_edp) {
5522 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5523 } else {
5dc5298b
PZ
5524 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5525 /* For non-DP output, clear any trans DP clock recovery
5526 * setting.*/
5527 I915_WRITE(TRANSDATA_M1(pipe), 0);
5528 I915_WRITE(TRANSDATA_N1(pipe), 0);
5529 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5530 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5531 }
09b4ddf9
PZ
5532 }
5533
5534 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5535 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5536 if (intel_crtc->pch_pll) {
5537 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5538
5539 /* Wait for the clocks to stabilize. */
5540 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5541 udelay(150);
5542
5543 /* The pixel multiplier can only be updated once the
5544 * DPLL is enabled and the clocks are stable.
5545 *
5546 * So write it again.
5547 */
5548 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5549 }
5550
5551 if (intel_crtc->pch_pll) {
5552 if (is_lvds && has_reduced_clock && i915_powersave) {
5553 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5554 intel_crtc->lowfreq_avail = true;
5555 } else {
5556 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5557 }
09b4ddf9
PZ
5558 }
5559 }
5560
5561 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5562
1eb8dfec
PZ
5563 if (!is_dp || is_cpu_edp)
5564 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5565
5dc5298b
PZ
5566 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5567 if (is_cpu_edp)
5568 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5569
ee2b0b38 5570 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5571
09b4ddf9
PZ
5572 /* Set up the display plane register */
5573 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5574 POSTING_READ(DSPCNTR(plane));
5575
5576 ret = intel_pipe_set_base(crtc, x, y, fb);
5577
5578 intel_update_watermarks(dev);
5579
5580 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5581
5582 return ret;
5583}
5584
f564048e
EA
5585static int intel_crtc_mode_set(struct drm_crtc *crtc,
5586 struct drm_display_mode *mode,
5587 struct drm_display_mode *adjusted_mode,
5588 int x, int y,
94352cf9 5589 struct drm_framebuffer *fb)
f564048e
EA
5590{
5591 struct drm_device *dev = crtc->dev;
5592 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5594 int pipe = intel_crtc->pipe;
f564048e
EA
5595 int ret;
5596
0b701d27 5597 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5598
f564048e 5599 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5600 x, y, fb);
79e53945 5601 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5602
1f803ee5 5603 return ret;
79e53945
JB
5604}
5605
3a9627f4
WF
5606static bool intel_eld_uptodate(struct drm_connector *connector,
5607 int reg_eldv, uint32_t bits_eldv,
5608 int reg_elda, uint32_t bits_elda,
5609 int reg_edid)
5610{
5611 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5612 uint8_t *eld = connector->eld;
5613 uint32_t i;
5614
5615 i = I915_READ(reg_eldv);
5616 i &= bits_eldv;
5617
5618 if (!eld[0])
5619 return !i;
5620
5621 if (!i)
5622 return false;
5623
5624 i = I915_READ(reg_elda);
5625 i &= ~bits_elda;
5626 I915_WRITE(reg_elda, i);
5627
5628 for (i = 0; i < eld[2]; i++)
5629 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5630 return false;
5631
5632 return true;
5633}
5634
e0dac65e
WF
5635static void g4x_write_eld(struct drm_connector *connector,
5636 struct drm_crtc *crtc)
5637{
5638 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5639 uint8_t *eld = connector->eld;
5640 uint32_t eldv;
5641 uint32_t len;
5642 uint32_t i;
5643
5644 i = I915_READ(G4X_AUD_VID_DID);
5645
5646 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5647 eldv = G4X_ELDV_DEVCL_DEVBLC;
5648 else
5649 eldv = G4X_ELDV_DEVCTG;
5650
3a9627f4
WF
5651 if (intel_eld_uptodate(connector,
5652 G4X_AUD_CNTL_ST, eldv,
5653 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5654 G4X_HDMIW_HDMIEDID))
5655 return;
5656
e0dac65e
WF
5657 i = I915_READ(G4X_AUD_CNTL_ST);
5658 i &= ~(eldv | G4X_ELD_ADDR);
5659 len = (i >> 9) & 0x1f; /* ELD buffer size */
5660 I915_WRITE(G4X_AUD_CNTL_ST, i);
5661
5662 if (!eld[0])
5663 return;
5664
5665 len = min_t(uint8_t, eld[2], len);
5666 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5667 for (i = 0; i < len; i++)
5668 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5669
5670 i = I915_READ(G4X_AUD_CNTL_ST);
5671 i |= eldv;
5672 I915_WRITE(G4X_AUD_CNTL_ST, i);
5673}
5674
83358c85
WX
5675static void haswell_write_eld(struct drm_connector *connector,
5676 struct drm_crtc *crtc)
5677{
5678 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5679 uint8_t *eld = connector->eld;
5680 struct drm_device *dev = crtc->dev;
5681 uint32_t eldv;
5682 uint32_t i;
5683 int len;
5684 int pipe = to_intel_crtc(crtc)->pipe;
5685 int tmp;
5686
5687 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5688 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5689 int aud_config = HSW_AUD_CFG(pipe);
5690 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5691
5692
5693 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5694
5695 /* Audio output enable */
5696 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5697 tmp = I915_READ(aud_cntrl_st2);
5698 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5699 I915_WRITE(aud_cntrl_st2, tmp);
5700
5701 /* Wait for 1 vertical blank */
5702 intel_wait_for_vblank(dev, pipe);
5703
5704 /* Set ELD valid state */
5705 tmp = I915_READ(aud_cntrl_st2);
5706 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5707 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5708 I915_WRITE(aud_cntrl_st2, tmp);
5709 tmp = I915_READ(aud_cntrl_st2);
5710 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5711
5712 /* Enable HDMI mode */
5713 tmp = I915_READ(aud_config);
5714 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5715 /* clear N_programing_enable and N_value_index */
5716 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5717 I915_WRITE(aud_config, tmp);
5718
5719 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5720
5721 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5722
5723 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5724 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5725 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5726 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5727 } else
5728 I915_WRITE(aud_config, 0);
5729
5730 if (intel_eld_uptodate(connector,
5731 aud_cntrl_st2, eldv,
5732 aud_cntl_st, IBX_ELD_ADDRESS,
5733 hdmiw_hdmiedid))
5734 return;
5735
5736 i = I915_READ(aud_cntrl_st2);
5737 i &= ~eldv;
5738 I915_WRITE(aud_cntrl_st2, i);
5739
5740 if (!eld[0])
5741 return;
5742
5743 i = I915_READ(aud_cntl_st);
5744 i &= ~IBX_ELD_ADDRESS;
5745 I915_WRITE(aud_cntl_st, i);
5746 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5747 DRM_DEBUG_DRIVER("port num:%d\n", i);
5748
5749 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5750 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5751 for (i = 0; i < len; i++)
5752 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5753
5754 i = I915_READ(aud_cntrl_st2);
5755 i |= eldv;
5756 I915_WRITE(aud_cntrl_st2, i);
5757
5758}
5759
e0dac65e
WF
5760static void ironlake_write_eld(struct drm_connector *connector,
5761 struct drm_crtc *crtc)
5762{
5763 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5764 uint8_t *eld = connector->eld;
5765 uint32_t eldv;
5766 uint32_t i;
5767 int len;
5768 int hdmiw_hdmiedid;
b6daa025 5769 int aud_config;
e0dac65e
WF
5770 int aud_cntl_st;
5771 int aud_cntrl_st2;
9b138a83 5772 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5773
b3f33cbf 5774 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5775 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5776 aud_config = IBX_AUD_CFG(pipe);
5777 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5778 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5779 } else {
9b138a83
WX
5780 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5781 aud_config = CPT_AUD_CFG(pipe);
5782 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5783 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5784 }
5785
9b138a83 5786 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5787
5788 i = I915_READ(aud_cntl_st);
9b138a83 5789 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5790 if (!i) {
5791 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5792 /* operate blindly on all ports */
1202b4c6
WF
5793 eldv = IBX_ELD_VALIDB;
5794 eldv |= IBX_ELD_VALIDB << 4;
5795 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5796 } else {
5797 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5798 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5799 }
5800
3a9627f4
WF
5801 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5802 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5803 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5804 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5805 } else
5806 I915_WRITE(aud_config, 0);
e0dac65e 5807
3a9627f4
WF
5808 if (intel_eld_uptodate(connector,
5809 aud_cntrl_st2, eldv,
5810 aud_cntl_st, IBX_ELD_ADDRESS,
5811 hdmiw_hdmiedid))
5812 return;
5813
e0dac65e
WF
5814 i = I915_READ(aud_cntrl_st2);
5815 i &= ~eldv;
5816 I915_WRITE(aud_cntrl_st2, i);
5817
5818 if (!eld[0])
5819 return;
5820
e0dac65e 5821 i = I915_READ(aud_cntl_st);
1202b4c6 5822 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5823 I915_WRITE(aud_cntl_st, i);
5824
5825 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5826 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5827 for (i = 0; i < len; i++)
5828 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5829
5830 i = I915_READ(aud_cntrl_st2);
5831 i |= eldv;
5832 I915_WRITE(aud_cntrl_st2, i);
5833}
5834
5835void intel_write_eld(struct drm_encoder *encoder,
5836 struct drm_display_mode *mode)
5837{
5838 struct drm_crtc *crtc = encoder->crtc;
5839 struct drm_connector *connector;
5840 struct drm_device *dev = encoder->dev;
5841 struct drm_i915_private *dev_priv = dev->dev_private;
5842
5843 connector = drm_select_eld(encoder, mode);
5844 if (!connector)
5845 return;
5846
5847 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5848 connector->base.id,
5849 drm_get_connector_name(connector),
5850 connector->encoder->base.id,
5851 drm_get_encoder_name(connector->encoder));
5852
5853 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5854
5855 if (dev_priv->display.write_eld)
5856 dev_priv->display.write_eld(connector, crtc);
5857}
5858
79e53945
JB
5859/** Loads the palette/gamma unit for the CRTC with the prepared values */
5860void intel_crtc_load_lut(struct drm_crtc *crtc)
5861{
5862 struct drm_device *dev = crtc->dev;
5863 struct drm_i915_private *dev_priv = dev->dev_private;
5864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5865 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5866 int i;
5867
5868 /* The clocks have to be on to load the palette. */
aed3f09d 5869 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5870 return;
5871
f2b115e6 5872 /* use legacy palette for Ironlake */
bad720ff 5873 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5874 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5875
79e53945
JB
5876 for (i = 0; i < 256; i++) {
5877 I915_WRITE(palreg + 4 * i,
5878 (intel_crtc->lut_r[i] << 16) |
5879 (intel_crtc->lut_g[i] << 8) |
5880 intel_crtc->lut_b[i]);
5881 }
5882}
5883
560b85bb
CW
5884static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5885{
5886 struct drm_device *dev = crtc->dev;
5887 struct drm_i915_private *dev_priv = dev->dev_private;
5888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889 bool visible = base != 0;
5890 u32 cntl;
5891
5892 if (intel_crtc->cursor_visible == visible)
5893 return;
5894
9db4a9c7 5895 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5896 if (visible) {
5897 /* On these chipsets we can only modify the base whilst
5898 * the cursor is disabled.
5899 */
9db4a9c7 5900 I915_WRITE(_CURABASE, base);
560b85bb
CW
5901
5902 cntl &= ~(CURSOR_FORMAT_MASK);
5903 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5904 cntl |= CURSOR_ENABLE |
5905 CURSOR_GAMMA_ENABLE |
5906 CURSOR_FORMAT_ARGB;
5907 } else
5908 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5909 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5910
5911 intel_crtc->cursor_visible = visible;
5912}
5913
5914static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5915{
5916 struct drm_device *dev = crtc->dev;
5917 struct drm_i915_private *dev_priv = dev->dev_private;
5918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5919 int pipe = intel_crtc->pipe;
5920 bool visible = base != 0;
5921
5922 if (intel_crtc->cursor_visible != visible) {
548f245b 5923 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5924 if (base) {
5925 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5926 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5927 cntl |= pipe << 28; /* Connect to correct pipe */
5928 } else {
5929 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5930 cntl |= CURSOR_MODE_DISABLE;
5931 }
9db4a9c7 5932 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5933
5934 intel_crtc->cursor_visible = visible;
5935 }
5936 /* and commit changes on next vblank */
9db4a9c7 5937 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5938}
5939
65a21cd6
JB
5940static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5941{
5942 struct drm_device *dev = crtc->dev;
5943 struct drm_i915_private *dev_priv = dev->dev_private;
5944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5945 int pipe = intel_crtc->pipe;
5946 bool visible = base != 0;
5947
5948 if (intel_crtc->cursor_visible != visible) {
5949 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5950 if (base) {
5951 cntl &= ~CURSOR_MODE;
5952 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5953 } else {
5954 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5955 cntl |= CURSOR_MODE_DISABLE;
5956 }
5957 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5958
5959 intel_crtc->cursor_visible = visible;
5960 }
5961 /* and commit changes on next vblank */
5962 I915_WRITE(CURBASE_IVB(pipe), base);
5963}
5964
cda4b7d3 5965/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5966static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5967 bool on)
cda4b7d3
CW
5968{
5969 struct drm_device *dev = crtc->dev;
5970 struct drm_i915_private *dev_priv = dev->dev_private;
5971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5972 int pipe = intel_crtc->pipe;
5973 int x = intel_crtc->cursor_x;
5974 int y = intel_crtc->cursor_y;
560b85bb 5975 u32 base, pos;
cda4b7d3
CW
5976 bool visible;
5977
5978 pos = 0;
5979
6b383a7f 5980 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5981 base = intel_crtc->cursor_addr;
5982 if (x > (int) crtc->fb->width)
5983 base = 0;
5984
5985 if (y > (int) crtc->fb->height)
5986 base = 0;
5987 } else
5988 base = 0;
5989
5990 if (x < 0) {
5991 if (x + intel_crtc->cursor_width < 0)
5992 base = 0;
5993
5994 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5995 x = -x;
5996 }
5997 pos |= x << CURSOR_X_SHIFT;
5998
5999 if (y < 0) {
6000 if (y + intel_crtc->cursor_height < 0)
6001 base = 0;
6002
6003 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6004 y = -y;
6005 }
6006 pos |= y << CURSOR_Y_SHIFT;
6007
6008 visible = base != 0;
560b85bb 6009 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6010 return;
6011
0cd83aa9 6012 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6013 I915_WRITE(CURPOS_IVB(pipe), pos);
6014 ivb_update_cursor(crtc, base);
6015 } else {
6016 I915_WRITE(CURPOS(pipe), pos);
6017 if (IS_845G(dev) || IS_I865G(dev))
6018 i845_update_cursor(crtc, base);
6019 else
6020 i9xx_update_cursor(crtc, base);
6021 }
cda4b7d3
CW
6022}
6023
79e53945 6024static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6025 struct drm_file *file,
79e53945
JB
6026 uint32_t handle,
6027 uint32_t width, uint32_t height)
6028{
6029 struct drm_device *dev = crtc->dev;
6030 struct drm_i915_private *dev_priv = dev->dev_private;
6031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6032 struct drm_i915_gem_object *obj;
cda4b7d3 6033 uint32_t addr;
3f8bc370 6034 int ret;
79e53945 6035
79e53945
JB
6036 /* if we want to turn off the cursor ignore width and height */
6037 if (!handle) {
28c97730 6038 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6039 addr = 0;
05394f39 6040 obj = NULL;
5004417d 6041 mutex_lock(&dev->struct_mutex);
3f8bc370 6042 goto finish;
79e53945
JB
6043 }
6044
6045 /* Currently we only support 64x64 cursors */
6046 if (width != 64 || height != 64) {
6047 DRM_ERROR("we currently only support 64x64 cursors\n");
6048 return -EINVAL;
6049 }
6050
05394f39 6051 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6052 if (&obj->base == NULL)
79e53945
JB
6053 return -ENOENT;
6054
05394f39 6055 if (obj->base.size < width * height * 4) {
79e53945 6056 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6057 ret = -ENOMEM;
6058 goto fail;
79e53945
JB
6059 }
6060
71acb5eb 6061 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6062 mutex_lock(&dev->struct_mutex);
b295d1b6 6063 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6064 if (obj->tiling_mode) {
6065 DRM_ERROR("cursor cannot be tiled\n");
6066 ret = -EINVAL;
6067 goto fail_locked;
6068 }
6069
2da3b9b9 6070 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6071 if (ret) {
6072 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6073 goto fail_locked;
e7b526bb
CW
6074 }
6075
d9e86c0e
CW
6076 ret = i915_gem_object_put_fence(obj);
6077 if (ret) {
2da3b9b9 6078 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6079 goto fail_unpin;
6080 }
6081
05394f39 6082 addr = obj->gtt_offset;
71acb5eb 6083 } else {
6eeefaf3 6084 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6085 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6086 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6087 align);
71acb5eb
DA
6088 if (ret) {
6089 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6090 goto fail_locked;
71acb5eb 6091 }
05394f39 6092 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6093 }
6094
a6c45cf0 6095 if (IS_GEN2(dev))
14b60391
JB
6096 I915_WRITE(CURSIZE, (height << 12) | width);
6097
3f8bc370 6098 finish:
3f8bc370 6099 if (intel_crtc->cursor_bo) {
b295d1b6 6100 if (dev_priv->info->cursor_needs_physical) {
05394f39 6101 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6102 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6103 } else
6104 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6105 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6106 }
80824003 6107
7f9872e0 6108 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6109
6110 intel_crtc->cursor_addr = addr;
05394f39 6111 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6112 intel_crtc->cursor_width = width;
6113 intel_crtc->cursor_height = height;
6114
6b383a7f 6115 intel_crtc_update_cursor(crtc, true);
3f8bc370 6116
79e53945 6117 return 0;
e7b526bb 6118fail_unpin:
05394f39 6119 i915_gem_object_unpin(obj);
7f9872e0 6120fail_locked:
34b8686e 6121 mutex_unlock(&dev->struct_mutex);
bc9025bd 6122fail:
05394f39 6123 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6124 return ret;
79e53945
JB
6125}
6126
6127static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6128{
79e53945 6129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6130
cda4b7d3
CW
6131 intel_crtc->cursor_x = x;
6132 intel_crtc->cursor_y = y;
652c393a 6133
6b383a7f 6134 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6135
6136 return 0;
6137}
6138
6139/** Sets the color ramps on behalf of RandR */
6140void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6141 u16 blue, int regno)
6142{
6143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6144
6145 intel_crtc->lut_r[regno] = red >> 8;
6146 intel_crtc->lut_g[regno] = green >> 8;
6147 intel_crtc->lut_b[regno] = blue >> 8;
6148}
6149
b8c00ac5
DA
6150void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6151 u16 *blue, int regno)
6152{
6153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6154
6155 *red = intel_crtc->lut_r[regno] << 8;
6156 *green = intel_crtc->lut_g[regno] << 8;
6157 *blue = intel_crtc->lut_b[regno] << 8;
6158}
6159
79e53945 6160static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6161 u16 *blue, uint32_t start, uint32_t size)
79e53945 6162{
7203425a 6163 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6165
7203425a 6166 for (i = start; i < end; i++) {
79e53945
JB
6167 intel_crtc->lut_r[i] = red[i] >> 8;
6168 intel_crtc->lut_g[i] = green[i] >> 8;
6169 intel_crtc->lut_b[i] = blue[i] >> 8;
6170 }
6171
6172 intel_crtc_load_lut(crtc);
6173}
6174
6175/**
6176 * Get a pipe with a simple mode set on it for doing load-based monitor
6177 * detection.
6178 *
6179 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6180 * its requirements. The pipe will be connected to no other encoders.
79e53945 6181 *
c751ce4f 6182 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6183 * configured for it. In the future, it could choose to temporarily disable
6184 * some outputs to free up a pipe for its use.
6185 *
6186 * \return crtc, or NULL if no pipes are available.
6187 */
6188
6189/* VESA 640x480x72Hz mode to set on the pipe */
6190static struct drm_display_mode load_detect_mode = {
6191 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6192 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6193};
6194
d2dff872
CW
6195static struct drm_framebuffer *
6196intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6197 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6198 struct drm_i915_gem_object *obj)
6199{
6200 struct intel_framebuffer *intel_fb;
6201 int ret;
6202
6203 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6204 if (!intel_fb) {
6205 drm_gem_object_unreference_unlocked(&obj->base);
6206 return ERR_PTR(-ENOMEM);
6207 }
6208
6209 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6210 if (ret) {
6211 drm_gem_object_unreference_unlocked(&obj->base);
6212 kfree(intel_fb);
6213 return ERR_PTR(ret);
6214 }
6215
6216 return &intel_fb->base;
6217}
6218
6219static u32
6220intel_framebuffer_pitch_for_width(int width, int bpp)
6221{
6222 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6223 return ALIGN(pitch, 64);
6224}
6225
6226static u32
6227intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6228{
6229 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6230 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6231}
6232
6233static struct drm_framebuffer *
6234intel_framebuffer_create_for_mode(struct drm_device *dev,
6235 struct drm_display_mode *mode,
6236 int depth, int bpp)
6237{
6238 struct drm_i915_gem_object *obj;
308e5bcb 6239 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6240
6241 obj = i915_gem_alloc_object(dev,
6242 intel_framebuffer_size_for_mode(mode, bpp));
6243 if (obj == NULL)
6244 return ERR_PTR(-ENOMEM);
6245
6246 mode_cmd.width = mode->hdisplay;
6247 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6248 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6249 bpp);
5ca0c34a 6250 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6251
6252 return intel_framebuffer_create(dev, &mode_cmd, obj);
6253}
6254
6255static struct drm_framebuffer *
6256mode_fits_in_fbdev(struct drm_device *dev,
6257 struct drm_display_mode *mode)
6258{
6259 struct drm_i915_private *dev_priv = dev->dev_private;
6260 struct drm_i915_gem_object *obj;
6261 struct drm_framebuffer *fb;
6262
6263 if (dev_priv->fbdev == NULL)
6264 return NULL;
6265
6266 obj = dev_priv->fbdev->ifb.obj;
6267 if (obj == NULL)
6268 return NULL;
6269
6270 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6271 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6272 fb->bits_per_pixel))
d2dff872
CW
6273 return NULL;
6274
01f2c773 6275 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6276 return NULL;
6277
6278 return fb;
6279}
6280
d2434ab7 6281bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6282 struct drm_display_mode *mode,
8261b191 6283 struct intel_load_detect_pipe *old)
79e53945
JB
6284{
6285 struct intel_crtc *intel_crtc;
d2434ab7
DV
6286 struct intel_encoder *intel_encoder =
6287 intel_attached_encoder(connector);
79e53945 6288 struct drm_crtc *possible_crtc;
4ef69c7a 6289 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6290 struct drm_crtc *crtc = NULL;
6291 struct drm_device *dev = encoder->dev;
94352cf9 6292 struct drm_framebuffer *fb;
79e53945
JB
6293 int i = -1;
6294
d2dff872
CW
6295 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6296 connector->base.id, drm_get_connector_name(connector),
6297 encoder->base.id, drm_get_encoder_name(encoder));
6298
79e53945
JB
6299 /*
6300 * Algorithm gets a little messy:
7a5e4805 6301 *
79e53945
JB
6302 * - if the connector already has an assigned crtc, use it (but make
6303 * sure it's on first)
7a5e4805 6304 *
79e53945
JB
6305 * - try to find the first unused crtc that can drive this connector,
6306 * and use that if we find one
79e53945
JB
6307 */
6308
6309 /* See if we already have a CRTC for this connector */
6310 if (encoder->crtc) {
6311 crtc = encoder->crtc;
8261b191 6312
24218aac 6313 old->dpms_mode = connector->dpms;
8261b191
CW
6314 old->load_detect_temp = false;
6315
6316 /* Make sure the crtc and connector are running */
24218aac
DV
6317 if (connector->dpms != DRM_MODE_DPMS_ON)
6318 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6319
7173188d 6320 return true;
79e53945
JB
6321 }
6322
6323 /* Find an unused one (if possible) */
6324 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6325 i++;
6326 if (!(encoder->possible_crtcs & (1 << i)))
6327 continue;
6328 if (!possible_crtc->enabled) {
6329 crtc = possible_crtc;
6330 break;
6331 }
79e53945
JB
6332 }
6333
6334 /*
6335 * If we didn't find an unused CRTC, don't use any.
6336 */
6337 if (!crtc) {
7173188d
CW
6338 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6339 return false;
79e53945
JB
6340 }
6341
fc303101
DV
6342 intel_encoder->new_crtc = to_intel_crtc(crtc);
6343 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6344
6345 intel_crtc = to_intel_crtc(crtc);
24218aac 6346 old->dpms_mode = connector->dpms;
8261b191 6347 old->load_detect_temp = true;
d2dff872 6348 old->release_fb = NULL;
79e53945 6349
6492711d
CW
6350 if (!mode)
6351 mode = &load_detect_mode;
79e53945 6352
d2dff872
CW
6353 /* We need a framebuffer large enough to accommodate all accesses
6354 * that the plane may generate whilst we perform load detection.
6355 * We can not rely on the fbcon either being present (we get called
6356 * during its initialisation to detect all boot displays, or it may
6357 * not even exist) or that it is large enough to satisfy the
6358 * requested mode.
6359 */
94352cf9
DV
6360 fb = mode_fits_in_fbdev(dev, mode);
6361 if (fb == NULL) {
d2dff872 6362 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6363 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6364 old->release_fb = fb;
d2dff872
CW
6365 } else
6366 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6367 if (IS_ERR(fb)) {
d2dff872 6368 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 6369 goto fail;
79e53945 6370 }
79e53945 6371
94352cf9 6372 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6373 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6374 if (old->release_fb)
6375 old->release_fb->funcs->destroy(old->release_fb);
24218aac 6376 goto fail;
79e53945 6377 }
7173188d 6378
79e53945 6379 /* let the connector get through one full cycle before testing */
9d0498a2 6380 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6381
7173188d 6382 return true;
24218aac
DV
6383fail:
6384 connector->encoder = NULL;
6385 encoder->crtc = NULL;
24218aac 6386 return false;
79e53945
JB
6387}
6388
d2434ab7 6389void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6390 struct intel_load_detect_pipe *old)
79e53945 6391{
d2434ab7
DV
6392 struct intel_encoder *intel_encoder =
6393 intel_attached_encoder(connector);
4ef69c7a 6394 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6395
d2dff872
CW
6396 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6397 connector->base.id, drm_get_connector_name(connector),
6398 encoder->base.id, drm_get_encoder_name(encoder));
6399
8261b191 6400 if (old->load_detect_temp) {
fc303101
DV
6401 struct drm_crtc *crtc = encoder->crtc;
6402
6403 to_intel_connector(connector)->new_encoder = NULL;
6404 intel_encoder->new_crtc = NULL;
6405 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6406
6407 if (old->release_fb)
6408 old->release_fb->funcs->destroy(old->release_fb);
6409
0622a53c 6410 return;
79e53945
JB
6411 }
6412
c751ce4f 6413 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6414 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6415 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6416}
6417
6418/* Returns the clock of the currently programmed mode of the given pipe. */
6419static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6420{
6421 struct drm_i915_private *dev_priv = dev->dev_private;
6422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6423 int pipe = intel_crtc->pipe;
548f245b 6424 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6425 u32 fp;
6426 intel_clock_t clock;
6427
6428 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6429 fp = I915_READ(FP0(pipe));
79e53945 6430 else
39adb7a5 6431 fp = I915_READ(FP1(pipe));
79e53945
JB
6432
6433 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6434 if (IS_PINEVIEW(dev)) {
6435 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6436 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6437 } else {
6438 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6439 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6440 }
6441
a6c45cf0 6442 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6443 if (IS_PINEVIEW(dev))
6444 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6445 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6446 else
6447 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6448 DPLL_FPA01_P1_POST_DIV_SHIFT);
6449
6450 switch (dpll & DPLL_MODE_MASK) {
6451 case DPLLB_MODE_DAC_SERIAL:
6452 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6453 5 : 10;
6454 break;
6455 case DPLLB_MODE_LVDS:
6456 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6457 7 : 14;
6458 break;
6459 default:
28c97730 6460 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6461 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6462 return 0;
6463 }
6464
6465 /* XXX: Handle the 100Mhz refclk */
2177832f 6466 intel_clock(dev, 96000, &clock);
79e53945
JB
6467 } else {
6468 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6469
6470 if (is_lvds) {
6471 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6472 DPLL_FPA01_P1_POST_DIV_SHIFT);
6473 clock.p2 = 14;
6474
6475 if ((dpll & PLL_REF_INPUT_MASK) ==
6476 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6477 /* XXX: might not be 66MHz */
2177832f 6478 intel_clock(dev, 66000, &clock);
79e53945 6479 } else
2177832f 6480 intel_clock(dev, 48000, &clock);
79e53945
JB
6481 } else {
6482 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6483 clock.p1 = 2;
6484 else {
6485 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6486 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6487 }
6488 if (dpll & PLL_P2_DIVIDE_BY_4)
6489 clock.p2 = 4;
6490 else
6491 clock.p2 = 2;
6492
2177832f 6493 intel_clock(dev, 48000, &clock);
79e53945
JB
6494 }
6495 }
6496
6497 /* XXX: It would be nice to validate the clocks, but we can't reuse
6498 * i830PllIsValid() because it relies on the xf86_config connector
6499 * configuration being accurate, which it isn't necessarily.
6500 */
6501
6502 return clock.dot;
6503}
6504
6505/** Returns the currently programmed mode of the given pipe. */
6506struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6507 struct drm_crtc *crtc)
6508{
548f245b 6509 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6511 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6512 struct drm_display_mode *mode;
fe2b8f9d
PZ
6513 int htot = I915_READ(HTOTAL(cpu_transcoder));
6514 int hsync = I915_READ(HSYNC(cpu_transcoder));
6515 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6516 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6517
6518 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6519 if (!mode)
6520 return NULL;
6521
6522 mode->clock = intel_crtc_clock_get(dev, crtc);
6523 mode->hdisplay = (htot & 0xffff) + 1;
6524 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6525 mode->hsync_start = (hsync & 0xffff) + 1;
6526 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6527 mode->vdisplay = (vtot & 0xffff) + 1;
6528 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6529 mode->vsync_start = (vsync & 0xffff) + 1;
6530 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6531
6532 drm_mode_set_name(mode);
79e53945
JB
6533
6534 return mode;
6535}
6536
3dec0095 6537static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6538{
6539 struct drm_device *dev = crtc->dev;
6540 drm_i915_private_t *dev_priv = dev->dev_private;
6541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6542 int pipe = intel_crtc->pipe;
dbdc6479
JB
6543 int dpll_reg = DPLL(pipe);
6544 int dpll;
652c393a 6545
bad720ff 6546 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6547 return;
6548
6549 if (!dev_priv->lvds_downclock_avail)
6550 return;
6551
dbdc6479 6552 dpll = I915_READ(dpll_reg);
652c393a 6553 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6554 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6555
8ac5a6d5 6556 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6557
6558 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6559 I915_WRITE(dpll_reg, dpll);
9d0498a2 6560 intel_wait_for_vblank(dev, pipe);
dbdc6479 6561
652c393a
JB
6562 dpll = I915_READ(dpll_reg);
6563 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6564 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6565 }
652c393a
JB
6566}
6567
6568static void intel_decrease_pllclock(struct drm_crtc *crtc)
6569{
6570 struct drm_device *dev = crtc->dev;
6571 drm_i915_private_t *dev_priv = dev->dev_private;
6572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6573
bad720ff 6574 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6575 return;
6576
6577 if (!dev_priv->lvds_downclock_avail)
6578 return;
6579
6580 /*
6581 * Since this is called by a timer, we should never get here in
6582 * the manual case.
6583 */
6584 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6585 int pipe = intel_crtc->pipe;
6586 int dpll_reg = DPLL(pipe);
6587 int dpll;
f6e5b160 6588
44d98a61 6589 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6590
8ac5a6d5 6591 assert_panel_unlocked(dev_priv, pipe);
652c393a 6592
dc257cf1 6593 dpll = I915_READ(dpll_reg);
652c393a
JB
6594 dpll |= DISPLAY_RATE_SELECT_FPA1;
6595 I915_WRITE(dpll_reg, dpll);
9d0498a2 6596 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6597 dpll = I915_READ(dpll_reg);
6598 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6599 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6600 }
6601
6602}
6603
f047e395
CW
6604void intel_mark_busy(struct drm_device *dev)
6605{
f047e395
CW
6606 i915_update_gfx_val(dev->dev_private);
6607}
6608
6609void intel_mark_idle(struct drm_device *dev)
652c393a 6610{
f047e395
CW
6611}
6612
6613void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6614{
6615 struct drm_device *dev = obj->base.dev;
652c393a 6616 struct drm_crtc *crtc;
652c393a
JB
6617
6618 if (!i915_powersave)
6619 return;
6620
652c393a 6621 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6622 if (!crtc->fb)
6623 continue;
6624
f047e395
CW
6625 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6626 intel_increase_pllclock(crtc);
652c393a 6627 }
652c393a
JB
6628}
6629
f047e395 6630void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6631{
f047e395
CW
6632 struct drm_device *dev = obj->base.dev;
6633 struct drm_crtc *crtc;
652c393a 6634
f047e395 6635 if (!i915_powersave)
acb87dfb
CW
6636 return;
6637
652c393a
JB
6638 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6639 if (!crtc->fb)
6640 continue;
6641
f047e395
CW
6642 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6643 intel_decrease_pllclock(crtc);
652c393a
JB
6644 }
6645}
6646
79e53945
JB
6647static void intel_crtc_destroy(struct drm_crtc *crtc)
6648{
6649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6650 struct drm_device *dev = crtc->dev;
6651 struct intel_unpin_work *work;
6652 unsigned long flags;
6653
6654 spin_lock_irqsave(&dev->event_lock, flags);
6655 work = intel_crtc->unpin_work;
6656 intel_crtc->unpin_work = NULL;
6657 spin_unlock_irqrestore(&dev->event_lock, flags);
6658
6659 if (work) {
6660 cancel_work_sync(&work->work);
6661 kfree(work);
6662 }
79e53945
JB
6663
6664 drm_crtc_cleanup(crtc);
67e77c5a 6665
79e53945
JB
6666 kfree(intel_crtc);
6667}
6668
6b95a207
KH
6669static void intel_unpin_work_fn(struct work_struct *__work)
6670{
6671 struct intel_unpin_work *work =
6672 container_of(__work, struct intel_unpin_work, work);
6673
6674 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6675 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6676 drm_gem_object_unreference(&work->pending_flip_obj->base);
6677 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6678
7782de3b 6679 intel_update_fbc(work->dev);
6b95a207
KH
6680 mutex_unlock(&work->dev->struct_mutex);
6681 kfree(work);
6682}
6683
1afe3e9d 6684static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6685 struct drm_crtc *crtc)
6b95a207
KH
6686{
6687 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6689 struct intel_unpin_work *work;
05394f39 6690 struct drm_i915_gem_object *obj;
6b95a207 6691 struct drm_pending_vblank_event *e;
95cb1b02 6692 struct timeval tvbl;
6b95a207
KH
6693 unsigned long flags;
6694
6695 /* Ignore early vblank irqs */
6696 if (intel_crtc == NULL)
6697 return;
6698
6699 spin_lock_irqsave(&dev->event_lock, flags);
6700 work = intel_crtc->unpin_work;
6701 if (work == NULL || !work->pending) {
6702 spin_unlock_irqrestore(&dev->event_lock, flags);
6703 return;
6704 }
6705
6706 intel_crtc->unpin_work = NULL;
6b95a207
KH
6707
6708 if (work->event) {
6709 e = work->event;
49b14a5c 6710 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6711
49b14a5c
MK
6712 e->event.tv_sec = tvbl.tv_sec;
6713 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6714
6b95a207
KH
6715 list_add_tail(&e->base.link,
6716 &e->base.file_priv->event_list);
6717 wake_up_interruptible(&e->base.file_priv->event_wait);
6718 }
6719
0af7e4df
MK
6720 drm_vblank_put(dev, intel_crtc->pipe);
6721
6b95a207
KH
6722 spin_unlock_irqrestore(&dev->event_lock, flags);
6723
05394f39 6724 obj = work->old_fb_obj;
d9e86c0e 6725
e59f2bac 6726 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6727 &obj->pending_flip.counter);
d9e86c0e 6728
5bb61643 6729 wake_up(&dev_priv->pending_flip_queue);
6b95a207 6730 schedule_work(&work->work);
e5510fac
JB
6731
6732 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6733}
6734
1afe3e9d
JB
6735void intel_finish_page_flip(struct drm_device *dev, int pipe)
6736{
6737 drm_i915_private_t *dev_priv = dev->dev_private;
6738 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6739
49b14a5c 6740 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6741}
6742
6743void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6744{
6745 drm_i915_private_t *dev_priv = dev->dev_private;
6746 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6747
49b14a5c 6748 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6749}
6750
6b95a207
KH
6751void intel_prepare_page_flip(struct drm_device *dev, int plane)
6752{
6753 drm_i915_private_t *dev_priv = dev->dev_private;
6754 struct intel_crtc *intel_crtc =
6755 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6756 unsigned long flags;
6757
6758 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6759 if (intel_crtc->unpin_work) {
4e5359cd
SF
6760 if ((++intel_crtc->unpin_work->pending) > 1)
6761 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6762 } else {
6763 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6764 }
6b95a207
KH
6765 spin_unlock_irqrestore(&dev->event_lock, flags);
6766}
6767
8c9f3aaf
JB
6768static int intel_gen2_queue_flip(struct drm_device *dev,
6769 struct drm_crtc *crtc,
6770 struct drm_framebuffer *fb,
6771 struct drm_i915_gem_object *obj)
6772{
6773 struct drm_i915_private *dev_priv = dev->dev_private;
6774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6775 u32 flip_mask;
6d90c952 6776 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6777 int ret;
6778
6d90c952 6779 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6780 if (ret)
83d4092b 6781 goto err;
8c9f3aaf 6782
6d90c952 6783 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6784 if (ret)
83d4092b 6785 goto err_unpin;
8c9f3aaf
JB
6786
6787 /* Can't queue multiple flips, so wait for the previous
6788 * one to finish before executing the next.
6789 */
6790 if (intel_crtc->plane)
6791 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6792 else
6793 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6794 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6795 intel_ring_emit(ring, MI_NOOP);
6796 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6797 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6798 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6799 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6800 intel_ring_emit(ring, 0); /* aux display base address, unused */
6801 intel_ring_advance(ring);
83d4092b
CW
6802 return 0;
6803
6804err_unpin:
6805 intel_unpin_fb_obj(obj);
6806err:
8c9f3aaf
JB
6807 return ret;
6808}
6809
6810static int intel_gen3_queue_flip(struct drm_device *dev,
6811 struct drm_crtc *crtc,
6812 struct drm_framebuffer *fb,
6813 struct drm_i915_gem_object *obj)
6814{
6815 struct drm_i915_private *dev_priv = dev->dev_private;
6816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6817 u32 flip_mask;
6d90c952 6818 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6819 int ret;
6820
6d90c952 6821 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6822 if (ret)
83d4092b 6823 goto err;
8c9f3aaf 6824
6d90c952 6825 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6826 if (ret)
83d4092b 6827 goto err_unpin;
8c9f3aaf
JB
6828
6829 if (intel_crtc->plane)
6830 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6831 else
6832 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6833 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6834 intel_ring_emit(ring, MI_NOOP);
6835 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6836 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6837 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6838 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6839 intel_ring_emit(ring, MI_NOOP);
6840
6841 intel_ring_advance(ring);
83d4092b
CW
6842 return 0;
6843
6844err_unpin:
6845 intel_unpin_fb_obj(obj);
6846err:
8c9f3aaf
JB
6847 return ret;
6848}
6849
6850static int intel_gen4_queue_flip(struct drm_device *dev,
6851 struct drm_crtc *crtc,
6852 struct drm_framebuffer *fb,
6853 struct drm_i915_gem_object *obj)
6854{
6855 struct drm_i915_private *dev_priv = dev->dev_private;
6856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6857 uint32_t pf, pipesrc;
6d90c952 6858 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6859 int ret;
6860
6d90c952 6861 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6862 if (ret)
83d4092b 6863 goto err;
8c9f3aaf 6864
6d90c952 6865 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6866 if (ret)
83d4092b 6867 goto err_unpin;
8c9f3aaf
JB
6868
6869 /* i965+ uses the linear or tiled offsets from the
6870 * Display Registers (which do not change across a page-flip)
6871 * so we need only reprogram the base address.
6872 */
6d90c952
DV
6873 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6874 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6875 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6876 intel_ring_emit(ring,
6877 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6878 obj->tiling_mode);
8c9f3aaf
JB
6879
6880 /* XXX Enabling the panel-fitter across page-flip is so far
6881 * untested on non-native modes, so ignore it for now.
6882 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6883 */
6884 pf = 0;
6885 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6886 intel_ring_emit(ring, pf | pipesrc);
6887 intel_ring_advance(ring);
83d4092b
CW
6888 return 0;
6889
6890err_unpin:
6891 intel_unpin_fb_obj(obj);
6892err:
8c9f3aaf
JB
6893 return ret;
6894}
6895
6896static int intel_gen6_queue_flip(struct drm_device *dev,
6897 struct drm_crtc *crtc,
6898 struct drm_framebuffer *fb,
6899 struct drm_i915_gem_object *obj)
6900{
6901 struct drm_i915_private *dev_priv = dev->dev_private;
6902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6903 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6904 uint32_t pf, pipesrc;
6905 int ret;
6906
6d90c952 6907 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6908 if (ret)
83d4092b 6909 goto err;
8c9f3aaf 6910
6d90c952 6911 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6912 if (ret)
83d4092b 6913 goto err_unpin;
8c9f3aaf 6914
6d90c952
DV
6915 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6916 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6917 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6918 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6919
dc257cf1
DV
6920 /* Contrary to the suggestions in the documentation,
6921 * "Enable Panel Fitter" does not seem to be required when page
6922 * flipping with a non-native mode, and worse causes a normal
6923 * modeset to fail.
6924 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6925 */
6926 pf = 0;
8c9f3aaf 6927 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6928 intel_ring_emit(ring, pf | pipesrc);
6929 intel_ring_advance(ring);
83d4092b
CW
6930 return 0;
6931
6932err_unpin:
6933 intel_unpin_fb_obj(obj);
6934err:
8c9f3aaf
JB
6935 return ret;
6936}
6937
7c9017e5
JB
6938/*
6939 * On gen7 we currently use the blit ring because (in early silicon at least)
6940 * the render ring doesn't give us interrpts for page flip completion, which
6941 * means clients will hang after the first flip is queued. Fortunately the
6942 * blit ring generates interrupts properly, so use it instead.
6943 */
6944static int intel_gen7_queue_flip(struct drm_device *dev,
6945 struct drm_crtc *crtc,
6946 struct drm_framebuffer *fb,
6947 struct drm_i915_gem_object *obj)
6948{
6949 struct drm_i915_private *dev_priv = dev->dev_private;
6950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6951 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6952 uint32_t plane_bit = 0;
7c9017e5
JB
6953 int ret;
6954
6955 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6956 if (ret)
83d4092b 6957 goto err;
7c9017e5 6958
cb05d8de
DV
6959 switch(intel_crtc->plane) {
6960 case PLANE_A:
6961 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6962 break;
6963 case PLANE_B:
6964 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6965 break;
6966 case PLANE_C:
6967 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6968 break;
6969 default:
6970 WARN_ONCE(1, "unknown plane in flip command\n");
6971 ret = -ENODEV;
ab3951eb 6972 goto err_unpin;
cb05d8de
DV
6973 }
6974
7c9017e5
JB
6975 ret = intel_ring_begin(ring, 4);
6976 if (ret)
83d4092b 6977 goto err_unpin;
7c9017e5 6978
cb05d8de 6979 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6980 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6981 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6982 intel_ring_emit(ring, (MI_NOOP));
6983 intel_ring_advance(ring);
83d4092b
CW
6984 return 0;
6985
6986err_unpin:
6987 intel_unpin_fb_obj(obj);
6988err:
7c9017e5
JB
6989 return ret;
6990}
6991
8c9f3aaf
JB
6992static int intel_default_queue_flip(struct drm_device *dev,
6993 struct drm_crtc *crtc,
6994 struct drm_framebuffer *fb,
6995 struct drm_i915_gem_object *obj)
6996{
6997 return -ENODEV;
6998}
6999
6b95a207
KH
7000static int intel_crtc_page_flip(struct drm_crtc *crtc,
7001 struct drm_framebuffer *fb,
7002 struct drm_pending_vblank_event *event)
7003{
7004 struct drm_device *dev = crtc->dev;
7005 struct drm_i915_private *dev_priv = dev->dev_private;
7006 struct intel_framebuffer *intel_fb;
05394f39 7007 struct drm_i915_gem_object *obj;
6b95a207
KH
7008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009 struct intel_unpin_work *work;
8c9f3aaf 7010 unsigned long flags;
52e68630 7011 int ret;
6b95a207 7012
e6a595d2
VS
7013 /* Can't change pixel format via MI display flips. */
7014 if (fb->pixel_format != crtc->fb->pixel_format)
7015 return -EINVAL;
7016
7017 /*
7018 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7019 * Note that pitch changes could also affect these register.
7020 */
7021 if (INTEL_INFO(dev)->gen > 3 &&
7022 (fb->offsets[0] != crtc->fb->offsets[0] ||
7023 fb->pitches[0] != crtc->fb->pitches[0]))
7024 return -EINVAL;
7025
6b95a207
KH
7026 work = kzalloc(sizeof *work, GFP_KERNEL);
7027 if (work == NULL)
7028 return -ENOMEM;
7029
6b95a207
KH
7030 work->event = event;
7031 work->dev = crtc->dev;
7032 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7033 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7034 INIT_WORK(&work->work, intel_unpin_work_fn);
7035
7317c75e
JB
7036 ret = drm_vblank_get(dev, intel_crtc->pipe);
7037 if (ret)
7038 goto free_work;
7039
6b95a207
KH
7040 /* We borrow the event spin lock for protecting unpin_work */
7041 spin_lock_irqsave(&dev->event_lock, flags);
7042 if (intel_crtc->unpin_work) {
7043 spin_unlock_irqrestore(&dev->event_lock, flags);
7044 kfree(work);
7317c75e 7045 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7046
7047 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7048 return -EBUSY;
7049 }
7050 intel_crtc->unpin_work = work;
7051 spin_unlock_irqrestore(&dev->event_lock, flags);
7052
7053 intel_fb = to_intel_framebuffer(fb);
7054 obj = intel_fb->obj;
7055
79158103
CW
7056 ret = i915_mutex_lock_interruptible(dev);
7057 if (ret)
7058 goto cleanup;
6b95a207 7059
75dfca80 7060 /* Reference the objects for the scheduled work. */
05394f39
CW
7061 drm_gem_object_reference(&work->old_fb_obj->base);
7062 drm_gem_object_reference(&obj->base);
6b95a207
KH
7063
7064 crtc->fb = fb;
96b099fd 7065
e1f99ce6 7066 work->pending_flip_obj = obj;
e1f99ce6 7067
4e5359cd
SF
7068 work->enable_stall_check = true;
7069
e1f99ce6
CW
7070 /* Block clients from rendering to the new back buffer until
7071 * the flip occurs and the object is no longer visible.
7072 */
05394f39 7073 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7074
8c9f3aaf
JB
7075 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7076 if (ret)
7077 goto cleanup_pending;
6b95a207 7078
7782de3b 7079 intel_disable_fbc(dev);
f047e395 7080 intel_mark_fb_busy(obj);
6b95a207
KH
7081 mutex_unlock(&dev->struct_mutex);
7082
e5510fac
JB
7083 trace_i915_flip_request(intel_crtc->plane, obj);
7084
6b95a207 7085 return 0;
96b099fd 7086
8c9f3aaf
JB
7087cleanup_pending:
7088 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7089 drm_gem_object_unreference(&work->old_fb_obj->base);
7090 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7091 mutex_unlock(&dev->struct_mutex);
7092
79158103 7093cleanup:
96b099fd
CW
7094 spin_lock_irqsave(&dev->event_lock, flags);
7095 intel_crtc->unpin_work = NULL;
7096 spin_unlock_irqrestore(&dev->event_lock, flags);
7097
7317c75e
JB
7098 drm_vblank_put(dev, intel_crtc->pipe);
7099free_work:
96b099fd
CW
7100 kfree(work);
7101
7102 return ret;
6b95a207
KH
7103}
7104
f6e5b160 7105static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7106 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7107 .load_lut = intel_crtc_load_lut,
976f8a20 7108 .disable = intel_crtc_noop,
f6e5b160
CW
7109};
7110
6ed0f796 7111bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7112{
6ed0f796
DV
7113 struct intel_encoder *other_encoder;
7114 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7115
6ed0f796
DV
7116 if (WARN_ON(!crtc))
7117 return false;
7118
7119 list_for_each_entry(other_encoder,
7120 &crtc->dev->mode_config.encoder_list,
7121 base.head) {
7122
7123 if (&other_encoder->new_crtc->base != crtc ||
7124 encoder == other_encoder)
7125 continue;
7126 else
7127 return true;
f47166d2
CW
7128 }
7129
6ed0f796
DV
7130 return false;
7131}
47f1c6c9 7132
50f56119
DV
7133static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7134 struct drm_crtc *crtc)
7135{
7136 struct drm_device *dev;
7137 struct drm_crtc *tmp;
7138 int crtc_mask = 1;
47f1c6c9 7139
50f56119 7140 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7141
50f56119 7142 dev = crtc->dev;
47f1c6c9 7143
50f56119
DV
7144 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7145 if (tmp == crtc)
7146 break;
7147 crtc_mask <<= 1;
7148 }
47f1c6c9 7149
50f56119
DV
7150 if (encoder->possible_crtcs & crtc_mask)
7151 return true;
7152 return false;
47f1c6c9 7153}
79e53945 7154
9a935856
DV
7155/**
7156 * intel_modeset_update_staged_output_state
7157 *
7158 * Updates the staged output configuration state, e.g. after we've read out the
7159 * current hw state.
7160 */
7161static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7162{
9a935856
DV
7163 struct intel_encoder *encoder;
7164 struct intel_connector *connector;
f6e5b160 7165
9a935856
DV
7166 list_for_each_entry(connector, &dev->mode_config.connector_list,
7167 base.head) {
7168 connector->new_encoder =
7169 to_intel_encoder(connector->base.encoder);
7170 }
f6e5b160 7171
9a935856
DV
7172 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7173 base.head) {
7174 encoder->new_crtc =
7175 to_intel_crtc(encoder->base.crtc);
7176 }
f6e5b160
CW
7177}
7178
9a935856
DV
7179/**
7180 * intel_modeset_commit_output_state
7181 *
7182 * This function copies the stage display pipe configuration to the real one.
7183 */
7184static void intel_modeset_commit_output_state(struct drm_device *dev)
7185{
7186 struct intel_encoder *encoder;
7187 struct intel_connector *connector;
f6e5b160 7188
9a935856
DV
7189 list_for_each_entry(connector, &dev->mode_config.connector_list,
7190 base.head) {
7191 connector->base.encoder = &connector->new_encoder->base;
7192 }
f6e5b160 7193
9a935856
DV
7194 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7195 base.head) {
7196 encoder->base.crtc = &encoder->new_crtc->base;
7197 }
7198}
7199
7758a113
DV
7200static struct drm_display_mode *
7201intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7202 struct drm_display_mode *mode)
ee7b9f93 7203{
7758a113
DV
7204 struct drm_device *dev = crtc->dev;
7205 struct drm_display_mode *adjusted_mode;
7206 struct drm_encoder_helper_funcs *encoder_funcs;
7207 struct intel_encoder *encoder;
ee7b9f93 7208
7758a113
DV
7209 adjusted_mode = drm_mode_duplicate(dev, mode);
7210 if (!adjusted_mode)
7211 return ERR_PTR(-ENOMEM);
7212
7213 /* Pass our mode to the connectors and the CRTC to give them a chance to
7214 * adjust it according to limitations or connector properties, and also
7215 * a chance to reject the mode entirely.
7216 */
7217 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7218 base.head) {
7219
7220 if (&encoder->new_crtc->base != crtc)
7221 continue;
7222 encoder_funcs = encoder->base.helper_private;
7223 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7224 adjusted_mode))) {
7225 DRM_DEBUG_KMS("Encoder fixup failed\n");
7226 goto fail;
7227 }
ee7b9f93
JB
7228 }
7229
7758a113
DV
7230 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7231 DRM_DEBUG_KMS("CRTC fixup failed\n");
7232 goto fail;
ee7b9f93 7233 }
7758a113
DV
7234 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7235
7236 return adjusted_mode;
7237fail:
7238 drm_mode_destroy(dev, adjusted_mode);
7239 return ERR_PTR(-EINVAL);
ee7b9f93
JB
7240}
7241
e2e1ed41
DV
7242/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7243 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7244static void
7245intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7246 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7247{
7248 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7249 struct drm_device *dev = crtc->dev;
7250 struct intel_encoder *encoder;
7251 struct intel_connector *connector;
7252 struct drm_crtc *tmp_crtc;
79e53945 7253
e2e1ed41 7254 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7255
e2e1ed41
DV
7256 /* Check which crtcs have changed outputs connected to them, these need
7257 * to be part of the prepare_pipes mask. We don't (yet) support global
7258 * modeset across multiple crtcs, so modeset_pipes will only have one
7259 * bit set at most. */
7260 list_for_each_entry(connector, &dev->mode_config.connector_list,
7261 base.head) {
7262 if (connector->base.encoder == &connector->new_encoder->base)
7263 continue;
79e53945 7264
e2e1ed41
DV
7265 if (connector->base.encoder) {
7266 tmp_crtc = connector->base.encoder->crtc;
7267
7268 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7269 }
7270
7271 if (connector->new_encoder)
7272 *prepare_pipes |=
7273 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7274 }
7275
e2e1ed41
DV
7276 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7277 base.head) {
7278 if (encoder->base.crtc == &encoder->new_crtc->base)
7279 continue;
7280
7281 if (encoder->base.crtc) {
7282 tmp_crtc = encoder->base.crtc;
7283
7284 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7285 }
7286
7287 if (encoder->new_crtc)
7288 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7289 }
7290
e2e1ed41
DV
7291 /* Check for any pipes that will be fully disabled ... */
7292 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7293 base.head) {
7294 bool used = false;
22fd0fab 7295
e2e1ed41
DV
7296 /* Don't try to disable disabled crtcs. */
7297 if (!intel_crtc->base.enabled)
7298 continue;
7e7d76c3 7299
e2e1ed41
DV
7300 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7301 base.head) {
7302 if (encoder->new_crtc == intel_crtc)
7303 used = true;
7304 }
7305
7306 if (!used)
7307 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7308 }
7309
e2e1ed41
DV
7310
7311 /* set_mode is also used to update properties on life display pipes. */
7312 intel_crtc = to_intel_crtc(crtc);
7313 if (crtc->enabled)
7314 *prepare_pipes |= 1 << intel_crtc->pipe;
7315
7316 /* We only support modeset on one single crtc, hence we need to do that
7317 * only for the passed in crtc iff we change anything else than just
7318 * disable crtcs.
7319 *
7320 * This is actually not true, to be fully compatible with the old crtc
7321 * helper we automatically disable _any_ output (i.e. doesn't need to be
7322 * connected to the crtc we're modesetting on) if it's disconnected.
7323 * Which is a rather nutty api (since changed the output configuration
7324 * without userspace's explicit request can lead to confusion), but
7325 * alas. Hence we currently need to modeset on all pipes we prepare. */
7326 if (*prepare_pipes)
7327 *modeset_pipes = *prepare_pipes;
7328
7329 /* ... and mask these out. */
7330 *modeset_pipes &= ~(*disable_pipes);
7331 *prepare_pipes &= ~(*disable_pipes);
7332}
7333
ea9d758d
DV
7334static bool intel_crtc_in_use(struct drm_crtc *crtc)
7335{
7336 struct drm_encoder *encoder;
7337 struct drm_device *dev = crtc->dev;
7338
7339 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7340 if (encoder->crtc == crtc)
7341 return true;
7342
7343 return false;
7344}
7345
7346static void
7347intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7348{
7349 struct intel_encoder *intel_encoder;
7350 struct intel_crtc *intel_crtc;
7351 struct drm_connector *connector;
7352
7353 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7354 base.head) {
7355 if (!intel_encoder->base.crtc)
7356 continue;
7357
7358 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7359
7360 if (prepare_pipes & (1 << intel_crtc->pipe))
7361 intel_encoder->connectors_active = false;
7362 }
7363
7364 intel_modeset_commit_output_state(dev);
7365
7366 /* Update computed state. */
7367 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7368 base.head) {
7369 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7370 }
7371
7372 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7373 if (!connector->encoder || !connector->encoder->crtc)
7374 continue;
7375
7376 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7377
7378 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7379 struct drm_property *dpms_property =
7380 dev->mode_config.dpms_property;
7381
ea9d758d 7382 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7383 drm_connector_property_set_value(connector,
7384 dpms_property,
7385 DRM_MODE_DPMS_ON);
ea9d758d
DV
7386
7387 intel_encoder = to_intel_encoder(connector->encoder);
7388 intel_encoder->connectors_active = true;
7389 }
7390 }
7391
7392}
7393
25c5b266
DV
7394#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7395 list_for_each_entry((intel_crtc), \
7396 &(dev)->mode_config.crtc_list, \
7397 base.head) \
7398 if (mask & (1 <<(intel_crtc)->pipe)) \
7399
b980514c 7400void
8af6cf88
DV
7401intel_modeset_check_state(struct drm_device *dev)
7402{
7403 struct intel_crtc *crtc;
7404 struct intel_encoder *encoder;
7405 struct intel_connector *connector;
7406
7407 list_for_each_entry(connector, &dev->mode_config.connector_list,
7408 base.head) {
7409 /* This also checks the encoder/connector hw state with the
7410 * ->get_hw_state callbacks. */
7411 intel_connector_check_state(connector);
7412
7413 WARN(&connector->new_encoder->base != connector->base.encoder,
7414 "connector's staged encoder doesn't match current encoder\n");
7415 }
7416
7417 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7418 base.head) {
7419 bool enabled = false;
7420 bool active = false;
7421 enum pipe pipe, tracked_pipe;
7422
7423 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7424 encoder->base.base.id,
7425 drm_get_encoder_name(&encoder->base));
7426
7427 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7428 "encoder's stage crtc doesn't match current crtc\n");
7429 WARN(encoder->connectors_active && !encoder->base.crtc,
7430 "encoder's active_connectors set, but no crtc\n");
7431
7432 list_for_each_entry(connector, &dev->mode_config.connector_list,
7433 base.head) {
7434 if (connector->base.encoder != &encoder->base)
7435 continue;
7436 enabled = true;
7437 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7438 active = true;
7439 }
7440 WARN(!!encoder->base.crtc != enabled,
7441 "encoder's enabled state mismatch "
7442 "(expected %i, found %i)\n",
7443 !!encoder->base.crtc, enabled);
7444 WARN(active && !encoder->base.crtc,
7445 "active encoder with no crtc\n");
7446
7447 WARN(encoder->connectors_active != active,
7448 "encoder's computed active state doesn't match tracked active state "
7449 "(expected %i, found %i)\n", active, encoder->connectors_active);
7450
7451 active = encoder->get_hw_state(encoder, &pipe);
7452 WARN(active != encoder->connectors_active,
7453 "encoder's hw state doesn't match sw tracking "
7454 "(expected %i, found %i)\n",
7455 encoder->connectors_active, active);
7456
7457 if (!encoder->base.crtc)
7458 continue;
7459
7460 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7461 WARN(active && pipe != tracked_pipe,
7462 "active encoder's pipe doesn't match"
7463 "(expected %i, found %i)\n",
7464 tracked_pipe, pipe);
7465
7466 }
7467
7468 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7469 base.head) {
7470 bool enabled = false;
7471 bool active = false;
7472
7473 DRM_DEBUG_KMS("[CRTC:%d]\n",
7474 crtc->base.base.id);
7475
7476 WARN(crtc->active && !crtc->base.enabled,
7477 "active crtc, but not enabled in sw tracking\n");
7478
7479 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7480 base.head) {
7481 if (encoder->base.crtc != &crtc->base)
7482 continue;
7483 enabled = true;
7484 if (encoder->connectors_active)
7485 active = true;
7486 }
7487 WARN(active != crtc->active,
7488 "crtc's computed active state doesn't match tracked active state "
7489 "(expected %i, found %i)\n", active, crtc->active);
7490 WARN(enabled != crtc->base.enabled,
7491 "crtc's computed enabled state doesn't match tracked enabled state "
7492 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7493
7494 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7495 }
7496}
7497
a6778b3c
DV
7498bool intel_set_mode(struct drm_crtc *crtc,
7499 struct drm_display_mode *mode,
94352cf9 7500 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7501{
7502 struct drm_device *dev = crtc->dev;
dbf2b54e 7503 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7504 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 7505 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 7506 struct drm_encoder *encoder;
25c5b266
DV
7507 struct intel_crtc *intel_crtc;
7508 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7509 bool ret = true;
7510
e2e1ed41 7511 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7512 &prepare_pipes, &disable_pipes);
7513
7514 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7515 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7516
976f8a20
DV
7517 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7518 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7519
a6778b3c
DV
7520 saved_hwmode = crtc->hwmode;
7521 saved_mode = crtc->mode;
a6778b3c 7522
25c5b266
DV
7523 /* Hack: Because we don't (yet) support global modeset on multiple
7524 * crtcs, we don't keep track of the new mode for more than one crtc.
7525 * Hence simply check whether any bit is set in modeset_pipes in all the
7526 * pieces of code that are not yet converted to deal with mutliple crtcs
7527 * changing their mode at the same time. */
7528 adjusted_mode = NULL;
7529 if (modeset_pipes) {
7530 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7531 if (IS_ERR(adjusted_mode)) {
7532 return false;
7533 }
25c5b266 7534 }
a6778b3c 7535
ea9d758d
DV
7536 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7537 if (intel_crtc->base.enabled)
7538 dev_priv->display.crtc_disable(&intel_crtc->base);
7539 }
a6778b3c 7540
6c4c86f5
DV
7541 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7542 * to set it here already despite that we pass it down the callchain.
7543 */
7544 if (modeset_pipes)
25c5b266 7545 crtc->mode = *mode;
7758a113 7546
ea9d758d
DV
7547 /* Only after disabling all output pipelines that will be changed can we
7548 * update the the output configuration. */
7549 intel_modeset_update_state(dev, prepare_pipes);
7550
a6778b3c
DV
7551 /* Set up the DPLL and any encoders state that needs to adjust or depend
7552 * on the DPLL.
7553 */
25c5b266
DV
7554 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7555 ret = !intel_crtc_mode_set(&intel_crtc->base,
7556 mode, adjusted_mode,
7557 x, y, fb);
7558 if (!ret)
7559 goto done;
a6778b3c 7560
25c5b266 7561 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7562
25c5b266
DV
7563 if (encoder->crtc != &intel_crtc->base)
7564 continue;
a6778b3c 7565
25c5b266
DV
7566 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7567 encoder->base.id, drm_get_encoder_name(encoder),
7568 mode->base.id, mode->name);
7569 encoder_funcs = encoder->helper_private;
7570 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7571 }
a6778b3c
DV
7572 }
7573
7574 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7575 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7576 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7577
25c5b266
DV
7578 if (modeset_pipes) {
7579 /* Store real post-adjustment hardware mode. */
7580 crtc->hwmode = *adjusted_mode;
a6778b3c 7581
25c5b266
DV
7582 /* Calculate and store various constants which
7583 * are later needed by vblank and swap-completion
7584 * timestamping. They are derived from true hwmode.
7585 */
7586 drm_calc_timestamping_constants(crtc);
7587 }
a6778b3c
DV
7588
7589 /* FIXME: add subpixel order */
7590done:
7591 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7592 if (!ret && crtc->enabled) {
a6778b3c
DV
7593 crtc->hwmode = saved_hwmode;
7594 crtc->mode = saved_mode;
8af6cf88
DV
7595 } else {
7596 intel_modeset_check_state(dev);
a6778b3c
DV
7597 }
7598
7599 return ret;
7600}
7601
25c5b266
DV
7602#undef for_each_intel_crtc_masked
7603
d9e55608
DV
7604static void intel_set_config_free(struct intel_set_config *config)
7605{
7606 if (!config)
7607 return;
7608
1aa4b628
DV
7609 kfree(config->save_connector_encoders);
7610 kfree(config->save_encoder_crtcs);
d9e55608
DV
7611 kfree(config);
7612}
7613
85f9eb71
DV
7614static int intel_set_config_save_state(struct drm_device *dev,
7615 struct intel_set_config *config)
7616{
85f9eb71
DV
7617 struct drm_encoder *encoder;
7618 struct drm_connector *connector;
7619 int count;
7620
1aa4b628
DV
7621 config->save_encoder_crtcs =
7622 kcalloc(dev->mode_config.num_encoder,
7623 sizeof(struct drm_crtc *), GFP_KERNEL);
7624 if (!config->save_encoder_crtcs)
85f9eb71
DV
7625 return -ENOMEM;
7626
1aa4b628
DV
7627 config->save_connector_encoders =
7628 kcalloc(dev->mode_config.num_connector,
7629 sizeof(struct drm_encoder *), GFP_KERNEL);
7630 if (!config->save_connector_encoders)
85f9eb71
DV
7631 return -ENOMEM;
7632
7633 /* Copy data. Note that driver private data is not affected.
7634 * Should anything bad happen only the expected state is
7635 * restored, not the drivers personal bookkeeping.
7636 */
85f9eb71
DV
7637 count = 0;
7638 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7639 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7640 }
7641
7642 count = 0;
7643 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7644 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7645 }
7646
7647 return 0;
7648}
7649
7650static void intel_set_config_restore_state(struct drm_device *dev,
7651 struct intel_set_config *config)
7652{
9a935856
DV
7653 struct intel_encoder *encoder;
7654 struct intel_connector *connector;
85f9eb71
DV
7655 int count;
7656
85f9eb71 7657 count = 0;
9a935856
DV
7658 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7659 encoder->new_crtc =
7660 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7661 }
7662
7663 count = 0;
9a935856
DV
7664 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7665 connector->new_encoder =
7666 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7667 }
7668}
7669
5e2b584e
DV
7670static void
7671intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7672 struct intel_set_config *config)
7673{
7674
7675 /* We should be able to check here if the fb has the same properties
7676 * and then just flip_or_move it */
7677 if (set->crtc->fb != set->fb) {
7678 /* If we have no fb then treat it as a full mode set */
7679 if (set->crtc->fb == NULL) {
7680 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7681 config->mode_changed = true;
7682 } else if (set->fb == NULL) {
7683 config->mode_changed = true;
7684 } else if (set->fb->depth != set->crtc->fb->depth) {
7685 config->mode_changed = true;
7686 } else if (set->fb->bits_per_pixel !=
7687 set->crtc->fb->bits_per_pixel) {
7688 config->mode_changed = true;
7689 } else
7690 config->fb_changed = true;
7691 }
7692
835c5873 7693 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7694 config->fb_changed = true;
7695
7696 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7697 DRM_DEBUG_KMS("modes are different, full mode set\n");
7698 drm_mode_debug_printmodeline(&set->crtc->mode);
7699 drm_mode_debug_printmodeline(set->mode);
7700 config->mode_changed = true;
7701 }
7702}
7703
2e431051 7704static int
9a935856
DV
7705intel_modeset_stage_output_state(struct drm_device *dev,
7706 struct drm_mode_set *set,
7707 struct intel_set_config *config)
50f56119 7708{
85f9eb71 7709 struct drm_crtc *new_crtc;
9a935856
DV
7710 struct intel_connector *connector;
7711 struct intel_encoder *encoder;
2e431051 7712 int count, ro;
50f56119 7713
9a935856
DV
7714 /* The upper layers ensure that we either disabl a crtc or have a list
7715 * of connectors. For paranoia, double-check this. */
7716 WARN_ON(!set->fb && (set->num_connectors != 0));
7717 WARN_ON(set->fb && (set->num_connectors == 0));
7718
50f56119 7719 count = 0;
9a935856
DV
7720 list_for_each_entry(connector, &dev->mode_config.connector_list,
7721 base.head) {
7722 /* Otherwise traverse passed in connector list and get encoders
7723 * for them. */
50f56119 7724 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7725 if (set->connectors[ro] == &connector->base) {
7726 connector->new_encoder = connector->encoder;
50f56119
DV
7727 break;
7728 }
7729 }
7730
9a935856
DV
7731 /* If we disable the crtc, disable all its connectors. Also, if
7732 * the connector is on the changing crtc but not on the new
7733 * connector list, disable it. */
7734 if ((!set->fb || ro == set->num_connectors) &&
7735 connector->base.encoder &&
7736 connector->base.encoder->crtc == set->crtc) {
7737 connector->new_encoder = NULL;
7738
7739 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7740 connector->base.base.id,
7741 drm_get_connector_name(&connector->base));
7742 }
7743
7744
7745 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7746 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7747 config->mode_changed = true;
50f56119 7748 }
9a935856
DV
7749
7750 /* Disable all disconnected encoders. */
7751 if (connector->base.status == connector_status_disconnected)
7752 connector->new_encoder = NULL;
50f56119 7753 }
9a935856 7754 /* connector->new_encoder is now updated for all connectors. */
50f56119 7755
9a935856 7756 /* Update crtc of enabled connectors. */
50f56119 7757 count = 0;
9a935856
DV
7758 list_for_each_entry(connector, &dev->mode_config.connector_list,
7759 base.head) {
7760 if (!connector->new_encoder)
50f56119
DV
7761 continue;
7762
9a935856 7763 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7764
7765 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7766 if (set->connectors[ro] == &connector->base)
50f56119
DV
7767 new_crtc = set->crtc;
7768 }
7769
7770 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7771 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7772 new_crtc)) {
5e2b584e 7773 return -EINVAL;
50f56119 7774 }
9a935856
DV
7775 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7776
7777 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7778 connector->base.base.id,
7779 drm_get_connector_name(&connector->base),
7780 new_crtc->base.id);
7781 }
7782
7783 /* Check for any encoders that needs to be disabled. */
7784 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7785 base.head) {
7786 list_for_each_entry(connector,
7787 &dev->mode_config.connector_list,
7788 base.head) {
7789 if (connector->new_encoder == encoder) {
7790 WARN_ON(!connector->new_encoder->new_crtc);
7791
7792 goto next_encoder;
7793 }
7794 }
7795 encoder->new_crtc = NULL;
7796next_encoder:
7797 /* Only now check for crtc changes so we don't miss encoders
7798 * that will be disabled. */
7799 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7800 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7801 config->mode_changed = true;
50f56119
DV
7802 }
7803 }
9a935856 7804 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7805
2e431051
DV
7806 return 0;
7807}
7808
7809static int intel_crtc_set_config(struct drm_mode_set *set)
7810{
7811 struct drm_device *dev;
2e431051
DV
7812 struct drm_mode_set save_set;
7813 struct intel_set_config *config;
7814 int ret;
2e431051 7815
8d3e375e
DV
7816 BUG_ON(!set);
7817 BUG_ON(!set->crtc);
7818 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7819
7820 if (!set->mode)
7821 set->fb = NULL;
7822
431e50f7
DV
7823 /* The fb helper likes to play gross jokes with ->mode_set_config.
7824 * Unfortunately the crtc helper doesn't do much at all for this case,
7825 * so we have to cope with this madness until the fb helper is fixed up. */
7826 if (set->fb && set->num_connectors == 0)
7827 return 0;
7828
2e431051
DV
7829 if (set->fb) {
7830 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7831 set->crtc->base.id, set->fb->base.id,
7832 (int)set->num_connectors, set->x, set->y);
7833 } else {
7834 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7835 }
7836
7837 dev = set->crtc->dev;
7838
7839 ret = -ENOMEM;
7840 config = kzalloc(sizeof(*config), GFP_KERNEL);
7841 if (!config)
7842 goto out_config;
7843
7844 ret = intel_set_config_save_state(dev, config);
7845 if (ret)
7846 goto out_config;
7847
7848 save_set.crtc = set->crtc;
7849 save_set.mode = &set->crtc->mode;
7850 save_set.x = set->crtc->x;
7851 save_set.y = set->crtc->y;
7852 save_set.fb = set->crtc->fb;
7853
7854 /* Compute whether we need a full modeset, only an fb base update or no
7855 * change at all. In the future we might also check whether only the
7856 * mode changed, e.g. for LVDS where we only change the panel fitter in
7857 * such cases. */
7858 intel_set_config_compute_mode_changes(set, config);
7859
9a935856 7860 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7861 if (ret)
7862 goto fail;
7863
5e2b584e 7864 if (config->mode_changed) {
87f1faa6 7865 if (set->mode) {
50f56119
DV
7866 DRM_DEBUG_KMS("attempting to set mode from"
7867 " userspace\n");
7868 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7869 }
7870
7871 if (!intel_set_mode(set->crtc, set->mode,
7872 set->x, set->y, set->fb)) {
7873 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7874 set->crtc->base.id);
7875 ret = -EINVAL;
7876 goto fail;
7877 }
5e2b584e 7878 } else if (config->fb_changed) {
4f660f49 7879 ret = intel_pipe_set_base(set->crtc,
94352cf9 7880 set->x, set->y, set->fb);
50f56119
DV
7881 }
7882
d9e55608
DV
7883 intel_set_config_free(config);
7884
50f56119
DV
7885 return 0;
7886
7887fail:
85f9eb71 7888 intel_set_config_restore_state(dev, config);
50f56119
DV
7889
7890 /* Try to restore the config */
5e2b584e 7891 if (config->mode_changed &&
a6778b3c
DV
7892 !intel_set_mode(save_set.crtc, save_set.mode,
7893 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7894 DRM_ERROR("failed to restore config after modeset failure\n");
7895
d9e55608
DV
7896out_config:
7897 intel_set_config_free(config);
50f56119
DV
7898 return ret;
7899}
7900
f6e5b160 7901static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7902 .cursor_set = intel_crtc_cursor_set,
7903 .cursor_move = intel_crtc_cursor_move,
7904 .gamma_set = intel_crtc_gamma_set,
50f56119 7905 .set_config = intel_crtc_set_config,
f6e5b160
CW
7906 .destroy = intel_crtc_destroy,
7907 .page_flip = intel_crtc_page_flip,
7908};
7909
79f689aa
PZ
7910static void intel_cpu_pll_init(struct drm_device *dev)
7911{
7912 if (IS_HASWELL(dev))
7913 intel_ddi_pll_init(dev);
7914}
7915
ee7b9f93
JB
7916static void intel_pch_pll_init(struct drm_device *dev)
7917{
7918 drm_i915_private_t *dev_priv = dev->dev_private;
7919 int i;
7920
7921 if (dev_priv->num_pch_pll == 0) {
7922 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7923 return;
7924 }
7925
7926 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7927 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7928 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7929 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7930 }
7931}
7932
b358d0a6 7933static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7934{
22fd0fab 7935 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7936 struct intel_crtc *intel_crtc;
7937 int i;
7938
7939 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7940 if (intel_crtc == NULL)
7941 return;
7942
7943 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7944
7945 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7946 for (i = 0; i < 256; i++) {
7947 intel_crtc->lut_r[i] = i;
7948 intel_crtc->lut_g[i] = i;
7949 intel_crtc->lut_b[i] = i;
7950 }
7951
80824003
JB
7952 /* Swap pipes & planes for FBC on pre-965 */
7953 intel_crtc->pipe = pipe;
7954 intel_crtc->plane = pipe;
a5c961d1 7955 intel_crtc->cpu_transcoder = pipe;
e2e767ab 7956 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7957 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7958 intel_crtc->plane = !pipe;
80824003
JB
7959 }
7960
22fd0fab
JB
7961 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7962 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7963 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7964 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7965
5a354204 7966 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7967
79e53945 7968 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7969}
7970
08d7b3d1 7971int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7972 struct drm_file *file)
08d7b3d1 7973{
08d7b3d1 7974 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7975 struct drm_mode_object *drmmode_obj;
7976 struct intel_crtc *crtc;
08d7b3d1 7977
1cff8f6b
DV
7978 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7979 return -ENODEV;
08d7b3d1 7980
c05422d5
DV
7981 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7982 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7983
c05422d5 7984 if (!drmmode_obj) {
08d7b3d1
CW
7985 DRM_ERROR("no such CRTC id\n");
7986 return -EINVAL;
7987 }
7988
c05422d5
DV
7989 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7990 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7991
c05422d5 7992 return 0;
08d7b3d1
CW
7993}
7994
66a9278e 7995static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7996{
66a9278e
DV
7997 struct drm_device *dev = encoder->base.dev;
7998 struct intel_encoder *source_encoder;
79e53945 7999 int index_mask = 0;
79e53945
JB
8000 int entry = 0;
8001
66a9278e
DV
8002 list_for_each_entry(source_encoder,
8003 &dev->mode_config.encoder_list, base.head) {
8004
8005 if (encoder == source_encoder)
79e53945 8006 index_mask |= (1 << entry);
66a9278e
DV
8007
8008 /* Intel hw has only one MUX where enocoders could be cloned. */
8009 if (encoder->cloneable && source_encoder->cloneable)
8010 index_mask |= (1 << entry);
8011
79e53945
JB
8012 entry++;
8013 }
4ef69c7a 8014
79e53945
JB
8015 return index_mask;
8016}
8017
4d302442
CW
8018static bool has_edp_a(struct drm_device *dev)
8019{
8020 struct drm_i915_private *dev_priv = dev->dev_private;
8021
8022 if (!IS_MOBILE(dev))
8023 return false;
8024
8025 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8026 return false;
8027
8028 if (IS_GEN5(dev) &&
8029 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8030 return false;
8031
8032 return true;
8033}
8034
79e53945
JB
8035static void intel_setup_outputs(struct drm_device *dev)
8036{
725e30ad 8037 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8038 struct intel_encoder *encoder;
cb0953d7 8039 bool dpd_is_edp = false;
f3cfcba6 8040 bool has_lvds;
79e53945 8041
f3cfcba6 8042 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8043 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8044 /* disable the panel fitter on everything but LVDS */
8045 I915_WRITE(PFIT_CONTROL, 0);
8046 }
79e53945 8047
bad720ff 8048 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8049 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 8050
4d302442 8051 if (has_edp_a(dev))
ab9d7c30 8052 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 8053
cb0953d7 8054 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8055 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
8056 }
8057
8058 intel_crt_init(dev);
8059
0e72a5b5
ED
8060 if (IS_HASWELL(dev)) {
8061 int found;
8062
8063 /* Haswell uses DDI functions to detect digital outputs */
8064 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8065 /* DDI A only supports eDP */
8066 if (found)
8067 intel_ddi_init(dev, PORT_A);
8068
8069 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8070 * register */
8071 found = I915_READ(SFUSE_STRAP);
8072
8073 if (found & SFUSE_STRAP_DDIB_DETECTED)
8074 intel_ddi_init(dev, PORT_B);
8075 if (found & SFUSE_STRAP_DDIC_DETECTED)
8076 intel_ddi_init(dev, PORT_C);
8077 if (found & SFUSE_STRAP_DDID_DETECTED)
8078 intel_ddi_init(dev, PORT_D);
8079 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
8080 int found;
8081
30ad48b7 8082 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8083 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8084 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8085 if (!found)
08d644ad 8086 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8087 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8088 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8089 }
8090
8091 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8092 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8093
b708a1d5 8094 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8095 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8096
5eb08b69 8097 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8098 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8099
cb0953d7 8100 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8101 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8102 } else if (IS_VALLEYVIEW(dev)) {
8103 int found;
8104
19c03924
GB
8105 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8106 if (I915_READ(DP_C) & DP_DETECTED)
8107 intel_dp_init(dev, DP_C, PORT_C);
8108
4a87d65d
JB
8109 if (I915_READ(SDVOB) & PORT_DETECTED) {
8110 /* SDVOB multiplex with HDMIB */
8111 found = intel_sdvo_init(dev, SDVOB, true);
8112 if (!found)
08d644ad 8113 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8114 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8115 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8116 }
8117
8118 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8119 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8120
103a196f 8121 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8122 bool found = false;
7d57382e 8123
725e30ad 8124 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8125 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8126 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8127 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8128 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8129 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8130 }
27185ae1 8131
b01f2c3a
JB
8132 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8133 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8134 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8135 }
725e30ad 8136 }
13520b05
KH
8137
8138 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8139
b01f2c3a
JB
8140 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8141 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8142 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8143 }
27185ae1
ML
8144
8145 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8146
b01f2c3a
JB
8147 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8148 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8149 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8150 }
8151 if (SUPPORTS_INTEGRATED_DP(dev)) {
8152 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8153 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8154 }
725e30ad 8155 }
27185ae1 8156
b01f2c3a
JB
8157 if (SUPPORTS_INTEGRATED_DP(dev) &&
8158 (I915_READ(DP_D) & DP_DETECTED)) {
8159 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8160 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8161 }
bad720ff 8162 } else if (IS_GEN2(dev))
79e53945
JB
8163 intel_dvo_init(dev);
8164
103a196f 8165 if (SUPPORTS_TV(dev))
79e53945
JB
8166 intel_tv_init(dev);
8167
4ef69c7a
CW
8168 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8169 encoder->base.possible_crtcs = encoder->crtc_mask;
8170 encoder->base.possible_clones =
66a9278e 8171 intel_encoder_clones(encoder);
79e53945 8172 }
47356eb6 8173
40579abe 8174 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8175 ironlake_init_pch_refclk(dev);
79e53945
JB
8176}
8177
8178static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8179{
8180 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8181
8182 drm_framebuffer_cleanup(fb);
05394f39 8183 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8184
8185 kfree(intel_fb);
8186}
8187
8188static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8189 struct drm_file *file,
79e53945
JB
8190 unsigned int *handle)
8191{
8192 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8193 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8194
05394f39 8195 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8196}
8197
8198static const struct drm_framebuffer_funcs intel_fb_funcs = {
8199 .destroy = intel_user_framebuffer_destroy,
8200 .create_handle = intel_user_framebuffer_create_handle,
8201};
8202
38651674
DA
8203int intel_framebuffer_init(struct drm_device *dev,
8204 struct intel_framebuffer *intel_fb,
308e5bcb 8205 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8206 struct drm_i915_gem_object *obj)
79e53945 8207{
79e53945
JB
8208 int ret;
8209
05394f39 8210 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8211 return -EINVAL;
8212
308e5bcb 8213 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8214 return -EINVAL;
8215
308e5bcb 8216 switch (mode_cmd->pixel_format) {
04b3924d
VS
8217 case DRM_FORMAT_RGB332:
8218 case DRM_FORMAT_RGB565:
8219 case DRM_FORMAT_XRGB8888:
b250da79 8220 case DRM_FORMAT_XBGR8888:
04b3924d
VS
8221 case DRM_FORMAT_ARGB8888:
8222 case DRM_FORMAT_XRGB2101010:
8223 case DRM_FORMAT_ARGB2101010:
308e5bcb 8224 /* RGB formats are common across chipsets */
b5626747 8225 break;
04b3924d
VS
8226 case DRM_FORMAT_YUYV:
8227 case DRM_FORMAT_UYVY:
8228 case DRM_FORMAT_YVYU:
8229 case DRM_FORMAT_VYUY:
57cd6508
CW
8230 break;
8231 default:
aca25848
ED
8232 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8233 mode_cmd->pixel_format);
57cd6508
CW
8234 return -EINVAL;
8235 }
8236
79e53945
JB
8237 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8238 if (ret) {
8239 DRM_ERROR("framebuffer init failed %d\n", ret);
8240 return ret;
8241 }
8242
8243 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8244 intel_fb->obj = obj;
79e53945
JB
8245 return 0;
8246}
8247
79e53945
JB
8248static struct drm_framebuffer *
8249intel_user_framebuffer_create(struct drm_device *dev,
8250 struct drm_file *filp,
308e5bcb 8251 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8252{
05394f39 8253 struct drm_i915_gem_object *obj;
79e53945 8254
308e5bcb
JB
8255 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8256 mode_cmd->handles[0]));
c8725226 8257 if (&obj->base == NULL)
cce13ff7 8258 return ERR_PTR(-ENOENT);
79e53945 8259
d2dff872 8260 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8261}
8262
79e53945 8263static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8264 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8265 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8266};
8267
e70236a8
JB
8268/* Set up chip specific display functions */
8269static void intel_init_display(struct drm_device *dev)
8270{
8271 struct drm_i915_private *dev_priv = dev->dev_private;
8272
8273 /* We always want a DPMS function */
09b4ddf9
PZ
8274 if (IS_HASWELL(dev)) {
8275 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8276 dev_priv->display.crtc_enable = haswell_crtc_enable;
8277 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8278 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8279 dev_priv->display.update_plane = ironlake_update_plane;
8280 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8281 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8282 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8283 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8284 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8285 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8286 } else {
f564048e 8287 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8288 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8289 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8290 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8291 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8292 }
e70236a8 8293
e70236a8 8294 /* Returns the core display clock speed */
25eb05fc
JB
8295 if (IS_VALLEYVIEW(dev))
8296 dev_priv->display.get_display_clock_speed =
8297 valleyview_get_display_clock_speed;
8298 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8299 dev_priv->display.get_display_clock_speed =
8300 i945_get_display_clock_speed;
8301 else if (IS_I915G(dev))
8302 dev_priv->display.get_display_clock_speed =
8303 i915_get_display_clock_speed;
f2b115e6 8304 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8305 dev_priv->display.get_display_clock_speed =
8306 i9xx_misc_get_display_clock_speed;
8307 else if (IS_I915GM(dev))
8308 dev_priv->display.get_display_clock_speed =
8309 i915gm_get_display_clock_speed;
8310 else if (IS_I865G(dev))
8311 dev_priv->display.get_display_clock_speed =
8312 i865_get_display_clock_speed;
f0f8a9ce 8313 else if (IS_I85X(dev))
e70236a8
JB
8314 dev_priv->display.get_display_clock_speed =
8315 i855_get_display_clock_speed;
8316 else /* 852, 830 */
8317 dev_priv->display.get_display_clock_speed =
8318 i830_get_display_clock_speed;
8319
7f8a8569 8320 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8321 if (IS_GEN5(dev)) {
674cf967 8322 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8323 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8324 } else if (IS_GEN6(dev)) {
674cf967 8325 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8326 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8327 } else if (IS_IVYBRIDGE(dev)) {
8328 /* FIXME: detect B0+ stepping and use auto training */
8329 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8330 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
8331 } else if (IS_HASWELL(dev)) {
8332 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8333 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8334 } else
8335 dev_priv->display.update_wm = NULL;
6067aaea 8336 } else if (IS_G4X(dev)) {
e0dac65e 8337 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8338 }
8c9f3aaf
JB
8339
8340 /* Default just returns -ENODEV to indicate unsupported */
8341 dev_priv->display.queue_flip = intel_default_queue_flip;
8342
8343 switch (INTEL_INFO(dev)->gen) {
8344 case 2:
8345 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8346 break;
8347
8348 case 3:
8349 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8350 break;
8351
8352 case 4:
8353 case 5:
8354 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8355 break;
8356
8357 case 6:
8358 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8359 break;
7c9017e5
JB
8360 case 7:
8361 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8362 break;
8c9f3aaf 8363 }
e70236a8
JB
8364}
8365
b690e96c
JB
8366/*
8367 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8368 * resume, or other times. This quirk makes sure that's the case for
8369 * affected systems.
8370 */
0206e353 8371static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8372{
8373 struct drm_i915_private *dev_priv = dev->dev_private;
8374
8375 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8376 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8377}
8378
435793df
KP
8379/*
8380 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8381 */
8382static void quirk_ssc_force_disable(struct drm_device *dev)
8383{
8384 struct drm_i915_private *dev_priv = dev->dev_private;
8385 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8386 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8387}
8388
4dca20ef 8389/*
5a15ab5b
CE
8390 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8391 * brightness value
4dca20ef
CE
8392 */
8393static void quirk_invert_brightness(struct drm_device *dev)
8394{
8395 struct drm_i915_private *dev_priv = dev->dev_private;
8396 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8397 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8398}
8399
b690e96c
JB
8400struct intel_quirk {
8401 int device;
8402 int subsystem_vendor;
8403 int subsystem_device;
8404 void (*hook)(struct drm_device *dev);
8405};
8406
c43b5634 8407static struct intel_quirk intel_quirks[] = {
b690e96c 8408 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8409 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8410
b690e96c
JB
8411 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8412 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8413
b690e96c
JB
8414 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8415 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8416
ccd0d36e 8417 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8418 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8419 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8420
8421 /* Lenovo U160 cannot use SSC on LVDS */
8422 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8423
8424 /* Sony Vaio Y cannot use SSC on LVDS */
8425 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8426
8427 /* Acer Aspire 5734Z must invert backlight brightness */
8428 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8429};
8430
8431static void intel_init_quirks(struct drm_device *dev)
8432{
8433 struct pci_dev *d = dev->pdev;
8434 int i;
8435
8436 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8437 struct intel_quirk *q = &intel_quirks[i];
8438
8439 if (d->device == q->device &&
8440 (d->subsystem_vendor == q->subsystem_vendor ||
8441 q->subsystem_vendor == PCI_ANY_ID) &&
8442 (d->subsystem_device == q->subsystem_device ||
8443 q->subsystem_device == PCI_ANY_ID))
8444 q->hook(dev);
8445 }
8446}
8447
9cce37f4
JB
8448/* Disable the VGA plane that we never use */
8449static void i915_disable_vga(struct drm_device *dev)
8450{
8451 struct drm_i915_private *dev_priv = dev->dev_private;
8452 u8 sr1;
8453 u32 vga_reg;
8454
8455 if (HAS_PCH_SPLIT(dev))
8456 vga_reg = CPU_VGACNTRL;
8457 else
8458 vga_reg = VGACNTRL;
8459
8460 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8461 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8462 sr1 = inb(VGA_SR_DATA);
8463 outb(sr1 | 1<<5, VGA_SR_DATA);
8464 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8465 udelay(300);
8466
8467 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8468 POSTING_READ(vga_reg);
8469}
8470
f817586c
DV
8471void intel_modeset_init_hw(struct drm_device *dev)
8472{
0232e927
ED
8473 /* We attempt to init the necessary power wells early in the initialization
8474 * time, so the subsystems that expect power to be enabled can work.
8475 */
8476 intel_init_power_wells(dev);
8477
a8f78b58
ED
8478 intel_prepare_ddi(dev);
8479
f817586c
DV
8480 intel_init_clock_gating(dev);
8481
79f5b2c7 8482 mutex_lock(&dev->struct_mutex);
8090c6b9 8483 intel_enable_gt_powersave(dev);
79f5b2c7 8484 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8485}
8486
79e53945
JB
8487void intel_modeset_init(struct drm_device *dev)
8488{
652c393a 8489 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8490 int i, ret;
79e53945
JB
8491
8492 drm_mode_config_init(dev);
8493
8494 dev->mode_config.min_width = 0;
8495 dev->mode_config.min_height = 0;
8496
019d96cb
DA
8497 dev->mode_config.preferred_depth = 24;
8498 dev->mode_config.prefer_shadow = 1;
8499
e6ecefaa 8500 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8501
b690e96c
JB
8502 intel_init_quirks(dev);
8503
1fa61106
ED
8504 intel_init_pm(dev);
8505
e70236a8
JB
8506 intel_init_display(dev);
8507
a6c45cf0
CW
8508 if (IS_GEN2(dev)) {
8509 dev->mode_config.max_width = 2048;
8510 dev->mode_config.max_height = 2048;
8511 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8512 dev->mode_config.max_width = 4096;
8513 dev->mode_config.max_height = 4096;
79e53945 8514 } else {
a6c45cf0
CW
8515 dev->mode_config.max_width = 8192;
8516 dev->mode_config.max_height = 8192;
79e53945 8517 }
dd2757f8 8518 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8519
28c97730 8520 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8521 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8522
a3524f1b 8523 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8524 intel_crtc_init(dev, i);
00c2064b
JB
8525 ret = intel_plane_init(dev, i);
8526 if (ret)
8527 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8528 }
8529
79f689aa 8530 intel_cpu_pll_init(dev);
ee7b9f93
JB
8531 intel_pch_pll_init(dev);
8532
9cce37f4
JB
8533 /* Just disable it once at startup */
8534 i915_disable_vga(dev);
79e53945 8535 intel_setup_outputs(dev);
2c7111db
CW
8536}
8537
24929352
DV
8538static void
8539intel_connector_break_all_links(struct intel_connector *connector)
8540{
8541 connector->base.dpms = DRM_MODE_DPMS_OFF;
8542 connector->base.encoder = NULL;
8543 connector->encoder->connectors_active = false;
8544 connector->encoder->base.crtc = NULL;
8545}
8546
7fad798e
DV
8547static void intel_enable_pipe_a(struct drm_device *dev)
8548{
8549 struct intel_connector *connector;
8550 struct drm_connector *crt = NULL;
8551 struct intel_load_detect_pipe load_detect_temp;
8552
8553 /* We can't just switch on the pipe A, we need to set things up with a
8554 * proper mode and output configuration. As a gross hack, enable pipe A
8555 * by enabling the load detect pipe once. */
8556 list_for_each_entry(connector,
8557 &dev->mode_config.connector_list,
8558 base.head) {
8559 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8560 crt = &connector->base;
8561 break;
8562 }
8563 }
8564
8565 if (!crt)
8566 return;
8567
8568 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8569 intel_release_load_detect_pipe(crt, &load_detect_temp);
8570
8571
8572}
8573
fa555837
DV
8574static bool
8575intel_check_plane_mapping(struct intel_crtc *crtc)
8576{
8577 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8578 u32 reg, val;
8579
8580 if (dev_priv->num_pipe == 1)
8581 return true;
8582
8583 reg = DSPCNTR(!crtc->plane);
8584 val = I915_READ(reg);
8585
8586 if ((val & DISPLAY_PLANE_ENABLE) &&
8587 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8588 return false;
8589
8590 return true;
8591}
8592
24929352
DV
8593static void intel_sanitize_crtc(struct intel_crtc *crtc)
8594{
8595 struct drm_device *dev = crtc->base.dev;
8596 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8597 u32 reg;
24929352 8598
24929352 8599 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8600 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8601 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8602
8603 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8604 * disable the crtc (and hence change the state) if it is wrong. Note
8605 * that gen4+ has a fixed plane -> pipe mapping. */
8606 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8607 struct intel_connector *connector;
8608 bool plane;
8609
24929352
DV
8610 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8611 crtc->base.base.id);
8612
8613 /* Pipe has the wrong plane attached and the plane is active.
8614 * Temporarily change the plane mapping and disable everything
8615 * ... */
8616 plane = crtc->plane;
8617 crtc->plane = !plane;
8618 dev_priv->display.crtc_disable(&crtc->base);
8619 crtc->plane = plane;
8620
8621 /* ... and break all links. */
8622 list_for_each_entry(connector, &dev->mode_config.connector_list,
8623 base.head) {
8624 if (connector->encoder->base.crtc != &crtc->base)
8625 continue;
8626
8627 intel_connector_break_all_links(connector);
8628 }
8629
8630 WARN_ON(crtc->active);
8631 crtc->base.enabled = false;
8632 }
24929352 8633
7fad798e
DV
8634 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8635 crtc->pipe == PIPE_A && !crtc->active) {
8636 /* BIOS forgot to enable pipe A, this mostly happens after
8637 * resume. Force-enable the pipe to fix this, the update_dpms
8638 * call below we restore the pipe to the right state, but leave
8639 * the required bits on. */
8640 intel_enable_pipe_a(dev);
8641 }
8642
24929352
DV
8643 /* Adjust the state of the output pipe according to whether we
8644 * have active connectors/encoders. */
8645 intel_crtc_update_dpms(&crtc->base);
8646
8647 if (crtc->active != crtc->base.enabled) {
8648 struct intel_encoder *encoder;
8649
8650 /* This can happen either due to bugs in the get_hw_state
8651 * functions or because the pipe is force-enabled due to the
8652 * pipe A quirk. */
8653 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8654 crtc->base.base.id,
8655 crtc->base.enabled ? "enabled" : "disabled",
8656 crtc->active ? "enabled" : "disabled");
8657
8658 crtc->base.enabled = crtc->active;
8659
8660 /* Because we only establish the connector -> encoder ->
8661 * crtc links if something is active, this means the
8662 * crtc is now deactivated. Break the links. connector
8663 * -> encoder links are only establish when things are
8664 * actually up, hence no need to break them. */
8665 WARN_ON(crtc->active);
8666
8667 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8668 WARN_ON(encoder->connectors_active);
8669 encoder->base.crtc = NULL;
8670 }
8671 }
8672}
8673
8674static void intel_sanitize_encoder(struct intel_encoder *encoder)
8675{
8676 struct intel_connector *connector;
8677 struct drm_device *dev = encoder->base.dev;
8678
8679 /* We need to check both for a crtc link (meaning that the
8680 * encoder is active and trying to read from a pipe) and the
8681 * pipe itself being active. */
8682 bool has_active_crtc = encoder->base.crtc &&
8683 to_intel_crtc(encoder->base.crtc)->active;
8684
8685 if (encoder->connectors_active && !has_active_crtc) {
8686 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8687 encoder->base.base.id,
8688 drm_get_encoder_name(&encoder->base));
8689
8690 /* Connector is active, but has no active pipe. This is
8691 * fallout from our resume register restoring. Disable
8692 * the encoder manually again. */
8693 if (encoder->base.crtc) {
8694 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8695 encoder->base.base.id,
8696 drm_get_encoder_name(&encoder->base));
8697 encoder->disable(encoder);
8698 }
8699
8700 /* Inconsistent output/port/pipe state happens presumably due to
8701 * a bug in one of the get_hw_state functions. Or someplace else
8702 * in our code, like the register restore mess on resume. Clamp
8703 * things to off as a safer default. */
8704 list_for_each_entry(connector,
8705 &dev->mode_config.connector_list,
8706 base.head) {
8707 if (connector->encoder != encoder)
8708 continue;
8709
8710 intel_connector_break_all_links(connector);
8711 }
8712 }
8713 /* Enabled encoders without active connectors will be fixed in
8714 * the crtc fixup. */
8715}
8716
8717/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8718 * and i915 state tracking structures. */
8719void intel_modeset_setup_hw_state(struct drm_device *dev)
8720{
8721 struct drm_i915_private *dev_priv = dev->dev_private;
8722 enum pipe pipe;
8723 u32 tmp;
8724 struct intel_crtc *crtc;
8725 struct intel_encoder *encoder;
8726 struct intel_connector *connector;
8727
e28d54cb
PZ
8728 if (IS_HASWELL(dev)) {
8729 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8730
8731 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8732 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8733 case TRANS_DDI_EDP_INPUT_A_ON:
8734 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8735 pipe = PIPE_A;
8736 break;
8737 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8738 pipe = PIPE_B;
8739 break;
8740 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8741 pipe = PIPE_C;
8742 break;
8743 }
8744
8745 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8746 crtc->cpu_transcoder = TRANSCODER_EDP;
8747
8748 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8749 pipe_name(pipe));
8750 }
8751 }
8752
24929352
DV
8753 for_each_pipe(pipe) {
8754 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8755
702e7a56 8756 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
8757 if (tmp & PIPECONF_ENABLE)
8758 crtc->active = true;
8759 else
8760 crtc->active = false;
8761
8762 crtc->base.enabled = crtc->active;
8763
8764 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8765 crtc->base.base.id,
8766 crtc->active ? "enabled" : "disabled");
8767 }
8768
6441ab5f
PZ
8769 if (IS_HASWELL(dev))
8770 intel_ddi_setup_hw_pll_state(dev);
8771
24929352
DV
8772 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8773 base.head) {
8774 pipe = 0;
8775
8776 if (encoder->get_hw_state(encoder, &pipe)) {
8777 encoder->base.crtc =
8778 dev_priv->pipe_to_crtc_mapping[pipe];
8779 } else {
8780 encoder->base.crtc = NULL;
8781 }
8782
8783 encoder->connectors_active = false;
8784 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8785 encoder->base.base.id,
8786 drm_get_encoder_name(&encoder->base),
8787 encoder->base.crtc ? "enabled" : "disabled",
8788 pipe);
8789 }
8790
8791 list_for_each_entry(connector, &dev->mode_config.connector_list,
8792 base.head) {
8793 if (connector->get_hw_state(connector)) {
8794 connector->base.dpms = DRM_MODE_DPMS_ON;
8795 connector->encoder->connectors_active = true;
8796 connector->base.encoder = &connector->encoder->base;
8797 } else {
8798 connector->base.dpms = DRM_MODE_DPMS_OFF;
8799 connector->base.encoder = NULL;
8800 }
8801 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8802 connector->base.base.id,
8803 drm_get_connector_name(&connector->base),
8804 connector->base.encoder ? "enabled" : "disabled");
8805 }
8806
8807 /* HW state is read out, now we need to sanitize this mess. */
8808 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8809 base.head) {
8810 intel_sanitize_encoder(encoder);
8811 }
8812
8813 for_each_pipe(pipe) {
8814 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8815 intel_sanitize_crtc(crtc);
8816 }
9a935856
DV
8817
8818 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8819
8820 intel_modeset_check_state(dev);
2e938892
DV
8821
8822 drm_mode_config_reset(dev);
24929352
DV
8823}
8824
2c7111db
CW
8825void intel_modeset_gem_init(struct drm_device *dev)
8826{
1833b134 8827 intel_modeset_init_hw(dev);
02e792fb
DV
8828
8829 intel_setup_overlay(dev);
24929352
DV
8830
8831 intel_modeset_setup_hw_state(dev);
79e53945
JB
8832}
8833
8834void intel_modeset_cleanup(struct drm_device *dev)
8835{
652c393a
JB
8836 struct drm_i915_private *dev_priv = dev->dev_private;
8837 struct drm_crtc *crtc;
8838 struct intel_crtc *intel_crtc;
8839
f87ea761 8840 drm_kms_helper_poll_fini(dev);
652c393a
JB
8841 mutex_lock(&dev->struct_mutex);
8842
723bfd70
JB
8843 intel_unregister_dsm_handler();
8844
8845
652c393a
JB
8846 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8847 /* Skip inactive CRTCs */
8848 if (!crtc->fb)
8849 continue;
8850
8851 intel_crtc = to_intel_crtc(crtc);
3dec0095 8852 intel_increase_pllclock(crtc);
652c393a
JB
8853 }
8854
973d04f9 8855 intel_disable_fbc(dev);
e70236a8 8856
8090c6b9 8857 intel_disable_gt_powersave(dev);
0cdab21f 8858
930ebb46
DV
8859 ironlake_teardown_rc6(dev);
8860
57f350b6
JB
8861 if (IS_VALLEYVIEW(dev))
8862 vlv_init_dpio(dev);
8863
69341a5e
KH
8864 mutex_unlock(&dev->struct_mutex);
8865
6c0d9350
DV
8866 /* Disable the irq before mode object teardown, for the irq might
8867 * enqueue unpin/hotplug work. */
8868 drm_irq_uninstall(dev);
8869 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8870 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8871
1630fe75
CW
8872 /* flush any delayed tasks or pending work */
8873 flush_scheduled_work();
8874
79e53945
JB
8875 drm_mode_config_cleanup(dev);
8876}
8877
f1c79df3
ZW
8878/*
8879 * Return which encoder is currently attached for connector.
8880 */
df0e9248 8881struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8882{
df0e9248
CW
8883 return &intel_attached_encoder(connector)->base;
8884}
f1c79df3 8885
df0e9248
CW
8886void intel_connector_attach_encoder(struct intel_connector *connector,
8887 struct intel_encoder *encoder)
8888{
8889 connector->encoder = encoder;
8890 drm_mode_connector_attach_encoder(&connector->base,
8891 &encoder->base);
79e53945 8892}
28d52043
DA
8893
8894/*
8895 * set vga decode state - true == enable VGA decode
8896 */
8897int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8898{
8899 struct drm_i915_private *dev_priv = dev->dev_private;
8900 u16 gmch_ctrl;
8901
8902 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8903 if (state)
8904 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8905 else
8906 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8907 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8908 return 0;
8909}
c4a1d9e4
CW
8910
8911#ifdef CONFIG_DEBUG_FS
8912#include <linux/seq_file.h>
8913
8914struct intel_display_error_state {
8915 struct intel_cursor_error_state {
8916 u32 control;
8917 u32 position;
8918 u32 base;
8919 u32 size;
52331309 8920 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8921
8922 struct intel_pipe_error_state {
8923 u32 conf;
8924 u32 source;
8925
8926 u32 htotal;
8927 u32 hblank;
8928 u32 hsync;
8929 u32 vtotal;
8930 u32 vblank;
8931 u32 vsync;
52331309 8932 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8933
8934 struct intel_plane_error_state {
8935 u32 control;
8936 u32 stride;
8937 u32 size;
8938 u32 pos;
8939 u32 addr;
8940 u32 surface;
8941 u32 tile_offset;
52331309 8942 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8943};
8944
8945struct intel_display_error_state *
8946intel_display_capture_error_state(struct drm_device *dev)
8947{
0206e353 8948 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 8949 struct intel_display_error_state *error;
702e7a56 8950 enum transcoder cpu_transcoder;
c4a1d9e4
CW
8951 int i;
8952
8953 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8954 if (error == NULL)
8955 return NULL;
8956
52331309 8957 for_each_pipe(i) {
702e7a56
PZ
8958 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
8959
c4a1d9e4
CW
8960 error->cursor[i].control = I915_READ(CURCNTR(i));
8961 error->cursor[i].position = I915_READ(CURPOS(i));
8962 error->cursor[i].base = I915_READ(CURBASE(i));
8963
8964 error->plane[i].control = I915_READ(DSPCNTR(i));
8965 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8966 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8967 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8968 error->plane[i].addr = I915_READ(DSPADDR(i));
8969 if (INTEL_INFO(dev)->gen >= 4) {
8970 error->plane[i].surface = I915_READ(DSPSURF(i));
8971 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8972 }
8973
702e7a56 8974 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 8975 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
8976 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
8977 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
8978 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
8979 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
8980 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
8981 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
8982 }
8983
8984 return error;
8985}
8986
8987void
8988intel_display_print_error_state(struct seq_file *m,
8989 struct drm_device *dev,
8990 struct intel_display_error_state *error)
8991{
52331309 8992 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8993 int i;
8994
52331309
DL
8995 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8996 for_each_pipe(i) {
c4a1d9e4
CW
8997 seq_printf(m, "Pipe [%d]:\n", i);
8998 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8999 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9000 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9001 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9002 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9003 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9004 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9005 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9006
9007 seq_printf(m, "Plane [%d]:\n", i);
9008 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9009 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9010 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9011 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9012 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9013 if (INTEL_INFO(dev)->gen >= 4) {
9014 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9015 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9016 }
9017
9018 seq_printf(m, "Cursor [%d]:\n", i);
9019 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9020 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9021 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9022 }
9023}
9024#endif