]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
Merge tag 'v3.16-rc4' into drm-intel-next-queued
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517 if (!IS_VALLEYVIEW(dev))
1518 return;
1519
076ed3b2
CML
1520 if (IS_CHERRYVIEW(dev)) {
1521 enum dpio_phy phy;
1522 u32 val;
1523
1524 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525 /* Poll for phypwrgood signal */
1526 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527 PHY_POWERGOOD(phy), 1))
1528 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530 /*
1531 * Deassert common lane reset for PHY.
1532 *
1533 * This should only be done on init and resume from S3
1534 * with both PLLs disabled, or we risk losing DPIO and
1535 * PLL synchronization.
1536 */
1537 val = I915_READ(DISPLAY_PHY_CONTROL);
1538 I915_WRITE(DISPLAY_PHY_CONTROL,
1539 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540 }
1541
1542 } else {
1543 /*
57021059
JB
1544 * If DPIO has already been reset, e.g. by BIOS, just skip all
1545 * this.
076ed3b2 1546 */
57021059
JB
1547 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1548 return;
1549
1550 /*
1551 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1552 * Need to assert and de-assert PHY SB reset by gating the
1553 * common lane power, then un-gating it.
1554 * Simply ungating isn't enough to reset the PHY enough to get
1555 * ports and lanes running.
1556 */
1557 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1558 false);
1559 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1560 true);
076ed3b2 1561 }
40e9cf64
JB
1562}
1563
426115cf 1564static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1565{
426115cf
DV
1566 struct drm_device *dev = crtc->base.dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 int reg = DPLL(crtc->pipe);
1569 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1570
426115cf 1571 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1572
1573 /* No really, not for ILK+ */
1574 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1575
1576 /* PLL is protected by panel, make sure we can write it */
1577 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1578 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1579
426115cf
DV
1580 I915_WRITE(reg, dpll);
1581 POSTING_READ(reg);
1582 udelay(150);
1583
1584 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1585 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1586
1587 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1588 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1589
1590 /* We do this three times for luck */
426115cf 1591 I915_WRITE(reg, dpll);
87442f73
DV
1592 POSTING_READ(reg);
1593 udelay(150); /* wait for warmup */
426115cf 1594 I915_WRITE(reg, dpll);
87442f73
DV
1595 POSTING_READ(reg);
1596 udelay(150); /* wait for warmup */
426115cf 1597 I915_WRITE(reg, dpll);
87442f73
DV
1598 POSTING_READ(reg);
1599 udelay(150); /* wait for warmup */
1600}
1601
9d556c99
CML
1602static void chv_enable_pll(struct intel_crtc *crtc)
1603{
1604 struct drm_device *dev = crtc->base.dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 int pipe = crtc->pipe;
1607 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1608 u32 tmp;
1609
1610 assert_pipe_disabled(dev_priv, crtc->pipe);
1611
1612 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1613
1614 mutex_lock(&dev_priv->dpio_lock);
1615
1616 /* Enable back the 10bit clock to display controller */
1617 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1618 tmp |= DPIO_DCLKP_EN;
1619 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1620
1621 /*
1622 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1623 */
1624 udelay(1);
1625
1626 /* Enable PLL */
a11b0703 1627 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1628
1629 /* Check PLL is locked */
a11b0703 1630 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1631 DRM_ERROR("PLL %d failed to lock\n", pipe);
1632
a11b0703
VS
1633 /* not sure when this should be written */
1634 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1635 POSTING_READ(DPLL_MD(pipe));
1636
9d556c99
CML
1637 mutex_unlock(&dev_priv->dpio_lock);
1638}
1639
66e3d5c0 1640static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1641{
66e3d5c0
DV
1642 struct drm_device *dev = crtc->base.dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 int reg = DPLL(crtc->pipe);
1645 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1646
66e3d5c0 1647 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1648
63d7bbe9 1649 /* No really, not for ILK+ */
3d13ef2e 1650 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1651
1652 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1653 if (IS_MOBILE(dev) && !IS_I830(dev))
1654 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1655
66e3d5c0
DV
1656 I915_WRITE(reg, dpll);
1657
1658 /* Wait for the clocks to stabilize. */
1659 POSTING_READ(reg);
1660 udelay(150);
1661
1662 if (INTEL_INFO(dev)->gen >= 4) {
1663 I915_WRITE(DPLL_MD(crtc->pipe),
1664 crtc->config.dpll_hw_state.dpll_md);
1665 } else {
1666 /* The pixel multiplier can only be updated once the
1667 * DPLL is enabled and the clocks are stable.
1668 *
1669 * So write it again.
1670 */
1671 I915_WRITE(reg, dpll);
1672 }
63d7bbe9
JB
1673
1674 /* We do this three times for luck */
66e3d5c0 1675 I915_WRITE(reg, dpll);
63d7bbe9
JB
1676 POSTING_READ(reg);
1677 udelay(150); /* wait for warmup */
66e3d5c0 1678 I915_WRITE(reg, dpll);
63d7bbe9
JB
1679 POSTING_READ(reg);
1680 udelay(150); /* wait for warmup */
66e3d5c0 1681 I915_WRITE(reg, dpll);
63d7bbe9
JB
1682 POSTING_READ(reg);
1683 udelay(150); /* wait for warmup */
1684}
1685
1686/**
50b44a44 1687 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe PLL to disable
1690 *
1691 * Disable the PLL for @pipe, making sure the pipe is off first.
1692 *
1693 * Note! This is for pre-ILK only.
1694 */
50b44a44 1695static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1696{
63d7bbe9
JB
1697 /* Don't disable pipe A or pipe A PLLs if needed */
1698 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1699 return;
1700
1701 /* Make sure the pipe isn't still relying on us */
1702 assert_pipe_disabled(dev_priv, pipe);
1703
50b44a44
DV
1704 I915_WRITE(DPLL(pipe), 0);
1705 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1706}
1707
f6071166
JB
1708static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1709{
1710 u32 val = 0;
1711
1712 /* Make sure the pipe isn't still relying on us */
1713 assert_pipe_disabled(dev_priv, pipe);
1714
e5cbfbfb
ID
1715 /*
1716 * Leave integrated clock source and reference clock enabled for pipe B.
1717 * The latter is needed for VGA hotplug / manual detection.
1718 */
f6071166 1719 if (pipe == PIPE_B)
e5cbfbfb 1720 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1723
1724}
1725
1726static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1727{
d752048d 1728 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1729 u32 val;
1730
a11b0703
VS
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1733
a11b0703
VS
1734 /* Set PLL en = 0 */
1735 val = DPLL_SSC_REF_CLOCK_CHV;
1736 if (pipe != PIPE_A)
1737 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1738 I915_WRITE(DPLL(pipe), val);
1739 POSTING_READ(DPLL(pipe));
d752048d
VS
1740
1741 mutex_lock(&dev_priv->dpio_lock);
1742
1743 /* Disable 10bit clock to display controller */
1744 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1745 val &= ~DPIO_DCLKP_EN;
1746 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1747
61407f6d
VS
1748 /* disable left/right clock distribution */
1749 if (pipe != PIPE_B) {
1750 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1751 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1752 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1753 } else {
1754 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1755 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1756 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1757 }
1758
d752048d 1759 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1760}
1761
e4607fcf
CML
1762void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1763 struct intel_digital_port *dport)
89b667f8
JB
1764{
1765 u32 port_mask;
00fc31b7 1766 int dpll_reg;
89b667f8 1767
e4607fcf
CML
1768 switch (dport->port) {
1769 case PORT_B:
89b667f8 1770 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1771 dpll_reg = DPLL(0);
e4607fcf
CML
1772 break;
1773 case PORT_C:
89b667f8 1774 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1775 dpll_reg = DPLL(0);
1776 break;
1777 case PORT_D:
1778 port_mask = DPLL_PORTD_READY_MASK;
1779 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1780 break;
1781 default:
1782 BUG();
1783 }
89b667f8 1784
00fc31b7 1785 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1786 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1787 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1788}
1789
b14b1055
DV
1790static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1791{
1792 struct drm_device *dev = crtc->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1795
be19f0ff
CW
1796 if (WARN_ON(pll == NULL))
1797 return;
1798
b14b1055
DV
1799 WARN_ON(!pll->refcount);
1800 if (pll->active == 0) {
1801 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1802 WARN_ON(pll->on);
1803 assert_shared_dpll_disabled(dev_priv, pll);
1804
1805 pll->mode_set(dev_priv, pll);
1806 }
1807}
1808
92f2584a 1809/**
85b3894f 1810 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1811 * @dev_priv: i915 private structure
1812 * @pipe: pipe PLL to enable
1813 *
1814 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1815 * drives the transcoder clock.
1816 */
85b3894f 1817static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1818{
3d13ef2e
DL
1819 struct drm_device *dev = crtc->base.dev;
1820 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1821 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1822
87a875bb 1823 if (WARN_ON(pll == NULL))
48da64a8
CW
1824 return;
1825
1826 if (WARN_ON(pll->refcount == 0))
1827 return;
ee7b9f93 1828
46edb027
DV
1829 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1830 pll->name, pll->active, pll->on,
e2b78267 1831 crtc->base.base.id);
92f2584a 1832
cdbd2316
DV
1833 if (pll->active++) {
1834 WARN_ON(!pll->on);
e9d6944e 1835 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1836 return;
1837 }
f4a091c7 1838 WARN_ON(pll->on);
ee7b9f93 1839
46edb027 1840 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1841 pll->enable(dev_priv, pll);
ee7b9f93 1842 pll->on = true;
92f2584a
JB
1843}
1844
e2b78267 1845static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1846{
3d13ef2e
DL
1847 struct drm_device *dev = crtc->base.dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1849 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1850
92f2584a 1851 /* PCH only available on ILK+ */
3d13ef2e 1852 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1853 if (WARN_ON(pll == NULL))
ee7b9f93 1854 return;
92f2584a 1855
48da64a8
CW
1856 if (WARN_ON(pll->refcount == 0))
1857 return;
7a419866 1858
46edb027
DV
1859 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1860 pll->name, pll->active, pll->on,
e2b78267 1861 crtc->base.base.id);
7a419866 1862
48da64a8 1863 if (WARN_ON(pll->active == 0)) {
e9d6944e 1864 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1865 return;
1866 }
1867
e9d6944e 1868 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1869 WARN_ON(!pll->on);
cdbd2316 1870 if (--pll->active)
7a419866 1871 return;
ee7b9f93 1872
46edb027 1873 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1874 pll->disable(dev_priv, pll);
ee7b9f93 1875 pll->on = false;
92f2584a
JB
1876}
1877
b8a4f404
PZ
1878static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1879 enum pipe pipe)
040484af 1880{
23670b32 1881 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1882 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1884 uint32_t reg, val, pipeconf_val;
040484af
JB
1885
1886 /* PCH only available on ILK+ */
3d13ef2e 1887 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1888
1889 /* Make sure PCH DPLL is enabled */
e72f9fbf 1890 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1891 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1892
1893 /* FDI must be feeding us bits for PCH ports */
1894 assert_fdi_tx_enabled(dev_priv, pipe);
1895 assert_fdi_rx_enabled(dev_priv, pipe);
1896
23670b32
DV
1897 if (HAS_PCH_CPT(dev)) {
1898 /* Workaround: Set the timing override bit before enabling the
1899 * pch transcoder. */
1900 reg = TRANS_CHICKEN2(pipe);
1901 val = I915_READ(reg);
1902 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1903 I915_WRITE(reg, val);
59c859d6 1904 }
23670b32 1905
ab9412ba 1906 reg = PCH_TRANSCONF(pipe);
040484af 1907 val = I915_READ(reg);
5f7f726d 1908 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1909
1910 if (HAS_PCH_IBX(dev_priv->dev)) {
1911 /*
1912 * make the BPC in transcoder be consistent with
1913 * that in pipeconf reg.
1914 */
dfd07d72
DV
1915 val &= ~PIPECONF_BPC_MASK;
1916 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1917 }
5f7f726d
PZ
1918
1919 val &= ~TRANS_INTERLACE_MASK;
1920 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1921 if (HAS_PCH_IBX(dev_priv->dev) &&
1922 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1923 val |= TRANS_LEGACY_INTERLACED_ILK;
1924 else
1925 val |= TRANS_INTERLACED;
5f7f726d
PZ
1926 else
1927 val |= TRANS_PROGRESSIVE;
1928
040484af
JB
1929 I915_WRITE(reg, val | TRANS_ENABLE);
1930 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1931 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1932}
1933
8fb033d7 1934static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1935 enum transcoder cpu_transcoder)
040484af 1936{
8fb033d7 1937 u32 val, pipeconf_val;
8fb033d7
PZ
1938
1939 /* PCH only available on ILK+ */
3d13ef2e 1940 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1941
8fb033d7 1942 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1943 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1944 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1945
223a6fdf
PZ
1946 /* Workaround: set timing override bit. */
1947 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1948 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1949 I915_WRITE(_TRANSA_CHICKEN2, val);
1950
25f3ef11 1951 val = TRANS_ENABLE;
937bb610 1952 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1953
9a76b1c6
PZ
1954 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1955 PIPECONF_INTERLACED_ILK)
a35f2679 1956 val |= TRANS_INTERLACED;
8fb033d7
PZ
1957 else
1958 val |= TRANS_PROGRESSIVE;
1959
ab9412ba
DV
1960 I915_WRITE(LPT_TRANSCONF, val);
1961 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1962 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1963}
1964
b8a4f404
PZ
1965static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1966 enum pipe pipe)
040484af 1967{
23670b32
DV
1968 struct drm_device *dev = dev_priv->dev;
1969 uint32_t reg, val;
040484af
JB
1970
1971 /* FDI relies on the transcoder */
1972 assert_fdi_tx_disabled(dev_priv, pipe);
1973 assert_fdi_rx_disabled(dev_priv, pipe);
1974
291906f1
JB
1975 /* Ports must be off as well */
1976 assert_pch_ports_disabled(dev_priv, pipe);
1977
ab9412ba 1978 reg = PCH_TRANSCONF(pipe);
040484af
JB
1979 val = I915_READ(reg);
1980 val &= ~TRANS_ENABLE;
1981 I915_WRITE(reg, val);
1982 /* wait for PCH transcoder off, transcoder state */
1983 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1984 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1985
1986 if (!HAS_PCH_IBX(dev)) {
1987 /* Workaround: Clear the timing override chicken bit again. */
1988 reg = TRANS_CHICKEN2(pipe);
1989 val = I915_READ(reg);
1990 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1991 I915_WRITE(reg, val);
1992 }
040484af
JB
1993}
1994
ab4d966c 1995static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1996{
8fb033d7
PZ
1997 u32 val;
1998
ab9412ba 1999 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2000 val &= ~TRANS_ENABLE;
ab9412ba 2001 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2002 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2003 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2004 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2005
2006 /* Workaround: clear timing override bit. */
2007 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2008 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2009 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2010}
2011
b24e7179 2012/**
309cfea8 2013 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2014 * @crtc: crtc responsible for the pipe
b24e7179 2015 *
0372264a 2016 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2017 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2018 */
e1fdc473 2019static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2020{
0372264a
PZ
2021 struct drm_device *dev = crtc->base.dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2024 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2025 pipe);
1a240d4d 2026 enum pipe pch_transcoder;
b24e7179
JB
2027 int reg;
2028 u32 val;
2029
58c6eaa2 2030 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2031 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2032 assert_sprites_disabled(dev_priv, pipe);
2033
681e5811 2034 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2035 pch_transcoder = TRANSCODER_A;
2036 else
2037 pch_transcoder = pipe;
2038
b24e7179
JB
2039 /*
2040 * A pipe without a PLL won't actually be able to drive bits from
2041 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2042 * need the check.
2043 */
2044 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2045 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2046 assert_dsi_pll_enabled(dev_priv);
2047 else
2048 assert_pll_enabled(dev_priv, pipe);
040484af 2049 else {
30421c4f 2050 if (crtc->config.has_pch_encoder) {
040484af 2051 /* if driving the PCH, we need FDI enabled */
cc391bbb 2052 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2053 assert_fdi_tx_pll_enabled(dev_priv,
2054 (enum pipe) cpu_transcoder);
040484af
JB
2055 }
2056 /* FIXME: assert CPU port conditions for SNB+ */
2057 }
b24e7179 2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
7ad25d48
PZ
2061 if (val & PIPECONF_ENABLE) {
2062 WARN_ON(!(pipe == PIPE_A &&
2063 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2064 return;
7ad25d48 2065 }
00d70b15
CW
2066
2067 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2068 POSTING_READ(reg);
b24e7179
JB
2069}
2070
2071/**
309cfea8 2072 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2073 * @dev_priv: i915 private structure
2074 * @pipe: pipe to disable
2075 *
2076 * Disable @pipe, making sure that various hardware specific requirements
2077 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2078 *
2079 * @pipe should be %PIPE_A or %PIPE_B.
2080 *
2081 * Will wait until the pipe has shut down before returning.
2082 */
2083static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2084 enum pipe pipe)
2085{
702e7a56
PZ
2086 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2087 pipe);
b24e7179
JB
2088 int reg;
2089 u32 val;
2090
2091 /*
2092 * Make sure planes won't keep trying to pump pixels to us,
2093 * or we might hang the display.
2094 */
2095 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2096 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2097 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2098
2099 /* Don't disable pipe A or pipe A PLLs if needed */
2100 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2101 return;
2102
702e7a56 2103 reg = PIPECONF(cpu_transcoder);
b24e7179 2104 val = I915_READ(reg);
00d70b15
CW
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 return;
2107
2108 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2109 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2110}
2111
d74362c9
KP
2112/*
2113 * Plane regs are double buffered, going from enabled->disabled needs a
2114 * trigger in order to latch. The display address reg provides this.
2115 */
1dba99f4
VS
2116void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2117 enum plane plane)
d74362c9 2118{
3d13ef2e
DL
2119 struct drm_device *dev = dev_priv->dev;
2120 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2121
2122 I915_WRITE(reg, I915_READ(reg));
2123 POSTING_READ(reg);
d74362c9
KP
2124}
2125
b24e7179 2126/**
262ca2b0 2127 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2128 * @dev_priv: i915 private structure
2129 * @plane: plane to enable
2130 * @pipe: pipe being fed
2131 *
2132 * Enable @plane on @pipe, making sure that @pipe is running first.
2133 */
262ca2b0
MR
2134static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2135 enum plane plane, enum pipe pipe)
b24e7179 2136{
33c3b0d1 2137 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2138 struct intel_crtc *intel_crtc =
2139 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2140 int reg;
2141 u32 val;
2142
2143 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2144 assert_pipe_enabled(dev_priv, pipe);
2145
98ec7739
VS
2146 if (intel_crtc->primary_enabled)
2147 return;
0037f71c 2148
4c445e0e 2149 intel_crtc->primary_enabled = true;
939c2fe8 2150
b24e7179
JB
2151 reg = DSPCNTR(plane);
2152 val = I915_READ(reg);
10efa932 2153 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2154
2155 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2156 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2157
2158 /*
2159 * BDW signals flip done immediately if the plane
2160 * is disabled, even if the plane enable is already
2161 * armed to occur at the next vblank :(
2162 */
2163 if (IS_BROADWELL(dev))
2164 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2165}
2166
b24e7179 2167/**
262ca2b0 2168 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2169 * @dev_priv: i915 private structure
2170 * @plane: plane to disable
2171 * @pipe: pipe consuming the data
2172 *
2173 * Disable @plane; should be an independent operation.
2174 */
262ca2b0
MR
2175static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2176 enum plane plane, enum pipe pipe)
b24e7179 2177{
939c2fe8
VS
2178 struct intel_crtc *intel_crtc =
2179 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2180 int reg;
2181 u32 val;
2182
98ec7739
VS
2183 if (!intel_crtc->primary_enabled)
2184 return;
0037f71c 2185
4c445e0e 2186 intel_crtc->primary_enabled = false;
939c2fe8 2187
b24e7179
JB
2188 reg = DSPCNTR(plane);
2189 val = I915_READ(reg);
10efa932 2190 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2191
2192 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2193 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2194}
2195
693db184
CW
2196static bool need_vtd_wa(struct drm_device *dev)
2197{
2198#ifdef CONFIG_INTEL_IOMMU
2199 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2200 return true;
2201#endif
2202 return false;
2203}
2204
a57ce0b2
JB
2205static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2206{
2207 int tile_height;
2208
2209 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2210 return ALIGN(height, tile_height);
2211}
2212
127bd2ac 2213int
48b956c5 2214intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2215 struct drm_i915_gem_object *obj,
a4872ba6 2216 struct intel_engine_cs *pipelined)
6b95a207 2217{
ce453d81 2218 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2219 u32 alignment;
2220 int ret;
2221
05394f39 2222 switch (obj->tiling_mode) {
6b95a207 2223 case I915_TILING_NONE:
534843da
CW
2224 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2225 alignment = 128 * 1024;
a6c45cf0 2226 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2227 alignment = 4 * 1024;
2228 else
2229 alignment = 64 * 1024;
6b95a207
KH
2230 break;
2231 case I915_TILING_X:
2232 /* pin() will align the object as required by fence */
2233 alignment = 0;
2234 break;
2235 case I915_TILING_Y:
80075d49 2236 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2237 return -EINVAL;
2238 default:
2239 BUG();
2240 }
2241
693db184
CW
2242 /* Note that the w/a also requires 64 PTE of padding following the
2243 * bo. We currently fill all unused PTE with the shadow page and so
2244 * we should always have valid PTE following the scanout preventing
2245 * the VT-d warning.
2246 */
2247 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2248 alignment = 256 * 1024;
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
6b95a207 2267 return 0;
48b956c5
CW
2268
2269err_unpin:
cc98b413 2270 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2271err_interruptible:
2272 dev_priv->mm.interruptible = true;
48b956c5 2273 return ret;
6b95a207
KH
2274}
2275
1690e1eb
CW
2276void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2277{
2278 i915_gem_object_unpin_fence(obj);
cc98b413 2279 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2280}
2281
c2c75131
DV
2282/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2283 * is assumed to be a power-of-two. */
bc752862
CW
2284unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2285 unsigned int tiling_mode,
2286 unsigned int cpp,
2287 unsigned int pitch)
c2c75131 2288{
bc752862
CW
2289 if (tiling_mode != I915_TILING_NONE) {
2290 unsigned int tile_rows, tiles;
c2c75131 2291
bc752862
CW
2292 tile_rows = *y / 8;
2293 *y %= 8;
c2c75131 2294
bc752862
CW
2295 tiles = *x / (512/cpp);
2296 *x %= 512/cpp;
2297
2298 return tile_rows * pitch * 8 + tiles * 4096;
2299 } else {
2300 unsigned int offset;
2301
2302 offset = *y * pitch + *x * cpp;
2303 *y = 0;
2304 *x = (offset & 4095) / cpp;
2305 return offset & -4096;
2306 }
c2c75131
DV
2307}
2308
46f297fb
JB
2309int intel_format_to_fourcc(int format)
2310{
2311 switch (format) {
2312 case DISPPLANE_8BPP:
2313 return DRM_FORMAT_C8;
2314 case DISPPLANE_BGRX555:
2315 return DRM_FORMAT_XRGB1555;
2316 case DISPPLANE_BGRX565:
2317 return DRM_FORMAT_RGB565;
2318 default:
2319 case DISPPLANE_BGRX888:
2320 return DRM_FORMAT_XRGB8888;
2321 case DISPPLANE_RGBX888:
2322 return DRM_FORMAT_XBGR8888;
2323 case DISPPLANE_BGRX101010:
2324 return DRM_FORMAT_XRGB2101010;
2325 case DISPPLANE_RGBX101010:
2326 return DRM_FORMAT_XBGR2101010;
2327 }
2328}
2329
484b41dd 2330static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2331 struct intel_plane_config *plane_config)
2332{
2333 struct drm_device *dev = crtc->base.dev;
2334 struct drm_i915_gem_object *obj = NULL;
2335 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2336 u32 base = plane_config->base;
2337
ff2652ea
CW
2338 if (plane_config->size == 0)
2339 return false;
2340
46f297fb
JB
2341 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2342 plane_config->size);
2343 if (!obj)
484b41dd 2344 return false;
46f297fb
JB
2345
2346 if (plane_config->tiled) {
2347 obj->tiling_mode = I915_TILING_X;
66e514c1 2348 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2349 }
2350
66e514c1
DA
2351 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2352 mode_cmd.width = crtc->base.primary->fb->width;
2353 mode_cmd.height = crtc->base.primary->fb->height;
2354 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2355
2356 mutex_lock(&dev->struct_mutex);
2357
66e514c1 2358 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2359 &mode_cmd, obj)) {
46f297fb
JB
2360 DRM_DEBUG_KMS("intel fb init failed\n");
2361 goto out_unref_obj;
2362 }
2363
a071fa00 2364 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2365 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2366
2367 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2368 return true;
46f297fb
JB
2369
2370out_unref_obj:
2371 drm_gem_object_unreference(&obj->base);
2372 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2373 return false;
2374}
2375
2376static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2377 struct intel_plane_config *plane_config)
2378{
2379 struct drm_device *dev = intel_crtc->base.dev;
2380 struct drm_crtc *c;
2381 struct intel_crtc *i;
2382 struct intel_framebuffer *fb;
2383
66e514c1 2384 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2385 return;
2386
2387 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2388 return;
2389
66e514c1
DA
2390 kfree(intel_crtc->base.primary->fb);
2391 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2392
2393 /*
2394 * Failed to alloc the obj, check to see if we should share
2395 * an fb with another CRTC instead
2396 */
70e1e0ec 2397 for_each_crtc(dev, c) {
484b41dd
JB
2398 i = to_intel_crtc(c);
2399
2400 if (c == &intel_crtc->base)
2401 continue;
2402
66e514c1 2403 if (!i->active || !c->primary->fb)
484b41dd
JB
2404 continue;
2405
66e514c1 2406 fb = to_intel_framebuffer(c->primary->fb);
484b41dd 2407 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
66e514c1
DA
2408 drm_framebuffer_reference(c->primary->fb);
2409 intel_crtc->base.primary->fb = c->primary->fb;
a071fa00 2410 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2411 break;
2412 }
2413 }
46f297fb
JB
2414}
2415
29b9bde6
DV
2416static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2417 struct drm_framebuffer *fb,
2418 int x, int y)
81255565
JB
2419{
2420 struct drm_device *dev = crtc->dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2423 struct intel_framebuffer *intel_fb;
05394f39 2424 struct drm_i915_gem_object *obj;
81255565 2425 int plane = intel_crtc->plane;
e506a0c6 2426 unsigned long linear_offset;
81255565 2427 u32 dspcntr;
5eddb70b 2428 u32 reg;
81255565 2429
81255565
JB
2430 intel_fb = to_intel_framebuffer(fb);
2431 obj = intel_fb->obj;
81255565 2432
5eddb70b
CW
2433 reg = DSPCNTR(plane);
2434 dspcntr = I915_READ(reg);
81255565
JB
2435 /* Mask out pixel format bits in case we change it */
2436 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2437 switch (fb->pixel_format) {
2438 case DRM_FORMAT_C8:
81255565
JB
2439 dspcntr |= DISPPLANE_8BPP;
2440 break;
57779d06
VS
2441 case DRM_FORMAT_XRGB1555:
2442 case DRM_FORMAT_ARGB1555:
2443 dspcntr |= DISPPLANE_BGRX555;
81255565 2444 break;
57779d06
VS
2445 case DRM_FORMAT_RGB565:
2446 dspcntr |= DISPPLANE_BGRX565;
2447 break;
2448 case DRM_FORMAT_XRGB8888:
2449 case DRM_FORMAT_ARGB8888:
2450 dspcntr |= DISPPLANE_BGRX888;
2451 break;
2452 case DRM_FORMAT_XBGR8888:
2453 case DRM_FORMAT_ABGR8888:
2454 dspcntr |= DISPPLANE_RGBX888;
2455 break;
2456 case DRM_FORMAT_XRGB2101010:
2457 case DRM_FORMAT_ARGB2101010:
2458 dspcntr |= DISPPLANE_BGRX101010;
2459 break;
2460 case DRM_FORMAT_XBGR2101010:
2461 case DRM_FORMAT_ABGR2101010:
2462 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2463 break;
2464 default:
baba133a 2465 BUG();
81255565 2466 }
57779d06 2467
a6c45cf0 2468 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2469 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2470 dspcntr |= DISPPLANE_TILED;
2471 else
2472 dspcntr &= ~DISPPLANE_TILED;
2473 }
2474
de1aa629
VS
2475 if (IS_G4X(dev))
2476 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2477
5eddb70b 2478 I915_WRITE(reg, dspcntr);
81255565 2479
e506a0c6 2480 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2481
c2c75131
DV
2482 if (INTEL_INFO(dev)->gen >= 4) {
2483 intel_crtc->dspaddr_offset =
bc752862
CW
2484 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2485 fb->bits_per_pixel / 8,
2486 fb->pitches[0]);
c2c75131
DV
2487 linear_offset -= intel_crtc->dspaddr_offset;
2488 } else {
e506a0c6 2489 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2490 }
e506a0c6 2491
f343c5f6
BW
2492 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2493 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2494 fb->pitches[0]);
01f2c773 2495 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2496 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2497 I915_WRITE(DSPSURF(plane),
2498 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2499 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2500 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2501 } else
f343c5f6 2502 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2503 POSTING_READ(reg);
17638cd6
JB
2504}
2505
29b9bde6
DV
2506static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2507 struct drm_framebuffer *fb,
2508 int x, int y)
17638cd6
JB
2509{
2510 struct drm_device *dev = crtc->dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2513 struct intel_framebuffer *intel_fb;
2514 struct drm_i915_gem_object *obj;
2515 int plane = intel_crtc->plane;
e506a0c6 2516 unsigned long linear_offset;
17638cd6
JB
2517 u32 dspcntr;
2518 u32 reg;
2519
17638cd6
JB
2520 intel_fb = to_intel_framebuffer(fb);
2521 obj = intel_fb->obj;
2522
2523 reg = DSPCNTR(plane);
2524 dspcntr = I915_READ(reg);
2525 /* Mask out pixel format bits in case we change it */
2526 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2527 switch (fb->pixel_format) {
2528 case DRM_FORMAT_C8:
17638cd6
JB
2529 dspcntr |= DISPPLANE_8BPP;
2530 break;
57779d06
VS
2531 case DRM_FORMAT_RGB565:
2532 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2533 break;
57779d06
VS
2534 case DRM_FORMAT_XRGB8888:
2535 case DRM_FORMAT_ARGB8888:
2536 dspcntr |= DISPPLANE_BGRX888;
2537 break;
2538 case DRM_FORMAT_XBGR8888:
2539 case DRM_FORMAT_ABGR8888:
2540 dspcntr |= DISPPLANE_RGBX888;
2541 break;
2542 case DRM_FORMAT_XRGB2101010:
2543 case DRM_FORMAT_ARGB2101010:
2544 dspcntr |= DISPPLANE_BGRX101010;
2545 break;
2546 case DRM_FORMAT_XBGR2101010:
2547 case DRM_FORMAT_ABGR2101010:
2548 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2549 break;
2550 default:
baba133a 2551 BUG();
17638cd6
JB
2552 }
2553
2554 if (obj->tiling_mode != I915_TILING_NONE)
2555 dspcntr |= DISPPLANE_TILED;
2556 else
2557 dspcntr &= ~DISPPLANE_TILED;
2558
b42c6009 2559 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2560 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2561 else
2562 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2563
2564 I915_WRITE(reg, dspcntr);
2565
e506a0c6 2566 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2567 intel_crtc->dspaddr_offset =
bc752862
CW
2568 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2569 fb->bits_per_pixel / 8,
2570 fb->pitches[0]);
c2c75131 2571 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2572
f343c5f6
BW
2573 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2574 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2575 fb->pitches[0]);
01f2c773 2576 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2577 I915_WRITE(DSPSURF(plane),
2578 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2579 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2580 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2581 } else {
2582 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2583 I915_WRITE(DSPLINOFF(plane), linear_offset);
2584 }
17638cd6 2585 POSTING_READ(reg);
17638cd6
JB
2586}
2587
2588/* Assume fb object is pinned & idle & fenced and just update base pointers */
2589static int
2590intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2591 int x, int y, enum mode_set_atomic state)
2592{
2593 struct drm_device *dev = crtc->dev;
2594 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2595
6b8e6ed0
CW
2596 if (dev_priv->display.disable_fbc)
2597 dev_priv->display.disable_fbc(dev);
cc36513c 2598 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2599
29b9bde6
DV
2600 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2601
2602 return 0;
81255565
JB
2603}
2604
96a02917
VS
2605void intel_display_handle_reset(struct drm_device *dev)
2606{
2607 struct drm_i915_private *dev_priv = dev->dev_private;
2608 struct drm_crtc *crtc;
2609
2610 /*
2611 * Flips in the rings have been nuked by the reset,
2612 * so complete all pending flips so that user space
2613 * will get its events and not get stuck.
2614 *
2615 * Also update the base address of all primary
2616 * planes to the the last fb to make sure we're
2617 * showing the correct fb after a reset.
2618 *
2619 * Need to make two loops over the crtcs so that we
2620 * don't try to grab a crtc mutex before the
2621 * pending_flip_queue really got woken up.
2622 */
2623
70e1e0ec 2624 for_each_crtc(dev, crtc) {
96a02917
VS
2625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2626 enum plane plane = intel_crtc->plane;
2627
2628 intel_prepare_page_flip(dev, plane);
2629 intel_finish_page_flip_plane(dev, plane);
2630 }
2631
70e1e0ec 2632 for_each_crtc(dev, crtc) {
96a02917
VS
2633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634
51fd371b 2635 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2636 /*
2637 * FIXME: Once we have proper support for primary planes (and
2638 * disabling them without disabling the entire crtc) allow again
66e514c1 2639 * a NULL crtc->primary->fb.
947fdaad 2640 */
f4510a27 2641 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2642 dev_priv->display.update_primary_plane(crtc,
66e514c1 2643 crtc->primary->fb,
262ca2b0
MR
2644 crtc->x,
2645 crtc->y);
51fd371b 2646 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2647 }
2648}
2649
14667a4b
CW
2650static int
2651intel_finish_fb(struct drm_framebuffer *old_fb)
2652{
2653 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2654 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2655 bool was_interruptible = dev_priv->mm.interruptible;
2656 int ret;
2657
14667a4b
CW
2658 /* Big Hammer, we also need to ensure that any pending
2659 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2660 * current scanout is retired before unpinning the old
2661 * framebuffer.
2662 *
2663 * This should only fail upon a hung GPU, in which case we
2664 * can safely continue.
2665 */
2666 dev_priv->mm.interruptible = false;
2667 ret = i915_gem_object_finish_gpu(obj);
2668 dev_priv->mm.interruptible = was_interruptible;
2669
2670 return ret;
2671}
2672
7d5e3799
CW
2673static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2674{
2675 struct drm_device *dev = crtc->dev;
2676 struct drm_i915_private *dev_priv = dev->dev_private;
2677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2678 unsigned long flags;
2679 bool pending;
2680
2681 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2682 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2683 return false;
2684
2685 spin_lock_irqsave(&dev->event_lock, flags);
2686 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2687 spin_unlock_irqrestore(&dev->event_lock, flags);
2688
2689 return pending;
2690}
2691
5c3b82e2 2692static int
3c4fdcfb 2693intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2694 struct drm_framebuffer *fb)
79e53945
JB
2695{
2696 struct drm_device *dev = crtc->dev;
6b8e6ed0 2697 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2699 enum pipe pipe = intel_crtc->pipe;
94352cf9 2700 struct drm_framebuffer *old_fb;
a071fa00 2701 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
91565c85 2702 struct drm_i915_gem_object *old_obj;
5c3b82e2 2703 int ret;
79e53945 2704
7d5e3799
CW
2705 if (intel_crtc_has_pending_flip(crtc)) {
2706 DRM_ERROR("pipe is still busy with an old pageflip\n");
2707 return -EBUSY;
2708 }
2709
79e53945 2710 /* no fb bound */
94352cf9 2711 if (!fb) {
a5071c2f 2712 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2713 return 0;
2714 }
2715
7eb552ae 2716 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2717 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2718 plane_name(intel_crtc->plane),
2719 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2720 return -EINVAL;
79e53945
JB
2721 }
2722
a071fa00 2723 old_fb = crtc->primary->fb;
91565c85 2724 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
a071fa00 2725
5c3b82e2 2726 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2727 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2728 if (ret == 0)
91565c85 2729 i915_gem_track_fb(old_obj, obj,
a071fa00 2730 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2731 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2732 if (ret != 0) {
a5071c2f 2733 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2734 return ret;
2735 }
79e53945 2736
bb2043de
DL
2737 /*
2738 * Update pipe size and adjust fitter if needed: the reason for this is
2739 * that in compute_mode_changes we check the native mode (not the pfit
2740 * mode) to see if we can flip rather than do a full mode set. In the
2741 * fastboot case, we'll flip, but if we don't update the pipesrc and
2742 * pfit state, we'll end up with a big fb scanned out into the wrong
2743 * sized surface.
2744 *
2745 * To fix this properly, we need to hoist the checks up into
2746 * compute_mode_changes (or above), check the actual pfit state and
2747 * whether the platform allows pfit disable with pipe active, and only
2748 * then update the pipesrc and pfit state, even on the flip path.
2749 */
d330a953 2750 if (i915.fastboot) {
d7bf63f2
DL
2751 const struct drm_display_mode *adjusted_mode =
2752 &intel_crtc->config.adjusted_mode;
2753
4d6a3e63 2754 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2755 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2756 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2757 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2758 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2759 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2760 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2761 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2762 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2763 }
0637d60d
JB
2764 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2765 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2766 }
2767
29b9bde6 2768 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2769
f99d7069
DV
2770 if (intel_crtc->active)
2771 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2772
f4510a27 2773 crtc->primary->fb = fb;
6c4c86f5
DV
2774 crtc->x = x;
2775 crtc->y = y;
94352cf9 2776
b7f1de28 2777 if (old_fb) {
d7697eea
DV
2778 if (intel_crtc->active && old_fb != fb)
2779 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2780 mutex_lock(&dev->struct_mutex);
1690e1eb 2781 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
8ac36ec1 2782 mutex_unlock(&dev->struct_mutex);
b7f1de28 2783 }
652c393a 2784
8ac36ec1 2785 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2786 intel_update_fbc(dev);
5c3b82e2 2787 mutex_unlock(&dev->struct_mutex);
79e53945 2788
5c3b82e2 2789 return 0;
79e53945
JB
2790}
2791
5e84e1a4
ZW
2792static void intel_fdi_normal_train(struct drm_crtc *crtc)
2793{
2794 struct drm_device *dev = crtc->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* enable normal train */
2801 reg = FDI_TX_CTL(pipe);
2802 temp = I915_READ(reg);
61e499bf 2803 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2804 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2805 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2806 } else {
2807 temp &= ~FDI_LINK_TRAIN_NONE;
2808 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2809 }
5e84e1a4
ZW
2810 I915_WRITE(reg, temp);
2811
2812 reg = FDI_RX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 if (HAS_PCH_CPT(dev)) {
2815 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2816 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2817 } else {
2818 temp &= ~FDI_LINK_TRAIN_NONE;
2819 temp |= FDI_LINK_TRAIN_NONE;
2820 }
2821 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2822
2823 /* wait one idle pattern time */
2824 POSTING_READ(reg);
2825 udelay(1000);
357555c0
JB
2826
2827 /* IVB wants error correction enabled */
2828 if (IS_IVYBRIDGE(dev))
2829 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2830 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2831}
2832
1fbc0d78 2833static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2834{
1fbc0d78
DV
2835 return crtc->base.enabled && crtc->active &&
2836 crtc->config.has_pch_encoder;
1e833f40
DV
2837}
2838
01a415fd
DV
2839static void ivb_modeset_global_resources(struct drm_device *dev)
2840{
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *pipe_B_crtc =
2843 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2844 struct intel_crtc *pipe_C_crtc =
2845 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2846 uint32_t temp;
2847
1e833f40
DV
2848 /*
2849 * When everything is off disable fdi C so that we could enable fdi B
2850 * with all lanes. Note that we don't care about enabled pipes without
2851 * an enabled pch encoder.
2852 */
2853 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2854 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2855 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2856 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2857
2858 temp = I915_READ(SOUTH_CHICKEN1);
2859 temp &= ~FDI_BC_BIFURCATION_SELECT;
2860 DRM_DEBUG_KMS("disabling fdi C rx\n");
2861 I915_WRITE(SOUTH_CHICKEN1, temp);
2862 }
2863}
2864
8db9d77b
ZW
2865/* The FDI link training functions for ILK/Ibexpeak. */
2866static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2867{
2868 struct drm_device *dev = crtc->dev;
2869 struct drm_i915_private *dev_priv = dev->dev_private;
2870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2871 int pipe = intel_crtc->pipe;
5eddb70b 2872 u32 reg, temp, tries;
8db9d77b 2873
1c8562f6 2874 /* FDI needs bits from pipe first */
0fc932b8 2875 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2876
e1a44743
AJ
2877 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2878 for train result */
5eddb70b
CW
2879 reg = FDI_RX_IMR(pipe);
2880 temp = I915_READ(reg);
e1a44743
AJ
2881 temp &= ~FDI_RX_SYMBOL_LOCK;
2882 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2883 I915_WRITE(reg, temp);
2884 I915_READ(reg);
e1a44743
AJ
2885 udelay(150);
2886
8db9d77b 2887 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2888 reg = FDI_TX_CTL(pipe);
2889 temp = I915_READ(reg);
627eb5a3
DV
2890 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2891 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2892 temp &= ~FDI_LINK_TRAIN_NONE;
2893 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2894 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2895
5eddb70b
CW
2896 reg = FDI_RX_CTL(pipe);
2897 temp = I915_READ(reg);
8db9d77b
ZW
2898 temp &= ~FDI_LINK_TRAIN_NONE;
2899 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2900 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2901
2902 POSTING_READ(reg);
8db9d77b
ZW
2903 udelay(150);
2904
5b2adf89 2905 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2906 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2907 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2908 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2909
5eddb70b 2910 reg = FDI_RX_IIR(pipe);
e1a44743 2911 for (tries = 0; tries < 5; tries++) {
5eddb70b 2912 temp = I915_READ(reg);
8db9d77b
ZW
2913 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2914
2915 if ((temp & FDI_RX_BIT_LOCK)) {
2916 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2917 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2918 break;
2919 }
8db9d77b 2920 }
e1a44743 2921 if (tries == 5)
5eddb70b 2922 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2923
2924 /* Train 2 */
5eddb70b
CW
2925 reg = FDI_TX_CTL(pipe);
2926 temp = I915_READ(reg);
8db9d77b
ZW
2927 temp &= ~FDI_LINK_TRAIN_NONE;
2928 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2929 I915_WRITE(reg, temp);
8db9d77b 2930
5eddb70b
CW
2931 reg = FDI_RX_CTL(pipe);
2932 temp = I915_READ(reg);
8db9d77b
ZW
2933 temp &= ~FDI_LINK_TRAIN_NONE;
2934 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2935 I915_WRITE(reg, temp);
8db9d77b 2936
5eddb70b
CW
2937 POSTING_READ(reg);
2938 udelay(150);
8db9d77b 2939
5eddb70b 2940 reg = FDI_RX_IIR(pipe);
e1a44743 2941 for (tries = 0; tries < 5; tries++) {
5eddb70b 2942 temp = I915_READ(reg);
8db9d77b
ZW
2943 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2944
2945 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2946 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2947 DRM_DEBUG_KMS("FDI train 2 done.\n");
2948 break;
2949 }
8db9d77b 2950 }
e1a44743 2951 if (tries == 5)
5eddb70b 2952 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2953
2954 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2955
8db9d77b
ZW
2956}
2957
0206e353 2958static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2959 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2960 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2961 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2962 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2963};
2964
2965/* The FDI link training functions for SNB/Cougarpoint. */
2966static void gen6_fdi_link_train(struct drm_crtc *crtc)
2967{
2968 struct drm_device *dev = crtc->dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2971 int pipe = intel_crtc->pipe;
fa37d39e 2972 u32 reg, temp, i, retry;
8db9d77b 2973
e1a44743
AJ
2974 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2975 for train result */
5eddb70b
CW
2976 reg = FDI_RX_IMR(pipe);
2977 temp = I915_READ(reg);
e1a44743
AJ
2978 temp &= ~FDI_RX_SYMBOL_LOCK;
2979 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2980 I915_WRITE(reg, temp);
2981
2982 POSTING_READ(reg);
e1a44743
AJ
2983 udelay(150);
2984
8db9d77b 2985 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2986 reg = FDI_TX_CTL(pipe);
2987 temp = I915_READ(reg);
627eb5a3
DV
2988 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2989 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2990 temp &= ~FDI_LINK_TRAIN_NONE;
2991 temp |= FDI_LINK_TRAIN_PATTERN_1;
2992 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2993 /* SNB-B */
2994 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2995 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2996
d74cf324
DV
2997 I915_WRITE(FDI_RX_MISC(pipe),
2998 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2999
5eddb70b
CW
3000 reg = FDI_RX_CTL(pipe);
3001 temp = I915_READ(reg);
8db9d77b
ZW
3002 if (HAS_PCH_CPT(dev)) {
3003 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3004 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3005 } else {
3006 temp &= ~FDI_LINK_TRAIN_NONE;
3007 temp |= FDI_LINK_TRAIN_PATTERN_1;
3008 }
5eddb70b
CW
3009 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3010
3011 POSTING_READ(reg);
8db9d77b
ZW
3012 udelay(150);
3013
0206e353 3014 for (i = 0; i < 4; i++) {
5eddb70b
CW
3015 reg = FDI_TX_CTL(pipe);
3016 temp = I915_READ(reg);
8db9d77b
ZW
3017 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3018 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3019 I915_WRITE(reg, temp);
3020
3021 POSTING_READ(reg);
8db9d77b
ZW
3022 udelay(500);
3023
fa37d39e
SP
3024 for (retry = 0; retry < 5; retry++) {
3025 reg = FDI_RX_IIR(pipe);
3026 temp = I915_READ(reg);
3027 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3028 if (temp & FDI_RX_BIT_LOCK) {
3029 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3030 DRM_DEBUG_KMS("FDI train 1 done.\n");
3031 break;
3032 }
3033 udelay(50);
8db9d77b 3034 }
fa37d39e
SP
3035 if (retry < 5)
3036 break;
8db9d77b
ZW
3037 }
3038 if (i == 4)
5eddb70b 3039 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3040
3041 /* Train 2 */
5eddb70b
CW
3042 reg = FDI_TX_CTL(pipe);
3043 temp = I915_READ(reg);
8db9d77b
ZW
3044 temp &= ~FDI_LINK_TRAIN_NONE;
3045 temp |= FDI_LINK_TRAIN_PATTERN_2;
3046 if (IS_GEN6(dev)) {
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 /* SNB-B */
3049 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3050 }
5eddb70b 3051 I915_WRITE(reg, temp);
8db9d77b 3052
5eddb70b
CW
3053 reg = FDI_RX_CTL(pipe);
3054 temp = I915_READ(reg);
8db9d77b
ZW
3055 if (HAS_PCH_CPT(dev)) {
3056 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3057 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3058 } else {
3059 temp &= ~FDI_LINK_TRAIN_NONE;
3060 temp |= FDI_LINK_TRAIN_PATTERN_2;
3061 }
5eddb70b
CW
3062 I915_WRITE(reg, temp);
3063
3064 POSTING_READ(reg);
8db9d77b
ZW
3065 udelay(150);
3066
0206e353 3067 for (i = 0; i < 4; i++) {
5eddb70b
CW
3068 reg = FDI_TX_CTL(pipe);
3069 temp = I915_READ(reg);
8db9d77b
ZW
3070 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3071 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3072 I915_WRITE(reg, temp);
3073
3074 POSTING_READ(reg);
8db9d77b
ZW
3075 udelay(500);
3076
fa37d39e
SP
3077 for (retry = 0; retry < 5; retry++) {
3078 reg = FDI_RX_IIR(pipe);
3079 temp = I915_READ(reg);
3080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081 if (temp & FDI_RX_SYMBOL_LOCK) {
3082 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3083 DRM_DEBUG_KMS("FDI train 2 done.\n");
3084 break;
3085 }
3086 udelay(50);
8db9d77b 3087 }
fa37d39e
SP
3088 if (retry < 5)
3089 break;
8db9d77b
ZW
3090 }
3091 if (i == 4)
5eddb70b 3092 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3093
3094 DRM_DEBUG_KMS("FDI train done.\n");
3095}
3096
357555c0
JB
3097/* Manual link training for Ivy Bridge A0 parts */
3098static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3099{
3100 struct drm_device *dev = crtc->dev;
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3103 int pipe = intel_crtc->pipe;
139ccd3f 3104 u32 reg, temp, i, j;
357555c0
JB
3105
3106 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3107 for train result */
3108 reg = FDI_RX_IMR(pipe);
3109 temp = I915_READ(reg);
3110 temp &= ~FDI_RX_SYMBOL_LOCK;
3111 temp &= ~FDI_RX_BIT_LOCK;
3112 I915_WRITE(reg, temp);
3113
3114 POSTING_READ(reg);
3115 udelay(150);
3116
01a415fd
DV
3117 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3118 I915_READ(FDI_RX_IIR(pipe)));
3119
139ccd3f
JB
3120 /* Try each vswing and preemphasis setting twice before moving on */
3121 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3122 /* disable first in case we need to retry */
3123 reg = FDI_TX_CTL(pipe);
3124 temp = I915_READ(reg);
3125 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3126 temp &= ~FDI_TX_ENABLE;
3127 I915_WRITE(reg, temp);
357555c0 3128
139ccd3f
JB
3129 reg = FDI_RX_CTL(pipe);
3130 temp = I915_READ(reg);
3131 temp &= ~FDI_LINK_TRAIN_AUTO;
3132 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3133 temp &= ~FDI_RX_ENABLE;
3134 I915_WRITE(reg, temp);
357555c0 3135
139ccd3f 3136 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3137 reg = FDI_TX_CTL(pipe);
3138 temp = I915_READ(reg);
139ccd3f
JB
3139 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3140 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3141 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3142 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3143 temp |= snb_b_fdi_train_param[j/2];
3144 temp |= FDI_COMPOSITE_SYNC;
3145 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3146
139ccd3f
JB
3147 I915_WRITE(FDI_RX_MISC(pipe),
3148 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3149
139ccd3f 3150 reg = FDI_RX_CTL(pipe);
357555c0 3151 temp = I915_READ(reg);
139ccd3f
JB
3152 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3153 temp |= FDI_COMPOSITE_SYNC;
3154 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3155
139ccd3f
JB
3156 POSTING_READ(reg);
3157 udelay(1); /* should be 0.5us */
357555c0 3158
139ccd3f
JB
3159 for (i = 0; i < 4; i++) {
3160 reg = FDI_RX_IIR(pipe);
3161 temp = I915_READ(reg);
3162 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3163
139ccd3f
JB
3164 if (temp & FDI_RX_BIT_LOCK ||
3165 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3166 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3167 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3168 i);
3169 break;
3170 }
3171 udelay(1); /* should be 0.5us */
3172 }
3173 if (i == 4) {
3174 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3175 continue;
3176 }
357555c0 3177
139ccd3f 3178 /* Train 2 */
357555c0
JB
3179 reg = FDI_TX_CTL(pipe);
3180 temp = I915_READ(reg);
139ccd3f
JB
3181 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3182 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3183 I915_WRITE(reg, temp);
3184
3185 reg = FDI_RX_CTL(pipe);
3186 temp = I915_READ(reg);
3187 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3188 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3189 I915_WRITE(reg, temp);
3190
3191 POSTING_READ(reg);
139ccd3f 3192 udelay(2); /* should be 1.5us */
357555c0 3193
139ccd3f
JB
3194 for (i = 0; i < 4; i++) {
3195 reg = FDI_RX_IIR(pipe);
3196 temp = I915_READ(reg);
3197 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3198
139ccd3f
JB
3199 if (temp & FDI_RX_SYMBOL_LOCK ||
3200 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3201 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3202 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3203 i);
3204 goto train_done;
3205 }
3206 udelay(2); /* should be 1.5us */
357555c0 3207 }
139ccd3f
JB
3208 if (i == 4)
3209 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3210 }
357555c0 3211
139ccd3f 3212train_done:
357555c0
JB
3213 DRM_DEBUG_KMS("FDI train done.\n");
3214}
3215
88cefb6c 3216static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3217{
88cefb6c 3218 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3219 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3220 int pipe = intel_crtc->pipe;
5eddb70b 3221 u32 reg, temp;
79e53945 3222
c64e311e 3223
c98e9dcf 3224 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3225 reg = FDI_RX_CTL(pipe);
3226 temp = I915_READ(reg);
627eb5a3
DV
3227 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3228 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3229 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3230 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3231
3232 POSTING_READ(reg);
c98e9dcf
JB
3233 udelay(200);
3234
3235 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3236 temp = I915_READ(reg);
3237 I915_WRITE(reg, temp | FDI_PCDCLK);
3238
3239 POSTING_READ(reg);
c98e9dcf
JB
3240 udelay(200);
3241
20749730
PZ
3242 /* Enable CPU FDI TX PLL, always on for Ironlake */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3246 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3247
20749730
PZ
3248 POSTING_READ(reg);
3249 udelay(100);
6be4a607 3250 }
0e23b99d
JB
3251}
3252
88cefb6c
DV
3253static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3254{
3255 struct drm_device *dev = intel_crtc->base.dev;
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257 int pipe = intel_crtc->pipe;
3258 u32 reg, temp;
3259
3260 /* Switch from PCDclk to Rawclk */
3261 reg = FDI_RX_CTL(pipe);
3262 temp = I915_READ(reg);
3263 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3264
3265 /* Disable CPU FDI TX PLL */
3266 reg = FDI_TX_CTL(pipe);
3267 temp = I915_READ(reg);
3268 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3269
3270 POSTING_READ(reg);
3271 udelay(100);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3276
3277 /* Wait for the clocks to turn off. */
3278 POSTING_READ(reg);
3279 udelay(100);
3280}
3281
0fc932b8
JB
3282static void ironlake_fdi_disable(struct drm_crtc *crtc)
3283{
3284 struct drm_device *dev = crtc->dev;
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3287 int pipe = intel_crtc->pipe;
3288 u32 reg, temp;
3289
3290 /* disable CPU FDI tx and PCH FDI rx */
3291 reg = FDI_TX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3294 POSTING_READ(reg);
3295
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~(0x7 << 16);
dfd07d72 3299 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3300 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3301
3302 POSTING_READ(reg);
3303 udelay(100);
3304
3305 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3306 if (HAS_PCH_IBX(dev))
6f06ce18 3307 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3308
3309 /* still set train pattern 1 */
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_1;
3314 I915_WRITE(reg, temp);
3315
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
3318 if (HAS_PCH_CPT(dev)) {
3319 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3320 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321 } else {
3322 temp &= ~FDI_LINK_TRAIN_NONE;
3323 temp |= FDI_LINK_TRAIN_PATTERN_1;
3324 }
3325 /* BPC in FDI rx is consistent with that in PIPECONF */
3326 temp &= ~(0x07 << 16);
dfd07d72 3327 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3328 I915_WRITE(reg, temp);
3329
3330 POSTING_READ(reg);
3331 udelay(100);
3332}
3333
5dce5b93
CW
3334bool intel_has_pending_fb_unpin(struct drm_device *dev)
3335{
3336 struct intel_crtc *crtc;
3337
3338 /* Note that we don't need to be called with mode_config.lock here
3339 * as our list of CRTC objects is static for the lifetime of the
3340 * device and so cannot disappear as we iterate. Similarly, we can
3341 * happily treat the predicates as racy, atomic checks as userspace
3342 * cannot claim and pin a new fb without at least acquring the
3343 * struct_mutex and so serialising with us.
3344 */
d3fcc808 3345 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3346 if (atomic_read(&crtc->unpin_work_count) == 0)
3347 continue;
3348
3349 if (crtc->unpin_work)
3350 intel_wait_for_vblank(dev, crtc->pipe);
3351
3352 return true;
3353 }
3354
3355 return false;
3356}
3357
46a55d30 3358void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3359{
0f91128d 3360 struct drm_device *dev = crtc->dev;
5bb61643 3361 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3362
f4510a27 3363 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3364 return;
3365
2c10d571
DV
3366 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3367
eed6d67d
DV
3368 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3369 !intel_crtc_has_pending_flip(crtc),
3370 60*HZ) == 0);
5bb61643 3371
0f91128d 3372 mutex_lock(&dev->struct_mutex);
f4510a27 3373 intel_finish_fb(crtc->primary->fb);
0f91128d 3374 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3375}
3376
e615efe4
ED
3377/* Program iCLKIP clock to the desired frequency */
3378static void lpt_program_iclkip(struct drm_crtc *crtc)
3379{
3380 struct drm_device *dev = crtc->dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3382 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3383 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3384 u32 temp;
3385
09153000
DV
3386 mutex_lock(&dev_priv->dpio_lock);
3387
e615efe4
ED
3388 /* It is necessary to ungate the pixclk gate prior to programming
3389 * the divisors, and gate it back when it is done.
3390 */
3391 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3392
3393 /* Disable SSCCTL */
3394 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3395 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3396 SBI_SSCCTL_DISABLE,
3397 SBI_ICLK);
e615efe4
ED
3398
3399 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3400 if (clock == 20000) {
e615efe4
ED
3401 auxdiv = 1;
3402 divsel = 0x41;
3403 phaseinc = 0x20;
3404 } else {
3405 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3406 * but the adjusted_mode->crtc_clock in in KHz. To get the
3407 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3408 * convert the virtual clock precision to KHz here for higher
3409 * precision.
3410 */
3411 u32 iclk_virtual_root_freq = 172800 * 1000;
3412 u32 iclk_pi_range = 64;
3413 u32 desired_divisor, msb_divisor_value, pi_value;
3414
12d7ceed 3415 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3416 msb_divisor_value = desired_divisor / iclk_pi_range;
3417 pi_value = desired_divisor % iclk_pi_range;
3418
3419 auxdiv = 0;
3420 divsel = msb_divisor_value - 2;
3421 phaseinc = pi_value;
3422 }
3423
3424 /* This should not happen with any sane values */
3425 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3426 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3427 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3428 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3429
3430 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3431 clock,
e615efe4
ED
3432 auxdiv,
3433 divsel,
3434 phasedir,
3435 phaseinc);
3436
3437 /* Program SSCDIVINTPHASE6 */
988d6ee8 3438 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3439 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3440 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3441 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3442 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3443 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3444 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3445 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3446
3447 /* Program SSCAUXDIV */
988d6ee8 3448 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3449 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3450 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3451 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3452
3453 /* Enable modulator and associated divider */
988d6ee8 3454 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3455 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3456 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3457
3458 /* Wait for initialization time */
3459 udelay(24);
3460
3461 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3462
3463 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3464}
3465
275f01b2
DV
3466static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3467 enum pipe pch_transcoder)
3468{
3469 struct drm_device *dev = crtc->base.dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3472
3473 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3474 I915_READ(HTOTAL(cpu_transcoder)));
3475 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3476 I915_READ(HBLANK(cpu_transcoder)));
3477 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3478 I915_READ(HSYNC(cpu_transcoder)));
3479
3480 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3481 I915_READ(VTOTAL(cpu_transcoder)));
3482 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3483 I915_READ(VBLANK(cpu_transcoder)));
3484 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3485 I915_READ(VSYNC(cpu_transcoder)));
3486 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3487 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3488}
3489
1fbc0d78
DV
3490static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3491{
3492 struct drm_i915_private *dev_priv = dev->dev_private;
3493 uint32_t temp;
3494
3495 temp = I915_READ(SOUTH_CHICKEN1);
3496 if (temp & FDI_BC_BIFURCATION_SELECT)
3497 return;
3498
3499 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3500 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3501
3502 temp |= FDI_BC_BIFURCATION_SELECT;
3503 DRM_DEBUG_KMS("enabling fdi C rx\n");
3504 I915_WRITE(SOUTH_CHICKEN1, temp);
3505 POSTING_READ(SOUTH_CHICKEN1);
3506}
3507
3508static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3509{
3510 struct drm_device *dev = intel_crtc->base.dev;
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512
3513 switch (intel_crtc->pipe) {
3514 case PIPE_A:
3515 break;
3516 case PIPE_B:
3517 if (intel_crtc->config.fdi_lanes > 2)
3518 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3519 else
3520 cpt_enable_fdi_bc_bifurcation(dev);
3521
3522 break;
3523 case PIPE_C:
3524 cpt_enable_fdi_bc_bifurcation(dev);
3525
3526 break;
3527 default:
3528 BUG();
3529 }
3530}
3531
f67a559d
JB
3532/*
3533 * Enable PCH resources required for PCH ports:
3534 * - PCH PLLs
3535 * - FDI training & RX/TX
3536 * - update transcoder timings
3537 * - DP transcoding bits
3538 * - transcoder
3539 */
3540static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3541{
3542 struct drm_device *dev = crtc->dev;
3543 struct drm_i915_private *dev_priv = dev->dev_private;
3544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545 int pipe = intel_crtc->pipe;
ee7b9f93 3546 u32 reg, temp;
2c07245f 3547
ab9412ba 3548 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3549
1fbc0d78
DV
3550 if (IS_IVYBRIDGE(dev))
3551 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3552
cd986abb
DV
3553 /* Write the TU size bits before fdi link training, so that error
3554 * detection works. */
3555 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3556 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3557
c98e9dcf 3558 /* For PCH output, training FDI link */
674cf967 3559 dev_priv->display.fdi_link_train(crtc);
2c07245f 3560
3ad8a208
DV
3561 /* We need to program the right clock selection before writing the pixel
3562 * mutliplier into the DPLL. */
303b81e0 3563 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3564 u32 sel;
4b645f14 3565
c98e9dcf 3566 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3567 temp |= TRANS_DPLL_ENABLE(pipe);
3568 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3569 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3570 temp |= sel;
3571 else
3572 temp &= ~sel;
c98e9dcf 3573 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3574 }
5eddb70b 3575
3ad8a208
DV
3576 /* XXX: pch pll's can be enabled any time before we enable the PCH
3577 * transcoder, and we actually should do this to not upset any PCH
3578 * transcoder that already use the clock when we share it.
3579 *
3580 * Note that enable_shared_dpll tries to do the right thing, but
3581 * get_shared_dpll unconditionally resets the pll - we need that to have
3582 * the right LVDS enable sequence. */
85b3894f 3583 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3584
d9b6cb56
JB
3585 /* set transcoder timing, panel must allow it */
3586 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3587 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3588
303b81e0 3589 intel_fdi_normal_train(crtc);
5e84e1a4 3590
c98e9dcf
JB
3591 /* For PCH DP, enable TRANS_DP_CTL */
3592 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3593 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3594 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3595 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3596 reg = TRANS_DP_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3599 TRANS_DP_SYNC_MASK |
3600 TRANS_DP_BPC_MASK);
5eddb70b
CW
3601 temp |= (TRANS_DP_OUTPUT_ENABLE |
3602 TRANS_DP_ENH_FRAMING);
9325c9f0 3603 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3604
3605 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3606 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3607 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3608 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3609
3610 switch (intel_trans_dp_port_sel(crtc)) {
3611 case PCH_DP_B:
5eddb70b 3612 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3613 break;
3614 case PCH_DP_C:
5eddb70b 3615 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3616 break;
3617 case PCH_DP_D:
5eddb70b 3618 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3619 break;
3620 default:
e95d41e1 3621 BUG();
32f9d658 3622 }
2c07245f 3623
5eddb70b 3624 I915_WRITE(reg, temp);
6be4a607 3625 }
b52eb4dc 3626
b8a4f404 3627 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3628}
3629
1507e5bd
PZ
3630static void lpt_pch_enable(struct drm_crtc *crtc)
3631{
3632 struct drm_device *dev = crtc->dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3635 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3636
ab9412ba 3637 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3638
8c52b5e8 3639 lpt_program_iclkip(crtc);
1507e5bd 3640
0540e488 3641 /* Set transcoder timing. */
275f01b2 3642 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3643
937bb610 3644 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3645}
3646
e2b78267 3647static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3648{
e2b78267 3649 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3650
3651 if (pll == NULL)
3652 return;
3653
3654 if (pll->refcount == 0) {
46edb027 3655 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3656 return;
3657 }
3658
f4a091c7
DV
3659 if (--pll->refcount == 0) {
3660 WARN_ON(pll->on);
3661 WARN_ON(pll->active);
3662 }
3663
a43f6e0f 3664 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3665}
3666
b89a1d39 3667static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3668{
e2b78267
DV
3669 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3670 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3671 enum intel_dpll_id i;
ee7b9f93 3672
ee7b9f93 3673 if (pll) {
46edb027
DV
3674 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3675 crtc->base.base.id, pll->name);
e2b78267 3676 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3677 }
3678
98b6bd99
DV
3679 if (HAS_PCH_IBX(dev_priv->dev)) {
3680 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3681 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3682 pll = &dev_priv->shared_dplls[i];
98b6bd99 3683
46edb027
DV
3684 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3685 crtc->base.base.id, pll->name);
98b6bd99 3686
f2a69f44
DV
3687 WARN_ON(pll->refcount);
3688
98b6bd99
DV
3689 goto found;
3690 }
3691
e72f9fbf
DV
3692 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3693 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3694
3695 /* Only want to check enabled timings first */
3696 if (pll->refcount == 0)
3697 continue;
3698
b89a1d39
DV
3699 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3700 sizeof(pll->hw_state)) == 0) {
46edb027 3701 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3702 crtc->base.base.id,
46edb027 3703 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3704
3705 goto found;
3706 }
3707 }
3708
3709 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3710 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3711 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3712 if (pll->refcount == 0) {
46edb027
DV
3713 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3714 crtc->base.base.id, pll->name);
ee7b9f93
JB
3715 goto found;
3716 }
3717 }
3718
3719 return NULL;
3720
3721found:
f2a69f44
DV
3722 if (pll->refcount == 0)
3723 pll->hw_state = crtc->config.dpll_hw_state;
3724
a43f6e0f 3725 crtc->config.shared_dpll = i;
46edb027
DV
3726 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3727 pipe_name(crtc->pipe));
ee7b9f93 3728
cdbd2316 3729 pll->refcount++;
e04c7350 3730
ee7b9f93
JB
3731 return pll;
3732}
3733
a1520318 3734static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3735{
3736 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3737 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3738 u32 temp;
3739
3740 temp = I915_READ(dslreg);
3741 udelay(500);
3742 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3743 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3744 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3745 }
3746}
3747
b074cec8
JB
3748static void ironlake_pfit_enable(struct intel_crtc *crtc)
3749{
3750 struct drm_device *dev = crtc->base.dev;
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752 int pipe = crtc->pipe;
3753
fd4daa9c 3754 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3755 /* Force use of hard-coded filter coefficients
3756 * as some pre-programmed values are broken,
3757 * e.g. x201.
3758 */
3759 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3760 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3761 PF_PIPE_SEL_IVB(pipe));
3762 else
3763 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3764 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3765 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3766 }
3767}
3768
bb53d4ae
VS
3769static void intel_enable_planes(struct drm_crtc *crtc)
3770{
3771 struct drm_device *dev = crtc->dev;
3772 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3773 struct drm_plane *plane;
bb53d4ae
VS
3774 struct intel_plane *intel_plane;
3775
af2b653b
MR
3776 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3777 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3778 if (intel_plane->pipe == pipe)
3779 intel_plane_restore(&intel_plane->base);
af2b653b 3780 }
bb53d4ae
VS
3781}
3782
3783static void intel_disable_planes(struct drm_crtc *crtc)
3784{
3785 struct drm_device *dev = crtc->dev;
3786 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3787 struct drm_plane *plane;
bb53d4ae
VS
3788 struct intel_plane *intel_plane;
3789
af2b653b
MR
3790 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3791 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3792 if (intel_plane->pipe == pipe)
3793 intel_plane_disable(&intel_plane->base);
af2b653b 3794 }
bb53d4ae
VS
3795}
3796
20bc8673 3797void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3798{
cea165c3
VS
3799 struct drm_device *dev = crtc->base.dev;
3800 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3801
3802 if (!crtc->config.ips_enabled)
3803 return;
3804
cea165c3
VS
3805 /* We can only enable IPS after we enable a plane and wait for a vblank */
3806 intel_wait_for_vblank(dev, crtc->pipe);
3807
d77e4531 3808 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3809 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3810 mutex_lock(&dev_priv->rps.hw_lock);
3811 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3812 mutex_unlock(&dev_priv->rps.hw_lock);
3813 /* Quoting Art Runyan: "its not safe to expect any particular
3814 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3815 * mailbox." Moreover, the mailbox may return a bogus state,
3816 * so we need to just enable it and continue on.
2a114cc1
BW
3817 */
3818 } else {
3819 I915_WRITE(IPS_CTL, IPS_ENABLE);
3820 /* The bit only becomes 1 in the next vblank, so this wait here
3821 * is essentially intel_wait_for_vblank. If we don't have this
3822 * and don't wait for vblanks until the end of crtc_enable, then
3823 * the HW state readout code will complain that the expected
3824 * IPS_CTL value is not the one we read. */
3825 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3826 DRM_ERROR("Timed out waiting for IPS enable\n");
3827 }
d77e4531
PZ
3828}
3829
20bc8673 3830void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3831{
3832 struct drm_device *dev = crtc->base.dev;
3833 struct drm_i915_private *dev_priv = dev->dev_private;
3834
3835 if (!crtc->config.ips_enabled)
3836 return;
3837
3838 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3839 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3840 mutex_lock(&dev_priv->rps.hw_lock);
3841 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3842 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3843 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3844 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3845 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3846 } else {
2a114cc1 3847 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3848 POSTING_READ(IPS_CTL);
3849 }
d77e4531
PZ
3850
3851 /* We need to wait for a vblank before we can disable the plane. */
3852 intel_wait_for_vblank(dev, crtc->pipe);
3853}
3854
3855/** Loads the palette/gamma unit for the CRTC with the prepared values */
3856static void intel_crtc_load_lut(struct drm_crtc *crtc)
3857{
3858 struct drm_device *dev = crtc->dev;
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 enum pipe pipe = intel_crtc->pipe;
3862 int palreg = PALETTE(pipe);
3863 int i;
3864 bool reenable_ips = false;
3865
3866 /* The clocks have to be on to load the palette. */
3867 if (!crtc->enabled || !intel_crtc->active)
3868 return;
3869
3870 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3871 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3872 assert_dsi_pll_enabled(dev_priv);
3873 else
3874 assert_pll_enabled(dev_priv, pipe);
3875 }
3876
3877 /* use legacy palette for Ironlake */
3878 if (HAS_PCH_SPLIT(dev))
3879 palreg = LGC_PALETTE(pipe);
3880
3881 /* Workaround : Do not read or write the pipe palette/gamma data while
3882 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3883 */
41e6fc4c 3884 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3885 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3886 GAMMA_MODE_MODE_SPLIT)) {
3887 hsw_disable_ips(intel_crtc);
3888 reenable_ips = true;
3889 }
3890
3891 for (i = 0; i < 256; i++) {
3892 I915_WRITE(palreg + 4 * i,
3893 (intel_crtc->lut_r[i] << 16) |
3894 (intel_crtc->lut_g[i] << 8) |
3895 intel_crtc->lut_b[i]);
3896 }
3897
3898 if (reenable_ips)
3899 hsw_enable_ips(intel_crtc);
3900}
3901
d3eedb1a
VS
3902static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3903{
3904 if (!enable && intel_crtc->overlay) {
3905 struct drm_device *dev = intel_crtc->base.dev;
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908 mutex_lock(&dev->struct_mutex);
3909 dev_priv->mm.interruptible = false;
3910 (void) intel_overlay_switch_off(intel_crtc->overlay);
3911 dev_priv->mm.interruptible = true;
3912 mutex_unlock(&dev->struct_mutex);
3913 }
3914
3915 /* Let userspace switch the overlay on again. In most cases userspace
3916 * has to recompute where to put it anyway.
3917 */
3918}
3919
3920/**
3921 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3922 * cursor plane briefly if not already running after enabling the display
3923 * plane.
3924 * This workaround avoids occasional blank screens when self refresh is
3925 * enabled.
3926 */
3927static void
3928g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3929{
3930 u32 cntl = I915_READ(CURCNTR(pipe));
3931
3932 if ((cntl & CURSOR_MODE) == 0) {
3933 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3934
3935 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3936 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3937 intel_wait_for_vblank(dev_priv->dev, pipe);
3938 I915_WRITE(CURCNTR(pipe), cntl);
3939 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3940 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3941 }
3942}
3943
3944static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3945{
3946 struct drm_device *dev = crtc->dev;
3947 struct drm_i915_private *dev_priv = dev->dev_private;
3948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3949 int pipe = intel_crtc->pipe;
3950 int plane = intel_crtc->plane;
3951
f98551ae
VS
3952 drm_vblank_on(dev, pipe);
3953
a5c4d7bc
VS
3954 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3955 intel_enable_planes(crtc);
d3eedb1a
VS
3956 /* The fixup needs to happen before cursor is enabled */
3957 if (IS_G4X(dev))
3958 g4x_fixup_plane(dev_priv, pipe);
a5c4d7bc 3959 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3960 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3961
3962 hsw_enable_ips(intel_crtc);
3963
3964 mutex_lock(&dev->struct_mutex);
3965 intel_update_fbc(dev);
3966 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3967
3968 /*
3969 * FIXME: Once we grow proper nuclear flip support out of this we need
3970 * to compute the mask of flip planes precisely. For the time being
3971 * consider this a flip from a NULL plane.
3972 */
3973 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3974}
3975
d3eedb1a 3976static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3977{
3978 struct drm_device *dev = crtc->dev;
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3981 int pipe = intel_crtc->pipe;
3982 int plane = intel_crtc->plane;
3983
3984 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3985
3986 if (dev_priv->fbc.plane == plane)
3987 intel_disable_fbc(dev);
3988
3989 hsw_disable_ips(intel_crtc);
3990
d3eedb1a 3991 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3992 intel_crtc_update_cursor(crtc, false);
3993 intel_disable_planes(crtc);
3994 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3995
f99d7069
DV
3996 /*
3997 * FIXME: Once we grow proper nuclear flip support out of this we need
3998 * to compute the mask of flip planes precisely. For the time being
3999 * consider this a flip to a NULL plane.
4000 */
4001 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4002
f98551ae 4003 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
4004}
4005
f67a559d
JB
4006static void ironlake_crtc_enable(struct drm_crtc *crtc)
4007{
4008 struct drm_device *dev = crtc->dev;
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4011 struct intel_encoder *encoder;
f67a559d 4012 int pipe = intel_crtc->pipe;
29407aab 4013 enum plane plane = intel_crtc->plane;
f67a559d 4014
08a48469
DV
4015 WARN_ON(!crtc->enabled);
4016
f67a559d
JB
4017 if (intel_crtc->active)
4018 return;
4019
b14b1055
DV
4020 if (intel_crtc->config.has_pch_encoder)
4021 intel_prepare_shared_dpll(intel_crtc);
4022
29407aab
DV
4023 if (intel_crtc->config.has_dp_encoder)
4024 intel_dp_set_m_n(intel_crtc);
4025
4026 intel_set_pipe_timings(intel_crtc);
4027
4028 if (intel_crtc->config.has_pch_encoder) {
4029 intel_cpu_transcoder_set_m_n(intel_crtc,
4030 &intel_crtc->config.fdi_m_n);
4031 }
4032
4033 ironlake_set_pipeconf(crtc);
4034
4035 /* Set up the display plane register */
4036 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4037 POSTING_READ(DSPCNTR(plane));
4038
4039 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4040 crtc->x, crtc->y);
4041
f67a559d 4042 intel_crtc->active = true;
8664281b
PZ
4043
4044 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4045 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4046
f6736a1a 4047 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4048 if (encoder->pre_enable)
4049 encoder->pre_enable(encoder);
f67a559d 4050
5bfe2ac0 4051 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4052 /* Note: FDI PLL enabling _must_ be done before we enable the
4053 * cpu pipes, hence this is separate from all the other fdi/pch
4054 * enabling. */
88cefb6c 4055 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4056 } else {
4057 assert_fdi_tx_disabled(dev_priv, pipe);
4058 assert_fdi_rx_disabled(dev_priv, pipe);
4059 }
f67a559d 4060
b074cec8 4061 ironlake_pfit_enable(intel_crtc);
f67a559d 4062
9c54c0dd
JB
4063 /*
4064 * On ILK+ LUT must be loaded before the pipe is running but with
4065 * clocks enabled
4066 */
4067 intel_crtc_load_lut(crtc);
4068
f37fcc2a 4069 intel_update_watermarks(crtc);
e1fdc473 4070 intel_enable_pipe(intel_crtc);
f67a559d 4071
5bfe2ac0 4072 if (intel_crtc->config.has_pch_encoder)
f67a559d 4073 ironlake_pch_enable(crtc);
c98e9dcf 4074
fa5c73b1
DV
4075 for_each_encoder_on_crtc(dev, crtc, encoder)
4076 encoder->enable(encoder);
61b77ddd
DV
4077
4078 if (HAS_PCH_CPT(dev))
a1520318 4079 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4080
d3eedb1a 4081 intel_crtc_enable_planes(crtc);
6be4a607
JB
4082}
4083
42db64ef
PZ
4084/* IPS only exists on ULT machines and is tied to pipe A. */
4085static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4086{
f5adf94e 4087 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4088}
4089
e4916946
PZ
4090/*
4091 * This implements the workaround described in the "notes" section of the mode
4092 * set sequence documentation. When going from no pipes or single pipe to
4093 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4094 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4095 */
4096static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4097{
4098 struct drm_device *dev = crtc->base.dev;
4099 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4100
4101 /* We want to get the other_active_crtc only if there's only 1 other
4102 * active crtc. */
d3fcc808 4103 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4104 if (!crtc_it->active || crtc_it == crtc)
4105 continue;
4106
4107 if (other_active_crtc)
4108 return;
4109
4110 other_active_crtc = crtc_it;
4111 }
4112 if (!other_active_crtc)
4113 return;
4114
4115 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4116 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4117}
4118
4f771f10
PZ
4119static void haswell_crtc_enable(struct drm_crtc *crtc)
4120{
4121 struct drm_device *dev = crtc->dev;
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4124 struct intel_encoder *encoder;
4125 int pipe = intel_crtc->pipe;
229fca97 4126 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4127
4128 WARN_ON(!crtc->enabled);
4129
4130 if (intel_crtc->active)
4131 return;
4132
229fca97
DV
4133 if (intel_crtc->config.has_dp_encoder)
4134 intel_dp_set_m_n(intel_crtc);
4135
4136 intel_set_pipe_timings(intel_crtc);
4137
4138 if (intel_crtc->config.has_pch_encoder) {
4139 intel_cpu_transcoder_set_m_n(intel_crtc,
4140 &intel_crtc->config.fdi_m_n);
4141 }
4142
4143 haswell_set_pipeconf(crtc);
4144
4145 intel_set_pipe_csc(crtc);
4146
4147 /* Set up the display plane register */
4148 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4149 POSTING_READ(DSPCNTR(plane));
4150
4151 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4152 crtc->x, crtc->y);
4153
4f771f10 4154 intel_crtc->active = true;
8664281b
PZ
4155
4156 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4157 if (intel_crtc->config.has_pch_encoder)
4158 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4159
5bfe2ac0 4160 if (intel_crtc->config.has_pch_encoder)
04945641 4161 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4162
4163 for_each_encoder_on_crtc(dev, crtc, encoder)
4164 if (encoder->pre_enable)
4165 encoder->pre_enable(encoder);
4166
1f544388 4167 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4168
b074cec8 4169 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4170
4171 /*
4172 * On ILK+ LUT must be loaded before the pipe is running but with
4173 * clocks enabled
4174 */
4175 intel_crtc_load_lut(crtc);
4176
1f544388 4177 intel_ddi_set_pipe_settings(crtc);
8228c251 4178 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4179
f37fcc2a 4180 intel_update_watermarks(crtc);
e1fdc473 4181 intel_enable_pipe(intel_crtc);
42db64ef 4182
5bfe2ac0 4183 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4184 lpt_pch_enable(crtc);
4f771f10 4185
8807e55b 4186 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4187 encoder->enable(encoder);
8807e55b
JN
4188 intel_opregion_notify_encoder(encoder, true);
4189 }
4f771f10 4190
e4916946
PZ
4191 /* If we change the relative order between pipe/planes enabling, we need
4192 * to change the workaround. */
4193 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4194 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4195}
4196
3f8dce3a
DV
4197static void ironlake_pfit_disable(struct intel_crtc *crtc)
4198{
4199 struct drm_device *dev = crtc->base.dev;
4200 struct drm_i915_private *dev_priv = dev->dev_private;
4201 int pipe = crtc->pipe;
4202
4203 /* To avoid upsetting the power well on haswell only disable the pfit if
4204 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4205 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4206 I915_WRITE(PF_CTL(pipe), 0);
4207 I915_WRITE(PF_WIN_POS(pipe), 0);
4208 I915_WRITE(PF_WIN_SZ(pipe), 0);
4209 }
4210}
4211
6be4a607
JB
4212static void ironlake_crtc_disable(struct drm_crtc *crtc)
4213{
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4217 struct intel_encoder *encoder;
6be4a607 4218 int pipe = intel_crtc->pipe;
5eddb70b 4219 u32 reg, temp;
b52eb4dc 4220
f7abfe8b
CW
4221 if (!intel_crtc->active)
4222 return;
4223
d3eedb1a 4224 intel_crtc_disable_planes(crtc);
a5c4d7bc 4225
ea9d758d
DV
4226 for_each_encoder_on_crtc(dev, crtc, encoder)
4227 encoder->disable(encoder);
4228
d925c59a
DV
4229 if (intel_crtc->config.has_pch_encoder)
4230 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4231
b24e7179 4232 intel_disable_pipe(dev_priv, pipe);
32f9d658 4233
3f8dce3a 4234 ironlake_pfit_disable(intel_crtc);
2c07245f 4235
bf49ec8c
DV
4236 for_each_encoder_on_crtc(dev, crtc, encoder)
4237 if (encoder->post_disable)
4238 encoder->post_disable(encoder);
2c07245f 4239
d925c59a
DV
4240 if (intel_crtc->config.has_pch_encoder) {
4241 ironlake_fdi_disable(crtc);
913d8d11 4242
d925c59a
DV
4243 ironlake_disable_pch_transcoder(dev_priv, pipe);
4244 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4245
d925c59a
DV
4246 if (HAS_PCH_CPT(dev)) {
4247 /* disable TRANS_DP_CTL */
4248 reg = TRANS_DP_CTL(pipe);
4249 temp = I915_READ(reg);
4250 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4251 TRANS_DP_PORT_SEL_MASK);
4252 temp |= TRANS_DP_PORT_SEL_NONE;
4253 I915_WRITE(reg, temp);
4254
4255 /* disable DPLL_SEL */
4256 temp = I915_READ(PCH_DPLL_SEL);
11887397 4257 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4258 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4259 }
e3421a18 4260
d925c59a 4261 /* disable PCH DPLL */
e72f9fbf 4262 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4263
d925c59a
DV
4264 ironlake_fdi_pll_disable(intel_crtc);
4265 }
6b383a7f 4266
f7abfe8b 4267 intel_crtc->active = false;
46ba614c 4268 intel_update_watermarks(crtc);
d1ebd816
BW
4269
4270 mutex_lock(&dev->struct_mutex);
6b383a7f 4271 intel_update_fbc(dev);
d1ebd816 4272 mutex_unlock(&dev->struct_mutex);
6be4a607 4273}
1b3c7a47 4274
4f771f10 4275static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4276{
4f771f10
PZ
4277 struct drm_device *dev = crtc->dev;
4278 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4280 struct intel_encoder *encoder;
4281 int pipe = intel_crtc->pipe;
3b117c8f 4282 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4283
4f771f10
PZ
4284 if (!intel_crtc->active)
4285 return;
4286
d3eedb1a 4287 intel_crtc_disable_planes(crtc);
dda9a66a 4288
8807e55b
JN
4289 for_each_encoder_on_crtc(dev, crtc, encoder) {
4290 intel_opregion_notify_encoder(encoder, false);
4f771f10 4291 encoder->disable(encoder);
8807e55b 4292 }
4f771f10 4293
8664281b
PZ
4294 if (intel_crtc->config.has_pch_encoder)
4295 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4296 intel_disable_pipe(dev_priv, pipe);
4297
ad80a810 4298 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4299
3f8dce3a 4300 ironlake_pfit_disable(intel_crtc);
4f771f10 4301
1f544388 4302 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4303
4304 for_each_encoder_on_crtc(dev, crtc, encoder)
4305 if (encoder->post_disable)
4306 encoder->post_disable(encoder);
4307
88adfff1 4308 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4309 lpt_disable_pch_transcoder(dev_priv);
8664281b 4310 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4311 intel_ddi_fdi_disable(crtc);
83616634 4312 }
4f771f10
PZ
4313
4314 intel_crtc->active = false;
46ba614c 4315 intel_update_watermarks(crtc);
4f771f10
PZ
4316
4317 mutex_lock(&dev->struct_mutex);
4318 intel_update_fbc(dev);
4319 mutex_unlock(&dev->struct_mutex);
4320}
4321
ee7b9f93
JB
4322static void ironlake_crtc_off(struct drm_crtc *crtc)
4323{
4324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4325 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4326}
4327
6441ab5f
PZ
4328static void haswell_crtc_off(struct drm_crtc *crtc)
4329{
4330 intel_ddi_put_crtc_pll(crtc);
4331}
4332
2dd24552
JB
4333static void i9xx_pfit_enable(struct intel_crtc *crtc)
4334{
4335 struct drm_device *dev = crtc->base.dev;
4336 struct drm_i915_private *dev_priv = dev->dev_private;
4337 struct intel_crtc_config *pipe_config = &crtc->config;
4338
328d8e82 4339 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4340 return;
4341
2dd24552 4342 /*
c0b03411
DV
4343 * The panel fitter should only be adjusted whilst the pipe is disabled,
4344 * according to register description and PRM.
2dd24552 4345 */
c0b03411
DV
4346 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4347 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4348
b074cec8
JB
4349 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4350 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4351
4352 /* Border color in case we don't scale up to the full screen. Black by
4353 * default, change to something else for debugging. */
4354 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4355}
4356
77d22dca
ID
4357#define for_each_power_domain(domain, mask) \
4358 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4359 if ((1 << (domain)) & (mask))
4360
319be8ae
ID
4361enum intel_display_power_domain
4362intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4363{
4364 struct drm_device *dev = intel_encoder->base.dev;
4365 struct intel_digital_port *intel_dig_port;
4366
4367 switch (intel_encoder->type) {
4368 case INTEL_OUTPUT_UNKNOWN:
4369 /* Only DDI platforms should ever use this output type */
4370 WARN_ON_ONCE(!HAS_DDI(dev));
4371 case INTEL_OUTPUT_DISPLAYPORT:
4372 case INTEL_OUTPUT_HDMI:
4373 case INTEL_OUTPUT_EDP:
4374 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4375 switch (intel_dig_port->port) {
4376 case PORT_A:
4377 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4378 case PORT_B:
4379 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4380 case PORT_C:
4381 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4382 case PORT_D:
4383 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4384 default:
4385 WARN_ON_ONCE(1);
4386 return POWER_DOMAIN_PORT_OTHER;
4387 }
4388 case INTEL_OUTPUT_ANALOG:
4389 return POWER_DOMAIN_PORT_CRT;
4390 case INTEL_OUTPUT_DSI:
4391 return POWER_DOMAIN_PORT_DSI;
4392 default:
4393 return POWER_DOMAIN_PORT_OTHER;
4394 }
4395}
4396
4397static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4398{
319be8ae
ID
4399 struct drm_device *dev = crtc->dev;
4400 struct intel_encoder *intel_encoder;
4401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4402 enum pipe pipe = intel_crtc->pipe;
4403 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
77d22dca
ID
4404 unsigned long mask;
4405 enum transcoder transcoder;
4406
4407 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4408
4409 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4410 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4411 if (pfit_enabled)
4412 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4413
319be8ae
ID
4414 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4415 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4416
77d22dca
ID
4417 return mask;
4418}
4419
4420void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4421 bool enable)
4422{
4423 if (dev_priv->power_domains.init_power_on == enable)
4424 return;
4425
4426 if (enable)
4427 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4428 else
4429 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4430
4431 dev_priv->power_domains.init_power_on = enable;
4432}
4433
4434static void modeset_update_crtc_power_domains(struct drm_device *dev)
4435{
4436 struct drm_i915_private *dev_priv = dev->dev_private;
4437 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4438 struct intel_crtc *crtc;
4439
4440 /*
4441 * First get all needed power domains, then put all unneeded, to avoid
4442 * any unnecessary toggling of the power wells.
4443 */
d3fcc808 4444 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4445 enum intel_display_power_domain domain;
4446
4447 if (!crtc->base.enabled)
4448 continue;
4449
319be8ae 4450 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4451
4452 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4453 intel_display_power_get(dev_priv, domain);
4454 }
4455
d3fcc808 4456 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4457 enum intel_display_power_domain domain;
4458
4459 for_each_power_domain(domain, crtc->enabled_power_domains)
4460 intel_display_power_put(dev_priv, domain);
4461
4462 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4463 }
4464
4465 intel_display_set_init_power(dev_priv, false);
4466}
4467
586f49dc 4468int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4469{
586f49dc 4470 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4471
586f49dc
JB
4472 /* Obtain SKU information */
4473 mutex_lock(&dev_priv->dpio_lock);
4474 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4475 CCK_FUSE_HPLL_FREQ_MASK;
4476 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4477
586f49dc 4478 return vco_freq[hpll_freq];
30a970c6
JB
4479}
4480
4481/* Adjust CDclk dividers to allow high res or save power if possible */
4482static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4483{
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485 u32 val, cmd;
4486
d60c4473
ID
4487 WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4488 dev_priv->vlv_cdclk_freq = cdclk;
4489
30a970c6
JB
4490 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4491 cmd = 2;
4492 else if (cdclk == 266)
4493 cmd = 1;
4494 else
4495 cmd = 0;
4496
4497 mutex_lock(&dev_priv->rps.hw_lock);
4498 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4499 val &= ~DSPFREQGUAR_MASK;
4500 val |= (cmd << DSPFREQGUAR_SHIFT);
4501 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4502 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4503 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4504 50)) {
4505 DRM_ERROR("timed out waiting for CDclk change\n");
4506 }
4507 mutex_unlock(&dev_priv->rps.hw_lock);
4508
4509 if (cdclk == 400) {
4510 u32 divider, vco;
4511
4512 vco = valleyview_get_vco(dev_priv);
4513 divider = ((vco << 1) / cdclk) - 1;
4514
4515 mutex_lock(&dev_priv->dpio_lock);
4516 /* adjust cdclk divider */
4517 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4518 val &= ~0xf;
4519 val |= divider;
4520 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4521 mutex_unlock(&dev_priv->dpio_lock);
4522 }
4523
4524 mutex_lock(&dev_priv->dpio_lock);
4525 /* adjust self-refresh exit latency value */
4526 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4527 val &= ~0x7f;
4528
4529 /*
4530 * For high bandwidth configs, we set a higher latency in the bunit
4531 * so that the core display fetch happens in time to avoid underruns.
4532 */
4533 if (cdclk == 400)
4534 val |= 4500 / 250; /* 4.5 usec */
4535 else
4536 val |= 3000 / 250; /* 3.0 usec */
4537 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4538 mutex_unlock(&dev_priv->dpio_lock);
4539
4540 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4541 intel_i2c_reset(dev);
4542}
4543
d60c4473 4544int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4545{
4546 int cur_cdclk, vco;
4547 int divider;
4548
4549 vco = valleyview_get_vco(dev_priv);
4550
4551 mutex_lock(&dev_priv->dpio_lock);
4552 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4553 mutex_unlock(&dev_priv->dpio_lock);
4554
4555 divider &= 0xf;
4556
4557 cur_cdclk = (vco << 1) / (divider + 1);
4558
4559 return cur_cdclk;
4560}
4561
4562static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4563 int max_pixclk)
4564{
30a970c6
JB
4565 /*
4566 * Really only a few cases to deal with, as only 4 CDclks are supported:
4567 * 200MHz
4568 * 267MHz
4569 * 320MHz
4570 * 400MHz
4571 * So we check to see whether we're above 90% of the lower bin and
4572 * adjust if needed.
4573 */
4574 if (max_pixclk > 288000) {
4575 return 400;
4576 } else if (max_pixclk > 240000) {
4577 return 320;
4578 } else
4579 return 266;
4580 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4581}
4582
2f2d7aa1
VS
4583/* compute the max pixel clock for new configuration */
4584static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4585{
4586 struct drm_device *dev = dev_priv->dev;
4587 struct intel_crtc *intel_crtc;
4588 int max_pixclk = 0;
4589
d3fcc808 4590 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4591 if (intel_crtc->new_enabled)
30a970c6 4592 max_pixclk = max(max_pixclk,
2f2d7aa1 4593 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4594 }
4595
4596 return max_pixclk;
4597}
4598
4599static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4600 unsigned *prepare_pipes)
30a970c6
JB
4601{
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 struct intel_crtc *intel_crtc;
2f2d7aa1 4604 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4605
d60c4473
ID
4606 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4607 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4608 return;
4609
2f2d7aa1 4610 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4611 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4612 if (intel_crtc->base.enabled)
4613 *prepare_pipes |= (1 << intel_crtc->pipe);
4614}
4615
4616static void valleyview_modeset_global_resources(struct drm_device *dev)
4617{
4618 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4619 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4620 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4621
d60c4473 4622 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4623 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4624 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4625}
4626
89b667f8
JB
4627static void valleyview_crtc_enable(struct drm_crtc *crtc)
4628{
4629 struct drm_device *dev = crtc->dev;
5b18e57c 4630 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4632 struct intel_encoder *encoder;
4633 int pipe = intel_crtc->pipe;
5b18e57c 4634 int plane = intel_crtc->plane;
23538ef1 4635 bool is_dsi;
5b18e57c 4636 u32 dspcntr;
89b667f8
JB
4637
4638 WARN_ON(!crtc->enabled);
4639
4640 if (intel_crtc->active)
4641 return;
4642
8525a235
SK
4643 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4644
4645 if (!is_dsi && !IS_CHERRYVIEW(dev))
4646 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4647
5b18e57c
DV
4648 /* Set up the display plane register */
4649 dspcntr = DISPPLANE_GAMMA_ENABLE;
4650
4651 if (intel_crtc->config.has_dp_encoder)
4652 intel_dp_set_m_n(intel_crtc);
4653
4654 intel_set_pipe_timings(intel_crtc);
4655
4656 /* pipesrc and dspsize control the size that is scaled from,
4657 * which should always be the user's requested size.
4658 */
4659 I915_WRITE(DSPSIZE(plane),
4660 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4661 (intel_crtc->config.pipe_src_w - 1));
4662 I915_WRITE(DSPPOS(plane), 0);
4663
4664 i9xx_set_pipeconf(intel_crtc);
4665
4666 I915_WRITE(DSPCNTR(plane), dspcntr);
4667 POSTING_READ(DSPCNTR(plane));
4668
4669 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4670 crtc->x, crtc->y);
4671
89b667f8 4672 intel_crtc->active = true;
89b667f8 4673
4a3436e8
VS
4674 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4675
89b667f8
JB
4676 for_each_encoder_on_crtc(dev, crtc, encoder)
4677 if (encoder->pre_pll_enable)
4678 encoder->pre_pll_enable(encoder);
4679
9d556c99
CML
4680 if (!is_dsi) {
4681 if (IS_CHERRYVIEW(dev))
4682 chv_enable_pll(intel_crtc);
4683 else
4684 vlv_enable_pll(intel_crtc);
4685 }
89b667f8
JB
4686
4687 for_each_encoder_on_crtc(dev, crtc, encoder)
4688 if (encoder->pre_enable)
4689 encoder->pre_enable(encoder);
4690
2dd24552
JB
4691 i9xx_pfit_enable(intel_crtc);
4692
63cbb074
VS
4693 intel_crtc_load_lut(crtc);
4694
f37fcc2a 4695 intel_update_watermarks(crtc);
e1fdc473 4696 intel_enable_pipe(intel_crtc);
be6a6f8e 4697
5004945f
JN
4698 for_each_encoder_on_crtc(dev, crtc, encoder)
4699 encoder->enable(encoder);
9ab0460b
VS
4700
4701 intel_crtc_enable_planes(crtc);
d40d9187 4702
56b80e1f
VS
4703 /* Underruns don't raise interrupts, so check manually. */
4704 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4705}
4706
f13c2ef3
DV
4707static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4708{
4709 struct drm_device *dev = crtc->base.dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4713 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4714}
4715
0b8765c6 4716static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4717{
4718 struct drm_device *dev = crtc->dev;
5b18e57c 4719 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4721 struct intel_encoder *encoder;
79e53945 4722 int pipe = intel_crtc->pipe;
5b18e57c
DV
4723 int plane = intel_crtc->plane;
4724 u32 dspcntr;
79e53945 4725
08a48469
DV
4726 WARN_ON(!crtc->enabled);
4727
f7abfe8b
CW
4728 if (intel_crtc->active)
4729 return;
4730
f13c2ef3
DV
4731 i9xx_set_pll_dividers(intel_crtc);
4732
5b18e57c
DV
4733 /* Set up the display plane register */
4734 dspcntr = DISPPLANE_GAMMA_ENABLE;
4735
4736 if (pipe == 0)
4737 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4738 else
4739 dspcntr |= DISPPLANE_SEL_PIPE_B;
4740
4741 if (intel_crtc->config.has_dp_encoder)
4742 intel_dp_set_m_n(intel_crtc);
4743
4744 intel_set_pipe_timings(intel_crtc);
4745
4746 /* pipesrc and dspsize control the size that is scaled from,
4747 * which should always be the user's requested size.
4748 */
4749 I915_WRITE(DSPSIZE(plane),
4750 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4751 (intel_crtc->config.pipe_src_w - 1));
4752 I915_WRITE(DSPPOS(plane), 0);
4753
4754 i9xx_set_pipeconf(intel_crtc);
4755
4756 I915_WRITE(DSPCNTR(plane), dspcntr);
4757 POSTING_READ(DSPCNTR(plane));
4758
4759 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4760 crtc->x, crtc->y);
4761
f7abfe8b 4762 intel_crtc->active = true;
6b383a7f 4763
4a3436e8
VS
4764 if (!IS_GEN2(dev))
4765 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4766
9d6d9f19
MK
4767 for_each_encoder_on_crtc(dev, crtc, encoder)
4768 if (encoder->pre_enable)
4769 encoder->pre_enable(encoder);
4770
f6736a1a
DV
4771 i9xx_enable_pll(intel_crtc);
4772
2dd24552
JB
4773 i9xx_pfit_enable(intel_crtc);
4774
63cbb074
VS
4775 intel_crtc_load_lut(crtc);
4776
f37fcc2a 4777 intel_update_watermarks(crtc);
e1fdc473 4778 intel_enable_pipe(intel_crtc);
be6a6f8e 4779
fa5c73b1
DV
4780 for_each_encoder_on_crtc(dev, crtc, encoder)
4781 encoder->enable(encoder);
9ab0460b
VS
4782
4783 intel_crtc_enable_planes(crtc);
d40d9187 4784
4a3436e8
VS
4785 /*
4786 * Gen2 reports pipe underruns whenever all planes are disabled.
4787 * So don't enable underrun reporting before at least some planes
4788 * are enabled.
4789 * FIXME: Need to fix the logic to work when we turn off all planes
4790 * but leave the pipe running.
4791 */
4792 if (IS_GEN2(dev))
4793 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4794
56b80e1f
VS
4795 /* Underruns don't raise interrupts, so check manually. */
4796 i9xx_check_fifo_underruns(dev);
0b8765c6 4797}
79e53945 4798
87476d63
DV
4799static void i9xx_pfit_disable(struct intel_crtc *crtc)
4800{
4801 struct drm_device *dev = crtc->base.dev;
4802 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4803
328d8e82
DV
4804 if (!crtc->config.gmch_pfit.control)
4805 return;
87476d63 4806
328d8e82 4807 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4808
328d8e82
DV
4809 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4810 I915_READ(PFIT_CONTROL));
4811 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4812}
4813
0b8765c6
JB
4814static void i9xx_crtc_disable(struct drm_crtc *crtc)
4815{
4816 struct drm_device *dev = crtc->dev;
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4819 struct intel_encoder *encoder;
0b8765c6 4820 int pipe = intel_crtc->pipe;
ef9c3aee 4821
f7abfe8b
CW
4822 if (!intel_crtc->active)
4823 return;
4824
4a3436e8
VS
4825 /*
4826 * Gen2 reports pipe underruns whenever all planes are disabled.
4827 * So diasble underrun reporting before all the planes get disabled.
4828 * FIXME: Need to fix the logic to work when we turn off all planes
4829 * but leave the pipe running.
4830 */
4831 if (IS_GEN2(dev))
4832 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4833
9ab0460b
VS
4834 intel_crtc_disable_planes(crtc);
4835
ea9d758d
DV
4836 for_each_encoder_on_crtc(dev, crtc, encoder)
4837 encoder->disable(encoder);
4838
6304cd91
VS
4839 /*
4840 * On gen2 planes are double buffered but the pipe isn't, so we must
4841 * wait for planes to fully turn off before disabling the pipe.
4842 */
4843 if (IS_GEN2(dev))
4844 intel_wait_for_vblank(dev, pipe);
4845
b24e7179 4846 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4847
87476d63 4848 i9xx_pfit_disable(intel_crtc);
24a1f16d 4849
89b667f8
JB
4850 for_each_encoder_on_crtc(dev, crtc, encoder)
4851 if (encoder->post_disable)
4852 encoder->post_disable(encoder);
4853
076ed3b2
CML
4854 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4855 if (IS_CHERRYVIEW(dev))
4856 chv_disable_pll(dev_priv, pipe);
4857 else if (IS_VALLEYVIEW(dev))
4858 vlv_disable_pll(dev_priv, pipe);
4859 else
4860 i9xx_disable_pll(dev_priv, pipe);
4861 }
0b8765c6 4862
4a3436e8
VS
4863 if (!IS_GEN2(dev))
4864 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4865
f7abfe8b 4866 intel_crtc->active = false;
46ba614c 4867 intel_update_watermarks(crtc);
f37fcc2a 4868
efa9624e 4869 mutex_lock(&dev->struct_mutex);
6b383a7f 4870 intel_update_fbc(dev);
efa9624e 4871 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4872}
4873
ee7b9f93
JB
4874static void i9xx_crtc_off(struct drm_crtc *crtc)
4875{
4876}
4877
976f8a20
DV
4878static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4879 bool enabled)
2c07245f
ZW
4880{
4881 struct drm_device *dev = crtc->dev;
4882 struct drm_i915_master_private *master_priv;
4883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884 int pipe = intel_crtc->pipe;
79e53945
JB
4885
4886 if (!dev->primary->master)
4887 return;
4888
4889 master_priv = dev->primary->master->driver_priv;
4890 if (!master_priv->sarea_priv)
4891 return;
4892
79e53945
JB
4893 switch (pipe) {
4894 case 0:
4895 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4896 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4897 break;
4898 case 1:
4899 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4900 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4901 break;
4902 default:
9db4a9c7 4903 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4904 break;
4905 }
79e53945
JB
4906}
4907
976f8a20
DV
4908/**
4909 * Sets the power management mode of the pipe and plane.
4910 */
4911void intel_crtc_update_dpms(struct drm_crtc *crtc)
4912{
4913 struct drm_device *dev = crtc->dev;
4914 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4916 struct intel_encoder *intel_encoder;
0e572fe7
DV
4917 enum intel_display_power_domain domain;
4918 unsigned long domains;
976f8a20
DV
4919 bool enable = false;
4920
4921 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4922 enable |= intel_encoder->connectors_active;
4923
0e572fe7
DV
4924 if (enable) {
4925 if (!intel_crtc->active) {
4926 /*
4927 * FIXME: DDI plls and relevant code isn't converted
4928 * yet, so do runtime PM for DPMS only for all other
4929 * platforms for now.
4930 */
4931 if (!HAS_DDI(dev)) {
4932 domains = get_crtc_power_domains(crtc);
4933 for_each_power_domain(domain, domains)
4934 intel_display_power_get(dev_priv, domain);
4935 intel_crtc->enabled_power_domains = domains;
4936 }
4937
4938 dev_priv->display.crtc_enable(crtc);
4939 }
4940 } else {
4941 if (intel_crtc->active) {
4942 dev_priv->display.crtc_disable(crtc);
4943
4944 if (!HAS_DDI(dev)) {
4945 domains = intel_crtc->enabled_power_domains;
4946 for_each_power_domain(domain, domains)
4947 intel_display_power_put(dev_priv, domain);
4948 intel_crtc->enabled_power_domains = 0;
4949 }
4950 }
4951 }
976f8a20
DV
4952
4953 intel_crtc_update_sarea(crtc, enable);
4954}
4955
cdd59983
CW
4956static void intel_crtc_disable(struct drm_crtc *crtc)
4957{
cdd59983 4958 struct drm_device *dev = crtc->dev;
976f8a20 4959 struct drm_connector *connector;
ee7b9f93 4960 struct drm_i915_private *dev_priv = dev->dev_private;
a071fa00
DV
4961 struct drm_i915_gem_object *old_obj;
4962 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4963
976f8a20
DV
4964 /* crtc should still be enabled when we disable it. */
4965 WARN_ON(!crtc->enabled);
4966
4967 dev_priv->display.crtc_disable(crtc);
4968 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4969 dev_priv->display.off(crtc);
4970
931872fc 4971 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4972 assert_cursor_disabled(dev_priv, pipe);
4973 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4974
f4510a27 4975 if (crtc->primary->fb) {
a071fa00 4976 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
cdd59983 4977 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4978 intel_unpin_fb_obj(old_obj);
4979 i915_gem_track_fb(old_obj, NULL,
4980 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4981 mutex_unlock(&dev->struct_mutex);
f4510a27 4982 crtc->primary->fb = NULL;
976f8a20
DV
4983 }
4984
4985 /* Update computed state. */
4986 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4987 if (!connector->encoder || !connector->encoder->crtc)
4988 continue;
4989
4990 if (connector->encoder->crtc != crtc)
4991 continue;
4992
4993 connector->dpms = DRM_MODE_DPMS_OFF;
4994 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4995 }
4996}
4997
ea5b213a 4998void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4999{
4ef69c7a 5000 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5001
ea5b213a
CW
5002 drm_encoder_cleanup(encoder);
5003 kfree(intel_encoder);
7e7d76c3
JB
5004}
5005
9237329d 5006/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5007 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5008 * state of the entire output pipe. */
9237329d 5009static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5010{
5ab432ef
DV
5011 if (mode == DRM_MODE_DPMS_ON) {
5012 encoder->connectors_active = true;
5013
b2cabb0e 5014 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5015 } else {
5016 encoder->connectors_active = false;
5017
b2cabb0e 5018 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5019 }
79e53945
JB
5020}
5021
0a91ca29
DV
5022/* Cross check the actual hw state with our own modeset state tracking (and it's
5023 * internal consistency). */
b980514c 5024static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5025{
0a91ca29
DV
5026 if (connector->get_hw_state(connector)) {
5027 struct intel_encoder *encoder = connector->encoder;
5028 struct drm_crtc *crtc;
5029 bool encoder_enabled;
5030 enum pipe pipe;
5031
5032 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5033 connector->base.base.id,
c23cc417 5034 connector->base.name);
0a91ca29
DV
5035
5036 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5037 "wrong connector dpms state\n");
5038 WARN(connector->base.encoder != &encoder->base,
5039 "active connector not linked to encoder\n");
5040 WARN(!encoder->connectors_active,
5041 "encoder->connectors_active not set\n");
5042
5043 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5044 WARN(!encoder_enabled, "encoder not enabled\n");
5045 if (WARN_ON(!encoder->base.crtc))
5046 return;
5047
5048 crtc = encoder->base.crtc;
5049
5050 WARN(!crtc->enabled, "crtc not enabled\n");
5051 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5052 WARN(pipe != to_intel_crtc(crtc)->pipe,
5053 "encoder active on the wrong pipe\n");
5054 }
79e53945
JB
5055}
5056
5ab432ef
DV
5057/* Even simpler default implementation, if there's really no special case to
5058 * consider. */
5059void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5060{
5ab432ef
DV
5061 /* All the simple cases only support two dpms states. */
5062 if (mode != DRM_MODE_DPMS_ON)
5063 mode = DRM_MODE_DPMS_OFF;
d4270e57 5064
5ab432ef
DV
5065 if (mode == connector->dpms)
5066 return;
5067
5068 connector->dpms = mode;
5069
5070 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5071 if (connector->encoder)
5072 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5073
b980514c 5074 intel_modeset_check_state(connector->dev);
79e53945
JB
5075}
5076
f0947c37
DV
5077/* Simple connector->get_hw_state implementation for encoders that support only
5078 * one connector and no cloning and hence the encoder state determines the state
5079 * of the connector. */
5080bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5081{
24929352 5082 enum pipe pipe = 0;
f0947c37 5083 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5084
f0947c37 5085 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5086}
5087
1857e1da
DV
5088static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5089 struct intel_crtc_config *pipe_config)
5090{
5091 struct drm_i915_private *dev_priv = dev->dev_private;
5092 struct intel_crtc *pipe_B_crtc =
5093 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5094
5095 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5096 pipe_name(pipe), pipe_config->fdi_lanes);
5097 if (pipe_config->fdi_lanes > 4) {
5098 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5099 pipe_name(pipe), pipe_config->fdi_lanes);
5100 return false;
5101 }
5102
bafb6553 5103 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5104 if (pipe_config->fdi_lanes > 2) {
5105 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5106 pipe_config->fdi_lanes);
5107 return false;
5108 } else {
5109 return true;
5110 }
5111 }
5112
5113 if (INTEL_INFO(dev)->num_pipes == 2)
5114 return true;
5115
5116 /* Ivybridge 3 pipe is really complicated */
5117 switch (pipe) {
5118 case PIPE_A:
5119 return true;
5120 case PIPE_B:
5121 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5122 pipe_config->fdi_lanes > 2) {
5123 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5124 pipe_name(pipe), pipe_config->fdi_lanes);
5125 return false;
5126 }
5127 return true;
5128 case PIPE_C:
1e833f40 5129 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5130 pipe_B_crtc->config.fdi_lanes <= 2) {
5131 if (pipe_config->fdi_lanes > 2) {
5132 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5133 pipe_name(pipe), pipe_config->fdi_lanes);
5134 return false;
5135 }
5136 } else {
5137 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5138 return false;
5139 }
5140 return true;
5141 default:
5142 BUG();
5143 }
5144}
5145
e29c22c0
DV
5146#define RETRY 1
5147static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5148 struct intel_crtc_config *pipe_config)
877d48d5 5149{
1857e1da 5150 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5151 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5152 int lane, link_bw, fdi_dotclock;
e29c22c0 5153 bool setup_ok, needs_recompute = false;
877d48d5 5154
e29c22c0 5155retry:
877d48d5
DV
5156 /* FDI is a binary signal running at ~2.7GHz, encoding
5157 * each output octet as 10 bits. The actual frequency
5158 * is stored as a divider into a 100MHz clock, and the
5159 * mode pixel clock is stored in units of 1KHz.
5160 * Hence the bw of each lane in terms of the mode signal
5161 * is:
5162 */
5163 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5164
241bfc38 5165 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5166
2bd89a07 5167 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5168 pipe_config->pipe_bpp);
5169
5170 pipe_config->fdi_lanes = lane;
5171
2bd89a07 5172 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5173 link_bw, &pipe_config->fdi_m_n);
1857e1da 5174
e29c22c0
DV
5175 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5176 intel_crtc->pipe, pipe_config);
5177 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5178 pipe_config->pipe_bpp -= 2*3;
5179 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5180 pipe_config->pipe_bpp);
5181 needs_recompute = true;
5182 pipe_config->bw_constrained = true;
5183
5184 goto retry;
5185 }
5186
5187 if (needs_recompute)
5188 return RETRY;
5189
5190 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5191}
5192
42db64ef
PZ
5193static void hsw_compute_ips_config(struct intel_crtc *crtc,
5194 struct intel_crtc_config *pipe_config)
5195{
d330a953 5196 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5197 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5198 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5199}
5200
a43f6e0f 5201static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5202 struct intel_crtc_config *pipe_config)
79e53945 5203{
a43f6e0f 5204 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5205 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5206
ad3a4479 5207 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5208 if (INTEL_INFO(dev)->gen < 4) {
5209 struct drm_i915_private *dev_priv = dev->dev_private;
5210 int clock_limit =
5211 dev_priv->display.get_display_clock_speed(dev);
5212
5213 /*
5214 * Enable pixel doubling when the dot clock
5215 * is > 90% of the (display) core speed.
5216 *
b397c96b
VS
5217 * GDG double wide on either pipe,
5218 * otherwise pipe A only.
cf532bb2 5219 */
b397c96b 5220 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5221 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5222 clock_limit *= 2;
cf532bb2 5223 pipe_config->double_wide = true;
ad3a4479
VS
5224 }
5225
241bfc38 5226 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5227 return -EINVAL;
2c07245f 5228 }
89749350 5229
1d1d0e27
VS
5230 /*
5231 * Pipe horizontal size must be even in:
5232 * - DVO ganged mode
5233 * - LVDS dual channel mode
5234 * - Double wide pipe
5235 */
5236 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5237 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5238 pipe_config->pipe_src_w &= ~1;
5239
8693a824
DL
5240 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5241 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5242 */
5243 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5244 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5245 return -EINVAL;
44f46b42 5246
bd080ee5 5247 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5248 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5249 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5250 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5251 * for lvds. */
5252 pipe_config->pipe_bpp = 8*3;
5253 }
5254
f5adf94e 5255 if (HAS_IPS(dev))
a43f6e0f
DV
5256 hsw_compute_ips_config(crtc, pipe_config);
5257
5258 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5259 * clock survives for now. */
5260 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5261 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5262
877d48d5 5263 if (pipe_config->has_pch_encoder)
a43f6e0f 5264 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5265
e29c22c0 5266 return 0;
79e53945
JB
5267}
5268
25eb05fc
JB
5269static int valleyview_get_display_clock_speed(struct drm_device *dev)
5270{
5271 return 400000; /* FIXME */
5272}
5273
e70236a8
JB
5274static int i945_get_display_clock_speed(struct drm_device *dev)
5275{
5276 return 400000;
5277}
79e53945 5278
e70236a8 5279static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5280{
e70236a8
JB
5281 return 333000;
5282}
79e53945 5283
e70236a8
JB
5284static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5285{
5286 return 200000;
5287}
79e53945 5288
257a7ffc
DV
5289static int pnv_get_display_clock_speed(struct drm_device *dev)
5290{
5291 u16 gcfgc = 0;
5292
5293 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5294
5295 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5296 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5297 return 267000;
5298 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5299 return 333000;
5300 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5301 return 444000;
5302 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5303 return 200000;
5304 default:
5305 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5306 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5307 return 133000;
5308 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5309 return 167000;
5310 }
5311}
5312
e70236a8
JB
5313static int i915gm_get_display_clock_speed(struct drm_device *dev)
5314{
5315 u16 gcfgc = 0;
79e53945 5316
e70236a8
JB
5317 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5318
5319 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5320 return 133000;
5321 else {
5322 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5323 case GC_DISPLAY_CLOCK_333_MHZ:
5324 return 333000;
5325 default:
5326 case GC_DISPLAY_CLOCK_190_200_MHZ:
5327 return 190000;
79e53945 5328 }
e70236a8
JB
5329 }
5330}
5331
5332static int i865_get_display_clock_speed(struct drm_device *dev)
5333{
5334 return 266000;
5335}
5336
5337static int i855_get_display_clock_speed(struct drm_device *dev)
5338{
5339 u16 hpllcc = 0;
5340 /* Assume that the hardware is in the high speed state. This
5341 * should be the default.
5342 */
5343 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5344 case GC_CLOCK_133_200:
5345 case GC_CLOCK_100_200:
5346 return 200000;
5347 case GC_CLOCK_166_250:
5348 return 250000;
5349 case GC_CLOCK_100_133:
79e53945 5350 return 133000;
e70236a8 5351 }
79e53945 5352
e70236a8
JB
5353 /* Shouldn't happen */
5354 return 0;
5355}
79e53945 5356
e70236a8
JB
5357static int i830_get_display_clock_speed(struct drm_device *dev)
5358{
5359 return 133000;
79e53945
JB
5360}
5361
2c07245f 5362static void
a65851af 5363intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5364{
a65851af
VS
5365 while (*num > DATA_LINK_M_N_MASK ||
5366 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5367 *num >>= 1;
5368 *den >>= 1;
5369 }
5370}
5371
a65851af
VS
5372static void compute_m_n(unsigned int m, unsigned int n,
5373 uint32_t *ret_m, uint32_t *ret_n)
5374{
5375 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5376 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5377 intel_reduce_m_n_ratio(ret_m, ret_n);
5378}
5379
e69d0bc1
DV
5380void
5381intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5382 int pixel_clock, int link_clock,
5383 struct intel_link_m_n *m_n)
2c07245f 5384{
e69d0bc1 5385 m_n->tu = 64;
a65851af
VS
5386
5387 compute_m_n(bits_per_pixel * pixel_clock,
5388 link_clock * nlanes * 8,
5389 &m_n->gmch_m, &m_n->gmch_n);
5390
5391 compute_m_n(pixel_clock, link_clock,
5392 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5393}
5394
a7615030
CW
5395static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5396{
d330a953
JN
5397 if (i915.panel_use_ssc >= 0)
5398 return i915.panel_use_ssc != 0;
41aa3448 5399 return dev_priv->vbt.lvds_use_ssc
435793df 5400 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5401}
5402
c65d77d8
JB
5403static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5404{
5405 struct drm_device *dev = crtc->dev;
5406 struct drm_i915_private *dev_priv = dev->dev_private;
5407 int refclk;
5408
a0c4da24 5409 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5410 refclk = 100000;
a0c4da24 5411 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5412 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5413 refclk = dev_priv->vbt.lvds_ssc_freq;
5414 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5415 } else if (!IS_GEN2(dev)) {
5416 refclk = 96000;
5417 } else {
5418 refclk = 48000;
5419 }
5420
5421 return refclk;
5422}
5423
7429e9d4 5424static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5425{
7df00d7a 5426 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5427}
f47709a9 5428
7429e9d4
DV
5429static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5430{
5431 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5432}
5433
f47709a9 5434static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5435 intel_clock_t *reduced_clock)
5436{
f47709a9 5437 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5438 u32 fp, fp2 = 0;
5439
5440 if (IS_PINEVIEW(dev)) {
7429e9d4 5441 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5442 if (reduced_clock)
7429e9d4 5443 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5444 } else {
7429e9d4 5445 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5446 if (reduced_clock)
7429e9d4 5447 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5448 }
5449
8bcc2795 5450 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5451
f47709a9
DV
5452 crtc->lowfreq_avail = false;
5453 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5454 reduced_clock && i915.powersave) {
8bcc2795 5455 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5456 crtc->lowfreq_avail = true;
a7516a05 5457 } else {
8bcc2795 5458 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5459 }
5460}
5461
5e69f97f
CML
5462static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5463 pipe)
89b667f8
JB
5464{
5465 u32 reg_val;
5466
5467 /*
5468 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5469 * and set it to a reasonable value instead.
5470 */
ab3c759a 5471 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5472 reg_val &= 0xffffff00;
5473 reg_val |= 0x00000030;
ab3c759a 5474 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5475
ab3c759a 5476 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5477 reg_val &= 0x8cffffff;
5478 reg_val = 0x8c000000;
ab3c759a 5479 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5480
ab3c759a 5481 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5482 reg_val &= 0xffffff00;
ab3c759a 5483 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5484
ab3c759a 5485 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5486 reg_val &= 0x00ffffff;
5487 reg_val |= 0xb0000000;
ab3c759a 5488 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5489}
5490
b551842d
DV
5491static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5492 struct intel_link_m_n *m_n)
5493{
5494 struct drm_device *dev = crtc->base.dev;
5495 struct drm_i915_private *dev_priv = dev->dev_private;
5496 int pipe = crtc->pipe;
5497
e3b95f1e
DV
5498 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5499 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5500 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5501 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5502}
5503
5504static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5505 struct intel_link_m_n *m_n)
5506{
5507 struct drm_device *dev = crtc->base.dev;
5508 struct drm_i915_private *dev_priv = dev->dev_private;
5509 int pipe = crtc->pipe;
5510 enum transcoder transcoder = crtc->config.cpu_transcoder;
5511
5512 if (INTEL_INFO(dev)->gen >= 5) {
5513 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5514 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5515 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5516 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5517 } else {
e3b95f1e
DV
5518 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5519 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5520 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5521 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5522 }
5523}
5524
03afc4a2
DV
5525static void intel_dp_set_m_n(struct intel_crtc *crtc)
5526{
5527 if (crtc->config.has_pch_encoder)
5528 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5529 else
5530 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5531}
5532
f47709a9 5533static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5534{
5535 u32 dpll, dpll_md;
5536
5537 /*
5538 * Enable DPIO clock input. We should never disable the reference
5539 * clock for pipe B, since VGA hotplug / manual detection depends
5540 * on it.
5541 */
5542 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5543 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5544 /* We should never disable this, set it here for state tracking */
5545 if (crtc->pipe == PIPE_B)
5546 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5547 dpll |= DPLL_VCO_ENABLE;
5548 crtc->config.dpll_hw_state.dpll = dpll;
5549
5550 dpll_md = (crtc->config.pixel_multiplier - 1)
5551 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5552 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5553}
5554
5555static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5556{
f47709a9 5557 struct drm_device *dev = crtc->base.dev;
a0c4da24 5558 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5559 int pipe = crtc->pipe;
bdd4b6a6 5560 u32 mdiv;
a0c4da24 5561 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5562 u32 coreclk, reg_val;
a0c4da24 5563
09153000
DV
5564 mutex_lock(&dev_priv->dpio_lock);
5565
f47709a9
DV
5566 bestn = crtc->config.dpll.n;
5567 bestm1 = crtc->config.dpll.m1;
5568 bestm2 = crtc->config.dpll.m2;
5569 bestp1 = crtc->config.dpll.p1;
5570 bestp2 = crtc->config.dpll.p2;
a0c4da24 5571
89b667f8
JB
5572 /* See eDP HDMI DPIO driver vbios notes doc */
5573
5574 /* PLL B needs special handling */
bdd4b6a6 5575 if (pipe == PIPE_B)
5e69f97f 5576 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5577
5578 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5579 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5580
5581 /* Disable target IRef on PLL */
ab3c759a 5582 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5583 reg_val &= 0x00ffffff;
ab3c759a 5584 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5585
5586 /* Disable fast lock */
ab3c759a 5587 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5588
5589 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5590 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5591 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5592 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5593 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5594
5595 /*
5596 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5597 * but we don't support that).
5598 * Note: don't use the DAC post divider as it seems unstable.
5599 */
5600 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5601 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5602
a0c4da24 5603 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5604 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5605
89b667f8 5606 /* Set HBR and RBR LPF coefficients */
ff9a6750 5607 if (crtc->config.port_clock == 162000 ||
99750bd4 5608 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5609 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5610 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5611 0x009f0003);
89b667f8 5612 else
ab3c759a 5613 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5614 0x00d0000f);
5615
5616 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5617 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5618 /* Use SSC source */
bdd4b6a6 5619 if (pipe == PIPE_A)
ab3c759a 5620 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5621 0x0df40000);
5622 else
ab3c759a 5623 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5624 0x0df70000);
5625 } else { /* HDMI or VGA */
5626 /* Use bend source */
bdd4b6a6 5627 if (pipe == PIPE_A)
ab3c759a 5628 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5629 0x0df70000);
5630 else
ab3c759a 5631 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5632 0x0df40000);
5633 }
a0c4da24 5634
ab3c759a 5635 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5636 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5637 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5638 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5639 coreclk |= 0x01000000;
ab3c759a 5640 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5641
ab3c759a 5642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5643 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5644}
5645
9d556c99
CML
5646static void chv_update_pll(struct intel_crtc *crtc)
5647{
5648 struct drm_device *dev = crtc->base.dev;
5649 struct drm_i915_private *dev_priv = dev->dev_private;
5650 int pipe = crtc->pipe;
5651 int dpll_reg = DPLL(crtc->pipe);
5652 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5653 u32 loopfilter, intcoeff;
9d556c99
CML
5654 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5655 int refclk;
5656
a11b0703
VS
5657 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5658 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5659 DPLL_VCO_ENABLE;
5660 if (pipe != PIPE_A)
5661 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5662
5663 crtc->config.dpll_hw_state.dpll_md =
5664 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5665
5666 bestn = crtc->config.dpll.n;
5667 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5668 bestm1 = crtc->config.dpll.m1;
5669 bestm2 = crtc->config.dpll.m2 >> 22;
5670 bestp1 = crtc->config.dpll.p1;
5671 bestp2 = crtc->config.dpll.p2;
5672
5673 /*
5674 * Enable Refclk and SSC
5675 */
a11b0703
VS
5676 I915_WRITE(dpll_reg,
5677 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5678
5679 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5680
9d556c99
CML
5681 /* p1 and p2 divider */
5682 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5683 5 << DPIO_CHV_S1_DIV_SHIFT |
5684 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5685 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5686 1 << DPIO_CHV_K_DIV_SHIFT);
5687
5688 /* Feedback post-divider - m2 */
5689 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5690
5691 /* Feedback refclk divider - n and m1 */
5692 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5693 DPIO_CHV_M1_DIV_BY_2 |
5694 1 << DPIO_CHV_N_DIV_SHIFT);
5695
5696 /* M2 fraction division */
5697 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5698
5699 /* M2 fraction division enable */
5700 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5701 DPIO_CHV_FRAC_DIV_EN |
5702 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5703
5704 /* Loop filter */
5705 refclk = i9xx_get_refclk(&crtc->base, 0);
5706 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5707 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5708 if (refclk == 100000)
5709 intcoeff = 11;
5710 else if (refclk == 38400)
5711 intcoeff = 10;
5712 else
5713 intcoeff = 9;
5714 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5715 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5716
5717 /* AFC Recal */
5718 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5719 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5720 DPIO_AFC_RECAL);
5721
5722 mutex_unlock(&dev_priv->dpio_lock);
5723}
5724
f47709a9
DV
5725static void i9xx_update_pll(struct intel_crtc *crtc,
5726 intel_clock_t *reduced_clock,
eb1cbe48
DV
5727 int num_connectors)
5728{
f47709a9 5729 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5730 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5731 u32 dpll;
5732 bool is_sdvo;
f47709a9 5733 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5734
f47709a9 5735 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5736
f47709a9
DV
5737 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5738 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5739
5740 dpll = DPLL_VGA_MODE_DIS;
5741
f47709a9 5742 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5743 dpll |= DPLLB_MODE_LVDS;
5744 else
5745 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5746
ef1b460d 5747 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5748 dpll |= (crtc->config.pixel_multiplier - 1)
5749 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5750 }
198a037f
DV
5751
5752 if (is_sdvo)
4a33e48d 5753 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5754
f47709a9 5755 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5756 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5757
5758 /* compute bitmask from p1 value */
5759 if (IS_PINEVIEW(dev))
5760 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5761 else {
5762 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5763 if (IS_G4X(dev) && reduced_clock)
5764 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5765 }
5766 switch (clock->p2) {
5767 case 5:
5768 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5769 break;
5770 case 7:
5771 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5772 break;
5773 case 10:
5774 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5775 break;
5776 case 14:
5777 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5778 break;
5779 }
5780 if (INTEL_INFO(dev)->gen >= 4)
5781 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5782
09ede541 5783 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5784 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5785 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5786 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5787 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5788 else
5789 dpll |= PLL_REF_INPUT_DREFCLK;
5790
5791 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5792 crtc->config.dpll_hw_state.dpll = dpll;
5793
eb1cbe48 5794 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5795 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5796 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5797 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5798 }
5799}
5800
f47709a9 5801static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5802 intel_clock_t *reduced_clock,
eb1cbe48
DV
5803 int num_connectors)
5804{
f47709a9 5805 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5806 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5807 u32 dpll;
f47709a9 5808 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5809
f47709a9 5810 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5811
eb1cbe48
DV
5812 dpll = DPLL_VGA_MODE_DIS;
5813
f47709a9 5814 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5815 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5816 } else {
5817 if (clock->p1 == 2)
5818 dpll |= PLL_P1_DIVIDE_BY_TWO;
5819 else
5820 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5821 if (clock->p2 == 4)
5822 dpll |= PLL_P2_DIVIDE_BY_4;
5823 }
5824
4a33e48d
DV
5825 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5826 dpll |= DPLL_DVO_2X_MODE;
5827
f47709a9 5828 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5829 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5830 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5831 else
5832 dpll |= PLL_REF_INPUT_DREFCLK;
5833
5834 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5835 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5836}
5837
8a654f3b 5838static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5839{
5840 struct drm_device *dev = intel_crtc->base.dev;
5841 struct drm_i915_private *dev_priv = dev->dev_private;
5842 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5843 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5844 struct drm_display_mode *adjusted_mode =
5845 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5846 uint32_t crtc_vtotal, crtc_vblank_end;
5847 int vsyncshift = 0;
4d8a62ea
DV
5848
5849 /* We need to be careful not to changed the adjusted mode, for otherwise
5850 * the hw state checker will get angry at the mismatch. */
5851 crtc_vtotal = adjusted_mode->crtc_vtotal;
5852 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5853
609aeaca 5854 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5855 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5856 crtc_vtotal -= 1;
5857 crtc_vblank_end -= 1;
609aeaca
VS
5858
5859 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5860 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5861 else
5862 vsyncshift = adjusted_mode->crtc_hsync_start -
5863 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5864 if (vsyncshift < 0)
5865 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5866 }
5867
5868 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5869 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5870
fe2b8f9d 5871 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5872 (adjusted_mode->crtc_hdisplay - 1) |
5873 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5874 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5875 (adjusted_mode->crtc_hblank_start - 1) |
5876 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5877 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5878 (adjusted_mode->crtc_hsync_start - 1) |
5879 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5880
fe2b8f9d 5881 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5882 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5883 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5884 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5885 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5886 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5887 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5888 (adjusted_mode->crtc_vsync_start - 1) |
5889 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5890
b5e508d4
PZ
5891 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5892 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5893 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5894 * bits. */
5895 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5896 (pipe == PIPE_B || pipe == PIPE_C))
5897 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5898
b0e77b9c
PZ
5899 /* pipesrc controls the size that is scaled from, which should
5900 * always be the user's requested size.
5901 */
5902 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5903 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5904 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5905}
5906
1bd1bd80
DV
5907static void intel_get_pipe_timings(struct intel_crtc *crtc,
5908 struct intel_crtc_config *pipe_config)
5909{
5910 struct drm_device *dev = crtc->base.dev;
5911 struct drm_i915_private *dev_priv = dev->dev_private;
5912 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5913 uint32_t tmp;
5914
5915 tmp = I915_READ(HTOTAL(cpu_transcoder));
5916 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5917 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5918 tmp = I915_READ(HBLANK(cpu_transcoder));
5919 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5920 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5921 tmp = I915_READ(HSYNC(cpu_transcoder));
5922 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5923 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5924
5925 tmp = I915_READ(VTOTAL(cpu_transcoder));
5926 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5927 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5928 tmp = I915_READ(VBLANK(cpu_transcoder));
5929 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5930 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5931 tmp = I915_READ(VSYNC(cpu_transcoder));
5932 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5933 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5934
5935 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5936 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5937 pipe_config->adjusted_mode.crtc_vtotal += 1;
5938 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5939 }
5940
5941 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5942 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5943 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5944
5945 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5946 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5947}
5948
f6a83288
DV
5949void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5950 struct intel_crtc_config *pipe_config)
babea61d 5951{
f6a83288
DV
5952 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5953 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5954 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5955 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5956
f6a83288
DV
5957 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5958 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5959 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5960 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5961
f6a83288 5962 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5963
f6a83288
DV
5964 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5965 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5966}
5967
84b046f3
DV
5968static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5969{
5970 struct drm_device *dev = intel_crtc->base.dev;
5971 struct drm_i915_private *dev_priv = dev->dev_private;
5972 uint32_t pipeconf;
5973
9f11a9e4 5974 pipeconf = 0;
84b046f3 5975
67c72a12
DV
5976 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5977 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5978 pipeconf |= PIPECONF_ENABLE;
5979
cf532bb2
VS
5980 if (intel_crtc->config.double_wide)
5981 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5982
ff9ce46e
DV
5983 /* only g4x and later have fancy bpc/dither controls */
5984 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5985 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5986 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5987 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5988 PIPECONF_DITHER_TYPE_SP;
84b046f3 5989
ff9ce46e
DV
5990 switch (intel_crtc->config.pipe_bpp) {
5991 case 18:
5992 pipeconf |= PIPECONF_6BPC;
5993 break;
5994 case 24:
5995 pipeconf |= PIPECONF_8BPC;
5996 break;
5997 case 30:
5998 pipeconf |= PIPECONF_10BPC;
5999 break;
6000 default:
6001 /* Case prevented by intel_choose_pipe_bpp_dither. */
6002 BUG();
84b046f3
DV
6003 }
6004 }
6005
6006 if (HAS_PIPE_CXSR(dev)) {
6007 if (intel_crtc->lowfreq_avail) {
6008 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6009 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6010 } else {
6011 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6012 }
6013 }
6014
efc2cfff
VS
6015 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6016 if (INTEL_INFO(dev)->gen < 4 ||
6017 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6018 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6019 else
6020 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6021 } else
84b046f3
DV
6022 pipeconf |= PIPECONF_PROGRESSIVE;
6023
9f11a9e4
DV
6024 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6025 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6026
84b046f3
DV
6027 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6028 POSTING_READ(PIPECONF(intel_crtc->pipe));
6029}
6030
f564048e 6031static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6032 int x, int y,
94352cf9 6033 struct drm_framebuffer *fb)
79e53945
JB
6034{
6035 struct drm_device *dev = crtc->dev;
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6038 int refclk, num_connectors = 0;
652c393a 6039 intel_clock_t clock, reduced_clock;
a16af721 6040 bool ok, has_reduced_clock = false;
e9fd1c02 6041 bool is_lvds = false, is_dsi = false;
5eddb70b 6042 struct intel_encoder *encoder;
d4906093 6043 const intel_limit_t *limit;
79e53945 6044
6c2b7c12 6045 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6046 switch (encoder->type) {
79e53945
JB
6047 case INTEL_OUTPUT_LVDS:
6048 is_lvds = true;
6049 break;
e9fd1c02
JN
6050 case INTEL_OUTPUT_DSI:
6051 is_dsi = true;
6052 break;
79e53945 6053 }
43565a06 6054
c751ce4f 6055 num_connectors++;
79e53945
JB
6056 }
6057
f2335330 6058 if (is_dsi)
5b18e57c 6059 return 0;
f2335330
JN
6060
6061 if (!intel_crtc->config.clock_set) {
6062 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6063
e9fd1c02
JN
6064 /*
6065 * Returns a set of divisors for the desired target clock with
6066 * the given refclk, or FALSE. The returned values represent
6067 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6068 * 2) / p1 / p2.
6069 */
6070 limit = intel_limit(crtc, refclk);
6071 ok = dev_priv->display.find_dpll(limit, crtc,
6072 intel_crtc->config.port_clock,
6073 refclk, NULL, &clock);
f2335330 6074 if (!ok) {
e9fd1c02
JN
6075 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6076 return -EINVAL;
6077 }
79e53945 6078
f2335330
JN
6079 if (is_lvds && dev_priv->lvds_downclock_avail) {
6080 /*
6081 * Ensure we match the reduced clock's P to the target
6082 * clock. If the clocks don't match, we can't switch
6083 * the display clock by using the FP0/FP1. In such case
6084 * we will disable the LVDS downclock feature.
6085 */
6086 has_reduced_clock =
6087 dev_priv->display.find_dpll(limit, crtc,
6088 dev_priv->lvds_downclock,
6089 refclk, &clock,
6090 &reduced_clock);
6091 }
6092 /* Compat-code for transition, will disappear. */
f47709a9
DV
6093 intel_crtc->config.dpll.n = clock.n;
6094 intel_crtc->config.dpll.m1 = clock.m1;
6095 intel_crtc->config.dpll.m2 = clock.m2;
6096 intel_crtc->config.dpll.p1 = clock.p1;
6097 intel_crtc->config.dpll.p2 = clock.p2;
6098 }
7026d4ac 6099
e9fd1c02 6100 if (IS_GEN2(dev)) {
8a654f3b 6101 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6102 has_reduced_clock ? &reduced_clock : NULL,
6103 num_connectors);
9d556c99
CML
6104 } else if (IS_CHERRYVIEW(dev)) {
6105 chv_update_pll(intel_crtc);
e9fd1c02 6106 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6107 vlv_update_pll(intel_crtc);
e9fd1c02 6108 } else {
f47709a9 6109 i9xx_update_pll(intel_crtc,
eb1cbe48 6110 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6111 num_connectors);
e9fd1c02 6112 }
79e53945 6113
c8f7a0db 6114 return 0;
f564048e
EA
6115}
6116
2fa2fe9a
DV
6117static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6118 struct intel_crtc_config *pipe_config)
6119{
6120 struct drm_device *dev = crtc->base.dev;
6121 struct drm_i915_private *dev_priv = dev->dev_private;
6122 uint32_t tmp;
6123
dc9e7dec
VS
6124 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6125 return;
6126
2fa2fe9a 6127 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6128 if (!(tmp & PFIT_ENABLE))
6129 return;
2fa2fe9a 6130
06922821 6131 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6132 if (INTEL_INFO(dev)->gen < 4) {
6133 if (crtc->pipe != PIPE_B)
6134 return;
2fa2fe9a
DV
6135 } else {
6136 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6137 return;
6138 }
6139
06922821 6140 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6141 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6142 if (INTEL_INFO(dev)->gen < 5)
6143 pipe_config->gmch_pfit.lvds_border_bits =
6144 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6145}
6146
acbec814
JB
6147static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6148 struct intel_crtc_config *pipe_config)
6149{
6150 struct drm_device *dev = crtc->base.dev;
6151 struct drm_i915_private *dev_priv = dev->dev_private;
6152 int pipe = pipe_config->cpu_transcoder;
6153 intel_clock_t clock;
6154 u32 mdiv;
662c6ecb 6155 int refclk = 100000;
acbec814
JB
6156
6157 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6158 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6159 mutex_unlock(&dev_priv->dpio_lock);
6160
6161 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6162 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6163 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6164 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6165 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6166
f646628b 6167 vlv_clock(refclk, &clock);
acbec814 6168
f646628b
VS
6169 /* clock.dot is the fast clock */
6170 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6171}
6172
1ad292b5
JB
6173static void i9xx_get_plane_config(struct intel_crtc *crtc,
6174 struct intel_plane_config *plane_config)
6175{
6176 struct drm_device *dev = crtc->base.dev;
6177 struct drm_i915_private *dev_priv = dev->dev_private;
6178 u32 val, base, offset;
6179 int pipe = crtc->pipe, plane = crtc->plane;
6180 int fourcc, pixel_format;
6181 int aligned_height;
6182
66e514c1
DA
6183 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6184 if (!crtc->base.primary->fb) {
1ad292b5
JB
6185 DRM_DEBUG_KMS("failed to alloc fb\n");
6186 return;
6187 }
6188
6189 val = I915_READ(DSPCNTR(plane));
6190
6191 if (INTEL_INFO(dev)->gen >= 4)
6192 if (val & DISPPLANE_TILED)
6193 plane_config->tiled = true;
6194
6195 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6196 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6197 crtc->base.primary->fb->pixel_format = fourcc;
6198 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6199 drm_format_plane_cpp(fourcc, 0) * 8;
6200
6201 if (INTEL_INFO(dev)->gen >= 4) {
6202 if (plane_config->tiled)
6203 offset = I915_READ(DSPTILEOFF(plane));
6204 else
6205 offset = I915_READ(DSPLINOFF(plane));
6206 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6207 } else {
6208 base = I915_READ(DSPADDR(plane));
6209 }
6210 plane_config->base = base;
6211
6212 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6213 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6214 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6215
6216 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6217 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6218
66e514c1 6219 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6220 plane_config->tiled);
6221
1267a26b
FF
6222 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6223 aligned_height);
1ad292b5
JB
6224
6225 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6226 pipe, plane, crtc->base.primary->fb->width,
6227 crtc->base.primary->fb->height,
6228 crtc->base.primary->fb->bits_per_pixel, base,
6229 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6230 plane_config->size);
6231
6232}
6233
70b23a98
VS
6234static void chv_crtc_clock_get(struct intel_crtc *crtc,
6235 struct intel_crtc_config *pipe_config)
6236{
6237 struct drm_device *dev = crtc->base.dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239 int pipe = pipe_config->cpu_transcoder;
6240 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6241 intel_clock_t clock;
6242 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6243 int refclk = 100000;
6244
6245 mutex_lock(&dev_priv->dpio_lock);
6246 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6247 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6248 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6249 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6250 mutex_unlock(&dev_priv->dpio_lock);
6251
6252 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6253 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6254 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6255 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6256 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6257
6258 chv_clock(refclk, &clock);
6259
6260 /* clock.dot is the fast clock */
6261 pipe_config->port_clock = clock.dot / 5;
6262}
6263
0e8ffe1b
DV
6264static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6265 struct intel_crtc_config *pipe_config)
6266{
6267 struct drm_device *dev = crtc->base.dev;
6268 struct drm_i915_private *dev_priv = dev->dev_private;
6269 uint32_t tmp;
6270
b5482bd0
ID
6271 if (!intel_display_power_enabled(dev_priv,
6272 POWER_DOMAIN_PIPE(crtc->pipe)))
6273 return false;
6274
e143a21c 6275 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6276 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6277
0e8ffe1b
DV
6278 tmp = I915_READ(PIPECONF(crtc->pipe));
6279 if (!(tmp & PIPECONF_ENABLE))
6280 return false;
6281
42571aef
VS
6282 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6283 switch (tmp & PIPECONF_BPC_MASK) {
6284 case PIPECONF_6BPC:
6285 pipe_config->pipe_bpp = 18;
6286 break;
6287 case PIPECONF_8BPC:
6288 pipe_config->pipe_bpp = 24;
6289 break;
6290 case PIPECONF_10BPC:
6291 pipe_config->pipe_bpp = 30;
6292 break;
6293 default:
6294 break;
6295 }
6296 }
6297
b5a9fa09
DV
6298 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6299 pipe_config->limited_color_range = true;
6300
282740f7
VS
6301 if (INTEL_INFO(dev)->gen < 4)
6302 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6303
1bd1bd80
DV
6304 intel_get_pipe_timings(crtc, pipe_config);
6305
2fa2fe9a
DV
6306 i9xx_get_pfit_config(crtc, pipe_config);
6307
6c49f241
DV
6308 if (INTEL_INFO(dev)->gen >= 4) {
6309 tmp = I915_READ(DPLL_MD(crtc->pipe));
6310 pipe_config->pixel_multiplier =
6311 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6312 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6313 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6314 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6315 tmp = I915_READ(DPLL(crtc->pipe));
6316 pipe_config->pixel_multiplier =
6317 ((tmp & SDVO_MULTIPLIER_MASK)
6318 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6319 } else {
6320 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6321 * port and will be fixed up in the encoder->get_config
6322 * function. */
6323 pipe_config->pixel_multiplier = 1;
6324 }
8bcc2795
DV
6325 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6326 if (!IS_VALLEYVIEW(dev)) {
6327 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6328 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6329 } else {
6330 /* Mask out read-only status bits. */
6331 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6332 DPLL_PORTC_READY_MASK |
6333 DPLL_PORTB_READY_MASK);
8bcc2795 6334 }
6c49f241 6335
70b23a98
VS
6336 if (IS_CHERRYVIEW(dev))
6337 chv_crtc_clock_get(crtc, pipe_config);
6338 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6339 vlv_crtc_clock_get(crtc, pipe_config);
6340 else
6341 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6342
0e8ffe1b
DV
6343 return true;
6344}
6345
dde86e2d 6346static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6347{
6348 struct drm_i915_private *dev_priv = dev->dev_private;
6349 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6350 struct intel_encoder *encoder;
74cfd7ac 6351 u32 val, final;
13d83a67 6352 bool has_lvds = false;
199e5d79 6353 bool has_cpu_edp = false;
199e5d79 6354 bool has_panel = false;
99eb6a01
KP
6355 bool has_ck505 = false;
6356 bool can_ssc = false;
13d83a67
JB
6357
6358 /* We need to take the global config into account */
199e5d79
KP
6359 list_for_each_entry(encoder, &mode_config->encoder_list,
6360 base.head) {
6361 switch (encoder->type) {
6362 case INTEL_OUTPUT_LVDS:
6363 has_panel = true;
6364 has_lvds = true;
6365 break;
6366 case INTEL_OUTPUT_EDP:
6367 has_panel = true;
2de6905f 6368 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6369 has_cpu_edp = true;
6370 break;
13d83a67
JB
6371 }
6372 }
6373
99eb6a01 6374 if (HAS_PCH_IBX(dev)) {
41aa3448 6375 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6376 can_ssc = has_ck505;
6377 } else {
6378 has_ck505 = false;
6379 can_ssc = true;
6380 }
6381
2de6905f
ID
6382 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6383 has_panel, has_lvds, has_ck505);
13d83a67
JB
6384
6385 /* Ironlake: try to setup display ref clock before DPLL
6386 * enabling. This is only under driver's control after
6387 * PCH B stepping, previous chipset stepping should be
6388 * ignoring this setting.
6389 */
74cfd7ac
CW
6390 val = I915_READ(PCH_DREF_CONTROL);
6391
6392 /* As we must carefully and slowly disable/enable each source in turn,
6393 * compute the final state we want first and check if we need to
6394 * make any changes at all.
6395 */
6396 final = val;
6397 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6398 if (has_ck505)
6399 final |= DREF_NONSPREAD_CK505_ENABLE;
6400 else
6401 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6402
6403 final &= ~DREF_SSC_SOURCE_MASK;
6404 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6405 final &= ~DREF_SSC1_ENABLE;
6406
6407 if (has_panel) {
6408 final |= DREF_SSC_SOURCE_ENABLE;
6409
6410 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6411 final |= DREF_SSC1_ENABLE;
6412
6413 if (has_cpu_edp) {
6414 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6415 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6416 else
6417 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6418 } else
6419 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6420 } else {
6421 final |= DREF_SSC_SOURCE_DISABLE;
6422 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6423 }
6424
6425 if (final == val)
6426 return;
6427
13d83a67 6428 /* Always enable nonspread source */
74cfd7ac 6429 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6430
99eb6a01 6431 if (has_ck505)
74cfd7ac 6432 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6433 else
74cfd7ac 6434 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6435
199e5d79 6436 if (has_panel) {
74cfd7ac
CW
6437 val &= ~DREF_SSC_SOURCE_MASK;
6438 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6439
199e5d79 6440 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6441 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6442 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6443 val |= DREF_SSC1_ENABLE;
e77166b5 6444 } else
74cfd7ac 6445 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6446
6447 /* Get SSC going before enabling the outputs */
74cfd7ac 6448 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6449 POSTING_READ(PCH_DREF_CONTROL);
6450 udelay(200);
6451
74cfd7ac 6452 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6453
6454 /* Enable CPU source on CPU attached eDP */
199e5d79 6455 if (has_cpu_edp) {
99eb6a01 6456 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6457 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6458 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6459 } else
74cfd7ac 6460 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6461 } else
74cfd7ac 6462 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6463
74cfd7ac 6464 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6465 POSTING_READ(PCH_DREF_CONTROL);
6466 udelay(200);
6467 } else {
6468 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6469
74cfd7ac 6470 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6471
6472 /* Turn off CPU output */
74cfd7ac 6473 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6474
74cfd7ac 6475 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6476 POSTING_READ(PCH_DREF_CONTROL);
6477 udelay(200);
6478
6479 /* Turn off the SSC source */
74cfd7ac
CW
6480 val &= ~DREF_SSC_SOURCE_MASK;
6481 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6482
6483 /* Turn off SSC1 */
74cfd7ac 6484 val &= ~DREF_SSC1_ENABLE;
199e5d79 6485
74cfd7ac 6486 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6487 POSTING_READ(PCH_DREF_CONTROL);
6488 udelay(200);
6489 }
74cfd7ac
CW
6490
6491 BUG_ON(val != final);
13d83a67
JB
6492}
6493
f31f2d55 6494static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6495{
f31f2d55 6496 uint32_t tmp;
dde86e2d 6497
0ff066a9
PZ
6498 tmp = I915_READ(SOUTH_CHICKEN2);
6499 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6500 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6501
0ff066a9
PZ
6502 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6503 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6504 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6505
0ff066a9
PZ
6506 tmp = I915_READ(SOUTH_CHICKEN2);
6507 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6508 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6509
0ff066a9
PZ
6510 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6511 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6512 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6513}
6514
6515/* WaMPhyProgramming:hsw */
6516static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6517{
6518 uint32_t tmp;
dde86e2d
PZ
6519
6520 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6521 tmp &= ~(0xFF << 24);
6522 tmp |= (0x12 << 24);
6523 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6524
dde86e2d
PZ
6525 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6526 tmp |= (1 << 11);
6527 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6528
6529 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6530 tmp |= (1 << 11);
6531 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6532
dde86e2d
PZ
6533 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6534 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6535 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6536
6537 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6538 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6539 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6540
0ff066a9
PZ
6541 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6542 tmp &= ~(7 << 13);
6543 tmp |= (5 << 13);
6544 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6545
0ff066a9
PZ
6546 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6547 tmp &= ~(7 << 13);
6548 tmp |= (5 << 13);
6549 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6550
6551 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6552 tmp &= ~0xFF;
6553 tmp |= 0x1C;
6554 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6555
6556 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6557 tmp &= ~0xFF;
6558 tmp |= 0x1C;
6559 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6560
6561 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6562 tmp &= ~(0xFF << 16);
6563 tmp |= (0x1C << 16);
6564 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6565
6566 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6567 tmp &= ~(0xFF << 16);
6568 tmp |= (0x1C << 16);
6569 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6570
0ff066a9
PZ
6571 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6572 tmp |= (1 << 27);
6573 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6574
0ff066a9
PZ
6575 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6576 tmp |= (1 << 27);
6577 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6578
0ff066a9
PZ
6579 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6580 tmp &= ~(0xF << 28);
6581 tmp |= (4 << 28);
6582 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6583
0ff066a9
PZ
6584 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6585 tmp &= ~(0xF << 28);
6586 tmp |= (4 << 28);
6587 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6588}
6589
2fa86a1f
PZ
6590/* Implements 3 different sequences from BSpec chapter "Display iCLK
6591 * Programming" based on the parameters passed:
6592 * - Sequence to enable CLKOUT_DP
6593 * - Sequence to enable CLKOUT_DP without spread
6594 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6595 */
6596static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6597 bool with_fdi)
f31f2d55
PZ
6598{
6599 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6600 uint32_t reg, tmp;
6601
6602 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6603 with_spread = true;
6604 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6605 with_fdi, "LP PCH doesn't have FDI\n"))
6606 with_fdi = false;
f31f2d55
PZ
6607
6608 mutex_lock(&dev_priv->dpio_lock);
6609
6610 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6611 tmp &= ~SBI_SSCCTL_DISABLE;
6612 tmp |= SBI_SSCCTL_PATHALT;
6613 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6614
6615 udelay(24);
6616
2fa86a1f
PZ
6617 if (with_spread) {
6618 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6619 tmp &= ~SBI_SSCCTL_PATHALT;
6620 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6621
2fa86a1f
PZ
6622 if (with_fdi) {
6623 lpt_reset_fdi_mphy(dev_priv);
6624 lpt_program_fdi_mphy(dev_priv);
6625 }
6626 }
dde86e2d 6627
2fa86a1f
PZ
6628 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6629 SBI_GEN0 : SBI_DBUFF0;
6630 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6631 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6632 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6633
6634 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6635}
6636
47701c3b
PZ
6637/* Sequence to disable CLKOUT_DP */
6638static void lpt_disable_clkout_dp(struct drm_device *dev)
6639{
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641 uint32_t reg, tmp;
6642
6643 mutex_lock(&dev_priv->dpio_lock);
6644
6645 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6646 SBI_GEN0 : SBI_DBUFF0;
6647 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6648 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6649 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6650
6651 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6652 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6653 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6654 tmp |= SBI_SSCCTL_PATHALT;
6655 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6656 udelay(32);
6657 }
6658 tmp |= SBI_SSCCTL_DISABLE;
6659 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6660 }
6661
6662 mutex_unlock(&dev_priv->dpio_lock);
6663}
6664
bf8fa3d3
PZ
6665static void lpt_init_pch_refclk(struct drm_device *dev)
6666{
6667 struct drm_mode_config *mode_config = &dev->mode_config;
6668 struct intel_encoder *encoder;
6669 bool has_vga = false;
6670
6671 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6672 switch (encoder->type) {
6673 case INTEL_OUTPUT_ANALOG:
6674 has_vga = true;
6675 break;
6676 }
6677 }
6678
47701c3b
PZ
6679 if (has_vga)
6680 lpt_enable_clkout_dp(dev, true, true);
6681 else
6682 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6683}
6684
dde86e2d
PZ
6685/*
6686 * Initialize reference clocks when the driver loads
6687 */
6688void intel_init_pch_refclk(struct drm_device *dev)
6689{
6690 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6691 ironlake_init_pch_refclk(dev);
6692 else if (HAS_PCH_LPT(dev))
6693 lpt_init_pch_refclk(dev);
6694}
6695
d9d444cb
JB
6696static int ironlake_get_refclk(struct drm_crtc *crtc)
6697{
6698 struct drm_device *dev = crtc->dev;
6699 struct drm_i915_private *dev_priv = dev->dev_private;
6700 struct intel_encoder *encoder;
d9d444cb
JB
6701 int num_connectors = 0;
6702 bool is_lvds = false;
6703
6c2b7c12 6704 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6705 switch (encoder->type) {
6706 case INTEL_OUTPUT_LVDS:
6707 is_lvds = true;
6708 break;
d9d444cb
JB
6709 }
6710 num_connectors++;
6711 }
6712
6713 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6714 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6715 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6716 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6717 }
6718
6719 return 120000;
6720}
6721
6ff93609 6722static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6723{
c8203565 6724 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6726 int pipe = intel_crtc->pipe;
c8203565
PZ
6727 uint32_t val;
6728
78114071 6729 val = 0;
c8203565 6730
965e0c48 6731 switch (intel_crtc->config.pipe_bpp) {
c8203565 6732 case 18:
dfd07d72 6733 val |= PIPECONF_6BPC;
c8203565
PZ
6734 break;
6735 case 24:
dfd07d72 6736 val |= PIPECONF_8BPC;
c8203565
PZ
6737 break;
6738 case 30:
dfd07d72 6739 val |= PIPECONF_10BPC;
c8203565
PZ
6740 break;
6741 case 36:
dfd07d72 6742 val |= PIPECONF_12BPC;
c8203565
PZ
6743 break;
6744 default:
cc769b62
PZ
6745 /* Case prevented by intel_choose_pipe_bpp_dither. */
6746 BUG();
c8203565
PZ
6747 }
6748
d8b32247 6749 if (intel_crtc->config.dither)
c8203565
PZ
6750 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6751
6ff93609 6752 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6753 val |= PIPECONF_INTERLACED_ILK;
6754 else
6755 val |= PIPECONF_PROGRESSIVE;
6756
50f3b016 6757 if (intel_crtc->config.limited_color_range)
3685a8f3 6758 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6759
c8203565
PZ
6760 I915_WRITE(PIPECONF(pipe), val);
6761 POSTING_READ(PIPECONF(pipe));
6762}
6763
86d3efce
VS
6764/*
6765 * Set up the pipe CSC unit.
6766 *
6767 * Currently only full range RGB to limited range RGB conversion
6768 * is supported, but eventually this should handle various
6769 * RGB<->YCbCr scenarios as well.
6770 */
50f3b016 6771static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6772{
6773 struct drm_device *dev = crtc->dev;
6774 struct drm_i915_private *dev_priv = dev->dev_private;
6775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6776 int pipe = intel_crtc->pipe;
6777 uint16_t coeff = 0x7800; /* 1.0 */
6778
6779 /*
6780 * TODO: Check what kind of values actually come out of the pipe
6781 * with these coeff/postoff values and adjust to get the best
6782 * accuracy. Perhaps we even need to take the bpc value into
6783 * consideration.
6784 */
6785
50f3b016 6786 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6787 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6788
6789 /*
6790 * GY/GU and RY/RU should be the other way around according
6791 * to BSpec, but reality doesn't agree. Just set them up in
6792 * a way that results in the correct picture.
6793 */
6794 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6795 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6796
6797 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6798 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6799
6800 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6801 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6802
6803 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6804 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6805 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6806
6807 if (INTEL_INFO(dev)->gen > 6) {
6808 uint16_t postoff = 0;
6809
50f3b016 6810 if (intel_crtc->config.limited_color_range)
32cf0cb0 6811 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6812
6813 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6814 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6815 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6816
6817 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6818 } else {
6819 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6820
50f3b016 6821 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6822 mode |= CSC_BLACK_SCREEN_OFFSET;
6823
6824 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6825 }
6826}
6827
6ff93609 6828static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6829{
756f85cf
PZ
6830 struct drm_device *dev = crtc->dev;
6831 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6833 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6834 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6835 uint32_t val;
6836
3eff4faa 6837 val = 0;
ee2b0b38 6838
756f85cf 6839 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6840 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6841
6ff93609 6842 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6843 val |= PIPECONF_INTERLACED_ILK;
6844 else
6845 val |= PIPECONF_PROGRESSIVE;
6846
702e7a56
PZ
6847 I915_WRITE(PIPECONF(cpu_transcoder), val);
6848 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6849
6850 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6851 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6852
6853 if (IS_BROADWELL(dev)) {
6854 val = 0;
6855
6856 switch (intel_crtc->config.pipe_bpp) {
6857 case 18:
6858 val |= PIPEMISC_DITHER_6_BPC;
6859 break;
6860 case 24:
6861 val |= PIPEMISC_DITHER_8_BPC;
6862 break;
6863 case 30:
6864 val |= PIPEMISC_DITHER_10_BPC;
6865 break;
6866 case 36:
6867 val |= PIPEMISC_DITHER_12_BPC;
6868 break;
6869 default:
6870 /* Case prevented by pipe_config_set_bpp. */
6871 BUG();
6872 }
6873
6874 if (intel_crtc->config.dither)
6875 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6876
6877 I915_WRITE(PIPEMISC(pipe), val);
6878 }
ee2b0b38
PZ
6879}
6880
6591c6e4 6881static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6882 intel_clock_t *clock,
6883 bool *has_reduced_clock,
6884 intel_clock_t *reduced_clock)
6885{
6886 struct drm_device *dev = crtc->dev;
6887 struct drm_i915_private *dev_priv = dev->dev_private;
6888 struct intel_encoder *intel_encoder;
6889 int refclk;
d4906093 6890 const intel_limit_t *limit;
a16af721 6891 bool ret, is_lvds = false;
79e53945 6892
6591c6e4
PZ
6893 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6894 switch (intel_encoder->type) {
79e53945
JB
6895 case INTEL_OUTPUT_LVDS:
6896 is_lvds = true;
6897 break;
79e53945
JB
6898 }
6899 }
6900
d9d444cb 6901 refclk = ironlake_get_refclk(crtc);
79e53945 6902
d4906093
ML
6903 /*
6904 * Returns a set of divisors for the desired target clock with the given
6905 * refclk, or FALSE. The returned values represent the clock equation:
6906 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6907 */
1b894b59 6908 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6909 ret = dev_priv->display.find_dpll(limit, crtc,
6910 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6911 refclk, NULL, clock);
6591c6e4
PZ
6912 if (!ret)
6913 return false;
cda4b7d3 6914
ddc9003c 6915 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6916 /*
6917 * Ensure we match the reduced clock's P to the target clock.
6918 * If the clocks don't match, we can't switch the display clock
6919 * by using the FP0/FP1. In such case we will disable the LVDS
6920 * downclock feature.
6921 */
ee9300bb
DV
6922 *has_reduced_clock =
6923 dev_priv->display.find_dpll(limit, crtc,
6924 dev_priv->lvds_downclock,
6925 refclk, clock,
6926 reduced_clock);
652c393a 6927 }
61e9653f 6928
6591c6e4
PZ
6929 return true;
6930}
6931
d4b1931c
PZ
6932int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6933{
6934 /*
6935 * Account for spread spectrum to avoid
6936 * oversubscribing the link. Max center spread
6937 * is 2.5%; use 5% for safety's sake.
6938 */
6939 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6940 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6941}
6942
7429e9d4 6943static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6944{
7429e9d4 6945 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6946}
6947
de13a2e3 6948static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6949 u32 *fp,
9a7c7890 6950 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6951{
de13a2e3 6952 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6953 struct drm_device *dev = crtc->dev;
6954 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6955 struct intel_encoder *intel_encoder;
6956 uint32_t dpll;
6cc5f341 6957 int factor, num_connectors = 0;
09ede541 6958 bool is_lvds = false, is_sdvo = false;
79e53945 6959
de13a2e3
PZ
6960 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6961 switch (intel_encoder->type) {
79e53945
JB
6962 case INTEL_OUTPUT_LVDS:
6963 is_lvds = true;
6964 break;
6965 case INTEL_OUTPUT_SDVO:
7d57382e 6966 case INTEL_OUTPUT_HDMI:
79e53945 6967 is_sdvo = true;
79e53945 6968 break;
79e53945 6969 }
43565a06 6970
c751ce4f 6971 num_connectors++;
79e53945 6972 }
79e53945 6973
c1858123 6974 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6975 factor = 21;
6976 if (is_lvds) {
6977 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6978 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6979 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6980 factor = 25;
09ede541 6981 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6982 factor = 20;
c1858123 6983
7429e9d4 6984 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6985 *fp |= FP_CB_TUNE;
2c07245f 6986
9a7c7890
DV
6987 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6988 *fp2 |= FP_CB_TUNE;
6989
5eddb70b 6990 dpll = 0;
2c07245f 6991
a07d6787
EA
6992 if (is_lvds)
6993 dpll |= DPLLB_MODE_LVDS;
6994 else
6995 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6996
ef1b460d
DV
6997 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6998 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6999
7000 if (is_sdvo)
4a33e48d 7001 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7002 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7003 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7004
a07d6787 7005 /* compute bitmask from p1 value */
7429e9d4 7006 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7007 /* also FPA1 */
7429e9d4 7008 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7009
7429e9d4 7010 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7011 case 5:
7012 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7013 break;
7014 case 7:
7015 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7016 break;
7017 case 10:
7018 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7019 break;
7020 case 14:
7021 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7022 break;
79e53945
JB
7023 }
7024
b4c09f3b 7025 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7026 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7027 else
7028 dpll |= PLL_REF_INPUT_DREFCLK;
7029
959e16d6 7030 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7031}
7032
7033static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7034 int x, int y,
7035 struct drm_framebuffer *fb)
7036{
7037 struct drm_device *dev = crtc->dev;
de13a2e3 7038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7039 int num_connectors = 0;
7040 intel_clock_t clock, reduced_clock;
cbbab5bd 7041 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7042 bool ok, has_reduced_clock = false;
8b47047b 7043 bool is_lvds = false;
de13a2e3 7044 struct intel_encoder *encoder;
e2b78267 7045 struct intel_shared_dpll *pll;
de13a2e3
PZ
7046
7047 for_each_encoder_on_crtc(dev, crtc, encoder) {
7048 switch (encoder->type) {
7049 case INTEL_OUTPUT_LVDS:
7050 is_lvds = true;
7051 break;
de13a2e3
PZ
7052 }
7053
7054 num_connectors++;
a07d6787 7055 }
79e53945 7056
5dc5298b
PZ
7057 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7058 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7059
ff9a6750 7060 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7061 &has_reduced_clock, &reduced_clock);
ee9300bb 7062 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7063 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7064 return -EINVAL;
79e53945 7065 }
f47709a9
DV
7066 /* Compat-code for transition, will disappear. */
7067 if (!intel_crtc->config.clock_set) {
7068 intel_crtc->config.dpll.n = clock.n;
7069 intel_crtc->config.dpll.m1 = clock.m1;
7070 intel_crtc->config.dpll.m2 = clock.m2;
7071 intel_crtc->config.dpll.p1 = clock.p1;
7072 intel_crtc->config.dpll.p2 = clock.p2;
7073 }
79e53945 7074
5dc5298b 7075 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7076 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7077 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7078 if (has_reduced_clock)
7429e9d4 7079 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7080
7429e9d4 7081 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7082 &fp, &reduced_clock,
7083 has_reduced_clock ? &fp2 : NULL);
7084
959e16d6 7085 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7086 intel_crtc->config.dpll_hw_state.fp0 = fp;
7087 if (has_reduced_clock)
7088 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7089 else
7090 intel_crtc->config.dpll_hw_state.fp1 = fp;
7091
b89a1d39 7092 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7093 if (pll == NULL) {
84f44ce7 7094 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7095 pipe_name(intel_crtc->pipe));
4b645f14
JB
7096 return -EINVAL;
7097 }
ee7b9f93 7098 } else
e72f9fbf 7099 intel_put_shared_dpll(intel_crtc);
79e53945 7100
d330a953 7101 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7102 intel_crtc->lowfreq_avail = true;
7103 else
7104 intel_crtc->lowfreq_avail = false;
e2b78267 7105
c8f7a0db 7106 return 0;
79e53945
JB
7107}
7108
eb14cb74
VS
7109static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7110 struct intel_link_m_n *m_n)
7111{
7112 struct drm_device *dev = crtc->base.dev;
7113 struct drm_i915_private *dev_priv = dev->dev_private;
7114 enum pipe pipe = crtc->pipe;
7115
7116 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7117 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7118 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7119 & ~TU_SIZE_MASK;
7120 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7121 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7122 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7123}
7124
7125static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7126 enum transcoder transcoder,
7127 struct intel_link_m_n *m_n)
72419203
DV
7128{
7129 struct drm_device *dev = crtc->base.dev;
7130 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7131 enum pipe pipe = crtc->pipe;
72419203 7132
eb14cb74
VS
7133 if (INTEL_INFO(dev)->gen >= 5) {
7134 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7135 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7136 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7137 & ~TU_SIZE_MASK;
7138 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7139 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7140 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7141 } else {
7142 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7143 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7144 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7145 & ~TU_SIZE_MASK;
7146 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7147 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7148 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7149 }
7150}
7151
7152void intel_dp_get_m_n(struct intel_crtc *crtc,
7153 struct intel_crtc_config *pipe_config)
7154{
7155 if (crtc->config.has_pch_encoder)
7156 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7157 else
7158 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7159 &pipe_config->dp_m_n);
7160}
72419203 7161
eb14cb74
VS
7162static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7163 struct intel_crtc_config *pipe_config)
7164{
7165 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7166 &pipe_config->fdi_m_n);
72419203
DV
7167}
7168
2fa2fe9a
DV
7169static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7170 struct intel_crtc_config *pipe_config)
7171{
7172 struct drm_device *dev = crtc->base.dev;
7173 struct drm_i915_private *dev_priv = dev->dev_private;
7174 uint32_t tmp;
7175
7176 tmp = I915_READ(PF_CTL(crtc->pipe));
7177
7178 if (tmp & PF_ENABLE) {
fd4daa9c 7179 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7180 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7181 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7182
7183 /* We currently do not free assignements of panel fitters on
7184 * ivb/hsw (since we don't use the higher upscaling modes which
7185 * differentiates them) so just WARN about this case for now. */
7186 if (IS_GEN7(dev)) {
7187 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7188 PF_PIPE_SEL_IVB(crtc->pipe));
7189 }
2fa2fe9a 7190 }
79e53945
JB
7191}
7192
4c6baa59
JB
7193static void ironlake_get_plane_config(struct intel_crtc *crtc,
7194 struct intel_plane_config *plane_config)
7195{
7196 struct drm_device *dev = crtc->base.dev;
7197 struct drm_i915_private *dev_priv = dev->dev_private;
7198 u32 val, base, offset;
7199 int pipe = crtc->pipe, plane = crtc->plane;
7200 int fourcc, pixel_format;
7201 int aligned_height;
7202
66e514c1
DA
7203 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7204 if (!crtc->base.primary->fb) {
4c6baa59
JB
7205 DRM_DEBUG_KMS("failed to alloc fb\n");
7206 return;
7207 }
7208
7209 val = I915_READ(DSPCNTR(plane));
7210
7211 if (INTEL_INFO(dev)->gen >= 4)
7212 if (val & DISPPLANE_TILED)
7213 plane_config->tiled = true;
7214
7215 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7216 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7217 crtc->base.primary->fb->pixel_format = fourcc;
7218 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7219 drm_format_plane_cpp(fourcc, 0) * 8;
7220
7221 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7222 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7223 offset = I915_READ(DSPOFFSET(plane));
7224 } else {
7225 if (plane_config->tiled)
7226 offset = I915_READ(DSPTILEOFF(plane));
7227 else
7228 offset = I915_READ(DSPLINOFF(plane));
7229 }
7230 plane_config->base = base;
7231
7232 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7233 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7234 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7235
7236 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7237 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7238
66e514c1 7239 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7240 plane_config->tiled);
7241
1267a26b
FF
7242 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7243 aligned_height);
4c6baa59
JB
7244
7245 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7246 pipe, plane, crtc->base.primary->fb->width,
7247 crtc->base.primary->fb->height,
7248 crtc->base.primary->fb->bits_per_pixel, base,
7249 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7250 plane_config->size);
7251}
7252
0e8ffe1b
DV
7253static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7254 struct intel_crtc_config *pipe_config)
7255{
7256 struct drm_device *dev = crtc->base.dev;
7257 struct drm_i915_private *dev_priv = dev->dev_private;
7258 uint32_t tmp;
7259
e143a21c 7260 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7261 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7262
0e8ffe1b
DV
7263 tmp = I915_READ(PIPECONF(crtc->pipe));
7264 if (!(tmp & PIPECONF_ENABLE))
7265 return false;
7266
42571aef
VS
7267 switch (tmp & PIPECONF_BPC_MASK) {
7268 case PIPECONF_6BPC:
7269 pipe_config->pipe_bpp = 18;
7270 break;
7271 case PIPECONF_8BPC:
7272 pipe_config->pipe_bpp = 24;
7273 break;
7274 case PIPECONF_10BPC:
7275 pipe_config->pipe_bpp = 30;
7276 break;
7277 case PIPECONF_12BPC:
7278 pipe_config->pipe_bpp = 36;
7279 break;
7280 default:
7281 break;
7282 }
7283
b5a9fa09
DV
7284 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7285 pipe_config->limited_color_range = true;
7286
ab9412ba 7287 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7288 struct intel_shared_dpll *pll;
7289
88adfff1
DV
7290 pipe_config->has_pch_encoder = true;
7291
627eb5a3
DV
7292 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7293 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7294 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7295
7296 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7297
c0d43d62 7298 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7299 pipe_config->shared_dpll =
7300 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7301 } else {
7302 tmp = I915_READ(PCH_DPLL_SEL);
7303 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7304 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7305 else
7306 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7307 }
66e985c0
DV
7308
7309 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7310
7311 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7312 &pipe_config->dpll_hw_state));
c93f54cf
DV
7313
7314 tmp = pipe_config->dpll_hw_state.dpll;
7315 pipe_config->pixel_multiplier =
7316 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7317 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7318
7319 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7320 } else {
7321 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7322 }
7323
1bd1bd80
DV
7324 intel_get_pipe_timings(crtc, pipe_config);
7325
2fa2fe9a
DV
7326 ironlake_get_pfit_config(crtc, pipe_config);
7327
0e8ffe1b
DV
7328 return true;
7329}
7330
be256dc7
PZ
7331static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7332{
7333 struct drm_device *dev = dev_priv->dev;
7334 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7335 struct intel_crtc *crtc;
be256dc7 7336
d3fcc808 7337 for_each_intel_crtc(dev, crtc)
798183c5 7338 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7339 pipe_name(crtc->pipe));
7340
7341 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7342 WARN(plls->spll_refcount, "SPLL enabled\n");
7343 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7344 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7345 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7346 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7347 "CPU PWM1 enabled\n");
7348 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7349 "CPU PWM2 enabled\n");
7350 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7351 "PCH PWM1 enabled\n");
7352 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7353 "Utility pin enabled\n");
7354 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7355
9926ada1
PZ
7356 /*
7357 * In theory we can still leave IRQs enabled, as long as only the HPD
7358 * interrupts remain enabled. We used to check for that, but since it's
7359 * gen-specific and since we only disable LCPLL after we fully disable
7360 * the interrupts, the check below should be enough.
7361 */
7362 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7363}
7364
3c4c9b81
PZ
7365static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7366{
7367 struct drm_device *dev = dev_priv->dev;
7368
7369 if (IS_HASWELL(dev)) {
7370 mutex_lock(&dev_priv->rps.hw_lock);
7371 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7372 val))
7373 DRM_ERROR("Failed to disable D_COMP\n");
7374 mutex_unlock(&dev_priv->rps.hw_lock);
7375 } else {
7376 I915_WRITE(D_COMP, val);
7377 }
7378 POSTING_READ(D_COMP);
be256dc7
PZ
7379}
7380
7381/*
7382 * This function implements pieces of two sequences from BSpec:
7383 * - Sequence for display software to disable LCPLL
7384 * - Sequence for display software to allow package C8+
7385 * The steps implemented here are just the steps that actually touch the LCPLL
7386 * register. Callers should take care of disabling all the display engine
7387 * functions, doing the mode unset, fixing interrupts, etc.
7388 */
6ff58d53
PZ
7389static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7390 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7391{
7392 uint32_t val;
7393
7394 assert_can_disable_lcpll(dev_priv);
7395
7396 val = I915_READ(LCPLL_CTL);
7397
7398 if (switch_to_fclk) {
7399 val |= LCPLL_CD_SOURCE_FCLK;
7400 I915_WRITE(LCPLL_CTL, val);
7401
7402 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7403 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7404 DRM_ERROR("Switching to FCLK failed\n");
7405
7406 val = I915_READ(LCPLL_CTL);
7407 }
7408
7409 val |= LCPLL_PLL_DISABLE;
7410 I915_WRITE(LCPLL_CTL, val);
7411 POSTING_READ(LCPLL_CTL);
7412
7413 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7414 DRM_ERROR("LCPLL still locked\n");
7415
7416 val = I915_READ(D_COMP);
7417 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7418 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7419 ndelay(100);
7420
7421 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7422 DRM_ERROR("D_COMP RCOMP still in progress\n");
7423
7424 if (allow_power_down) {
7425 val = I915_READ(LCPLL_CTL);
7426 val |= LCPLL_POWER_DOWN_ALLOW;
7427 I915_WRITE(LCPLL_CTL, val);
7428 POSTING_READ(LCPLL_CTL);
7429 }
7430}
7431
7432/*
7433 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7434 * source.
7435 */
6ff58d53 7436static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7437{
7438 uint32_t val;
a8a8bd54 7439 unsigned long irqflags;
be256dc7
PZ
7440
7441 val = I915_READ(LCPLL_CTL);
7442
7443 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7444 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7445 return;
7446
a8a8bd54
PZ
7447 /*
7448 * Make sure we're not on PC8 state before disabling PC8, otherwise
7449 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7450 *
7451 * The other problem is that hsw_restore_lcpll() is called as part of
7452 * the runtime PM resume sequence, so we can't just call
7453 * gen6_gt_force_wake_get() because that function calls
7454 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7455 * while we are on the resume sequence. So to solve this problem we have
7456 * to call special forcewake code that doesn't touch runtime PM and
7457 * doesn't enable the forcewake delayed work.
7458 */
7459 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7460 if (dev_priv->uncore.forcewake_count++ == 0)
7461 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7462 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7463
be256dc7
PZ
7464 if (val & LCPLL_POWER_DOWN_ALLOW) {
7465 val &= ~LCPLL_POWER_DOWN_ALLOW;
7466 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7467 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7468 }
7469
7470 val = I915_READ(D_COMP);
7471 val |= D_COMP_COMP_FORCE;
7472 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7473 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7474
7475 val = I915_READ(LCPLL_CTL);
7476 val &= ~LCPLL_PLL_DISABLE;
7477 I915_WRITE(LCPLL_CTL, val);
7478
7479 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7480 DRM_ERROR("LCPLL not locked yet\n");
7481
7482 if (val & LCPLL_CD_SOURCE_FCLK) {
7483 val = I915_READ(LCPLL_CTL);
7484 val &= ~LCPLL_CD_SOURCE_FCLK;
7485 I915_WRITE(LCPLL_CTL, val);
7486
7487 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7488 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7489 DRM_ERROR("Switching back to LCPLL failed\n");
7490 }
215733fa 7491
a8a8bd54
PZ
7492 /* See the big comment above. */
7493 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7494 if (--dev_priv->uncore.forcewake_count == 0)
7495 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7496 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7497}
7498
765dab67
PZ
7499/*
7500 * Package states C8 and deeper are really deep PC states that can only be
7501 * reached when all the devices on the system allow it, so even if the graphics
7502 * device allows PC8+, it doesn't mean the system will actually get to these
7503 * states. Our driver only allows PC8+ when going into runtime PM.
7504 *
7505 * The requirements for PC8+ are that all the outputs are disabled, the power
7506 * well is disabled and most interrupts are disabled, and these are also
7507 * requirements for runtime PM. When these conditions are met, we manually do
7508 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7509 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7510 * hang the machine.
7511 *
7512 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7513 * the state of some registers, so when we come back from PC8+ we need to
7514 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7515 * need to take care of the registers kept by RC6. Notice that this happens even
7516 * if we don't put the device in PCI D3 state (which is what currently happens
7517 * because of the runtime PM support).
7518 *
7519 * For more, read "Display Sequences for Package C8" on the hardware
7520 * documentation.
7521 */
a14cb6fc 7522void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7523{
c67a470b
PZ
7524 struct drm_device *dev = dev_priv->dev;
7525 uint32_t val;
7526
c67a470b
PZ
7527 DRM_DEBUG_KMS("Enabling package C8+\n");
7528
c67a470b
PZ
7529 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7530 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7531 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7532 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7533 }
7534
7535 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7536 hsw_disable_lcpll(dev_priv, true, true);
7537}
7538
a14cb6fc 7539void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7540{
7541 struct drm_device *dev = dev_priv->dev;
7542 uint32_t val;
7543
c67a470b
PZ
7544 DRM_DEBUG_KMS("Disabling package C8+\n");
7545
7546 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7547 lpt_init_pch_refclk(dev);
7548
7549 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7550 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7551 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7552 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7553 }
7554
7555 intel_prepare_ddi(dev);
c67a470b
PZ
7556}
7557
9a952a0d
PZ
7558static void snb_modeset_global_resources(struct drm_device *dev)
7559{
7560 modeset_update_crtc_power_domains(dev);
7561}
7562
4f074129
ID
7563static void haswell_modeset_global_resources(struct drm_device *dev)
7564{
da723569 7565 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7566}
7567
09b4ddf9 7568static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7569 int x, int y,
7570 struct drm_framebuffer *fb)
7571{
09b4ddf9 7572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7573
566b734a 7574 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7575 return -EINVAL;
566b734a 7576 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7577
644cef34
DV
7578 intel_crtc->lowfreq_avail = false;
7579
c8f7a0db 7580 return 0;
79e53945
JB
7581}
7582
0e8ffe1b
DV
7583static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7584 struct intel_crtc_config *pipe_config)
7585{
7586 struct drm_device *dev = crtc->base.dev;
7587 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7588 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7589 uint32_t tmp;
7590
b5482bd0
ID
7591 if (!intel_display_power_enabled(dev_priv,
7592 POWER_DOMAIN_PIPE(crtc->pipe)))
7593 return false;
7594
e143a21c 7595 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7596 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7597
eccb140b
DV
7598 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7599 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7600 enum pipe trans_edp_pipe;
7601 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7602 default:
7603 WARN(1, "unknown pipe linked to edp transcoder\n");
7604 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7605 case TRANS_DDI_EDP_INPUT_A_ON:
7606 trans_edp_pipe = PIPE_A;
7607 break;
7608 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7609 trans_edp_pipe = PIPE_B;
7610 break;
7611 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7612 trans_edp_pipe = PIPE_C;
7613 break;
7614 }
7615
7616 if (trans_edp_pipe == crtc->pipe)
7617 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7618 }
7619
da7e29bd 7620 if (!intel_display_power_enabled(dev_priv,
eccb140b 7621 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7622 return false;
7623
eccb140b 7624 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7625 if (!(tmp & PIPECONF_ENABLE))
7626 return false;
7627
88adfff1 7628 /*
f196e6be 7629 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7630 * DDI E. So just check whether this pipe is wired to DDI E and whether
7631 * the PCH transcoder is on.
7632 */
eccb140b 7633 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7634 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7635 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7636 pipe_config->has_pch_encoder = true;
7637
627eb5a3
DV
7638 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7639 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7640 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7641
7642 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7643 }
7644
1bd1bd80
DV
7645 intel_get_pipe_timings(crtc, pipe_config);
7646
2fa2fe9a 7647 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7648 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7649 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7650
e59150dc
JB
7651 if (IS_HASWELL(dev))
7652 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7653 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7654
6c49f241
DV
7655 pipe_config->pixel_multiplier = 1;
7656
0e8ffe1b
DV
7657 return true;
7658}
7659
1a91510d
JN
7660static struct {
7661 int clock;
7662 u32 config;
7663} hdmi_audio_clock[] = {
7664 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7665 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7666 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7667 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7668 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7669 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7670 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7671 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7672 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7673 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7674};
7675
7676/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7677static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7678{
7679 int i;
7680
7681 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7682 if (mode->clock == hdmi_audio_clock[i].clock)
7683 break;
7684 }
7685
7686 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7687 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7688 i = 1;
7689 }
7690
7691 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7692 hdmi_audio_clock[i].clock,
7693 hdmi_audio_clock[i].config);
7694
7695 return hdmi_audio_clock[i].config;
7696}
7697
3a9627f4
WF
7698static bool intel_eld_uptodate(struct drm_connector *connector,
7699 int reg_eldv, uint32_t bits_eldv,
7700 int reg_elda, uint32_t bits_elda,
7701 int reg_edid)
7702{
7703 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7704 uint8_t *eld = connector->eld;
7705 uint32_t i;
7706
7707 i = I915_READ(reg_eldv);
7708 i &= bits_eldv;
7709
7710 if (!eld[0])
7711 return !i;
7712
7713 if (!i)
7714 return false;
7715
7716 i = I915_READ(reg_elda);
7717 i &= ~bits_elda;
7718 I915_WRITE(reg_elda, i);
7719
7720 for (i = 0; i < eld[2]; i++)
7721 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7722 return false;
7723
7724 return true;
7725}
7726
e0dac65e 7727static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7728 struct drm_crtc *crtc,
7729 struct drm_display_mode *mode)
e0dac65e
WF
7730{
7731 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7732 uint8_t *eld = connector->eld;
7733 uint32_t eldv;
7734 uint32_t len;
7735 uint32_t i;
7736
7737 i = I915_READ(G4X_AUD_VID_DID);
7738
7739 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7740 eldv = G4X_ELDV_DEVCL_DEVBLC;
7741 else
7742 eldv = G4X_ELDV_DEVCTG;
7743
3a9627f4
WF
7744 if (intel_eld_uptodate(connector,
7745 G4X_AUD_CNTL_ST, eldv,
7746 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7747 G4X_HDMIW_HDMIEDID))
7748 return;
7749
e0dac65e
WF
7750 i = I915_READ(G4X_AUD_CNTL_ST);
7751 i &= ~(eldv | G4X_ELD_ADDR);
7752 len = (i >> 9) & 0x1f; /* ELD buffer size */
7753 I915_WRITE(G4X_AUD_CNTL_ST, i);
7754
7755 if (!eld[0])
7756 return;
7757
7758 len = min_t(uint8_t, eld[2], len);
7759 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7760 for (i = 0; i < len; i++)
7761 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7762
7763 i = I915_READ(G4X_AUD_CNTL_ST);
7764 i |= eldv;
7765 I915_WRITE(G4X_AUD_CNTL_ST, i);
7766}
7767
83358c85 7768static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7769 struct drm_crtc *crtc,
7770 struct drm_display_mode *mode)
83358c85
WX
7771{
7772 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7773 uint8_t *eld = connector->eld;
83358c85
WX
7774 uint32_t eldv;
7775 uint32_t i;
7776 int len;
7777 int pipe = to_intel_crtc(crtc)->pipe;
7778 int tmp;
7779
7780 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7781 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7782 int aud_config = HSW_AUD_CFG(pipe);
7783 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7784
83358c85
WX
7785 /* Audio output enable */
7786 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7787 tmp = I915_READ(aud_cntrl_st2);
7788 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7789 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7790 POSTING_READ(aud_cntrl_st2);
83358c85 7791
c7905792 7792 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7793
7794 /* Set ELD valid state */
7795 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7796 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7797 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7798 I915_WRITE(aud_cntrl_st2, tmp);
7799 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7800 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7801
7802 /* Enable HDMI mode */
7803 tmp = I915_READ(aud_config);
7e7cb34f 7804 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7805 /* clear N_programing_enable and N_value_index */
7806 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7807 I915_WRITE(aud_config, tmp);
7808
7809 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7810
7811 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7812
7813 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7814 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7815 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7816 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7817 } else {
7818 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7819 }
83358c85
WX
7820
7821 if (intel_eld_uptodate(connector,
7822 aud_cntrl_st2, eldv,
7823 aud_cntl_st, IBX_ELD_ADDRESS,
7824 hdmiw_hdmiedid))
7825 return;
7826
7827 i = I915_READ(aud_cntrl_st2);
7828 i &= ~eldv;
7829 I915_WRITE(aud_cntrl_st2, i);
7830
7831 if (!eld[0])
7832 return;
7833
7834 i = I915_READ(aud_cntl_st);
7835 i &= ~IBX_ELD_ADDRESS;
7836 I915_WRITE(aud_cntl_st, i);
7837 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7838 DRM_DEBUG_DRIVER("port num:%d\n", i);
7839
7840 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7841 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7842 for (i = 0; i < len; i++)
7843 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7844
7845 i = I915_READ(aud_cntrl_st2);
7846 i |= eldv;
7847 I915_WRITE(aud_cntrl_st2, i);
7848
7849}
7850
e0dac65e 7851static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7852 struct drm_crtc *crtc,
7853 struct drm_display_mode *mode)
e0dac65e
WF
7854{
7855 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7856 uint8_t *eld = connector->eld;
7857 uint32_t eldv;
7858 uint32_t i;
7859 int len;
7860 int hdmiw_hdmiedid;
b6daa025 7861 int aud_config;
e0dac65e
WF
7862 int aud_cntl_st;
7863 int aud_cntrl_st2;
9b138a83 7864 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7865
b3f33cbf 7866 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7867 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7868 aud_config = IBX_AUD_CFG(pipe);
7869 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7870 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7871 } else if (IS_VALLEYVIEW(connector->dev)) {
7872 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7873 aud_config = VLV_AUD_CFG(pipe);
7874 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7875 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7876 } else {
9b138a83
WX
7877 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7878 aud_config = CPT_AUD_CFG(pipe);
7879 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7880 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7881 }
7882
9b138a83 7883 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7884
9ca2fe73
ML
7885 if (IS_VALLEYVIEW(connector->dev)) {
7886 struct intel_encoder *intel_encoder;
7887 struct intel_digital_port *intel_dig_port;
7888
7889 intel_encoder = intel_attached_encoder(connector);
7890 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7891 i = intel_dig_port->port;
7892 } else {
7893 i = I915_READ(aud_cntl_st);
7894 i = (i >> 29) & DIP_PORT_SEL_MASK;
7895 /* DIP_Port_Select, 0x1 = PortB */
7896 }
7897
e0dac65e
WF
7898 if (!i) {
7899 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7900 /* operate blindly on all ports */
1202b4c6
WF
7901 eldv = IBX_ELD_VALIDB;
7902 eldv |= IBX_ELD_VALIDB << 4;
7903 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7904 } else {
2582a850 7905 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7906 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7907 }
7908
3a9627f4
WF
7909 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7910 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7911 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7912 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7913 } else {
7914 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7915 }
e0dac65e 7916
3a9627f4
WF
7917 if (intel_eld_uptodate(connector,
7918 aud_cntrl_st2, eldv,
7919 aud_cntl_st, IBX_ELD_ADDRESS,
7920 hdmiw_hdmiedid))
7921 return;
7922
e0dac65e
WF
7923 i = I915_READ(aud_cntrl_st2);
7924 i &= ~eldv;
7925 I915_WRITE(aud_cntrl_st2, i);
7926
7927 if (!eld[0])
7928 return;
7929
e0dac65e 7930 i = I915_READ(aud_cntl_st);
1202b4c6 7931 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7932 I915_WRITE(aud_cntl_st, i);
7933
7934 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7935 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7936 for (i = 0; i < len; i++)
7937 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7938
7939 i = I915_READ(aud_cntrl_st2);
7940 i |= eldv;
7941 I915_WRITE(aud_cntrl_st2, i);
7942}
7943
7944void intel_write_eld(struct drm_encoder *encoder,
7945 struct drm_display_mode *mode)
7946{
7947 struct drm_crtc *crtc = encoder->crtc;
7948 struct drm_connector *connector;
7949 struct drm_device *dev = encoder->dev;
7950 struct drm_i915_private *dev_priv = dev->dev_private;
7951
7952 connector = drm_select_eld(encoder, mode);
7953 if (!connector)
7954 return;
7955
7956 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7957 connector->base.id,
c23cc417 7958 connector->name,
e0dac65e 7959 connector->encoder->base.id,
8e329a03 7960 connector->encoder->name);
e0dac65e
WF
7961
7962 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7963
7964 if (dev_priv->display.write_eld)
34427052 7965 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7966}
7967
560b85bb
CW
7968static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7969{
7970 struct drm_device *dev = crtc->dev;
7971 struct drm_i915_private *dev_priv = dev->dev_private;
7972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7973 uint32_t cntl;
560b85bb 7974
4b0e333e 7975 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7976 /* On these chipsets we can only modify the base whilst
7977 * the cursor is disabled.
7978 */
4b0e333e
CW
7979 if (intel_crtc->cursor_cntl) {
7980 I915_WRITE(_CURACNTR, 0);
7981 POSTING_READ(_CURACNTR);
7982 intel_crtc->cursor_cntl = 0;
7983 }
7984
9db4a9c7 7985 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7986 POSTING_READ(_CURABASE);
7987 }
560b85bb 7988
4b0e333e
CW
7989 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7990 cntl = 0;
7991 if (base)
7992 cntl = (CURSOR_ENABLE |
560b85bb 7993 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7994 CURSOR_FORMAT_ARGB);
7995 if (intel_crtc->cursor_cntl != cntl) {
7996 I915_WRITE(_CURACNTR, cntl);
7997 POSTING_READ(_CURACNTR);
7998 intel_crtc->cursor_cntl = cntl;
7999 }
560b85bb
CW
8000}
8001
8002static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8003{
8004 struct drm_device *dev = crtc->dev;
8005 struct drm_i915_private *dev_priv = dev->dev_private;
8006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8007 int pipe = intel_crtc->pipe;
4b0e333e 8008 uint32_t cntl;
4726e0b0 8009
4b0e333e
CW
8010 cntl = 0;
8011 if (base) {
8012 cntl = MCURSOR_GAMMA_ENABLE;
8013 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8014 case 64:
8015 cntl |= CURSOR_MODE_64_ARGB_AX;
8016 break;
8017 case 128:
8018 cntl |= CURSOR_MODE_128_ARGB_AX;
8019 break;
8020 case 256:
8021 cntl |= CURSOR_MODE_256_ARGB_AX;
8022 break;
8023 default:
8024 WARN_ON(1);
8025 return;
560b85bb 8026 }
4b0e333e
CW
8027 cntl |= pipe << 28; /* Connect to correct pipe */
8028 }
8029 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8030 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8031 POSTING_READ(CURCNTR(pipe));
8032 intel_crtc->cursor_cntl = cntl;
560b85bb 8033 }
4b0e333e 8034
560b85bb 8035 /* and commit changes on next vblank */
9db4a9c7 8036 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8037 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8038}
8039
65a21cd6
JB
8040static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8041{
8042 struct drm_device *dev = crtc->dev;
8043 struct drm_i915_private *dev_priv = dev->dev_private;
8044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8045 int pipe = intel_crtc->pipe;
4b0e333e
CW
8046 uint32_t cntl;
8047
8048 cntl = 0;
8049 if (base) {
8050 cntl = MCURSOR_GAMMA_ENABLE;
8051 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8052 case 64:
8053 cntl |= CURSOR_MODE_64_ARGB_AX;
8054 break;
8055 case 128:
8056 cntl |= CURSOR_MODE_128_ARGB_AX;
8057 break;
8058 case 256:
8059 cntl |= CURSOR_MODE_256_ARGB_AX;
8060 break;
8061 default:
8062 WARN_ON(1);
8063 return;
65a21cd6 8064 }
4b0e333e
CW
8065 }
8066 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8067 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8068
4b0e333e
CW
8069 if (intel_crtc->cursor_cntl != cntl) {
8070 I915_WRITE(CURCNTR(pipe), cntl);
8071 POSTING_READ(CURCNTR(pipe));
8072 intel_crtc->cursor_cntl = cntl;
65a21cd6 8073 }
4b0e333e 8074
65a21cd6 8075 /* and commit changes on next vblank */
5efb3e28
VS
8076 I915_WRITE(CURBASE(pipe), base);
8077 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8078}
8079
cda4b7d3 8080/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8081static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8082 bool on)
cda4b7d3
CW
8083{
8084 struct drm_device *dev = crtc->dev;
8085 struct drm_i915_private *dev_priv = dev->dev_private;
8086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8087 int pipe = intel_crtc->pipe;
3d7d6510
MR
8088 int x = crtc->cursor_x;
8089 int y = crtc->cursor_y;
d6e4db15 8090 u32 base = 0, pos = 0;
cda4b7d3 8091
d6e4db15 8092 if (on)
cda4b7d3 8093 base = intel_crtc->cursor_addr;
cda4b7d3 8094
d6e4db15
VS
8095 if (x >= intel_crtc->config.pipe_src_w)
8096 base = 0;
8097
8098 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8099 base = 0;
8100
8101 if (x < 0) {
efc9064e 8102 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8103 base = 0;
8104
8105 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8106 x = -x;
8107 }
8108 pos |= x << CURSOR_X_SHIFT;
8109
8110 if (y < 0) {
efc9064e 8111 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8112 base = 0;
8113
8114 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8115 y = -y;
8116 }
8117 pos |= y << CURSOR_Y_SHIFT;
8118
4b0e333e 8119 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8120 return;
8121
5efb3e28
VS
8122 I915_WRITE(CURPOS(pipe), pos);
8123
8124 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8125 ivb_update_cursor(crtc, base);
5efb3e28
VS
8126 else if (IS_845G(dev) || IS_I865G(dev))
8127 i845_update_cursor(crtc, base);
8128 else
8129 i9xx_update_cursor(crtc, base);
4b0e333e 8130 intel_crtc->cursor_base = base;
cda4b7d3
CW
8131}
8132
e3287951
MR
8133/*
8134 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8135 *
8136 * Note that the object's reference will be consumed if the update fails. If
8137 * the update succeeds, the reference of the old object (if any) will be
8138 * consumed.
8139 */
8140static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8141 struct drm_i915_gem_object *obj,
8142 uint32_t width, uint32_t height)
79e53945
JB
8143{
8144 struct drm_device *dev = crtc->dev;
8145 struct drm_i915_private *dev_priv = dev->dev_private;
8146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8147 enum pipe pipe = intel_crtc->pipe;
64f962e3 8148 unsigned old_width;
cda4b7d3 8149 uint32_t addr;
3f8bc370 8150 int ret;
79e53945 8151
79e53945 8152 /* if we want to turn off the cursor ignore width and height */
e3287951 8153 if (!obj) {
28c97730 8154 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8155 addr = 0;
05394f39 8156 obj = NULL;
5004417d 8157 mutex_lock(&dev->struct_mutex);
3f8bc370 8158 goto finish;
79e53945
JB
8159 }
8160
4726e0b0
SK
8161 /* Check for which cursor types we support */
8162 if (!((width == 64 && height == 64) ||
8163 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8164 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8165 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8166 return -EINVAL;
8167 }
8168
05394f39 8169 if (obj->base.size < width * height * 4) {
e3287951 8170 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8171 ret = -ENOMEM;
8172 goto fail;
79e53945
JB
8173 }
8174
71acb5eb 8175 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8176 mutex_lock(&dev->struct_mutex);
3d13ef2e 8177 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8178 unsigned alignment;
8179
d9e86c0e 8180 if (obj->tiling_mode) {
3b25b31f 8181 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8182 ret = -EINVAL;
8183 goto fail_locked;
8184 }
8185
693db184
CW
8186 /* Note that the w/a also requires 2 PTE of padding following
8187 * the bo. We currently fill all unused PTE with the shadow
8188 * page and so we should always have valid PTE following the
8189 * cursor preventing the VT-d warning.
8190 */
8191 alignment = 0;
8192 if (need_vtd_wa(dev))
8193 alignment = 64*1024;
8194
8195 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8196 if (ret) {
3b25b31f 8197 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8198 goto fail_locked;
e7b526bb
CW
8199 }
8200
d9e86c0e
CW
8201 ret = i915_gem_object_put_fence(obj);
8202 if (ret) {
3b25b31f 8203 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8204 goto fail_unpin;
8205 }
8206
f343c5f6 8207 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8208 } else {
6eeefaf3 8209 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8210 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8211 if (ret) {
3b25b31f 8212 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8213 goto fail_locked;
71acb5eb 8214 }
00731155 8215 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8216 }
8217
a6c45cf0 8218 if (IS_GEN2(dev))
14b60391
JB
8219 I915_WRITE(CURSIZE, (height << 12) | width);
8220
3f8bc370 8221 finish:
3f8bc370 8222 if (intel_crtc->cursor_bo) {
00731155 8223 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8224 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8225 }
80824003 8226
a071fa00
DV
8227 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8228 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8229 mutex_unlock(&dev->struct_mutex);
3f8bc370 8230
64f962e3
CW
8231 old_width = intel_crtc->cursor_width;
8232
3f8bc370 8233 intel_crtc->cursor_addr = addr;
05394f39 8234 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8235 intel_crtc->cursor_width = width;
8236 intel_crtc->cursor_height = height;
8237
64f962e3
CW
8238 if (intel_crtc->active) {
8239 if (old_width != width)
8240 intel_update_watermarks(crtc);
f2f5f771 8241 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8242 }
3f8bc370 8243
f99d7069
DV
8244 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8245
79e53945 8246 return 0;
e7b526bb 8247fail_unpin:
cc98b413 8248 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8249fail_locked:
34b8686e 8250 mutex_unlock(&dev->struct_mutex);
bc9025bd 8251fail:
05394f39 8252 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8253 return ret;
79e53945
JB
8254}
8255
79e53945 8256static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8257 u16 *blue, uint32_t start, uint32_t size)
79e53945 8258{
7203425a 8259 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8261
7203425a 8262 for (i = start; i < end; i++) {
79e53945
JB
8263 intel_crtc->lut_r[i] = red[i] >> 8;
8264 intel_crtc->lut_g[i] = green[i] >> 8;
8265 intel_crtc->lut_b[i] = blue[i] >> 8;
8266 }
8267
8268 intel_crtc_load_lut(crtc);
8269}
8270
79e53945
JB
8271/* VESA 640x480x72Hz mode to set on the pipe */
8272static struct drm_display_mode load_detect_mode = {
8273 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8274 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8275};
8276
a8bb6818
DV
8277struct drm_framebuffer *
8278__intel_framebuffer_create(struct drm_device *dev,
8279 struct drm_mode_fb_cmd2 *mode_cmd,
8280 struct drm_i915_gem_object *obj)
d2dff872
CW
8281{
8282 struct intel_framebuffer *intel_fb;
8283 int ret;
8284
8285 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8286 if (!intel_fb) {
8287 drm_gem_object_unreference_unlocked(&obj->base);
8288 return ERR_PTR(-ENOMEM);
8289 }
8290
8291 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8292 if (ret)
8293 goto err;
d2dff872
CW
8294
8295 return &intel_fb->base;
dd4916c5
DV
8296err:
8297 drm_gem_object_unreference_unlocked(&obj->base);
8298 kfree(intel_fb);
8299
8300 return ERR_PTR(ret);
d2dff872
CW
8301}
8302
b5ea642a 8303static struct drm_framebuffer *
a8bb6818
DV
8304intel_framebuffer_create(struct drm_device *dev,
8305 struct drm_mode_fb_cmd2 *mode_cmd,
8306 struct drm_i915_gem_object *obj)
8307{
8308 struct drm_framebuffer *fb;
8309 int ret;
8310
8311 ret = i915_mutex_lock_interruptible(dev);
8312 if (ret)
8313 return ERR_PTR(ret);
8314 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8315 mutex_unlock(&dev->struct_mutex);
8316
8317 return fb;
8318}
8319
d2dff872
CW
8320static u32
8321intel_framebuffer_pitch_for_width(int width, int bpp)
8322{
8323 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8324 return ALIGN(pitch, 64);
8325}
8326
8327static u32
8328intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8329{
8330 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8331 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8332}
8333
8334static struct drm_framebuffer *
8335intel_framebuffer_create_for_mode(struct drm_device *dev,
8336 struct drm_display_mode *mode,
8337 int depth, int bpp)
8338{
8339 struct drm_i915_gem_object *obj;
0fed39bd 8340 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8341
8342 obj = i915_gem_alloc_object(dev,
8343 intel_framebuffer_size_for_mode(mode, bpp));
8344 if (obj == NULL)
8345 return ERR_PTR(-ENOMEM);
8346
8347 mode_cmd.width = mode->hdisplay;
8348 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8349 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8350 bpp);
5ca0c34a 8351 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8352
8353 return intel_framebuffer_create(dev, &mode_cmd, obj);
8354}
8355
8356static struct drm_framebuffer *
8357mode_fits_in_fbdev(struct drm_device *dev,
8358 struct drm_display_mode *mode)
8359{
4520f53a 8360#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8361 struct drm_i915_private *dev_priv = dev->dev_private;
8362 struct drm_i915_gem_object *obj;
8363 struct drm_framebuffer *fb;
8364
4c0e5528 8365 if (!dev_priv->fbdev)
d2dff872
CW
8366 return NULL;
8367
4c0e5528 8368 if (!dev_priv->fbdev->fb)
d2dff872
CW
8369 return NULL;
8370
4c0e5528
DV
8371 obj = dev_priv->fbdev->fb->obj;
8372 BUG_ON(!obj);
8373
8bcd4553 8374 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8375 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8376 fb->bits_per_pixel))
d2dff872
CW
8377 return NULL;
8378
01f2c773 8379 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8380 return NULL;
8381
8382 return fb;
4520f53a
DV
8383#else
8384 return NULL;
8385#endif
d2dff872
CW
8386}
8387
d2434ab7 8388bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8389 struct drm_display_mode *mode,
51fd371b
RC
8390 struct intel_load_detect_pipe *old,
8391 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8392{
8393 struct intel_crtc *intel_crtc;
d2434ab7
DV
8394 struct intel_encoder *intel_encoder =
8395 intel_attached_encoder(connector);
79e53945 8396 struct drm_crtc *possible_crtc;
4ef69c7a 8397 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8398 struct drm_crtc *crtc = NULL;
8399 struct drm_device *dev = encoder->dev;
94352cf9 8400 struct drm_framebuffer *fb;
51fd371b
RC
8401 struct drm_mode_config *config = &dev->mode_config;
8402 int ret, i = -1;
79e53945 8403
d2dff872 8404 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8405 connector->base.id, connector->name,
8e329a03 8406 encoder->base.id, encoder->name);
d2dff872 8407
51fd371b
RC
8408 drm_modeset_acquire_init(ctx, 0);
8409
8410retry:
8411 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8412 if (ret)
8413 goto fail_unlock;
6e9f798d 8414
79e53945
JB
8415 /*
8416 * Algorithm gets a little messy:
7a5e4805 8417 *
79e53945
JB
8418 * - if the connector already has an assigned crtc, use it (but make
8419 * sure it's on first)
7a5e4805 8420 *
79e53945
JB
8421 * - try to find the first unused crtc that can drive this connector,
8422 * and use that if we find one
79e53945
JB
8423 */
8424
8425 /* See if we already have a CRTC for this connector */
8426 if (encoder->crtc) {
8427 crtc = encoder->crtc;
8261b191 8428
51fd371b
RC
8429 ret = drm_modeset_lock(&crtc->mutex, ctx);
8430 if (ret)
8431 goto fail_unlock;
7b24056b 8432
24218aac 8433 old->dpms_mode = connector->dpms;
8261b191
CW
8434 old->load_detect_temp = false;
8435
8436 /* Make sure the crtc and connector are running */
24218aac
DV
8437 if (connector->dpms != DRM_MODE_DPMS_ON)
8438 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8439
7173188d 8440 return true;
79e53945
JB
8441 }
8442
8443 /* Find an unused one (if possible) */
70e1e0ec 8444 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8445 i++;
8446 if (!(encoder->possible_crtcs & (1 << i)))
8447 continue;
8448 if (!possible_crtc->enabled) {
8449 crtc = possible_crtc;
8450 break;
8451 }
79e53945
JB
8452 }
8453
8454 /*
8455 * If we didn't find an unused CRTC, don't use any.
8456 */
8457 if (!crtc) {
7173188d 8458 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8459 goto fail_unlock;
79e53945
JB
8460 }
8461
51fd371b
RC
8462 ret = drm_modeset_lock(&crtc->mutex, ctx);
8463 if (ret)
8464 goto fail_unlock;
fc303101
DV
8465 intel_encoder->new_crtc = to_intel_crtc(crtc);
8466 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8467
8468 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8469 intel_crtc->new_enabled = true;
8470 intel_crtc->new_config = &intel_crtc->config;
24218aac 8471 old->dpms_mode = connector->dpms;
8261b191 8472 old->load_detect_temp = true;
d2dff872 8473 old->release_fb = NULL;
79e53945 8474
6492711d
CW
8475 if (!mode)
8476 mode = &load_detect_mode;
79e53945 8477
d2dff872
CW
8478 /* We need a framebuffer large enough to accommodate all accesses
8479 * that the plane may generate whilst we perform load detection.
8480 * We can not rely on the fbcon either being present (we get called
8481 * during its initialisation to detect all boot displays, or it may
8482 * not even exist) or that it is large enough to satisfy the
8483 * requested mode.
8484 */
94352cf9
DV
8485 fb = mode_fits_in_fbdev(dev, mode);
8486 if (fb == NULL) {
d2dff872 8487 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8488 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8489 old->release_fb = fb;
d2dff872
CW
8490 } else
8491 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8492 if (IS_ERR(fb)) {
d2dff872 8493 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8494 goto fail;
79e53945 8495 }
79e53945 8496
c0c36b94 8497 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8498 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8499 if (old->release_fb)
8500 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8501 goto fail;
79e53945 8502 }
7173188d 8503
79e53945 8504 /* let the connector get through one full cycle before testing */
9d0498a2 8505 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8506 return true;
412b61d8
VS
8507
8508 fail:
8509 intel_crtc->new_enabled = crtc->enabled;
8510 if (intel_crtc->new_enabled)
8511 intel_crtc->new_config = &intel_crtc->config;
8512 else
8513 intel_crtc->new_config = NULL;
51fd371b
RC
8514fail_unlock:
8515 if (ret == -EDEADLK) {
8516 drm_modeset_backoff(ctx);
8517 goto retry;
8518 }
8519
8520 drm_modeset_drop_locks(ctx);
8521 drm_modeset_acquire_fini(ctx);
6e9f798d 8522
412b61d8 8523 return false;
79e53945
JB
8524}
8525
d2434ab7 8526void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8527 struct intel_load_detect_pipe *old,
8528 struct drm_modeset_acquire_ctx *ctx)
79e53945 8529{
d2434ab7
DV
8530 struct intel_encoder *intel_encoder =
8531 intel_attached_encoder(connector);
4ef69c7a 8532 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8533 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8535
d2dff872 8536 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8537 connector->base.id, connector->name,
8e329a03 8538 encoder->base.id, encoder->name);
d2dff872 8539
8261b191 8540 if (old->load_detect_temp) {
fc303101
DV
8541 to_intel_connector(connector)->new_encoder = NULL;
8542 intel_encoder->new_crtc = NULL;
412b61d8
VS
8543 intel_crtc->new_enabled = false;
8544 intel_crtc->new_config = NULL;
fc303101 8545 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8546
36206361
DV
8547 if (old->release_fb) {
8548 drm_framebuffer_unregister_private(old->release_fb);
8549 drm_framebuffer_unreference(old->release_fb);
8550 }
d2dff872 8551
51fd371b 8552 goto unlock;
0622a53c 8553 return;
79e53945
JB
8554 }
8555
c751ce4f 8556 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8557 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8558 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8559
51fd371b
RC
8560unlock:
8561 drm_modeset_drop_locks(ctx);
8562 drm_modeset_acquire_fini(ctx);
79e53945
JB
8563}
8564
da4a1efa
VS
8565static int i9xx_pll_refclk(struct drm_device *dev,
8566 const struct intel_crtc_config *pipe_config)
8567{
8568 struct drm_i915_private *dev_priv = dev->dev_private;
8569 u32 dpll = pipe_config->dpll_hw_state.dpll;
8570
8571 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8572 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8573 else if (HAS_PCH_SPLIT(dev))
8574 return 120000;
8575 else if (!IS_GEN2(dev))
8576 return 96000;
8577 else
8578 return 48000;
8579}
8580
79e53945 8581/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8582static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8583 struct intel_crtc_config *pipe_config)
79e53945 8584{
f1f644dc 8585 struct drm_device *dev = crtc->base.dev;
79e53945 8586 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8587 int pipe = pipe_config->cpu_transcoder;
293623f7 8588 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8589 u32 fp;
8590 intel_clock_t clock;
da4a1efa 8591 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8592
8593 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8594 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8595 else
293623f7 8596 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8597
8598 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8599 if (IS_PINEVIEW(dev)) {
8600 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8601 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8602 } else {
8603 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8604 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8605 }
8606
a6c45cf0 8607 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8608 if (IS_PINEVIEW(dev))
8609 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8610 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8611 else
8612 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8613 DPLL_FPA01_P1_POST_DIV_SHIFT);
8614
8615 switch (dpll & DPLL_MODE_MASK) {
8616 case DPLLB_MODE_DAC_SERIAL:
8617 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8618 5 : 10;
8619 break;
8620 case DPLLB_MODE_LVDS:
8621 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8622 7 : 14;
8623 break;
8624 default:
28c97730 8625 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8626 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8627 return;
79e53945
JB
8628 }
8629
ac58c3f0 8630 if (IS_PINEVIEW(dev))
da4a1efa 8631 pineview_clock(refclk, &clock);
ac58c3f0 8632 else
da4a1efa 8633 i9xx_clock(refclk, &clock);
79e53945 8634 } else {
0fb58223 8635 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8636 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8637
8638 if (is_lvds) {
8639 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8640 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8641
8642 if (lvds & LVDS_CLKB_POWER_UP)
8643 clock.p2 = 7;
8644 else
8645 clock.p2 = 14;
79e53945
JB
8646 } else {
8647 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8648 clock.p1 = 2;
8649 else {
8650 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8651 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8652 }
8653 if (dpll & PLL_P2_DIVIDE_BY_4)
8654 clock.p2 = 4;
8655 else
8656 clock.p2 = 2;
79e53945 8657 }
da4a1efa
VS
8658
8659 i9xx_clock(refclk, &clock);
79e53945
JB
8660 }
8661
18442d08
VS
8662 /*
8663 * This value includes pixel_multiplier. We will use
241bfc38 8664 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8665 * encoder's get_config() function.
8666 */
8667 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8668}
8669
6878da05
VS
8670int intel_dotclock_calculate(int link_freq,
8671 const struct intel_link_m_n *m_n)
f1f644dc 8672{
f1f644dc
JB
8673 /*
8674 * The calculation for the data clock is:
1041a02f 8675 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8676 * But we want to avoid losing precison if possible, so:
1041a02f 8677 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8678 *
8679 * and the link clock is simpler:
1041a02f 8680 * link_clock = (m * link_clock) / n
f1f644dc
JB
8681 */
8682
6878da05
VS
8683 if (!m_n->link_n)
8684 return 0;
f1f644dc 8685
6878da05
VS
8686 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8687}
f1f644dc 8688
18442d08
VS
8689static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8690 struct intel_crtc_config *pipe_config)
6878da05
VS
8691{
8692 struct drm_device *dev = crtc->base.dev;
79e53945 8693
18442d08
VS
8694 /* read out port_clock from the DPLL */
8695 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8696
f1f644dc 8697 /*
18442d08 8698 * This value does not include pixel_multiplier.
241bfc38 8699 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8700 * agree once we know their relationship in the encoder's
8701 * get_config() function.
79e53945 8702 */
241bfc38 8703 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8704 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8705 &pipe_config->fdi_m_n);
79e53945
JB
8706}
8707
8708/** Returns the currently programmed mode of the given pipe. */
8709struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8710 struct drm_crtc *crtc)
8711{
548f245b 8712 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8714 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8715 struct drm_display_mode *mode;
f1f644dc 8716 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8717 int htot = I915_READ(HTOTAL(cpu_transcoder));
8718 int hsync = I915_READ(HSYNC(cpu_transcoder));
8719 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8720 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8721 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8722
8723 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8724 if (!mode)
8725 return NULL;
8726
f1f644dc
JB
8727 /*
8728 * Construct a pipe_config sufficient for getting the clock info
8729 * back out of crtc_clock_get.
8730 *
8731 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8732 * to use a real value here instead.
8733 */
293623f7 8734 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8735 pipe_config.pixel_multiplier = 1;
293623f7
VS
8736 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8737 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8738 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8739 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8740
773ae034 8741 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8742 mode->hdisplay = (htot & 0xffff) + 1;
8743 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8744 mode->hsync_start = (hsync & 0xffff) + 1;
8745 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8746 mode->vdisplay = (vtot & 0xffff) + 1;
8747 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8748 mode->vsync_start = (vsync & 0xffff) + 1;
8749 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8750
8751 drm_mode_set_name(mode);
79e53945
JB
8752
8753 return mode;
8754}
8755
cc36513c
DV
8756static void intel_increase_pllclock(struct drm_device *dev,
8757 enum pipe pipe)
652c393a 8758{
fbee40df 8759 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8760 int dpll_reg = DPLL(pipe);
8761 int dpll;
652c393a 8762
bad720ff 8763 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8764 return;
8765
8766 if (!dev_priv->lvds_downclock_avail)
8767 return;
8768
dbdc6479 8769 dpll = I915_READ(dpll_reg);
652c393a 8770 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8771 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8772
8ac5a6d5 8773 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8774
8775 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8776 I915_WRITE(dpll_reg, dpll);
9d0498a2 8777 intel_wait_for_vblank(dev, pipe);
dbdc6479 8778
652c393a
JB
8779 dpll = I915_READ(dpll_reg);
8780 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8781 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8782 }
652c393a
JB
8783}
8784
8785static void intel_decrease_pllclock(struct drm_crtc *crtc)
8786{
8787 struct drm_device *dev = crtc->dev;
fbee40df 8788 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8790
bad720ff 8791 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8792 return;
8793
8794 if (!dev_priv->lvds_downclock_avail)
8795 return;
8796
8797 /*
8798 * Since this is called by a timer, we should never get here in
8799 * the manual case.
8800 */
8801 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8802 int pipe = intel_crtc->pipe;
8803 int dpll_reg = DPLL(pipe);
8804 int dpll;
f6e5b160 8805
44d98a61 8806 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8807
8ac5a6d5 8808 assert_panel_unlocked(dev_priv, pipe);
652c393a 8809
dc257cf1 8810 dpll = I915_READ(dpll_reg);
652c393a
JB
8811 dpll |= DISPLAY_RATE_SELECT_FPA1;
8812 I915_WRITE(dpll_reg, dpll);
9d0498a2 8813 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8814 dpll = I915_READ(dpll_reg);
8815 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8816 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8817 }
8818
8819}
8820
f047e395
CW
8821void intel_mark_busy(struct drm_device *dev)
8822{
c67a470b
PZ
8823 struct drm_i915_private *dev_priv = dev->dev_private;
8824
f62a0076
CW
8825 if (dev_priv->mm.busy)
8826 return;
8827
43694d69 8828 intel_runtime_pm_get(dev_priv);
c67a470b 8829 i915_update_gfx_val(dev_priv);
f62a0076 8830 dev_priv->mm.busy = true;
f047e395
CW
8831}
8832
8833void intel_mark_idle(struct drm_device *dev)
652c393a 8834{
c67a470b 8835 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8836 struct drm_crtc *crtc;
652c393a 8837
f62a0076
CW
8838 if (!dev_priv->mm.busy)
8839 return;
8840
8841 dev_priv->mm.busy = false;
8842
d330a953 8843 if (!i915.powersave)
bb4cdd53 8844 goto out;
652c393a 8845
70e1e0ec 8846 for_each_crtc(dev, crtc) {
f4510a27 8847 if (!crtc->primary->fb)
652c393a
JB
8848 continue;
8849
725a5b54 8850 intel_decrease_pllclock(crtc);
652c393a 8851 }
b29c19b6 8852
3d13ef2e 8853 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8854 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8855
8856out:
43694d69 8857 intel_runtime_pm_put(dev_priv);
652c393a
JB
8858}
8859
7c8f8a70 8860
f99d7069
DV
8861/**
8862 * intel_mark_fb_busy - mark given planes as busy
8863 * @dev: DRM device
8864 * @frontbuffer_bits: bits for the affected planes
8865 * @ring: optional ring for asynchronous commands
8866 *
8867 * This function gets called every time the screen contents change. It can be
8868 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8869 */
8870static void intel_mark_fb_busy(struct drm_device *dev,
8871 unsigned frontbuffer_bits,
8872 struct intel_engine_cs *ring)
652c393a 8873{
cc36513c 8874 enum pipe pipe;
652c393a 8875
d330a953 8876 if (!i915.powersave)
acb87dfb
CW
8877 return;
8878
cc36513c 8879 for_each_pipe(pipe) {
f99d7069 8880 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8881 continue;
8882
cc36513c 8883 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8884 if (ring && intel_fbc_enabled(dev))
8885 ring->fbc_dirty = true;
652c393a
JB
8886 }
8887}
8888
f99d7069
DV
8889/**
8890 * intel_fb_obj_invalidate - invalidate frontbuffer object
8891 * @obj: GEM object to invalidate
8892 * @ring: set for asynchronous rendering
8893 *
8894 * This function gets called every time rendering on the given object starts and
8895 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8896 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8897 * until the rendering completes or a flip on this frontbuffer plane is
8898 * scheduled.
8899 */
8900void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8901 struct intel_engine_cs *ring)
8902{
8903 struct drm_device *dev = obj->base.dev;
8904 struct drm_i915_private *dev_priv = dev->dev_private;
8905
8906 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8907
8908 if (!obj->frontbuffer_bits)
8909 return;
8910
8911 if (ring) {
8912 mutex_lock(&dev_priv->fb_tracking.lock);
8913 dev_priv->fb_tracking.busy_bits
8914 |= obj->frontbuffer_bits;
8915 dev_priv->fb_tracking.flip_bits
8916 &= ~obj->frontbuffer_bits;
8917 mutex_unlock(&dev_priv->fb_tracking.lock);
8918 }
8919
8920 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8921
8922 intel_edp_psr_exit(dev);
8923}
8924
8925/**
8926 * intel_frontbuffer_flush - flush frontbuffer
8927 * @dev: DRM device
8928 * @frontbuffer_bits: frontbuffer plane tracking bits
8929 *
8930 * This function gets called every time rendering on the given planes has
8931 * completed and frontbuffer caching can be started again. Flushes will get
8932 * delayed if they're blocked by some oustanding asynchronous rendering.
8933 *
8934 * Can be called without any locks held.
8935 */
8936void intel_frontbuffer_flush(struct drm_device *dev,
8937 unsigned frontbuffer_bits)
8938{
8939 struct drm_i915_private *dev_priv = dev->dev_private;
8940
8941 /* Delay flushing when rings are still busy.*/
8942 mutex_lock(&dev_priv->fb_tracking.lock);
8943 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8944 mutex_unlock(&dev_priv->fb_tracking.lock);
8945
8946 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8947
8948 intel_edp_psr_exit(dev);
8949}
8950
8951/**
8952 * intel_fb_obj_flush - flush frontbuffer object
8953 * @obj: GEM object to flush
8954 * @retire: set when retiring asynchronous rendering
8955 *
8956 * This function gets called every time rendering on the given object has
8957 * completed and frontbuffer caching can be started again. If @retire is true
8958 * then any delayed flushes will be unblocked.
8959 */
8960void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8961 bool retire)
8962{
8963 struct drm_device *dev = obj->base.dev;
8964 struct drm_i915_private *dev_priv = dev->dev_private;
8965 unsigned frontbuffer_bits;
8966
8967 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8968
8969 if (!obj->frontbuffer_bits)
8970 return;
8971
8972 frontbuffer_bits = obj->frontbuffer_bits;
8973
8974 if (retire) {
8975 mutex_lock(&dev_priv->fb_tracking.lock);
8976 /* Filter out new bits since rendering started. */
8977 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8978
8979 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8980 mutex_unlock(&dev_priv->fb_tracking.lock);
8981 }
8982
8983 intel_frontbuffer_flush(dev, frontbuffer_bits);
8984}
8985
8986/**
8987 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8988 * @dev: DRM device
8989 * @frontbuffer_bits: frontbuffer plane tracking bits
8990 *
8991 * This function gets called after scheduling a flip on @obj. The actual
8992 * frontbuffer flushing will be delayed until completion is signalled with
8993 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8994 * flush will be cancelled.
8995 *
8996 * Can be called without any locks held.
8997 */
8998void intel_frontbuffer_flip_prepare(struct drm_device *dev,
8999 unsigned frontbuffer_bits)
9000{
9001 struct drm_i915_private *dev_priv = dev->dev_private;
9002
9003 mutex_lock(&dev_priv->fb_tracking.lock);
9004 dev_priv->fb_tracking.flip_bits
9005 |= frontbuffer_bits;
9006 mutex_unlock(&dev_priv->fb_tracking.lock);
9007}
9008
9009/**
9010 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9011 * @dev: DRM device
9012 * @frontbuffer_bits: frontbuffer plane tracking bits
9013 *
9014 * This function gets called after the flip has been latched and will complete
9015 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9016 *
9017 * Can be called without any locks held.
9018 */
9019void intel_frontbuffer_flip_complete(struct drm_device *dev,
9020 unsigned frontbuffer_bits)
9021{
9022 struct drm_i915_private *dev_priv = dev->dev_private;
9023
9024 mutex_lock(&dev_priv->fb_tracking.lock);
9025 /* Mask any cancelled flips. */
9026 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9027 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9028 mutex_unlock(&dev_priv->fb_tracking.lock);
9029
9030 intel_frontbuffer_flush(dev, frontbuffer_bits);
9031}
9032
79e53945
JB
9033static void intel_crtc_destroy(struct drm_crtc *crtc)
9034{
9035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9036 struct drm_device *dev = crtc->dev;
9037 struct intel_unpin_work *work;
9038 unsigned long flags;
9039
9040 spin_lock_irqsave(&dev->event_lock, flags);
9041 work = intel_crtc->unpin_work;
9042 intel_crtc->unpin_work = NULL;
9043 spin_unlock_irqrestore(&dev->event_lock, flags);
9044
9045 if (work) {
9046 cancel_work_sync(&work->work);
9047 kfree(work);
9048 }
79e53945
JB
9049
9050 drm_crtc_cleanup(crtc);
67e77c5a 9051
79e53945
JB
9052 kfree(intel_crtc);
9053}
9054
6b95a207
KH
9055static void intel_unpin_work_fn(struct work_struct *__work)
9056{
9057 struct intel_unpin_work *work =
9058 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9059 struct drm_device *dev = work->crtc->dev;
f99d7069 9060 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9061
b4a98e57 9062 mutex_lock(&dev->struct_mutex);
1690e1eb 9063 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9064 drm_gem_object_unreference(&work->pending_flip_obj->base);
9065 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9066
b4a98e57
CW
9067 intel_update_fbc(dev);
9068 mutex_unlock(&dev->struct_mutex);
9069
f99d7069
DV
9070 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9071
b4a98e57
CW
9072 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9073 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9074
6b95a207
KH
9075 kfree(work);
9076}
9077
1afe3e9d 9078static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9079 struct drm_crtc *crtc)
6b95a207 9080{
fbee40df 9081 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9083 struct intel_unpin_work *work;
6b95a207
KH
9084 unsigned long flags;
9085
9086 /* Ignore early vblank irqs */
9087 if (intel_crtc == NULL)
9088 return;
9089
9090 spin_lock_irqsave(&dev->event_lock, flags);
9091 work = intel_crtc->unpin_work;
e7d841ca
CW
9092
9093 /* Ensure we don't miss a work->pending update ... */
9094 smp_rmb();
9095
9096 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9097 spin_unlock_irqrestore(&dev->event_lock, flags);
9098 return;
9099 }
9100
e7d841ca
CW
9101 /* and that the unpin work is consistent wrt ->pending. */
9102 smp_rmb();
9103
6b95a207 9104 intel_crtc->unpin_work = NULL;
6b95a207 9105
45a066eb
RC
9106 if (work->event)
9107 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9108
87b6b101 9109 drm_crtc_vblank_put(crtc);
0af7e4df 9110
6b95a207
KH
9111 spin_unlock_irqrestore(&dev->event_lock, flags);
9112
2c10d571 9113 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9114
9115 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9116
9117 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9118}
9119
1afe3e9d
JB
9120void intel_finish_page_flip(struct drm_device *dev, int pipe)
9121{
fbee40df 9122 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9123 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9124
49b14a5c 9125 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9126}
9127
9128void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9129{
fbee40df 9130 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9131 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9132
49b14a5c 9133 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9134}
9135
75f7f3ec
VS
9136/* Is 'a' after or equal to 'b'? */
9137static bool g4x_flip_count_after_eq(u32 a, u32 b)
9138{
9139 return !((a - b) & 0x80000000);
9140}
9141
9142static bool page_flip_finished(struct intel_crtc *crtc)
9143{
9144 struct drm_device *dev = crtc->base.dev;
9145 struct drm_i915_private *dev_priv = dev->dev_private;
9146
9147 /*
9148 * The relevant registers doen't exist on pre-ctg.
9149 * As the flip done interrupt doesn't trigger for mmio
9150 * flips on gmch platforms, a flip count check isn't
9151 * really needed there. But since ctg has the registers,
9152 * include it in the check anyway.
9153 */
9154 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9155 return true;
9156
9157 /*
9158 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9159 * used the same base address. In that case the mmio flip might
9160 * have completed, but the CS hasn't even executed the flip yet.
9161 *
9162 * A flip count check isn't enough as the CS might have updated
9163 * the base address just after start of vblank, but before we
9164 * managed to process the interrupt. This means we'd complete the
9165 * CS flip too soon.
9166 *
9167 * Combining both checks should get us a good enough result. It may
9168 * still happen that the CS flip has been executed, but has not
9169 * yet actually completed. But in case the base address is the same
9170 * anyway, we don't really care.
9171 */
9172 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9173 crtc->unpin_work->gtt_offset &&
9174 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9175 crtc->unpin_work->flip_count);
9176}
9177
6b95a207
KH
9178void intel_prepare_page_flip(struct drm_device *dev, int plane)
9179{
fbee40df 9180 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9181 struct intel_crtc *intel_crtc =
9182 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9183 unsigned long flags;
9184
e7d841ca
CW
9185 /* NB: An MMIO update of the plane base pointer will also
9186 * generate a page-flip completion irq, i.e. every modeset
9187 * is also accompanied by a spurious intel_prepare_page_flip().
9188 */
6b95a207 9189 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9190 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9191 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9192 spin_unlock_irqrestore(&dev->event_lock, flags);
9193}
9194
eba905b2 9195static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9196{
9197 /* Ensure that the work item is consistent when activating it ... */
9198 smp_wmb();
9199 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9200 /* and that it is marked active as soon as the irq could fire. */
9201 smp_wmb();
9202}
9203
8c9f3aaf
JB
9204static int intel_gen2_queue_flip(struct drm_device *dev,
9205 struct drm_crtc *crtc,
9206 struct drm_framebuffer *fb,
ed8d1975 9207 struct drm_i915_gem_object *obj,
a4872ba6 9208 struct intel_engine_cs *ring,
ed8d1975 9209 uint32_t flags)
8c9f3aaf 9210{
8c9f3aaf 9211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9212 u32 flip_mask;
9213 int ret;
9214
6d90c952 9215 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9216 if (ret)
4fa62c89 9217 return ret;
8c9f3aaf
JB
9218
9219 /* Can't queue multiple flips, so wait for the previous
9220 * one to finish before executing the next.
9221 */
9222 if (intel_crtc->plane)
9223 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9224 else
9225 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9226 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9227 intel_ring_emit(ring, MI_NOOP);
9228 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9229 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9230 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9231 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9232 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9233
9234 intel_mark_page_flip_active(intel_crtc);
09246732 9235 __intel_ring_advance(ring);
83d4092b 9236 return 0;
8c9f3aaf
JB
9237}
9238
9239static int intel_gen3_queue_flip(struct drm_device *dev,
9240 struct drm_crtc *crtc,
9241 struct drm_framebuffer *fb,
ed8d1975 9242 struct drm_i915_gem_object *obj,
a4872ba6 9243 struct intel_engine_cs *ring,
ed8d1975 9244 uint32_t flags)
8c9f3aaf 9245{
8c9f3aaf 9246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9247 u32 flip_mask;
9248 int ret;
9249
6d90c952 9250 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9251 if (ret)
4fa62c89 9252 return ret;
8c9f3aaf
JB
9253
9254 if (intel_crtc->plane)
9255 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9256 else
9257 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9258 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9259 intel_ring_emit(ring, MI_NOOP);
9260 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9261 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9262 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9263 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9264 intel_ring_emit(ring, MI_NOOP);
9265
e7d841ca 9266 intel_mark_page_flip_active(intel_crtc);
09246732 9267 __intel_ring_advance(ring);
83d4092b 9268 return 0;
8c9f3aaf
JB
9269}
9270
9271static int intel_gen4_queue_flip(struct drm_device *dev,
9272 struct drm_crtc *crtc,
9273 struct drm_framebuffer *fb,
ed8d1975 9274 struct drm_i915_gem_object *obj,
a4872ba6 9275 struct intel_engine_cs *ring,
ed8d1975 9276 uint32_t flags)
8c9f3aaf
JB
9277{
9278 struct drm_i915_private *dev_priv = dev->dev_private;
9279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9280 uint32_t pf, pipesrc;
9281 int ret;
9282
6d90c952 9283 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9284 if (ret)
4fa62c89 9285 return ret;
8c9f3aaf
JB
9286
9287 /* i965+ uses the linear or tiled offsets from the
9288 * Display Registers (which do not change across a page-flip)
9289 * so we need only reprogram the base address.
9290 */
6d90c952
DV
9291 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9292 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9293 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9294 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9295 obj->tiling_mode);
8c9f3aaf
JB
9296
9297 /* XXX Enabling the panel-fitter across page-flip is so far
9298 * untested on non-native modes, so ignore it for now.
9299 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9300 */
9301 pf = 0;
9302 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9303 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9304
9305 intel_mark_page_flip_active(intel_crtc);
09246732 9306 __intel_ring_advance(ring);
83d4092b 9307 return 0;
8c9f3aaf
JB
9308}
9309
9310static int intel_gen6_queue_flip(struct drm_device *dev,
9311 struct drm_crtc *crtc,
9312 struct drm_framebuffer *fb,
ed8d1975 9313 struct drm_i915_gem_object *obj,
a4872ba6 9314 struct intel_engine_cs *ring,
ed8d1975 9315 uint32_t flags)
8c9f3aaf
JB
9316{
9317 struct drm_i915_private *dev_priv = dev->dev_private;
9318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9319 uint32_t pf, pipesrc;
9320 int ret;
9321
6d90c952 9322 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9323 if (ret)
4fa62c89 9324 return ret;
8c9f3aaf 9325
6d90c952
DV
9326 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9327 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9328 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9329 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9330
dc257cf1
DV
9331 /* Contrary to the suggestions in the documentation,
9332 * "Enable Panel Fitter" does not seem to be required when page
9333 * flipping with a non-native mode, and worse causes a normal
9334 * modeset to fail.
9335 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9336 */
9337 pf = 0;
8c9f3aaf 9338 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9339 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9340
9341 intel_mark_page_flip_active(intel_crtc);
09246732 9342 __intel_ring_advance(ring);
83d4092b 9343 return 0;
8c9f3aaf
JB
9344}
9345
7c9017e5
JB
9346static int intel_gen7_queue_flip(struct drm_device *dev,
9347 struct drm_crtc *crtc,
9348 struct drm_framebuffer *fb,
ed8d1975 9349 struct drm_i915_gem_object *obj,
a4872ba6 9350 struct intel_engine_cs *ring,
ed8d1975 9351 uint32_t flags)
7c9017e5 9352{
7c9017e5 9353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9354 uint32_t plane_bit = 0;
ffe74d75
CW
9355 int len, ret;
9356
eba905b2 9357 switch (intel_crtc->plane) {
cb05d8de
DV
9358 case PLANE_A:
9359 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9360 break;
9361 case PLANE_B:
9362 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9363 break;
9364 case PLANE_C:
9365 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9366 break;
9367 default:
9368 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9369 return -ENODEV;
cb05d8de
DV
9370 }
9371
ffe74d75 9372 len = 4;
f476828a 9373 if (ring->id == RCS) {
ffe74d75 9374 len += 6;
f476828a
DL
9375 /*
9376 * On Gen 8, SRM is now taking an extra dword to accommodate
9377 * 48bits addresses, and we need a NOOP for the batch size to
9378 * stay even.
9379 */
9380 if (IS_GEN8(dev))
9381 len += 2;
9382 }
ffe74d75 9383
f66fab8e
VS
9384 /*
9385 * BSpec MI_DISPLAY_FLIP for IVB:
9386 * "The full packet must be contained within the same cache line."
9387 *
9388 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9389 * cacheline, if we ever start emitting more commands before
9390 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9391 * then do the cacheline alignment, and finally emit the
9392 * MI_DISPLAY_FLIP.
9393 */
9394 ret = intel_ring_cacheline_align(ring);
9395 if (ret)
4fa62c89 9396 return ret;
f66fab8e 9397
ffe74d75 9398 ret = intel_ring_begin(ring, len);
7c9017e5 9399 if (ret)
4fa62c89 9400 return ret;
7c9017e5 9401
ffe74d75
CW
9402 /* Unmask the flip-done completion message. Note that the bspec says that
9403 * we should do this for both the BCS and RCS, and that we must not unmask
9404 * more than one flip event at any time (or ensure that one flip message
9405 * can be sent by waiting for flip-done prior to queueing new flips).
9406 * Experimentation says that BCS works despite DERRMR masking all
9407 * flip-done completion events and that unmasking all planes at once
9408 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9409 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9410 */
9411 if (ring->id == RCS) {
9412 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9413 intel_ring_emit(ring, DERRMR);
9414 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9415 DERRMR_PIPEB_PRI_FLIP_DONE |
9416 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9417 if (IS_GEN8(dev))
9418 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9419 MI_SRM_LRM_GLOBAL_GTT);
9420 else
9421 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9422 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9423 intel_ring_emit(ring, DERRMR);
9424 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9425 if (IS_GEN8(dev)) {
9426 intel_ring_emit(ring, 0);
9427 intel_ring_emit(ring, MI_NOOP);
9428 }
ffe74d75
CW
9429 }
9430
cb05d8de 9431 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9432 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9433 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9434 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9435
9436 intel_mark_page_flip_active(intel_crtc);
09246732 9437 __intel_ring_advance(ring);
83d4092b 9438 return 0;
7c9017e5
JB
9439}
9440
84c33a64
SG
9441static bool use_mmio_flip(struct intel_engine_cs *ring,
9442 struct drm_i915_gem_object *obj)
9443{
9444 /*
9445 * This is not being used for older platforms, because
9446 * non-availability of flip done interrupt forces us to use
9447 * CS flips. Older platforms derive flip done using some clever
9448 * tricks involving the flip_pending status bits and vblank irqs.
9449 * So using MMIO flips there would disrupt this mechanism.
9450 */
9451
9452 if (INTEL_INFO(ring->dev)->gen < 5)
9453 return false;
9454
9455 if (i915.use_mmio_flip < 0)
9456 return false;
9457 else if (i915.use_mmio_flip > 0)
9458 return true;
9459 else
9460 return ring != obj->ring;
9461}
9462
9463static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9464{
9465 struct drm_device *dev = intel_crtc->base.dev;
9466 struct drm_i915_private *dev_priv = dev->dev_private;
9467 struct intel_framebuffer *intel_fb =
9468 to_intel_framebuffer(intel_crtc->base.primary->fb);
9469 struct drm_i915_gem_object *obj = intel_fb->obj;
9470 u32 dspcntr;
9471 u32 reg;
9472
9473 intel_mark_page_flip_active(intel_crtc);
9474
9475 reg = DSPCNTR(intel_crtc->plane);
9476 dspcntr = I915_READ(reg);
9477
9478 if (INTEL_INFO(dev)->gen >= 4) {
9479 if (obj->tiling_mode != I915_TILING_NONE)
9480 dspcntr |= DISPPLANE_TILED;
9481 else
9482 dspcntr &= ~DISPPLANE_TILED;
9483 }
9484 I915_WRITE(reg, dspcntr);
9485
9486 I915_WRITE(DSPSURF(intel_crtc->plane),
9487 intel_crtc->unpin_work->gtt_offset);
9488 POSTING_READ(DSPSURF(intel_crtc->plane));
9489}
9490
9491static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9492{
9493 struct intel_engine_cs *ring;
9494 int ret;
9495
9496 lockdep_assert_held(&obj->base.dev->struct_mutex);
9497
9498 if (!obj->last_write_seqno)
9499 return 0;
9500
9501 ring = obj->ring;
9502
9503 if (i915_seqno_passed(ring->get_seqno(ring, true),
9504 obj->last_write_seqno))
9505 return 0;
9506
9507 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9508 if (ret)
9509 return ret;
9510
9511 if (WARN_ON(!ring->irq_get(ring)))
9512 return 0;
9513
9514 return 1;
9515}
9516
9517void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9518{
9519 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9520 struct intel_crtc *intel_crtc;
9521 unsigned long irq_flags;
9522 u32 seqno;
9523
9524 seqno = ring->get_seqno(ring, false);
9525
9526 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9527 for_each_intel_crtc(ring->dev, intel_crtc) {
9528 struct intel_mmio_flip *mmio_flip;
9529
9530 mmio_flip = &intel_crtc->mmio_flip;
9531 if (mmio_flip->seqno == 0)
9532 continue;
9533
9534 if (ring->id != mmio_flip->ring_id)
9535 continue;
9536
9537 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9538 intel_do_mmio_flip(intel_crtc);
9539 mmio_flip->seqno = 0;
9540 ring->irq_put(ring);
9541 }
9542 }
9543 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9544}
9545
9546static int intel_queue_mmio_flip(struct drm_device *dev,
9547 struct drm_crtc *crtc,
9548 struct drm_framebuffer *fb,
9549 struct drm_i915_gem_object *obj,
9550 struct intel_engine_cs *ring,
9551 uint32_t flags)
9552{
9553 struct drm_i915_private *dev_priv = dev->dev_private;
9554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9555 unsigned long irq_flags;
9556 int ret;
9557
9558 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9559 return -EBUSY;
9560
9561 ret = intel_postpone_flip(obj);
9562 if (ret < 0)
9563 return ret;
9564 if (ret == 0) {
9565 intel_do_mmio_flip(intel_crtc);
9566 return 0;
9567 }
9568
9569 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9570 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9571 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9572 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9573
9574 /*
9575 * Double check to catch cases where irq fired before
9576 * mmio flip data was ready
9577 */
9578 intel_notify_mmio_flip(obj->ring);
9579 return 0;
9580}
9581
8c9f3aaf
JB
9582static int intel_default_queue_flip(struct drm_device *dev,
9583 struct drm_crtc *crtc,
9584 struct drm_framebuffer *fb,
ed8d1975 9585 struct drm_i915_gem_object *obj,
a4872ba6 9586 struct intel_engine_cs *ring,
ed8d1975 9587 uint32_t flags)
8c9f3aaf
JB
9588{
9589 return -ENODEV;
9590}
9591
6b95a207
KH
9592static int intel_crtc_page_flip(struct drm_crtc *crtc,
9593 struct drm_framebuffer *fb,
ed8d1975
KP
9594 struct drm_pending_vblank_event *event,
9595 uint32_t page_flip_flags)
6b95a207
KH
9596{
9597 struct drm_device *dev = crtc->dev;
9598 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9599 struct drm_framebuffer *old_fb = crtc->primary->fb;
4a35f83b 9600 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
6b95a207 9601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9602 enum pipe pipe = intel_crtc->pipe;
6b95a207 9603 struct intel_unpin_work *work;
a4872ba6 9604 struct intel_engine_cs *ring;
8c9f3aaf 9605 unsigned long flags;
52e68630 9606 int ret;
6b95a207 9607
e6a595d2 9608 /* Can't change pixel format via MI display flips. */
f4510a27 9609 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9610 return -EINVAL;
9611
9612 /*
9613 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9614 * Note that pitch changes could also affect these register.
9615 */
9616 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9617 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9618 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9619 return -EINVAL;
9620
f900db47
CW
9621 if (i915_terminally_wedged(&dev_priv->gpu_error))
9622 goto out_hang;
9623
b14c5679 9624 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9625 if (work == NULL)
9626 return -ENOMEM;
9627
6b95a207 9628 work->event = event;
b4a98e57 9629 work->crtc = crtc;
4a35f83b 9630 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
6b95a207
KH
9631 INIT_WORK(&work->work, intel_unpin_work_fn);
9632
87b6b101 9633 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9634 if (ret)
9635 goto free_work;
9636
6b95a207
KH
9637 /* We borrow the event spin lock for protecting unpin_work */
9638 spin_lock_irqsave(&dev->event_lock, flags);
9639 if (intel_crtc->unpin_work) {
9640 spin_unlock_irqrestore(&dev->event_lock, flags);
9641 kfree(work);
87b6b101 9642 drm_crtc_vblank_put(crtc);
468f0b44
CW
9643
9644 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9645 return -EBUSY;
9646 }
9647 intel_crtc->unpin_work = work;
9648 spin_unlock_irqrestore(&dev->event_lock, flags);
9649
b4a98e57
CW
9650 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9651 flush_workqueue(dev_priv->wq);
9652
79158103
CW
9653 ret = i915_mutex_lock_interruptible(dev);
9654 if (ret)
9655 goto cleanup;
6b95a207 9656
75dfca80 9657 /* Reference the objects for the scheduled work. */
05394f39
CW
9658 drm_gem_object_reference(&work->old_fb_obj->base);
9659 drm_gem_object_reference(&obj->base);
6b95a207 9660
f4510a27 9661 crtc->primary->fb = fb;
96b099fd 9662
e1f99ce6 9663 work->pending_flip_obj = obj;
e1f99ce6 9664
4e5359cd
SF
9665 work->enable_stall_check = true;
9666
b4a98e57 9667 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9668 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9669
75f7f3ec 9670 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9671 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9672
4fa62c89
VS
9673 if (IS_VALLEYVIEW(dev)) {
9674 ring = &dev_priv->ring[BCS];
9675 } else if (INTEL_INFO(dev)->gen >= 7) {
9676 ring = obj->ring;
9677 if (ring == NULL || ring->id != RCS)
9678 ring = &dev_priv->ring[BCS];
9679 } else {
9680 ring = &dev_priv->ring[RCS];
9681 }
9682
9683 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9684 if (ret)
9685 goto cleanup_pending;
6b95a207 9686
4fa62c89
VS
9687 work->gtt_offset =
9688 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9689
84c33a64
SG
9690 if (use_mmio_flip(ring, obj))
9691 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9692 page_flip_flags);
9693 else
9694 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9695 page_flip_flags);
4fa62c89
VS
9696 if (ret)
9697 goto cleanup_unpin;
9698
a071fa00
DV
9699 i915_gem_track_fb(work->old_fb_obj, obj,
9700 INTEL_FRONTBUFFER_PRIMARY(pipe));
9701
7782de3b 9702 intel_disable_fbc(dev);
f99d7069 9703 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9704 mutex_unlock(&dev->struct_mutex);
9705
e5510fac
JB
9706 trace_i915_flip_request(intel_crtc->plane, obj);
9707
6b95a207 9708 return 0;
96b099fd 9709
4fa62c89
VS
9710cleanup_unpin:
9711 intel_unpin_fb_obj(obj);
8c9f3aaf 9712cleanup_pending:
b4a98e57 9713 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9714 crtc->primary->fb = old_fb;
05394f39
CW
9715 drm_gem_object_unreference(&work->old_fb_obj->base);
9716 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9717 mutex_unlock(&dev->struct_mutex);
9718
79158103 9719cleanup:
96b099fd
CW
9720 spin_lock_irqsave(&dev->event_lock, flags);
9721 intel_crtc->unpin_work = NULL;
9722 spin_unlock_irqrestore(&dev->event_lock, flags);
9723
87b6b101 9724 drm_crtc_vblank_put(crtc);
7317c75e 9725free_work:
96b099fd
CW
9726 kfree(work);
9727
f900db47
CW
9728 if (ret == -EIO) {
9729out_hang:
9730 intel_crtc_wait_for_pending_flips(crtc);
9731 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9732 if (ret == 0 && event)
a071fa00 9733 drm_send_vblank_event(dev, pipe, event);
f900db47 9734 }
96b099fd 9735 return ret;
6b95a207
KH
9736}
9737
f6e5b160 9738static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9739 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9740 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9741};
9742
9a935856
DV
9743/**
9744 * intel_modeset_update_staged_output_state
9745 *
9746 * Updates the staged output configuration state, e.g. after we've read out the
9747 * current hw state.
9748 */
9749static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9750{
7668851f 9751 struct intel_crtc *crtc;
9a935856
DV
9752 struct intel_encoder *encoder;
9753 struct intel_connector *connector;
f6e5b160 9754
9a935856
DV
9755 list_for_each_entry(connector, &dev->mode_config.connector_list,
9756 base.head) {
9757 connector->new_encoder =
9758 to_intel_encoder(connector->base.encoder);
9759 }
f6e5b160 9760
9a935856
DV
9761 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9762 base.head) {
9763 encoder->new_crtc =
9764 to_intel_crtc(encoder->base.crtc);
9765 }
7668851f 9766
d3fcc808 9767 for_each_intel_crtc(dev, crtc) {
7668851f 9768 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9769
9770 if (crtc->new_enabled)
9771 crtc->new_config = &crtc->config;
9772 else
9773 crtc->new_config = NULL;
7668851f 9774 }
f6e5b160
CW
9775}
9776
9a935856
DV
9777/**
9778 * intel_modeset_commit_output_state
9779 *
9780 * This function copies the stage display pipe configuration to the real one.
9781 */
9782static void intel_modeset_commit_output_state(struct drm_device *dev)
9783{
7668851f 9784 struct intel_crtc *crtc;
9a935856
DV
9785 struct intel_encoder *encoder;
9786 struct intel_connector *connector;
f6e5b160 9787
9a935856
DV
9788 list_for_each_entry(connector, &dev->mode_config.connector_list,
9789 base.head) {
9790 connector->base.encoder = &connector->new_encoder->base;
9791 }
f6e5b160 9792
9a935856
DV
9793 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9794 base.head) {
9795 encoder->base.crtc = &encoder->new_crtc->base;
9796 }
7668851f 9797
d3fcc808 9798 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9799 crtc->base.enabled = crtc->new_enabled;
9800 }
9a935856
DV
9801}
9802
050f7aeb 9803static void
eba905b2 9804connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9805 struct intel_crtc_config *pipe_config)
9806{
9807 int bpp = pipe_config->pipe_bpp;
9808
9809 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9810 connector->base.base.id,
c23cc417 9811 connector->base.name);
050f7aeb
DV
9812
9813 /* Don't use an invalid EDID bpc value */
9814 if (connector->base.display_info.bpc &&
9815 connector->base.display_info.bpc * 3 < bpp) {
9816 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9817 bpp, connector->base.display_info.bpc*3);
9818 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9819 }
9820
9821 /* Clamp bpp to 8 on screens without EDID 1.4 */
9822 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9823 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9824 bpp);
9825 pipe_config->pipe_bpp = 24;
9826 }
9827}
9828
4e53c2e0 9829static int
050f7aeb
DV
9830compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9831 struct drm_framebuffer *fb,
9832 struct intel_crtc_config *pipe_config)
4e53c2e0 9833{
050f7aeb
DV
9834 struct drm_device *dev = crtc->base.dev;
9835 struct intel_connector *connector;
4e53c2e0
DV
9836 int bpp;
9837
d42264b1
DV
9838 switch (fb->pixel_format) {
9839 case DRM_FORMAT_C8:
4e53c2e0
DV
9840 bpp = 8*3; /* since we go through a colormap */
9841 break;
d42264b1
DV
9842 case DRM_FORMAT_XRGB1555:
9843 case DRM_FORMAT_ARGB1555:
9844 /* checked in intel_framebuffer_init already */
9845 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9846 return -EINVAL;
9847 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9848 bpp = 6*3; /* min is 18bpp */
9849 break;
d42264b1
DV
9850 case DRM_FORMAT_XBGR8888:
9851 case DRM_FORMAT_ABGR8888:
9852 /* checked in intel_framebuffer_init already */
9853 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9854 return -EINVAL;
9855 case DRM_FORMAT_XRGB8888:
9856 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9857 bpp = 8*3;
9858 break;
d42264b1
DV
9859 case DRM_FORMAT_XRGB2101010:
9860 case DRM_FORMAT_ARGB2101010:
9861 case DRM_FORMAT_XBGR2101010:
9862 case DRM_FORMAT_ABGR2101010:
9863 /* checked in intel_framebuffer_init already */
9864 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9865 return -EINVAL;
4e53c2e0
DV
9866 bpp = 10*3;
9867 break;
baba133a 9868 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9869 default:
9870 DRM_DEBUG_KMS("unsupported depth\n");
9871 return -EINVAL;
9872 }
9873
4e53c2e0
DV
9874 pipe_config->pipe_bpp = bpp;
9875
9876 /* Clamp display bpp to EDID value */
9877 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9878 base.head) {
1b829e05
DV
9879 if (!connector->new_encoder ||
9880 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9881 continue;
9882
050f7aeb 9883 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9884 }
9885
9886 return bpp;
9887}
9888
644db711
DV
9889static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9890{
9891 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9892 "type: 0x%x flags: 0x%x\n",
1342830c 9893 mode->crtc_clock,
644db711
DV
9894 mode->crtc_hdisplay, mode->crtc_hsync_start,
9895 mode->crtc_hsync_end, mode->crtc_htotal,
9896 mode->crtc_vdisplay, mode->crtc_vsync_start,
9897 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9898}
9899
c0b03411
DV
9900static void intel_dump_pipe_config(struct intel_crtc *crtc,
9901 struct intel_crtc_config *pipe_config,
9902 const char *context)
9903{
9904 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9905 context, pipe_name(crtc->pipe));
9906
9907 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9908 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9909 pipe_config->pipe_bpp, pipe_config->dither);
9910 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9911 pipe_config->has_pch_encoder,
9912 pipe_config->fdi_lanes,
9913 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9914 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9915 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9916 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9917 pipe_config->has_dp_encoder,
9918 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9919 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9920 pipe_config->dp_m_n.tu);
c0b03411
DV
9921 DRM_DEBUG_KMS("requested mode:\n");
9922 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9923 DRM_DEBUG_KMS("adjusted mode:\n");
9924 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9925 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9926 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9927 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9928 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9929 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9930 pipe_config->gmch_pfit.control,
9931 pipe_config->gmch_pfit.pgm_ratios,
9932 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9933 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9934 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9935 pipe_config->pch_pfit.size,
9936 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9937 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9938 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9939}
9940
bc079e8b
VS
9941static bool encoders_cloneable(const struct intel_encoder *a,
9942 const struct intel_encoder *b)
accfc0c5 9943{
bc079e8b
VS
9944 /* masks could be asymmetric, so check both ways */
9945 return a == b || (a->cloneable & (1 << b->type) &&
9946 b->cloneable & (1 << a->type));
9947}
9948
9949static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9950 struct intel_encoder *encoder)
9951{
9952 struct drm_device *dev = crtc->base.dev;
9953 struct intel_encoder *source_encoder;
9954
9955 list_for_each_entry(source_encoder,
9956 &dev->mode_config.encoder_list, base.head) {
9957 if (source_encoder->new_crtc != crtc)
9958 continue;
9959
9960 if (!encoders_cloneable(encoder, source_encoder))
9961 return false;
9962 }
9963
9964 return true;
9965}
9966
9967static bool check_encoder_cloning(struct intel_crtc *crtc)
9968{
9969 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9970 struct intel_encoder *encoder;
9971
bc079e8b
VS
9972 list_for_each_entry(encoder,
9973 &dev->mode_config.encoder_list, base.head) {
9974 if (encoder->new_crtc != crtc)
accfc0c5
DV
9975 continue;
9976
bc079e8b
VS
9977 if (!check_single_encoder_cloning(crtc, encoder))
9978 return false;
accfc0c5
DV
9979 }
9980
bc079e8b 9981 return true;
accfc0c5
DV
9982}
9983
b8cecdf5
DV
9984static struct intel_crtc_config *
9985intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9986 struct drm_framebuffer *fb,
b8cecdf5 9987 struct drm_display_mode *mode)
ee7b9f93 9988{
7758a113 9989 struct drm_device *dev = crtc->dev;
7758a113 9990 struct intel_encoder *encoder;
b8cecdf5 9991 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9992 int plane_bpp, ret = -EINVAL;
9993 bool retry = true;
ee7b9f93 9994
bc079e8b 9995 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9996 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9997 return ERR_PTR(-EINVAL);
9998 }
9999
b8cecdf5
DV
10000 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10001 if (!pipe_config)
7758a113
DV
10002 return ERR_PTR(-ENOMEM);
10003
b8cecdf5
DV
10004 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10005 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10006
e143a21c
DV
10007 pipe_config->cpu_transcoder =
10008 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10009 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10010
2960bc9c
ID
10011 /*
10012 * Sanitize sync polarity flags based on requested ones. If neither
10013 * positive or negative polarity is requested, treat this as meaning
10014 * negative polarity.
10015 */
10016 if (!(pipe_config->adjusted_mode.flags &
10017 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10018 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10019
10020 if (!(pipe_config->adjusted_mode.flags &
10021 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10022 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10023
050f7aeb
DV
10024 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10025 * plane pixel format and any sink constraints into account. Returns the
10026 * source plane bpp so that dithering can be selected on mismatches
10027 * after encoders and crtc also have had their say. */
10028 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10029 fb, pipe_config);
4e53c2e0
DV
10030 if (plane_bpp < 0)
10031 goto fail;
10032
e41a56be
VS
10033 /*
10034 * Determine the real pipe dimensions. Note that stereo modes can
10035 * increase the actual pipe size due to the frame doubling and
10036 * insertion of additional space for blanks between the frame. This
10037 * is stored in the crtc timings. We use the requested mode to do this
10038 * computation to clearly distinguish it from the adjusted mode, which
10039 * can be changed by the connectors in the below retry loop.
10040 */
10041 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10042 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10043 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10044
e29c22c0 10045encoder_retry:
ef1b460d 10046 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10047 pipe_config->port_clock = 0;
ef1b460d 10048 pipe_config->pixel_multiplier = 1;
ff9a6750 10049
135c81b8 10050 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10051 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10052
7758a113
DV
10053 /* Pass our mode to the connectors and the CRTC to give them a chance to
10054 * adjust it according to limitations or connector properties, and also
10055 * a chance to reject the mode entirely.
47f1c6c9 10056 */
7758a113
DV
10057 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10058 base.head) {
47f1c6c9 10059
7758a113
DV
10060 if (&encoder->new_crtc->base != crtc)
10061 continue;
7ae89233 10062
efea6e8e
DV
10063 if (!(encoder->compute_config(encoder, pipe_config))) {
10064 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10065 goto fail;
10066 }
ee7b9f93 10067 }
47f1c6c9 10068
ff9a6750
DV
10069 /* Set default port clock if not overwritten by the encoder. Needs to be
10070 * done afterwards in case the encoder adjusts the mode. */
10071 if (!pipe_config->port_clock)
241bfc38
DL
10072 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10073 * pipe_config->pixel_multiplier;
ff9a6750 10074
a43f6e0f 10075 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10076 if (ret < 0) {
7758a113
DV
10077 DRM_DEBUG_KMS("CRTC fixup failed\n");
10078 goto fail;
ee7b9f93 10079 }
e29c22c0
DV
10080
10081 if (ret == RETRY) {
10082 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10083 ret = -EINVAL;
10084 goto fail;
10085 }
10086
10087 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10088 retry = false;
10089 goto encoder_retry;
10090 }
10091
4e53c2e0
DV
10092 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10093 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10094 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10095
b8cecdf5 10096 return pipe_config;
7758a113 10097fail:
b8cecdf5 10098 kfree(pipe_config);
e29c22c0 10099 return ERR_PTR(ret);
ee7b9f93 10100}
47f1c6c9 10101
e2e1ed41
DV
10102/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10103 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10104static void
10105intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10106 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10107{
10108 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10109 struct drm_device *dev = crtc->dev;
10110 struct intel_encoder *encoder;
10111 struct intel_connector *connector;
10112 struct drm_crtc *tmp_crtc;
79e53945 10113
e2e1ed41 10114 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10115
e2e1ed41
DV
10116 /* Check which crtcs have changed outputs connected to them, these need
10117 * to be part of the prepare_pipes mask. We don't (yet) support global
10118 * modeset across multiple crtcs, so modeset_pipes will only have one
10119 * bit set at most. */
10120 list_for_each_entry(connector, &dev->mode_config.connector_list,
10121 base.head) {
10122 if (connector->base.encoder == &connector->new_encoder->base)
10123 continue;
79e53945 10124
e2e1ed41
DV
10125 if (connector->base.encoder) {
10126 tmp_crtc = connector->base.encoder->crtc;
10127
10128 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10129 }
10130
10131 if (connector->new_encoder)
10132 *prepare_pipes |=
10133 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10134 }
10135
e2e1ed41
DV
10136 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10137 base.head) {
10138 if (encoder->base.crtc == &encoder->new_crtc->base)
10139 continue;
10140
10141 if (encoder->base.crtc) {
10142 tmp_crtc = encoder->base.crtc;
10143
10144 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10145 }
10146
10147 if (encoder->new_crtc)
10148 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10149 }
10150
7668851f 10151 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10152 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10153 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10154 continue;
7e7d76c3 10155
7668851f 10156 if (!intel_crtc->new_enabled)
e2e1ed41 10157 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10158 else
10159 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10160 }
10161
e2e1ed41
DV
10162
10163 /* set_mode is also used to update properties on life display pipes. */
10164 intel_crtc = to_intel_crtc(crtc);
7668851f 10165 if (intel_crtc->new_enabled)
e2e1ed41
DV
10166 *prepare_pipes |= 1 << intel_crtc->pipe;
10167
b6c5164d
DV
10168 /*
10169 * For simplicity do a full modeset on any pipe where the output routing
10170 * changed. We could be more clever, but that would require us to be
10171 * more careful with calling the relevant encoder->mode_set functions.
10172 */
e2e1ed41
DV
10173 if (*prepare_pipes)
10174 *modeset_pipes = *prepare_pipes;
10175
10176 /* ... and mask these out. */
10177 *modeset_pipes &= ~(*disable_pipes);
10178 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10179
10180 /*
10181 * HACK: We don't (yet) fully support global modesets. intel_set_config
10182 * obies this rule, but the modeset restore mode of
10183 * intel_modeset_setup_hw_state does not.
10184 */
10185 *modeset_pipes &= 1 << intel_crtc->pipe;
10186 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10187
10188 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10189 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10190}
79e53945 10191
ea9d758d 10192static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10193{
ea9d758d 10194 struct drm_encoder *encoder;
f6e5b160 10195 struct drm_device *dev = crtc->dev;
f6e5b160 10196
ea9d758d
DV
10197 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10198 if (encoder->crtc == crtc)
10199 return true;
10200
10201 return false;
10202}
10203
10204static void
10205intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10206{
10207 struct intel_encoder *intel_encoder;
10208 struct intel_crtc *intel_crtc;
10209 struct drm_connector *connector;
10210
10211 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10212 base.head) {
10213 if (!intel_encoder->base.crtc)
10214 continue;
10215
10216 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10217
10218 if (prepare_pipes & (1 << intel_crtc->pipe))
10219 intel_encoder->connectors_active = false;
10220 }
10221
10222 intel_modeset_commit_output_state(dev);
10223
7668851f 10224 /* Double check state. */
d3fcc808 10225 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10226 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10227 WARN_ON(intel_crtc->new_config &&
10228 intel_crtc->new_config != &intel_crtc->config);
10229 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10230 }
10231
10232 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10233 if (!connector->encoder || !connector->encoder->crtc)
10234 continue;
10235
10236 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10237
10238 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10239 struct drm_property *dpms_property =
10240 dev->mode_config.dpms_property;
10241
ea9d758d 10242 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10243 drm_object_property_set_value(&connector->base,
68d34720
DV
10244 dpms_property,
10245 DRM_MODE_DPMS_ON);
ea9d758d
DV
10246
10247 intel_encoder = to_intel_encoder(connector->encoder);
10248 intel_encoder->connectors_active = true;
10249 }
10250 }
10251
10252}
10253
3bd26263 10254static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10255{
3bd26263 10256 int diff;
f1f644dc
JB
10257
10258 if (clock1 == clock2)
10259 return true;
10260
10261 if (!clock1 || !clock2)
10262 return false;
10263
10264 diff = abs(clock1 - clock2);
10265
10266 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10267 return true;
10268
10269 return false;
10270}
10271
25c5b266
DV
10272#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10273 list_for_each_entry((intel_crtc), \
10274 &(dev)->mode_config.crtc_list, \
10275 base.head) \
0973f18f 10276 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10277
0e8ffe1b 10278static bool
2fa2fe9a
DV
10279intel_pipe_config_compare(struct drm_device *dev,
10280 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10281 struct intel_crtc_config *pipe_config)
10282{
66e985c0
DV
10283#define PIPE_CONF_CHECK_X(name) \
10284 if (current_config->name != pipe_config->name) { \
10285 DRM_ERROR("mismatch in " #name " " \
10286 "(expected 0x%08x, found 0x%08x)\n", \
10287 current_config->name, \
10288 pipe_config->name); \
10289 return false; \
10290 }
10291
08a24034
DV
10292#define PIPE_CONF_CHECK_I(name) \
10293 if (current_config->name != pipe_config->name) { \
10294 DRM_ERROR("mismatch in " #name " " \
10295 "(expected %i, found %i)\n", \
10296 current_config->name, \
10297 pipe_config->name); \
10298 return false; \
88adfff1
DV
10299 }
10300
1bd1bd80
DV
10301#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10302 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10303 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10304 "(expected %i, found %i)\n", \
10305 current_config->name & (mask), \
10306 pipe_config->name & (mask)); \
10307 return false; \
10308 }
10309
5e550656
VS
10310#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10311 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10312 DRM_ERROR("mismatch in " #name " " \
10313 "(expected %i, found %i)\n", \
10314 current_config->name, \
10315 pipe_config->name); \
10316 return false; \
10317 }
10318
bb760063
DV
10319#define PIPE_CONF_QUIRK(quirk) \
10320 ((current_config->quirks | pipe_config->quirks) & (quirk))
10321
eccb140b
DV
10322 PIPE_CONF_CHECK_I(cpu_transcoder);
10323
08a24034
DV
10324 PIPE_CONF_CHECK_I(has_pch_encoder);
10325 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10326 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10327 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10328 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10329 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10330 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10331
eb14cb74
VS
10332 PIPE_CONF_CHECK_I(has_dp_encoder);
10333 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10334 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10335 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10336 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10337 PIPE_CONF_CHECK_I(dp_m_n.tu);
10338
1bd1bd80
DV
10339 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10340 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10341 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10342 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10343 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10344 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10345
10346 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10347 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10348 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10349 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10350 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10351 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10352
c93f54cf 10353 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10354 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10355 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10356 IS_VALLEYVIEW(dev))
10357 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10358
9ed109a7
DV
10359 PIPE_CONF_CHECK_I(has_audio);
10360
1bd1bd80
DV
10361 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10362 DRM_MODE_FLAG_INTERLACE);
10363
bb760063
DV
10364 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10365 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10366 DRM_MODE_FLAG_PHSYNC);
10367 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10368 DRM_MODE_FLAG_NHSYNC);
10369 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10370 DRM_MODE_FLAG_PVSYNC);
10371 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10372 DRM_MODE_FLAG_NVSYNC);
10373 }
045ac3b5 10374
37327abd
VS
10375 PIPE_CONF_CHECK_I(pipe_src_w);
10376 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10377
9953599b
DV
10378 /*
10379 * FIXME: BIOS likes to set up a cloned config with lvds+external
10380 * screen. Since we don't yet re-compute the pipe config when moving
10381 * just the lvds port away to another pipe the sw tracking won't match.
10382 *
10383 * Proper atomic modesets with recomputed global state will fix this.
10384 * Until then just don't check gmch state for inherited modes.
10385 */
10386 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10387 PIPE_CONF_CHECK_I(gmch_pfit.control);
10388 /* pfit ratios are autocomputed by the hw on gen4+ */
10389 if (INTEL_INFO(dev)->gen < 4)
10390 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10391 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10392 }
10393
fd4daa9c
CW
10394 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10395 if (current_config->pch_pfit.enabled) {
10396 PIPE_CONF_CHECK_I(pch_pfit.pos);
10397 PIPE_CONF_CHECK_I(pch_pfit.size);
10398 }
2fa2fe9a 10399
e59150dc
JB
10400 /* BDW+ don't expose a synchronous way to read the state */
10401 if (IS_HASWELL(dev))
10402 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10403
282740f7
VS
10404 PIPE_CONF_CHECK_I(double_wide);
10405
c0d43d62 10406 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10407 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10408 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10409 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10410 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10411
42571aef
VS
10412 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10413 PIPE_CONF_CHECK_I(pipe_bpp);
10414
a9a7e98a
JB
10415 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10416 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10417
66e985c0 10418#undef PIPE_CONF_CHECK_X
08a24034 10419#undef PIPE_CONF_CHECK_I
1bd1bd80 10420#undef PIPE_CONF_CHECK_FLAGS
5e550656 10421#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10422#undef PIPE_CONF_QUIRK
88adfff1 10423
0e8ffe1b
DV
10424 return true;
10425}
10426
91d1b4bd
DV
10427static void
10428check_connector_state(struct drm_device *dev)
8af6cf88 10429{
8af6cf88
DV
10430 struct intel_connector *connector;
10431
10432 list_for_each_entry(connector, &dev->mode_config.connector_list,
10433 base.head) {
10434 /* This also checks the encoder/connector hw state with the
10435 * ->get_hw_state callbacks. */
10436 intel_connector_check_state(connector);
10437
10438 WARN(&connector->new_encoder->base != connector->base.encoder,
10439 "connector's staged encoder doesn't match current encoder\n");
10440 }
91d1b4bd
DV
10441}
10442
10443static void
10444check_encoder_state(struct drm_device *dev)
10445{
10446 struct intel_encoder *encoder;
10447 struct intel_connector *connector;
8af6cf88
DV
10448
10449 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10450 base.head) {
10451 bool enabled = false;
10452 bool active = false;
10453 enum pipe pipe, tracked_pipe;
10454
10455 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10456 encoder->base.base.id,
8e329a03 10457 encoder->base.name);
8af6cf88
DV
10458
10459 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10460 "encoder's stage crtc doesn't match current crtc\n");
10461 WARN(encoder->connectors_active && !encoder->base.crtc,
10462 "encoder's active_connectors set, but no crtc\n");
10463
10464 list_for_each_entry(connector, &dev->mode_config.connector_list,
10465 base.head) {
10466 if (connector->base.encoder != &encoder->base)
10467 continue;
10468 enabled = true;
10469 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10470 active = true;
10471 }
10472 WARN(!!encoder->base.crtc != enabled,
10473 "encoder's enabled state mismatch "
10474 "(expected %i, found %i)\n",
10475 !!encoder->base.crtc, enabled);
10476 WARN(active && !encoder->base.crtc,
10477 "active encoder with no crtc\n");
10478
10479 WARN(encoder->connectors_active != active,
10480 "encoder's computed active state doesn't match tracked active state "
10481 "(expected %i, found %i)\n", active, encoder->connectors_active);
10482
10483 active = encoder->get_hw_state(encoder, &pipe);
10484 WARN(active != encoder->connectors_active,
10485 "encoder's hw state doesn't match sw tracking "
10486 "(expected %i, found %i)\n",
10487 encoder->connectors_active, active);
10488
10489 if (!encoder->base.crtc)
10490 continue;
10491
10492 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10493 WARN(active && pipe != tracked_pipe,
10494 "active encoder's pipe doesn't match"
10495 "(expected %i, found %i)\n",
10496 tracked_pipe, pipe);
10497
10498 }
91d1b4bd
DV
10499}
10500
10501static void
10502check_crtc_state(struct drm_device *dev)
10503{
fbee40df 10504 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10505 struct intel_crtc *crtc;
10506 struct intel_encoder *encoder;
10507 struct intel_crtc_config pipe_config;
8af6cf88 10508
d3fcc808 10509 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10510 bool enabled = false;
10511 bool active = false;
10512
045ac3b5
JB
10513 memset(&pipe_config, 0, sizeof(pipe_config));
10514
8af6cf88
DV
10515 DRM_DEBUG_KMS("[CRTC:%d]\n",
10516 crtc->base.base.id);
10517
10518 WARN(crtc->active && !crtc->base.enabled,
10519 "active crtc, but not enabled in sw tracking\n");
10520
10521 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10522 base.head) {
10523 if (encoder->base.crtc != &crtc->base)
10524 continue;
10525 enabled = true;
10526 if (encoder->connectors_active)
10527 active = true;
10528 }
6c49f241 10529
8af6cf88
DV
10530 WARN(active != crtc->active,
10531 "crtc's computed active state doesn't match tracked active state "
10532 "(expected %i, found %i)\n", active, crtc->active);
10533 WARN(enabled != crtc->base.enabled,
10534 "crtc's computed enabled state doesn't match tracked enabled state "
10535 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10536
0e8ffe1b
DV
10537 active = dev_priv->display.get_pipe_config(crtc,
10538 &pipe_config);
d62cf62a
DV
10539
10540 /* hw state is inconsistent with the pipe A quirk */
10541 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10542 active = crtc->active;
10543
6c49f241
DV
10544 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10545 base.head) {
3eaba51c 10546 enum pipe pipe;
6c49f241
DV
10547 if (encoder->base.crtc != &crtc->base)
10548 continue;
1d37b689 10549 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10550 encoder->get_config(encoder, &pipe_config);
10551 }
10552
0e8ffe1b
DV
10553 WARN(crtc->active != active,
10554 "crtc active state doesn't match with hw state "
10555 "(expected %i, found %i)\n", crtc->active, active);
10556
c0b03411
DV
10557 if (active &&
10558 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10559 WARN(1, "pipe state doesn't match!\n");
10560 intel_dump_pipe_config(crtc, &pipe_config,
10561 "[hw state]");
10562 intel_dump_pipe_config(crtc, &crtc->config,
10563 "[sw state]");
10564 }
8af6cf88
DV
10565 }
10566}
10567
91d1b4bd
DV
10568static void
10569check_shared_dpll_state(struct drm_device *dev)
10570{
fbee40df 10571 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10572 struct intel_crtc *crtc;
10573 struct intel_dpll_hw_state dpll_hw_state;
10574 int i;
5358901f
DV
10575
10576 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10577 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10578 int enabled_crtcs = 0, active_crtcs = 0;
10579 bool active;
10580
10581 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10582
10583 DRM_DEBUG_KMS("%s\n", pll->name);
10584
10585 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10586
10587 WARN(pll->active > pll->refcount,
10588 "more active pll users than references: %i vs %i\n",
10589 pll->active, pll->refcount);
10590 WARN(pll->active && !pll->on,
10591 "pll in active use but not on in sw tracking\n");
35c95375
DV
10592 WARN(pll->on && !pll->active,
10593 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10594 WARN(pll->on != active,
10595 "pll on state mismatch (expected %i, found %i)\n",
10596 pll->on, active);
10597
d3fcc808 10598 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10599 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10600 enabled_crtcs++;
10601 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10602 active_crtcs++;
10603 }
10604 WARN(pll->active != active_crtcs,
10605 "pll active crtcs mismatch (expected %i, found %i)\n",
10606 pll->active, active_crtcs);
10607 WARN(pll->refcount != enabled_crtcs,
10608 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10609 pll->refcount, enabled_crtcs);
66e985c0
DV
10610
10611 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10612 sizeof(dpll_hw_state)),
10613 "pll hw state mismatch\n");
5358901f 10614 }
8af6cf88
DV
10615}
10616
91d1b4bd
DV
10617void
10618intel_modeset_check_state(struct drm_device *dev)
10619{
10620 check_connector_state(dev);
10621 check_encoder_state(dev);
10622 check_crtc_state(dev);
10623 check_shared_dpll_state(dev);
10624}
10625
18442d08
VS
10626void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10627 int dotclock)
10628{
10629 /*
10630 * FDI already provided one idea for the dotclock.
10631 * Yell if the encoder disagrees.
10632 */
241bfc38 10633 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10634 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10635 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10636}
10637
80715b2f
VS
10638static void update_scanline_offset(struct intel_crtc *crtc)
10639{
10640 struct drm_device *dev = crtc->base.dev;
10641
10642 /*
10643 * The scanline counter increments at the leading edge of hsync.
10644 *
10645 * On most platforms it starts counting from vtotal-1 on the
10646 * first active line. That means the scanline counter value is
10647 * always one less than what we would expect. Ie. just after
10648 * start of vblank, which also occurs at start of hsync (on the
10649 * last active line), the scanline counter will read vblank_start-1.
10650 *
10651 * On gen2 the scanline counter starts counting from 1 instead
10652 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10653 * to keep the value positive), instead of adding one.
10654 *
10655 * On HSW+ the behaviour of the scanline counter depends on the output
10656 * type. For DP ports it behaves like most other platforms, but on HDMI
10657 * there's an extra 1 line difference. So we need to add two instead of
10658 * one to the value.
10659 */
10660 if (IS_GEN2(dev)) {
10661 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10662 int vtotal;
10663
10664 vtotal = mode->crtc_vtotal;
10665 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10666 vtotal /= 2;
10667
10668 crtc->scanline_offset = vtotal - 1;
10669 } else if (HAS_DDI(dev) &&
10670 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10671 crtc->scanline_offset = 2;
10672 } else
10673 crtc->scanline_offset = 1;
10674}
10675
f30da187
DV
10676static int __intel_set_mode(struct drm_crtc *crtc,
10677 struct drm_display_mode *mode,
10678 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10679{
10680 struct drm_device *dev = crtc->dev;
fbee40df 10681 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10682 struct drm_display_mode *saved_mode;
b8cecdf5 10683 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10684 struct intel_crtc *intel_crtc;
10685 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10686 int ret = 0;
a6778b3c 10687
4b4b9238 10688 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10689 if (!saved_mode)
10690 return -ENOMEM;
a6778b3c 10691
e2e1ed41 10692 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10693 &prepare_pipes, &disable_pipes);
10694
3ac18232 10695 *saved_mode = crtc->mode;
a6778b3c 10696
25c5b266
DV
10697 /* Hack: Because we don't (yet) support global modeset on multiple
10698 * crtcs, we don't keep track of the new mode for more than one crtc.
10699 * Hence simply check whether any bit is set in modeset_pipes in all the
10700 * pieces of code that are not yet converted to deal with mutliple crtcs
10701 * changing their mode at the same time. */
25c5b266 10702 if (modeset_pipes) {
4e53c2e0 10703 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10704 if (IS_ERR(pipe_config)) {
10705 ret = PTR_ERR(pipe_config);
10706 pipe_config = NULL;
10707
3ac18232 10708 goto out;
25c5b266 10709 }
c0b03411
DV
10710 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10711 "[modeset]");
50741abc 10712 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10713 }
a6778b3c 10714
30a970c6
JB
10715 /*
10716 * See if the config requires any additional preparation, e.g.
10717 * to adjust global state with pipes off. We need to do this
10718 * here so we can get the modeset_pipe updated config for the new
10719 * mode set on this crtc. For other crtcs we need to use the
10720 * adjusted_mode bits in the crtc directly.
10721 */
c164f833 10722 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10723 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10724
c164f833
VS
10725 /* may have added more to prepare_pipes than we should */
10726 prepare_pipes &= ~disable_pipes;
10727 }
10728
460da916
DV
10729 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10730 intel_crtc_disable(&intel_crtc->base);
10731
ea9d758d
DV
10732 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10733 if (intel_crtc->base.enabled)
10734 dev_priv->display.crtc_disable(&intel_crtc->base);
10735 }
a6778b3c 10736
6c4c86f5
DV
10737 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10738 * to set it here already despite that we pass it down the callchain.
f6e5b160 10739 */
b8cecdf5 10740 if (modeset_pipes) {
25c5b266 10741 crtc->mode = *mode;
b8cecdf5
DV
10742 /* mode_set/enable/disable functions rely on a correct pipe
10743 * config. */
10744 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10745 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10746
10747 /*
10748 * Calculate and store various constants which
10749 * are later needed by vblank and swap-completion
10750 * timestamping. They are derived from true hwmode.
10751 */
10752 drm_calc_timestamping_constants(crtc,
10753 &pipe_config->adjusted_mode);
b8cecdf5 10754 }
7758a113 10755
ea9d758d
DV
10756 /* Only after disabling all output pipelines that will be changed can we
10757 * update the the output configuration. */
10758 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10759
47fab737
DV
10760 if (dev_priv->display.modeset_global_resources)
10761 dev_priv->display.modeset_global_resources(dev);
10762
a6778b3c
DV
10763 /* Set up the DPLL and any encoders state that needs to adjust or depend
10764 * on the DPLL.
f6e5b160 10765 */
25c5b266 10766 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
4c10794f 10767 struct drm_framebuffer *old_fb;
a071fa00
DV
10768 struct drm_i915_gem_object *old_obj = NULL;
10769 struct drm_i915_gem_object *obj =
10770 to_intel_framebuffer(fb)->obj;
4c10794f
DV
10771
10772 mutex_lock(&dev->struct_mutex);
10773 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10774 obj,
4c10794f
DV
10775 NULL);
10776 if (ret != 0) {
10777 DRM_ERROR("pin & fence failed\n");
10778 mutex_unlock(&dev->struct_mutex);
10779 goto done;
10780 }
10781 old_fb = crtc->primary->fb;
a071fa00
DV
10782 if (old_fb) {
10783 old_obj = to_intel_framebuffer(old_fb)->obj;
10784 intel_unpin_fb_obj(old_obj);
10785 }
10786 i915_gem_track_fb(old_obj, obj,
10787 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10788 mutex_unlock(&dev->struct_mutex);
10789
10790 crtc->primary->fb = fb;
10791 crtc->x = x;
10792 crtc->y = y;
10793
4271b753
DV
10794 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10795 x, y, fb);
c0c36b94
CW
10796 if (ret)
10797 goto done;
a6778b3c
DV
10798 }
10799
10800 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10801 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10802 update_scanline_offset(intel_crtc);
10803
25c5b266 10804 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10805 }
a6778b3c 10806
a6778b3c
DV
10807 /* FIXME: add subpixel order */
10808done:
4b4b9238 10809 if (ret && crtc->enabled)
3ac18232 10810 crtc->mode = *saved_mode;
a6778b3c 10811
3ac18232 10812out:
b8cecdf5 10813 kfree(pipe_config);
3ac18232 10814 kfree(saved_mode);
a6778b3c 10815 return ret;
f6e5b160
CW
10816}
10817
e7457a9a
DL
10818static int intel_set_mode(struct drm_crtc *crtc,
10819 struct drm_display_mode *mode,
10820 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10821{
10822 int ret;
10823
10824 ret = __intel_set_mode(crtc, mode, x, y, fb);
10825
10826 if (ret == 0)
10827 intel_modeset_check_state(crtc->dev);
10828
10829 return ret;
10830}
10831
c0c36b94
CW
10832void intel_crtc_restore_mode(struct drm_crtc *crtc)
10833{
f4510a27 10834 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10835}
10836
25c5b266
DV
10837#undef for_each_intel_crtc_masked
10838
d9e55608
DV
10839static void intel_set_config_free(struct intel_set_config *config)
10840{
10841 if (!config)
10842 return;
10843
1aa4b628
DV
10844 kfree(config->save_connector_encoders);
10845 kfree(config->save_encoder_crtcs);
7668851f 10846 kfree(config->save_crtc_enabled);
d9e55608
DV
10847 kfree(config);
10848}
10849
85f9eb71
DV
10850static int intel_set_config_save_state(struct drm_device *dev,
10851 struct intel_set_config *config)
10852{
7668851f 10853 struct drm_crtc *crtc;
85f9eb71
DV
10854 struct drm_encoder *encoder;
10855 struct drm_connector *connector;
10856 int count;
10857
7668851f
VS
10858 config->save_crtc_enabled =
10859 kcalloc(dev->mode_config.num_crtc,
10860 sizeof(bool), GFP_KERNEL);
10861 if (!config->save_crtc_enabled)
10862 return -ENOMEM;
10863
1aa4b628
DV
10864 config->save_encoder_crtcs =
10865 kcalloc(dev->mode_config.num_encoder,
10866 sizeof(struct drm_crtc *), GFP_KERNEL);
10867 if (!config->save_encoder_crtcs)
85f9eb71
DV
10868 return -ENOMEM;
10869
1aa4b628
DV
10870 config->save_connector_encoders =
10871 kcalloc(dev->mode_config.num_connector,
10872 sizeof(struct drm_encoder *), GFP_KERNEL);
10873 if (!config->save_connector_encoders)
85f9eb71
DV
10874 return -ENOMEM;
10875
10876 /* Copy data. Note that driver private data is not affected.
10877 * Should anything bad happen only the expected state is
10878 * restored, not the drivers personal bookkeeping.
10879 */
7668851f 10880 count = 0;
70e1e0ec 10881 for_each_crtc(dev, crtc) {
7668851f
VS
10882 config->save_crtc_enabled[count++] = crtc->enabled;
10883 }
10884
85f9eb71
DV
10885 count = 0;
10886 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10887 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10888 }
10889
10890 count = 0;
10891 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10892 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10893 }
10894
10895 return 0;
10896}
10897
10898static void intel_set_config_restore_state(struct drm_device *dev,
10899 struct intel_set_config *config)
10900{
7668851f 10901 struct intel_crtc *crtc;
9a935856
DV
10902 struct intel_encoder *encoder;
10903 struct intel_connector *connector;
85f9eb71
DV
10904 int count;
10905
7668851f 10906 count = 0;
d3fcc808 10907 for_each_intel_crtc(dev, crtc) {
7668851f 10908 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10909
10910 if (crtc->new_enabled)
10911 crtc->new_config = &crtc->config;
10912 else
10913 crtc->new_config = NULL;
7668851f
VS
10914 }
10915
85f9eb71 10916 count = 0;
9a935856
DV
10917 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10918 encoder->new_crtc =
10919 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10920 }
10921
10922 count = 0;
9a935856
DV
10923 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10924 connector->new_encoder =
10925 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10926 }
10927}
10928
e3de42b6 10929static bool
2e57f47d 10930is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10931{
10932 int i;
10933
2e57f47d
CW
10934 if (set->num_connectors == 0)
10935 return false;
10936
10937 if (WARN_ON(set->connectors == NULL))
10938 return false;
10939
10940 for (i = 0; i < set->num_connectors; i++)
10941 if (set->connectors[i]->encoder &&
10942 set->connectors[i]->encoder->crtc == set->crtc &&
10943 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10944 return true;
10945
10946 return false;
10947}
10948
5e2b584e
DV
10949static void
10950intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10951 struct intel_set_config *config)
10952{
10953
10954 /* We should be able to check here if the fb has the same properties
10955 * and then just flip_or_move it */
2e57f47d
CW
10956 if (is_crtc_connector_off(set)) {
10957 config->mode_changed = true;
f4510a27 10958 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10959 /*
10960 * If we have no fb, we can only flip as long as the crtc is
10961 * active, otherwise we need a full mode set. The crtc may
10962 * be active if we've only disabled the primary plane, or
10963 * in fastboot situations.
10964 */
f4510a27 10965 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10966 struct intel_crtc *intel_crtc =
10967 to_intel_crtc(set->crtc);
10968
3b150f08 10969 if (intel_crtc->active) {
319d9827
JB
10970 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10971 config->fb_changed = true;
10972 } else {
10973 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10974 config->mode_changed = true;
10975 }
5e2b584e
DV
10976 } else if (set->fb == NULL) {
10977 config->mode_changed = true;
72f4901e 10978 } else if (set->fb->pixel_format !=
f4510a27 10979 set->crtc->primary->fb->pixel_format) {
5e2b584e 10980 config->mode_changed = true;
e3de42b6 10981 } else {
5e2b584e 10982 config->fb_changed = true;
e3de42b6 10983 }
5e2b584e
DV
10984 }
10985
835c5873 10986 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10987 config->fb_changed = true;
10988
10989 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10990 DRM_DEBUG_KMS("modes are different, full mode set\n");
10991 drm_mode_debug_printmodeline(&set->crtc->mode);
10992 drm_mode_debug_printmodeline(set->mode);
10993 config->mode_changed = true;
10994 }
a1d95703
CW
10995
10996 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10997 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
10998}
10999
2e431051 11000static int
9a935856
DV
11001intel_modeset_stage_output_state(struct drm_device *dev,
11002 struct drm_mode_set *set,
11003 struct intel_set_config *config)
50f56119 11004{
9a935856
DV
11005 struct intel_connector *connector;
11006 struct intel_encoder *encoder;
7668851f 11007 struct intel_crtc *crtc;
f3f08572 11008 int ro;
50f56119 11009
9abdda74 11010 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11011 * of connectors. For paranoia, double-check this. */
11012 WARN_ON(!set->fb && (set->num_connectors != 0));
11013 WARN_ON(set->fb && (set->num_connectors == 0));
11014
9a935856
DV
11015 list_for_each_entry(connector, &dev->mode_config.connector_list,
11016 base.head) {
11017 /* Otherwise traverse passed in connector list and get encoders
11018 * for them. */
50f56119 11019 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11020 if (set->connectors[ro] == &connector->base) {
11021 connector->new_encoder = connector->encoder;
50f56119
DV
11022 break;
11023 }
11024 }
11025
9a935856
DV
11026 /* If we disable the crtc, disable all its connectors. Also, if
11027 * the connector is on the changing crtc but not on the new
11028 * connector list, disable it. */
11029 if ((!set->fb || ro == set->num_connectors) &&
11030 connector->base.encoder &&
11031 connector->base.encoder->crtc == set->crtc) {
11032 connector->new_encoder = NULL;
11033
11034 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11035 connector->base.base.id,
c23cc417 11036 connector->base.name);
9a935856
DV
11037 }
11038
11039
11040 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11041 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11042 config->mode_changed = true;
50f56119
DV
11043 }
11044 }
9a935856 11045 /* connector->new_encoder is now updated for all connectors. */
50f56119 11046
9a935856 11047 /* Update crtc of enabled connectors. */
9a935856
DV
11048 list_for_each_entry(connector, &dev->mode_config.connector_list,
11049 base.head) {
7668851f
VS
11050 struct drm_crtc *new_crtc;
11051
9a935856 11052 if (!connector->new_encoder)
50f56119
DV
11053 continue;
11054
9a935856 11055 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11056
11057 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11058 if (set->connectors[ro] == &connector->base)
50f56119
DV
11059 new_crtc = set->crtc;
11060 }
11061
11062 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11063 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11064 new_crtc)) {
5e2b584e 11065 return -EINVAL;
50f56119 11066 }
9a935856
DV
11067 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11068
11069 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11070 connector->base.base.id,
c23cc417 11071 connector->base.name,
9a935856
DV
11072 new_crtc->base.id);
11073 }
11074
11075 /* Check for any encoders that needs to be disabled. */
11076 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11077 base.head) {
5a65f358 11078 int num_connectors = 0;
9a935856
DV
11079 list_for_each_entry(connector,
11080 &dev->mode_config.connector_list,
11081 base.head) {
11082 if (connector->new_encoder == encoder) {
11083 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11084 num_connectors++;
9a935856
DV
11085 }
11086 }
5a65f358
PZ
11087
11088 if (num_connectors == 0)
11089 encoder->new_crtc = NULL;
11090 else if (num_connectors > 1)
11091 return -EINVAL;
11092
9a935856
DV
11093 /* Only now check for crtc changes so we don't miss encoders
11094 * that will be disabled. */
11095 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11096 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11097 config->mode_changed = true;
50f56119
DV
11098 }
11099 }
9a935856 11100 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11101
d3fcc808 11102 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11103 crtc->new_enabled = false;
11104
11105 list_for_each_entry(encoder,
11106 &dev->mode_config.encoder_list,
11107 base.head) {
11108 if (encoder->new_crtc == crtc) {
11109 crtc->new_enabled = true;
11110 break;
11111 }
11112 }
11113
11114 if (crtc->new_enabled != crtc->base.enabled) {
11115 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11116 crtc->new_enabled ? "en" : "dis");
11117 config->mode_changed = true;
11118 }
7bd0a8e7
VS
11119
11120 if (crtc->new_enabled)
11121 crtc->new_config = &crtc->config;
11122 else
11123 crtc->new_config = NULL;
7668851f
VS
11124 }
11125
2e431051
DV
11126 return 0;
11127}
11128
7d00a1f5
VS
11129static void disable_crtc_nofb(struct intel_crtc *crtc)
11130{
11131 struct drm_device *dev = crtc->base.dev;
11132 struct intel_encoder *encoder;
11133 struct intel_connector *connector;
11134
11135 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11136 pipe_name(crtc->pipe));
11137
11138 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11139 if (connector->new_encoder &&
11140 connector->new_encoder->new_crtc == crtc)
11141 connector->new_encoder = NULL;
11142 }
11143
11144 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11145 if (encoder->new_crtc == crtc)
11146 encoder->new_crtc = NULL;
11147 }
11148
11149 crtc->new_enabled = false;
7bd0a8e7 11150 crtc->new_config = NULL;
7d00a1f5
VS
11151}
11152
2e431051
DV
11153static int intel_crtc_set_config(struct drm_mode_set *set)
11154{
11155 struct drm_device *dev;
2e431051
DV
11156 struct drm_mode_set save_set;
11157 struct intel_set_config *config;
11158 int ret;
2e431051 11159
8d3e375e
DV
11160 BUG_ON(!set);
11161 BUG_ON(!set->crtc);
11162 BUG_ON(!set->crtc->helper_private);
2e431051 11163
7e53f3a4
DV
11164 /* Enforce sane interface api - has been abused by the fb helper. */
11165 BUG_ON(!set->mode && set->fb);
11166 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11167
2e431051
DV
11168 if (set->fb) {
11169 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11170 set->crtc->base.id, set->fb->base.id,
11171 (int)set->num_connectors, set->x, set->y);
11172 } else {
11173 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11174 }
11175
11176 dev = set->crtc->dev;
11177
11178 ret = -ENOMEM;
11179 config = kzalloc(sizeof(*config), GFP_KERNEL);
11180 if (!config)
11181 goto out_config;
11182
11183 ret = intel_set_config_save_state(dev, config);
11184 if (ret)
11185 goto out_config;
11186
11187 save_set.crtc = set->crtc;
11188 save_set.mode = &set->crtc->mode;
11189 save_set.x = set->crtc->x;
11190 save_set.y = set->crtc->y;
f4510a27 11191 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11192
11193 /* Compute whether we need a full modeset, only an fb base update or no
11194 * change at all. In the future we might also check whether only the
11195 * mode changed, e.g. for LVDS where we only change the panel fitter in
11196 * such cases. */
11197 intel_set_config_compute_mode_changes(set, config);
11198
9a935856 11199 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11200 if (ret)
11201 goto fail;
11202
5e2b584e 11203 if (config->mode_changed) {
c0c36b94
CW
11204 ret = intel_set_mode(set->crtc, set->mode,
11205 set->x, set->y, set->fb);
5e2b584e 11206 } else if (config->fb_changed) {
3b150f08
MR
11207 struct drm_i915_private *dev_priv = dev->dev_private;
11208 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11209
4878cae2
VS
11210 intel_crtc_wait_for_pending_flips(set->crtc);
11211
4f660f49 11212 ret = intel_pipe_set_base(set->crtc,
94352cf9 11213 set->x, set->y, set->fb);
3b150f08
MR
11214
11215 /*
11216 * We need to make sure the primary plane is re-enabled if it
11217 * has previously been turned off.
11218 */
11219 if (!intel_crtc->primary_enabled && ret == 0) {
11220 WARN_ON(!intel_crtc->active);
11221 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11222 intel_crtc->pipe);
11223 }
11224
7ca51a3a
JB
11225 /*
11226 * In the fastboot case this may be our only check of the
11227 * state after boot. It would be better to only do it on
11228 * the first update, but we don't have a nice way of doing that
11229 * (and really, set_config isn't used much for high freq page
11230 * flipping, so increasing its cost here shouldn't be a big
11231 * deal).
11232 */
d330a953 11233 if (i915.fastboot && ret == 0)
7ca51a3a 11234 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11235 }
11236
2d05eae1 11237 if (ret) {
bf67dfeb
DV
11238 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11239 set->crtc->base.id, ret);
50f56119 11240fail:
2d05eae1 11241 intel_set_config_restore_state(dev, config);
50f56119 11242
7d00a1f5
VS
11243 /*
11244 * HACK: if the pipe was on, but we didn't have a framebuffer,
11245 * force the pipe off to avoid oopsing in the modeset code
11246 * due to fb==NULL. This should only happen during boot since
11247 * we don't yet reconstruct the FB from the hardware state.
11248 */
11249 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11250 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11251
2d05eae1
CW
11252 /* Try to restore the config */
11253 if (config->mode_changed &&
11254 intel_set_mode(save_set.crtc, save_set.mode,
11255 save_set.x, save_set.y, save_set.fb))
11256 DRM_ERROR("failed to restore config after modeset failure\n");
11257 }
50f56119 11258
d9e55608
DV
11259out_config:
11260 intel_set_config_free(config);
50f56119
DV
11261 return ret;
11262}
f6e5b160
CW
11263
11264static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11265 .gamma_set = intel_crtc_gamma_set,
50f56119 11266 .set_config = intel_crtc_set_config,
f6e5b160
CW
11267 .destroy = intel_crtc_destroy,
11268 .page_flip = intel_crtc_page_flip,
11269};
11270
79f689aa
PZ
11271static void intel_cpu_pll_init(struct drm_device *dev)
11272{
affa9354 11273 if (HAS_DDI(dev))
79f689aa
PZ
11274 intel_ddi_pll_init(dev);
11275}
11276
5358901f
DV
11277static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11278 struct intel_shared_dpll *pll,
11279 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11280{
5358901f 11281 uint32_t val;
ee7b9f93 11282
5358901f 11283 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11284 hw_state->dpll = val;
11285 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11286 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11287
11288 return val & DPLL_VCO_ENABLE;
11289}
11290
15bdd4cf
DV
11291static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11292 struct intel_shared_dpll *pll)
11293{
11294 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11295 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11296}
11297
e7b903d2
DV
11298static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11299 struct intel_shared_dpll *pll)
11300{
e7b903d2 11301 /* PCH refclock must be enabled first */
89eff4be 11302 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11303
15bdd4cf
DV
11304 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11305
11306 /* Wait for the clocks to stabilize. */
11307 POSTING_READ(PCH_DPLL(pll->id));
11308 udelay(150);
11309
11310 /* The pixel multiplier can only be updated once the
11311 * DPLL is enabled and the clocks are stable.
11312 *
11313 * So write it again.
11314 */
11315 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11316 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11317 udelay(200);
11318}
11319
11320static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11321 struct intel_shared_dpll *pll)
11322{
11323 struct drm_device *dev = dev_priv->dev;
11324 struct intel_crtc *crtc;
e7b903d2
DV
11325
11326 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11327 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11328 if (intel_crtc_to_shared_dpll(crtc) == pll)
11329 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11330 }
11331
15bdd4cf
DV
11332 I915_WRITE(PCH_DPLL(pll->id), 0);
11333 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11334 udelay(200);
11335}
11336
46edb027
DV
11337static char *ibx_pch_dpll_names[] = {
11338 "PCH DPLL A",
11339 "PCH DPLL B",
11340};
11341
7c74ade1 11342static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11343{
e7b903d2 11344 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11345 int i;
11346
7c74ade1 11347 dev_priv->num_shared_dpll = 2;
ee7b9f93 11348
e72f9fbf 11349 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11350 dev_priv->shared_dplls[i].id = i;
11351 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11352 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11353 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11354 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11355 dev_priv->shared_dplls[i].get_hw_state =
11356 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11357 }
11358}
11359
7c74ade1
DV
11360static void intel_shared_dpll_init(struct drm_device *dev)
11361{
e7b903d2 11362 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11363
11364 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11365 ibx_pch_dpll_init(dev);
11366 else
11367 dev_priv->num_shared_dpll = 0;
11368
11369 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11370}
11371
465c120c
MR
11372static int
11373intel_primary_plane_disable(struct drm_plane *plane)
11374{
11375 struct drm_device *dev = plane->dev;
11376 struct drm_i915_private *dev_priv = dev->dev_private;
11377 struct intel_plane *intel_plane = to_intel_plane(plane);
11378 struct intel_crtc *intel_crtc;
11379
11380 if (!plane->fb)
11381 return 0;
11382
11383 BUG_ON(!plane->crtc);
11384
11385 intel_crtc = to_intel_crtc(plane->crtc);
11386
11387 /*
11388 * Even though we checked plane->fb above, it's still possible that
11389 * the primary plane has been implicitly disabled because the crtc
11390 * coordinates given weren't visible, or because we detected
11391 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11392 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11393 * In either case, we need to unpin the FB and let the fb pointer get
11394 * updated, but otherwise we don't need to touch the hardware.
11395 */
11396 if (!intel_crtc->primary_enabled)
11397 goto disable_unpin;
11398
11399 intel_crtc_wait_for_pending_flips(plane->crtc);
11400 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11401 intel_plane->pipe);
465c120c 11402disable_unpin:
a071fa00
DV
11403 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11404 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11405 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11406 plane->fb = NULL;
11407
11408 return 0;
11409}
11410
11411static int
11412intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11413 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11414 unsigned int crtc_w, unsigned int crtc_h,
11415 uint32_t src_x, uint32_t src_y,
11416 uint32_t src_w, uint32_t src_h)
11417{
11418 struct drm_device *dev = crtc->dev;
11419 struct drm_i915_private *dev_priv = dev->dev_private;
11420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11421 struct intel_plane *intel_plane = to_intel_plane(plane);
a071fa00 11422 struct drm_i915_gem_object *obj, *old_obj = NULL;
465c120c
MR
11423 struct drm_rect dest = {
11424 /* integer pixels */
11425 .x1 = crtc_x,
11426 .y1 = crtc_y,
11427 .x2 = crtc_x + crtc_w,
11428 .y2 = crtc_y + crtc_h,
11429 };
11430 struct drm_rect src = {
11431 /* 16.16 fixed point */
11432 .x1 = src_x,
11433 .y1 = src_y,
11434 .x2 = src_x + src_w,
11435 .y2 = src_y + src_h,
11436 };
11437 const struct drm_rect clip = {
11438 /* integer pixels */
11439 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11440 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11441 };
11442 bool visible;
11443 int ret;
11444
11445 ret = drm_plane_helper_check_update(plane, crtc, fb,
11446 &src, &dest, &clip,
11447 DRM_PLANE_HELPER_NO_SCALING,
11448 DRM_PLANE_HELPER_NO_SCALING,
11449 false, true, &visible);
11450
11451 if (ret)
11452 return ret;
11453
a071fa00
DV
11454 if (plane->fb)
11455 old_obj = to_intel_framebuffer(plane->fb)->obj;
11456 obj = to_intel_framebuffer(fb)->obj;
11457
465c120c
MR
11458 /*
11459 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11460 * updating the fb pointer, and returning without touching the
11461 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11462 * turn on the display with all planes setup as desired.
11463 */
11464 if (!crtc->enabled) {
11465 /*
11466 * If we already called setplane while the crtc was disabled,
11467 * we may have an fb pinned; unpin it.
11468 */
11469 if (plane->fb)
a071fa00
DV
11470 intel_unpin_fb_obj(old_obj);
11471
11472 i915_gem_track_fb(old_obj, obj,
11473 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11474
11475 /* Pin and return without programming hardware */
a071fa00 11476 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11477 }
11478
11479 intel_crtc_wait_for_pending_flips(crtc);
11480
11481 /*
11482 * If clipping results in a non-visible primary plane, we'll disable
11483 * the primary plane. Note that this is a bit different than what
11484 * happens if userspace explicitly disables the plane by passing fb=0
11485 * because plane->fb still gets set and pinned.
11486 */
11487 if (!visible) {
11488 /*
11489 * Try to pin the new fb first so that we can bail out if we
11490 * fail.
11491 */
11492 if (plane->fb != fb) {
a071fa00 11493 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11494 if (ret)
11495 return ret;
11496 }
11497
a071fa00
DV
11498 i915_gem_track_fb(old_obj, obj,
11499 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11500
465c120c
MR
11501 if (intel_crtc->primary_enabled)
11502 intel_disable_primary_hw_plane(dev_priv,
11503 intel_plane->plane,
11504 intel_plane->pipe);
11505
11506
11507 if (plane->fb != fb)
11508 if (plane->fb)
a071fa00 11509 intel_unpin_fb_obj(old_obj);
465c120c
MR
11510
11511 return 0;
11512 }
11513
11514 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11515 if (ret)
11516 return ret;
11517
11518 if (!intel_crtc->primary_enabled)
11519 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11520 intel_crtc->pipe);
11521
11522 return 0;
11523}
11524
3d7d6510
MR
11525/* Common destruction function for both primary and cursor planes */
11526static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11527{
11528 struct intel_plane *intel_plane = to_intel_plane(plane);
11529 drm_plane_cleanup(plane);
11530 kfree(intel_plane);
11531}
11532
11533static const struct drm_plane_funcs intel_primary_plane_funcs = {
11534 .update_plane = intel_primary_plane_setplane,
11535 .disable_plane = intel_primary_plane_disable,
3d7d6510 11536 .destroy = intel_plane_destroy,
465c120c
MR
11537};
11538
11539static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11540 int pipe)
11541{
11542 struct intel_plane *primary;
11543 const uint32_t *intel_primary_formats;
11544 int num_formats;
11545
11546 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11547 if (primary == NULL)
11548 return NULL;
11549
11550 primary->can_scale = false;
11551 primary->max_downscale = 1;
11552 primary->pipe = pipe;
11553 primary->plane = pipe;
11554 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11555 primary->plane = !pipe;
11556
11557 if (INTEL_INFO(dev)->gen <= 3) {
11558 intel_primary_formats = intel_primary_formats_gen2;
11559 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11560 } else {
11561 intel_primary_formats = intel_primary_formats_gen4;
11562 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11563 }
11564
11565 drm_universal_plane_init(dev, &primary->base, 0,
11566 &intel_primary_plane_funcs,
11567 intel_primary_formats, num_formats,
11568 DRM_PLANE_TYPE_PRIMARY);
11569 return &primary->base;
11570}
11571
3d7d6510
MR
11572static int
11573intel_cursor_plane_disable(struct drm_plane *plane)
11574{
11575 if (!plane->fb)
11576 return 0;
11577
11578 BUG_ON(!plane->crtc);
11579
11580 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11581}
11582
11583static int
11584intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11585 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11586 unsigned int crtc_w, unsigned int crtc_h,
11587 uint32_t src_x, uint32_t src_y,
11588 uint32_t src_w, uint32_t src_h)
11589{
11590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11591 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11592 struct drm_i915_gem_object *obj = intel_fb->obj;
11593 struct drm_rect dest = {
11594 /* integer pixels */
11595 .x1 = crtc_x,
11596 .y1 = crtc_y,
11597 .x2 = crtc_x + crtc_w,
11598 .y2 = crtc_y + crtc_h,
11599 };
11600 struct drm_rect src = {
11601 /* 16.16 fixed point */
11602 .x1 = src_x,
11603 .y1 = src_y,
11604 .x2 = src_x + src_w,
11605 .y2 = src_y + src_h,
11606 };
11607 const struct drm_rect clip = {
11608 /* integer pixels */
11609 .x2 = intel_crtc->config.pipe_src_w,
11610 .y2 = intel_crtc->config.pipe_src_h,
11611 };
11612 bool visible;
11613 int ret;
11614
11615 ret = drm_plane_helper_check_update(plane, crtc, fb,
11616 &src, &dest, &clip,
11617 DRM_PLANE_HELPER_NO_SCALING,
11618 DRM_PLANE_HELPER_NO_SCALING,
11619 true, true, &visible);
11620 if (ret)
11621 return ret;
11622
11623 crtc->cursor_x = crtc_x;
11624 crtc->cursor_y = crtc_y;
11625 if (fb != crtc->cursor->fb) {
11626 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11627 } else {
11628 intel_crtc_update_cursor(crtc, visible);
11629 return 0;
11630 }
11631}
11632static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11633 .update_plane = intel_cursor_plane_update,
11634 .disable_plane = intel_cursor_plane_disable,
11635 .destroy = intel_plane_destroy,
11636};
11637
11638static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11639 int pipe)
11640{
11641 struct intel_plane *cursor;
11642
11643 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11644 if (cursor == NULL)
11645 return NULL;
11646
11647 cursor->can_scale = false;
11648 cursor->max_downscale = 1;
11649 cursor->pipe = pipe;
11650 cursor->plane = pipe;
11651
11652 drm_universal_plane_init(dev, &cursor->base, 0,
11653 &intel_cursor_plane_funcs,
11654 intel_cursor_formats,
11655 ARRAY_SIZE(intel_cursor_formats),
11656 DRM_PLANE_TYPE_CURSOR);
11657 return &cursor->base;
11658}
11659
b358d0a6 11660static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11661{
fbee40df 11662 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11663 struct intel_crtc *intel_crtc;
3d7d6510
MR
11664 struct drm_plane *primary = NULL;
11665 struct drm_plane *cursor = NULL;
465c120c 11666 int i, ret;
79e53945 11667
955382f3 11668 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11669 if (intel_crtc == NULL)
11670 return;
11671
465c120c 11672 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11673 if (!primary)
11674 goto fail;
11675
11676 cursor = intel_cursor_plane_create(dev, pipe);
11677 if (!cursor)
11678 goto fail;
11679
465c120c 11680 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11681 cursor, &intel_crtc_funcs);
11682 if (ret)
11683 goto fail;
79e53945
JB
11684
11685 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11686 for (i = 0; i < 256; i++) {
11687 intel_crtc->lut_r[i] = i;
11688 intel_crtc->lut_g[i] = i;
11689 intel_crtc->lut_b[i] = i;
11690 }
11691
1f1c2e24
VS
11692 /*
11693 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11694 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11695 */
80824003
JB
11696 intel_crtc->pipe = pipe;
11697 intel_crtc->plane = pipe;
3a77c4c4 11698 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11699 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11700 intel_crtc->plane = !pipe;
80824003
JB
11701 }
11702
4b0e333e
CW
11703 intel_crtc->cursor_base = ~0;
11704 intel_crtc->cursor_cntl = ~0;
11705
8d7849db
VS
11706 init_waitqueue_head(&intel_crtc->vbl_wait);
11707
22fd0fab
JB
11708 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11709 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11710 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11711 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11712
79e53945 11713 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11714
11715 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11716 return;
11717
11718fail:
11719 if (primary)
11720 drm_plane_cleanup(primary);
11721 if (cursor)
11722 drm_plane_cleanup(cursor);
11723 kfree(intel_crtc);
79e53945
JB
11724}
11725
752aa88a
JB
11726enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11727{
11728 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11729 struct drm_device *dev = connector->base.dev;
752aa88a 11730
51fd371b 11731 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11732
11733 if (!encoder)
11734 return INVALID_PIPE;
11735
11736 return to_intel_crtc(encoder->crtc)->pipe;
11737}
11738
08d7b3d1 11739int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11740 struct drm_file *file)
08d7b3d1 11741{
08d7b3d1 11742 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11743 struct drm_mode_object *drmmode_obj;
11744 struct intel_crtc *crtc;
08d7b3d1 11745
1cff8f6b
DV
11746 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11747 return -ENODEV;
08d7b3d1 11748
c05422d5
DV
11749 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11750 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11751
c05422d5 11752 if (!drmmode_obj) {
08d7b3d1 11753 DRM_ERROR("no such CRTC id\n");
3f2c2057 11754 return -ENOENT;
08d7b3d1
CW
11755 }
11756
c05422d5
DV
11757 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11758 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11759
c05422d5 11760 return 0;
08d7b3d1
CW
11761}
11762
66a9278e 11763static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11764{
66a9278e
DV
11765 struct drm_device *dev = encoder->base.dev;
11766 struct intel_encoder *source_encoder;
79e53945 11767 int index_mask = 0;
79e53945
JB
11768 int entry = 0;
11769
66a9278e
DV
11770 list_for_each_entry(source_encoder,
11771 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11772 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11773 index_mask |= (1 << entry);
11774
79e53945
JB
11775 entry++;
11776 }
4ef69c7a 11777
79e53945
JB
11778 return index_mask;
11779}
11780
4d302442
CW
11781static bool has_edp_a(struct drm_device *dev)
11782{
11783 struct drm_i915_private *dev_priv = dev->dev_private;
11784
11785 if (!IS_MOBILE(dev))
11786 return false;
11787
11788 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11789 return false;
11790
e3589908 11791 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11792 return false;
11793
11794 return true;
11795}
11796
ba0fbca4
DL
11797const char *intel_output_name(int output)
11798{
11799 static const char *names[] = {
11800 [INTEL_OUTPUT_UNUSED] = "Unused",
11801 [INTEL_OUTPUT_ANALOG] = "Analog",
11802 [INTEL_OUTPUT_DVO] = "DVO",
11803 [INTEL_OUTPUT_SDVO] = "SDVO",
11804 [INTEL_OUTPUT_LVDS] = "LVDS",
11805 [INTEL_OUTPUT_TVOUT] = "TV",
11806 [INTEL_OUTPUT_HDMI] = "HDMI",
11807 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11808 [INTEL_OUTPUT_EDP] = "eDP",
11809 [INTEL_OUTPUT_DSI] = "DSI",
11810 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11811 };
11812
11813 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11814 return "Invalid";
11815
11816 return names[output];
11817}
11818
84b4e042
JB
11819static bool intel_crt_present(struct drm_device *dev)
11820{
11821 struct drm_i915_private *dev_priv = dev->dev_private;
11822
11823 if (IS_ULT(dev))
11824 return false;
11825
11826 if (IS_CHERRYVIEW(dev))
11827 return false;
11828
11829 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11830 return false;
11831
11832 return true;
11833}
11834
79e53945
JB
11835static void intel_setup_outputs(struct drm_device *dev)
11836{
725e30ad 11837 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11838 struct intel_encoder *encoder;
cb0953d7 11839 bool dpd_is_edp = false;
79e53945 11840
c9093354 11841 intel_lvds_init(dev);
79e53945 11842
84b4e042 11843 if (intel_crt_present(dev))
79935fca 11844 intel_crt_init(dev);
cb0953d7 11845
affa9354 11846 if (HAS_DDI(dev)) {
0e72a5b5
ED
11847 int found;
11848
11849 /* Haswell uses DDI functions to detect digital outputs */
11850 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11851 /* DDI A only supports eDP */
11852 if (found)
11853 intel_ddi_init(dev, PORT_A);
11854
11855 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11856 * register */
11857 found = I915_READ(SFUSE_STRAP);
11858
11859 if (found & SFUSE_STRAP_DDIB_DETECTED)
11860 intel_ddi_init(dev, PORT_B);
11861 if (found & SFUSE_STRAP_DDIC_DETECTED)
11862 intel_ddi_init(dev, PORT_C);
11863 if (found & SFUSE_STRAP_DDID_DETECTED)
11864 intel_ddi_init(dev, PORT_D);
11865 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11866 int found;
5d8a7752 11867 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11868
11869 if (has_edp_a(dev))
11870 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11871
dc0fa718 11872 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11873 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11874 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11875 if (!found)
e2debe91 11876 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11877 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11878 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11879 }
11880
dc0fa718 11881 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11882 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11883
dc0fa718 11884 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11885 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11886
5eb08b69 11887 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11888 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11889
270b3042 11890 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11891 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11892 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11893 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11894 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11895 PORT_B);
11896 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11897 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11898 }
11899
6f6005a5
JB
11900 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11901 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11902 PORT_C);
11903 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11904 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11905 }
19c03924 11906
9418c1f1
VS
11907 if (IS_CHERRYVIEW(dev)) {
11908 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11909 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11910 PORT_D);
11911 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11912 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11913 }
11914 }
11915
3cfca973 11916 intel_dsi_init(dev);
103a196f 11917 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11918 bool found = false;
7d57382e 11919
e2debe91 11920 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11921 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11922 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11923 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11924 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11925 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11926 }
27185ae1 11927
e7281eab 11928 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11929 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11930 }
13520b05
KH
11931
11932 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11933
e2debe91 11934 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11935 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11936 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11937 }
27185ae1 11938
e2debe91 11939 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11940
b01f2c3a
JB
11941 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11942 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11943 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11944 }
e7281eab 11945 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11946 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11947 }
27185ae1 11948
b01f2c3a 11949 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11950 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11951 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11952 } else if (IS_GEN2(dev))
79e53945
JB
11953 intel_dvo_init(dev);
11954
103a196f 11955 if (SUPPORTS_TV(dev))
79e53945
JB
11956 intel_tv_init(dev);
11957
7c8f8a70
RV
11958 intel_edp_psr_init(dev);
11959
4ef69c7a
CW
11960 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11961 encoder->base.possible_crtcs = encoder->crtc_mask;
11962 encoder->base.possible_clones =
66a9278e 11963 intel_encoder_clones(encoder);
79e53945 11964 }
47356eb6 11965
dde86e2d 11966 intel_init_pch_refclk(dev);
270b3042
DV
11967
11968 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11969}
11970
11971static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11972{
60a5ca01 11973 struct drm_device *dev = fb->dev;
79e53945 11974 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11975
ef2d633e 11976 drm_framebuffer_cleanup(fb);
60a5ca01 11977 mutex_lock(&dev->struct_mutex);
ef2d633e 11978 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11979 drm_gem_object_unreference(&intel_fb->obj->base);
11980 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11981 kfree(intel_fb);
11982}
11983
11984static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11985 struct drm_file *file,
79e53945
JB
11986 unsigned int *handle)
11987{
11988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11989 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11990
05394f39 11991 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11992}
11993
11994static const struct drm_framebuffer_funcs intel_fb_funcs = {
11995 .destroy = intel_user_framebuffer_destroy,
11996 .create_handle = intel_user_framebuffer_create_handle,
11997};
11998
b5ea642a
DV
11999static int intel_framebuffer_init(struct drm_device *dev,
12000 struct intel_framebuffer *intel_fb,
12001 struct drm_mode_fb_cmd2 *mode_cmd,
12002 struct drm_i915_gem_object *obj)
79e53945 12003{
a57ce0b2 12004 int aligned_height;
a35cdaa0 12005 int pitch_limit;
79e53945
JB
12006 int ret;
12007
dd4916c5
DV
12008 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12009
c16ed4be
CW
12010 if (obj->tiling_mode == I915_TILING_Y) {
12011 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12012 return -EINVAL;
c16ed4be 12013 }
57cd6508 12014
c16ed4be
CW
12015 if (mode_cmd->pitches[0] & 63) {
12016 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12017 mode_cmd->pitches[0]);
57cd6508 12018 return -EINVAL;
c16ed4be 12019 }
57cd6508 12020
a35cdaa0
CW
12021 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12022 pitch_limit = 32*1024;
12023 } else if (INTEL_INFO(dev)->gen >= 4) {
12024 if (obj->tiling_mode)
12025 pitch_limit = 16*1024;
12026 else
12027 pitch_limit = 32*1024;
12028 } else if (INTEL_INFO(dev)->gen >= 3) {
12029 if (obj->tiling_mode)
12030 pitch_limit = 8*1024;
12031 else
12032 pitch_limit = 16*1024;
12033 } else
12034 /* XXX DSPC is limited to 4k tiled */
12035 pitch_limit = 8*1024;
12036
12037 if (mode_cmd->pitches[0] > pitch_limit) {
12038 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12039 obj->tiling_mode ? "tiled" : "linear",
12040 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12041 return -EINVAL;
c16ed4be 12042 }
5d7bd705
VS
12043
12044 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12045 mode_cmd->pitches[0] != obj->stride) {
12046 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12047 mode_cmd->pitches[0], obj->stride);
5d7bd705 12048 return -EINVAL;
c16ed4be 12049 }
5d7bd705 12050
57779d06 12051 /* Reject formats not supported by any plane early. */
308e5bcb 12052 switch (mode_cmd->pixel_format) {
57779d06 12053 case DRM_FORMAT_C8:
04b3924d
VS
12054 case DRM_FORMAT_RGB565:
12055 case DRM_FORMAT_XRGB8888:
12056 case DRM_FORMAT_ARGB8888:
57779d06
VS
12057 break;
12058 case DRM_FORMAT_XRGB1555:
12059 case DRM_FORMAT_ARGB1555:
c16ed4be 12060 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12061 DRM_DEBUG("unsupported pixel format: %s\n",
12062 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12063 return -EINVAL;
c16ed4be 12064 }
57779d06
VS
12065 break;
12066 case DRM_FORMAT_XBGR8888:
12067 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12068 case DRM_FORMAT_XRGB2101010:
12069 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12070 case DRM_FORMAT_XBGR2101010:
12071 case DRM_FORMAT_ABGR2101010:
c16ed4be 12072 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12073 DRM_DEBUG("unsupported pixel format: %s\n",
12074 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12075 return -EINVAL;
c16ed4be 12076 }
b5626747 12077 break;
04b3924d
VS
12078 case DRM_FORMAT_YUYV:
12079 case DRM_FORMAT_UYVY:
12080 case DRM_FORMAT_YVYU:
12081 case DRM_FORMAT_VYUY:
c16ed4be 12082 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12083 DRM_DEBUG("unsupported pixel format: %s\n",
12084 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12085 return -EINVAL;
c16ed4be 12086 }
57cd6508
CW
12087 break;
12088 default:
4ee62c76
VS
12089 DRM_DEBUG("unsupported pixel format: %s\n",
12090 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12091 return -EINVAL;
12092 }
12093
90f9a336
VS
12094 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12095 if (mode_cmd->offsets[0] != 0)
12096 return -EINVAL;
12097
a57ce0b2
JB
12098 aligned_height = intel_align_height(dev, mode_cmd->height,
12099 obj->tiling_mode);
53155c0a
DV
12100 /* FIXME drm helper for size checks (especially planar formats)? */
12101 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12102 return -EINVAL;
12103
c7d73f6a
DV
12104 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12105 intel_fb->obj = obj;
80075d49 12106 intel_fb->obj->framebuffer_references++;
c7d73f6a 12107
79e53945
JB
12108 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12109 if (ret) {
12110 DRM_ERROR("framebuffer init failed %d\n", ret);
12111 return ret;
12112 }
12113
79e53945
JB
12114 return 0;
12115}
12116
79e53945
JB
12117static struct drm_framebuffer *
12118intel_user_framebuffer_create(struct drm_device *dev,
12119 struct drm_file *filp,
308e5bcb 12120 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12121{
05394f39 12122 struct drm_i915_gem_object *obj;
79e53945 12123
308e5bcb
JB
12124 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12125 mode_cmd->handles[0]));
c8725226 12126 if (&obj->base == NULL)
cce13ff7 12127 return ERR_PTR(-ENOENT);
79e53945 12128
d2dff872 12129 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12130}
12131
4520f53a 12132#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12133static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12134{
12135}
12136#endif
12137
79e53945 12138static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12139 .fb_create = intel_user_framebuffer_create,
0632fef6 12140 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12141};
12142
e70236a8
JB
12143/* Set up chip specific display functions */
12144static void intel_init_display(struct drm_device *dev)
12145{
12146 struct drm_i915_private *dev_priv = dev->dev_private;
12147
ee9300bb
DV
12148 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12149 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12150 else if (IS_CHERRYVIEW(dev))
12151 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12152 else if (IS_VALLEYVIEW(dev))
12153 dev_priv->display.find_dpll = vlv_find_best_dpll;
12154 else if (IS_PINEVIEW(dev))
12155 dev_priv->display.find_dpll = pnv_find_best_dpll;
12156 else
12157 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12158
affa9354 12159 if (HAS_DDI(dev)) {
0e8ffe1b 12160 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12161 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12162 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12163 dev_priv->display.crtc_enable = haswell_crtc_enable;
12164 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12165 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12166 dev_priv->display.update_primary_plane =
12167 ironlake_update_primary_plane;
09b4ddf9 12168 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12169 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12170 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12171 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12172 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12173 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12174 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12175 dev_priv->display.update_primary_plane =
12176 ironlake_update_primary_plane;
89b667f8
JB
12177 } else if (IS_VALLEYVIEW(dev)) {
12178 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12179 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12180 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12181 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12182 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12183 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12184 dev_priv->display.update_primary_plane =
12185 i9xx_update_primary_plane;
f564048e 12186 } else {
0e8ffe1b 12187 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12188 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12189 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12190 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12191 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12192 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12193 dev_priv->display.update_primary_plane =
12194 i9xx_update_primary_plane;
f564048e 12195 }
e70236a8 12196
e70236a8 12197 /* Returns the core display clock speed */
25eb05fc
JB
12198 if (IS_VALLEYVIEW(dev))
12199 dev_priv->display.get_display_clock_speed =
12200 valleyview_get_display_clock_speed;
12201 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12202 dev_priv->display.get_display_clock_speed =
12203 i945_get_display_clock_speed;
12204 else if (IS_I915G(dev))
12205 dev_priv->display.get_display_clock_speed =
12206 i915_get_display_clock_speed;
257a7ffc 12207 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12208 dev_priv->display.get_display_clock_speed =
12209 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12210 else if (IS_PINEVIEW(dev))
12211 dev_priv->display.get_display_clock_speed =
12212 pnv_get_display_clock_speed;
e70236a8
JB
12213 else if (IS_I915GM(dev))
12214 dev_priv->display.get_display_clock_speed =
12215 i915gm_get_display_clock_speed;
12216 else if (IS_I865G(dev))
12217 dev_priv->display.get_display_clock_speed =
12218 i865_get_display_clock_speed;
f0f8a9ce 12219 else if (IS_I85X(dev))
e70236a8
JB
12220 dev_priv->display.get_display_clock_speed =
12221 i855_get_display_clock_speed;
12222 else /* 852, 830 */
12223 dev_priv->display.get_display_clock_speed =
12224 i830_get_display_clock_speed;
12225
7f8a8569 12226 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12227 if (IS_GEN5(dev)) {
674cf967 12228 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12229 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12230 } else if (IS_GEN6(dev)) {
674cf967 12231 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12232 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12233 dev_priv->display.modeset_global_resources =
12234 snb_modeset_global_resources;
357555c0
JB
12235 } else if (IS_IVYBRIDGE(dev)) {
12236 /* FIXME: detect B0+ stepping and use auto training */
12237 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12238 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12239 dev_priv->display.modeset_global_resources =
12240 ivb_modeset_global_resources;
4e0bbc31 12241 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12242 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12243 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12244 dev_priv->display.modeset_global_resources =
12245 haswell_modeset_global_resources;
a0e63c22 12246 }
6067aaea 12247 } else if (IS_G4X(dev)) {
e0dac65e 12248 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12249 } else if (IS_VALLEYVIEW(dev)) {
12250 dev_priv->display.modeset_global_resources =
12251 valleyview_modeset_global_resources;
9ca2fe73 12252 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12253 }
8c9f3aaf
JB
12254
12255 /* Default just returns -ENODEV to indicate unsupported */
12256 dev_priv->display.queue_flip = intel_default_queue_flip;
12257
12258 switch (INTEL_INFO(dev)->gen) {
12259 case 2:
12260 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12261 break;
12262
12263 case 3:
12264 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12265 break;
12266
12267 case 4:
12268 case 5:
12269 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12270 break;
12271
12272 case 6:
12273 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12274 break;
7c9017e5 12275 case 7:
4e0bbc31 12276 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12277 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12278 break;
8c9f3aaf 12279 }
7bd688cd
JN
12280
12281 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12282}
12283
b690e96c
JB
12284/*
12285 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12286 * resume, or other times. This quirk makes sure that's the case for
12287 * affected systems.
12288 */
0206e353 12289static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12290{
12291 struct drm_i915_private *dev_priv = dev->dev_private;
12292
12293 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12294 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12295}
12296
435793df
KP
12297/*
12298 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12299 */
12300static void quirk_ssc_force_disable(struct drm_device *dev)
12301{
12302 struct drm_i915_private *dev_priv = dev->dev_private;
12303 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12304 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12305}
12306
4dca20ef 12307/*
5a15ab5b
CE
12308 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12309 * brightness value
4dca20ef
CE
12310 */
12311static void quirk_invert_brightness(struct drm_device *dev)
12312{
12313 struct drm_i915_private *dev_priv = dev->dev_private;
12314 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12315 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12316}
12317
b690e96c
JB
12318struct intel_quirk {
12319 int device;
12320 int subsystem_vendor;
12321 int subsystem_device;
12322 void (*hook)(struct drm_device *dev);
12323};
12324
5f85f176
EE
12325/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12326struct intel_dmi_quirk {
12327 void (*hook)(struct drm_device *dev);
12328 const struct dmi_system_id (*dmi_id_list)[];
12329};
12330
12331static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12332{
12333 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12334 return 1;
12335}
12336
12337static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12338 {
12339 .dmi_id_list = &(const struct dmi_system_id[]) {
12340 {
12341 .callback = intel_dmi_reverse_brightness,
12342 .ident = "NCR Corporation",
12343 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12344 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12345 },
12346 },
12347 { } /* terminating entry */
12348 },
12349 .hook = quirk_invert_brightness,
12350 },
12351};
12352
c43b5634 12353static struct intel_quirk intel_quirks[] = {
b690e96c 12354 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12355 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12356
b690e96c
JB
12357 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12358 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12359
b690e96c
JB
12360 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12361 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12362
435793df
KP
12363 /* Lenovo U160 cannot use SSC on LVDS */
12364 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12365
12366 /* Sony Vaio Y cannot use SSC on LVDS */
12367 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12368
be505f64
AH
12369 /* Acer Aspire 5734Z must invert backlight brightness */
12370 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12371
12372 /* Acer/eMachines G725 */
12373 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12374
12375 /* Acer/eMachines e725 */
12376 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12377
12378 /* Acer/Packard Bell NCL20 */
12379 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12380
12381 /* Acer Aspire 4736Z */
12382 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12383
12384 /* Acer Aspire 5336 */
12385 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12386};
12387
12388static void intel_init_quirks(struct drm_device *dev)
12389{
12390 struct pci_dev *d = dev->pdev;
12391 int i;
12392
12393 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12394 struct intel_quirk *q = &intel_quirks[i];
12395
12396 if (d->device == q->device &&
12397 (d->subsystem_vendor == q->subsystem_vendor ||
12398 q->subsystem_vendor == PCI_ANY_ID) &&
12399 (d->subsystem_device == q->subsystem_device ||
12400 q->subsystem_device == PCI_ANY_ID))
12401 q->hook(dev);
12402 }
5f85f176
EE
12403 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12404 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12405 intel_dmi_quirks[i].hook(dev);
12406 }
b690e96c
JB
12407}
12408
9cce37f4
JB
12409/* Disable the VGA plane that we never use */
12410static void i915_disable_vga(struct drm_device *dev)
12411{
12412 struct drm_i915_private *dev_priv = dev->dev_private;
12413 u8 sr1;
766aa1c4 12414 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12415
2b37c616 12416 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12417 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12418 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12419 sr1 = inb(VGA_SR_DATA);
12420 outb(sr1 | 1<<5, VGA_SR_DATA);
12421 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12422 udelay(300);
12423
12424 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12425 POSTING_READ(vga_reg);
12426}
12427
f817586c
DV
12428void intel_modeset_init_hw(struct drm_device *dev)
12429{
a8f78b58
ED
12430 intel_prepare_ddi(dev);
12431
f817586c
DV
12432 intel_init_clock_gating(dev);
12433
5382f5f3 12434 intel_reset_dpio(dev);
40e9cf64 12435
8090c6b9 12436 intel_enable_gt_powersave(dev);
f817586c
DV
12437}
12438
7d708ee4
ID
12439void intel_modeset_suspend_hw(struct drm_device *dev)
12440{
12441 intel_suspend_hw(dev);
12442}
12443
79e53945
JB
12444void intel_modeset_init(struct drm_device *dev)
12445{
652c393a 12446 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12447 int sprite, ret;
8cc87b75 12448 enum pipe pipe;
46f297fb 12449 struct intel_crtc *crtc;
79e53945
JB
12450
12451 drm_mode_config_init(dev);
12452
12453 dev->mode_config.min_width = 0;
12454 dev->mode_config.min_height = 0;
12455
019d96cb
DA
12456 dev->mode_config.preferred_depth = 24;
12457 dev->mode_config.prefer_shadow = 1;
12458
e6ecefaa 12459 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12460
b690e96c
JB
12461 intel_init_quirks(dev);
12462
1fa61106
ED
12463 intel_init_pm(dev);
12464
e3c74757
BW
12465 if (INTEL_INFO(dev)->num_pipes == 0)
12466 return;
12467
e70236a8
JB
12468 intel_init_display(dev);
12469
a6c45cf0
CW
12470 if (IS_GEN2(dev)) {
12471 dev->mode_config.max_width = 2048;
12472 dev->mode_config.max_height = 2048;
12473 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12474 dev->mode_config.max_width = 4096;
12475 dev->mode_config.max_height = 4096;
79e53945 12476 } else {
a6c45cf0
CW
12477 dev->mode_config.max_width = 8192;
12478 dev->mode_config.max_height = 8192;
79e53945 12479 }
068be561
DL
12480
12481 if (IS_GEN2(dev)) {
12482 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12483 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12484 } else {
12485 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12486 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12487 }
12488
5d4545ae 12489 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12490
28c97730 12491 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12492 INTEL_INFO(dev)->num_pipes,
12493 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12494
8cc87b75
DL
12495 for_each_pipe(pipe) {
12496 intel_crtc_init(dev, pipe);
1fe47785
DL
12497 for_each_sprite(pipe, sprite) {
12498 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12499 if (ret)
06da8da2 12500 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12501 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12502 }
79e53945
JB
12503 }
12504
f42bb70d 12505 intel_init_dpio(dev);
5382f5f3 12506 intel_reset_dpio(dev);
f42bb70d 12507
79f689aa 12508 intel_cpu_pll_init(dev);
e72f9fbf 12509 intel_shared_dpll_init(dev);
ee7b9f93 12510
9cce37f4
JB
12511 /* Just disable it once at startup */
12512 i915_disable_vga(dev);
79e53945 12513 intel_setup_outputs(dev);
11be49eb
CW
12514
12515 /* Just in case the BIOS is doing something questionable. */
12516 intel_disable_fbc(dev);
fa9fa083 12517
6e9f798d 12518 drm_modeset_lock_all(dev);
fa9fa083 12519 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12520 drm_modeset_unlock_all(dev);
46f297fb 12521
d3fcc808 12522 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12523 if (!crtc->active)
12524 continue;
12525
46f297fb 12526 /*
46f297fb
JB
12527 * Note that reserving the BIOS fb up front prevents us
12528 * from stuffing other stolen allocations like the ring
12529 * on top. This prevents some ugliness at boot time, and
12530 * can even allow for smooth boot transitions if the BIOS
12531 * fb is large enough for the active pipe configuration.
12532 */
12533 if (dev_priv->display.get_plane_config) {
12534 dev_priv->display.get_plane_config(crtc,
12535 &crtc->plane_config);
12536 /*
12537 * If the fb is shared between multiple heads, we'll
12538 * just get the first one.
12539 */
484b41dd 12540 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12541 }
46f297fb 12542 }
2c7111db
CW
12543}
12544
7fad798e
DV
12545static void intel_enable_pipe_a(struct drm_device *dev)
12546{
12547 struct intel_connector *connector;
12548 struct drm_connector *crt = NULL;
12549 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12550 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12551
12552 /* We can't just switch on the pipe A, we need to set things up with a
12553 * proper mode and output configuration. As a gross hack, enable pipe A
12554 * by enabling the load detect pipe once. */
12555 list_for_each_entry(connector,
12556 &dev->mode_config.connector_list,
12557 base.head) {
12558 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12559 crt = &connector->base;
12560 break;
12561 }
12562 }
12563
12564 if (!crt)
12565 return;
12566
51fd371b
RC
12567 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12568 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12569
652c393a 12570
7fad798e
DV
12571}
12572
fa555837
DV
12573static bool
12574intel_check_plane_mapping(struct intel_crtc *crtc)
12575{
7eb552ae
BW
12576 struct drm_device *dev = crtc->base.dev;
12577 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12578 u32 reg, val;
12579
7eb552ae 12580 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12581 return true;
12582
12583 reg = DSPCNTR(!crtc->plane);
12584 val = I915_READ(reg);
12585
12586 if ((val & DISPLAY_PLANE_ENABLE) &&
12587 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12588 return false;
12589
12590 return true;
12591}
12592
24929352
DV
12593static void intel_sanitize_crtc(struct intel_crtc *crtc)
12594{
12595 struct drm_device *dev = crtc->base.dev;
12596 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12597 u32 reg;
24929352 12598
24929352 12599 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12600 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12601 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12602
d3eaf884
VS
12603 /* restore vblank interrupts to correct state */
12604 if (crtc->active)
12605 drm_vblank_on(dev, crtc->pipe);
12606 else
12607 drm_vblank_off(dev, crtc->pipe);
12608
24929352 12609 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12610 * disable the crtc (and hence change the state) if it is wrong. Note
12611 * that gen4+ has a fixed plane -> pipe mapping. */
12612 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12613 struct intel_connector *connector;
12614 bool plane;
12615
24929352
DV
12616 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12617 crtc->base.base.id);
12618
12619 /* Pipe has the wrong plane attached and the plane is active.
12620 * Temporarily change the plane mapping and disable everything
12621 * ... */
12622 plane = crtc->plane;
12623 crtc->plane = !plane;
12624 dev_priv->display.crtc_disable(&crtc->base);
12625 crtc->plane = plane;
12626
12627 /* ... and break all links. */
12628 list_for_each_entry(connector, &dev->mode_config.connector_list,
12629 base.head) {
12630 if (connector->encoder->base.crtc != &crtc->base)
12631 continue;
12632
7f1950fb
EE
12633 connector->base.dpms = DRM_MODE_DPMS_OFF;
12634 connector->base.encoder = NULL;
24929352 12635 }
7f1950fb
EE
12636 /* multiple connectors may have the same encoder:
12637 * handle them and break crtc link separately */
12638 list_for_each_entry(connector, &dev->mode_config.connector_list,
12639 base.head)
12640 if (connector->encoder->base.crtc == &crtc->base) {
12641 connector->encoder->base.crtc = NULL;
12642 connector->encoder->connectors_active = false;
12643 }
24929352
DV
12644
12645 WARN_ON(crtc->active);
12646 crtc->base.enabled = false;
12647 }
24929352 12648
7fad798e
DV
12649 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12650 crtc->pipe == PIPE_A && !crtc->active) {
12651 /* BIOS forgot to enable pipe A, this mostly happens after
12652 * resume. Force-enable the pipe to fix this, the update_dpms
12653 * call below we restore the pipe to the right state, but leave
12654 * the required bits on. */
12655 intel_enable_pipe_a(dev);
12656 }
12657
24929352
DV
12658 /* Adjust the state of the output pipe according to whether we
12659 * have active connectors/encoders. */
12660 intel_crtc_update_dpms(&crtc->base);
12661
12662 if (crtc->active != crtc->base.enabled) {
12663 struct intel_encoder *encoder;
12664
12665 /* This can happen either due to bugs in the get_hw_state
12666 * functions or because the pipe is force-enabled due to the
12667 * pipe A quirk. */
12668 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12669 crtc->base.base.id,
12670 crtc->base.enabled ? "enabled" : "disabled",
12671 crtc->active ? "enabled" : "disabled");
12672
12673 crtc->base.enabled = crtc->active;
12674
12675 /* Because we only establish the connector -> encoder ->
12676 * crtc links if something is active, this means the
12677 * crtc is now deactivated. Break the links. connector
12678 * -> encoder links are only establish when things are
12679 * actually up, hence no need to break them. */
12680 WARN_ON(crtc->active);
12681
12682 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12683 WARN_ON(encoder->connectors_active);
12684 encoder->base.crtc = NULL;
12685 }
12686 }
c5ab3bc0
DV
12687
12688 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12689 /*
12690 * We start out with underrun reporting disabled to avoid races.
12691 * For correct bookkeeping mark this on active crtcs.
12692 *
c5ab3bc0
DV
12693 * Also on gmch platforms we dont have any hardware bits to
12694 * disable the underrun reporting. Which means we need to start
12695 * out with underrun reporting disabled also on inactive pipes,
12696 * since otherwise we'll complain about the garbage we read when
12697 * e.g. coming up after runtime pm.
12698 *
4cc31489
DV
12699 * No protection against concurrent access is required - at
12700 * worst a fifo underrun happens which also sets this to false.
12701 */
12702 crtc->cpu_fifo_underrun_disabled = true;
12703 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12704
12705 update_scanline_offset(crtc);
4cc31489 12706 }
24929352
DV
12707}
12708
12709static void intel_sanitize_encoder(struct intel_encoder *encoder)
12710{
12711 struct intel_connector *connector;
12712 struct drm_device *dev = encoder->base.dev;
12713
12714 /* We need to check both for a crtc link (meaning that the
12715 * encoder is active and trying to read from a pipe) and the
12716 * pipe itself being active. */
12717 bool has_active_crtc = encoder->base.crtc &&
12718 to_intel_crtc(encoder->base.crtc)->active;
12719
12720 if (encoder->connectors_active && !has_active_crtc) {
12721 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12722 encoder->base.base.id,
8e329a03 12723 encoder->base.name);
24929352
DV
12724
12725 /* Connector is active, but has no active pipe. This is
12726 * fallout from our resume register restoring. Disable
12727 * the encoder manually again. */
12728 if (encoder->base.crtc) {
12729 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12730 encoder->base.base.id,
8e329a03 12731 encoder->base.name);
24929352
DV
12732 encoder->disable(encoder);
12733 }
7f1950fb
EE
12734 encoder->base.crtc = NULL;
12735 encoder->connectors_active = false;
24929352
DV
12736
12737 /* Inconsistent output/port/pipe state happens presumably due to
12738 * a bug in one of the get_hw_state functions. Or someplace else
12739 * in our code, like the register restore mess on resume. Clamp
12740 * things to off as a safer default. */
12741 list_for_each_entry(connector,
12742 &dev->mode_config.connector_list,
12743 base.head) {
12744 if (connector->encoder != encoder)
12745 continue;
7f1950fb
EE
12746 connector->base.dpms = DRM_MODE_DPMS_OFF;
12747 connector->base.encoder = NULL;
24929352
DV
12748 }
12749 }
12750 /* Enabled encoders without active connectors will be fixed in
12751 * the crtc fixup. */
12752}
12753
04098753 12754void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12755{
12756 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12757 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12758
04098753
ID
12759 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12760 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12761 i915_disable_vga(dev);
12762 }
12763}
12764
12765void i915_redisable_vga(struct drm_device *dev)
12766{
12767 struct drm_i915_private *dev_priv = dev->dev_private;
12768
8dc8a27c
PZ
12769 /* This function can be called both from intel_modeset_setup_hw_state or
12770 * at a very early point in our resume sequence, where the power well
12771 * structures are not yet restored. Since this function is at a very
12772 * paranoid "someone might have enabled VGA while we were not looking"
12773 * level, just check if the power well is enabled instead of trying to
12774 * follow the "don't touch the power well if we don't need it" policy
12775 * the rest of the driver uses. */
04098753 12776 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12777 return;
12778
04098753 12779 i915_redisable_vga_power_on(dev);
0fde901f
KM
12780}
12781
98ec7739
VS
12782static bool primary_get_hw_state(struct intel_crtc *crtc)
12783{
12784 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12785
12786 if (!crtc->active)
12787 return false;
12788
12789 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12790}
12791
30e984df 12792static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12793{
12794 struct drm_i915_private *dev_priv = dev->dev_private;
12795 enum pipe pipe;
24929352
DV
12796 struct intel_crtc *crtc;
12797 struct intel_encoder *encoder;
12798 struct intel_connector *connector;
5358901f 12799 int i;
24929352 12800
d3fcc808 12801 for_each_intel_crtc(dev, crtc) {
88adfff1 12802 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12803
9953599b
DV
12804 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12805
0e8ffe1b
DV
12806 crtc->active = dev_priv->display.get_pipe_config(crtc,
12807 &crtc->config);
24929352
DV
12808
12809 crtc->base.enabled = crtc->active;
98ec7739 12810 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12811
12812 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12813 crtc->base.base.id,
12814 crtc->active ? "enabled" : "disabled");
12815 }
12816
5358901f 12817 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12818 if (HAS_DDI(dev))
6441ab5f
PZ
12819 intel_ddi_setup_hw_pll_state(dev);
12820
5358901f
DV
12821 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12822 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12823
12824 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12825 pll->active = 0;
d3fcc808 12826 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12827 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12828 pll->active++;
12829 }
12830 pll->refcount = pll->active;
12831
35c95375
DV
12832 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12833 pll->name, pll->refcount, pll->on);
5358901f
DV
12834 }
12835
24929352
DV
12836 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12837 base.head) {
12838 pipe = 0;
12839
12840 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12841 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12842 encoder->base.crtc = &crtc->base;
1d37b689 12843 encoder->get_config(encoder, &crtc->config);
24929352
DV
12844 } else {
12845 encoder->base.crtc = NULL;
12846 }
12847
12848 encoder->connectors_active = false;
6f2bcceb 12849 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12850 encoder->base.base.id,
8e329a03 12851 encoder->base.name,
24929352 12852 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12853 pipe_name(pipe));
24929352
DV
12854 }
12855
12856 list_for_each_entry(connector, &dev->mode_config.connector_list,
12857 base.head) {
12858 if (connector->get_hw_state(connector)) {
12859 connector->base.dpms = DRM_MODE_DPMS_ON;
12860 connector->encoder->connectors_active = true;
12861 connector->base.encoder = &connector->encoder->base;
12862 } else {
12863 connector->base.dpms = DRM_MODE_DPMS_OFF;
12864 connector->base.encoder = NULL;
12865 }
12866 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12867 connector->base.base.id,
c23cc417 12868 connector->base.name,
24929352
DV
12869 connector->base.encoder ? "enabled" : "disabled");
12870 }
30e984df
DV
12871}
12872
12873/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12874 * and i915 state tracking structures. */
12875void intel_modeset_setup_hw_state(struct drm_device *dev,
12876 bool force_restore)
12877{
12878 struct drm_i915_private *dev_priv = dev->dev_private;
12879 enum pipe pipe;
30e984df
DV
12880 struct intel_crtc *crtc;
12881 struct intel_encoder *encoder;
35c95375 12882 int i;
30e984df
DV
12883
12884 intel_modeset_readout_hw_state(dev);
24929352 12885
babea61d
JB
12886 /*
12887 * Now that we have the config, copy it to each CRTC struct
12888 * Note that this could go away if we move to using crtc_config
12889 * checking everywhere.
12890 */
d3fcc808 12891 for_each_intel_crtc(dev, crtc) {
d330a953 12892 if (crtc->active && i915.fastboot) {
f6a83288 12893 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12894 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12895 crtc->base.base.id);
12896 drm_mode_debug_printmodeline(&crtc->base.mode);
12897 }
12898 }
12899
24929352
DV
12900 /* HW state is read out, now we need to sanitize this mess. */
12901 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12902 base.head) {
12903 intel_sanitize_encoder(encoder);
12904 }
12905
12906 for_each_pipe(pipe) {
12907 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12908 intel_sanitize_crtc(crtc);
c0b03411 12909 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12910 }
9a935856 12911
35c95375
DV
12912 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12913 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12914
12915 if (!pll->on || pll->active)
12916 continue;
12917
12918 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12919
12920 pll->disable(dev_priv, pll);
12921 pll->on = false;
12922 }
12923
96f90c54 12924 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12925 ilk_wm_get_hw_state(dev);
12926
45e2b5f6 12927 if (force_restore) {
7d0bc1ea
VS
12928 i915_redisable_vga(dev);
12929
f30da187
DV
12930 /*
12931 * We need to use raw interfaces for restoring state to avoid
12932 * checking (bogus) intermediate states.
12933 */
45e2b5f6 12934 for_each_pipe(pipe) {
b5644d05
JB
12935 struct drm_crtc *crtc =
12936 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12937
12938 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12939 crtc->primary->fb);
45e2b5f6
DV
12940 }
12941 } else {
12942 intel_modeset_update_staged_output_state(dev);
12943 }
8af6cf88
DV
12944
12945 intel_modeset_check_state(dev);
2c7111db
CW
12946}
12947
12948void intel_modeset_gem_init(struct drm_device *dev)
12949{
484b41dd
JB
12950 struct drm_crtc *c;
12951 struct intel_framebuffer *fb;
12952
ae48434c
ID
12953 mutex_lock(&dev->struct_mutex);
12954 intel_init_gt_powersave(dev);
12955 mutex_unlock(&dev->struct_mutex);
12956
1833b134 12957 intel_modeset_init_hw(dev);
02e792fb
DV
12958
12959 intel_setup_overlay(dev);
484b41dd
JB
12960
12961 /*
12962 * Make sure any fbs we allocated at startup are properly
12963 * pinned & fenced. When we do the allocation it's too early
12964 * for this.
12965 */
12966 mutex_lock(&dev->struct_mutex);
70e1e0ec 12967 for_each_crtc(dev, c) {
66e514c1 12968 if (!c->primary->fb)
484b41dd
JB
12969 continue;
12970
66e514c1 12971 fb = to_intel_framebuffer(c->primary->fb);
484b41dd
JB
12972 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12973 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12974 to_intel_crtc(c)->pipe);
66e514c1
DA
12975 drm_framebuffer_unreference(c->primary->fb);
12976 c->primary->fb = NULL;
484b41dd
JB
12977 }
12978 }
12979 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12980}
12981
4932e2c3
ID
12982void intel_connector_unregister(struct intel_connector *intel_connector)
12983{
12984 struct drm_connector *connector = &intel_connector->base;
12985
12986 intel_panel_destroy_backlight(connector);
12987 drm_sysfs_connector_remove(connector);
12988}
12989
79e53945
JB
12990void intel_modeset_cleanup(struct drm_device *dev)
12991{
652c393a 12992 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12993 struct drm_connector *connector;
652c393a 12994
fd0c0642
DV
12995 /*
12996 * Interrupts and polling as the first thing to avoid creating havoc.
12997 * Too much stuff here (turning of rps, connectors, ...) would
12998 * experience fancy races otherwise.
12999 */
13000 drm_irq_uninstall(dev);
13001 cancel_work_sync(&dev_priv->hotplug_work);
13002 /*
13003 * Due to the hpd irq storm handling the hotplug work can re-arm the
13004 * poll handlers. Hence disable polling after hpd handling is shut down.
13005 */
f87ea761 13006 drm_kms_helper_poll_fini(dev);
fd0c0642 13007
652c393a
JB
13008 mutex_lock(&dev->struct_mutex);
13009
723bfd70
JB
13010 intel_unregister_dsm_handler();
13011
973d04f9 13012 intel_disable_fbc(dev);
e70236a8 13013
8090c6b9 13014 intel_disable_gt_powersave(dev);
0cdab21f 13015
930ebb46
DV
13016 ironlake_teardown_rc6(dev);
13017
69341a5e
KH
13018 mutex_unlock(&dev->struct_mutex);
13019
1630fe75
CW
13020 /* flush any delayed tasks or pending work */
13021 flush_scheduled_work();
13022
db31af1d
JN
13023 /* destroy the backlight and sysfs files before encoders/connectors */
13024 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13025 struct intel_connector *intel_connector;
13026
13027 intel_connector = to_intel_connector(connector);
13028 intel_connector->unregister(intel_connector);
db31af1d 13029 }
d9255d57 13030
79e53945 13031 drm_mode_config_cleanup(dev);
4d7bb011
DV
13032
13033 intel_cleanup_overlay(dev);
ae48434c
ID
13034
13035 mutex_lock(&dev->struct_mutex);
13036 intel_cleanup_gt_powersave(dev);
13037 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13038}
13039
f1c79df3
ZW
13040/*
13041 * Return which encoder is currently attached for connector.
13042 */
df0e9248 13043struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13044{
df0e9248
CW
13045 return &intel_attached_encoder(connector)->base;
13046}
f1c79df3 13047
df0e9248
CW
13048void intel_connector_attach_encoder(struct intel_connector *connector,
13049 struct intel_encoder *encoder)
13050{
13051 connector->encoder = encoder;
13052 drm_mode_connector_attach_encoder(&connector->base,
13053 &encoder->base);
79e53945 13054}
28d52043
DA
13055
13056/*
13057 * set vga decode state - true == enable VGA decode
13058 */
13059int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13060{
13061 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13062 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13063 u16 gmch_ctrl;
13064
75fa041d
CW
13065 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13066 DRM_ERROR("failed to read control word\n");
13067 return -EIO;
13068 }
13069
c0cc8a55
CW
13070 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13071 return 0;
13072
28d52043
DA
13073 if (state)
13074 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13075 else
13076 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13077
13078 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13079 DRM_ERROR("failed to write control word\n");
13080 return -EIO;
13081 }
13082
28d52043
DA
13083 return 0;
13084}
c4a1d9e4 13085
c4a1d9e4 13086struct intel_display_error_state {
ff57f1b0
PZ
13087
13088 u32 power_well_driver;
13089
63b66e5b
CW
13090 int num_transcoders;
13091
c4a1d9e4
CW
13092 struct intel_cursor_error_state {
13093 u32 control;
13094 u32 position;
13095 u32 base;
13096 u32 size;
52331309 13097 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13098
13099 struct intel_pipe_error_state {
ddf9c536 13100 bool power_domain_on;
c4a1d9e4 13101 u32 source;
f301b1e1 13102 u32 stat;
52331309 13103 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13104
13105 struct intel_plane_error_state {
13106 u32 control;
13107 u32 stride;
13108 u32 size;
13109 u32 pos;
13110 u32 addr;
13111 u32 surface;
13112 u32 tile_offset;
52331309 13113 } plane[I915_MAX_PIPES];
63b66e5b
CW
13114
13115 struct intel_transcoder_error_state {
ddf9c536 13116 bool power_domain_on;
63b66e5b
CW
13117 enum transcoder cpu_transcoder;
13118
13119 u32 conf;
13120
13121 u32 htotal;
13122 u32 hblank;
13123 u32 hsync;
13124 u32 vtotal;
13125 u32 vblank;
13126 u32 vsync;
13127 } transcoder[4];
c4a1d9e4
CW
13128};
13129
13130struct intel_display_error_state *
13131intel_display_capture_error_state(struct drm_device *dev)
13132{
fbee40df 13133 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13134 struct intel_display_error_state *error;
63b66e5b
CW
13135 int transcoders[] = {
13136 TRANSCODER_A,
13137 TRANSCODER_B,
13138 TRANSCODER_C,
13139 TRANSCODER_EDP,
13140 };
c4a1d9e4
CW
13141 int i;
13142
63b66e5b
CW
13143 if (INTEL_INFO(dev)->num_pipes == 0)
13144 return NULL;
13145
9d1cb914 13146 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13147 if (error == NULL)
13148 return NULL;
13149
190be112 13150 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13151 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13152
52331309 13153 for_each_pipe(i) {
ddf9c536 13154 error->pipe[i].power_domain_on =
bfafe93a
ID
13155 intel_display_power_enabled_unlocked(dev_priv,
13156 POWER_DOMAIN_PIPE(i));
ddf9c536 13157 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13158 continue;
13159
5efb3e28
VS
13160 error->cursor[i].control = I915_READ(CURCNTR(i));
13161 error->cursor[i].position = I915_READ(CURPOS(i));
13162 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13163
13164 error->plane[i].control = I915_READ(DSPCNTR(i));
13165 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13166 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13167 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13168 error->plane[i].pos = I915_READ(DSPPOS(i));
13169 }
ca291363
PZ
13170 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13171 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13172 if (INTEL_INFO(dev)->gen >= 4) {
13173 error->plane[i].surface = I915_READ(DSPSURF(i));
13174 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13175 }
13176
c4a1d9e4 13177 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13178
13179 if (!HAS_PCH_SPLIT(dev))
13180 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13181 }
13182
13183 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13184 if (HAS_DDI(dev_priv->dev))
13185 error->num_transcoders++; /* Account for eDP. */
13186
13187 for (i = 0; i < error->num_transcoders; i++) {
13188 enum transcoder cpu_transcoder = transcoders[i];
13189
ddf9c536 13190 error->transcoder[i].power_domain_on =
bfafe93a 13191 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13192 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13193 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13194 continue;
13195
63b66e5b
CW
13196 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13197
13198 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13199 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13200 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13201 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13202 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13203 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13204 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13205 }
13206
13207 return error;
13208}
13209
edc3d884
MK
13210#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13211
c4a1d9e4 13212void
edc3d884 13213intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13214 struct drm_device *dev,
13215 struct intel_display_error_state *error)
13216{
13217 int i;
13218
63b66e5b
CW
13219 if (!error)
13220 return;
13221
edc3d884 13222 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13223 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13224 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13225 error->power_well_driver);
52331309 13226 for_each_pipe(i) {
edc3d884 13227 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13228 err_printf(m, " Power: %s\n",
13229 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13230 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13231 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13232
13233 err_printf(m, "Plane [%d]:\n", i);
13234 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13235 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13236 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13237 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13238 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13239 }
4b71a570 13240 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13241 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13242 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13243 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13244 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13245 }
13246
edc3d884
MK
13247 err_printf(m, "Cursor [%d]:\n", i);
13248 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13249 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13250 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13251 }
63b66e5b
CW
13252
13253 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13254 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13255 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13256 err_printf(m, " Power: %s\n",
13257 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13258 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13259 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13260 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13261 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13262 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13263 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13264 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13265 }
c4a1d9e4 13266}